WorldWideScience

Sample records for irregular melt layer

  1. Controllable irregular melting induced by atomic segregation in bimetallic clusters with fabricating different initial configurations

    International Nuclear Information System (INIS)

    Li Guojian; Liu Tie; Wang Qiang; Lue Xiao; Wang Kai; He Jicheng

    2010-01-01

    The melting process of Co, Co-Cu and Co-Ni clusters with different initial configurations is studied in molecular dynamics by a general embedded atom method. An irregular melting, at which energy decreases as the temperature increase near the melting point, is found in the onion-like Co-Cu-Co clusters, but not in the mixed Co-Cu and onion-like Co-Ni-Co clusters. From the analysis of atomic distributions and energy variation, the results indicate the irregular melting is induced by Cu atomic segregation. Furthermore, this melting can be controlled by doping hetero atoms with different surface energies and controlling their distributions.

  2. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  3. Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space

    Science.gov (United States)

    Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares

    2015-10-01

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.

  4. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting

    Science.gov (United States)

    Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.

    2016-05-01

    The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.

  5. A study on effective thermal conductivity of crystalline layers in layer melt crystallization

    International Nuclear Information System (INIS)

    Kim, Kwang-Joo; Ulrich, Joachim

    2002-01-01

    An effective thermal conductivity in layer melt crystallization was explored based on a model considering inclusions inside a crystalline layer during crystal growth, molecular diffusion of inclusions migration due to temperature gradient and heat generation due to recrystallization of inclusions in the crystalline layer. The effective thermal conductivity increases with time, in general, as a result of compactness of the layer. Lower cooling temperature, i.e. greater supercooling, results in a more porous layer with lower effective thermal conductivity. A similar result is seen for the parameter of melt temperature, but less pronounced. A high concentration of the melt results in a high effective thermal conductivity while low concentration yields low effective thermal conductivity. At higher impurity levels in the melt phase, constitutional supercooling becomes more pronounced and unstable growth morphologies occur more easily. Cooling rate and Reynolds number also affect the effective thermal conductivity. The predictions of an effective thermal conductivity agree with the experimental data. The model was applied to estimate the thermal conductivities of the crystalline layer during layer melt crystallization. (author)

  6. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1995-01-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized modes (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed. (orig.)

  7. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1994-08-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized models (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed

  8. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-09-01

    Full Text Available Selective laser melting (SLM is a potential additive manufacturing (AM technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm3/s, which is about 3–10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  9. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting.

    Science.gov (United States)

    Wang, Shuo; Liu, Yude; Shi, Wentian; Qi, Bin; Yang, Jin; Zhang, Feifei; Han, Dong; Ma, Yingyi

    2017-09-08

    Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm³/s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  10. Modeling and simulation of melt-layer erosion during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Belan, V.; Konkashbaev, I.; Nikandrov, L.; Safronov, V.; Zhitlukhin, A.; Litunovsky, V.

    1997-01-01

    Metallic plasma-facing components (PFCs) e.g. beryllium and tungsten, will be subjected to severe melting during plasma instabilities such as disruptions, edge-localized modes and high power excursions. Because of the greater thickness of the resulting melt layers relative to that of the surface vaporization, the potential loss of the developing melt-layer can significantly shorten PFC lifetime, severely contaminate the plasma and potentially prevent successful operation of the tokamak reactor. Mechanisms responsible for melt-layer loss during plasma instabilities are being modeled and evaluated. Of particular importance are hydrodynamic instabilities developed in the liquid layer due to various forces such as those from magnetic fields, plasma impact momentum, vapor recoil and surface tension. Another mechanism found to contribute to melt-layer splashing loss is volume bubble boiling, which can result from overheating of the liquid layer. To benchmark these models, several new experiments were designed and performed in different laboratory devices for this work; the SPLASH codes) are generally in good agreement with the experimental results. The effect of in-reactor disruption conditions, which do not exist in simulation experiments, on melt-layer erosion is discussed. (orig.)

  11. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H.

    2002-01-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks

  12. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  13. Effects of magnetic storm phases on F layer irregularities below the auroral oval

    International Nuclear Information System (INIS)

    Aarons, J.; Gurgiolo, C.; Rodger, A.S.

    1988-01-01

    Observations of F-layer irregularity development and intensity were obtained between September and October 1981, primarily over subauroral latitudes in the area of the plasmapause. The results reveal the descent of the auroral irregularity region to include subauroral latitudes in the general area of the plasmapause during the main phases of a series of magnetic storms. Irregularities were found primarily at lower latitudes during the subauroral or plasmapause storm. A model for the subauroral irregularities in recovery phases of magnetic storms is proposed in which energy stored in the ring current is slowly released. 27 references

  14. Stability and erosion of melt layers formed during plasma disruptions

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1989-01-01

    Melting and vaporization of metallic reactor components such as the first wall and the limiter/divertor may be expected in fusion reactors due to the high energy deposition resulting from plasma instabilities occuring during both normal and off-normal operating conditions. Off-normal operating conditions result from plasma disruptions where the plasma losses confinement and dumps its energy on parts of reactor components. High heat flux may also result during normal operating conditions due to fluctuations in plasma edge conditions. Of particular significance is the stability and erosion of the resulting melt layer which directly impacts the total expected lifetime of the reactor. The loss of the melt layer during the disruption could have a serious impact on the required safe and economic operation of the reactor. A model is developed to describe the behavior of the melt layer during the time evolution of the disruption. The analysis is done parametrically for a range of disruption times, energy densities and various acting forces

  15. On the role of melt flow into the surface structure and porosity development during selective laser melting

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Panwisawas, Chinnapat; Ward, Mark; Basoalto, Hector C.; Brooks, Jeffery W.; Attallah, Moataz M.

    2015-01-01

    In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material

  16. Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2011-01-01

    Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.

  17. Melt layer erosion of pure and lanthanum doped tungsten under VDE-like high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Luo, G.-N.; Fu, B. Q.; Xu, H. Y.; Liu, W.

    2013-07-01

    Heat loads expected for VDEs in ITER were applied in the neutral beam facility GLADIS at IPP Garching. Several ˜3 mm thick rolled pure W and W-1 wt% La2O3 plates were exposed to pulsed hydrogen beams with a central heat flux of 23 MW/m2 for 1.5-1.8 s. The melting thresholds are determined, and melt layer motion as well as material structure evolutions are shown. The melting thresholds of the two W grades are very close in this experimental setup. Lots of big bubbles with diameters from several μm to several 10 μm in the re-solidified layer of W were observed and they spread deeper with increasing heat flux. However, for W-1 wt% La2O3, no big bubbles were found in the corrugated melt layer. The underlying mechanisms referred to the melt layer motion and bubble issues are tentatively discussed based on comparison of the erosion characteristics between the two W grades.

