WorldWideScience

Sample records for irrigated agricultural area

  1. Problems of irrigated agriculture in saline groundwater areas: farmers' perceptions

    International Nuclear Information System (INIS)

    Ahmad, S.; Yasin, M.; Ahmad, M.M.; Hussain, Z.; Khan, Z.; Akbar, G.

    2005-01-01

    A research study was conducted using participatory interactive dialogue in the brackish groundwater area of Mona SCARP-II, Bhalwal district Sargodha, Pakistan. The Participatory Rural Appraisal (PRA) was conducted in thirteen villages to identify macro- and micro-level issues related to irrigated agriculture in saline groundwater areas. SCARP tube wells have been abandoned or few have been handed over to farmers' organizations. Groundwater in the Indus basin contributes around 35% to the total water available for agriculture. Water quality of 60% area of the Indus basin is marginal to brackish. Minimum land holding of cultivated land in the elected villages varied from 0.10 to 4 ha. The maximum land holding of cultivated area in selected villages varied for 6 to 50 ha. However, the average size of farm was around 4 ha. The average salt-affected area per household was 17% of the total cultivated area. The salt-affected lands in 8 villages out of 13 were barren, where mainly rice crop is grown during kharif season. About 67% farms had access to conjunctive use of water, as water from both canal and private tube wells is available. In addition, 10% farms were having tube well water only. Therefore, 77% farms are having access to the groundwater. According to the farmers' perceptions, 100% villages have fresh groundwater to a depth of 7.5 m and 62% villages had depth ranging from 15-30 m. Furthermore, in all thirteen selected villages, groundwater quality beyond 30 m depth was brackish. Laboratory analysis confirmed the farmer's perception that groundwater quality is a function of depth. About 92% farmers groups indicated that non-availability and high price of inputs was a major problem. The second major issue was related to the shortage of canal water supplies and 77% villages are facing this problem. Moreover, 31% farmers' groups of selected villages indicated that water logging and salinity are the major concerns affecting agricultural productivity. This figure is

  2. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  3. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration's power marketing alternatives

    International Nuclear Information System (INIS)

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation's irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration's Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western's wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western's power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western's Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage

  4. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    Science.gov (United States)

    Thebo, A. L.; Drechsel, P.; Lambin, E. F.

    2014-11-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range.

  5. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    International Nuclear Information System (INIS)

    Thebo, A L; Drechsel, P; Lambin, E F

    2014-01-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range. (letter)

  6. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  7. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  8. A global approach to estimate irrigated areas - a comparison between different data and statistics

    Science.gov (United States)

    Meier, Jonas; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.

  9. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  10. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  11. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Science.gov (United States)

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  12. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI

    Science.gov (United States)

    Pervez, Md Shahriar; Budde, Michael; Rowland, James

    2014-01-01

    Agricultural production capacity contributes to food security in Afghanistan and is largely dependent on irrigated farming, mostly utilizing surface water fed by snowmelt. Because of the high contribution of irrigated crops (> 80%) to total agricultural production, knowing the spatial distribution and year-to-year variability in irrigated areas is imperative to monitoring food security for the country. We used 16-day composites of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to create 23-point time series for each year from 2000 through 2013. Seasonal peak values and time series were used in a threshold-dependent decision tree algorithm to map irrigated areas in Afghanistan for the last 14 years. In the absence of ground reference irrigated area information, we evaluated these maps with the irrigated areas classified from multiple snapshots of the landscape during the growing season from Landsat 5 optical and thermal sensor images. We were able to identify irrigated areas using Landsat imagery by selecting as irrigated those areas with Landsat-derived NDVI greater than 0.30–0.45, depending on the date of the Landsat image and surface temperature less than or equal to 310 Kelvin (36.9 ° C). Due to the availability of Landsat images, we were able to compare with the MODIS-derived maps for four years: 2000, 2009, 2010, and 2011. The irrigated areas derived from Landsat agreed well r2 = 0.91 with the irrigated areas derived from MODIS, providing confidence in the MODIS NDVI threshold approach. The maps portrayed a highly dynamic irrigated agriculture practice in Afghanistan, where the amount of irrigated area was largely determined by the availability of surface water, especially snowmelt, and varied by as much as 30% between water surplus and water deficit years. During the past 14 years, 2001, 2004, and 2008 showed the lowest levels of irrigated area (~ 1.5 million hectares), attesting to

  13. Agricultural irrigated land-use inventory for Polk County, Florida, 2016

    Science.gov (United States)

    Marella, Richard L.; Berry, Darbi; Dixon, Joann F.

    2017-08-16

    An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and

  14. Wastewater Use in Irrigated Agriculture : Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Wastewater Use in Irrigated Agriculture : Confronting the Livelihood and Environmental Realities. Couverture du livre Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities. Directeur(s) : Christopher Scott, Naser I. Faruqui et Liqa Raschid. Maison(s) d'édition : CABI, IWMI, CRDI.

  15. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    Science.gov (United States)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  16. Willingness to Pay Additional Water Rate and Irrigation Knowledge of Farmers in Dinar Karakuyu Irrigation Areas in Turkey

    Directory of Open Access Journals (Sweden)

    Mevlüt Gül

    2017-08-01

    Full Text Available Water which has become commodity product which is an important product today. Turkey is not a water rich country. In this study, agricultural enterprises in the field of Irrigation Project in Dinar Karakuyu which was implemented in 1992 by DSI. The study analysed which factors affect the willingness to pay additional irrigation water rate with the help of logit model and the irrigation knowledge of farmers was determined by Likert scale. Dinar Karakuyu irrigation network has begun to lose the function in the region. It was supposed 100% irrigation rate but decreased by approximately 9% today. In this context, DSI (General Directorate of State Hydraulic Works plans to rehabilitation work in the same area. The main material of this study was data obtained from 67 agricultural enterprises through a survey covered by the Irrigation Rehabilitation Project in the province of Afyonkarahisar Karakuyu Dinar. The data was gathered with the help of questionnaires which were answered by farmers in Karakuyu Dinar region. The results indicated that 74.6% of farmers were willingness to pay additional water charge. The data were statistically analysed with the use of the logit model. The model results show that agricultural income, farmers’ educational level, computer ownership, attendance of agricultural training activities, family size and agricultural experience were positive factors affect farmers’ willingness to pay additional water fee.

  17. Agriculture and natural resources in a changing world - the role of irrigation

    Science.gov (United States)

    Sauer, T.; Havlík, P.; Schneider, U. A.; Kindermann, G.; Obersteiner, M.

    2009-04-01

    Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water. Against the background of resource sustainability and food security topics, this study integrates the spatial and operational heterogeneity of irrigation management into a global land use model. It represents a first large scale assessment of agricultural water use under explicit consideration of alternative irrigation options in their particular biophysical, economic, and technical context, accounting for international trade, motivation-based farming, and quantified aggregated impacts on land scarcity, water scarcity, and food supply. The inclusion of technical and economic aspects of irrigation choice into an integrated land use modeling framework provides new insights into the interdisciplinary trade-offs between determinants of global land use change. Agricultural responses to population and economic growth include considerable increases in irrigated area and agricultural water use, but reductions in the average water intensity. Different irrigation systems are preferred under different exogenous biophysical and socioeconomic conditions. Negligence of these adaptations would bias the burden of development on land and water scarcity. Without technical progress in agriculture, predicted population and income levels for 2030 would require substantial price adjustments for land, water, and food to equilibrate supply and demand.

  18. Coupled Hydro-Economic Dynamics of Groundwater Irrigated Agriculture in a Hard Rock Region of India

    Science.gov (United States)

    Modi, V.; Fishman, R.; Siegfried, T. U.; Raj, P.; Vasquez, V.; Narula, K.; Lall, U.

    2009-12-01

    We analyze the dynamics of groundwater and irrigated agriculture in a semi-arid, hard rock region of India, which is characterized by low-yield, limited storativity aquifers. Telengana, in western Andhra Pradesh has witnessed a relentless expansion of the total irrigated area. Total crop irrigation water requirements have increased by more than 50 percent over the last 30 years. Nowadays, more than 80 percent of the net irrigated area in the region is irrigated from groundwater. Given limited, period monsoonal recharge to the aquifers, it can be estimated that groundwater irrigation intensity is surpassing sustainable allocation levels by a factor of 3. It is not further surprising that the region is increasingly affected by widespread groundwater depletion, with negative consequences for farmers and the energy sector as well as the natural environment. Using data on water tables, precipitation and agricultural land use, we show how both rainfall and farmers’ choices effect water tables and how these, in turn, re-effect farmers choices and agricultural outcomes in a dynamic relationship that allows us to model the interaction between the natural hydrological and agricultural-social dynamics. We use the model to elucidate and quantify the meaning of groundwater mining in this hard rock environment. In contrast to deep alluvial aquifers, excessive extraction does not lead to sustained long term deepening of the water table, but to increased fluctuations in the supply of groundwater for irrigation and the loss of the buffering capacity. For the farmers, this potentially translates into increasingly perilous agricultural production outcomes during monsoonal failures. Furthermore, the dry season agricultural production that entirely depends on the availability of sufficient amounts of irrigation water is progressively threatened under the current allocation scenario. Alternative management practices to address the aquifer depletion issues are discussed. We show that

  19. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    Science.gov (United States)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  20. Expansion of urban area and wastewater irrigated rice area in Hyderabad, India

    Science.gov (United States)

    Gumma, K.M.; van, Rooijen D.; Nelson, A.; Thenkabail, P.S.; Aakuraju, Radha V.; Amerasinghe, P.

    2011-01-01

    The goal of this study was to investigate land use changes in urban and peri-urban Hyderabad and their influence on wastewater irrigated rice using Landsat ETM + data and spectral matching techniques. The main source of irrigation water is the Musi River, which collects a large volume of wastewater and stormwater while running through the city. From 1989 to 2002, the wastewater irrigated area along the Musi River increased from 5,213 to 8,939 ha with concurrent expansion of the city boundaries from 22,690 to 42,813 ha and also decreased barren lands and range lands from 86,899 to 66,616 ha. Opportunistic shifts in land use, especially related to wastewater irrigated agriculture, were seen as a response to the demand for fresh vegetables and easy access to markets, exploited mainly by migrant populations. While wastewater irrigated agriculture contributes to income security of marginal groups, it also supplements the food basket of many city dwellers. Landsat ETM + data and advanced methods such as spectral matching techniques are ideal for quantifying urban expansion and associated land use changes, and are useful for urban planners and decision makers alike. ?? 2011 Springer Science+Business Media B.V.

  1. Geospatial compilation and digital map of centerpivot irrigated areas in the mid-Atlantic region, United States

    Science.gov (United States)

    Finkelstein, Jason S.; Nardi, Mark R.

    2015-01-01

    To evaluate water availability within the Northern Atlantic Coastal Plain, the U.S. Geological Survey, in cooperation with the University of Delaware Agricultural Extension, created a dataset that maps the number of acres under center-pivot irrigation in the Northern Atlantic Coastal Plain study area. For this study, the extent of the Northern Atlantic Coastal Plain falls within areas of the States of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The irrigation dataset maps about 271,900 acres operated primarily under center-pivot irrigation in 57 counties. Manual digitizing was performed against aerial imagery in a process where operators used observable center-pivot irrigation signatures—such as irrigation arms, concentric wheel paths through cropped areas, and differential colors—to identify and map irrigated areas. The aerial imagery used for digitizing came from a variety of sources and seasons. The imagery contained a variety of spatial resolutions and included online imagery from the U.S. Department of Agriculture National Agricultural Imagery Program, Microsoft Bing Maps, and the Google Maps mapping service. The dates of the source images ranged from 2010 to 2012 for the U.S. Department of Agriculture imagery, whereas maps from the other mapping services were from 2013.

  2. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  3. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  4. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    Science.gov (United States)

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  5. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data

    Science.gov (United States)

    Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.

    2011-01-01

    Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics

  6. Determination of optimal irrigation rates of agricultural crops under consideration of soil properties and climatic conditions

    Directory of Open Access Journals (Sweden)

    Irakli Kruashvili

    2016-09-01

    Full Text Available In conditions of increasing water shortage, further development of irrigated agriculture production is impossible without improving the methods of cultivation of agricultural crops, primarily irrigation technology. In 2015 the experiment have been conducted on the territory of irrigation farming area of village Tamarisi (Marneuli Municipality, according to which comprehensive study of local climatic and soil conditions were conducted. Received data were used for computation crop water requirements for tomato and melon under the different irrigation treatments. Obtained results have shown the possibility of water use efficiency and obtaining sufficiently high yields of crops that participated in the experiment that became possible in a case of usage of drip irrigation technology in combination with plastic mulch.

  7. Irrigated Area Maps and Statistics of India Using Remote Sensing and National Statistics

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2009-04-01

    Full Text Available The goal of this research was to compare the remote-sensing derived irrigated areas with census-derived statistics reported in the national system. India, which has nearly 30% of global annualized irrigated areas (AIAs, and is the leading irrigated area country in the World, along with China, was chosen for the study. Irrigated areas were derived for nominal year 2000 using time-series remote sensing at two spatial resolutions: (a 10-km Advanced Very High Resolution Radiometer (AVHRR and (b 500-m Moderate Resolution Imaging Spectroradiometer (MODIS. These areas were compared with the Indian National Statistical Data on irrigated areas reported by the: (a Directorate of Economics and Statistics (DES of the Ministry of Agriculture (MOA, and (b Ministry of Water Resources (MoWR. A state-by-state comparison of remote sensing derived irrigated areas when compared with MoWR derived irrigation potential utilized (IPU, an equivalent of AIA, provided a high degree of correlation with R2 values of: (a 0.79 with 10-km, and (b 0.85 with MODIS 500-m. However, the remote sensing derived irrigated area estimates for India were consistently higher than the irrigated areas reported by the national statistics. The remote sensing derived total area available for irrigation (TAAI, which does not consider intensity of irrigation, was 101 million hectares (Mha using 10-km and 113 Mha using 500-m. The AIAs, which considers intensity of irrigation, was 132 Mha using 10-km and 146 Mha using 500-m. In contrast the IPU, an equivalent of AIAs, as reported by MoWR was 83 Mha. There are “large variations” in irrigated area statistics reported, even between two ministries (e.g., Directorate of Statistics of Ministry of Agriculture and Ministry of Water Resources of the same national system. The causes include: (a reluctance on part of the states to furnish irrigated area data in view of their vested interests in sharing of water, and (b reporting of large volumes of data

  8. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilcox, Edmund [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  9. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  10. Simulating Changes in Land-Atmosphere Interactions From Expanding Agriculture and Irrigation in India and the Potential Impacts on the Indian Monsoon.

    Science.gov (United States)

    Douglas, E. M.; Beltran-Przekurat, A.; Niyogi, D.; Pielke, R. A.

    2006-05-01

    With over 57 million hectares under irrigation in 2002, India has the largest irrigated agricultural area on the planet. Between 80 and 90% of India's water use goes to support irrigated agriculture. The Indian monsoon belt is a home to a large part of the world's population and agriculture is the major land-use activity in the region. Previous results showed that annual vapor fluxes in India have increased by 17% (340 km3) over that which would be expected from a natural (non-agricultural) land cover. Two-thirds of this increase was attributed to irrigated agriculture. The largest increases in vapor and latent heat fluxes occurred where both cropland and irrigated lands were the predominant contemporary land cover classes (particularly northwest and north-central India). Our current study builds upon this work by evaluating possible changes in near-surface energy fluxes and regional atmospheric circulation patterns resulting from the expansion of irrigated agriculture on the Indian sub-continent using a regional atmospheric model RAMS. We investigate three separate land- use scenarios: Scenario 1, with a potential (pre-agricultural) land cover, Scenario 2: the potential land-cover overlain by cropland and Scenario 3: potential land-cover overlain by cropland and irrigated area. We will assess the impact of agricultural land-cover conversion and intensive irrigation on water and energy fluxes between the land and the atmosphere and how these flux changes may affect regional weather patterns. The simulation period covers July 16-20, 2002 which allow us to assess potential impacts of land-cover changes on the onset of the Indian Monsoon.

  11. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  12. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  13. A regional field-based assessment of organic C sequestration and GHG balances in irrigated agriculture in Mediterranean semi-arid land

    Science.gov (United States)

    Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma

    2016-04-01

    In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These

  14. System contemplations for precision irrigation in agriculture

    Science.gov (United States)

    Schubert, Martin J. W.

    2017-04-01

    This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.

  15. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  16. Water and energy footprint of irrigated agriculture in the Mediterranean region

    Science.gov (United States)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  17. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  18. Integrating irrigation and drainage management to sustain agriculture in northern Iran

    NARCIS (Netherlands)

    Darzi-Naftchali, Abdullah; Ritzema, Henk

    2018-01-01

    In Iran, as in the rest of the world, land and water for agricultural production is under pressure. Integrating irrigation and drainage management may help sustain intensified agriculture in irrigated paddy fields. This study was aimed to investigate the long-term effects of such management

  19. African Farmer-led Irrigation Development: re-framing agricultural policy and investment?

    OpenAIRE

    Woodhouse, Philip; Veldwisch, Gert Jan; Venot , Jean-Philippe; Brockington, Daniel; Komakech, Hans; Manjichi , Ângela

    2017-01-01

    The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food supplies to increasing instability in international commodity markets are driving pan-African agricultural investment initiatives, such as the Comprehensive Africa Agricultural Development Program...

  20. Water and energy footprint of irrigated agriculture in the Mediterranean region

    International Nuclear Information System (INIS)

    Daccache, A; Ciurana, J S; Knox, J W; Rodriguez Diaz, J A

    2014-01-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m 3 kg −1 ) and energy (CO 2 kg −1 ) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km 3 yr −1 of water abstraction and 1.78 Gt CO 2 emissions yr −1 , with most emissions from sunflower (73 kg CO 2 /t) and cotton (60 kg CO 2 /t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm −3 and emissions of 31 kg CO 2 /t. Irrigation modernization would save around 8 km 3 of water but would correspondingly increase CO 2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km 3 yr −1 (+137%) whilst CO 2 emissions would rise by +270%. The study has major policy implications for understanding the water–energy–food nexus in the region and the trade-offs between strategies to save water, reduce CO 2 emissions and/or intensify food production. (letter)

  1. Socio-economic impacts of irrigated agriculture in Mbarali District of south west Tanzania

    Science.gov (United States)

    Mwakalila, Shadrack

    Irrigation has been found to be central in curbing food scarcity not only in Tanzania but also in many other developing countries. It has been proved that continued reliability on rainfall in agriculture cannot sustain the increase in population. This study examines the impacts of smallholder irrigated agriculture in improving social and economic benefits in Igurusi Ward of Mbarali District which is located in the southern-western part of Tanzania. The study applies the Participatory Rural Appraisal Framework for data collection. The study was confined to five villages in Igurusi ward which are Majenje, Igurusi, Chamoto, Uhambule and Mahango. The study examined critically paddy production for smallholder farmers that practice irrigation and those who cultivates rain-fed paddy. The study examined both existing traditional and modern irrigation systems. It was found that, most of the respondents (79%) practice irrigated agriculture in paddy production while the remaining 21% practice rain-fed agriculture. Forty percent of households that practice irrigated agriculture harvest paddy two seasons per year. The return to labour in paddy production for smallholder farmers who irrigate their paddy fields is about US 2.5/manday which is above the poverty line of US 1.0/day. The smallest return to labour (US $ 0.85/manday) is obtained by an average smallholder farmer who cultivates rain-fed paddy using hand hoe and family labour. The potential implication of the current irrigation systems is that if irrigation is managed properly it may lead to sustainable increases in small farmer’s productivity and income, thus alleviating rural poverty.

  2. Stakeholder analysis in the management of irrigation in Kampili area

    Science.gov (United States)

    Jumiati; Ali, M. S. S.; Fahmid, I. M.; Mahyuddin

    2018-05-01

    Irrigation has appreciable contribution in building food security, particularly rice crops. This study aims to analyze the role of stakeholders involved in distributing of irrigation water. The study was conducted in the Kampili Irrigation Area in South Sulawesi Province Indonesia, the data were obtained through observation and interviews with stakeholders involved, and analysed by stakeholder analysis, based on the interests and power held by the actors. This analysis is intended to provide an optimal picture of the expected role of each stakeholder in the management of irrigation resources. The results show that there were many stakeholders involved in irrigation management. In the arrangement of irrigation distribution there was overlapping authority of the stakeholders to its management, every stakeholder had different interests and power between each other. The existence have given positive and negative values in distributing irrigation water management, then in the stakeholder collaboration there was contestation between them. This contestation took place between the agriculture department, PSDA province, the Jeneberang River Region Hall, the Farmers Group and the P3A.

  3. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  4. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.; Bielza, J.; Garrido, A.; Iglesias, A.

    2015-07-01

    Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk. (Author)

  5. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz

    2015-12-01

    Full Text Available Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk.

  6. Secondary salinisation in the Indus basin of Pakistan: an environmental issue of irrigated agriculture

    International Nuclear Information System (INIS)

    Aslam, M.; Kahlown, M.A.; Prathapar, S.A.; Ashraf, M.

    2005-01-01

    The increasing awareness of environmental issues has created a serious concern about the adverse social and environmental impacts of irrigation and water resources development projects in many developing countries. In Pakistan, development of the Indus Basin Irrigation System (IBIS), which serves 16 million ha, and distributes 172 billion cubic meters of high quality river water per annum, has caused the secondary salinization. An area of about 2 Mha is estimated to be severely salinized. In most of the cases, secondary salinity is caused by shallow saline groundwater and inadequate amounts of irrigation water for leaching salts from root zone. However, intensive use of poor quality groundwater without improving its quality also converts good agricultural lands into salt-affected lands. About 70 to 80 percent of tube wells of the Indus Plain pump sodic water, as a result of which large tracts of irrigated land have become sodic. The secondary salinity has devoured the potential of agricultural lands causing poor yield of crops. The affected lands are either lying barren or give poor yield of crops. As a result of salinization about 28,000 to 40,000 ha of irrigated land are going out of production per year. In response, researchers, policy makers, agency personnel and farmers in Pakistan have continuously devised strategies to mitigate secondary salinization. In this paper, nature and causes of secondary salinization, and review of strategies developed and tested in the IBIS to mitigate salinization are presented. Appropriate combination of strategies for various canal commands, and areas requiring further investigations are identified. (author)

  7. Ecohydrological modeling: the consideration of agricultural trees is essential in the Mediterranean area

    Science.gov (United States)

    Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model

  8. The Evaluation of Groundwater Suitability for Irrigation and Changes in Agricultural Land of Garmsar basin

    Directory of Open Access Journals (Sweden)

    Leila Bakhshandehmehr

    2017-03-01

    Full Text Available Introduction: In recent years, due to the reduction in surface water, utilization of groundwater has been increased to meet the growing demand of irrigation water. The quality of these water resources is continually changing, due to the geological formations, the amount of utilization, and climatic parameters. In many developing countries, the irrigation water is obtained from poor quality groundwater resources, which in turn, creates unfavorable circumstances for plant growth and reduces the agricultural yield. Providing adequate water resources for agricultural utilization is one of the most important steps needed to achieve the developmental targets of sustainable agriculture. Thus, this necessitates the assessment and evaluation of the quality of irrigation water. There are many proposed methods to determine the suitability of water for different applications, such as Piper, Wilcox, and Schoeller diagrams. Zoning of quality and suitability of irrigation water could represent the prone and critical areas to groundwater exploitation. Garmsar alluvial fan is one of the most sensitive areas in the country where traditional agriculture practices had turned into modern techniques and excessive exploitation of groundwater has caused an intensepressure on aquifers and increased water salinity. The aim of this study is to evaluate the suitability of groundwater for irrigation in a 10-year period (2002-2012 and its changes in this basin. Materials and Methods: Garmsar alluvial fan is located in the North-West of Semnan Province. Semnan is situated in the Southern hillside of the Alborz Mountains, in North of Iran. The study area includes the agricultural land on this alluvial fan and covers over 3750 hectares of this basin. In order to evaluate the quality of groundwater in this area, the electrical conductivity and sodium absorption ratio of 42 sample wells were calculated. The raster maps of these indicators were obtained using Geo

  9. Analysis Of The Socioeconomic And Environmental Impacts Of Irrigated Agriculture In The Irrigated Perimeter Of Pau Dos Ferros (Rn

    Directory of Open Access Journals (Sweden)

    José Jobson Garcia de Almeida

    2014-07-01

    Full Text Available The Brazilian Government implemented irrigated perimeters to ameliorate problems of drought and poverty in the Northeast. In this sense, the objective of this work was to analyze the social, economic and environmental impacts generated by the practice of irrigated agriculture in the municipality of Pau dos Ferros-RN, resulting from the impacts caused by the activity. Obtained references on the topic, on-site visits and interviews with producers of the perimeter. It was observed the presence of negative impacts in the area, such as waste, contamination and water salinisation, compaction and soil erosion, deforestation caused by the removal of the native vegetation, high consumption of energy and public health problems.

  10. Dominant control of agriculture and irrigation on urban heat island in India.

    Science.gov (United States)

    Kumar, Rahul; Mishra, Vimal; Buzan, Jonathan; Kumar, Rohini; Shindell, Drew; Huber, Matthew

    2017-10-25

    As is true in many regions, India experiences surface Urban Heat Island (UHI) effect that is well understood, but the causes of the more recently discovered Urban Cool Island (UCI) effect remain poorly constrained. This raises questions about our fundamental understanding of the drivers of rural-urban environmental gradients and hinders development of effective strategies for mitigation and adaptation to projected heat stress increases in rapidly urbanizing India. Here we show that more than 60% of Indian urban areas are observed to experience a day-time UCI. We use satellite observations and the Community Land Model (CLM) to identify the impact of irrigation and prove for the first time that UCI is caused by lack of vegetation and moisture in non-urban areas relative to cities. In contrast, urban areas in extensively irrigated landscapes generally experience the expected positive UHI effect. At night, UHI warming intensifies, occurring across a majority (90%) of India's urban areas. The magnitude of rural-urban temperature contrasts is largely controlled by agriculture and moisture availability from irrigation, but further analysis of model results indicate an important role for atmospheric aerosols. Thus both land-use decisions and aerosols are important factors governing, modulating, and even reversing the expected urban-rural temperature gradients.

  11. African farmer-led irrigation development: reframing agricultural policy and investment?

    NARCIS (Netherlands)

    Woodhouse, Philip; Veldwisch, G.J.A.; Venot, J.P.J.N.; Brockington, Dan; Komakech, Hans Charles; Manjichi, Angela

    2017-01-01

    The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food

  12. Estimating irrigated areas from satellite and model soil moisture data over the contiguous US

    Science.gov (United States)

    Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander

    2017-04-01

    Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow

  13. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  14. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    Science.gov (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  15. Assessing gaps in irrigated agricultural productivity through satellite earth observations-A case study of the Fergana Valley, Central Asia

    Science.gov (United States)

    Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher

    2017-07-01

    Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies

  16. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  17. Soils and irrigation of three areas in the Lower Tana Region, Kenya : a comparative study of soil conditions and irrigation suitability

    NARCIS (Netherlands)

    Muchena, F.N.

    1987-01-01

    The soils and soil conditions of three areas situated in different physiographic positions in the Lower Tana Region of Kenya were investigated in respect of their suitability for irrigated agriculture. The soils vary widely in both physical and chemical properties. Most of the soils have an

  18. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  19. Opportunities for Automated Demand Response in California Agricultural Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  20. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  1. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  2. Groundwater pollution by nitrates in irrigated areas with drainage

    International Nuclear Information System (INIS)

    Chandio, B.M.; Azam, M.; Abdullah, M.

    2001-01-01

    Field studies were conducted at three selected sites in irrigated areas of Pakistan to assess magnitude and severity of groundwater pollution by nitrates. The results of these studies indicate that concentration of nitrates in most of the samples collected from irrigated areas having drainage facility is much lower than threshold limit. The nitrate-nitrogen level within drainage projects ranges from 0.01-9.00 mg/l and in the area without drainage system ranges from 10.1-12.5 mg/l. The mineral fertilizers though are making contribution of NO3-N to the groundwater sources but that is much lower than threshold limits. The presence of septic tanks or farmyard manure dumps is also significant contributors of NO3-N to the groundwater. Thus drinking water sources near these polluting points are probable danger to human health. It is, therefore, concluded that still there is a lot of potential for fertilizer use in the agriculture but proper drainage facilities should be provided to minimize the potential threat of NO/sub 3/ pollution. (author)

  3. THE CURRENT SITUATION OF WATER RESOURCES IN IRRIGATED AGRICULTURE OF UZBEKISTAN

    OpenAIRE

    Djalalov, Sandjar

    1998-01-01

    Irrigation in Uzbekistan is of great importance since the country is an arid zone. The use of water in agriculture is described and its relationship as a constraint to economic development discussed. The current technical and organizational characteristics of irrigation systems need study and analysis to identify opportunities for improvements. The characteristics of demand for water at the farm level are described and irrigation and land improvement activities are outlined. Reform of water u...

  4. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  5. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  6. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    Science.gov (United States)

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minn...

  7. Impacts of agricultural irrigation on nearby freshwater ecosystems

    DEFF Research Database (Denmark)

    Lorente, Carmen; Causape, Jesus; Glud, Ronnie N.

    2015-01-01

    A small hydrological basin (Lerma, NE Spain), transformed from its natural state (steppe) to rain-fed agriculture and recently to irrigation agriculture, has been monitored across four seasons of an agricultural year. The goal of this study was to assess how and whether agricultural activities....... In this way, PICT can serve to establish causal linkages between pollutants and the observed biological impacts. The periphyton presented significantly different sensitivities against terbuthylazine through the year in accord with the seasonal application of this herbicide in the crops nowadays....... The sensitivity of already banned herbicides, atrazine and simazine does not display a clear seasonality. The different sensitivities to herbicides were in agreement with the expected exposures scenarios, according to the agricultural calendar, but not with the concentrations measured in water, which altogether...

  8. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  9. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    Science.gov (United States)

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-12-01

    Full Text Available Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina Miseq sequencing approach targeting the V4 region of the 16S rRNA gene. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and TOC. Sequencing results revealed that a total of 329-2823 OTUs were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing As-rich aquifers of Hetao Plain and other high As groundwater aquifers including Bangladesh, West Bengal and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate analysis and co-inertia analysis. Other geochemical

  11. A new approach for assessing the future of aquifers supporting irrigated agriculture

    Science.gov (United States)

    Butler, James J.; Whittemore, Donald O.; Wilson, Blake B.; Bohling, Geoffrey C.

    2016-03-01

    Aquifers supporting irrigated agriculture are under stress worldwide as a result of large pumping-induced water deficits. To aid in the formulation of more sustainable management plans for such systems, we have developed a water balance approach for assessing the impact of proposed management actions and the prospects for aquifer sustainability. Application to the High Plains aquifer (HPA) in the state of Kansas in the United States reveals that practically achievable reductions in annual pumping (determining the net inflow (capture) component of the water balance. The HPA is similar to many aquifers supporting critically needed agricultural production, so the presented approach should prove of value far beyond the area of this initial application.

  12. Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).

  13. Agricultural Land Use in Ahlat District

    Directory of Open Access Journals (Sweden)

    Necmettin ELMASTAŞ

    2009-12-01

    Full Text Available Ahlat district has suitable topography for growing of agricultural products. Almost half of Ahlat district is suitable for agricultural. Today, 32.7% of the land use in Ahlat is agricultural area. 90% of agricultural area is dry farming area. 10% of agricultural area is irrigated. 60.3%of land use in Ahlat district is pasturage area. The economy of Ahlat is based on agricultural and animal husbandry. Today, agricultural products such as wheat, potato and sugar beet are grown in agricultural areas. Ahlat district has some problems like unplanned production, irrigation and marketing.

  14. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    Science.gov (United States)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  15. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  16. Detection of Anthropogenic pressures on western Mediterranean irrigation systems (La Albufera de Valencia agriculture system, eastern Spain)

    Science.gov (United States)

    Pascual-Aguilar, J. A.; Andreu, V.; Picó, Y.