  18. Melt layer erosion of pure and lanthanum doped tungsten under VDE-like high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Luo, G.-N.; Fu, B.Q.; Xu, H.Y.; Liu, W.

    2013-01-01

    Heat loads expected for VDEs in ITER were applied in the neutral beam facility GLADIS at IPP Garching. Several ∼3 mm thick rolled pure W and W–1 wt% La 2 O 3 plates were exposed to pulsed hydrogen beams with a central heat flux of 23 MW/m 2 for 1.5–1.8 s. The melting thresholds are determined, and melt layer motion as well as material structure evolutions are shown. The melting thresholds of the two W grades are very close in this experimental setup. Lots of big bubbles with diameters from several μm to several 10 μm in the re-solidified layer of W were observed and they spread deeper with increasing heat flux. However, for W–1 wt% La 2 O 3 , no big bubbles were found in the corrugated melt layer. The underlying mechanisms referred to the melt layer motion and bubble issues are tentatively discussed based on comparison of the erosion characteristics between the two W grades

  19. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V.I.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H

    2003-03-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion.

  20. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H.

    2003-01-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion

  1. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    International Nuclear Information System (INIS)

    Bazylev, B.; Wuerz, H.

    2002-01-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs

  2. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    Science.gov (United States)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  3. Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®

    Energy Technology Data Exchange (ETDEWEB)

    Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias [Institute of Polymer Extrusion and Compounding, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2015-05-22

    In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscous phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.

  4. Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Mayrhofer, Elias

    2015-01-01

    In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscous phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance

  5. High-temperature oxidation of tungsten covered by layer of glass-enamel melt

    International Nuclear Information System (INIS)

    Vasnetsova, V.B.; Shardakov, N.T.; Kudyakov, V.Ya.; Deryabin, V.A.

    1997-01-01

    Corrosion losses of tungsten covered by the layer of glass-enamel melt were determined at 800, 850, 900, 950 deg C. It is shown that the rate of high-temperature oxidation of tungsten decreases after application of glass-enamel melt on its surface. This is probably conditioned by reduction of area of metal interaction with oxidizing atmosphere

  6. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Science.gov (United States)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  7. Shape evolution of a melting nonspherical particle

    Science.gov (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  8. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    Science.gov (United States)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate

  9. Experimental investigation of hydrodynamics of melt layer during laser cutting of steel

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Koji; Fabbro, Remy, E-mail: hirano.koji@nsc.co.jp [PIMM Laboratory (Arts et Metiers ParisTech-CNRS), 151 Boulevard de l' Hopital 75013 Paris (France)

    2011-03-16

    In a laser cutting process, understanding of the hydrodynamics of melt layer is significant, because it is an important factor which controls the final quality. In this work, we observed the hydrodynamics of melt layer on a kerf front in the case of laser cutting of steel with an inert gas. The observation shows that the melt flow on the kerf front exhibits strong instability, depending on cutting velocity. In the intermediate range of velocities, the flow on the central part of the kerf front is continuous, whereas the flow along the sides is discontinuous. It is first confirmed that the instability in the side flow is the cause of striation initiation from the top part of the kerf. The origin of the instability is discussed in terms of instabilities in thermal dynamics and hydrodynamics. The proposed model shows reasonable agreement with experimental results.

  10. Deep and persistent melt layer in the Archaean mantle

    Science.gov (United States)

    Andrault, Denis; Pesce, Giacomo; Manthilake, Geeth; Monteux, Julien; Bolfan-Casanova, Nathalie; Chantel, Julien; Novella, Davide; Guignot, Nicolas; King, Andrew; Itié, Jean-Paul; Hennet, Louis

    2018-02-01

    The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth's surface. The origin of this transition could be a change in the dynamic regime of the Earth's interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200-250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200-300 K hotter than today, significant melting is expected at depths from 100-150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.

  11. Size and temperature consideration in the liquid layer growth from nanovoids and the melting model construction

    International Nuclear Information System (INIS)

    Li, H.; Liang, X.H.; Li, M.

    2014-01-01

    A new model for the solid melting point T m (D) from nanovoids is proposed through considering the liquid layer growth behavior. This model, which does not have any adjustable parameter, introduces the classical thermodynamic treatment, i.e., the liquid nucleation and growth theory, for nanoparticle melting. With increased void diameter D, T m (D) approaches to T m0 . Moreover, T m (D) > T m0 for a small void (T m0 is the bulk melting point). In other words, the solid can be significantly superheated especially when D decreases, even if the difference of interface energy is larger than zero. This finding can be expected from the negatively curved surface of the void. The model predictions are consistent with the molecular dynamic (MD) simulation results for argon solids. Moreover, the growth of liquid layer from void surface relies on both size and temperature, which directly determine liquid layer thickness, and only when liquid layer thickness reaches to a critical value, can void become instable. - Highlights: • A united model for the crystal melting point from nanovoids is established. • Melting point increases with decreased void size. • The result is expected from the negatively curved surface of the void. • The prediction is agreed well with the MD simulation results

  12. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Xuezhi Shi

    2016-12-01

    Full Text Available To increase building rate and save cost, the selective laser melting (SLM of Ti6Al4V with a high layer thickness (200 μm and low cost coarse powders (53 μm–106 μm at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm3/s, which is about 2 times–9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure.

  13. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V.

    Science.gov (United States)

    Shi, Xuezhi; Ma, Shuyuan; Liu, Changmeng; Chen, Cheng; Wu, Qianru; Chen, Xianping; Lu, Jiping

    2016-12-01

    To increase building rate and save cost, the selective laser melting (SLM) of Ti6Al4V with a high layer thickness (200 μm) and low cost coarse powders (53 μm-106 μm) at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm³/s, which is about 2 times-9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure.

  14. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...... and catalytically active Mg site centers are causative factors for PLA degradation. Interestingly, the release of water under the processing conditions was found to have a rather small effect on the PLA degradation. Low loadings of sodium laurate also caused PLA degradation indicating that carboxylate chain ends...

  15. Influence of initial stress, irregularity and heterogeneity on Love-type ...

    Indian Academy of Sciences (India)

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half- space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface.

  16. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  17. Melt layer macroscopic erosion of tungsten and other metals under plasma heat loads simulating ITER off-normal events

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Kulik, N.V.; Landman, I.; Wuerz, H.

    2002-01-01

    This paper is focused on experimental analysis of metal layer erosion and droplet splashing of tungsten and other metals under heat loads typical for ITER FEAT off-normal events,such as disruptions and VDE's. Plasma pressure gradient action on melt layer results in erosion crater formation with mountains of displaced material at the crater edge. It is shown that macroscopic motion of melt layer and surface cracking are the main factors responsible for tungsten damage. Weight loss measurements of all exposed materials demonstrate inessential contribution of evaporation process to metals erosion

  18. Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil

    Directory of Open Access Journals (Sweden)

    S. Savio Odriozola

    2017-03-01

    Full Text Available A two-stage VS-30 Orion rocket was launched from the equatorial rocket launching station in Alcântara, Brazil, on 8 December 2012 soon after sunset (19:00 LT, carrying a Langmuir probe operating alternately in swept and constant bias modes. At the time of launch, ground equipment operated at equatorial stations showed rapid rise in the base of the F layer, indicating the pre-reversal enhancement of the F region vertical drift and creating ionospheric conditions favorable for the generation of plasma bubbles. Vertical profiles of electron density estimated from Langmuir probe data showed wave patterns and small- and medium-scale plasma irregularities in the valley region (100–300 km during the rocket upleg and downleg. These irregularities resemble those detected by the very high frequency (VHF radar installed at Jicamarca and so-called equatorial quasi-periodic echoes. We present evidence suggesting that these observations could be the first detection of this type of irregularity made by instruments onboard a rocket.

  19. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  20. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  1. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  2. Phenomenological studies on melt-structure-water interactions (MSWI) during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Yang, Z.L.; Haraldsson, H.O.; Nourgaliev, R.R.; Konovalikhin, M.; Paladino, D.; Gubaidullin, A.A.; Kolb, G.; Theerthan, A.

    2000-05-01

    This is the annual report for the work performed in 1999 in the research project Melt-Structure-Water Interactions During Severe Accidents in LWRs, under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The emphasis of the work is placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. We believe that significant technical advances have been achieved during the course of these studies. It was found that: The coolant temperature has significant influence on the characteristics of debris fragments produced from the breakup of an oxidic melt jet. At low subcooling the fragments are relatively large and irregular compared to the smaller particles produced at high subcooling. The melt jet density has considerable effect on the fragment size produced. As the melt density increases the fragment size becomes smaller. The mass mean size of the debris changes proportionally to the square root of the coolant to melt density ratio. The melt superheat has little effect on the debris particle size distribution produced during the melt jet fragmentation. The impingement velocity of the jet has significant impact on the fragmentation process. At lower jet velocity the melt fragments agglomerate and form a cake of large size debris. When the jet velocity is increased more complete fragmentation is obtained. The scaling methodology for melt spreading, developed during 1998, has been further validated against almost all of the spreading experimental data available so far. Experimental results for the dryout heat flux of homogeneous particulate debris beds with top flooding compare well with the Lipinski correlation. For the stratified particle beds, the fine particle layer resting on the top of another particle layer dominates the dryout processes

  3. Phenomenological studies on melt-structure-water interactions (MSWI) during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Yang, Z.L.; Haraldsson, H.O.; Nourgaliev, R.R.; Konovalikhin, M.; Paladino, D.; Gubaidullin, A.A.; Kolb, G.; Theerthan, A. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    2000-05-01

    This is the annual report for the work performed in 1999 in the research project Melt-Structure-Water Interactions During Severe Accidents in LWRs, under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The emphasis of the work is placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. We believe that significant technical advances have been achieved during the course of these studies. It was found that: The coolant temperature has significant influence on the characteristics of debris fragments produced from the breakup of an oxidic melt jet. At low subcooling the fragments are relatively large and irregular compared to the smaller particles produced at high subcooling. The melt jet density has considerable effect on the fragment size produced. As the melt density increases the fragment size becomes smaller. The mass mean size of the debris changes proportionally to the square root of the coolant to melt density ratio. The melt superheat has little effect on the debris particle size distribution produced during the melt jet fragmentation. The impingement velocity of the jet has significant impact on the fragmentation process. At lower jet velocity the melt fragments agglomerate and form a cake of large size debris. When the jet velocity is increased more complete fragmentation is obtained. The scaling methodology for melt spreading, developed during 1998, has been further validated against almost all of the spreading experimental data available so far. Experimental results for the dryout heat flux of homogeneous particulate debris beds with top flooding compare well with the Lipinski correlation. For the stratified particle beds, the fine particle layer resting on the top of another particle layer dominates the dryout processes

  4. Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites

    International Nuclear Information System (INIS)

    Lonkar, Sunil P.; Singh, R.P.

    2009-01-01

    The effect of layered double hydroxide (LDH) nanolayers on the crystallization behavior of polypropylene (PP) was studied based on the preparation of nanocomposites by a melt intercalation method. The isothermal crystallization kinetics and subsequent melting behavior of PP/LDH hybrids were studied with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). Studies revealed that the LDH promoted heterogeneous nucleation, accelerating the crystallization of PP. The Avrami equation successfully describes the isothermal crystallization kinetics of PP/LDH hybrids and signifies heterogeneous nucleation in crystal growth of PP. The varying values of Avrami exponent (n) and half crystallization time (t 1/2 ) of PP and PP/LDH hybrids describes overall crystallization behavior. The crystallite size (D hkl ) and distribution of different crystallites in PP varied in presence of LDH. A significant increase in melting temperature is observed for PP/LDH hybrids. The POM showed that smaller and less perfect crystals were formed in nanocomposites because of molecular interaction between PP chains and LDH. The value of fold surface free energy (σ e ) of PP chains decreased with increasing LDH content. Finally, the overall results signify that LDH at nanometer level acted as nucleating agent and accelerate the overall crystallization process of PP.

  5. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  6. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  7. Bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  8. Melt cooling by bottom flooding: The experiment CometPC-H3. Ex-vessel core melt stabilization research

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Merkel, G.; Schmidt-Stiefel, S.; Tromm, W.; Wenz, T.

    2003-03-01

    The CometPC-H3 experiment was performed to investigate melt cooling by water addition to the bottom of the melt. The experiment was performed with a melt mass of 800 kg, 50% metal and 50% oxide, and 300 kW typical decay heat were simulated in the melt. As this was the first experiment after repair of the induction coil, attention was given to avoid overload of the induction coil and to keep the inductor voltage below critical values. Therefore, the height of the sacrificial concrete layer was reduced to 5 cm only, and the height of the porous concrete layers was also minimized to have a small distance and good coupling between heated melt and induction coil. After quite homogeneous erosion of the upper sacrificial concrete layer, passive bottom flooding started from the porous concrete after 220 s with 1.3 liter water/s. The melt was safely stopped, arrested and cooled. The porous, water filled concrete was only slightly attacked by the hot melt in the upper 25 mm of one sector of the coolant device. The peak cooling rate in the early contact phase of coolant water and melt was 4 MW/m 2 , and exceeded the decay heat by one order of magnitude. The cooling rate remarkably dropped, when the melt was covered by the penetrating water and a surface crust was formed. Volcanic eruptions from the melt during the solidification process were observed from 360 - 510 s and created a volcanic dome some 25 cm high, but had only minor effect on the generation of a porous structure, as the expelled melt solidified mostly with low porosity. Unfortunately, decay heat simulation in the melt was interrupted at 720 s by an incorrect safety signal, which excluded further investigation of the long term cooling processes. At that time, the melt was massively flooded by a layer of water, about 80 cm thick, and coolant water inflow was still 1 l/s. The melt had reached a stable situation: Downward erosion was stopped by the cooling process from the water filled, porous concrete layer. Top

  9. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  10. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.

    Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  11. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    2000-02-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  12. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  13. Natural convection of the oxide pool in a three-layer configuration of core melts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Park, Hae-Kyun; Chung, Bum-Jin, E-mail: bjchung@khu.ac.kr

    2017-06-15

    Highlights: • Natural convection of oxide pool in 3-layer configuration during IVR was investigated. • High Ra was achieved by using mass transfer experiments based on analogy concept. • Heat ratio to light metal layer was 14% higher for 3-layer configuration than 2-layer one. • Heat transfer to heavy metal layer was poor and hence heat load to side wall increased. • Angular heat loads to side wall showed strengthened heat focusing at uppermost location. - Abstract: We investigated the natural convection of the oxide layer in a three-layer configuration of core melts in a severe accident. In order to achieve high modified Rayleigh numbers of 10{sup 12}–10{sup 13}, mass transfer experiments were performed using a copper sulfate electroplating system based upon the analogy between heat and mass transfer. Four different cooling conditions of the top and the bottom plates were tested. The upward heat ratios were 14% higher for three-layer than for two-layer due to the reduced heights and the downward heat ratios were lower the same amount. The local Nusselt numbers for the top and the bottom plates were measured and compared with the two layer configuration. To explore the heat load to the reactor vessel, the angle-dependent heat fluxes at the side wall, were measured and compared with the two-layer configuration. Heat load to the side wall and peak heat at the uppermost location were intensified for the three-layer configuration.

  14. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  15. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  16. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    International Nuclear Information System (INIS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-01-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  17. Microstructure analysis of magnesium alloy melted by laser irradiation

    International Nuclear Information System (INIS)

    Liu, S.Y.; Hu, J.D.; Yang, Y.; Guo, Z.X.; Wang, H.Y.

    2005-01-01

    The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg 17 Al 12 and α-Mg as well as some phases unidentified

  18. The role of volatile-saturation and adiabatic ascent of moderately hydrous melts on the formation of orbicules and comb layers in shallow subvolcanic conduits (Fisher Lake, Sierra Nevada).

    Science.gov (United States)

    McCarthy, A. J.; Müntener, O.

    2016-12-01

    Orbicules and comb layers are enigmatic features found sparsely distributed along plutonic contacts in a wide range of igneous environments. We provide new insights into the mechanisms responsible for the formation of these features by studying the spatial distribution, mineralogy and geochemistry of comb layers and orbicules from the Northern Sierra Nevada, Fisher Lake (USA). Over a range of studied comb textured layering, we show that the large majority of comb layers are cumulates formed by the initiation of plagioclase growth as a comb textured mineral. Plagioclase fractionation is followed by pyroxenes + oxides fractionation. Continuous crystal fractionation and conductive cooling from the host rock leads to amphibole saturation and the formation of late stage comb textured amphibole, leading to the formation of plagioclase- and plagioclase-amphibole comb textures. The lack of amphibole comb textures on orbicule rims as opposed to their widespread occurrence in comb layers, suggests that the presence of a thermal gradient plays an important role in diversifying comb textures. We propose that comb layers and orbicules are unique features which are controlled by the volatile content of ascending melts and ascent mechanisms. Thermodynamic calculations indicate that near-adiabatic decompression of water-undersaturated melts (ca. 4wt% H2O) through the crust will lead to superheating and dissolution of pre-existing minerals. Upon saturation of volatiles at shallow depth, degassing-induced undercooling of the decompressing melt will trigger heterogeneous nucleation of plagioclase on host rocks and remobilized xenoliths. The rarity of orbicules and comb layers in volcanic and plutonic rocks worldwide suggests that adiabatic decompression of moderately hydrous melts leading to superheating is a rare phenomena, with most arc melts ascending and cooling in small reservoirs throughout the crust, prior to emplacement at shallow depth as crystal-bearing magmas.

  19. Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing oxyanions--a review

    International Nuclear Information System (INIS)

    Tzvetkoff, Tzvety; Gencheva, Petia

    2003-01-01

    A review of the corrosion of Ni and Ni-based alloys in melts containing oxyanions (nitrate, sulphate, hydroxide and carbonate) is presented, emphasising the mechanism of growth, the composition and structure of the passivating oxide films formed on the material in such conditions. First, the thermodynamical background involving solubility and point defect chemistry calculations for oxides formed on Ni, Cr and Ni-Cr alloys in molten salt media is briefly commented. The main passivation product on the Ni surface has been reported to be cubic NiO. In the transition stage, further oxidation of the compact NiO layer has been shown to take place in which Ni(III) ions and nickel cation vacancies are formed. Transport of nickel cation vacancies has been proposed to neutralise the charges of the excess oxide ions formed in the further oxidation reaction. Ex situ analysis studies reported in the literature indicated the possible formation of Ni 2 O 3 phase in the anodic layer. During the third stage of oxidation, a survey of the published data indicated that oxygen evolution from oxyanion melts is the predominant reaction taking place on the Ni/NiO electrode. This has been supposed to lead to a further accumulation of oxygen ions in the oxide lattice presumably as oxygen interstitials, and a NiO 2 phase formation has been also suggested. Literature data on the composition of the oxide film on industrial Ni-based alloys and superalloys in melts containing oxyanions are also presented and discussed. Special attention is paid to the effect of the composition of the alloy, the molten salt mixture and the gas atmosphere on the stability and protective ability of corrosion layers

  20. Bottom-type scattering layers and equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2004-12-01

    Full Text Available Jicamarca radar observations of bottom-type coherent scattering layers in the post-sunset bottomside F-region ionosphere are presented and analyzed. The morphology of the primary waves seen in radar images of the layers supports the hypothesis of kudeki+bhattacharyya-1999 that wind-driven gradient drift instabilities are operating. In one layer event when topside spread F did not occur, irregularities were distributed uniformly in space throughout the layers. In another event when topside spread F did eventually occur, the irregularities within the pre-existing bottom-type layers were horizontally clustered, with clusters separated by about 30km. The same horizontal periodicity was evident in the radar plumes and large-scale irregularities that emerged later in the event. We surmise that horizontal periodicity in bottom-type layer irregularity distribution is indicative of large-scale horizontal waves in the bottomside F-region that may serve as seed waves for large-scale Rayleigh Taylor instabilities. Key words. Ionosphere (equatorial ionosphere; ionospheric irregularties; plasma waves and instabilities

  1. Electric melting furnace of solidifying radioactive waste by utilizing magnetic field and melting method

    International Nuclear Information System (INIS)

    Igarashi, Hiroshi.