    2012-04-01

    Irrigation systems are considered as one of the major landscapes features in western Mediterranean environments. Both socio-economic and cultural elements are interrelated in their development and preservation. Generally, due to their location in flat lands and close to major urban-industrial zones, irrigation lands are suffering of intense pressures that can alter their agricultural values, environmental quality and, consequently, the sustainability of the systems. To understand the nature of anthropogenic pressures on large Mediterranean water agricultural systems a methodology based on environmental forensics criteria has been developed and applied to La Albufera Natural Park in Valencia (Eastern Spain), a protected area where traditional irrigation systems exists since Muslim times (from 8th to 15th centuries). The study analysed impacts on water and soils, for the first case the fate of emerging contaminants of urban origin (pharmaceuticals and illegal drugs) are analysed. Impact on soils is analysed using the dynamics urban expansion and the loss and fragmentation of soils. The study focused is organised around two major procedures: (1) analysis of 16 water samples to identify the presence of 14 illicit drugs and 17 pharmaceutical compounds by Liquid Chromatography-Mass Spectrometry techniques; (2) spatial analysis with Geographical Information Systems (GIS) integrating different sources and data formats such as water analysis, social, location of sewage water treatment plan and the synchronic comparison of two soil sealing layers -for the years 1991 and 2010. Results show that there is a clear trend in the introduction of pharmaceutical in the irrigation water through previous use of urban consumption and, in many cases, for receiving the effluents of wastewaters treatment plants. Impacts on soils are also important incidence in the fragmentation and disappearance of agricultural land due to soil sealing, even within the protected area of the Natural Park

  17. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-01-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  18. Can plastic mulching replace irrigation in dryland agriculture?

    Science.gov (United States)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  19. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  20. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    Science.gov (United States)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land

  1. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  2. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  3. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization.

    Directory of Open Access Journals (Sweden)

    Aylan K Meneghine

    Full Text Available Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance and Bacillus (~10% in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38% of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem.

  4. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization

    Science.gov (United States)

    Meneghine, Aylan K.; Nielsen, Shaun; Thomas, Torsten; Carareto Alves, Lucia Maria

    2017-01-01

    Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance) and Bacillus (~10%) in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38%) of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem. PMID:29267397

  5. ARS irrigation research priorities and projects-An update

    Science.gov (United States)

    The USDA Agricultural Research Service focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) Irrigation Scheduling Technologies for Water Productivity; 2) Water Productivity (WP) at Multiple Scales; 3) Irrigation Applicatio...

  6. The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagus, Java, Indonesia

    NARCIS (Netherlands)

    Los, A.M.D.; Vriend, S.P.; Bergen, M.J.; Gaans, R.F.M.

    2008-01-01

    Acid water from the Banyuputih river (pH similar to 3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen

  7. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    Science.gov (United States)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  9. Factors Affecting the Ability of Agriculture to Pay Irrigation-Water Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hagood, M. A. [Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome (Italy)

    1967-11-15

    There are no universally acceptable standard criteria for determining how much agriculture can pay for irrigation water. Justification of cost will depend upon the country's need to develop its soil and water resources for food, for international trade, and for its cumulative effect on other industries in comparison with other possible uses and their over-all contributions to the economy. Social and political conditions often have as much or more influence on development cost decisions than do strictly economic analyses. Many studies indicate that US $0.10/1000 US gal is an upper limit of acceptable costs for developing irrigation water at present economic levels. Under private development and on projects where water users must pay total water costs, methods are available for making feasibility budgets based on present prices. Because of inflation, world food shortage, recessions, future population and other unknown factors, it is hazardous to predict how much farmers or agriculture can pay for irrigation water. Better utilization of water available now offers opportunities for ''developing'' sources at costs much less than those for sources such as sea-water conversion. (author)

  10. Impact of rising groundwater on sustainable irrigated agriculture in the command area of gadeji minor, sindh, pakistan

    International Nuclear Information System (INIS)

    Solangi, G.S.

    2017-01-01

    A study has been conducted in the command area of Gadeji minor, Sindh, Pakistan to compute the amount of net groundwater recharge and its effect on sustainable irrigated agriculture. In this connection, Water budget equation was used and three groundwater recharging components along with one discharging component were computed for both Rabi and Kharif crop seasons for the period (2001-2013). Data shows that groundwater is rising at rapid rate during the Kharif season. The percolation rate through cropped fields is the major recharge component; accounting for 81% in the total mean recharge of 8.42 million m3, moreover the rice area is the major contributor to net groundwater recharge during Kharif season. The contributions of canal seepage and rainfall are estimated to be 16 and 04% respectively for the above period. However, during the Rabi season groundwater is rising at low rate where canal seepage is the major recharging component with an average contribution of 48% in the total mean recharge of 2.32 million m3, the contribution of deep percolation from cropped fields is estimated to be 47% as compared to the rainfall of only 05%. Survey shows non-functionality of most of the tubewells, groundwater withdrawal is not sufficient to fully offset groundwater recharge which has increased water table and caused waterlogging and soil salinity in more than 40% of agricultural land. To overcome this rising water table problem, it is recommended: to change existing cropping pattern (i.e. minimize or no cultivation of rice crop), lining of minor and all its watercourses, adopt salt tolerant crops and increase groundwater withdrawals by operating tube-wells on emergency basis. (author)

  11. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  12. Contamination of Phthalate Esters (PAEs in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China.

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    Full Text Available The Wangyang River (WYR basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs in the agricultural soils in this area. Thirty-nine soil samples (0-20 cm were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g-1 dw to 0.457 μg g-1 dw with an average value of 0.294 μg g-1 dw. Di(2-ethylhexyl phthalate (DEHP and di-n-butyl phthalate (DnBP are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.

  13. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  14. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  15. Mechanisms of basin-scale nitrogen load reductions under intensified irrigated agriculture.

    Directory of Open Access Journals (Sweden)

    Rebecka Törnqvist

    Full Text Available Irrigated agriculture can modify the cycling and transport of nitrogen (N, due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN concentrations and loads of the extensive (465,000 km2 semi-arid Amu Darya River basin (ADRB in Central Asia. We specifically considered a 40-year period (1960-2000 of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here

  16. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  17. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    Science.gov (United States)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Implications of non-sustainable agricultural water policies for the water-food nexus in large-scale irrigation systems: A remote sensing approach

    Science.gov (United States)

    Al Zayed, Islam Sabry; Elagib, Nadir Ahmed

    2017-12-01

    This study proposes a novel monitoring tool based on Satellite Remote Sensing (SRS) data to examine the status of water distribution and Water Use Efficiency (WUE) under changing water policies in large-scale and complex irrigation schemes. The aim is to improve our understanding of the water-food nexus in such schemes. With a special reference to the Gezira Irrigation Scheme (GeIS) in Sudan during the period 2000-2014, the tool devised herein is well suited for cases where validation data are absent. First, it introduces an index, referred to as the Crop Water Consumption Index (CWCI), to assess the efficiency of water policies. The index is defined as the ratio of actual evapotranspiration (ETa) over agricultural areas to total ETa for the whole scheme where ETa is estimated using the Simplified Surface Energy Balance model (SSEB). Second, the tool uses integrated Normalized Difference Vegetation Index (iNDVI), as a proxy for crop productivity, and ETa to assess the WUE. Third, the tool uses SSEB ETa and NDVI in an attempt to detect wastage of water. Four key results emerged from this research as follows: 1) the WUE has not improved despite the changing agricultural and water policies, 2) the seasonal ETa can be used to detect the drier areas of GeIS, i.e. areas with poor irrigation water supply, 3) the decreasing trends of CWCI, slope of iNDVI-ETa linear regression and iNDVI are indicative of inefficient utilization of irrigation water in the scheme, and 4) it is possible to use SSEB ETa and NDVI to identify channels with spillover problems and detect wastage of rainwater that is not used as a source for irrigation. In conclusion, the innovative tool developed herein has provided important information on the efficiency of a large-scale irrigation scheme to help rationalize laborious water management processes and increase productivity.

  20. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    Science.gov (United States)

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  1. Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate

    Directory of Open Access Journals (Sweden)

    Juan M. Trujillo-González

    2017-06-01

    Full Text Available Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their potential toxicity and persistence in the environment. The Villavicencio region (Colombia is an equatorial area where rainfall (near 3000 mm/year and temperature (average 25.6 °C are high. Soil processes in tropical conditions are fast and react quickly to changing conditions. Soil properties from agricultural fields irrigated with river water polluted by a variety of sources were analysed and compared to non-irrigated control soils. In this study, no physico-chemical alterations were found that gave evidence of a change due to the constant use of river water that contained wastes. This fact may be associated with the climatic factors (temperature and precipitation, which contribute to fast degradation of organic matter and nutrient and contaminants (such as heavy metals leaching, or to dilution of wastes by the river.

  2. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  3. Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006

    International Nuclear Information System (INIS)

    Han Songjun; Yang Zhiyong

    2013-01-01

    The influences of agricultural irrigation on trends in surface air temperature from 1959 to 2006 over Xinjiang, Northwest China are evaluated using data from 90 meteorological stations. The 90 stations are located in landscapes with markedly different cultivated land uses. The increasing trends in daily average temperature (T a ), maximum temperature (T max ), and minimum temperature (T min ) for May–September (the main growing season) are negatively correlated with cultivated land proportions within 4 km of the meteorological stations, as indicated by year 2000 land use data. The correlations between the trends in T max and cultivated land proportions are the most significant. The trends in T a , T max , and T min for May–September are expected to decrease by −0.018, −0.014, and −0.016 ° C per decade, respectively, along with a 10% increase in cultivated land proportion. As irrigated cultivated land occupies over 90% of total cultivated land, the dependence of temperature trends on cultivated area is attributed to irrigation. The cooling effects on stations with cultivated land proportion larger than 50% are compared to temperature trends in a reference group with cultivated land proportion smaller than 10%. The irrigation expansion from 1959 to 2006 over Xinjiang is found to be associated with cooling of May–September T a , T max , and T min by around −0.15 ° C to −0.10 ° C/decade in the station group with extensive irrigation. Short periods of rapid irrigation expansion co-occurred with the significant cooling of the May–September temperature. (letter)

  4. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  5. Identification of the origin of salts in an agricultural area of SE Spain

    Science.gov (United States)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    In spite of soil salinity having been widely studied in many part of the world, origin of salinity has not been addresses in detail in some of the most productive agricultural areas of Europe (e.g. southeast of Spain). According to the European Commission, salinization affects about 1 to 3 million ha of the area of the European Union and Candidate Countries. In Europe, most of the salt-affected land surfaces are concentrated in the Mediterranean basin. In Spain, about 3% of the 3.5 million hectares of irrigated land are severely affected by salts and another 15% is at serious risk of imminent salinization. Due to the limited water resources in southeast of Spain, water with marginal quality is used for irrigation. The use of this water has led to degradation, reduction of the land's production capacity and soil salinization. The main aim of the present study was to identify the origin of the salts involved in such salinization, using classical and multivariable statistical techniques. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. Soil pH, electrical conductivity, ionic composition, total organic matter, equivalent calcium carbonate, cation exchange capacity and particle size distribution were determined. The Pearson correlation coefficient, r, was used to measure the relationship between two quantitative variables and principal components analysis was used to study the correlations among anions and cations and their grouping into several factors. Results indicated that the high electrical conductivity found in the study area indeed comes from poor quality irrigation water used for agriculture. Anions and cations responsible of the salinity were chlorides, sulphates, calcium, magnesium and sodium. Mismanagement of water and traditional irrigation system resulted in salt build-up in the soil

  6. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  7. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  8. Irrigation in the Lower Durance: positive impacts of the agriculture

    International Nuclear Information System (INIS)

    Lacroix, M.; Blavoux, B.

    1995-01-01

    The water of river Durance is used to produce hydroelectricity and as stretch of water for tourism and since the thirteenth century for irrigation. The inherited situation is a well extended network of gravitation irrigation canals. This system is spendthrift of water, the water supplies are roughly 5 times the farming needs. The impact of this irrigation on the alluvial aquifer of the Lower Durance is the generalisation of the highest level of the water table in summer on the plain though the water budget has an average deficit of 550 mm. In addition, the nitrate concentration is maintained to an average of 17 mg/l in groundwater and 5 mg/l in streams by dilution. In fact, the irrigation dictates an average input of water with 25.4 mg/l of NO 3- . The natural isotopic tracing (oxygen 18) allows to say that 50 to 75% of the water of the alluvial aquifer come from irrigation. To improve the knowledge about the efficiency of irrigation, a mathematical groundwater model has been created. As a result, 53% of the water is lost while reaching the agricultural parcels, 19% is infiltrated during watering at the parcel and only 28% are used to satisfy the needs of plants. The realisation of this model has allowed to simulate the impact on groundwater of changes in irrigation practices which would lead to reduce the consummation of water. In the case of Lower Durance, the reduction of irrigation losses would have a strong impact on the quantity and quality of water in the alluvial aquifer. (J.S.). 10 refs., 9 figs., 2 tabs

  9. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils.

    Science.gov (United States)

    Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.

  10. Infra-red thermography for detecting drought in agricultural crops and scheduling irrigation

    Directory of Open Access Journals (Sweden)

    Petrović Ivana

    2016-01-01

    Full Text Available The use of thermal imaging is a fast growing and potentially important tool in various fields of agriculture. The technology visually identified the rise of temperature in crop canopy which occurs as a result of drought and allows the precise scheduling of crop irrigation. The aim of presenting paper was to demonstrate the application of these techniques on potato plants and to point out on the necessity of irrigation for potato sustainable and economically justified production.

  11. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  12. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran.

    Science.gov (United States)

    Soleimani, Hamed; Abbasnia, Abbas; Yousefi, Mahmood; Mohammadi, Ali Akbar; Khorasgani, Fazlollah Changani

    2018-04-01

    In present study 30 groundwater samples were collected from Sarpol-e Zahab area, Kermanshah province of Iran in order to assess the quality of groundwater in subjected area and determining its suitability for drinking and agricultural purposes. Also the variations in the quality levels of groundwater were compared over the years of 2015 and 2016. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na + , Mg 2+ , Ca 2+ , Cl - and [Formula: see text] ionic constituents. Also in order to assess water quality for irrigation we used the United States Department of Agriculture (USDA) classification which is based on SAR for irrigation suitability assessment. In addition, the residual sodium carbonate (RSC), %Na, PI, KR, SSP, MH, EC characteristics were calculated for all samples and used for assessment of irrigation suitability. Based on these indicators, for every two years, the quality of water for agriculture is in good and excellent category. The Piper classification for hydro geochemical facies indicates that the water in the study area is of Ca-HCO 3 - type. However, the study of water hardness shows that more than 80% of samples are in hard and very hard water class. Therefore, there is a need for decisions to refine and soften the water.

  13. Water as an economic good in irrigated agriculture: theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2004-01-01

    This report describes the results of the Water Valuation and Pricing project, which aims to provide insight into the relevance of economics to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, then considers their

  14. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  15. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    Science.gov (United States)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  16. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    Science.gov (United States)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  17. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  18. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    Science.gov (United States)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  19. Aligning the multiplicities in natural resource governance: a study on the governance of water and land resources in irrigated agriculture

    NARCIS (Netherlands)

    Özerol, Gül

    2013-01-01

    In many countries, irrigated agriculture is crucial for food security and poverty reduction. Despite these socio-economic prospects, irrigation agriculture often leads to negative impacts that threaten environmental sustainability. Particularly in semi-arid and arid regions, the coupled problems of

  20. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  1. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    International Nuclear Information System (INIS)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M.

    2011-01-01

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L −1 and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L −1 , on average). The estimated concentration of micropollutants in crops ranged from −1 , with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  2. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2015-08-01

    Full Text Available In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape’s spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape’s character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system’s conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  3. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Science.gov (United States)

    Wang, C. H.

    2015-08-01

    In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  4. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    time and resources for ground-truthing. An additional challenge in mapping irrigation across large areas occurs in fragmented landscapes with small irrigated and cultivated fields, where the spatial scale of observations is pitted against the need for high frequency temporal acquisitions. Finally, this review identifies passive and active microwave observations, advanced image classification methods, and data fusion including optical and radar sensors or with information from sources with multiple spatial and temporal characteristics as key areas where additional research is needed.

  5. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  6. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania.

    Science.gov (United States)

    Ijumba, J N; Mosha, F W; Lindsay, S W

    2002-03-01

    Malaria vector Anopheles and other mosquitoes (Diptera: Culicidae) were monitored for 12 months during 1994-95 in villages of Lower Moshi irrigation area (37 degrees 20' E, 3 degrees 21' S; approximately 700 m a.s.l.) south of Mount Kilimanjaro in northern Tanzania. Adult mosquito populations were sampled fortnightly by five methods: human bait collection indoors (18.00-06.00 hours) and outdoors (18.00-24.00 hours); from daytime resting-sites indoors and outdoors; by CDC light-traps over sleepers. Anopheles densities and rates of survival, anthropophily and malaria infection were compared between three villages representing different agro-ecosystems: irrigated sugarcane plantation; smallholder rice irrigation scheme, and savannah with subsistence crops. Respective study villages were Mvuleni (population 2200), Chekereni (population 3200) and Kisangasangeni (population approximately/= 1000), at least 7 km apart. Anopheles arabiensis Patton was found to be the principal malaria vector throughout the study area, with An. funestus Giles sensu lato of secondary importance in the sugarcane and savannah villages. Irrigated sugarcane cultivation resulted in water pooling, but this did not produce more vectors. Anopheles arabiensis densities averaged four-fold higher in the ricefield village, although their human blood-index was significantly less (48%) than in the sugarcane (68%) or savannah (66%) villages, despite similar proportions of humans and cows (ratio 1:1.1-1.4) as the main hosts at all sites. Parous rates, duration of the gonotrophic cycle and survival rates of An. arabiensis were similar in villages of all three agro-ecosystems. The potential risk of malaria, based on measurements of vectorial capacity of An. arabiensis and An.funestus combined, was four-fold higher in the ricefield village than in the sugarcane or savannah villages nearby. However, the more realistic estimate of malaria risk, based on entomological inoculation rates, indicated that exposure to

  7. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Directory of Open Access Journals (Sweden)

    N. Schütze

    2016-05-01

    Full Text Available Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF can serve as a central decision support tool for both, (i a cost benefit analysis of farm irrigation modernization on a local scale and (ii a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  8. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: victor.matamoros@udg.edu [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  9. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium

    Science.gov (United States)

    Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; Vithanage, J.; Schull, M.A.; Dutta, R.

    2009-01-01

    algorithms and spatial modelling, and when that did not work, the problem class was used to mask and re-classify the MDFC, and the class identification and labelling protocol repeated. The sub-pixel area (SPA) calculations were performed by multiplying full-pixel areas (FPAs) with irrigated area fractions (IAFs) for every class. A 28 class GIAM was produced and the area statistics reported as: (a) annualized irrigated areas (AIAs), which consider intensity of irrigation (i.e. sum of irrigated areas from different seasons in a year plus continuous year-round irrigation or gross irrigated areas), and (b) total area available for irrigation (TAAI), which does not consider intensity of irrigation (i.e. irrigated areas at any given point of time plus the areas left fallow but 'equipped for irrigation' at the same point of time or net irrigated areas). The AIA of the World at the end of the last millennium was 467 million hectares (Mha), which is sum of the non-overlapping areas of: (a) 252 Mha from season one, (b) 174 Mha from season two and (c) 41 Mha from continuous year-round crops. The TAAI at the end of the last millennium was 399 Mha. The distribution of irrigated areas is highly skewed amongst continents and countries. Asia accounts for 79% (370 Mha) of all AIAs, followed by Europe (7%) and North America (7%). Three continents, South America (4%), Africa (2%) and Australia (1%), have a very low proportion of the global irrigation. The GIAM had an accuracy of 79-91%, with errors of omission not exceeding 21%, and the errors of commission not exceeding 23%. The GIAM statistics were also compared with: (a) the United Nations Food and Agricultural Organization (FAO) and University of Frankfurt (UF) derived irrigated areas and (b) national census data for India. The relationships and causes of differences are discussed in detail. The GIAM products are made available through a web portal (http://www.iwmigiam.org). ?? 2009 Taylor & Francis.

  10. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    Science.gov (United States)

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  11. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    Science.gov (United States)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  12. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    Science.gov (United States)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  13. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  14. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  15. Evaluation of the Potential for Agricultural Development at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Robert G.; Hattendorf, Mary J.; Kincaid, Charles T.

    2000-02-25

    By 2050, when cleanup of the Hanford Site is expected to be completed, large worldwide demands to increase the global production of animal and fish protein, food, and fiber are anticipated, despite advancements in crop breeding, genetic engineering, and other technologies. The most likely large areas for expanded irrigation in the Pacific Northwest are the undeveloped East High areas of the Columbia Basin Project and non-restricted areas within the Hanford Site in south-central Washington State. The area known as the Hanford Site has all the components that favor successful irrigated farming. Constraints to agricultural development of the Hanford Site are political and social, not economic or technical. Obtaining adequate water rights for any irrigated development will be a major issue. Numerous anticipated future advances in irrigation and resource conservation techniques such as precision agriculture techniques, improved irrigation systems, and irrigation system controls will greatly minimize the negative environmental impacts of agricultural activities.

  16. Evaluation of leafy vegetables as bioindicators of gaseous mercury pollution in sewage-irrigated areas.

    Science.gov (United States)

    Zheng, Shun-An; Wu, Zeying; Chen, Chun; Liang, Junfeng; Huang, Hongkun; Zheng, Xiangqun

    2018-01-01

    Mercury (Hg) can evaporate and enter the plants through the stomata of plant leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to investigate the concentration and accumulation of total gaseous mercury (TGM) in five typical leafy vegetables (Chinese chives (Allium tuberosum Rottler), amaranth (Amaranthus mangostanus L.), rape (Brassica campestris L.), lettuce (Lactuca sativa L.), and spinach (Spinacia oleracea L.)) grown on sewage-irrigated areas in Tianjin, China. The following three sites were chosen to biomonitor Hg pollution: a paddy field receiving sewage irrigation (industrial and urban sewage effluents) for the last 30 years, a vegetable field receiving sewage irrigation for 15 years, and a grass field which did not receive sewage irrigation in history. Results showed that the total Hg levels in the paddy (0.65 mg kg -1 ) and vegetation fields (0.42 mg kg -1 ) were significantly higher than the local background level (0.073 mg kg -1 ) and the China national soil environment quality standard for Hg in grade I (0.30 mg kg -1 ). The TGM levels in ambient air were significantly higher in the paddy (71.3 ng m -3 ) and vegetable fields (39.2 ng m -3 ) relative to the control (9.4 ng m -3 ) and previously reported levels (1.45 ng m -3 ), indicating severe Hg pollution in the atmospheric environment of the sewage-irrigated areas. Furthermore, gaseous mercury was the dominant form of Hg uptake in the leaves or irreversibly bound to leaves. The comparison of Hg uptake levels among the five vegetables showed that the gradient of Hg accumulation followed the order spinach > red amaranth > Chinese chives > rape > lettuce. These results suggest that gaseous Hg exposure in the sewage-irrigated areas is a dominant Hg uptake route in leafy vegetables and may pose a potential threat to agricultural food safety and human health.

  17. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  18. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  19. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  20. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  1. Evapotranspiration measurements in rainfed and irrigated cropland illustrate trade-offs in land and water management in Southern Amazonia's agricultural frontier

    Science.gov (United States)

    Lathuilliere, M. J.; Dalmagro, H. J.; Black, T. A.; Arruda, P. H. Z. D.; Hawthorne, I.; Couto, E. G.; Johnson, M. S.

    2017-12-01

    Southern Amazonia, Brazil, is home to a rapidly expanding agricultural frontier in which tropical forest and savanna landscapes have been increasingly replaced by agricultural land since the 1990s. One important impact of deforestation is the reduction in water vapour transferred to the atmosphere via evapotranspiration (ET) from rainfed agriculture landscapes compared to natural vegetation, leading to a reduction in regional precipitation recycling. Here, we discuss land and water management choices for future agricultural production in Southern Amazonia and their potential effects on the atmospheric water cycle. We illustrate these choices by presenting ET measurements on an agricultural landscape by eddy covariance (EC) between September 2015 and February 2017. Measurements were made for two fields adjacent to one micrometeorological EC tower: (1) one rainfed field containing a succession of soybean, maize, brachiara and soybean, and (2) one irrigated field with a succession of soybean, rice, beans, and soybean. Over the time period, total ET in the rainfed and irrigated fields was 1266 ± 294 mm and 1415 ± 180 mm, respectively for a total precipitation of 3099 mm. The main difference in ET between the fields was attributed to the application of 118 mm of surface water irrigated for bean production in the irrigated field between June and September 2016. In the rainfed field, soybean ET was 332 ± 82 mm (2015-2016) and 423 ± 99 mm (2016-2017) for 824 mm and 1124 mm of precipitation, respectively. In the irrigated field, soybean ET was 271 ± 38 mm (2015) and 404 ± 60 mm (2016-2017) with supplemental irrigation added in 2015. Our results illustrate how supplemental irrigation can favour early soybean planting while transferring additional water vapour to the atmosphere at levels similar to natural vegetation. We conclude by discussing our results in the context of future land and water trade-offs for agricultural intensification in Brazil's "arc-of-deforestation".

  2. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  3. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  4. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  5. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  6. Agricultural Water Use under Global Change

    Science.gov (United States)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  7. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  8. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW

    Directory of Open Access Journals (Sweden)

    Faissal AZIZ

    2014-12-01

    Full Text Available In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. In this context, the present work is a review focusing the reuse of treated wastewater in agriculture as an important strategy for solving water deficit problems in arid areas. Much information concerning the wastewater reuse in different regions of the world and in Morocco, the different wastewater treatment technologies existing in Morocco were discussed. The review focused also the fertilizing potential of wastewater in agriculture, the role of nutrients and their concentrations in wastewater and their advantages effects on plant growth and yield.

  9. Raised bed technology for wheat crop in irrigated areas of punjab, pakistan

    International Nuclear Information System (INIS)

    Taj, S.; Ali, A.; Akmal, N.; Yaqoob, S.; Ali, M.

    2013-01-01

    The present paper analyzes the determinants of adoption of raised bed planting of wheat in irrigated areas of Punjab, Pakistan. Wheat is an important staple food of Pakistan. It contributes 13 % to the value added in agriculture and 2.6 % to the GDP. The agrarian economy of Pakistan is continuously under stress due to the low yield of almost all the crops and constrained with many problem. One of the most important issues of agriculture is water shortage which is increasing day by day and is a major challenge now a days. Therefore, water saving becomes the utmost need of the hour. The national research system is now putting their focus and efforts to manage the precious water through various modern/latest water saving models to draw some solid method of irrigation with less wastage. Raised bed planting method is also one of the modern methods of planting crop with significant water saving. The study was planned and conducted by the Social Sciences Research Institute, Faisalabad in 2011-12 to assess the determinants of the adoption of the raised bed technology for wheat crop in irrigated Punjab, Pakistan. The study was conducted at three sites of the districts Faisalabad and Toba Tek Singh where the Water Management Research Institute, University of Faisalabad promoted the raised bed technology for wheat crop. A sample of 63 farmers was interviewed in detail to understand the whole system and the factors contributing to the adoption of the technology. The study revealed that adopters typically have a more favorable resource base and tend to variously outperform non-adopters. More access to education and other social indicators increases the chances to adopt new technologies by the farming community. However, the small farmers can also be benefited with the technology with proper education regarding the technology in the area with good social mobilization for the conservation of scarce and valuable farm resources. (author)

  10. Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa

    Directory of Open Access Journals (Sweden)

    Nelson Mango

    2018-04-01

    Full Text Available This article is concerned with the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle. Chinyanja Triangle is a region that is increasingly experiencing mid-season dry spells and an increase in occurrence of drought, which is attributed largely to climate variability and change. This poses high agricultural production risks, which aggravate poverty and food insecurity. For this region, adoption of small-scale irrigation farming as a climate-smart agriculture practice is very important. Through a binary logistic and ordinary least squares regression, this article determines factors that influence the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on income among smallholder farmers. The results show that off-farm employment, access to irrigation equipment, access to reliable water sources and awareness of water conservation practices, such as rainwater harvesting, have a significant influence on the adoption of small-scale irrigation farming. On the other hand, the farmer’s age, distance travelled to the nearest market and nature of employment negatively influence the adoption of small-scale irrigation farming decisions. Ordinary least squares regression results showed that the adoption of small-scale irrigation farming as a climate-smart agriculture practice has a significant positive influence on agricultural income. We therefore conclude that to empower smallholder farmers to respond quickly to climate variability and change, practices that will enhance the adoption of small-scale irrigation farming in the Chinyanja Triangle are critical, as this will significantly affect agricultural income. In terms of policy, we recommend that the governments of Zambia, Malawi and Mozambique, which cover the Chinyanja Triangle, formulate policies that will enhance the adoption of sustainable small scale-irrigation

  11. Economical Evaluation of Single Irrigation Efficient of Rainfed Barley under Different Agronimic Managements at On-farm Areas

    Directory of Open Access Journals (Sweden)

    Ali Reza Tavakoli

    2016-02-01

    Full Text Available Introduction: Two of the main challenges in developing countries are food production and trying to get a high income for good nutrition and reduction of poverty. Cereals and legumes are the most important crops in the rainfed areas of the country occupying the majority of dry land areas. Irrigated production systems had a main role in food production in the past years; but unfortunately, in recent years, with high population and competition of industry and environment with agricultural sectors, getting adequate irrigation water is difficult. The main purpose of this study is to determine the best option of crop agronomic management. Rainfed agriculture is important in the world; because this production system establishes %80 of the agriculture area and prepares %70 of the food in the world. In the Lorestan province, production area for rainfed barley is 120,000 ha and the amount produced is 120000 ton (approximately 1009 kg per ha. The purposes of this study were to evaluate cost, benefit and profit of rainfed barley production, economical and non-economical substitution of treatments in different agronomic management, study of sale return, cost ratio, determining break-even of price and comparing it with the guaranteed price of barley and estimating the value of water irrigation. Materials and Methods: This research was carried out by sample farmers (12 farmers on rainfed barley at the Honam selected site in the Lorestan province during 2005-07. At on-farm areas of the upper Karkheh River Basin (KRB three irrigation levels were analyzed (rainfed, single irrigation at planting time and single irrigation at spring time under two agronomic managements (advanced management (AM and traditional management (TM. Data was analyzed by Partial Budgeting (PB technique, Marginal Benefit-Cost Ratio (MBCR, and economical and non-economical test. For estimation of net benefit the following formula was used: (1 Where: N.B: Net income (Rials/ ha , B(w : Gross

  12. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    Science.gov (United States)

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from

  13. Scalar alignment and sustainable water governance: The case of irrigated agriculture in Turkey

    NARCIS (Netherlands)

    Özerol, Gül; Bressers, Johannes T.A.

    2015-01-01

    Irrigated agriculture plays a significant role in global food security and poverty reduction. At the same time its negative impacts on water and land resources threaten environmental sustainability. With the objective of improving the understanding on the complexity of governing water resources for

  14. Instruments for water quantity and quality management in the agriculture of Aragon

    OpenAIRE

    Albiac Murillo, José; Playán Jubillar, Enrique; Martínez, Yolanda

    2007-01-01

    The traditional policy of developing new irrigated areas in Aragon has been changed to irrigation modernization through investments in distribution networks and on-farm irrigation equipment. This new policy creates opportunities to introduce more profitable crops, conserve irrigation water and abate agricultural nonpoint pollution. Several alternatives open to irrigated agriculture are bioethanol and biodiesel technologies (which could provide a support price for grains), the expansion of pro...

  15. Status and Causes of Soil Salinization of Irrigated Agricultural Lands in Southern Baja California,Mexico

    International Nuclear Information System (INIS)

    Endo, T.; Yamamoto, S.; Fujiyama, H.; Honna, T.; Larrinaga, J.A.

    2011-01-01

    Selected farmlands in southern Baja California, Mexico, were surveyed to determine the levels and the causes of salinization/sodication in irrigated agricultural soil. The salt dynamics observed in profiles differed from farm to farm. Low EC and high ph levels were observed in the profiles of sandy fields, because the salt composition of these soils can easily change when salts are leached by irrigation water that contains carbonates of sodium. On the other hand, high levels of salinity and sodicity were observed in the soils of clayey fields. Soil salinization/sodication is complexly interrelated with soil characteristics, the amount and composition of salts in the soil, the quantity and quality of irrigation water applied, and the irrigation methods used. Our findings indicate that irrigation water in Baja California should be supplied at a rate that is sufficient to meet crop requirements without exacerbating salt accumulation.

  16. Conjunctive irrigation through groundwater for crop production in Eastern India

    International Nuclear Information System (INIS)

    Singh, S.S.; Singh, J.P.; Singh, S.R.; Khan, A.R.