    1990-01-01

    An electric melting furnace for solidification of radioactive wastes utilizing magnetic fields in accordance with the present invention comprises a plurality of electrodes supplying AC current to molten glass in a glass melting furnace and a plurality of magnetic poles for generating AC magnetic fields. Interactions between the current and the magnetic field, generated forces in the identical direction in view of time in the molten glass. That is, forces for promoting the flow of molten glass in the melting furnace are resulted due to the Fleming's left-hand rule. As a result, the following effects can be obtained. (1) The amount of heat ransferred from the molten glass to the starting material layer on the molten surface is increased to improve the melting performance. (2) For an identical melting performance, the size and the weight of the melting furnace can be reduced to decrease the amount of secondary wastes when the apparatus-life is exhausted. (3) Bottom deposits can be suppressed and prevented from settling and depositing to the reactor bottom by the promoted flow in the layer. (4) Further, the size of auxiliary electrodes for directly supplying electric current to heat the molten glass near the reactor bottom can be decreased. (I.S.)

  2. Melt migration modeling in partially molten upper mantle

    Science.gov (United States)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  3. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations

  4. Melt cooling by bottom flooding. The COMET core-catcher concept

    International Nuclear Information System (INIS)

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  5. Irregular Applications: Architectures & Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Feo, John T.; Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    2012-02-06

    Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.

  6. Experimental studies on melt spreading, bubbling heat transfer, and coolant layer boiling

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.; Klages, J.; Schwarz, C.E.; Burson, S.B.

    1988-01-01

    Melt spreading studies have been undertaken to investigate the extent to which molten core debris may be expected to spread under gravity forces in a BWR drywell geometry. The objectives are to determine the extent of melt spreading as a function of melt mass,melt superheat, and water depth. These studies will enable an objective determination of whether or not core debris can spread up to and contact containment structures or boundaries upon vessel failure. Results indicate that the most important variables are the melt superheat and the water depth. Studies have revealed five distinct regimes of melt spreading ranging from hydrodynamically-limited to heat transfer-limited. A single parameter dimensionless correlation is presented which identified the spreading regime and allows for mechanistic calculation of the average thickness to which the melt will spread. 7 refs., 12 figs

  7. The atmospheric boundary layer over melting glaciers

    NARCIS (Netherlands)

    Oerlemans, J.

    1998-01-01

    Results from a number of glacio-meteorological experiments carried out over melting glaciers are summarized. It is shown that in summer the microclimate of a glacier tongue is dominated by katabatic flow, initiated by the downward sensible heat flux. Characteristic obstacle height is an

  8. Construction of theoretical F-spread ionogams from scattering in the HF band from field-aligned irregularities

    International Nuclear Information System (INIS)

    Powers, W.J.

    1985-01-01

    The scattering and propagation of electromagnetic fields in the ionosphere for the HF band is considered. Particular attention is given to scattering at the geomagnetic equator from irregularities of ionization density that are aligned along the earth's magnetic field and that have lengths that are much greater than a Fresnel scale. Perpendicular to the earth's magnetic field the irregularities are assumed to be isotropic with scale lengths (wavelengths /(2π)) extending from an inner scale equal to the ionic gyroradius to an outer scale on the order of the scale height of the ionosphere. Primary emphasis is placed on the weak scattering of pulses from field-aligned irregularities embedded in the night time F-layer, with application to explaining F-spread ionograms. The average ionization density of the night time F-layer is assumed to be well modeled by a parabolic layer. Assuming that the effects of the earth's magnetic field and collisions can be neglected, an approximate dyadic Green's function is derived and utilized in the determination of the incident and singly scattered fields

  9. Buried melting in germanium implanted silicon by millisecond flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Yankov, Rossen; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2008-01-01

    Flash lamp annealing in the millisecond range has been used to induce buried melting in silicon. For this purpose high dose high-energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp treatment at high energy densities leads to local melting of the germanium rich layer. The thickness of the molten layer has been found to depend on the irradiation energy density. During the cool-down period, epitaxial crystallization takes place resulting in a largely defect-free layer

  10. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  11. Effects of a finite melt on the thickness and composition of liquid phase epitaxial InGaAsP and InGaAs layers grown by the diffusion-limited step-cooling technique

    International Nuclear Information System (INIS)

    Cook, L.W.; Tashima, M.M.; Stillman, G.E.

    1980-01-01

    The thickness of InGaAsP (lambda/sub g/=1.15 μm) and InGaAs (lambda/sub g/=1.68 μm) liquid phase epitaxial layers grown on (100) InP substrates by the step-cooling technique has been measured as a function of growth time. (lambda/sub g/ is defined as the wavelength corresponding to the energy gap of the epitaxial layer.) For growth times much less than the shortest diffusion time tau/sub i/=l 2 /D/sub i/ of the melt constituents, where l is the melt height and D/sub i/ is the diffusivity of each component in the melt, the thickness is consistent with diffusion-limited theory, and the composition is constant. The time at which the growth rate deviates sharply from diffusion-limited theory and beyond which constant composition growth can no longer be maintained has been determined for the melt size used in our experiments and can be estimated for any melt size

  12. Grain-boundary melting: A Monte Carlo study

    DEFF Research Database (Denmark)

    Besold, Gerhard; Mouritsen, Ole G.

    1994-01-01

    Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...... when the temperature approaches T(m) from below. Monte Carlo data over an extended temperature range indicate a logarithmic divergence w(T) approximately - ln(T(m)-T) of the width of the disordered layer w, in agreement with mean-field theory....

  13. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong

    2018-01-01

    Subsequent thermal cycling (STC), as the unique thermal behavior during the multi-layer manufacturing process of selective laser melting (SLM), brings about unique microstructure of the as-produced parts. A multi-layer finite element (FE) model was proposed to study the STC along with a contrast experiment. The FE simulational results show that as layer increases, the maximum temperature, dimensions and liquid lifetime of the molten pool increase, while the heating and cooling rates decrease. The maximum temperature point shifts into the molten pool, and central of molten pool shifts backward. The neighborly underlying layer can be remelted thoroughly when laser irradiates a powder layer, thus forming an excellent bonding between neighbor layers. The contrast experimental results between the single-layer and triple-layer samples show that grains in of latter become coarsen and tabular along the height direction compared with those of the former. Moreover, this effect become more serious in 2nd and 1st layers in the triple-layer sample. All the above illustrate that the STC has an significant influence on the thermal behavior during SLM process, and thus affects the microstructure of SLMed parts.