    2002-05-01

    Ground water is the most reliable source for irrigation, quantum of which varies from place to place, rainfall, infiltration, geographical strata and surface ecology. The development of ground water in conjunction with surface within canal commands not only assures a reliable source of irrigation, it also helps in alleviation of water logging in the command due to excess seepage and unscientific water use by facilitating vertical drainage mechanism. The ground water resource needs to be developed in order to enhance area and timeliness of irrigation supply and overall agricultural productivity of land. In the high potential - low productivity areas in Assam, Bihar and West Bengal, A.P. and NE states, there is an immense potential to improve agricultural productivity through systematic groundwater exploitation. (author)

  17. Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing

    Science.gov (United States)

    Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.

    2015-12-01

    Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com

  18. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  19. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  20. Arsenic accumulation in irrigated agricultural soils in Northern Greece.

    Science.gov (United States)

    Casentini, B; Hug, S J; Nikolaidis, N P

    2011-10-15

    The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation. This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513mg/kg inside to 5-66mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5m, and to 50cm in depth. During simulated rain events in soil columns (pH=5, 0μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH=7.5, 1500μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (500mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25μg/kg in flesh and 0.3-5.6μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India.

    Science.gov (United States)

    Murthy, C S; Yadav, Manoj; Mohammed Ahamed, J; Laxman, B; Prawasi, R; Sesha Sai, M V R; Hooda, R S

    2015-03-01

    Drought is an important global hazard, challenging the sustainable agriculture and food security of nations. Measuring agricultural drought vulnerability is a prerequisite for targeting interventions to improve and sustain the agricultural performance of both irrigated and rain-fed agriculture. In this study, crop-generic agricultural drought vulnerability status is empirically measured through a composite index approach. The study area is Haryana state, India, a prime agriculture state of the country, characterised with low rainfall, high irrigation support and stable cropping pattern. By analysing the multiyear rainfall and crop condition data of kharif crop season (June-October) derived from satellite data and soil water holding capacity and groundwater quality, nine contributing indicators were generated for 120 blocks (sub-district administrative units). Composite indices for exposure, sensitivity and adaptive capacity components were generated after assigning variance-based weightages to the respective input indicators. Agricultural Drought Vulnerability Index (ADVI) was developed through a linear combination of the three component indices. ADVI-based vulnerability categorisation revealed that 51 blocks are with vulnerable to very highly vulnerable status. These blocks are located in the southern and western parts of the state, where groundwater quality is saline and water holding capacity of soils is less. The ADVI map has effectively captured the spatial pattern of agricultural drought vulnerability in the state. Districts with large number of vulnerable blocks showed considerably larger variability of de-trended crop yields. Correlation analysis reveals that crop condition variability, groundwater quality and soil factors are closely associated with ADVI. The vulnerability index is useful to prioritise the blocks for implementation of long-term drought management plans. There is scope for improving the methodology by adding/fine-tuning the indicators and

  2. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, B.M. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Environment and Public Health Organization (ENPHO), P.O. Box 4102, Kathmandu (Nepal); Fuerhacker, M. [Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Mentler, A. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Karki, K.B. [Soil Science Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur (Nepal); Shrestha, R.R. [UN Habitat-Nepal, UN House, Pulchwok, P.O. Box 107, Kathmandu (Nepal); Blum, W.E.H. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria)], E-mail: winfried.blum@boku.ac.at

    2008-09-15

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L{sup -1} where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg{sup -1}. The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg{sup -1}) > onion bulb (0.45 mg As kg{sup -1}) > cauliflower (0.33 mg As kg{sup -1}) > rice (0.18 mg As kg{sup -1}) > brinjal (0.09 mg As kg{sup -1}) > potato (<0.01 mg As kg{sup -1}). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water.

  3. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    Science.gov (United States)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    Water flows in watersheds containing extensive areas of irrigated paddies are complex because of the substantial volumes involved and the repeated cycles of water diversion from, and return to, streams. For better management of low-flow conditions, numerous studies have attempted to quantify the return flow using the stable isotopes of water; however, the temporal variation in these isotopic compositions due to fractionation during evaporation from water surfaces hinders their application to watersheds with extensive irrigated paddies. In this study, we tested the applicability of the strontium isotopes (87Sr/86Sr, hereafter Sr ratio) for studying hydrological processes in a typical agricultural watershed located on the alluvial fan of the Kinu River, namely the Gogyo River, in central Japan. The Sr ratio of water changes only because of interactions with the porous media it flows through, or because of mixing with water that has different Sr ratios. We sampled water both at a single rice paddy, and on the watershed scale in the irrigated and non-irrigated periods. The soil water under the paddy decreased as sampling depth increased, and the soil water at a depth of 1.5 m showed a similar Sr ratio to the spring. The water sampled in the drainage channel with a concrete lined bottom showed a similar Sr ratio to the irrigation water, whereas that with a soil bottom was plotted between the plots of the irrigation water and shallow aquifer. These results suggest the Sr ratio decreases as it mixes with the soil water through percolation; whereas the Sr ratio will be less likely to change when water drains from paddies via surface pathways. The streamflow samples were plotted linearly on the Sr ratio and 1/Sr plot, indicating that the streamflow was composed of two end-members; the irrigation water and the shallow aquifer. The continuous decline in the Sr ratio along the stream suggests an exfiltration of water from the shallow aquifers. The stream water during the non-irrigated

  4. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  5. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    Science.gov (United States)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  6. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment

    Directory of Open Access Journals (Sweden)

    Amal Aldababseh

    2018-03-01

    Full Text Available This research aims at assessing land suitability for large-scale agriculture using multiple spatial datasets which include climate conditions, water potential, soil capabilities, topography and land management. The study case is in the Emirate of Abu Dhabi, in the UAE. The aridity of climate in the region requires accounting for non-renewable sources like desalination and treated sewage effluent (TSE for an accurate and realistic assessment of irrigated agriculture suitability. All datasets were systematically aggregated using an analytical hierarchical process (AHP in a GIS model. A hierarchal structure is built and pairwise comparisons matrices are used to calculate weights of the criteria. All spatial processes were integrated to model land suitability and different types of crops are considered in the analysis. Results show that jojoba and sorghum show the best capabilities to survive under the current conditions, followed by date palm, fruits and forage. Vegetables and cereals proved to be the least preferable options. Introducing desalinated water and TSE enhanced land suitability for irrigated agriculture. These findings have positive implications for national planning, the decision-making process of land alteration for agricultural use and addressing sustainable land management and food security issues.

  7. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  8. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  9. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production.

    Science.gov (United States)

    Estrada-Acosta, M; Jiménez, M; Chaidez, C; León-Félix, J; Castro-Del Campo, N

    2014-07-01

    The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process.

  10. Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land

    Directory of Open Access Journals (Sweden)

    Yulia Domashenko

    2018-01-01

    Full Text Available The objective of this work is the agroecological substantiation of the use of treated wastewater for irrigation of agricultural land. As the result of the experimental research, it was established that the soil microfloraplays an essential role in strengthening or weakening the biological activity of soil. Therefore, with an irrigation rate of 250 m 3 /ha of wastewater, a 1.5 times increase in the number of microbiota colonies is observed on average both in hog farms and cattle breeding complexes; with a rate of 350 m 3 /ha – a 2-fold increase; with a rate of 450 m 3 /ha – a 3.5–4-fold increase. An increase in nitrifying soil features has also been observed. Thus, if the value on the control in the soil layer from 0 cm to 60 cm is 27.2 mg of nitrate per 1 kg of arid soil, in the version with wastewater irrigation it reaches 46.7 mg. According to the research results, the use of defecate, the waste of sugar production, in the treatment of wastewater of livestock farms does not have a negative agroecological impact on the soil. Therefore, the method of wastewater treatment of pig-breeding complexes and farms can be recommended for use in irrigation reclamation, which includes treatment of wastewater with burnt defecate in the dose of 50–200 mg/dm 3 , with the pH value varying in the range of 7.5–8.5. After settling-out of the obtained mixture in settlers, it is divided into a transparent liquid fraction and the sediment, i.e. an organomineral fertilizer. Afterwards, the fluidbody is fed to irrigation of agricultural land, and its excess is discharged into waterways and reservoirs. The sediment is fed to the vortex layer equipment with mobile ferromagnetic particles or thermolized, where their complete disinfection takes place.

  11. Irrigation System through Intelligent Agents Implemented with Arduino Technology

    Directory of Open Access Journals (Sweden)

    Rodolfo SALAZAR

    2013-11-01

    Full Text Available The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.

  12. Concentrations of Mercury, Lead, Chromium, Cadmium, Arsenic and Aluminum in Irrigation Water Wells and Wastewaters Used for Agriculture in Mashhad, Northeastern Iran

    Directory of Open Access Journals (Sweden)

    SR Mousavi

    2013-04-01

    Full Text Available Background: Contamination of water by toxic chemicals has become commonly recognized as an environmental concern. Based on our clinical observation in Mashhad, northeastern Iran, many people might be at risk of exposure to high concentrations of toxic heavy metals in water. Because wastewater effluents as well as water wells have been commonly used for irrigation over the past decades, there has been some concern on the toxic metal exposure of crops and vegetables irrigated with the contaminated water. Objective: To measure the concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Methods: 36 samples were taken from irrigation water wells and a wastewater refinery in North of Mashhad at four times—May 2008, March 2009, and June and July 2010. Atomic absorption spectrometry was used to measure the concentration of toxic metals. Graphite furnace was used for the measurement of lead, chromium, cadmium and aluminum. Mercury and arsenic concentrations were measured by mercury/hydride system. Results: Chromium, cadmium, lead and arsenic concentrations in the samples were within the standard range. The mean±SD concentration of mercury in irrigation wells (1.02±0.40 μg/L exceeded the FAO maximum permissible levels. The aluminum concentration in irrigation water varied significantly from month to month (p=0.03. All wastewater samples contained high mercury concentrations (6.64±2.53 μg/L. Conclusion: For high mercury and aluminum concentrations, the water sources studied should not be used for agricultural use. Regular monitoring of the level of heavy metals in water and employing the necessary environmental interventions in this area are strongly recommended.

  13. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  14. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    Science.gov (United States)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  15. Natural resource management issues of pakistan's agriculture: the cases of land, labour and irrigation

    International Nuclear Information System (INIS)

    Arifullah, S.A.; Farid, N.

    2009-01-01

    With the objective to understand the optimization behavior of farmers in allocating land, labor and irrigation water, Linear Programming (LP) analytic technique was applied to 13 Kharif and 7 Rabi crops, using national level data from 1990-2005. The crops included in the analysis have been occupying 80 - 85 percent of Pakistan's cropped area for the last three to four decades. The optimization analysis resulted in bringing up three major natural resource management issues of the Pakistan's crop sector to the forefront. First, Basmati rice, mung, fodders of millet and sorghum, onion and IRRI rice were found optimal Kharif crops relative to sugarcane, maize, maize fodder, millet, sorghum, cotton and tomato. For Rabi wheat, potato, gram, rapeseed and berseem proved to be optimal relative to barley and sugarcane, for this period. The results imply that to have an efficient agriculture base Pakistan should either replace the sub-optimal crops with the optimal ones, or the resource management side of such crops should be improved with the help sensitivity analysis. Second, cotton and tomato appeared to be relatively sensitive to labor availability than other crops; they seemed to establish a direct correlation between the optimality status and labor availability. And third, irrigation emerged as a critical input for IRRI rice in Kharif and for potato and gram in Rabi season; for these crops the crop optimality was directly correlated to the number of irrigations applied. In contrast, its opportunity cost is higher than the per unit return in cotton, tomato, wheat and berseem. This signified that irrigation needs to be managed efficiently in the latter four crops; whereas in the former three crops use of extra water would help in optimizing. (author)

  16. Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    Science.gov (United States)

    Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy

    2017-04-01

    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the

  17. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  18. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  19. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    Science.gov (United States)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  20. The impact of informal irrigation practices on soil drainage condition, soil pollution and land suitability for agriculture in El Saf area of El Giza Governorate

    Directory of Open Access Journals (Sweden)

    Hanan E.M. El Azab

    2015-12-01

    Full Text Available The study area was selected in El Saf District of El Giza Governorate in Egypt, covering 21461.4 ha of Nile sediments and their outskirts of alluvial higher and lower terraces. The aim of this study was to assess the impact of informal irrigation practices on drainage deterioration, soil pollution and land suitability for agricultural use using the satellite LDCM data 2013. From the lower alluvial terraces (partly cultivated using wastewater, the drainage flows westward via descending slopes resulting in land deterioration in both the alluvial lower terraces and alluvial plain of River Nile. The drainage conditions are excessively drained soils in the alluvial upper terraces within soils of Typic Haplocalcids, sandy skeletal, but in the lower terraces it partly occurred within soils of Typic Torriorthents, sandy skeletal. Moderately well drained soils occurred in soils of Typic Torriorthents, sandy in the alluvial lower terraces, while in the alluvial plain of Nile sediments are Sodic Haplotorrerts, fine. Poorly drained soils in the lower alluvial terraces have soils of Typic Epiaquents, sandy associated with Sodic Psammaquents and Aquic Haplocalcids, coarse loamy, while in the alluvial plain of River Nile the soils are Halic Epiaquerts, fine. Very poorly drained soils (submerged areas are scattered spots in both the lower alluvial terraces and the alluvial plain. In the alluvial plain of River Nile, 1967.1 ha become not suitable for the traditional cultivated crops, while in the alluvial terraces 3251.0 ha are not suitable for the proposed cultivation of Jojoba plants. Heavy metals of Cadmium (Cd, Cobalt (Co, Lead (Pb and Nickel (Ni were added to the soil surface and sub-surface in the irrigated areas by wastewater in the lower alluvial terraces (moderately well drained soils, but Cd and Co exceeded the standards of permissible total concentrations in these soils. The same metals were added to soil sub-surface layers in the alluvial plain

  1. Studies and Application of Remote Sensing Retrieval Method of Soil Moisture Content in Land Parcel Units in Irrigation Area

    Science.gov (United States)

    Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.

    2018-05-01

    Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data

  2. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    Science.gov (United States)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  3. Interaction between Soil Physicochemical Parameters and Earthworm Communities in Irrigated Areas with Natural Water and Wastewaters

    Directory of Open Access Journals (Sweden)

    Kourtel Ghanem Nadra

    2017-01-01

    Full Text Available Our objective is to study interaction between physical and chemical properties of soils and their earthworm community characteristics in different areas irrigated by wastewaters and well waters. The fields have different topography and agricultural practices conditions and are located in two regions of Batna department (Eastern Algeria. Both regions are characterized by a semiarid climate with cold winters and Calcisol soils. Nine fields were subject of this study. Three of these fields are located in Ouled Si Slimane region whose irrigation is effectuated by natural waters of Kochbi effluent. The other six fields are located at edges of Wed El Gourzi, effluent from Batna city, and partially treated through water treatment station. The best rates of water saturation and infiltration as well as abundance of earthworms were recorded at sites characterized by irrigation with wastewaters downstream of El Gourzi effluent. PCA characterizes two major groups: a group of hydrodynamic infiltration parameters and structural index stability of soil, explained by fields irrigated with wastewaters downstream of El Gourzi effluent. This group includes chemical characteristics: pH and electric conductivity. The second group is the characteristics of earthworms and includes organic matter content, active limestone levels, and Shannon Biodiversity Index.

  4. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  5. Linking hydrology of traditional irrigation canals and socio-economic aspects of agricultural water use around Mt. Kilimanjaro

    Science.gov (United States)

    Kimaro, Jerome; Scharsich, Valeska; Huwe, Bernd; Bogner, Christina

    2017-04-01

    Traditional irrigation network around Mt. Kilimanjaro has been an important resource for both ecosystem functioning and agricultural production. However, a number of irrigation furrows can no longer maintain their discharge throughout the year and their future sustainability is uncertain. The actual efforts to improve the water supply were unsuccessful. We attribute this failure to a lack of information about the actual causes and extent of the problem. We suppose that there is a strong link between the socio-economic aspects like institutional and community management of the furrows and conflicts about water use. Therefore, we conducted a study to determine the relationship between current hydrological patterns and socio-economic aspects of agricultural water use. We measured discharge at 11 locations along an altitudinal gradient on the southern slopes of Mt. Kilimanjaro. Additionally, we conducted focus group discussions with participants from 15 villages and key informants interviews (n = 15). We found that the mean discharge did not differ significantly between dry and rainy seasons (ANOVA, p = 0.17). The overall discharge pattern indicated that furrows located in lower altitude had higher mean monthly discharge rate of 65 l s-1 compared to 11.5 l s-1 at the source area of the canals. This is due to the convergence of canals downstream. 41% of furrows were seasonal, 22% dry and only 37% perennial. Despite of a seemingly better water resource availability downstream, water conflicts are a major challenge across the whole mountain communities. Key informants and group discussions reported poor management of water on the district level. The Rural Moshi and Hai District Councils operate on a top down approach that give less power to the local water management committees. However, the latter have been an important part of the traditional management system for decades. Since 1990, the district authorities are using 65% of springs from the catchment to abstract water

  6. Assessing Agricultural Drought in the Anthropocene: A Modified Palmer Drought Severity Index

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang

    2017-09-01

    Full Text Available In the current human-influenced era, drought is initiated by natural and human drivers, and human activities are as integral to drought as meteorological factors. In large irrigated agricultural regions with high levels of human intervention, where the natural farmland soil moisture has usually been changed significantly by high-frequency irrigation, the actual severity of agricultural drought is distorted in traditional drought indices. In this work, an agricultural drought index that considering irrigation processes based on the Palmer drought severity index (IrrPDSI was developed to interpret the real agricultural drought conditions in irrigated regions, with a case study in the Haihe River Basin in northeast China. The water balance model in the original PDSI was revised by an auto-irrigation threshold method combined with a local irrigation schedule. The auto-irrigation setting of the index was used by taking irrigation quotas during specific growth stages of specific crops (wheat–corn into consideration. A series of weekly comparative analyses are as follows: (1 The soil moisture analyses showed that soil moisture values calculated by the modified water balance model were close to the real values; (2 The statistical analyses indicated that most of the stations in the study area based on IrrPDSI had nearly normal distributed values; (3 The time series and spatial analyses showed that the results of the IrrPDSI-reported dry-wet evaluation were more consistent with documented real conditions. All the results revealed that IrrPDSI performed well when used to assess agricultural drought. This work has direct significance for agricultural drought management in large irrigated areas heavily disturbed by human activity.

  7. Policy Incentives for Reducing Nitrate Leaching in Agricultural Lands: A Case Study of Irrigation and Drainage Dorudzan

    International Nuclear Information System (INIS)

    Sheikhzeinoddin, A.; Esmaeili, A.; Zibaei, M.

    2016-01-01

    Agricultural activities increasingly use water, fertilizers and pesticides, which may generate negative impacts on environment. Nowadays, nitrogen leaching from agricultural lands is a widespread global problem. Therefore, alternative land management practices such as nutrient management (rate, method and time of application), tillage operations (conservation and no-tillage), and irrigation management are routinely used to reduce non-point source pollution and improve water quality. In fact, a number of studies have illustrated the positive effects of best management practices on water and nutrient losses. The objective of this paper is to develop a bio-economic model and introducing the policy instrument for reducing nitrate from irrigation and drainage Dorudzan. We aim to identify ‘‘win–win’’ opportunities for improving farm profitability and reducing nitrate leaching.

  8. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  9. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-01-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  10. AgIIS, Agricultural Irrigation Imaging System, design and application

    Science.gov (United States)

    Haberland, Julio Andres

    Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models

  11. Conjunctive use of groundwater and surface water for irrigated agriculture: Risk aversion

    Science.gov (United States)

    Bredehoeft, John D.; Young, Richard A.

    1983-01-01

    In examining the South Platte system in Colorado where surface water and groundwater are used conjunctively for irrigation, we find the actual installed well capacity is approximately sufficient to irrigate the entire area. This would appear to be an overinvestment in well capacity. In this paper we examine to what extent groundwater is being developed as insurance against periods of low streamflow. Using a simulation model which couples the hydrology of a conjunctive stream aquifer system to a behavioral-economic model which incorporates farmer behavior in such a system, we have investigated the economics of an area patterned after a reach of the South Platte Valley in Colorado. The results suggest that under current economic conditions the most reasonable groundwater pumping capacity is a total capacity capable of irrigating the available acreage with groundwater. Installing sufficient well capacity to irrigate all available acreage has two benefits: (1) this capacity maximizes the expected net benefits and (2) this capacity also minimizes the variation in annual income: it reduces the variance to essentially zero. As pumping capacity is installed in a conjunctive use system, the value of flow forecasts is diminished. Poor forecasts are compensated for by pumping groundwater.

  12. Agriculture and irrigation as potential drivers of urban heat island

    Science.gov (United States)

    Kumar, R.; Buzan, J. R.; Mishra, V.; Kumar, R.; Shindell, D. T.; Huber, M.

    2017-12-01

    More than half the population are urban dwellers and are most vulnerable to global environmental changes. Urban extents are more prone to intense heating as compared to the surroundings rural area. Presently about 33% of India's population lives in the urban area and is expected to rise steeply, so a better understanding of the phenomenon affecting the urban population is very much important. Urban Heat Island (UHI) is a well-known phenomenon which potentially affects energy consumption, spreading of diseases and mortality. In general, almost all (90%) of the major urban area of the country faces UHI at night time in the range (1-5 °C) while 60% of the regions face Urban Cool Island (UCI) in the range of -1 to 6 °C in day time. Our observations and simulations show that vegetation and irrigation in the surrounding non urban directly affects day time Urban Cool Island effects. This is due to the relative cooling by vegetation and irrigated lands in the vicinity of these urban regions. There is a contrasting variation in UHI/UCI intensities in different seasons and in different time of the day. Most of the urban regions face UHI effect in summers whereas this phenomenton reverses in winters. Daytime UCI is more prominent in the months of April and May due to minimum availability of moisture. We observed that apart from vegetation and irrigation, aerosol is also an important factor governing UHI phenomenon.

  13. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  14. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  15. Optimization of planting pattern plan in Logung irrigation area using linear program

    Science.gov (United States)

    Wardoyo, Wasis; Setyono

    2018-03-01

    Logung irrigation area is located in Kudus Regency, Central Java Province, Indonesia. Irrigation area with 2810 Ha of extent is getting water supply from Logung dam. Yet, the utilization of water at Logung dam is not optimal and the distribution of water is still not evenly distributed. Therefore, this study will discuss about the optimization of irrigation water utilization based on the beginning of plant season. This optimization begins with the analysis of hydrology, climatology and river discharge in order to determine the irrigation water needs. After determining irrigation water needs, six alternatives of planting patterns with the different early planting periods, i.e. 1st November, 2nd November, 3rd November, 1st December, 2nd December, and 3rd December with the planting pattern of rice-secondary crop-sugarcane is introduced. It is continued by the analysis of water distribution conducted using linear program assisted by POM-Quantity method for Windows 3 with the reliable discharge limit and the available land area. Output of this calculation are to determine the land area that can be planted based on the type of plant and growing season, and to obtaine the profits of harvest yields. Based on the optimum area of each plant species with 6 alternatives, the most optimum area was obtained at the early planting periods on 3rd December with the production profit of Rp 113.397.338.854,- with the planting pattern of rice / beans / sugarcane-rice / beans / sugarcane-beans / sugarcane.

  16. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  17. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  18. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  19. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    Science.gov (United States)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  20. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  1. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  2. Changes in East Asian Food Consumption: Some Implications for Australian Irrigated Agriculture

    OpenAIRE

    Philip Taylor; Christopher Findlay

    1996-01-01

    This paper reviews the implications of economic growth for food consumption in Asia, the East Asian supply responses and the determinants of Australian competitiveness in meeting Asian demand from production in Australia. Our special interests are to draw out some implications for Australia’s irrigated agriculture and for the organisation of the export business of that sector of the economy. A key question is the scope for increased exports of fresh rather than processed products. Sources of ...

  3. Characterization of some metal pollutants in the topsoil of Shukari irrigation farm area, Jere, Borno State

    International Nuclear Information System (INIS)

    Bukar, P.H.; Egwuonwu, G.N.

    2011-01-01

    A study of the abundance, distribution and accumulation of some metal pollutants in irrigation farm area of Shukari, Jere Local Government area of Borno State was carried out. XRF instrument was used to determine the presence and concentration of the metals in the top soil samples (0-25 cm) to ascertain their level of toxicity and distribution in the area. Results show that Ni(0.93 -8.07 ppm), Zn(0.06 -8.57 ppm), Mn(0.05-0.21 ppm), Fe(0.0652-0.2866 ppm), Ba(0.0157-0.0411 ppm), Ce(0.0059-0.0118 ppm) Rb(0.0070-0.0165 ppm), V(0.0031-0.0142 ppm) Ti(0.0153-0.0256 ppm), P(0.0064-0.0077 ppm), La(0.0006-0.0007 ppm), Sr(0.0226-0.0230 ppm), Y(0.0033-0.0046 ppm), Mo(0.0002-0.00024 ppm) and Ta(0.000093-0.00014 ppm) concentrations in the soil. Detailed discrepancy analysis of the results with reference to WHO and FEPA standard for soil pollution shows that the accumulation and distribution of the toxic metals in the area were predominantly below soil maximum permissible limits for agricultural activities. Hence, the implications of the results to the environment, irrigation farming activities and public health in the area were highlighted.

  4. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Sun, Huaiwei; Zeng, Fanjiang; Feng, Xinlong

    2017-12-01

    Agriculture and the eco-environment are increasingly competing for water. The extension of intensive farmland for ensuring food security has resulted in excessive water exploitation by agriculture. Consequently, this has led to a lack of water supply in natural ecosystems. This paper proposes a trade-off framework to coordinate the water-use conflict between agriculture and the eco-environment, based on economic compensation for irrigation stakeholders. A hybrid Bayesian network (HBN) is developed to implement the framework, including: (a) agricultural water shortage assessments after meeting environmental flows; (b) water-use tradeoff analysis between agricultural irrigation and environmental flows using the HBN; and (c) quantification of the agricultural economic compensation for different irrigation stakeholders. The constructed HBN is computed by dynamic discretization, which is a more robust and accurate propagation algorithm than general static discretization. A case study of the Qira oasis area in Northwest China demonstrates that the water trade-off based on economic compensation depends on the available water supply and environmental flows at different levels. Agricultural irrigation water extracted for grain crops should be preferentially guaranteed to ensure food security, in spite of higher economic compensation in other cash crops' irrigation for water coordination. Updating water-saving engineering and adopting drip irrigation technology in agricultural facilities after satisfying environmental flows would greatly relieve agricultural water shortage and save the economic compensation for different irrigation stakeholders. The approach in this study can be easily applied in water-stressed areas worldwide for dealing with water competition.

  5. Smallholder Led Irrigation Development in the Humid Ethiopian highlands

    Science.gov (United States)

    Tilahun, S. A.; Schmitter, P.; Alemie, T. C.; Yilak, D. L.; Yimer, A.; Mamo, A.; Langan, S.; Baronn, J.; Steenhuis, T. S.

    2017-12-01

    More than 70% of the population of in sub-Saharan Africa are living in rural areas that depend on the rainfed agriculture for their livelihood on the rainfed agriculture. With the rapidly increasing population, competition for land and water is growing is intensifying. This, together with future landscape and climate change, the rainfed agriculture is unlikely to meet the future food demands. Many donors see irrigation a rational way to solve the future food crises. In Ethiopia, less than 10% of the irrigatable area has been developed. The main limitation of increasing the irrigatable areas is a severe lack of surface water during an extended dry phase of almost seven months. Flow in most rivers currently have dried up before the rain phase begins middle of the dry periods. In response, the Ethiopian government is installing large reservoirs at great cost to store water from the wet monsoon phase. At the same time, small scale household have started using irrigation using wells on sloping lands that have sprung up with minimal governmental intervention. It could be one of the strategies to increase the irrigated acreage without large investments. Donors and governmental planners are eager to follow the farmer's initiatives and intensify irrigation on these hillside areas. However, it is not yet known to the extent that it is sustainable. For this reason, shallow ground water levels and river discharge were measured over a three-year period in the Robit Bata and Dangishta watersheds in Northern Ethiopian highlands for assessing recharge and use of shallow groundwater irrigation during dry period. The theoretical results show that the ground water availability depends on the slope of the land and the depth of the soil. In sloping Robit Bata watershed the groundwater runs out under gravity to the stream channel in 3-4 months after the rainfall stops. The only wells that remain productive are those associated with fractures in the bedrock. For the less sloping

  6. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  7. The future of irrigated agriculture under environmental flow requirements restrictions

    Science.gov (United States)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  8. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    Science.gov (United States)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  9. Seasonal changes of fertilizer impacts on agricultural drainage in a salinized area in Adana, Turkey

    International Nuclear Information System (INIS)

    Kume, T.; Akca, E.; Nakano, T.; Nagano, T.; Kapur, S.; Watanabe, T.

    2010-01-01

    Seasonal changes in the impacts of fertilizer on the composition of agricultural drainage water were examined by analyzing the 87 Sr/ 86 Sr isotope ratio and chemical composition of drainage water samples. Samples of drainage water were taken from the main drainage canals of the Lower Seyhan Irrigation Project, at sites designated as D10, D11, and D12. Plots of 87 Sr/ 86 Sr vs. 1/Sr indicated that the 87 Sr/ 86 Sr ratio of drainage water was positively related to those of fertilizer and irrigation water. The origins of Sr in two of the end-components were fertilizer and irrigation water. The data from the end-drain in winter suggested that the origin of Sr in the third end-component was fossil seawater. Analysis of a mixing model incorporating these three end-components showed that the origins of Sr in drainage differed markedly between summer and winter. Fertilizer made the greatest contribution to Sr in drainage water both in summer and winter, contributing 38-72% of total Sr in summer and 64-87% of total Sr in winter. In summer, fertilizer contributed 72% of total Sr in drainage water in D12, 44% in D10, and 38% in D11. This result implies that fertilizer was applied excessively at the D12 site. In winter, seawater accounted for 10% of Sr in drainage water in D12, whereas it accounted for 19-27% of Sr in drainage water in D10 and D11. Therefore, at least 70% of the salt in drainage water originates from fertilizer and irrigation water. At this study site, the salt originating from seawater is replaced by that from fertilizer and irrigation water, due to intensive agricultural management. The study site is a delta that lay on the ocean subsurface at least 3000 years ago, and therefore, was originally a primary salinization area. This result suggests that anthropogenic secondary salinization progressed over time via fertilizer and irrigation applications.

  10. Hydrodynamic and hydrochemicalcharacterization of groundwater in agricultural area (case of Agafay farm-Western Haouz) Morocco

    Science.gov (United States)

    Sefiani, Salma; El mandour, Abdennabi; Laftouhi, Nour-Eddine; Khalil, Nourdine; Chehbouni, Abdelghani; Jarlan, Lionel; Hanich, Lahoucine; Khabba, Said; Hamaoui, Addi; Kamal, Safia

    2016-04-01

    Water resources play an important role in the socio-economic development of the Haouz plain. The agriculture and tourism are two essential components of this development. They represent more than 85% of the water consumption of the Tensift catchment. Under a semi-arid climate, according to hydric stress water used for irrigation essential for most crops, comes from pumping in groundwater from the unconfined aquifer of the Haouz. The use of groundwater for irrigation causes problems of soil degradation by the intensification of salinization processes, sodisation or alkalizing at several degrees. These situations are closely related to the natural characteristics of the environment (soil and climate) and the modalities of water management dedicated for irrigation highly affected by water quality. It is in this sense that the study was conducted in an irrigated citrus orchard drip, located in the western part of Haouz at 35 km of Marrakesh. The aim of this study is to characterize the area on hydrogeological and hydrochemical point of view, on the basis of a measurement and sampling campaign of thirty wells corresponding to June 2014. The piezometric map shows parallel flow lines oriented northwest. The aquifer recharge is ensured by lateral flow from the High Atlas and by the infiltration from surface water from Chichaoua, Assif El Mal and N'fis rivers. The low amount of flow rate recorded and measured in the vicinity of the study area at the sensing points are relative to the rise of Paleozoic substratum which reduces the recharge of the aquifer. On the hydrochemical level, groundwater quality is generally good (86% of cases). The strong mineralization is concentrated mainly in irrigated areas downstream along the flow direction of the aquifer and at the Guemassa substratum.

  11. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    Science.gov (United States)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  12. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  13. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  14. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  15. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  16. Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Thomas Koellner

    2012-12-01

    Full Text Available The expansion of irrigated agriculture during the Soviet Union (SU era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.