  14. Computational procedure of a turbulent boundary layer with thermo-capillary effects in laser melted pool with free surface

    International Nuclear Information System (INIS)

    Benisahnoune, Omar

    1996-01-01

    A numerical procedure of a turbulent boundary layer with free surface in melted zone of metals is developed to describe interaction between Marangoni convection and turbulence. This study takes into account the phenomena below: Near the surface, vertical motions are damped while stream wise and span wise motions are promoted. Considering a plane surface, the validity of this turbulent model is verified in comparison with experimental results and laminar models. (author) [fr

  15. The effect of Ti and Nb on nitrogen dissolution reaction in stainless steel melt

    International Nuclear Information System (INIS)

    Jang, Min Whan; Hong, In Kook; Pak, Jong Jin; Song, Hyo Seok; Lee, Yong Deuk

    2002-01-01

    A kinetic study of nitrogen dissolution in STS304 stainless steel melt containing Ti and Nb has been carried out at 1500 degree C using an induction furnace and a levitation melting furnace. At low O and S levels, the nitrogen dissolution rate showed the first-order kinetics being controlled by the mass transfer of nitrogen in the melt. Ti addition to STS304 stainless melt significantly retarded the nitrogen dissolution rate by the formation of solid Ti oxide layer adhered on the melt surface. Nb did not affect the rate of nitrogen dissolution. In the levitation melting experiment where the oxide layer was removed from the melt surface, Ti did not retard the nitrogen dissolution rate. Simultaneous addition of Ti and Al increased the dissolution rate by the formation of non-wetting Al 2 O 3 on the melt surface. A small addition of CaO-Al 2 O 3 synthetic flux to Ti containing melt was very effective to remove the oxide layer, hence to increase the nitrogen dissolution rate

  16. The effect of Ti and Nb on nitrogen dissolution reaction in stainless steel melt

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min Whan; Hong, In Kook; Pak, Jong Jin [Hanyang Univ., Ansan (Korea, Republic of); Song, Hyo Seok; Lee, Yong Deuk [POSCO, Pohang (Korea, Republic of)

    2002-03-01

    A kinetic study of nitrogen dissolution in STS304 stainless steel melt containing Ti and Nb has been carried out at 1500 degree C using an induction furnace and a levitation melting furnace. At low O and S levels, the nitrogen dissolution rate showed the first-order kinetics being controlled by the mass transfer of nitrogen in the melt. Ti addition to STS304 stainless melt significantly retarded the nitrogen dissolution rate by the formation of solid Ti oxide layer adhered on the melt surface. Nb did not affect the rate of nitrogen dissolution. In the levitation melting experiment where the oxide layer was removed from the melt surface, Ti did not retard the nitrogen dissolution rate. Simultaneous addition of Ti and Al increased the dissolution rate by the formation of non-wetting Al{sub 2}O{sub 3} on the melt surface. A small addition of CaO-Al{sub 2}O{sub 3} synthetic flux to Ti containing melt was very effective to remove the oxide layer, hence to increase the nitrogen dissolution rate.

  17. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    Science.gov (United States)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  18. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, Wessel Willems; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, Hubertus J.M.

    2015-01-01

    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper

  19. Evaporation-induced gas-phase flows at selective laser melting

    Science.gov (United States)

    Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.

    2018-02-01

    Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.

  20. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    Science.gov (United States)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  1. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  2. About the effect of melted zinc mass additives on the formation on layers during hot galvanizing; Zur Wirkung von Zusaetzen zur Zinkschmelze auf die Schichtbildung beim Feuerverzinken

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, P.; Schulz, W.D. [Institut fuer Korrosionsschutz Dresden GmbH, Gostritzer Str. 61-63, D-01217 Dresden (Germany)

    2002-09-01

    The influence of various melted zinc mass additives on the galvanizing behaviour of steels is examined by way of comparison. The mechanisms influencing the formation of layers are very different. In case tin is added, a material barrier of enriched tin develops in the zinc coating, which inhibits the iron transport. The mechanisms of Ni, Ti and Al in the melted zinc mass are explained by means of a new theory on the formation of layers, which is based on the influence of the growth of layers via hydrogen escaping from the steel surface during hot galvanizing. This behaviour makes it clear why the single melted mass additives only have a layer-thickness reducing effect on steels with very definite Si contents. The different inhibitions of the growth of the layer during hot galvanizing are discussed. (Abstract Copyright[2002], Wiley Periodicals, Inc.) [German] Der Einfluss unterschiedlicher Zinkschmelzezusaetze auf das Verzinkungsverhalten der Staehle wird vergleichend untersucht. Die Mechanismen der Einflussnahme auf die Schichtbildung sind sehr unterschiedlich. Bei Zusatz von Zinn entsteht im Zinkueberzug eine Materialbarriere aus angereichertem Zinn, die den Eisentransport hemmt. Die Wirkungsweise von Ni, Ti und Al in der Zinkschmelze wird mit Hilfe einer neuen Theorie der Schichtbildung erklaert. Diese beruht auf der Beeinflussung des Schichtwachstums durch Wasserstoff, der waehrend des Feuerverzinkens aus der Stahloberflaeche austritt. Diese Erklaerung macht verstaendlich, warum die einzelnen Schmelzezusaetze nur bei Staehlen mit ganz bestimmten Si-Gehalten schichtdickenreduzierend wirken. Die unterschiedlichen Hemmungen des Schichtwachstums beim Feuerverzinken werden diskutiert. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  3. Morphological Development of Melt Crystallized Poly(propylene oxide) by In Situ AFM: Formation of Banded Spherulites

    NARCIS (Netherlands)

    Beekmans, L.G.M.; Hempenius, Mark A.; Vancso, Gyula J.

    2004-01-01

    The morphology of poly(propylene oxide) (PPO) crystals grown from the melt was investigated. The spherulites of the optically pure S polymers displayed a regular pattern of concentric rings as observed by polarizing optical microscopy, while the stereocopolymer developed irregularly banded, or

  4. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  5. Numerical Investigation of Turbulent Natural Convection Heat Transfer in an Internally-Heated Melt Pool and Metallic Layer

    International Nuclear Information System (INIS)

    Nourgaliev, R.R.; Dinh, A.T.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    This paper presents results of numerical investigation of turbulent natural convection in an internally-heated oxidic pool, and in a metallic layer heated from below and cooled from top and sidewalls. Emphasis is placed upon applicability of the existing heat transfer correlations (obtained from simulant-material experiments) in assessments of a prototypic severe reactor accident. The objectives of this study are (i) to improve the current understanding of the physics of unstably stratified flows, and (ii) to reduce uncertainties associated with modeling and assessment of natural convection heat transfer in the above configuration. Prediction capabilities of different turbulence modeling approaches are first examined and discussed, based on extensive results of numerical investigations performed by present authors. Findings from numerical modeling of turbulent natural convection flow and heat transfer in melt pools and metallic layers are then described. (authors)

  6. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  7. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  8. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  9. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  10. Effects of convection and density difference on contact melting around a cylinder

    International Nuclear Information System (INIS)

    Zhao Yuansong; Chen Wenzhen; Sun Fengrui

    2010-01-01

    Contact melting around a horizontal cylindrical heat source is investigated theoretically. Considering the convection and solid-liquid density difference, the expression of melting velocity is obtained by solving the dominant equations of the molten layer. The effects of convection and density difference on the contact melting are analyzed and discussed. It is found that convection hinders the heat transfer from the heat source to solid phase change material (PCM) across the molten layer, and smaller melting velocity will be obtained while considering solid-liquid density difference. The comparison of the result in this paper with those of previous study shows the validity of the analytical mode established.