  17. Identification of Decisive Factors Determining the Continued Use of Rainwater Harvesting Systems for Agriculture Irrigation in Beijing

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2015-12-01

    Full Text Available The success or failure of operating a rainwater harvesting system (RWH depends on both technological and non-technological factors. The importance of non-technological factors in attaining sustainable RWH operation is rarely emphasized. This study aims to assess the contribution of non-technological factors through determining decisive factors involved in the use of RWHs for agriculture irrigation in Beijing. The RWHs for agriculture irrigation in Beijing are not operating as well as expected. If the decisive factors are identified to be non-technological, the significance of non-technological factors will be highlighted. Firstly, 10 impact factors comprising non-technological and technological factors are selected according to both a literature review and interviews with RWH managers. Following this, through an artificial data mining method, rough set analysis, the decisive factors are identified. Results show that two non-technological factors, “doubts about rainwater quality” and “the availability of groundwater” determine whether these systems will continue or cease RWH operation in Beijing. It is, thus, considered necessary to improve public confidence in and motivation on using rainwater for agriculture irrigation, as this is the main obstacle in the sustainable and successful operation of RWHs. Through a case study of RWHs in Beijing, the study verifies the importance of acknowledging non-technological factors to achieve sustainable water management and considers that such factors should receive more attention by decision makers and researchers.

  18. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  19. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  20. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea

    Directory of Open Access Journals (Sweden)

    Hanseok Jeong

    2016-04-01

    Full Text Available Climate change and the subsequent change in agricultural conditions increase the vulnerability of agricultural water use. Wastewater reuse is a common practice around the globe and is considered as an alternative water resource in a changing agricultural environment. Due to rapid urbanization, indirect wastewater reuse, which is the type of agricultural wastewater reuse that is predominantly practiced, will increase, and this can cause issues of unplanned reuse. Therefore, water quality standards are needed for the safe and sustainable practice of indirect wastewater reuse in agriculture. In this study, irrigation water quality criteria for wastewater reuse were discussed, and the standards and guidelines of various countries and organizations were reviewed to suggest preliminary standards for indirect wastewater reuse in South Korea. The proposed standards adopted a probabilistic consideration of practicality and classified the use of irrigation water into two categories: upland and rice paddy. The standards suggest guidelines for E. coli, electric conductivity (EC, turbidity, suspended solids (SS, biochemical oxygen demand (BOD, pH, odor, and trace elements. Through proposing the standards, this study attempts to combine features of both the conservative and liberal approaches, which in turn could suggest a new and sustainable practice of agricultural wastewater reuse.

  1. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  2. Identification of criteria and subcriteria for assessment of land suitability for irrigation

    OpenAIRE

    Blagojević, Boško; Srđević, Zorica; Srđević, Bojan

    2014-01-01

    Serbia is a country with a predominantly agriculture-based economy; however, out of the total area only 3% is irrigated. One of the strategic national development goals is to increase irrigated land especially in lowlands and alluviums of major rivers in the country. There are many criteria and subcriteria which are important for a decision on where to build new, sustainable irrigation systems. After the literature review regarding this topic, we propose a set of criteria and subcriteria for ...

  3. Genetic technology and agricultural development.

    Science.gov (United States)

    Staub, W J; Blase, M G

    1971-07-09

    The genetic technologies being adopted in South Asia are significant factors in the agricultural development of the area. But, labeling them " miracle seeds," solely responsible for recent agricultural growth, is misleading. Certainly the introduction of new genetic technology has catalyzed South Asian agriculture and has instilled a new dynamism essential to economic development. Somewhat similar phenomena have, however, been observed in other parts of the world in other periods of history. The nature of these genetic technologies, how they are being applied, and their limits and potential have been explored above. Also, the effects of these varieties on the generation of employment, and the distribution of benefits accruing from them have been examined in preliminary fashion. Stemming from the preceding discussion, two areas of priority appear obvious. First, the close association of genetic technologies with irrigation suggests that irrigation should receive more attention than it has in the past. Large-scale public irrigation schemes are expensive and have tended to yield low rates of return. However, there appears to be room for marginal increases in, or improvements of, existing irrigation facilities. Second, even with a rapid spread of the practices associated with highyeild varieties, it may be too much to expect the farm sector to absorb the expected increases in the rural labor force. The generation of employment is a major problem in India as well as in most other developing countries. Hence, possibilities for expanding rural, nonfarm employment and controlling population growth should be sought vigorously.

  4. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    Science.gov (United States)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  5. How much water do we need for irrigation under Climate Change in the Mediterranean?

    Science.gov (United States)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  6. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  7. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016

    Directory of Open Access Journals (Sweden)

    Eric W. Chance

    2018-01-01

    Full Text Available Understanding irrigator responses to changes in water availability is critical for building strategies to support effective management of water resources. Using remote sensing data, we examine farmer responses to seasonal changes in water availability in Idaho’s Snake River Plain for the time series 1984–2016. We apply a binary threshold based on the seasonal maximum of the Normalized Difference Moisture Index (NDMI using Landsat 5–8 images to distinguish irrigated from non-irrigated lands. We find that the NDMI of irrigated lands increased over time, consistent with trends in irrigation technology adoption and increased crop productivity. By combining remote sensing data with geospatial data describing water rights for irrigation, we show that the trend in NDMI is not universal, but differs by farm size and water source. Farmers with small farms that rely on surface water are more likely than average to have a large contraction (over −25% in irrigated area over the 33-year period of record. In contrast, those with large farms and access to groundwater are more likely than average to have a large expansion (over +25% in irrigated area over the same period.

  8. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  9. The Influence of Groundwater Depletion from Irrigated Agriculture on the Tradeoffs between Ecosystem Services and Economic Returns.

    Science.gov (United States)

    Kovacs, Kent; West, Grant

    2016-01-01

    An irrigated agricultural landscape experiencing groundwater overdraft generates economic returns and a suite of ecosystem services (in particular, groundwater supply, greenhouse gases reduction, and surface water quality). Alternative land cover choices indicate tradeoffs among the value of ecosystem services created and the economic returns. These tradeoffs are explored using efficiency frontiers that determine the least value in ecosystem services that must be given up to generate additional economic returns. Agricultural producers may switch to irrigation with surface water using on-farm reservoirs and tail water recovery systems in response to groundwater overdraft, and this has consequences for the bundle of ecosystem service values and economic returns achievable from the landscape. Planning that accounts for both ecosystem service value and economic returns can achieve more value for society, as does the adoption of reservoirs though lowering the costs of irrigation, increasing groundwater levels, and reducing fuel combustion and associated GHG emissions from groundwater pumping. Sensitivity analyses of per unit value of ecosystem services, crop prices, and the groundwater and water purification model parameters indicate tradeoff among ecosystems service values, such as the use of a high-end social cost of carbon ultimately lowers groundwater supply and water purification value by more than 15%.

  10. The Influence of Groundwater Depletion from Irrigated Agriculture on the Tradeoffs between Ecosystem Services and Economic Returns.

    Directory of Open Access Journals (Sweden)

    Kent Kovacs

    Full Text Available An irrigated agricultural landscape experiencing groundwater overdraft generates economic returns and a suite of ecosystem services (in particular, groundwater supply, greenhouse gases reduction, and surface water quality. Alternative land cover choices indicate tradeoffs among the value of ecosystem services created and the economic returns. These tradeoffs are explored using efficiency frontiers that determine the least value in ecosystem services that must be given up to generate additional economic returns. Agricultural producers may switch to irrigation with surface water using on-farm reservoirs and tail water recovery systems in response to groundwater overdraft, and this has consequences for the bundle of ecosystem service values and economic returns achievable from the landscape. Planning that accounts for both ecosystem service value and economic returns can achieve more value for society, as does the adoption of reservoirs though lowering the costs of irrigation, increasing groundwater levels, and reducing fuel combustion and associated GHG emissions from groundwater pumping. Sensitivity analyses of per unit value of ecosystem services, crop prices, and the groundwater and water purification model parameters indicate tradeoff among ecosystems service values, such as the use of a high-end social cost of carbon ultimately lowers groundwater supply and water purification value by more than 15%.

  11. Recycled Urban Wastewater for Irrigation of Jatropha curcas L. in Abandoned Agricultural Arid Land

    Directory of Open Access Journals (Sweden)

    María Dorta-Santos

    2014-10-01

    Full Text Available In a global context in which obtaining new energy sources is of paramount importance, the production of biodiesel from plant crops is a potentially viable alternative to the use of fossil fuels. Among the species used to produce the raw material for biodiesel, Jatropha curcas L. (JCL has enjoyed increased popularity in recent years, due partly to its ability to grow in degraded zones and under arid and semi-arid conditions. The present study evaluates the potential for JCL production under irrigation with non-conventional water resources in abandoned agricultural soils of the island of Fuerteventura (Canary Islands, Spain, which is one of the most arid parts of the European Union. JCL growth and productivity are compared during the first 39 months of cultivation in two soil types (clay-loam and sandy-loam and with two irrigation water qualities: recycled urban wastewater (RWW and desalinated brackish water (DBW. The results indicate that JCL growth (in terms of plant height and stem diameter was significantly influenced both by soil type and water quality, with better development observed in the sandy-loam soil under RWW irrigation. Productivity, measured as cumulative seed production, was not affected by soil type but was affected by water quality. Production under RWW irrigation was approximately seven times greater than with DBW (mean ~2142 vs. 322 kg·ha−1. The higher nutrient content, especially P, K and Mg, and lower B content of the RWW were found to be key factors in the greater productivity observed under irrigation with this type of water.

  12. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain

    Science.gov (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.

    2017-04-01

    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  13. The Assessment of Irrigated Land Salinization in the Aral Sea Region

    Science.gov (United States)

    Karlykhanov, Orazkhan K.; Toktaganova, Gulzhaz B.

    2016-01-01

    Agriculture is one of the main industries of Kazakhstan, especially in the Kyzylorda Region. Before the reforms, agriculture in this region was better developed than the manufacturing industry; this is no longer the case. The main crop grown on the irrigated land of the region is rice. Inefficient distribution of cultivated areas, their excessive…

  14. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  15. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  16. Nematode Community Composition under Various Irrigation Schemes in a Citrus Soil Ecosystem.

    Science.gov (United States)

    Porazinska, D L; McSorley, R; Duncan, L W; Graham, J H; Wheaton, T A; Parsons, L R

    1998-06-01

    Interest in the sustainability of farming practices has increased in response to environmental problems associated with conventional agricultural management often adopted for the production of herbaceous crops, ornamentals, and fruit crops. Availability of measures of the status of the soil ecosystem is of immediate importance, particularly for environmental assessment and monitoring programs. This study investigated the effects of various irrigation regimes (an example of an agricultural management practice) on the structure of the nematode fauna in a citrus orchard in the sandy ridge area of Central Florida. Ecological measures such as community structure indices, diversity indices, and maturity indices were assessed and related to irrigation intensity. Maturity index was an effective measure in distinguishing differences between irrigation regimes, whereas other indices of community structure were not. Of various nematode genera and trophic groups, only omnivores and the omnivore genera. Aporcelaimellus and Eudorylaimus responded to irrigation treatments.

  17. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to
    understand how irrigation and agricultural technologies have interacted with local
    society to transform production, paying particular attention to gender relations and
    changes for women farmers. The

  18. International Journal of Tropical Agriculture and Food Systems

    African Journals Online (AJOL)

    ... and Food Systems (IJOTAFS) publishes high-quality peer reviewed articles, in English, in all areas of agriculture and food production and processing including tree production, pesticide science, post harvest biology and technology, seed science, irrigation, agricultural engineering, water resources management, marine ...

  19. Performing and updating an inventory of Oregon's expanding irrigated agricultural lands utilizing remote sensing technology

    Science.gov (United States)

    Hall, M. J.

    1981-01-01

    An inventory technique based upon using remote sensing technology, interpreting both high altitude aerial photography and LANDSAT multispectral scanner imagery, is discussed. It is noted that once the final land use inventory maps of irrigated agricultural lands are available and approximately scaled they may be overlaid directly onto either multispectral scanner or return beam vidicon prints, thereby providing an inexpensive updating procedure.

  20. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate water use or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas for 2014 within Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama. The irrigated areas were delineated using land-use data and orthoimagery that were then field verified between June and November 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results of the 2014 study indicate that an estimated 31,608 acres were irrigated in Jackson County during 2014. This estimate includes 25,733 acres of field crops, 1,534 acres of ornamentals and grasses (including pasture), and 420 acres of orchards. Specific irrigated crops include cotton (11,759 acres), peanuts (9,909 acres), field corn (2,444 acres), and 3,235 acres of various vegetable (row) crops. The vegetable acreage includes 1,714 acres of which 857 acres were planted with both a spring and fall crop on the same field (double cropped). Overall, groundwater was used to irrigate 98.6 percent of the total irrigated acreage in Jackson County during 2014, whereas surface water and wastewater were used to irrigate the remaining 1.4 percent.

  1. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils

    OpenAIRE

    Muller, K.; Duwig, Céline; Prado, B.; Siebe, C.; Hidalgo, C.; Etchevers, J.

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years wi...

  2. Assessing the impact of pluriactivity on sustainable agriculture. A case study in rural areas of Beotia in Greece.

    Science.gov (United States)

    Giourga, Christina; Loumou, Angeliki

    2006-06-01

    Pluriactivity of farms, or part-time farming, is a common feature of agriculture in all countries regardless of their socioeconomic system and level of development. Currently, pluriactivity is related to the values of sustainable agriculture. The objective of this study is to delineate those specific characteristics of pluriactive farms that contribute to sustainable agriculture. In rural areas of Boetia in Greece, a socioeconomic survey was carried out on 114 farms to determine the types of farming applied. The results demonstrate that pluriactivity is a stable component of the agricultural structure in the rural areas of Boetia. It is widespread in plains, but its presence is more important in mountainous and semimountainous areas. The choice of young farmers is to opt for pluriactivity. Farm size does not differ between pluriactive and full-time farms. Pluriactive and full- time farms use the same level of input and get the same output for the same type of crop. However, pluriactive farmers under the same land-productive conditions are oriented toward a more extensive farming system, managing their land with crops that need less inputs. Considering these findings, it can be claimed that pluriactivity can contribute to diminishing the demand on natural resources in favored (level and irrigated) areas, to continue agricultural production in unfavorable (mountainous and semimountainous) areas, and to help the sustenance of the rural population.

  3. Model Development of Rainwater Management for Agriculture Decision Support System in Semi Arid Area

    Directory of Open Access Journals (Sweden)

    Tunggul S.

    2011-01-01

    Full Text Available Land cultivation for agricultural purposes in semiarid area is usually carried out only once a year specifically during the rainy season. The condition is even worse since it is not without the risk of failure because of dry-spell or water-logging. To cope with this situation, the researchers developed a model of Rainwater Management for Agriculture Decision Supporting System (RMA-DSS. The objective of this RMA-DSS is to facilitate the decision making to build water infrastructure. Using this program it is hoped that sufficient water supply for specific crops with correct planting time can be guaranteed, which in turn will optimize harvest. The model consists of three parts, namely, rainfall-runoff-infiltration model, crop water requirement-irrigation-drainage model and rainwater management for agriculture model. The Models are designed using Microsoft Excel’s Macro Visual Basic and finalized with Visual Basic language program for operating spatial database of map object and non spatial database.

  4. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  5. Representing Water Scarcity in Future Agricultural Assessments

    Science.gov (United States)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  6. Estatísticas sobre irrigação no Brasil segundo o Censo Agropecuário 1995-1996 Statistics on irrigation in Brazil according to the 1995-1996 Agricultural Census

    Directory of Open Access Journals (Sweden)

    Mardônio L. Loiol

    2001-04-01

    Full Text Available Neste trabalho utilizam-se dados do Censo Agropecuário 1995-1996, para se avaliar a irrigação no país, com relação à área irrigada, aos métodos utilizados e aos grupos de área, por região e por estado. A área irrigada no Brasil, de acordo com o Censo Agropecuário 1995-1996, é de 3,1 milhões de hectares, representando apenas 2,1% dos 146,8 milhões de hectares cultivados com lavouras permanentes, temporárias, pastagens e florestas. A região Sul apresenta a maior área irrigada, 1,1 milhão de ha, equivalente a 35% da área total irrigada. Em segundo lugar vem a região Sudeste com, aproximadamente, 30%; com 24% de toda a área irrigada no Brasil, o Nordeste ocupa a terceira posição seguido das regiões Centro-Oeste e Norte, que têm pouca expressão e, juntas, somam cerca de 11% do total. Nas regiões NE, SE e Sul, a irrigação predomina nos estabelecimentos cuja área é inferior a 1.000 ha. Diferentemente, nas regiões Norte e Centro-Oeste a irrigação é mais significativa nos estabelecimentos com área maior que 10.000 ha. O método de irrigação por superfície, continua a ser o mais utilizado no país (59%, nas regiões NE e Sul, com a aspersão prevalecendo nas demais regiões; a irrigação localizada representa a menor área.This paper uses the 1995-1996 of agricultural census data to evaluate irrigation in Brazil in relation to the irrigated areas and irrigation methods by groups, region and states. Based on this, Brazil has 3.1 million hectares under irrigation, corresponding to only 2.1% of the 146.8 million hectare of cultivated area with annual and permanent crops, pastures and forests. The southern region presents the largest irrigated area, 1.1 million ha, corresponding to 35% of the total irrigated area. The second largest irrigated area is in the southeastern region (30%, followed by the northeast (24%; the centre-western and north have, together by 11% of the total area. Irrigated farms smaller than 1

  7. Quality assessment of treated wastewater to be reused in agriculture

    Directory of Open Access Journals (Sweden)

    M.H. Rahimi

    2018-04-01

    Full Text Available In this study, the quality of a treated wastewater for agricultural and irrigation purposes was investigated. 39 quality parameters were investigated at the entrance of an effluent channel to the destination plain in monthly time intervals during a year. The aim of this study was drawing an analogy between analyses results and the latest standards in the world (nationwide and internationally, the agricultural and irrigation usage indexes and the Wilcox diagram. The results showed that some parameters such as turbidity, total suspended solids, electrical conductivity, sodium, detergents, total coliform and focal coliform, ammonium, residual sodium carbonate, the Kelly’s Ratio and the Wilcox diagram were exceeding the permissible limit and are not suitable for agriculture and irrigation. It was found that the aquifers in the study area were polluted by natural salinity and geogenic source. As a result, application of the treated wastewater from Qom for agriculture and irrigation purposes needs to be revised and monitored. An action plan is also needed to manage a huge source of water and to avoid further environmental and health risks.

  8. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  9. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    Science.gov (United States)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  10. Evaluation of water productivity under climate change in irrigated areas of the arid Northwest China using an assemble statistical downscaling method and an agro-hydrological model

    Science.gov (United States)

    Liu, Liu; Guo, Zezhong; Huang, Guanhua

    2018-06-01

    The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implications for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario, which were both larger than 2 kg m-3. Compared with that of the period from 2012 to 2015, the water productivity during 2018-2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and 15.4, 21.6, 19.9 % in the Ganzhou area, respectively.

  11. Drought trends based on the VCI and its correlation with climate factors in the agricultural areas of China from 1982 to 2010.

    Science.gov (United States)

    Qian, Xiaojin; Liang, Liang; Shen, Qiu; Sun, Qin; Zhang, Lianpeng; Liu, Zhixiao; Zhao, Shuhe; Qin, Zhihao

    2016-11-01

    Drought is a type of natural disaster that has the most significant impacts on agriculture. Regional drought monitoring based on remote sensing has become popular due to the development of remote sensing technology. In this study, vegetation condition index (VCI) data recorded from 1982 to 2010 in agricultural areas of China were obtained from advanced very high resolution radiometer (AVHRR) data, and the temporal and spatial variations in each drought were analyzed. The relationships between drought and climate factors were also analyzed. The results showed that from 1982 to 2010, the agricultural areas that experienced frequent and severe droughts were mainly concentrated in the northwestern areas and Huang-Huai Plain. Moreover, the VCI increased in the majority of agricultural areas, indicating that the drought frequency decreased over time, and the decreasing trend in the southern region was more notable than that in the northern region. A correlation analysis showed that temperature and wind velocity were the main factors that influenced drought in the agricultural areas of China. From a regional perspective, excluding precipitation, the climate factors had various effects on drought in different regions. However, the correlation between the VCI and precipitation was low, possibly due to the widespread use of artificial irrigation technology, which reduces the reliance of agricultural areas on precipitation.

  12. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    Science.gov (United States)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  13. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  14. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  15. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  16. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    Science.gov (United States)

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  17. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  18. Development and experiences of photovoltaic water pumping for a drip irrigation in agriculture; Desarrollo y experiencias de sistemas de bombeo fotovoltaico para aplicaciones de riego tecnificado en la agricultura

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Reinhold; Sapiain, Raul; Torres, Ariel; Loose, Dirk [Centro de Energias Renovables, Arica (Chile); Hahn, Andreas [Eschborn (Germany)

    2000-07-01

    The following paper shows results and experiences from a pilot project of photovoltaic water pumping for drip irrigation in agriculture of rural areas. The project participants are local farmers in direct co-operation with the Renewable Energy Centre of the University of Tarapaca and the German Agency for Technical Co-operation, GTZ. Activities focus on the planification, design, implementation and evaluation of four different pilot installations for the small and medium scale agriculture in different locations of the desert area of northern Chile. In the first phase, photovoltaic pumping systems were installed with water storage tanks and a drip irrigation systems were installed with water storage tanks and a drip irrigation system working only by gravity at very low operating pressures. In the second phase, a new system configuration was developed with a direct driven photovoltaic pumping system without water storage tank, the drip irrigation system here is directly connected to the pump with variable water flow and system pressure conditions. Part of the pilot project is a monitoring system, which allows a complete short term and long term evaluation under technical, agricultural and economical aspects. The measured data and obtained experiences shown so far interesting result as for example the high system's reliability, a good performance of the low pressure irrigation, an adequate matching between the solar pump and the drip irrigation in the direct driven system and a simple irrigation management and operation, compared with conventional pumping systems. The project's results could offer a new alternative for photovoltaic pumping systems in the productive agricultural sector of desert rural areas. [Spanish] El presente trabajo muestra los resultados y experiencias obtenidas en un programa piloto de bombeo fotovoltaico para nuevas aplicaciones de riego tecnificado en la agricultura de zonas rurales. En este programa el Centro de Energias Renovables

  19. Sustainability of current agriculture practices, community perception, and implications for ecosystem health: an Indian study.

    Science.gov (United States)

    Sarkar, Atanu; Patil, Shantagouda; Hugar, Lingappa B; vanLoon, Gary

    2011-12-01

    In order to support agribusiness and to attain food security for ever-increasing populations, most countries in the world have embraced modern agricultural technologies. Ecological consequences of the technocentric approaches, and their sustainability and impacts on human health have, however, not received adequate attention particularly in developing countries. India is one country that has undergone a rapid transformation in the field of agriculture by adopting strategies of the Green Revolution. This article provides a comparative analysis of the effects of older and newer paradigms of agricultural practices on ecosystem and human health within the larger context of sustainability. The study was conducted in three closely situated areas where different agricultural practices were followed: (a) the head-end of a modern canal-irrigated area, (b) an adjacent dryland, and (c) an area (the ancient area) that has been provided with irrigation for some 800 years. Data were collected by in-depth interviews of individual farmers, focus-group discussions, participatory observations, and from secondary sources. The dryland, receiving limited rainfall, continues to practice diverse cropping centered to a large extent on traditional coarse cereals and uses only small amounts of chemical inputs. On the other hand, modern agriculture in the head-end emphasizes continuous cropping of rice supported by extensive and indiscriminate use of agrochemicals. Market forces have, to a significant degree, influenced the ancient area to abandon much of its early practices of organic farming and to take up aspects of modern agricultural practice. Rice cultivation in the irrigated parts has changed the local landscape and vegetation and has augmented the mosquito population, which is a potential vector for malaria, Japanese encephalitis and other diseases. Nevertheless, despite these problems, perceptions of adverse environmental effects are lowest in the heavily irrigated area.

  20. Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures.

    Science.gov (United States)

    Campos, María Claudia; Beltrán, Milena; Fuentes, Nancy; Moreno, Gerardo

    2018-03-15

    A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.

  1. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    Science.gov (United States)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  2. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  3. Delineating shallow ground water irrigated areas in the Atankwidi ...

    African Journals Online (AJOL)

    user

    Basin Lan Use/Land Cover (LULC) and irrigated area Mapping using. Continuous Streams of MODIS Data. Remote Sensing Environ.,. 95(3): 317-341. Neckel H, Labs D (1984). The solar radiation between 3300 and 12500. A. Solar Phys., 90: 205-258. Tucker CJ, Grant DM, Dykstra JD (2005). NASA's global orthorectified.

  4. Willingness to pay for more efficient irrigation techniques in the Lake Karla basin, Greece.

    Science.gov (United States)

    Mylopoulos, Nikitas; Fafoutis, Chrysostomos

    2014-05-01

    Thessaly, the second largest plain of Greece, is an intensively cultivated agricultural region. The intense and widespread agriculture of hydrophilic crops, such as cotton, has led to a remarkable water demand increase, which is usually covered by the overexploitation of groundwater resources. The Lake Karla basin is a prominent example of this unsustainable practice. Competition for the limited available freshwater resources in the Lake Karla basin is expected to increase in the near future as demand for irrigation water increases and drought years are expected to increase due to climate change. Together with the Unions of Agricultural Cooperatives, the Local Organizations of Land Reclamation is planning to introduce more efficient, water saving automated drip irrigation in the area among farmers who currently use non-automated drip irrigation, in order to ensure that these farmers can better cope with drought years and that water will be used more efficiently in crop production. Saving water use in irrigated agriculture is expected to be beneficial to both farmers and the restoration of Lake Karla and its wildlife like plants and birds. The aim of this study is to understand and record the farmers' opinions regarding the use of irrigation water and the restoration of Lake Karla, and to extract valuable conclusions and perform detailed analysis of the criteria for a new irrigation method. A general choice experiment with face-to-face interviews was conducted, using a random sample of 150 open field farmers from the study area. The farmers, who use the non-automated drip irrigation method and their farms are located within the watershed of Lake Karla, were interviewed regarding their willingness to switch to more efficient irrigation techniques, such as automated and controlled drip irrigation.The most important benefits of automated drip irrigation are an increase in crop yield, as plants are given water in a more precise way (based on their needs during the

  5. Detection of Class I and II integrons for the assessment of antibiotic and multidrug resistance among Escherichia coli isolates from agricultural irrigation waters in Bulacan, Philippines.

    Science.gov (United States)

    Paraoan, Cielo Emar M; Rivera, Windell L; Vital, Pierangeli G

    2017-05-04

    Contaminated irrigation water may greatly affect not only the quality of produce but also the people exposed to it. In this study, agricultural irrigation waters in Bulacan, Philippines were assessed and found to be contaminated with Escherichia coli (E. coli) ranging from 0.58 to 4.51 log 10 CFU/mL. A total of 79 isolates of E. coli were confirmed through polymerase chain reaction (PCR) amplifying the uidA gene and were tested for phenotypic resistance using 10 antimicrobials through the Kirby-Bauer disc diffusion method. Forty-six isolates (58.22%) were noted to be multidrug resistant (MDR) with high resistance rate to cephalothin, tetracycline, streptomycin, ampicillin, trimethoprim, nalidixic acid, and chloramphenicol. Moreover, this study also examined the prevalence of Class I and II integrons accounting to 67.39% and 17.39%, respectively, of the MDR E. coli strains using multiplex PCR. The results imply that the agricultural water used in Bulacan is contaminated with the fecal material of man or other animals present in the area, and the presence of MDR bacteria, which pose a potential threat to individuals in these areas, is alarming. In addition, detection of integrons could be a good marker for the identification of MDR isolates. Lastly, this study could develop strategies for the proper management of farming sites leading to the detection of food-borne pathogens and prevention of infectious diseases.

  6. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional

  7. APPROACH TO CONSTRUCTING 3D VIRTUAL SCENE OF IRRIGATION AREA USING MULTI-SOURCE DATA

    Directory of Open Access Journals (Sweden)

    S. Cheng

    2015-10-01

    Full Text Available For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS, remote sensing (RS technology. Based on multi-source data such as Google Earth (GE high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  8. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    Science.gov (United States)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  9. Environmental literacy in agriculture and coastal areas

    Science.gov (United States)

    Pujianti, N.; Munandar, A.; Surakusumah, W.

    2018-05-01

    This research aim to investigate the environmental literacy of junior high school students in agricultural and coastal areas in Subang based on knowledge, cognitive skill and attitudes toward to environment. This research used descriptive method. The subjects of the research were 7 grade students of junior high school and involved 62 participants in agriculture area and 64 participants in coastal area. The instrument of environment literacy adapted from Middle School Environment Literacy Survey (MSELS) and adapted to the context of agricultural and coastal area. The results showed that: environmental literacy in agricultural areas is 169.30 with moderate category and environmental literacy in the coastal area is 152.61 in the moderate category.

  10. Point irrigation for locality Buchel in the north desert Gobi in Mongolia

    Directory of Open Access Journals (Sweden)

    Pavel Spitz

    2009-01-01

    Full Text Available The design of point irrigation, created by Filip et al. (2007, was worked up as the bilateral projekt in the frame of abroad developing cooperation between the Czech Republic and Mongolia „Rehabilitation of plant production in semiarid territories of northern Gobi”. The period of project realization are years 2006–2009. The responsible institution for the project is Ministery of Agriculture of the Czech Republic and with the realization of the project was encharged Mendel University of Agriculture and Forestry in Brno. The task was work irrigation design for experimental plants and vegetables on the choosen land in Gobi desert in Mongolia. To disposition was underground water source – bore with capacity about 2 l / s and temperature about 10 °C, electric power and land about area cca 1 ha. The condition was use simple irrigation equipment. The fundamental limitation was im­pos­si­bi­li­ty using technically more complex and more sophisticated equipment e.g. drip irrigation. The map was not to the disposition, only a judgment of slope 0,2 % in flat terrain. The technical design of surface and subsurface point irrigation are introduced, shortly described are hydrotechnical basis used to created and described the original PC program HYBOZAM (hydraulics of point irrigation for Mongolia developed in table editor of Microsoft Excel for pipe dimensions of point irrigation design. Part of the program is also evaluation of the irrigation uniformity from outflows on irrigation line.

  11. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain.

    Science.gov (United States)

    Gu, Xiaomin; Xiao, Yong; Yin, Shiyang; Pan, Xingyao; Niu, Yong; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Hao, Qichen

    2017-09-22

    In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO 3 type in grass land to Ca·Na-Cl (+NO 3 ) type and Na (Ca)-Cl (+NO 3 +SO 4 ) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO 3 ) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.

  12. Review. Deficit irrigation in fruit trees and vines in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Sanchez, M. C.; Domingo, R.; Castel, J. R.

    2010-07-01

    Water has become the most precious of natural resources in many areas of Spain and, since agriculture is the major consumer of water, improvements in water use efficiency are increasingly sought. Regulated deficit irrigation (RDI) is an irrigation strategy based on applying only a fraction of the plant water requirements during certain periods of plant development. The paper reviews the available information on RDI strategies, in woody tree crops and vines based on studies by Spanish research groups. Both the promising results obtained and the drawbacks are covered. (Author) 130 refs.

  13. Applications of Information and Communication Technology for Improvements of Water and Soil Monitoring and Assessments in Agricultural Areas—A Case Study in the Taoyuan Irrigation District

    Directory of Open Access Journals (Sweden)

    Yu-Pin Lin

    2017-01-01

    Full Text Available In order to guarantee high-quality agricultural products and food safety, efforts must be made to manage and maintain healthy agricultural environments under the myriad of risks that they face. Three central system components of sustainable agricultural management schemes are real-time monitoring, decision-making, and remote access. Information and Communications Technology (ICT systems are a convenient means of providing both these and other functions, such as wireless sensor networking, mobile phone applications, etc., to agricultural management schemes. ICT systems have significantly improved in recent years and have been widely used in many fields, including environmental monitoring and management. Moreover, ICT could benefit agricultural environment management by providing a platform for collaboration between researchers and stakeholders, thereby improving agricultural practices and environments. This article reviews and discusses the way in which ICT can efficiently improve monitoring systems and risk assessments of agricultural environment monitoring, as well as the technological and methodological improvements of ICT systems. Finally, we develop and apply an ICT system, referred to as the agricultural environment protection system—comprised of a cloud, six E-platforms, three mobile devices, automatic monitoring devices, indigenous wireless sensor nodes, and gateways in agricultural networks—to a case study in the Taoyuan irrigation district, which acts as a pilot area in Taiwan. Through the system, we use all available information from the interdisciplinary structured cloud database to classify the focal area into different agricultural environmental risk zones. We also conducted further analysis based on a hierarchical approach in order to classify the agricultural environments in the study area, to allocate additional sampling with resin packages and mobile devices, as well as to assist decision makers and stakeholders. The main

  14. Controls on denitrification potential in nitrate-rich waterways and riparian zones of an irrigated agricultural setting.

    Science.gov (United States)

    Webster, Alex J; Groffman, Peter M; Cadenasso, Mary L

    2018-02-21

    Denitrification, the microbial conversion of NO 3 - to N gases, is an important process contributing to whether lotic and riparian ecosystems act as sinks for excess NO 3 - from agricultural activities. Though agricultural waterways and riparian zones have been a focus of denitrification research for decades, almost none of this research has occurred in the irrigated agricultural settings of arid and semi-arid climates. In this study, we conducted a broad survey of denitrification potential in riparian soils and channel sediment from 79 waterway reaches in the irrigated agricultural landscape of California's Central Valley. With this approach, we sought to capture the wide range of variation that arose from diverse waterway management and fluctuating flow conditions, and use this variation to identify promising management interventions. We explored associations of denitrification potentials with surface water NO 3 - -N, organic matter, flow conditions, vegetation cover, near-channel riparian bank slope, and channel geomorphic features using generalized linear mixed models. We found strong associations of sediment denitrification potentials with reach flow conditions, which we hypothesize was the result of variation in microbial communities' tolerance to dry-wet cycles. Denitrification potentials in riparian soils, in contrast, did not appear affected by flow conditions, but instead were associated with organic matter, vegetation cover, and bank slope in the riparian zone. These results suggest a strong need for further work on how denitrification responds to varying flow conditions and dry-wet cycles in non-perennial lotic ecosystems. Our findings also demonstrate that denitrifier communities respond to key features of waterway management, which can therefore be leveraged to control denitrification through a variety of management actions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Nuclear energy and Ecuadorian agriculture development

    International Nuclear Information System (INIS)

    Molineros Andrade, J.

    1979-09-01

    The Ecuadorian Atomic Energy Commission has elaborated a plan for development of nuclear energy, the construction of a 1-3 MW Nuclear Reactor for Research and production of radioisotopes and of the related laboratories. Agriculture is a very important part of this plan, in the following areas: genetics, irrigation, plant and animal nutrition and metabolisms, and pest and disease control. Ecuadorian agriculture institutions have also been considered in this plan. (Author)

  16. EVALUATION OF PHYSICO-CHEMICAL PARAMETERS OF AGRICULTURAL SOILS IRRIGATED BY THE WATERS OF THE HYDROLIC BASIN OF SEBOU RIVER AND THEIR INFLUENCES ON THE TRANSFER OF TRACE ELEMENTS INTO SUGAR CROPS (THE CASE OF SUGAR CANE

    Directory of Open Access Journals (Sweden)

    N. Benlkhoubi

    2016-05-01

    Full Text Available This research was conducted in Kenitra (northwestern Morocco to determine the physicochemical parameters and metallic concentrations at three levels: surface water of Sebou and Beht intended for irrigation, agricultural soils and sugarcane. The spectrometric analysis of source plasma emission (ICP has identified eight trace elements contained in the materials taken from zone 1 (As, Cd, Co, Zn, Ni, Pb, Cu and Cr.The obtained results showed that the interaction between the different physicochemical parameters of agricultural soils decides the transfer of the metal elements to the plants. Indeed, for the soil which is used in this agriculture (for sugar cane, its irrigation water, and the contents of Cr, Cd and As exceeds the accepted standards.The principal component analysis of the levels of trace metal supports in area 1, allowed to distinguish between the items with a high tolerance for bagasse (Zn, Cu, Ni, Cd and Pb, compared to Cr, Co, and As.

  17. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in

  18. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    Directory of Open Access Journals (Sweden)

    Emanuel Heinz

    2013-12-01

    Full Text Available We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS for stable water isotope analysis (δ2H and δ18O, a reagentless hyperspectral UV photometer (ProPS for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system’s technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  19. Water and Land Limitations to Future Agricultural Production in the Middle East

    Science.gov (United States)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  20. Semi-arid Areas

    International Development Research Centre (IDRC) Digital Library (Canada)

    Livia Bizikova

    precipitation in the form of rainfall or snow (UN, 2011; MEA 2009). • Dryland subtypes can ... in terms of their land uses: rangelands, croplands, and urban areas. ... farmers; climate resilient agricultural practices; irrigation, pasture management.

  1. IDENTIFICATION OF LEAD AND CADMIUM LEVELS IN WHITE CABBAGE (Brassica rapa L., SOIL, AND IRRIGATION WATER OF URBAN AGRICULTURAL SITES IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Hardiyanto Hardiyanto

    2016-10-01

    Full Text Available Urban agriculture comprises a variety of farming systems, ranging from subsistence to fully commercialized agriculture. Pollution from automobile exhaust, industrial and commercialactivities may affect humans, crops, soil, and water in and around urban agriculture areas. The research aimed to investigate the level and distribution of lead (Pb and cadmium (Cd in white cabbage (Brassica rapa L., soil, and irrigation water taken from urban sites. The research was conducted in Las Piñas and Parañaque, Metro Manila, Philippines. The field area was divided into three sections based on its distance from the main road (0, 25, and 50 m. Irrigation water was taken from canal (Las Piñas and river (Parañaque. Pb and Cd contents of the extract were measured by Atomic Absorption Spectrophotometry. Combined analysis over locations was used. The relationship between distance from the main road and metal contents was measured by Pearson’s correlation. Based on combined analyses, highly significant difference over locations was only showed on Cd content in white cabbage. Cd content in white cabbage grown in Parañaque was higher than that cultivated in Las Piñas, while Cd content in the soil between both sites was comparable.The average Pb content (1.09 µg g-1 dry weight was highest in the white cabbage grown right beside the main road. A similar trend was also observed in the soil, with the highest concentration being recorded at 26 µg g-1 dry weight. There was a negative relationship between distance from the main road and Pb and Cd contents in white cabbage and the soil. Level of Pb in water taken from the canal and river was similar (0.12 mg l-1, whereaslevels of Cd were 0.0084 and 0.0095 mg l-1, respectively. In general, the concentrations of Pb and Cd in white cabbage and soil as well as irrigation water were still in the acceptable limits. In terms of environmental hazards and polluted city environment, it seems that

  2. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  3. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Directory of Open Access Journals (Sweden)

    Mahmoud Nasr

    2015-03-01

    Full Text Available Objective: To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L, Ca (175.00 mg/L, Cd (1.87 mg/L, Co (2.23 mg/L, Cu (1.71 mg/L, Fe (1.64 mg/L, K (20.50 mg/L, and Pb (2.81 mg/L. According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  4. Groundwater quality in alluvial and prolluvial areas under the influence of irrigated agriculture activities.

    Science.gov (United States)

    Kovacevik, Biljana; Boev, Blazo; Panova, Vesna Zajkova; Mitrev, Sasa

    2016-12-05

    The aim of this study was to investigate the groundwater pollution from alluvial aquifers lying under surface agriculture activities in two geologically different areas: alluvial and prolluvial. The groundwater in investigated areas is neutral to alkaline (pH 7.05-8.45), and the major dissolved ions are bicarbonate and calcium. Groundwater samples from the alluvial area are characterized by nitrate concentration above the national maximum concentration limit (MCL) at 20.5% of samples [mean value (Me) 6.31 mg/L], arsenic concentrations greater than national MCL at 35.6% of investigated samples (Me 12.12 µg/L) and elevated concentrations of iron (Me 202.37 µg/L) and manganese (Me 355.22 µg/L) at 22.7% and 81% of investigated samples, respectively. Groundwater samples from the prolluvial area did not show significantly elevated concentrations of heavy metals, but the concentration of nitrate was considerably higher (Me 65.06 mg/L). Factor analysis positively correlates As with Mn and Fe, suggesting its natural origin. Nitrate was found in positive correlation with SO 4 2- and Ni but in negative with NH 4 + , suggesting its anthropogenic origin and the relationship of these ions in the process of denitrification. The t-test analysis showed a significant difference between nitrate pollution of groundwater from alluvial and prolluvial areas. According to the chemical composition of groundwater, the process of denitrification is considered to be the main reason for the reduced presence of nitrate in the groundwater lying under alluvial deposits represented by chalk and sandstones. Denitrification in groundwater lying under prolluvial deposits represented by magmatic and metamorphic rock formations was not observed.

  5. Agricultural water conservation programs in the lower Colorado River Authority

    International Nuclear Information System (INIS)

    Kabir, J.

    1993-01-01

    Rice irrigation is the largest user of water within the area served by the Lower Colorado River Authority (LCRA), accounting for approximately 75 percent of total annual surface and ground water demands. In an average year, about 30 percent of surface water supplied to rice irrigation is satisfied with water released from the storage in the Highland Lakes located at the upstream reaches of the Lower Colorado River and its tributaries. During a severe drought, the demand for stored water could be as much as 70 percent of annual rice irrigation demand. LCRA owns and operates two irrigation canal systems which together supply water to irrigate 60,000 acres of rice each year. These irrigation systems are the Lakeside and Gulf Coast Irrigation Divisions. The Lakeside system is located in Colorado and Wharton Counties and the Gulf Coast system is located in Wharton and Matagorda Counties. In the 1987 and 1989, the Lower Colorado River Authority Board of Directors authorized implementation and funding for Canal Rehabilitation Project and Irrigation Water Measurement Project respectively. These two projects are key initiatives to agricultural water conservation goals established in the LCRA Water Management Plan and Water Conservation Policy. In addition LCRA participated actively in agricultural water conservation research projects and technology transfer activities

  6. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of

  7. Infrastructure performance of irrigation canal to irrigation efficiency of irrigation area of Candi Limo in Mojokerto District

    Science.gov (United States)

    Kisnanto, S.; Hadiani, R. R. R.; Ikhsan, C.

    2018-03-01

    Performance is a measure of infrastructure success in delivering the benefits corresponding it’s design implementation. Debit efficiency is a comparison between outflow debit and inflow debit. Irrigation canal performance is part of the overall performance aspects of an irrigation area. The greater of the canal performance will be concluded that the canal is increasingly able to meet the planned benefits, need to be seen its comparison between the performance and debit efficiency of the canal. The existing problems in the field that the value of the performance of irrigation canals are not always comparable to the debit efficiency. This study was conducted to describe the relationship between the performance of the canal to the canal debit efficiency. The study was conducted at Candi Limo Irrigation Area in Mojokerto Disctrict under the authority of Pemerintahan Provinsi Jawa Timur. The primary canal and secondary canal are surveyed to obtain data. The physical condition of the primary and secondary canals into the material of this study also. Primary and secondary canal performance based on the physical condition in the field. Measurement inflow and outflow debit into the data for the calculation of the debit efficiency. The instrument used in this study such as the current meter for debit measurements in the field as a solution when there is a building measure in the field were damaged, also using the meter and the camera. Permen PU No.32 is used to determine the value of the performance of the canal, while the efficiency analysis to calculate a comparison value between outflow and inflow debit. The process of data running processing by performing the measurement and calculation of the performance of the canal, the canal debit efficiency value calculation, and display a graph of the relationship between the value of the performance with the debit efficiency in each canal. The expected results of this study that the performance value on the primary canal in the

  8. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  9. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    Science.gov (United States)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over

  10. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  11. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  12. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  13. Urban Agriculture: Search for Agricultural Practice in Urbanized Rural Areas

    Directory of Open Access Journals (Sweden)

    Celile Özçiçek Dölekoğlu

    2017-12-01

    Full Text Available Rapid urbanization in developing countries involves unplanned migration, unemployment and poverty. The steady shrinking of rural areas and the use of agricultural land for other purposes are progressively increasing the pressure on natural resources. This development on the one hand increases the risk to food security, and on the other triggers climate change. The rural population who migrate to the cities or who are absorbed into urban areas continue their agricultural activities in the urban in order to provide themselves with an income or to maintain their food security. In the big cities of the developed world, contact with nature is kept by means of hobby gardens, recreational areas and urban and suburban plant and animal farming, and creative ideas such as roof gardens can be found. This development, known as urban agriculture, is practiced by 800 million people in the world. Urban agriculture has many economic, social and environmental benefits, but it may also have risks and adverse effects. In this study, the developments in this area in Turkey and the world are presented, and all aspects of its effects and outcomes are discussed.

  14. Analysis of wind energy potential for agriculture pump in mountain area Aceh Besar

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham; Fuadi, Zahrul

    2017-06-01

    In this study, the potential of wind power for agricultural pump driver in Saree mountainous area of Aceh Besar is analyzed. It is found that the average usable wind speed is 6.41 m/s, which is potential to produce 893.96 Watt of electricity with the wind turbine rotor diameter of 3 m. This energy can be used to drive up to 614 Watt of water pump with static head of 20 m to irrigate 19 hectare of land, 7 hours a day. HOMER analysis indicated the lowest simulated NPC value of USD 10.028 with CoE of USD 0.717 kWh. It is also indicated that the wind has potential to produce 3452 kWh/year with lifetime of 15 years.

  15. An Integrated Modeling System for Water Resource Management Under Climate Change, Socio-Economic Development and Irrigation Management

    Science.gov (United States)

    SU, Q.; Karthikeyan, R.; Lin, Y.

    2017-12-01

    Water resources across the world have been increasingly stressed in the past few decades due to the population and economic growth and climate change. Consequently, the competing use of water among agricultural, domestic and industrial sectors is expected to be increasing. In this study, the water stresses under various climate change, socio-economic development and irrigation management scenarios are predicted over the period of 2015-2050 using an integrated model, in which the changes in water supply and demand induced by climate change, socio-economic development and irrigation management are dynamically parameterized. Simulations on the case of Texas, Southwest U.S. were performed using the newly developed integrated model, showing that the water stress is projected to be elevated in 2050 over most areas of Texas, particularly at Northern and Southern Plain and metropolitan areas. Climate change represents the most pronounce factor affecting the water supply and irrigation water demand in Texas. The water supply over East Texas is largely reduced in future because of the less precipitation and higher temperature under the climate change scenario, resulting in an elevated irrigation water demand and thus a higher water stress in this region. In contrast, the severity of water shortage in West Texas would be alleviated in future because of climate change. The water shortage index over metropolitan areas would increase by 50-90% under 1.0% migration scenario, suggesting that the population growth in future could also greatly stress the water supply, especially megacities like Dallas, Houston, Austin and San Antonio. The projected increase in manufacturing water demand shows little effects on the water stress. Increasing irrigation rate exacerbates the water stress over irrigated agricultural areas of Texas.

  16. Decadal Variation of Precipitation in Saudi Arabia induced by Agricultural Irrigation

    Science.gov (United States)

    Lo, M. H.; Wey, H. W.; Wada, Y.; IM, E. S.; Chien, R. Y.; Wu, R. J.

    2017-12-01

    Decadal variation of wet-season precipitation has been found in the arid region of central Saudi Arabia. 1980s has been a rather wet decade compared with the decades before. Previous studies have mentioned that the irrigation moisture may contribute to the precipitation anomalies in Saudi Arabia. In the current study, we show from observational data that the contribution of the variation comes mostly from February to May. As the irrigation is a localized forcing, we therefore use the Weather Research and Forecasting (WRF) Model to simulate the response of the land-atmosphere interaction to the wet soil moisture resulted from additional irrigation moisture supply. Preliminary result shows in the irrigated simulation that precipitation in central Saudi Arabia is enhanced, indicating the possible link between irrigation expansion in the 1980s and the decadal precipitation variation over central Saudi Arabia. We propose it is the anomalous convergence induced by irrigation as well as additional moisture that contribute to the enhanced precipitation over heavily irrigation region in the central Saudi Arabian. In addition, analysis on the daily precipitation from the WRF outputs indicates that positive rainfall anomalies tend to happen when there is rainfall originally; that is, irrigation enhances rainfall but not creates rainfall.

  17. IRRIMET: a web 2.0 advisory service for irrigation water management

    Science.gov (United States)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  18. The effect of drains on the alkalinity of agricultural soils

    International Nuclear Information System (INIS)

    Iqbal, M.A.; Butt, T.; Anwar-ul-Haque; Haroon, M.; Haq, I.U.

    2009-01-01

    The purpose of the study was to observe the effect of industrial and domestic drains on the nearby agricultural areas which are either irrigated or not by the waste water but are close to drains. For this purpose 48 soil samples were collected from the selected areas of Faisalabad and were analyzed for alkali metals like Na/sup +/, K/sup +/, Li/sup +/ and some alkaline earth metals like Ba/sup 2+/> Mg/sup 3+/> Na/sup +/> K/sup +/> Li/sup +/ the levels of Ba/sup +2/ and K/sup +/ were found higher than permissible levels in almost all the soil samples. It was also concluded that the agricultural areas near the industrial drain which are either irrigated or not by the industrial waste water are found highly contaminated with mobile alkali metals (K, Na etc.) and higher values of percentage salinity. (author)

  19. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    Science.gov (United States)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  20. Addressing water scarcity through limited irrigation cropping: Field experiments and modeling

    Science.gov (United States)

    Population growth in urbanizing areas such as the Front Range of Colorado has led to increased pressure to transfer water from agriculture to municipalities. In many cases this has led to complete dry up of productive irrigated lands. An option to complete dry-up is the practice of limited or defi...

  1. Analyses of radionuclides in soil, water, and agriculture products near the Urgeirica uranium mine in Portugal

    International Nuclear Information System (INIS)

    Carvalho, F.P.; Oliveira, J.M.; Malta, M.

    2009-01-01

    Analyses of soils, irrigation waters, agriculture products (lettuce), green pasture, and cheese were performed in samples collected in the area of the old Urgeirica uranium mine and milling facilities, Centre-North of Portugal, in order to assess the transfer of uranium series radionuclides in the environment and to man. Soils close to milling tailings display an enhancement of radioactivity. In the drainage basin of the stream Ribeira da Pantanha, receiving drainage from the tailings piles and discharges from the acid mine water treatment plant, there was enhancement of uranium series radionuclide concentrations in water and suspended matter. Agriculture products from kitchen gardens irrigated with water from the Ribeira da Pantanha show an increase of radioactivity, mainly due to uranium isotopes. Agriculture products from other kitchen gardens in this area, irrigated with groundwater, as well pasture and cheese produced locally from sheep milk did not show enhanced radionuclide concentrations. In the Urgeirica area, some soils display radionuclide concentrations higher than soils in reference areas and, in agriculture products grown there, 226 Ra was the radionuclide more concentrated by vegetables. Through ingestion of these products 226 Ra may be the main contributor to the increment of radiation dose received by local population. (author)

  2. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  3. Agronomic and physiological impacts of irrigation frequency on green basil (Ocimum basilicum L.)

    OpenAIRE

    Gao, Peng; Dodd, Ian

    2015-01-01

    Water scarcity is a major factor restricting agricultural production and irrigation globally, with sustainable agricultural development calling for less irrigation water use and more production per unit of water applied. Improved understanding of plant physiological responses to water stress, and the effect of irrigation frequency on plant biomass production and quality, may help to optimize irrigation scheduling. Glasshouse-grown basil (Ocimum basilicum L.) received three different irrigatio...

  4. Microbial indicators of fecal contamination in soils under different wastewater irrigation patterns

    International Nuclear Information System (INIS)

    Contreras-Godinez, C. A.; Palacios-Lopez, O. A.; Munoz-Castellanos, L. N.; Saucedo-Teran, R.; Rubio-Arias, H.; Nevarez-Moorillon, G. V.

    2009-01-01

    The use of wastewater to irrigate produce was a common practice in some suburban areas in Mexico. The continuous use of wastewater can increase the chance of fecal soil contamination, which can percolate in soil and finally cause groundwater contamination. A suburban area in Chihuahua, mexico, has been traditionally irradiated with wastewater for production of agriculture goods, including produce and animal foodstuffs. (Author)

  5. Hydrochemical characteristics of groundwater for domestic and irrigation purposes in Madhuranthakam, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    K. Brindha

    2011-12-01

    Full Text Available Hydrochemical study was carried out in Madhuranthakam located near Chennai in Tamil Nadu, India with an objective of understanding the suitability of local groundwater quality for domestic and irrigation purposes. Twenty groundwater samples were collected in February 2002 and analysed for physical and chemical parameters. Groundwater in this area was found to be within the desirable Bureau of Indian Standards and World Health Organisation limits for drinking water. Ca-HCO3 was the dominant groundwater type. Groundwater in this area was assessed for irrigation purposes on the basis of sodium percentage (Na%, magnesium hazard (MH, residual sodium carbonate (RSC, sodium absorption ratio (SAR, permeability index (PI and United States Department of Agriculture (USDA classification. Most of the groundwater samples were suitable for irrigation, except in a few locations (15% based on MH. Overall the groundwater quality was suitable for drinking and domestic purposes and permissible for irrigation activities.

  6. Performance of five plant species in removal of nitrogen and phosphorus from an experimental phytoremediation system in the Ningxia irrigation area.

    Science.gov (United States)

    Chen, Chongjuan; Zhao, Tiancheng; Liu, Ruliang; Luo, Liangguo

    2017-09-10

    Agricultural non-point source (ANPS) pollution is an important contributor to elevated nitrogen (N) and phosphorus (P) in surface waters, which can cause serious environmental problems. Considerable effort has therefore gone into the development of methods that control the ANPS input of N and P to surface waters. Phytoremediation has been extensively used because it is cost-effective, environmentally friendly, and efficient. The N and P loads from agricultural drainage are a potential threat to the water quality of the Yellow River in Ningxia, China. Yet, phytoremediation has only rarely been applied within the Ningxia irrigation area. In an experimental set-up, five species (Ipomoea aquatica, IA; Lactuca sativa, LS; Oryza sativa, OS; Typha latifolia, TL; Zizania latifolia, ZL) were evaluated for their ability to reduce N and P loads over 62 days and five observation periods. Total N and P concentrations, plant biomass, and nutrient content were measured. The results showed that OS, LS, and IA performed better than ZL and TL in terms of nutrients removal, biomass accumulation, and nutrients storage. The highest overall removal rates of N and P (57.7 and 57.3%, respectively) were achieved by LS treatment. In addition, plant uptake contributed significantly to nutrient removal, causing a 25.9-72.0% reduction in N removal and a 54.3-86.5% reduction in P removal. Thus, this study suggests that OS, LS, and IA would be more suitable than ZL and TL for controlling nutrient loads in the Ningxia irrigation area using phytoremediation.

  7. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  8. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    Science.gov (United States)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  9. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  10. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    Science.gov (United States)

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  11. Quantifying the link between crop production and mined groundwater irrigation in China.

    Science.gov (United States)

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve

    2015-04-01

    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  13. Analysis to develop a program for energy conservation in irrigated agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Brix, V.L.; Eakin, D.E.; Laughlin, B.M.

    1978-09-01

    It is estimated by the FEA that 0.26 quadrillion Btus of energy is annually required to irrigate crops in the USA. The development of a DOE program for energy conservation in irrigation is described. Information is included on: studies of how this energy consumption can be reduced and by how much; engineering and economic studies of irrigation equipment and methods; proposals for improving the efficiency of pumps and prime movers; projects selected for demonstrating irrigation energy conservation; and recommendations for further research. (LCL)

  14. Estimation of Truck Trips on Large-Scale Irrigation Project: A Combinatory Input-Output Commodity-Based Approach

    Directory of Open Access Journals (Sweden)

    Ackchai Sirikijpanichkul

    2015-01-01

    Full Text Available For the agricultural-based countries, the requirement on transportation infrastructure should not only be limited to accommodate general traffic but also the transportation of crop and agricultural products during the harvest seasons. Most of the past researches focus on the development of truck trip estimation techniques for urban, statewide, or nationwide freight movement but neglect the importance of rural freight movement which contributes to pavement deterioration on rural roads especially during harvest seasons. Recently, the Thai Government initiated a plan to construct a network of reservoirs within the northeastern region, aiming at improving existing irrigation system particularly in the areas where a more effective irrigation system is needed. It is expected to bring in new opportunities on expanding the cultivation areas, increasing the economy of scale and enlarging the extent market of area. As a consequence, its effects on truck trip generation needed to be investigated to assure the service quality of related transportation infrastructure. This paper proposes a combinatory input-output commodity-based approach to estimate truck trips on rural highway infrastructure network. The large-scale irrigation project for the northeastern of Thailand is demonstrated as a case study.

  15. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    KAUST Repository

    Alsalah, Dhafer

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  16. Environmental assessment of water-salt regime of irrigated soils in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Alaeva, Liliia; Negrobova, Elena; Jablonskikh, Lidiia; Rumyantseva, Irina

    2016-04-01

    A large part of Central Chernozem Region is located in the zone of risky agriculture. This led to intensive use of soil in the irrigation system. Therefore, a detailed analysis of water-salt regime of irrigated soils required for ecological state assessment of soils for irrigation. In the investigated area the fone component of the soil cover on the levelled plateau are chernozems. On the slopes formed a meadow-chernozem soils. Parent material is a cover loess-like calcareous non-saline clay. In these soils, our studies found component-quantitative composition of the aqueous extract, the chemism of salinity, which allowed us to make conclusions about the direction of the salinisation process in soils when used in the system of irrigated agriculture. By quantity water extract chernozems are non-saline, the ratio of anions and cations are chloride-sulphate magnesium-calcium salinization. In the composition of easily soluble salts dominated by Ca(HCO3)2. On sum of toxic salts in the soils are non-saline. This type and chemism of salinity deep brackish groundwater (more than 5 m) can be actively used in the system of rational irrigation. The meadow-chernozem soils formed under conditions of increased surface and soil moisture in the shallow brackish water at a depth of 3-5 m. These soils by quantity water extract are non-saline, anionic-cationic ratio - chloride-sulphate magnesium-calcium salinization. Permanent components of salt associations are Ca(HCO3)2, MgCl2, Na2SO4. On sum of toxic salts in the soil is not saline throughout the profile. The chemism of salinity and the proximity of groundwater at irregular watering can lead to the rise of groundwater level, the development of gleyed and sodium alkalinization. Thus, the introduction of intensive irrigated agriculture on chernozems and hydromorphic analogues may lead to the development in them of negative consequences. The most dynamic indicator is the water-salt regime, the systematic monitoring and control which

  17. Priority of areas for agricultural radiovulnerability mapping

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R.; Igreja, Eduardo, E-mail: elainerochedo@gmail.com, E-mail: eduigreja@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Wasserman, Maria Angelica V., E-mail: mwasserman@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Perez, Daniel V., E-mail: chpd@cnps.embrapa.br [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Rio de Janeiro, RJ (Brazil). Centro Nacional de Pesquisa de Solos; Rochedo, Pedro R.R., E-mail: rochedopedro@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Planejamento Energetico; Silva, Diogo N.G., E-mail: diogongs@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Biofisica Carlos Chagas Filho

    2013-07-01

    The methodology for classifying areas according to soil properties for the vulnerability to a {sup 137}Cs contamination is of high importance to the preparedness related to nuclear and/or radiological accidents that lead to release of radionuclides to the environment with the consequent contamination of agricultural areas. The priority of research for agricultural areas should then focus on the surrounding areas of nuclear power plant that have higher probability of public exposure through the ingestion pathway. The objective of this work was to create a rank order for priority of areas to be mapped based on EMBRAPA database on soil properties. The 16 municipalities previously selected to define parameters for dose assessment simulations related to the Brazilian Nuclear Power Plants, located in the district of Angra dos Reis, Rio de Janeiro, have been investigated in order to create this rank order to direct the research on radio vulnerability mapping, considering their relevance to public exposure based on their agricultural productivity. The two aspects selected in this study account for the maximum loss of income and to the collective doses that can be averted due to the banning of agricultural products. These quantities are inputs to optimization analysis. The priority defined shall then guide research on both the adequate values for the transfer factors and on the agricultural countermeasures suitable to each area according to the cause(s) of their vulnerability and their typical agricultural crops. (author)

  18. Priority of areas for agricultural radiovulnerability mapping

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.; Igreja, Eduardo; Perez, Daniel V.; Rochedo, Pedro R.R.; Silva, Diogo N.G.

    2013-01-01

    The methodology for classifying areas according to soil properties for the vulnerability to a 137 Cs contamination is of high importance to the preparedness related to nuclear and/or radiological accidents that lead to release of radionuclides to the environment with the consequent contamination of agricultural areas. The priority of research for agricultural areas should then focus on the surrounding areas of nuclear power plant that have higher probability of public exposure through the ingestion pathway. The objective of this work was to create a rank order for priority of areas to be mapped based on EMBRAPA database on soil properties. The 16 municipalities previously selected to define parameters for dose assessment simulations related to the Brazilian Nuclear Power Plants, located in the district of Angra dos Reis, Rio de Janeiro, have been investigated in order to create this rank order to direct the research on radio vulnerability mapping, considering their relevance to public exposure based on their agricultural productivity. The two aspects selected in this study account for the maximum loss of income and to the collective doses that can be averted due to the banning of agricultural products. These quantities are inputs to optimization analysis. The priority defined shall then guide research on both the adequate values for the transfer factors and on the agricultural countermeasures suitable to each area according to the cause(s) of their vulnerability and their typical agricultural crops. (author)

  19. Classification of irrigated land using satellite imagery, the High Plains aquifer, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land across the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a waterquality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres). This information was also compared to a similar data set based on 1980 imagery. The 1980 data classified 13.7 million acres as irrigated. Although the change in the amount of irrigated land between the two times was not substantial, the location of the irrigated land did shift from areas where there were large ground-water-level declines to other areas where ground-water levels were static or rising.

  20. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Science.gov (United States)

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  1. Development of an Integrated Agricultural Planning Model Considering Climate Change

    Science.gov (United States)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  2. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    Science.gov (United States)

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity

  3. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  4. Co-benefits and trade-offs in the water-energy nexus of irrigation modernization in China

    Science.gov (United States)

    Cremades, Roger; Rothausen, Sabrina G. S. A.; Conway, Declan; Zou, Xiaoxia; Wang, Jinxia; Li, Yu'e.

    2016-05-01

    There are strong interdependencies between water use in agriculture and energy consumption as water saving technologies can require increased pumping and pressurizing. The Chinese Government includes water efficiency improvement and carbon intensity reduction targets in the 12th Five-Year Plan (5YP. 2011-2015), yet the links between energy use and irrigation modernization are not always addressed in policy targets. Here we build an original model of the energy embedded in water pumping for irrigated agriculture and its related processes. The model is based on the physical processes of irrigation schemes and the implication of technological developments, comprising all processes from extraction and conveyance of water to its application in the field. The model uses data from government sources to assess policy targets for deployment of irrigation technologies, which aim to reduce water application and contribute to adaptation of Chinese agriculture to climate change. The consequences of policy targets involve co-beneficial outcomes that achieve water and energy savings, or trade-offs in which reduced water application leads to increasing greenhouse gas (GHG) emissions. We analyze irrigation efficiency and energy use in four significant provinces and nationally, using scenarios based on the targets of the 12th 5YP. At the national scale, we find that expansion of sprinklers and micro-irrigation as outlined in the 5YP would increase GHG emissions from agricultural water use, however, emissions decrease in those provinces with predominant groundwater use and planned expansion of low-pressure pipes. We show that the most costly technologies relate to trade-offs, while co-benefits are generally achieved with less expensive technologies. The investment cost per area of irrigation technology expansion does not greatly affect the outcome in terms of water, but in terms of energy the most expensive technologies are more energy-intensive and produce more emissions. The

  5. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  6. Flora, life form characteristics, and plan for the promotion of biodiversity in South Korea's Globally Important Agricultural Heritage System, the traditional Gudeuljang irrigated rice terraces in Cheongsando

    Institute of Scientific and Technical Information of China (English)

    Hong Chul PARK; Choong Hyeon OH

    2017-01-01

    The objectives of this study were to analyze the biodiversity of the Traditional Gudeuljang Irrigated Rice Terraces in Cheongsando,South Korea's representative GIAHS (Globally Important Agricultural Heritage System) site,with reference to position and land-use features,and to develop a plan to promote agricultural biodiversity in the region.We confirmed approximately 54,000 m2 of Gudeuljang paddy fields by an on-site survey.Of the Traditional Gudeuljang Irrigated Rice Terraces confirmed by onsite inspection,our survey showed that approximately 24,000 m2 are currently being used as paddy fields,approximately 15,000 m2 are being used as dry fields,and approximately 14,000 m2 are fallow.In terms of other non-agricultural land use,there was grassland,including graveyards;artificial arboreal land,such as orchards,rivers and wetlands,and man-made facilities,such as roads and residences.We also confirmed that the Traditional Gudeuljang Irrigated Rice Terraces had higher plant species diversity than conventional terraced rice paddies,and there was a difference in life form characteristics between the two types.Although the superficial topsoil structure is the same for the Traditional Gudeuljang Irrigated Rice Terraces (TGIRTs) and conventional terraced rice paddies,it is thought that the differences in the subsurface structure of the TGIRTs contribute greatly to species and habitat diversity.However,the TGIRTs in Cheongsando are facing degeneration,due to damage and reduction in agricultural activity.The main cause is the reduction in the number of farming households due to an aging population in Cheongsando.In order to address this problem,we proposed a management plan,related to fallow paddy fields in South Korea,to initiate voluntary activities in the TGIRTs.