  11. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  12. Selective Laser Melting of Pure Copper

    Science.gov (United States)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  13. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting

    Directory of Open Access Journals (Sweden)

    Makoana, N. W.

    2016-11-01

    Full Text Available In Selective Laser Melting, the initial units produced are single tracks that overlap to create a single layer; from the sequence of layers, a 3D object is manufactured. The properties of the parts produced by SLM depend heavily on the properties of each single track and each layer formed by these tracks. This study evaluates the effect of processing parameters on the geometrical characteristics of single tracks manufactured from 17-4PH stainless steel powder. A single-mode continuous-wave ytterbium fibre laser was used to manufacture single tracks at laser powers in the range of 100-300 W with a constant spot size of ∼80μm. The single tracks produced were subjected to standard metallographic preparation techniques for further analysis with an optical microscope. Deep molten pool shapes were observed at low scan speeds, while shallow molten pool shapes were observed at high scan speeds. At higher laser power densities, under-cutting and humping effects were also observed. The dimensions of single tracks processed without powder generally decrease with increasing scan speed at constant laser power. However, the geometrical features of the single tracks processed with powder revealed pronounced irregularities believed to be caused by non-homogeneity in the deposited powder layer.

  14. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  15. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  16. Surface melting technique of small diameter stainless steel pipe by means of yttrium aluminium garnet laser

    International Nuclear Information System (INIS)

    Katahira, Fujito; Hirano, Kenji; Tanaka, Yasuhiro; Yoshida, Kazuo; Kuribayashi, Munetaka; Umemoto, Tadahiro

    1994-01-01

    A new method of surface melting by using a high power yttrium aluminium garnet laser was developed. This method is applicable to a long distance and narrow space, because of the good accessibility of the laser beam through optical fibre.A desensitization of sensitized type 304 stainless steel pipe was demonstrated by using this technique. A melted layer of thickness approximately 200μm had a very finite solidification structure, which contained approximately 1.5% δ-ferrite. The average chemical composition of this layer was almost the same as that of type 304 stainless steel, and a band of 300μm thickness under the melted layer underwent solution heat treatment (SHT).As a result of such surface melting, the melted layer exhibited superior resistance to intergranular stress corrosion cracking (IGSCC). Since the SHT layer is highly resistant to IGSCC generally, it may be possible to improve the IGSCC resistance of base metal to a comparatively deep extent (500μm from the surface) by this technique. ((orig.))

  17. Surface melting technique of small diameter stainless steel pipe by means of yttrium aluminium garnet laser

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Fujito (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Hirano, Kenji (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Tanaka, Yasuhiro (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Yoshida, Kazuo (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Kuribayashi, Munetaka (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Umemoto, Tadahiro (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan))

    1994-12-01

    A new method of surface melting by using a high power yttrium aluminium garnet laser was developed. This method is applicable to a long distance and narrow space, because of the good accessibility of the laser beam through optical fibre.A desensitization of sensitized type 304 stainless steel pipe was demonstrated by using this technique. A melted layer of thickness approximately 200[mu]m had a very finite solidification structure, which contained approximately 1.5% [delta]-ferrite. The average chemical composition of this layer was almost the same as that of type 304 stainless steel, and a band of 300[mu]m thickness under the melted layer underwent solution heat treatment (SHT).As a result of such surface melting, the melted layer exhibited superior resistance to intergranular stress corrosion cracking (IGSCC). Since the SHT layer is highly resistant to IGSCC generally, it may be possible to improve the IGSCC resistance of base metal to a comparatively deep extent (500[mu]m from the surface) by this technique. ((orig.))

  18. Core melt retention and cooling concept of the ERP

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaeupl, H [SIEMENS/KWU, Erlangen (Germany); Yvon, M [Nuclear Power International, Paris (France)

    1996-12-01

    For the French/German European Pressurized Water Reactor (EPR) mitigative measures to cope with the event of a severe accident with core melt down are considered already at the design stage. Following the course of a postulated severe accident with reactor pressure vessel melt through one of the most important features of a future design must be to stabilize and cool the melt within the containment by dedicated measures. This measures should - as far as possible - be passive. One very promising solution for core melt retention seems to be a large enough spreading of the melt on a high temperature resistant protection layer with water cooling from above. This is the favorite concept for the EPR. In dealing with the retention of a molten core outside of the RPV several ``steps`` from leaving the RPV to finally stabilize the melt have to gone through. These steps are: collection of the melt; transfer of the melt; distribution of the melt; confining; cooling and stabilization. The technical features for the EPR solution of a large spreading of the melt are: Dedicated spreading chamber outside the reactor pit (area about 150 m{sup 2}); high temperature resistant protection layers (e.g. Zirconia bricks) at the bottom and part of the lateral structures (thus avoiding melt concrete interaction); reactor pit and spreading compartment are connected via a discharge channel which has a slope to the spreading area and is closed by a steel plate, which will resist the core melt for a certain time in order to allow a collection of the melt; the spreading compartments is connected with the In-Containment Refuelling Water Storage Tank (IRWST) with pipes for water flooding after spreading. These pipes are closed and will only be opened by the hot melt itself. It is shown how the course of the different steps mentioned above is processed and how each of these steps is automatically and passively achieved. (Abstract Truncated)

  19. Coatings with laser melt injection of ceramic particles

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Ocelik, V.; de Oliveira, U.; Seal, S; Dahotre, NB; Moore, JJ; Suryanarayana, C; Agarwal, A

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on

  20. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  1. Correlation for downward melt penetration into a miscible low-density substrate

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Pedersen, D.R.; Linehan, J.H.