  7. The effects of drip line depths and irrigation levels on yield, quality ...

    African Journals Online (AJOL)

    sefer bozkurt

    2011-04-25

    Apr 25, 2011 ... yield, quality and water use characteristics of lettuce ... agriculture in greenhouse has increased in recent years. (Kadayifci et al., 2004). ... Well-managed subsurface drip irrigation (SDI) systems save water ... water was 1.486 dS m-1 and had no serious harmful effect on plant growth. .... Leaf areas (LA) were.

  8. Economic Feasibility of Irrigated Agricultural Land Use Buffers to Reduce Groundwater Nitrate in Rural Drinking Water Sources

    Directory of Open Access Journals (Sweden)

    Megan M. Mayzelle

    2014-12-01

    Full Text Available Agricultural irrigation leachate is often the largest source for aquifer recharge in semi-arid groundwater basins, but contamination from fertilizers and other agro-chemicals may degrade the quality of groundwater. Affected communities are frequently economically disadvantaged, and water supply alternatives may be too costly. This study aimed to demonstrate that, when addressing these issues, environmental sustainability and market profitability are not incompatible. We investigated the viability of two low impact crops, alfalfa and vineyards, and new recharge basins as an alternative land use in recharge buffer zones around affected communities using an integrated hydrologic, socio-geographic, and economic analysis. In the southern Central Valley, California, study area, alfalfa and vineyards currently constitute 30% of all buffer zone cropland. Economic analyses of alternative land use scenarios indicate a wide range of revenue outcomes. Sector output gains and potential cost saving through land use conversion and resulting flood control result in gains of at least $2.3 billion, as compared to costs of $0.3 to $0.7 billion for treatment options over a 20 year period. Buffer zones would maintain the economic integrity of the region and concur with prevailing policy options. Thus, managed agricultural recharge buffer zones are a potentially attractive option for communities facing financial constraint and needing to diversify their portfolio of policy and infrastructure approaches to meet drinking water quality objectives.

  9. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  10. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  11. Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru.

    Science.gov (United States)

    Verones, Francesca; Bartl, Karin; Pfister, Stephan; Jiménez Vílchez, Ricardo; Hellweg, Stefanie

    2012-05-01

    Global water use is dominated by agriculture and has considerable influence on people's livelihood and ecosystems, especially in semiarid and arid regions. Methods to address the impacts of water withdrawal and consumption on terrestrial and aquatic ecosystems within life cycle assessment are still sparse and very generic. Regionalized characterization factors (CFs) for a groundwater-fed wetland at the arid coast of Peru are developed for groundwater and surface water withdrawal and consumption in order to address the spatial dependency of water use related impacts. Several agricultural scenarios for 2020 were developed in a workshop with local stakeholders and used for calculating total biodiversity impacts. In contrast to assumptions used in top-down approaches (e.g., Pfister et al. Environ. Sci Technol. 2009, 43, 4098 ), irrigation with surface water leads in this specific region to benefits for the groundwater-fed wetland, due to additional groundwater recharge from surplus irrigation water. However, irrigation with groundwater leads to ecological damage to the wetland. The CFs derived from the different scenarios are similar and can thus be used as general CFs for this region, helping local decision-makers to plan future agricultural development, including irrigation technologies, crop choices, and protection of the wetland. © 2012 American Chemical Society

  12. Mortality of vertebrates in irrigation canals in an area of west-central Spain

    Directory of Open Access Journals (Sweden)

    P. Garcia

    2009-01-01

    Full Text Available Mortality patterns of vertebrates in irrigation canals have been poorly studied despite their potential impact on wildlife. Concrete irrigation canals in a cropland area in west-central Spain were monitored over 13 months to assess their impact on small fauna. A total of 134 vertebrates were found dead. Most were amphibians (86.46% or mammals (20.90%, though fishes, reptiles and a bird were also recorded. Mortality peaked in autumn months. Corrective measurements are needed to reduce this cause of non-natural mortality.

  13. Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge - Towards a water reuse regulatory instrument at EU level Réédition

    OpenAIRE

    ALCALDE SANZ LAURA; GAWLIK BERND

    2017-01-01

    As an input to the design of a Legal Instrument on Water Reuse in Europe, this report recommends minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge based on a risk management approach.

  14. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    Full Text Available In the frame of a crop rotation currently applied in a farm of the Apulian Tavoliere (Southern Italy, this paper reports the effect of brackish water irrigation on soil, outlines the corresponding salinity balance, formulates quantitative relations to model salt outflow below the soil root-layer and defines operational criteria to optimize irrigation management at farm level in order to control soil salinity through leaching. The general aim is to contribute to a sustainable use of the available water resources and a proper soil fertility conservation. A three-year trial (2007-2010 was carried out on a farm located close to the coast of the Manfredonia gulf (Mediterranean - Adriatic sea, where irrigation with brackish water is frequently practiced due to seawater intrusion into the groundwater. An especially designed experimental field-unit was set-up: the bottom of three hydraulically insulated plots was covered with a plastic sheet to intercept the percolating water and collect it into tanks by means of drain tubes. Each year a double crop cycle was applied to the soil; a spring-summer crop (tomato, zucchini and pepper, respectively was followed by a fall-winter crop (spinach, broccoli and wheat. Short “fallow” periods (completely bare soil were inserted between two crop cycles. Irrigation or rain completely restored crop water consumptions (with the exception of wheat, considered a rainfed crop and leaching was performed both unintentionally (by rainfalls or intentionally (supplying higher irrigation volumes whenever the soil electrical conductivity exceeded a fixed threshold. The soil electrical conductivity was periodically measured together with volume and electrical conductivity of irrigation and drainage water. All these measures allowed to draw-up the salt-balance of the soil, respectively at the beginning and the end of each crop cycle. Absolute and relative variations in soil salt content were interpreted with respect to absolute

  15. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  16. Occupational activities associated with a reported history of malaria among women working in small-scale agriculture in South Africa

    NARCIS (Netherlands)

    S. Naidoo (Steven); L. London (Leslie); A. Burdorf (Alex); S. Naidoo (Steven); H. Kromhout (Hans)

    2011-01-01

    textabstractMalaria-endemic agricultural communities are at risk for this disease because of crop and agricultural activities. A cross-sectional survey among women in small-scale agriculture on irrigated and dryland areas in Makhatini Flats, KwaZulu-Natal South Africa explored associations with

  17. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review.

    Science.gov (United States)

    Christou, Anastasis; Agüera, Ana; Bayona, Josep Maria; Cytryn, Eddie; Fotopoulos, Vasileios; Lambropoulou, Dimitra; Manaia, Célia M; Michael, Costas; Revitt, Mike; Schröder, Peter; Fatta-Kassinos, Despo

    2017-10-15

    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. Copyright © 2017 Elsevier

  18. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    /institutes, providing the data at fine resolutions. The increased irrigated area was accounted according to the reported increased percentages of the irrigated area out of the total area equipped for irrigation, as an expected outcome of public irrigation systems rehabilitation schemes (MADR, 2011), while the optimum Nitrogen fertilizer rates for wheat and maize were established according to several field experiments made on irrigated and rain-fed wheat and maize plots in south Romania (Hera and Borlan, 1980). The effects of such farming measures on yields were compared to a baseline condition given by actual irrigated area and fertilization rates. The preliminary results show that potential gains in CWP could be obtained through improved fertilizer management and water allocation in winter wheat cropping systems, particularly in the dry periods, while in maize cropping systems CWP is more sensitive to water than to optimum fertilization rates. Irrigation water supply increases the stability of yields in both cropping systems, although regional differences can be observed across the study area, thus augmenting the relevance and the need for investigations on sustainable use of irrigation water in Romania. As such, this study could represent an information base for further analyses on yield potential under current and future climatic conditions, on impacts of land use patterns and farming practices on crop production in Romania, etc. Keywords: agricultural water use, crop water productivity, irrigation water, GEPIC, Romania References: Molden, D.J., Sakthivadivel, R., Perry, C.J., de Fraiture, C., Kloezen, W.H. (1998). Indicators for comparing performance of irrigated agricultural systems, Research Report 20, IWMI: Colombo, Sri Lanka. Sandu, I., Mateescu E. (2014). Current and prospective climate changes in Romania (in Romanian), in vol. Climate change: a major challenge for research in agriculture (ed. Saulescu, N.), Romanian Academy Publishing House, 17-36. Williams, J.R., Jones, C

  19. Declining Groundwater Levels in North India: Understanding Sources of Irrigation Inefficiency

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Mijic, A.; Brozovic, N.

    2014-12-01

    Over the last half century, the green revolution has transformed India from a famine-prone, drought-susceptible country, into the world's third largest grain producer and one of the most intensely irrigated regions on the planet. This is in no small part due to the country's vast water resources along with an increase in tubewells and more advanced abstraction methods. While agricultural intensification has had undeniable benefits, it has, and continues to have a significant impact on water resources. Unless solutions which take into consideration the ever evolving socio-economic, hydrological and climatic conditions are found, India's agricultural future looks bleak.This research examines the irrigation behaviour of farmers, using data collected during field work in the State of Uttar Pradesh within the Ganges Basin of North India. Significant differences in farmer behaviour and irrigation practices are highlighted, not only between State districts but between individual farmers. This includes the volume of irrigation water applied and the price paid, as well as differences in the yields of crops produced. Analyses of results suggest that this is due to a number of factors, particularly the source of irrigation water. Study areas which had access to cheaper, but crucially less reliable, canal water were found to invest in more efficient water saving technologies in order to reduce the overall cost of irrigation during periods where less expensive canal water is not available. As a result, overall water use and irrigation cost is lower and yields are higher despite very similar climatic conditions. While cheap canal water is not an option for all farmers, the results show that the introduction of more efficient water saving technologies, despite the significant capital expenditure is a viable option for many farmers and costs can be recovered in a relatively short space of time. In addition, the reduction of declining water levels mean that water is abstracted from

  20. Spatial distribution of Cd and Cu in soils in Shenyang Zhangshi Irrigation Area (SZIA), China*

    Science.gov (United States)

    Sun, Li-na; Yang, Xiao-bo; Wang, Wen-qing; Ma, Li; Chen, Su

    2008-01-01

    Heavy metal contamination of soils, derived from sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides, and so on, has been of wide concern in the last several decades. The Shenyang Zhangshi Irrigation Area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years. This study investigated the spatial distribution and temporal variation of soil cadmium (Cd) and copper (Cu) contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd and Cu in soils was analyzed and then the spatial distribution and temporal variation of Cd and Cu in soils were modeled using Kriging methods. The results show that long-term sewage irrigation had caused serious Cd and Cu contamination in soils. The mean and the maximum of soil Cd are markedly higher than the levels in second grade standard soil (LSGSS) in China, and the maximum of soil Cu is close to the LSGSS in China in 2004 and is more than the LSGSS in China in 1990. The contamination magnitude of soil Cd and the soil extent of Cd contamination had evidently increased since sewage irrigation ceased in 1992. The contamination magnitude of soil Cu and the soil extent of Cu contamination had evidently increased in topsoil, but obviously decresed in subsoil. The soil contamination of Cd and Cu was mainly related to Cd and Cu reactivation of contaminated sediments in Shenyang Xi River and the import of Cd and Cu during irrigation. The eluviation of Cd and Cu in contaminated topsoil with rainfall and irrigation water was another factor of temporal-spatial variability of Cd and Cu contamination in soils. PMID:18357631

  1. The impact of smallholder irrigation on household welfare: The case ...

    African Journals Online (AJOL)

    The potential of smallholder irrigated agriculture to enhance food security and alleviate rural poverty has led the South African Government to prioritise and invest significantly in irrigation establishment, rehabilitation and revitalisation. The question addressed in this study pertains to the extent to which smallholder irrigation ...

  2. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater

    Science.gov (United States)

    In southern Idaho, the application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) wate...

  3. Study of the weekly irrigation cycle of a cultivated field in a semi-arid area (Marrakech region, Morocco) by using CR-39 and LR-115 II track detectors and radon as a natural tracer

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Essaouif, Z.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured in the soil of a cultivated field situated in a semi-arid area (Marrakech, Morocco) by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). The same track detectors were used for measuring alpha- and beta-activities due to radon and thoron gases emanating from the soil of the studied irrigated agricultural field. The influence of the humidity (soil water content), soil depth and climate conditions on the weekly irrigation cycle of the studied cultivated field was investigated by exploiting radon measurements

  4. Determination for regional differences of agriculture using satellite data

    Science.gov (United States)

    Saito, G.

    2006-12-01

    Remote Sensing Laboratory, Field Science Center, Graduate School of Agriculture Science, Tohoku University starts at April 2004. For studies and education at the laboratory we are now developing the system of remote sensing and GIS. Earth Remote Sensing Data Analysis Center (ERSDAC) made the Home Pages of Terra/ASTER Image Web Library 3 "The Major Airport of the World." http://www.Ersdac.or.jp/ASTERimage3/library_E.html. First, we check the Airport Data to use agricultural understanding for the world. Almost major airport is located in rural area and surrounded with agriculture field. To survey the agriculture field adjacent to the major airport has almost the same condition of human activities. The images are same size and display about 18km X 14km. We can easily understand field size and surrounding conditions. We study seven airports as follows, 1. Tokyo Narita Airport (NRT), Japan, 2. Taipei Chiang kai Shek International Airport (TPE), Taiwan, 3. Bangkok International Airport (BKK), Thailand, 4. Riyadh King Khalid International Airport (RUH), Saudi Arabia, 5. Charles de Gaulle Airport (CDG), Paris, France, 6. Vienna International Airport (VIE), Austria, 7. Denver International Airport (DEN), CO, USA. At the area of Tokyo Narita Airport, there are many golf courses, big urban area and small size of agricultural fields. At Taipei Airport area are almost same as Tokyo Narita Airport area and there are many ponds for irrigations. Bangkok Airport area also has golf courses and many ponds for irrigation water. Riyadh Airport area is quite different from others, and there are large bare soils and small agriculture fields with irrigation and circle shape. Paris Airport area and Vienna Airport area are almost agricultural fields and there are vegetated field and bare soil fields because of crop rotation. Denver Airport area consists of almost agriculture fields and each field size is very large. The advantages of ASTER data are as follows, 1. High-resolution and large

  5. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    Science.gov (United States)

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  6. Population pressure and agricultural productivity in Bangladesh.

    Science.gov (United States)

    Chaudhury, R H

    1983-01-01

    The relationship between population pressure or density and agricultural productivity is examined by analyzing the changes in the land-man ratio and the changes in the level of land yield in the 17 districts of Bangladesh from 1961-64 and 1974-77. The earlier years were pre-Green Revolution, whereas in the later years new technology had been introduced in some parts of the country. Net sown area, value of total agricultural output, and number of male agricultural workers were the main variables. For the country as a whole, agricultural output grew by 1.2%/year during 1961-64 to 1974-77, while the number of male agricultural workers grew at 1.5%/year. The major source of agricultural growth during the 1960s was found to be increased land-yield associated with a higher ratio of labor to land. The findings imply that a more intensified pattern of land use, resulting in both higher yield and higher labor input/unit of land, is the main source of growth of output and employment in agriculture. There is very little scope for extending the arable area in Bangladesh; increased production must come from multiple cropping, especially through expansion of irrigation and drainage, and from increases in per acre yields, principly through adoption of high yield variants, which explained 87% of the variation in output per acre during the 1970s. Regional variation in output was also associated with variation in cropping intensity and proportion of land given to high yield variants. There is considerable room for modernizing agricultural technology in Bangladesh: in 1975-76 less than 9% of total crop land was irrigated and only 12% of total acreage was under high yield variants. The adoption of new food-grain technology and increased use of high yield variants in Bangladesh's predominantly subsistence-based agriculture would require far-reaching institutional and organizational changes and more capital. Without effective population control, expansion of area under high yield

  7. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  8. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    Science.gov (United States)

    Lindholm, F.G.

    1970-01-01

    The Wadena area is part of a large sandy plain in central Minnesota whose soils have low water-holding capacity. Drought conditions which adversely affect plant growth frequently occur in the summer when moisture is most needed. To reduce the risk of crop failure in the area supplemental irrigation is on the increase.

  9. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  10. Entomopathogenic nematodes in agricultural areas in Brazil.

    Science.gov (United States)

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  11. Aflaj’s Irrigation Water Demand/Supply Ratio: Two Case Studies

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Ghafri

    2006-01-01

    Full Text Available Due to the geographical location of Oman in an arid zone, agricultural production depends fully on irrigation. The traditional irrigation systems (Aflaj, sing. falaj supply more than one third of water for agriculture. Falaj is defined in the context of this paper as a canal system which provides water for domestic and agricultural uses. Oman has 3,107 active Aflaj producing about 680 Mm3 of water per year. The main objective of this study was to estimate the irrigation performance of Aflaj in Oman. Falaj al-Dariz and al-Nujaid were chosen as case studies. Both Aflaj are located in an extremely arid environment, where the rainfall is low and evapotranspiration is high. The study utilized an approach to estimate the irrigation performance of Aflaj by considering the falaj as a single unit of irrigation. The irrigation demand/supply ratio (D/S was used in the analysis as a tool of evaluation. Date palm, the dominant crop irrigated by Aflaj, was selected for the analysis. In falaj al-Dariz the date palms were slightly under irrigated on a yearly basis. On a monthly basis, in winter, the D/S was below 0.6 and in summer it was above 1.0. On the other hand, falaj al-Nujaid was supplying too much water than the date palms needed all round the year. In winter the D/S ratio was as low as 0.25. Even in summer, the D/S ratio did not much exceed 1.0.

  12. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    Science.gov (United States)

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently

  13. D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1

    International Nuclear Information System (INIS)

    Wilde, E.W.

    2001-01-01

    The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies

  14. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    Science.gov (United States)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro-irrigation

  15. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    Science.gov (United States)

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  16. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  17. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  18. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  19. Future water supply and demand in response to climate change and agricultural expansion in Texas

    Science.gov (United States)

    Lee, K.; Zhou, T.; Gao, H.; Huang, M.

    2016-12-01

    With ongoing global environmental change and an increasing population, it is challenging (to say the least) to understand the complex interactions of irrigation and reservoir systems. Irrigation is critical to agricultural production and food security, and is a vital component of Texas' agricultural economy. Agricultural irrigation currently accounts for about 60% of total water demand in Texas, and recent occurrences of severe droughts has brought attention to the availability and use of water in the future. In this study, we aim to assess future agricultural irrigation water demand, and to estimate how changes in the fraction of crop irrigated land will affect future water availability in Texas, which has the largest farm area and the highest value of livestock production in the United States. The Variable Infiltration Capacity (VIC) model, which has been calibrated and validated over major Texas river basins during the historical period, is employed for this study. The VIC model, coupling with an irrigation scheme and a reservoir module, is adopted to simulate the water management and regulations. The evolution on agricultural land is also considered in the model as a changing fraction of crop for each grid cell. The reservoir module is calibrated and validated based on the historical (1915-2011) storage records of major reservoirs in Texas. The model is driven by statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The lowest (RCP 2.6) and highest (RC P8.5) greenhouse-gas concentration scenarios are adopted for future projections to provide an estimate of uncertainty bounds. We expect that our results will be helpful to assist decision making related to reservoir operations and agricultural water planning for Texas under future climate and environmental changes.

  20. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    Science.gov (United States)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  1. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  2. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    Science.gov (United States)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  3. Assessing the groundwater recharge under various irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin

    2014-05-01

    The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration

  4. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    Science.gov (United States)

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  6. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  7. Aster images for discrimination of agricultural use areas in Colombia

    International Nuclear Information System (INIS)

    Ortiz L, Nidia E; Perez G Uriel

    2009-01-01

    The advance of geographical information technology has led to the placement of new sensors for earth observation. ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) is considered as a latest generation sensor. It has special characteristics that places it as an alternative for studies of vegetation cover on earth. This work is based on its spatial, spectral and radiometric features to discriminate agricultural areas in the irrigation district of USOCOELLO in Colombia. We used a level 1B image from 2006, geometrically corrected, re sampled and its radiance values transformed into reflectance values allowing us to make two compositions: original images (VNIR-SWIR) and fusion images in IHS transformation. The thematic legend was established from the classification scheme C orine Land Cover - Colombia , defining 10 representative coverage categories in the image. The maximum likelihood classifier was used in the allocation phase. In the process of verifying and quantifying the level of accuracy, it was used, as ground truth, the database of geographical area at the site in the same date that the image was taken, obtaining an estimating a global reliability of 75 % for VNIR - SWIR images; if the variability of phenological stages of crops (rice, maize and sorghum) in the area and an important space contrast in the fusion image are taken into account, the obtained Kappa index was 0,75, which means that there is a substantial degree of agreement.

  8. Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa

    OpenAIRE

    Nelson Mango; Clifton Makate; Lulseged Tamene; Powell Mponela; Gift Ndengu

    2018-01-01

    This article is concerned with the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle. Chinyanja Triangle is a region that is increasingly experiencing mid-season dry spells and an increase in occurrence of drought, which is attributed largely to climate variability and change. This poses high agricultural production risks, which aggravate poverty and food insecurity. For this region, adoption of s...

  9. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  10. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern great plains

    Science.gov (United States)

    Declining Ogallala Aquifer has threatened sustainability of highly productive irrigated agriculture in the region. The region, known for the dust bowl of thirties, is scared of its return. Lower well outputs and increasing pumping costs have compelled farmers to adapt alternative conservation strate...

  11. Analysis of the Economic and Welfare Impacts of Establishing Irrigation Water Market in Qazvin Province

    Directory of Open Access Journals (Sweden)

    2014-03-01

    Full Text Available In this study economic and welfare impacts of establishing irrigation water market in Qazvin province as well as potentiality of irrigation water transfer under stress irrigation conditions in the cities of Qazvin province were analyzed. To achieve the above objectives, Positive Mathematical Programming model and State Wide Agricultural Production functions were used. To achieve applicable results, the production function with a constant elasticity of substitution and cost function with an exponential form were included into the Positive Mathematical Programming model was imported. The study data for the year 2011-2012 was collected by asking the relevant offices in each city of Qazvin province. The proposed model was solved in six successive stages using the GAMS software. After solving the model, amount changes in the area of irrigated crops, farmer's gross profit and labor surplus under the two conditions of “existence of water market” and “lack of water market “at the regional level were calculated. The results showed that establishing irrigation water market increases total irrigated lands for 1/2 percent, total farmer’s gross profit for 1/86 percent and total labor force employed in agriculture for 1/8 percent in the province. Ultimately, considering the supportive and constructive role of regional water markets, it is recommended to provide necessary conditions and tools to establish an optimal use of such a mechanism associated with the type of market in Qazvin province.

  12. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    Science.gov (United States)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  13. Tanzania Journal of Agricultural Sciences - Vol 14, No 1 (2015)

    African Journals Online (AJOL)

    Agricultural drought analysis for sustainable smallholder maize production in semi-arid areas: a case study of the Lower Moshi Irrigation Scheme, Tanzania · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Patrick Bell, Didas Kimaro, Rattan Lal ...

  14. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  15. An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework

    Science.gov (United States)

    de Vito, Rossella; Portoghese, Ivan; Pagano, Alessandro; Fratino, Umberto; Vurro, Michele

    2017-12-01

    Increasing pressure affects water resources, especially in the agricultural sector, with cascading impacts on energy consumption. This is particularly relevant in the Mediterranean area, showing significant water scarcity problems, further exacerbated by the crucial economic role of agricultural production. Assessing the sustainability of water resource use is thus essential to preserving ecosystems and maintaining high levels of agricultural productivity. This paper proposes an integrated methodology based on the Water-Energy-Food Nexus to evaluate the multi-dimensional implications of irrigation practices. Three different indices are introduced, based on an analysis of the most influential factors. The methodology is then implemented in a catchment located in Puglia (Italy) and a comparative analysis of the three indices is presented. The results mainly highlight that economic land productivity is a key driver of irrigated agriculture, and that groundwater is highly affordable compared to surface water, thus being often dangerously perceived as freely available.

  16. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  17. Quixotic coupling between irrigation system and maize-cowpea ...

    African Journals Online (AJOL)

    A study was conducted at the Research and Experimental Station, Faculty of Agriculture, Ain Shams University at Shalakan, Kalubia Governorate, Egypt, to evaluate the effect of two irrigation systems (trickle and modified furrow irrigation) and five maize (M)-cowpea (C) intercropping patterns (sole M-30, sole M-15, ridge ...

  18. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation

    Directory of Open Access Journals (Sweden)

    Mª Auxiliadora Casterad

    2018-02-01

    Full Text Available A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index and ECe (electrical conductivity of the soil saturation extracts mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field—45 ha—had ECe < 8 dS m−1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m−1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture.

  19. The management perspective on the performance of the irrigation subsector

    OpenAIRE

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  20. Development of innovation infrastructure of agricultural production Lviv area

    Directory of Open Access Journals (Sweden)

    Vasyl Chemerys

    2017-06-01

    Full Text Available Innovative infrastructure of agrarian production in Lviv Area and basic problems of its development are investigated. On the basis of the conducted cluster analysis in the article six optimum areas are offered clusterizations of agricultural production, which are certain after the criterion of balanced cluster educations. The first area of clusterization is most suitable for development of plant-grower. In particular, in four its districts, almost fourth part of plant-grower products is concentrated in the permanent costs of 2010 year. The second area of clusterization can be identified as mainly stock-raising, as its localization in the districts of foot-hill of area creates favourable terms for the production of meat and milk goods. The third area can be attributed to balanced stock-raising-plant-grower straight, with development of agriculture, oriented to the sale of products to the cities, above all things in Lviv. The fourth area of clusterization can be considered mainly plant-grower-oriented with simultaneous development of the suckling cattle breeding. The fifth area of clusterization, as marked already, can be identified as innovative oriented with predominance of stock-raising and production of goods on an export. A sixth (mountain area of clusterization is the least suitable for development of agriculture (except for the milk and meat cattle breeding. The applied approach is based on the account of ten key indexes which characterize potential of agricultural production development in each districts of Lviv Area: products of plant-grower are in all categories of economic agents; products of stock-raising are in all categories of economic agents; area of agricultural lands which are engaged in an agricultural production area of plough-land of economic agents which are engaged in an agricultural production; sowing areas are in all categories of economic agents; a quantity of cattle is in all categories of economic agents; a quantity of

  1. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    Science.gov (United States)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    International Nuclear Information System (INIS)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.

    1990-01-01

    An investigation was initiated to determine whether irrigation drainage in and near the Stillwater Wildlife Management Area has caused or has potential to cause harmful effects on human health or fish and wildlife, or may adversely affect the suitability of water for beneficial uses. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert and were analyzed for potentially toxic trace elements, including selenium. Other analyses included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediments and biota. In areas affected by irrigation drainage, concentrations of the following constituents commonly were found to exceed baseline concentrations or federal and state criteria for the protection of aquatic life or the propagation of wildlife: in water, arsenic, boron, dissolved solids, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appear to be biomagnified whereas arsenic is bioaccumulated. Some radioactive substances were substantially higher at the downstream sites compared with upstream background sites, but the significance of this to wildlife is unknown at present. 88 refs., 32 figs., 19 tabs

  3. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  4. Modeling applications for precision agriculture in the California Central Valley

    Science.gov (United States)

    Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.

    2017-12-01

    Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield

  5. Social and economic impact of drought on stakeholders in agriculture

    Directory of Open Access Journals (Sweden)

    Armenski Tanja

    2014-01-01

    Full Text Available According to different relevant climate research water shortage hazard become increasingly frequent natural hazard across Serbia. In Serbia, especially in Vojvodina, drought is a natural hazard with increasing frequency of occurrence. Vojvodina is predominantly agricultural area with 11% of agricultural population. As such agricultural population is highly sensitive to natural hazards, especially to occurrence of drought which is typical for the territory of Vojvodina. Drought has influence on the environment and human activities, i.e. it has social and economic consequences, such as drinking water shortage or decline in crop yield. Therefore this paper has several aims. First goal is to explore socio demographic profiles and agricultural characteristic of agricultural population and stakeholders in research area. Secondly to examine farmers' attitudes to possible damage prevention and adaptive measures to climate change in the sector of agricultural production. Third goal is to analyze respondent's opinion toward drought prediction. Finally the study examines opinion of respondents on the role of government institutions in providing assistance and support to farmers and to agricultural development in the region. In depth semi structural interviewing were carried out. Results show lack of knowledge among respondents that water shortage can be precisely and in time predicted to help agriculture prepare and prevent possible draft damages. As the main problems in agriculture, the local agricultural population lists absence of strategic planning and management of agrarian policy, as well as absence of state support to farmers in agriculture development. Necessary assistance for alleviation of adverse drought consequences includes subsidies for irrigation, improvement and reconstruction of the existing irrigation systems; organized and planned state management of agrarian policy; creating precise methods of forecast of drought periods and timely

  6. Potentials for Supplemental Irrigation in Some Rainfall Areas of Imo ...

    African Journals Online (AJOL)

    In addition, there were up to five months of the year during which rainwater was much in deficit of evapotranspiration. All these stress the need for irrigation. Analysis of water quality (surface, groundwater, and rainfall runoff) showed their suitability for irrigation. Quantity assessment of supplemental irrigation during the dry ...

  7. Recent trends/challenges in irrigated agriculture-Why is irrigation important in a discussion of agricultural migration?

    Science.gov (United States)

    United States agriculture contributes 16% of the $9 trillion gross domestic product, 8% of U.S. exports, and 17% of employment while providing food to all citizens, despite the fact that only 2% of the U.S. workforces is on farms. Agricultural productivity has grown by 240% since 1948, while agricul...

  8. Priority of areas for agricultural countermeasure assessment

    International Nuclear Information System (INIS)

    Rochedo, E.R.R.; Barboza, A.E.; Igreja, E.; Silva, D.N.G. da; Wasserman, A.E.

    2015-01-01

    Within the overall preparedness related to nuclear and/or radiological accidents that lead to the release of radionuclides to the environment with the consequent contamination of agricultural areas, the priority of research for agricultural areas should then focus on the surrounding areas of nuclear power plants that have higher probability of public exposure through the ingestion pathway. The objective of this work was to create a rank order of priority of agricultural products to be considered in assessing the effects of countermeasures, based on both economic value and doses to the public. Additionally, the study describes relevant needs of radioecological studies to improve short and long-terms dose assessments. . Sixteen municipalities surrounding the Brazilian Nuclear Power Central were analyzed for a contamination with 137 Cs, considering seasonal aspects related to agricultural practices in the Southeastern Brazil. Rank order provided by considering economical aspects shows that there is a need for radioecological research for some high value products, such as palmetto and sugar cane, and the need to include in the current model more detailed description for some food items, such as eggs. Combined rank criteria shows that main product within the considered area is milk. As so, the study of countermeasures for the ingestion of milk should be prioritized. (authors)

  9. Simulation of Farmers’ Response to Irrigation Water Pricing and Rationing Policies (Case Study: Zabol City

    Directory of Open Access Journals (Sweden)

    abouzar parhizkari

    2014-10-01

    Full Text Available Considering that agricultural sector is the largest consumer of water, presenting integrated management for water resources and formulating effective policies to increase water productivity in this sector is essential. Therefore, using economic modeling , this study simulated the farmers’ responses to irrigation water pricing and rationing policies in Zabol city. To achieve the study purpose, the State Wide Agricultural Production Model and Positive Mathematical Programming were applied. The required data for the years 2010-2011 was collected by completing questionnaires and collecting data sets from the relevant agencies of Zabol city in personal attendance. The results showed that imposing irrigation water pricing and rationing policies in Zabol city leads to a reduction in the total cultivated area by 9/54 and 5/14 percent and a reduction in the water consumption by 6/23 and 7/01 percent, compared to the base year. Ultimately, irrigation water rationing policy, considering frugality of 18/9 million m3 of water, as the appropriate solution for the sustainability of water resources of Zabol city was proposed.

  10. The Response and Repairing of Three Kinds of Crops on Xi’an’s Sewage Irrigation Area Soil

    Science.gov (United States)

    Xin, H.; Zhimei, Z.; Lei, H.; Huan, L.; Tian, Z.

    2017-10-01

    This paper focuses on the XiChaZhai village’s vegetable soil which is located in the northern suburbs of Xi’an and on its vegetables, thus analyzes the quality of sewage irrigation region soil and its influence on vegetables through the measurement of Cu, Zn, Pb, Cd’s content in samples. The results show that the research area soil contains apparently excessive heavy metals, and there exists significant differences of different elements’ integrated intensity in soil, the content declines in sequence from Cd, Zn, Pb to Cu. The four heavy metals’ contents in sewage irrigation region soil vary greatly from that in non-sewage irrigation region soil(Prepairing effects on Xi’an sewage irrigation region soil are Raphanus sativus, Ottelia acuminate and Brassica chinensis, in that order. Different crop tissues differ in the accumulation of heavy metal, the order according as roots, stem and leaves, fruits. Therefore, based on differences of various crops on heavy metals’ absorption and translocation, appropriate crops should be scientifically planted in heavy metal contaminated area soil.

  11. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.; Ansari, Mohd Ikram; Harb, Moustapha; Hong, Pei-Ying

    2015-01-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation

  12. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  13. Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water

    Directory of Open Access Journals (Sweden)

    José E. S. B. da Silva

    2015-09-01

    Full Text Available ABSTRACTThe limited access and the scarcity of good quality water for agriculture are some of the major problems faced in agricultural areas, particularly in arid and semiarid regions. The aim of this study was to evaluate the quality of watermelon seedlings (cv. Crimson Sweet, irrigated with different concentrations of biosaline water of fish culture. The experimental design was completely randomized with five treatments, corresponding to biosaline water at different concentrations (0, 33, 50, 67 and 100%, and four replicates of 108 seedlings. Watermelon seeds were sown in plastic trays filled with commercial substrate and irrigated with different solutions of biosaline water. Seedlings were harvested for biometric analysis at 14, 21 and 28 days after sowing. The use of biosaline water did not affect emergence and establishment of seedlings until 14 days after sowing, the period recommended for transplantation. However, the use of biosaline water affected the development of seedlings with longer exposure time.

  14. Groundwater Ecosystems Vary with Land Use across a Mixed Agricultural Landscape.

    Science.gov (United States)

    Korbel, K L; Hancock, P J; Serov, P; Lim, R P; Hose, G C

    2013-01-01

    Changes in surface land use may threaten groundwater quality and ecosystem integrity, particularly in shallow aquifers where links between groundwater and surface activities are most intimate. In this study we examine the response of groundwater ecosystem to agricultural land uses in the shallow alluvial aquifer of the Gwydir River valley, New South Wales, Australia. We compared groundwater quality and microbial and stygofauna assemblages among sites under irrigated cropping, non-irrigated cropping and grazing land uses. Stygofauna abundance and richness was greatest at irrigated sites, with the composition of the assemblage suggestive of disturbance. Microbial assemblages and water quality also varied with land use. Our study demonstrates significant differences in the composition of groundwater ecosystems in areas with different surface land use, and highlights the utility of groundwater biota for biomonitoring, particularly in agricultural landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India

    Directory of Open Access Journals (Sweden)

    Sylvain Ferrant

    2017-11-01

    Full Text Available Indian agriculture relies on monsoon rainfall and irrigation from surface and groundwater. The interannual variability of monsoon rainfalls is high, which forces South Indian farmers to adapt their irrigated areas to local water availability. In this study, we have developed and tested a methodology for monitoring these spatiotemporal variations using Sentinel-1 and -2 observations over the Kudaliar catchment, Telangana State (~1000 km2. These free radar and optical data have been acquired since 2015 on a weekly basis over continental areas, at a high spatial resolution (10–20 m that is well adapted to the small areas of South Indian field crops. A machine learning algorithm, the Random Forest method, was used over three growing seasons (January to March and July to November 2016 and January to March 2017 to classify small patches of inundated rice paddy, maize, and other irrigated crops, as well as surface water stored in the small reservoirs scattered across the landscape. The crop production comprises only irrigated crops (less than 20% of the areas during the dry season (Rabi, December to March, to which rain-fed cotton is added to reach 60% of the areas during the monsoon season (Kharif, June to November. Sentinel-1 radar backscatter provides useful observations during the cloudy monsoon season. The lowest irrigated area totals were found during Rabi 2016 and Kharif 2016, accounting for 3.5 and 5% with moderate classification confusion. This confusion decreases with increasing areas of irrigated crops during Rabi 2017. During this season, 16% of rice and 6% of irrigated crops were detected after the exceptional rainfalls observed in September. Surface water in small surface reservoirs reached 3% of the total area, which corresponds to a high value. The use of both Sentinel datasets improves the method accuracy and strengthens our confidence in the resulting maps. This methodology shows the potential of automatically monitoring, in near

  16. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    Science.gov (United States)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  17. Remote sensing, GIS and hydrological modelling for irrigation management

    NARCIS (Netherlands)

    Menenti, M.; Azzali, S.; Urso, d' G.

    1996-01-01

    This paper gives an overview of literature and of work done by the authors between 1988 and 1993. It was presented at a NATO expert meeting on sustainability of irrigated agriculture in 1994. The paper deals with crop water requirements and crop waterstress, assessing irrigation performance with

  18. Dynamic Agricultural Land Unit Profile Database Generation using Landsat Time Series Images

    Science.gov (United States)

    Torres-Rua, A. F.; McKee, M.

    2012-12-01

    Agriculture requires continuous supply of inputs to production, while providing final or intermediate outputs or products (food, forage, industrial uses, etc.). Government and other economic agents are interested in the continuity of this process and make decisions based on the available information about current conditions within the agriculture area. From a government point of view, it is important that the input-output chain in agriculture for a given area be enhanced in time, while any possible abrupt disruption be minimized or be constrained within the variation tolerance of the input-output chain. The stability of the exchange of inputs and outputs becomes of even more important in disaster-affected zones, where government programs will look for restoring the area to equal or enhanced social and economical conditions before the occurrence of the disaster. From an economical perspective, potential and existing input providers require up-to-date, precise information of the agriculture area to determine present and future inputs and stock amounts. From another side, agriculture output acquirers might want to apply their own criteria to sort out present and future providers (farmers or irrigators) based on the management done during the irrigation season. In the last 20 years geospatial information has become available for large areas in the globe, providing accurate, unbiased historical records of actual agriculture conditions at individual land units for small and large agricultural areas. This data, adequately processed and stored in any database format, can provide invaluable information for government and economic interests. Despite the availability of the geospatial imagery records, limited or no geospatial-based information about past and current farming conditions at the level of individual land units exists for many agricultural areas in the world. The absence of this information challenges the work of policy makers to evaluate previous or current

  19. Economic impacts on irrigated agriculture of water conservation programs in drought

    Science.gov (United States)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  20. Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan

    Science.gov (United States)

    Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

    2009-04-01

    Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

  1. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  2. Thermal infrared sensors for postharvest deficit irrigation of peach

    Science.gov (United States)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  3. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  4. Irrigating lives : development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with

  5. Remotely-Sensed Mapping of Irrigation Area in the Chu-Talas River Basin in Central Asia and Application to Compliance Monitoring of Transboundary Water Sharing

    Science.gov (United States)

    Ragettli, S.; Siegfried, T.; Herberz, T.

    2017-12-01

    In the Central Asian Chu-Talas River Basin, farmers depend on freshwater from international rivers to irrigate their fields during the summer growing season. While the allocation percentages of water sharing between up- and downstream are defined for both rivers, marked interannual supply variability plus inadequate monitoring renders the compliance with these quotas difficult. In such circumstances, data on irrigated area obtained by remote sensing can be used to map the extent of irrigation in terms of its area on at national and subnational scales. Due to its transparency on how the data was obtained (freely available satellite data) and processed, this objective measure could potentially be used as a data product for confidence building and for compliance monitoring. This study assesses the extent and location of irrigated areas over the period 2000 - 2016 in the basins by using state-of-the-art remote sensing technology. Using a random forest classifier, an automated irrigated cropland mapping algorithm was implemented in Google Earth Engine using Landsat 7 data. First, a training set was established through visual interpretation (irrigated and non-irrigated classes for the year 2015) and the classifier then trained. The classier was then applied on a series of seasonal greenest pixels image mosaics from 2000 to 2016. A four-stepped accuracy assessment confirmed that the classifier yielded robust, reliable and reproducible results. Outcomes indicate that irrigated areas in the Kyrgyz side of the Talas Basin approximately doubled by 2016 since 2000 while the irrigated area in the Kazakh part of the basin did not significantly change over the 17 year time period. In the Chu River Basin, total irrigated area tripled since 2000. Comparison with officially reported statistics shows differences and points to reporting issues in both countries. We conclude that remote sensing of irrigated areas in arid and semi-arid regions in combination with cloud computing offers

  6. Climate change and irrigation. An Australian response

    International Nuclear Information System (INIS)

    Pigram, J.J.

    1995-01-01

    Climatic changes on a global or regional scale, resulting from human activities, and the likely effects of such changes on Australia were discussed. Irrigation concerns of the Murray-Darling Basin in southeast Australia associated with global climate were described. Potential risks for regional economies and communities (agriculture in this instance) which may be significant, were assessed. Restructuring of the irrigation industry, and appropriate policy initiatives were urged now, while there is still some time to prepare. Application of the 'Precautionary Principle' to reduce global climate change effects was recommended. (This principle states that in areas threatened by severe climatic change lack of full scientific certainty should not be used as an excuse to delay decisive measures designed to mitigate environmental degradation). Bold policy adjustments and the creation of a new institutional framework to promote sustainable resource management were called for. It was suggested that the region could become a 'laboratory' for the whole world for assessing the effectiveness of managerial responses to environmental changes

  7. extent of use of ict by fish farmers in isoko agricultural zone of delta ...

    African Journals Online (AJOL)

    Mr. TONY A

    agriculture should be integrated into all level of the education system. ... main causes of the increase in greenhouse gases (GHGs) observed over the past .... impacts in areas typically using irrigation, the analysis of water availability must.

  8. Mapping crop based on phenological characteristics using time-series NDVI of operational land imager data in Tadla irrigated perimeter, Morocco

    Science.gov (United States)

    Ouzemou, Jamal-eddine; El Harti, Abderrazak; EL Moujahid, Ali; Bouch, Naima; El Ouazzani, Rabii; Lhissou, Rachid; Bachaoui, El Mostafa

    2015-10-01

    Morocco is a primarily arid to semi-arid country. These climatic conditions make irrigation an imperative and inevitable technique. Especially, agriculture has a paramount importance for the national economy. Retrieving of crops and their location as well as their spatial extent is useful information for agricultural planning and better management of irrigation water resource. Remote sensing technology was often used in management and agricultural research. Indeed, it's allows crops extraction and mapping based on phenological characteristics, as well as yield estimation. The study area of this work is the Tadla irrigated perimeter which is characterized by heterogeneous areas and extremely small size fields. Our principal objectives are: (1) the delimitation of the major crops for a good water management, (2) the insulation of sugar beet parcels for modeling its yields. To achieve the traced goals, we have used Landsat-8 OLI (Operational Land Imager) data pan-sharpened to 15 m. Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) classifications were applied to the Normalized Difference Vegetation Index (NDVI) time-series of 10 periods. Classifications were calculated for a site of more than 124000 ha. This site was divided into two parts: the first part for selecting, training datasets and the second one for validating the classification results. The SVM and SAM methods classified the principal crops with overall accuracies of 85.27% and 57.17% respectively, and kappa coefficient of 80% and 43% respectively. The study showed the potential of using time-series OLI NDVI data for mapping different crops in irrigated, heterogeneous and undersized parcels in arid and semi-arid environment.

  9. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  10. A decision support for an integrated multi-scale analysis of irrigation: DSIRR.

    Science.gov (United States)

    Bazzani, Guido M

    2005-12-01

    The paper presents a decision support designed to conduct an economic-environmental assessment of the agricultural activity focusing on irrigation called 'Decision Support for IRRigated Agriculture' (DSIRR). The program describes the effect at catchment scale of choices taken at micro scale by independent actors, the farmers, by simulating their decision process. The decision support (DS) has been thought of as a support tool for participatory water policies as requested by the Water Framework Directive and it aims at analyzing alternatives in production and technology, according to different market, policy and climate conditions. The tool uses data and models, provides a graphical user interface and can incorporate the decision makers' own insights. Heterogeneity in preferences is admitted since it is assumed that irrigators try to optimize personal multi-attribute utility functions, subject to a set of constraints. Consideration of agronomic and engineering aspects allows an accurate description of irrigation. Mathematical programming techniques are applied to find solutions. The program has been applied in the river Po basin (northern Italy) to analyze the impact of a pricing policy in a context of irrigation technology innovation. Water demand functions and elasticity to water price have been estimated. Results demonstrate how different areas and systems react to the same policy in quite a different way. While in the annual cropping system pricing seems effective to save the resource at the cost of impeding Water Agencies cost recovery, the same policy has an opposite effect in the perennial fruit system which shows an inelastic response to water price. The multidimensional assessment conducted clarified the trades-off among conflicting economic-social-environmental objectives, thus generating valuable information to design a more tailored mix of measures.

  11. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non

  12. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  13. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    Science.gov (United States)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  14. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  15. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  16. Transferability Of DEMETER. A Case Study Of The Irrigation Scheme Of Veiga De Chaves

    Science.gov (United States)

    Baptista, A.; Sousa, V.

    2006-08-01

    DEMETER is a research and demonstration project, designed to assess and demonstrate how the integration of Earth Observation techniques in routine Irrigation Advisory Services can improve efficiency in the use of irrigation water. The objectives of this paper are: (1) to analyze the interest in the feasibility of transferring the DEMETER technology to the irrigation scheme of Chaves: (2) to identify the factors that, in general, favour the usefulness of this technology. The irrigation infrastructure and methods, the size and number of irrigation parcels and the main crops grown at the irrigation scheme of Chaves have been recorded. Also a socio-economic description has been done. Field visits, interviews with the staff of water association, and an inquiry to a sample of 107 farmers were made. The main results are: each farmer pays an area based annual fee, independent of the amount of water used for irrigation; most of the irrigated parcels are of very small size, 0.3 ha in average, mostly irrigated by surface methods; the most representative crops grown are potato, forage maize, and several different horticultural crops; an important part of the production is for self-consumption. The farmers are aging and the new generations prefer other jobs than agriculture. A considerable number of farmers have another job in the nearby cities. The small size of the irrigated parcels limits the use of earth observation technologies to expensive high space resolution images. For the time being, farmers do not feel the need for an irrigation advisory service, manly because there is plenty of water which is not bought proportionally to its use. However, circumstances are changing rapidly and, relatively new for the region, environmental concerns related with irrigation, manly nitrate leaching by excess watering of crops prompts the need for an irrigation advisory service in order to maintain crop production with a more rational use of water. The DEMETER technology could be a

  17. Irrigation Management in the Pamirs in Tajikistan: A Man's Domain?

    NARCIS (Netherlands)

    Bossenbroek, L.; Zwarteveen, M.Z.

    2014-01-01

    Families living in Gorno-Badakhshan—situated in the Pamir Mountains in Tajikistan—depend on irrigated agriculture to meet their subsistence needs. Because men predominate, and are most visible in, the operation and management of irrigation systems in this region, water-related activities are often

  18. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    Science.gov (United States)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to

  19. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  20. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    OpenAIRE

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in the coast of Peru is considered to be badly managed, however this study shows that performance is more optimal than critics assume. Apart from the relevance in the local water management discussion,...

  1. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  2. THE USE OF SOLAR ENERGY IN THE DESALINATION SEA WATER IN AGRICULTURAL GREENHOUSE

    Directory of Open Access Journals (Sweden)

    T. Tahri

    2015-08-01

    Full Text Available The limited resources of fresh water in arid areas like the Middle East and North Africa MENA have led to the use of poor quality water in irrigation agriculture. These can reduce crop yield and environmental damage. Agriculture accounts for 70% of overall consumption in freshwater. Given the evaporation phenomena that occur in arid regions, this figure rises to 90%. This study focuses on the concept of combining the greenhouse with the desalination of seawater This concept is intended for small scale applications in remote areas where only saline water and solar energy are available.  The main objective of this research work is to analyze the production of fresh water using solar energy in the desalination of sea water in the greenhouse. This operating system is in need of thorough study of evaporators, condensers and design of the greenhouse. Desalination, combining the greenhouse to the use of sea water while exploiting the phenomenon of condensation of water vapor in the air, seems to respond positively to the needs of agricultural irrigation.

  3. Soil salinisation and irrigation management of date palms in a Saharan environment.

    Science.gov (United States)

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  4. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    Science.gov (United States)

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  5. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Johnson, L.; Guzman, A.; Morton, C.; Zaragoza, I.; Dexter, J.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Temesgen, B.; Trezza, R.; Frame, K.; Eching, S.; Grimm, R.; Hall, M.

    2017-12-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate. Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational

  6. Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Pazini, Juliano de Bastos; Pasini, Rafael Antonio; Seidel, Enio Júnior; Rakes, Matheus; Martins, José Francisco da Silva; Grützmacher, Anderson Dionei

    2017-08-01

    Telenomus podisi Ashmead (Hymenoptera: Platygastridae) is an important agent for the biological control of stink bug eggs in irrigated rice areas and the best strategy for its preservation is the use of selective pesticides. The aim of this study was to know the side-effects of pesticides used in Brazilian irrigated rice areas on egg parasitoid T. podisi. We evaluated, under laboratory conditions, 13 insecticides, 11 fungicides, 11 herbicides, and a control (distilled water) in choice and no-choice tests. In the no-choice tests, the pesticides were sprayed at pre and post-parasitism stages (egg and larval stages of T. podisi). In the choice tests, sprays were conducted only at pre-parasitism stages. For all tests, we prepared cards with 25 eggs of the alternative host Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) non-parasitized (pre-parasitism) and parasitized (post-parasitism), which were subjected to pesticide sprays. The parasitism and emergence rates of T. podisi were determined classifying the pesticides in terms of the reduction of parasitism or emergence rates compared to the control. The neurotoxic insecticide cypermethrin, lambda-cyhalothrin, zeta-cypermethrin, etofenprox, thiamethoxam, thiamethoxam + lambda-cyhalothrin, acetamiprid + alpha-cypermethrin, and bifenthrin + alpha-cypermethrin + carbosulfan were more harmful to T. podisi and, therefore, are less suitable for the integrated management of insect pests in irrigated rice areas.

  7. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  8. The management perspective on the performance of the irrigation subsector

    NARCIS (Netherlands)

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the

  9. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food. As a consequence, agricultural activity has expanded and become more intense. A part of this intensification is the use of irrigation systems to water crops. Due to this irrigation, dams and channeling systems,

  10. Water conservation in agriculture -a step in combating the water crisis

    International Nuclear Information System (INIS)

    Prinz, D.; Malik, A.H.

    2005-01-01

    In Pakistan, the agricultural sector is the largest water user with 95%, leaving only marginal quantities for households and industry. On one hand, agriculture is a very important sector in Pakistan's economic development, contributing about 23 % to the national GDP -but industry contributes slightly more using only about 2 % of the available water resources. As Pakistan faces a growing problem of water shortage, significant achievements in water conservation have to be materialized, predominantly on the agricultural sector. There is scope for a higher degree of efficiency in water use, as water losses, namely in irrigation, are still rather high. There is another good reason for water conservation in agriculture: Over-irrigation results in rising water tables and increased soil salinity, which has reduced Pakistan's agricultural output during the last 2 decades by nearly 25%. Water conservation measures can be divided into (1) measures which are only applicable under rain-fed agricultural conditions, (2) measures which are relevant to save water in rain-fed agriculture as well as in irrigated agriculture and (3) measures, which are relevant in irrigated agriculture only. The first group centres around efficient rainwater management, which can be either 'in-situ moisture conservation' or 'rainwater harvesting'. The second group includes (1) improving crop selection, (2) improving crop husbandry, (3) combining cropping with animal husbandry, (4) reduction of transpiration losses, (5) reduction of evaporation losses and (6) reduction of percolation losses. Efficient irrigation can be accomplished by (1) reduction of conveying and distribution losses, (2) reduction of application losses, (3) use of efficient irrigation methods, (4) use of efficient application techniques, (5) application of supplemental and deficit irrigation and (6) improving water availability. The awareness of the problem, the knowledge of adapted and affordable techniques, the creation of suitable

  11. Water Authorities’ Pricing Strategies to Recover Supply Costs in the Absence of Water Metering for Irrigated Agriculture

    Directory of Open Access Journals (Sweden)

    Alban Lika

    2017-11-01

    Full Text Available Most of the irrigated agricultural regions in Europe are supplied by surface irrigation networks managed by local water authorities (WAs. Under such conditions, WAs are not able to fully monitor water usage and farmers have an information advantage vis-a-vis the WA. This results in the water authority suffering ‘pricing failure’ if it decides to apply an incentive pricing strategy (tariffs proportional to the alleged water uses. Indeed, farmers could exploit their information advantage by behaving in an opportunistic manner, withdrawing more water than declared, and ultimately paying less than they should. This situation could also undermine the efficacy and the efficiency of the WA incentive pricing strategies. This paper analyses incentive water pricing schemes under asymmetric information by the means of a Principal-Agent model. The Agency problem between the WA and farmers is addressed by introducing a monitoring strategy that would enable the WA to detect farms action. In doing so, we compare incentive strategies with flat rate water pricing and investigate under what conditions the WA might provide/not provide incentive water pricing in the absence of water metering.

  12. Drainage estimation to aquifer and water use irrigation efficiency in semi-arid zone for a long period of time

    Science.gov (United States)

    Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.

    2009-04-01

    Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.

  13. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios

    International Nuclear Information System (INIS)

    Martin-Gorriz, B.; Soto-García, M.; Martínez-Alvarez, V.

    2014-01-01

    Global warming is leading to a water resources decrease in the Mediterranean basin, where future farming resilience depends on incorporating alternative water sources and improving water-energy use efficiency. This paper assesses water and energy consumption when natural water sources are partially replaced by desalinated sea water. Initially, energy consumption, water supply and GHG (greenhouse gas) emissions were recorded for the current farming practices in SE (southeast) Spain. The results of our study indicate that citrus orchards have the lowest energy consumption and GHG emissions. Annual vegetables were the least energy efficient crops. Subsequently, two alternative water supply scenarios were analysed, in which the reduction of natural water resources associated to climate change was compensated with desalinated sea water. The use of 16.8% of desalinated seawater would increase energy consumption by 32.4% and GHG emissions by 19.6%, whereas for the use of 26.5% of desalinated seawater such increases would amount to 50.0% and 30.3%, respectively. Therefore maintaining irrigated agriculture in water-stressed regions by incorporating high energy demanding non-traditional water sources could negatively contribute to combat global warming. - Highlights: • Water supply, energy consumption and GHG (greenhouse gas) emissions in irrigated agriculture are very connected. • The use of desalinated sea water will increase the energy consumption, and GHG emissions will rise. • The use of non-traditional water resources enhances global warming processes. • Citrus orchards are the less sensitive crop to alternative water supplied scenarios. • Artichoke is the most sensitive crop to alternative water supplied scenarios

  14. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a

  15. Financial viability and profitability of irrigation in Crimea, Ukraine

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Roerink, G.J.

    2006-01-01

    Following the collapse of the Soviet Union in 1991, the financial sustainability of irrigated agriculture in Crimea (Ukraine) has been endangered due to transitional problems. The undefined state of ownership, absence of secure agricultural markets and lack of farmers' funds for operations and

  16. Costs and benefits of satellite-based tools for irrigation management

    Directory of Open Access Journals (Sweden)

    Francesco eVuolo

    2015-07-01

    Full Text Available This paper presents the results of a collaborative work with farmers and a cost-benefit analysis of geospatial technologies applied to irrigation water management in the semi-arid agricultural area in Lower Austria. We use Earth observation (EO data to estimate crop evapotranspiration (ET and webGIS technologies to deliver maps and irrigation advice to farmers. The study reports the technical and qualitative evaluation performed during a demonstration phase in 2013 and provides an outlook to future developments. The calculation of the benefits is based on a comparison of the irrigation volumes estimated from satellite vs. the irrigation supplied by the farmers. In most cases, the amount of water supplied was equal to the maximum amount of water required by crops. At the same time high variability was observed for the different irrigation units and crop types. Our data clearly indicates that economic benefits could be achieved by reducing irrigation volumes, especially for water-intensive crops. Regarding the qualitative evaluation, most of the farmers expressed a very positive interest in the provided information. In particular, information related to crop ET was appreciated as this helps to make better informed decisions on irrigation. The majority of farmers (54% also expressed a general willingness to pay, either directly or via cost sharing, for such a service. Based on different cost scenarios, we calculated the cost of the service. Considering 20,000 ha regularly irrigated land, the advisory service would cost between 2.5 and 4.3 €/ha per year depending on the type of satellite data used. For comparison, irrigation costs range between 400 and 1000 €/ha per year for a typical irrigation volume of 2,000 cubic meters per ha. With a correct irrigation application, more than 10% of the water and energy could be saved in water-intensive crops, which is equivalent to an economic benefit of 40-100 €/ha per year.

  17. Reclaimed water as a main resource to enhance the adaptive capacity to climate change in semi-arid Mediterranean agricultural areas using Earth Observation products

    Science.gov (United States)

    Pavia Rico, Ana; Lopez-Baeza, Ernesto; Matieu, Pierre-Philippe; Hernandez Sancho, Francesc; Loarte, Edwin

    Lack of water is being a big problem in semi-arid areas to make agricultural profits. Most of Mediterranean countries like Spain, Italy, Greece or Cyprus and other countries like Morocco, the Arab United Emirates, South-American countries or China are starting to reuse wastewater as adaptation to climate change water scarcity. Drought areas are nowadays increasing, thus making fertile areas unproductive. For this reason, the European trend is to work on reusing wastewater as a solution to water scarcity in agriculture. Moreover, since population is growing fast, wastewater production is increasing as well as drinkable water demand, thus making reclaimed water as the water guarantee for irrigation and better agricultural management. This work represents a preliminary initiative to check, analyse and monitor the land by using remote sensing techniques to identify and determine the potential lands that used to be productive in the past, are now abandoned, and we want to recuperate to obtain socio-economic benefits. On top of this, this initiative will clearly enhance the adaption capacity of rural/agricultural lands to climate change. Alternatively to reclaimed water, greenhouses, desalination plants or transboarding water do not really eliminate the problem but only offer a temporary solution, make spending plenty of money and always provoking irreversible damages to the environment. The pilot area to first develop this research is the Valencia and Murcia Autonomous Communities located in the Spanish Mediterranean Coastline. An added value of this work will be to develop a methodology transferable to other potential countries with similar climatic characteristics and difficulties for irrigation, by using remote sensing methods and techniques. The remote sensing products obtained provide full information about the current state of the potential lands to grow crops. Potential areas are then being selected to carry out a socio-economic analysis leading to: (i

  18. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices

  19. Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria

    Science.gov (United States)

    Ganiyu, S. A.; Badmus, B. S.; Olurin, O. T.; Ojekunle, Z. O.

    2018-03-01

    The variation of groundwater quality across different regions is of great importance in the study of groundwater so as to ascertain the sources of contaminants to available water sources. Geochemical assessment of groundwater samples from hand-dug wells were done within the vicinity of Ajakanga dumpsite, Ibadan, Southwestern, Nigeria, with the aim of assessing their suitability for domestic and irrigation purposes. Ten groundwater samples were collected both in dry and wet seasons for analysis of physicochemical parameters such as: pH, EC, TDS, Na+, K+, Ca2+, Mg2+, HCO3^{ - } Cl-, SO4^{2 - }, NO3^{2 - } principal component analysis (PCA) and cluster analysis (CA) were used to determine probable sources of groundwater contamination. The results of the analyses showed the groundwater samples to be within permissible limits of WHO/NSDWQ, while elevated values of concentrations of most analyzed chemical constituents in water samples were noticed in S1 and S10 due to their nearness to the dumpsite and agricultural overflow, respectively. Groundwater in the study area is of hard, fresh and alkaline nature. There are very strong associations between EC and TDS, HCO3^{ - } and CO3^{2 - } in both seasons. PCA identified five and three major factors accounting for 95.7 and 88.7% of total variation in water quality for dry and wet seasons, respectively. PCA also identified factors influencing water quality as those probably related to mineral dissolution, groundwater-rock interaction, weathering process and anthropogenic activities from the dumpsite. Results of CA show groups based on similar water quality characteristics and on the extent of proximity to the dumpsite. Assessment for irrigation purpose showed that most of the water samples were suitable for agricultural purpose except in a few locations.

  20. Assessing the efficacy of the SWAT auto-irrigation function to simulate Irrigation, evapotranspiration and crop response to irrigation management strategies of the Texas High Plains

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is widely used for simulation of hydrologic processes at various temporal and spatial scales. Less common are long-term simulation analyses of water balance components including agricultural management practices such as irrigation management. In the se...

  1. Awareness of Measures for Reducing Health Risk of Using Low-Quality Irrigation Water in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mayilla, Winfrida; Magayane, Flavianus; Konradsen, Flemming

    2016-01-01

    The study examined the awareness of farmers, vegetable traders, and consumers on the health risk reduction measures when using low-quality water in irrigated agriculture, and identifies farmers’ perceptions of the effectiveness of the health risk reduction measures. Data collection methods includ...... that health education targeting at specific exposed group and their social-demographic characteristics is the potential measure in raising awareness of the potential health risk reduction measures when using low-quality irrigation water in irrigated agriculture.......The study examined the awareness of farmers, vegetable traders, and consumers on the health risk reduction measures when using low-quality water in irrigated agriculture, and identifies farmers’ perceptions of the effectiveness of the health risk reduction measures. Data collection methods included...... a questionnaire survey with 60 farmers, 60 vegetable traders, and 70 consumers and four focus group discussions. General results show a low level of awareness of the health risk reduction measures in using low-quality irrigation water in all respondents’ categories. However, health protection measures...

  2. Minimizing Erosion and Agro-Pollutants Transport from Furrow Irrigated Fields to the Nearby Water Body Using Spatially-Explicit Agent Based Model and Decision Optimization Platform

    Science.gov (United States)

    Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.

    2017-12-01

    Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.

  3. The Role of Agricultural Management in Sustaining Zayandeh-rud Flow

    Directory of Open Access Journals (Sweden)

    H. Emami Heidari

    2015-06-01

    Full Text Available Management of agricultural practices plays a vital role in reducing the use of limited water resources in arid and semi-arid regions which could result in their sustainability. In this research, the role of managing agriculture in sustaining flow of Zayandeh-rud was studied by calculation of rice water requirement (actual evapotranspiration in paddy fields of Zarrin-shahr by using method of FAO-56 and comparing the results assuming a shift in cropping pattern from rice to other crops. Rice water requirement was estimated at 1485 mm and the volume of water required for irrigation of paddy fields with area of about 6630 Hectare was estimated at 77 MCM. Volume of irrigated waterwas also evaluated by water balance method, confirmed the reliability of FAO-56 method. The results show that, replacing rice or wheat-rice cropping pattern with some possible crops such as bean, maize, walnut, apple and grape decreases irrigation requirements about 27, 15, 24, 29 and 40 MCM, respectively. Generalizing results for the total paddy fields in Isfahan Province with estimated area of about 20000 Hectare will result in an increase of about 3.4 to 9.1 m3/s in Zayandeh-rud discharge during critical months of June to October, when the river flow highly decreases, causing sustainable flow of the river through the year.

  4. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  5. Inventory of Agricultural Land Area of Egypt Using Modis Data

    International Nuclear Information System (INIS)

    Hereher, M.E.

    2009-01-01

    A new generation of satellite data has been emerged since the launch of the Moderate Resolution Imaging Spectro radiometer (MODIS), in 1999, for monitoring land resources and terrestrial environments. Agricultural land area of Egypt in 2005 was estimated using MODIS data. Four scenes were utilized to extract the total country area. MODIS vegetation Indices product (MOD 13 QI) was the most suitable to extract the total gross cultivated land area of Egypt. An unsupervised classification algorithm was applied to estimate the cultivated land area, which approached 8.2 million feddans in 2005. The Nile Delta contains the majority of agricultural lands (63.2%). The Nile Valley and EI-Fayoum Depression possess 33.9% and the remaining little percent (∼3%) represents the scattered agricultural land along the Suez Canal, Sinai and the Western Desert. The classification accuracy of agricultural land reached 84%, revealing higher confidence of assessment. The present study asserts on the importance of using remote sensing in monitoring agricultural land resources

  6. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    Directory of Open Access Journals (Sweden)

    Chunlan Mao

    2013-01-01

    Full Text Available This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  7. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    Science.gov (United States)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    The lack of soil information is a managerial problem in irrigated areas in Spain. The Violada Irrigation District (VID; 5234 ha) is a gypsic, semi-arid region in the Middle Ebro River Basin, northeast Spain. VID is under irrigation since the 1940's. The implementation of the flood irrigation system gave rise to waterlogging problems, solved along the years with the installation of an artificial drainage network. Aggregated water balances have been performed in VID since the early 1980's considering average soil properties and aggregated irrigation data for the calculations (crop evapotranspiration, canal seepage, and soil drainage). In 2008-2009, 91% of the VID was modernized to sprinkler irrigation. This new system provides detailed irrigation management information that together with detailed soil information would allow for disaggregated water balances for a better understanding of the system. Our goal was to draw a semi-detailed soil map of VID presenting the main soil characteristics related to irrigation management. A second step of the work was to set up pedotransfer functions (PTF) to estimate the water content and saturated hydraulic conductivity (Ks) from easily measurable parameters. Thirty four pits were opened, described and sampled for chemical and physical properties. Thirty three additional auger holes were sampled for water holding capacity (WHC; down to 60 cm), helping to draw the soil units boundaries. And 15 Ks tests (inverse auger hole method) were made. The WHC was determined as the difference between the field capacity (FC) and wilting point (WP) measured in samples dried at 40°C during 5 days. The comparison with old values dried at 105°C for 2 days highlighted the importance of the method when gypsum is present in order to avoid water removal from gypsum molecules. The soil map was drawn down to family level. Thirteen soil units were defined by the combination of five subgroups [Typic Calcixerept (A), Petrocalcic Calcixerept (B), Gypsic

  8. Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).

    Science.gov (United States)

    Kaur, Ravinder; Minhas, P S; Jain, P C; Singh, P; Dubey, D S

    2009-07-01

    The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with water depth) or at risk of being waterlogged (17.1% area with 2-3 m ground water depth). Local resource inventory showed prevalence of several illegal private channels in Mewat district. These private channels divert degraded canal waters into the nearby intersecting drains and thereby increase extent of surface irrigated agricultural lands in the Mewat district. Geo-spatial analysis showed that due to seepage of these degraded waters from unlined drains and canals, ground waters of about 39.6% of Mewat district were salt affected (EC(m)ean = 7.05 dS/m and SAR(m)ean = 7.71). Besides, sub-surface drinking waters of almost the entire Mewat district were contaminated with undesirable concentrations of chromium (Cr 2.0-3.23 ppm), manganese (Mn: 0

  9. Limits to agricultural growth in the Sistan Closed Inland Delta, Iran

    NARCIS (Netherlands)

    van Beek, Eelco; Bozorgy, B.; Vekerdy, Z.; Vekerdy, Z.; Meijer, K.

    2008-01-01

    The Sistan Delta in Iran is located at the end of a closed basin with nearly 100% of the supply coming from Afghanistan. This supply is supporting irrigated agriculture in the area and is the source for the lake system around the delta. These Hamoun lakes are ecological very valuable wetlands; a

  10. Optimized solar-wind-powered drip irrigation for farming in developing countries

    Science.gov (United States)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  11. A Reevaluation of Price Elasticities for Irrigation Water

    Science.gov (United States)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  12. Effect of tillage on water advance and distribution under surge and continuous furrow irrigation methods for cotton in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.

    2006-01-01

    A field experiment was carried out to assess the effect of tillage on water advance and water distribution in the root zone area (0.5 m) under continuous and surge flow irrigation in a cotton field. The experiment was conducted at the Agriculture Experimental Station, Assiut University, Assiut,

  13. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    Science.gov (United States)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  14. Are returns to public investment lower in less-favored rural areas?: an empirical analysis of India

    OpenAIRE

    Fan, Shenggen; Hazell, P. B. R.

    1999-01-01

    Developing countries allocate scarce government funds to investments in rural areas to achieve the twin goals of agricultural growth and poverty alleviation. Choices have to be made between different types of investments, especially infrastructure, human capital and agricultural research, and between different types of agricultural regions, e.g., irrigated and high- and low-potential rainfed areas. This paper develops an econometric approach and provides empirical evidence on the impact of go...

  15. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Directory of Open Access Journals (Sweden)

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  16. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    Science.gov (United States)

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage

  17. The key role of supply chain actors in groundwater irrigation development in North Africa

    Science.gov (United States)

    Lejars, Caroline; Daoudi, Ali; Amichi, Hichem

    2017-09-01

    The role played by supply chain actors in the rapid development of groundwater-based irrigated agriculture is analyzed. Agricultural groundwater use has increased tremendously in the past 50 years, leading to the decline of water tables. Groundwater use has enabled intensification of existing farming systems and ensured economic growth. This "groundwater economy" has been growing rapidly due to the initiative of farmers and the involvement of a wide range of supply chain actors, including suppliers of equipment, inputs retailers, and distributors of irrigated agricultural products. In North Africa, the actors in irrigated production chains often operate at the margin of public policies and are usually described as "informal", "unstructured", and as participating in "groundwater anarchy". This paper underlines the crucial role of supply chain actors in the development of groundwater irrigation, a role largely ignored by public policies and rarely studied. The analysis is based on three case studies in Morocco, Tunisia and Algeria, and focuses on the horticultural sub-sector, in particular on onions and tomatoes, which are irrigated high value crops. The study demonstrates that although supply chain actors are catalyzers of the expansion of groundwater irrigation, they could also become actors in adaptation to the declining water tables. Through their informal activities, they help reduce market risks, facilitate credit and access to subsidies, and disseminate innovation. The interest associated with making these actors visible to agricultural institutions is discussed, along with methods of getting them involved in the management of the resource on which they depend.

  18. Nuclear techniques for food and agricultural development: 1964-94

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Vose, P.

    1994-01-01

    Over the past 30 years, programmes of the Joint FAO/IAEA Division have helped countries solve practical, and costly, problems in areas of soil fertility, irrigation, and crop production; plant breeding and genetics; animal production and health; insect and pest control; agrochemicals and residues; and food preservation. The Division's overall objectives are to exploit the potential for application of isotopes and radiation techniques in agricultural research and development; to increase and stabilize agricultural production; to reduce production costs; to improve the quality of food; to protect agricultural products from spoilage and losses; and to minimize pollution of food and the agricultural environment. On the occasion of the Joint Division's 30th anniversary year, this article highlights selected achievements over the past three decades

  19. Agricultural practice and social change in Berastagi area

    Science.gov (United States)

    Sembiring, Sri Alem Br

    2018-03-01

    This paper discusses how agricultural practices build social change in the Berastagi highlands. Agricultural products from this area are the vegetable supplier base for Medan City and other surrounding cities. The supply involves a network of trades involving many actors with many interests, as well as generating migration from other areas around and coming from different ethnicities. The migrants’ settlements are concentrated in certain areas of the region around Berastgai. This paper will illustrate the interaction between these aspects to bring about social change in Berastagi. This research uses qualitative method. Primary data were obtained through in-depth interview techniques and participant observation. Secondary data accessed from relevant agencies. This discussion shows how the pattern of social relationships changed due to changes in the goals of agricultural practices that not only oriented local markets but also exports. Competition, secrecy, and money orientation have become part of their planting activities. On the other hand, trade networks also construct them to work together in a particular context. This paper shows that agricultural activities and all things related to it reflect a broader context to see the development of small towns that also affect the development of the surrounding villages.

  20. Agricultural in protect areas: agronomic aspects

    Directory of Open Access Journals (Sweden)

    Emanuele Tarantino

    Full Text Available Among the various aims of the protect lands, as expressed by the art. 1 of the L. 394/91, there is “the promotion of educational, formative, experimental and interdisciplinary activities, as well as recreational activities”. Considering the multiplicity of the protect areas functions as well as the interests and the problems involved in their management, the most suitable research in this field is that according to a “systemic” approach. It concerns the study of the most high hierarchical levels: agricultural, farming and agro-territorial levels. The researches regard not only the environmental sustainability of crops production, including the control of the erosion risks and the management of the pasturing areas, but also other aspects that result less conventional than the classical questions of the Agronomy. They include the land planning, the productions of local and typical markets, the production dependent on the organic farming on the environmental preservation, the management of areas which result of particular interest for wild fauna, the renaturalization of degraded areas, the eco-sustainable management of water resources, the multifunctional agriculture, the landscape improvement and the biodiversity enhancement.

  1. IRRIGATION AND LIMING AS FACTORS OF MAIZE YIELD INCREASES IN EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Monika MARKOVIĆ

    2015-08-01

    Full Text Available Maize is the main field crop on arable lands in Croatia. Climatic changes, particularly temperature regime and precipitation quantities and their distribution during growing season had often adverse effects on maize yield. Therefore, irrigation of maize crops in critical periods is useful considering the variations among annual yields caused by water stressed conditions. Acid soils are covering one-third of agricultural soils in Croatia (about 832.000 hectares and correction of pH by liming is also an important factor for increase and stabilization of annual yield values. The aim of this study was to review irrigation and liming effects on maize yield in eastern Croatia. Eastern Croatia covers an area of 12.454 km2 or 22.0% of the State territory. This region is termed as the “granary of Croatia” because 75% of wheat and 50% of maize harvested areas of the country are located in this region. Maize yields in the long-term (since 2000 irrigation experiments carried on since 2000 on Agricultural Institute Osijek increased by 20% in years with average climate conditions, while under drought conditions of three growing seasons in 2007, 2011 and 2012, yield increases were 32%, 36%, and 47%, respectively. Soil improvement by liming with increasing rates of carbocalk (by-product of sugar factory containing about 43% CaO and about 6% of organic matter up to 60 t ha-1 was also a useful management practice, because in two experiments maize yields increased up to 25% (4-year average. However, for satisfied yield increases for 16% in both experiments the lowest amount of carbocalk needed for application was 15 t ha-1.

  2. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    OpenAIRE

    Lajara, Rafael; Alberola, Jorge; Pelegr?-Sebasti?, Jos?

    2010-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered...

  3. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); others, and

    2014-07-15

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling.

  4. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd

    2014-01-01

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling

  5. Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China

    Directory of Open Access Journals (Sweden)

    Nan Shan

    2018-04-01

    Full Text Available The response of potential evapotranspiration (ET0 to widespread irrigation is important to fully understand future regional climate changes and to infer adaptive management of agricultural water resources. The quantitative impact of irrigation on ET0 from 1960 to 2013 was evaluated using historical time series data of daily meteorological observations in the hyper-arid region of northwest China. The decreasing trends in ET0 were accelerated for meteorological stations in regions with oasis agriculture, especially in the summer and during the growing season. Irrigation led to a cooling effect on temperature, increased relative humidity and precipitation. All of these changes contributed to a larger decrease of ET0 trend. The findings of this study advance our insight into the effects of irrigation on dynamics in ET0 and meteorological factors. Further investigations to understand how ET0 responds to climate change and agricultural irrigation could provide guidance for determining effective measures of water resources for adapting to global change.

  6. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  7. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    Science.gov (United States)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  8. Irrigation performance assessment in Crimea, Ukraine

    NARCIS (Netherlands)

    Pavlov, S.S.; Roerink, G.J.; Hellegers, P.J.G.J.; Popovych, V.F.

    2006-01-01

    After the collapse of the Soviet Union the performance of irrigated agriculture decreased drastically in Ukraine, due to problems related to the transition from a centrally planned economy to a market economy. Before formulating recommendations on required actions to modify this problematic

  9. Regulations of irrigation on regional climate in the Heihe watershed, China, and its implications to water budget

    Science.gov (United States)

    Zhang, X.

    2015-12-01

    In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to

  10. Impact of Institutional Change on Irrigation Management: A Case Study from Southern Uzbekistan

    Directory of Open Access Journals (Sweden)

    Kakhramon Djumaboev

    2017-06-01

    Full Text Available The rapidly growing population in Uzbekistan has put massive pressure on limited water resources, resulting in frequent water shortages. Irrigation is by far the major water use. Improving irrigation water use through the institutional change of establishing water consumer associations (WCAs has been identified as a way to increase agricultural production and meet the food demand in the area. However, most WCAs are not fully able to organize collective action or generate sufficient funds to carry out their responsibilities. This study investigated the water-resource-related challenges faced by WCAs and local farmers in Kashkadarya Province in Uzbekistan, using semi-structured expert interviews and focus group discussions. The resulting data were analyzed using qualitative analysis software (Atlas.ti. The results indicated that outdated infrastructure, poor governance, and farmers’ non-payment of irrigation service fees hamper sustainable water management. Greater trust and communication within the WCAs would make an important contribution to effective collective action and to the long-term sustainability of local associations.

  11. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  12. The Application of Drip Irrigation System on Tomato (Lycopersicum Esculentum Mill)

    OpenAIRE

    Setyaningrum, Diah Ayu

    2014-01-01

    This study aimed to analyze the performance of drip irrigation systems, determine performance of tomato treated under the irrigation systems.Field research was conducted at the Laboratory of Land and Water Resources Engineering; and at the Laboratory ofintegrated field, Faculty of Agriculture, University of Lampung in August 2013 to December 2013.Irrigation systems consisted of main componens: water supplies, Polythilene lateral tube, and emitters. Emitter on every pot, were made of Polythile...

  13. Enhancing the Productivity of High Value Crops and Income Generation with Small-Scale Irrigation Technologies in Kenya. Final Report 2009-2013

    International Nuclear Information System (INIS)

    2014-02-01

    The project was implemented by the Kenya Agricultural Research Institute in collaboration with key irrigation stakeholders including Horticultural Crops Development Authority (HCDA), G North and Son limited, Kenya Irrigation and Drainage Association (KIDA), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Greenbelt Movement and Ministry of Agriculture. The objective was to develop and pilot test appropriate irrigation systems (methods and related water/nutrient management practices) for small-scale farmers for increasing yield, quality of high value crops and farmers income to improved livelihood. The project built on earlier work on low head drip irrigation in Kenya involving KARI led promotion among the peri-urban and rural communities. The Equipment used include Neutron Probe Hydroprobe, Ammonium Sulphate Fertilizers (5% a.e), drip irrigation kits, MoneyMaker irrigation pumps, Pessl imetos weather station, SDEC tensimetre and tensiometers), Venturi injectors, among others.

  14. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  15. Hydrological drought index insurance for irrigation districts in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, T.; Bielza, M.; Garrido, A.

    2016-11-01

    Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS). Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII) addressed to irrigation districts (ID) is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V) in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper. (Author)

  16. An integrated modeling framework for real-time irrigation scheduling: the benefit of spectroscopy and weather forecasts

    Science.gov (United States)

    Brook, Anna; Polinova, Maria; Housh, Mashor

    2016-04-01

    Agriculture and agricultural landscapes are increasingly under pressure to meet the demands of a constantly increasing human population and globally changing food patterns. At the same time, there is rising concern that climate change and food security will harm agriculture in many regions of the world (Nelson et al., 2009). Facing those treats, majority of Mediterranean countries had chosen irrigated agriculture. For crop plants water is one of the most important inputs, as it is responsible for crop growth, production and it ensures the efficiency of other inputs (e.g. seeds, fertilizers and pesticide) but its use is in competition with other local sectors (e.g. industry, urban human use). Thus, well-timed availability of water is vital to agriculture for ensured yields. The increasing demand for irrigation has necessitated the need for optimal irrigation scheduling techniques that coordinate the timing and amount of irrigation to optimally manage the water use in agriculture systems. The irrigation scheduling problem can be challenging as farmers try to deal with different conflicting objectives of maximizing their yield while minimizing irrigation water use. Another challenge in the irrigation scheduling problem is attributed to the uncertain factors involved in the plant growth process during the growing season. Most notable, the climatic factors such as evapotranspiration and rainfall, these uncertain factors add a third objective to the farmer perspective, namely, minimizing the risk associated with these uncertain factors. Nevertheless, advancements in weather forecasting reduced the uncertainty level associated with future climatic data. Thus, climatic forecasts can be reliably employed to guide optimal irrigation schedule scheme when coupled with stochastic optimization models (Housh et al., 2012). Many studies have concluded that optimal irrigation decisions can provide substantial economic value over conventional irrigation decisions (Wang and Cai 2009

  17. The use of hydrological models in the irrigated areas of Mendoza, Argentina

    NARCIS (Netherlands)

    Querner, E.P.; Morábito, J.A.; Manzanera, M.; Pazos, J.A.; Ciancaglini, N.C.; Menenti, M.

    1997-01-01

    A proper understanding of the interaction of irrigation and drainage canals with an aquifer system is necessary to improve the performance of irrigation. This mechanism must be studied with a detail sufficient to identify operational guidelines for specific portions of an irrigation and drainage

  18. Influence of a deficit irrigation regime during ripening on berry composition in grapevines (Vitis vinifera L.) grown in semi-arid areas.

    Science.gov (United States)

    López, María-Isabel; Sánchez, María-Teresa; Díaz, Antonio; Ramírez, Pilar; Morales, José

    2007-11-01

    A study was made of the effects of irrigation management strategies during ripening on the quality of Spanish field-grown grapevine (Vitis vinifera L.) cultivars (Baladi, Airén, Montepila, Muscat Blanc à Petits Grains and Pedro Ximénez) grown under the "Montilla-Moriles" Appellation of Origin in Cordoba, Spain. From 1999 to 2002, two water-availability regimes were established: irrigation and non-irrigation. The study aimed to ascertain the effect of irrigation on berry development and ripening, and hence on grape juice quality. Changes in phenological stages, vegetative growth, vineyard yield, berry weight, total soluble solids, titrable acidity, pH, tartaric acid, malic acid, and potassium content were monitored. No significant differences were noted in phenological phases between the non-irrigation and deficit irrigation regimes. The Ravaz index, pruning weight, vineyard yield and berry weight were significantly higher in all varieties and years under deficit irrigation. Deficit irrigation induced higher titrable acidity, higher malic acid and potassium contents and a lower pH, but had no significant effects on berry sugar accumulation or tartaric acid content. Deficit irrigation thus appears to be a promising technique for the production of quality young wines in semi-arid areas.

  19. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  20. Salinity effect of irrigation with treated wastewater in basal soil respiration in SE of Spain

    Science.gov (United States)

    Morugan, A.; Garcia-Orenes, F.; Mataix-Solera, J.

    2012-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. Wastewater use in agriculture is not a new practice, all over the world this reuse has been common practice for a long time, but the concept is of greater importance currently because of the global water crisis. Replacement of freshwater by treated wastewater is seen as an important conservation strategy contributing to agricultural production, substantial benefits can derive from using this nutrient-rich waste water but there can also be a negative impact. For this reason it is necessary to know precisely the composition of water before applying it to the soil in order to guarantee minimal impact in terms of contamination and salinization. In this work we have been studying, for more than three years, different parameters in calcareous soils irrigated with treated wastewater in an agricultural Mediterranean area located at Biar (Alicante, SE Spain), with a crop of grape (Vitis labrusca). Three types of waters were used for the irrigation of the soil: fresh water (control) (TC), and treated wastewater from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type during the study period. A soil sampling was carried out every four months. We show the results of the evolution of basal soil respiration (BSR), and its relationship with other parameters. We observed a similar pattern of behavior for BSR between treatments, a decrease at the first eighteen months of irrigation and an increase at the end of study. In our study case, the variations of BSR obtained for all the treatments seem to be closely related to the dose and frequency of irrigation and the related soil wetting and drying cycles. However, the results showed a negative correlation between BSR and

  1. Integrating effective drought index (EDI) and remote sensing derived parameters for agricultural drought assessment and prediction in Bundelkhand region of India

    Science.gov (United States)

    Padhee, S. K.; Nikam, B. R.; Aggarwal, S. P.; Garg, V.

    2014-11-01

    Drought is an extreme condition due to moisture deficiency and has adverse effect on society. Agricultural drought occurs when restraining soil moisture produces serious crop stress and affects the crop productivity. The soil moisture regime of rain-fed agriculture and irrigated agriculture behaves differently on both temporal and spatial scale, which means the impact of meteorologically and/or hydrological induced agriculture drought will be different in rain-fed and irrigated areas. However, there is a lack of agricultural drought assessment system in Indian conditions, which considers irrigated and rain-fed agriculture spheres as separate entities. On the other hand recent advancements in the field of earth observation through different satellite based remote sensing have provided researchers a continuous monitoring of soil moisture, land surface temperature and vegetation indices at global scale, which can aid in agricultural drought assessment/monitoring. Keeping this in mind, the present study has been envisaged with the objective to develop agricultural drought assessment and prediction technique by spatially and temporally assimilating effective drought index (EDI) with remote sensing derived parameters. The proposed technique takes in to account the difference in response of rain-fed and irrigated agricultural system towards agricultural drought in the Bundelkhand region (The study area). The key idea was to achieve the goal by utilizing the integrated scenarios from meteorological observations and soil moisture distribution. EDI condition maps were prepared from daily precipitation data recorded by Indian Meteorological Department (IMD), distributed within the study area. With the aid of frequent MODIS products viz. vegetation indices (VIs), and land surface temperature (LST), the coarse resolution soil moisture product from European Space Agency (ESA) were downscaled using linking model based on Triangle method to a finer resolution soil moisture product

  2. Application of a crop model forced with remote sensing data at high spatio-temporal resolution to estimate evaporation and yields of irrigated grasslands in the South Eastern France

    Science.gov (United States)

    Couralt, D.; Hadria, R.; Ruget, F.; Duchemin, B.; Hagolle, O.

    2009-09-01

    This study focused on the feasibility of using remote sensing data acquired at high spatial and temporal resolution (FORMOSAT-2 images(http://www.spotimage.fr/web/en/977--formosat-2-images.php) for crop monitoring at regional scale. The monitoring of agricultural practices such as grassland mowing and irrigation is essential to simulate accurately all processes related to crop system. This information is needed for example in crop simulation models to estimate production, water and fertilizer consumption and can thus serve to better understand the interactions between agriculture and climate. The analysis of these interactions is especially important in Mediterranean region where the effects of climate changes and crop management modifications are increasingly marked. In this context, an experiment was conducted in 2006 in Crau region in the South-Eastern France. In this area, permanent grassland represents 67 % of the usable agricultural area, and it is often used with irrigation (47 % of the permanent grassland). A time series of 36 FORMOSAT-2 images was acquired with a three days frequency from March to October 2006. Information concerning grassland mowing and irrigation was collected through a survey over 120 fields. The high FORMOSAT-2 revisit frequency allowed replicating the dynamics of Leaf Area index (LAI), and detecting to some extents cultural practices like vegetation cut. Simple automatic algorithms were developed to obtain daily values of LAI for each grasslands field linked with the main agricultural practices performed (cut and irrigation dates). This information was then used in a crop model called STICS (http://147.100.66.194/stics/) to estimate the spatial variability of evapotranspiration and drainage associated with the aerial biomass productions. Comparisons between simulated and observed yields gave satisfactory results. The great spatial variations of evapotranspiration were strongly related to the crop and water management. Such

  3. Using the SIMGRO regional hydrological model to evaluate salinity control measures in an irrigation area

    NARCIS (Netherlands)

    Kupper, E.; Querner, E.P.; Morábito, J.A.; Menenti, M.

    2002-01-01

    In irrigated areas with drainage and an important interaction with the groundwater system, it is often difficult to predict effects of measures to control salinity. Therefore, in order to evaluate measures to control salinity the SIMGRO integrated regional hydrological model was extended with a

  4. The effects of agriculture on the volcanic aquifers of the canary islands

    Science.gov (United States)

    Custodio, E.; Guerra, J. A.; Jiménez, J.; Medina, J. A.; Soler, C.

    1983-12-01

    Agriculture is a basic economic activity in the Canary Islands, a Spanish region in the Atlantic Ocean, facing the Sahara. The main crops are bananas, tomatoes, and other special ones suitable for exportation. Fertilizers are applied in high quantities on the scarce land available. The relatively good vertical permeability of the soils favors the deep infiltration of irrigation return flows. Water is obtained by an extraordinary net of shaft wells and water galleries, supplemented when possible by surface reservoirs in the deep gullies. Water is distributed by an extensive network of pipes and canals, allowing the transportation of water to virtually any point from any water source. Water quality is widely variable, from almost rain water to brackish, with a high frequency of sodium bicarbonate types. Return flows, especially when water is applied with good irrigation techniques and the original quality is poor, are saline and contain chemicals leached from the fertilizers. On Tenerife Island, most of the return flows go to coastal aquifers, while most of the water comes from high-altitude water galleries. Agricultural pollution is not generally appraised, but it exists. It can be masked by the frequent, high natural nitrate content in groundwater. On Gran Canaria Island, since water comes mainly from deep shaft wells near the irrigated areas, the nitrate pollution is much more clear. On La Palma Island, besides the nitrate pollution, a potassium pollution of agricultural origin has been mentioned. Other situations on the remaining islands are also discussed. It can be concluded that agriculture is a big concern for the water quality in many areas and impairs its suitability for other uses. Because of the great depth of the water table, the nitrate pollution may not become obvious for many years, especially for the deep-water galleries.

  5. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    Science.gov (United States)

    Senay, G.B.; Budde, Michael; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  6. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  7. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  8. irrigated agriculture and poverty reduction in kassena nankana

    African Journals Online (AJOL)

    User

    2010-09-08

    Sep 8, 2010 ... a considerable extent, created a platform for employment and high agricultural output. How- ever, the high agricultural output has not ..... District Agriculture Extension Office, and food crop sellers in the Navrongo Central .... pled project farmers were dissatisfied with their household economic situation and ...

  9. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  10. The effect of Sphagnum farming on the greenhouse gas balance of donor and propagation areas, irrigation polders and commercial cultivation sites

    Science.gov (United States)

    Oestmann, Jan; Tiemeyer, Bärbel

    2017-04-01

    Drainage of peatlands for agriculture, forestry and peat extraction turned these landscapes into hotspots of greenhouse gas emissions. Climate protection now fosters rewetting projects to restore the natural peatland function as a sink of atmospheric carbon. One possible way to combine ecological and economical goals is Sphagnum farming, i.e. the cultivation of Sphagnum mosses as high-quality substrates for horticulture. This project scientifically evaluates the attempt of commercial Sphagnum farming on former peat extraction sites in north-western Germany. The exchange of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) of the whole peatland-based production chain comprising a donor mire, a propagation area, an irrigation polder and a cultivation site will be determined in a high temporal resolution for two years using manual chambers. This will allow evaluating the greenhouse gas balance of Sphagnum farming sites in comparison to near-natural sites and the potential of Sphagnum farming for restoring drained peatlands to sinks of atmospheric carbon. The influence of different irrigation techniques will also be tested. Additionally, selected plots will be equipped with open top chambers in order to examine the greenhouse gas exchange under potential future climate change conditions. Finally, a 13C pulse labeling experiment will make it possible to trace the newly sequestered CO2 in biomass, soil, respiration and dissolved organic carbon.

  11. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    Water usage is a vital issue for all agricultural crops as well as for ornamental crops. To obtain high quality flowers, it is essential to supply water when it is required. A problem which is common with cut flower growers are determining when to irrigate and the amount of water to apply. The effect of two irrigation intervals (I1: ...

  12. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    Science.gov (United States)

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  13. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Aliza; Lichtman, Ivgenia [Hebrew University of Jerusalem, Jerusalem (Israel); Mendelsohn, Robert [Yale University, New Haven, Connecticut (United States)

    2008-04-15

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  14. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Lichtman, Ivgenia; Mendelsohn, Robert

    2008-01-01

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  15. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    Science.gov (United States)

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  16. Transformations accompanying a shift from surface to drip irrigation in the Cànyoles Watershed, Valencia, Spain

    NARCIS (Netherlands)

    Sese-Minguez, Saioa; Boesveld, Harm; Asins-Velis, Sabina; Kooij, van der Saskia; Maroulis, Jerry

    2017-01-01

    Drip irrigation is widely promoted in Spain to increase agricultural production and to save water. In the Cànyoles watershed, Valencia, we analysed the consequences of change from surface irrigation to drip irrigation over the past 25 years. There were a number of transformations resulting from,

  17. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    Science.gov (United States)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  18. A short overview of measures for securing water resources for irrigated crop production

    DEFF Research Database (Denmark)

    Jensen, Christian Richardt; Ørum, Jens Erik; Pedersen, Søren Marcus

    2014-01-01

    Agriculture is the main user of limited fresh water resources in the world. Optimisation of agricultural water resources and their use can be obtained by both agronomical and political incentives. Important options are: reduction of the loss of irrigation water in conveyance before it reaches...... of the 'virtual water' principles so that water-rich regions secure food supply to dry regions; reduction in waste of food, feed and biofuel from post-harvest to the end consumer; changing of food composition to less water-consuming products; regulating amount of irrigation water by rationing, subsidies or water...... pricing to support water-saving measures such as use of drip, irrigation scheduling and DI. The potential for water saving for different measures is discussed and estimated. Reduction in waste of food and loss of irrigation water from conveyance source to farm both has a great potential for water saving...

  19. Crop scheduling improvements for rainfed agriculture in the high jungle of Peru

    Directory of Open Access Journals (Sweden)

    Enrique Meseth

    2014-12-01

    Full Text Available This work was aimed to improve the water management for agriculture by applying efficient crop schedules in Vilcabamba and similar areas of the high jungle, which can satisfy most of the water requirements with rainfed agriculture to maximize the crops yield. For this purpose, two field practices were carried out during the dry (September 2012 and wet season (February 2013 to measure rivers and canals flows with the velocity/area method; 19 soil samples were collected on-site and analyzed, presenting prevalent sandy loam and loam textures. Cropwat program was used to estimate crop water requirements and scheme irrigation requirements, resulting in a maximum flow capacity of 1.72 l s-1 in May, during the dry season. The flow capacity can be satisfied, since small ditches convey approximately 2 to 6 l s-1 on the same season. The research findings indicate that rainfed farming can be practised, yet an initial pre-irrigation needs to be applied, for crops should not be water stressed. However, if soil is not pre-irrigated the production can be affected, with vegetables and potato crop yields being reduced by 4.7% and 1.4% respectively. To minimize these effects, both crops are suggested to be sowed one month later, adapting their growth period to the rainy season.

  20. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil.

    Science.gov (United States)

    Chen, Lian; Zhou, Shenglu; Wu, Shaohua; Wang, Chunhui; Li, Baojie; Li, Yan; Wang, Junxiao

    2018-08-01

    Two quantitative methods (emission inventory and isotope ratio analysis) were combined to apportion source contributions of heavy metals entering agricultural soils in the Lihe River watershed (Taihu region, east China). Source apportionment based on the emission inventory method indicated that for Cd, Cr, Cu, Pb, and Zn, the mean percentage input from atmospheric deposition was highest (62-85%), followed by irrigation (12-27%) and fertilization (1-14%). Thus, the heavy metals were derived mainly from industrial activities and traffic emissions. For Ni the combined percentage input from irrigation and fertilization was approximately 20% higher than that from atmospheric deposition, indicating that Ni was mainly derived from agricultural activities. Based on isotope ratio analysis, atmospheric deposition accounted for 57-93% of Pb entering soil, with the mean value of 69.3%, which indicates that this was the major source of Pb entering soil in the study area. The mean contributions of irrigation and fertilization to Pb pollution of soil ranged from 0% to 10%, indicating that they played only a marginally important role. Overall, the results obtained using the two methods were similar. This study provides a reliable approach for source apportionment of heavy metals entering agricultural soils in the study area, and clearly have potential application for future studies in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.