    1984-01-01

    Downward penetration of a sacrificial bed material or a concrete basemat structure by an overlying layer of core melt resulting from a hypothetical core disruptive accident has been a major issue in post accident heat removal studies. One characteristic feature of this problem is that the solid substrate, when molten, is miscible with and lighter than the core melt so that the rate of penetration is strongly dependent upon the motion of natural convection in the melt layer driven by the density difference between the core melt and the molten substrate. This fundamentally interesting and technologically important problem has been investigated by a number of researchers. Significantly different melting rates, however, were observed in these studies. Questions concerning the occurrence of flow transition and its effect on melt penetration remain to be answered. To promote the understanding of the phenomena and to strengthen the data base of melt penetration, simulation experiments were conducted using various kinds of salt solutions (KI, NaCl, CaCl 2 , and MgCl 2 solutions) as the working fluid and an air-bubble-free ice slab as the solid substrate

  2. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  3. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  4. Morphological study of the field-aligned E-layer irregularities observed by the Gadanki VHF radar

    Directory of Open Access Journals (Sweden)

    C. J. Pan

    2004-11-01

    Full Text Available We report on the field-aligned irregularities observed in the low-latitude sporadic E-layer (Es with the Gadanki (13.5° N, 79.2° E; geomagnetic latitude 6.3° N VHF radar. The radar was operated intermittently for 15 days during the summer months in 1998 and 1999, for both daytime and nighttime observation. The total observation periods are 161h for the nighttime and 68h for the daytime. The observations were used to study the percentage of occurrence of the E-region echoes for both daytime and nighttime. The statistical characteristics of the mean radial velocity and spectral width are presented for three cases based on the echo occurrence characteristics and the altitude of observations (from 90 to 140km ranges, namely, the lower E-region daytime (90-110km, the lower E-region nighttime (90-105km and the upper E-region nighttime (105-140km echoes. The results are compared with that of Piura, a low-latitude station located at about the same geomagnetic latitude, but to the south of the equator. By comparing the behaviors of the lower E-region radar echoes of the summer months between Gadanki and Piura, we find that the lower altitude echoes below about 100km are rarely reported in Piura but commonly seen in Gadanki. Features of the nighttime echoes observed by these two radars are quite similar but daytime FAI echoes are again seldom detected by Piura.

  5. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Science.gov (United States)

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.

  6. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  7. Evaluating the Sensitivity of Glacial Isostatic Adjustment to a Hydrous Melt at 410 km Depth

    Science.gov (United States)

    Hill, A. M.; Milne, G. A.; Ranalli, G.

    2017-12-01

    We present a sensitivity analysis aimed at testing whether observables related to GIA can support or refute the existence of a low viscosity partial melt layer located above the mantle transition zone, as required by the so-called "Transition Zone Water Filter" model (Bercovici and Karato 2003). In total, 400 model runs were performed sampling a range of melt layer thicknesses (1, 10 & 20 km) and viscosities (1015 - 1019 Pas) as well as plausible viscosity values in the upper and lower mantle. Comparing model output of postglacial decay times and j2, 18 of the considered viscosity models were found to be compatible with all of the observational constraints. Amongst these, only three `background' upper and lower mantle viscosities are permitted regardless of the properties of the melt layer: an upper mantle value of 3×1020 Pas and lower mantle values of 1022, 3×1022 and 5×1022 Pas. Concerning the properties of the melt layer itself, a thin (1 km) layer may have any of the investigated viscosities (1015 to 1019 Pas). For thicker melt layers, the viscosity must be ≥1018 Pas (20 km) or ≥1017 Pas (10 km). Our results indicate clear parameter trade-offs between the properties of the melt layer and the background viscosity structure. Given that the observations permit several values of lower mantle viscosity, we conclude that tightening constraints on this parameter would be valuable for future investigation of the type presented here. Furthermore, while decay times from both locations considered in this investigation (Ångerman River, Sweden; Richmond Gulf, Canada) offer meaningful constraints on viscosity structure, the value for Richmond Gulf is significantly more uncertain and so increasing its precision would likely result in improved viscosity constraints.

  8. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    Science.gov (United States)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  9. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    Science.gov (United States)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  10. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  11. Spatial relationship of 1-meter equatorial spread-F irregularities and depletions in total electron content

    International Nuclear Information System (INIS)

    Tsunoda, R.T.; Towle, D.M.

    1979-01-01

    An experiment was conducted at Kwajalein Atoll, Marshall Islands to investigate the spatial relationship of 1-m equatorial spread-F irregularities to total electron content (TEC) depletions. A high-power radar was operated (1) in a backscatter scan mode to spatially map the distribution of 1-m irregularities, and (2) in a dual-frequency, satellite-track mode to obtain the longitudinal TEC variations. We show that radar backscatter ''plumes'' found in the disturbed, nighttime equatorial ionosphere are longitudinally coincident with TEC depletions. We suggest that the TEC depletions are probably due to the presence of plasma ''bubbles'' in the equatorial F layer

  12. Phenomenological Studies on Melt-Structure-Water Interactions (MSWI) during Postulated Severe Accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Park, H.S.; Giri, A.; Karbojian, A.; Jasiulevicius, A.; Hansson, R.C.; Chikkanagoudar, U.; Shiferaw, D.; Stepanyan, A.

    2004-01-01

    This is the annual report for the work performed in year 2003 in the research project 'Melt-Structure-Water Interactions (MSWI) During Severe Accidents in LWRs', under the auspices of the APRI Project, jointly funded by SKI, HSK, and the Swedish and Finnish power companies. The emphasis of the work was placed on phenomena and parameters, which govern the droplet fragmentation in steam explosions, in-vessel and ex-vessel melt/debris coolability, melt pool convection, and the thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Most research projects in 2002, such as the COMECO, POMECO and MISTEE programs, were continued. An analysis of the FOREVER experiments using the RELAP code to investigate the melt coolability, bubble dynamics and bubble stability to investigate the dynamic behavior of vapor bubble during steam explosions and associated melt fragmentation, quenching boiling experiment to investigate the thermal behavior of single melt droplet were newly initiated. The SIMECO experiment to investigate the three-layer melt pool convection was restarted. The experimental facilities for these projects were fully functional during year 2003. Many of the investigations performed during the course of the MSWI project have produced papers, which have been published in the proceedings of technical meetings and Journals. Significant technical advances were achieved during the course of these studies. These were: A series of experiments on single drop steam explosions was performed to investigate the fine fragmentation process of a metallic melt drop in various thermal conditions. For the first time, transient fine fragmentation process of a melt drop during explosion phase of a steam explosion was visualized continuously and quantified. Different triggering behavior with respect to the coolant subcooling was observed. The analyses on bubble dynamics during a single drop steam explosion and vapor bubble stability estimated the dynamic

  13. Irregular Migrants and the Law

    OpenAIRE

    Kassim, Azizah; Mat Zin, Ragayah Hj.

    2013-01-01

    This paper examines Malaysia`s policy on irregular migrants and its implementation, and discusses its impact. A survey and interview covering 404 respondents was conducted between July 2010 and June 2011 to ascertain the real situations surrounding irregular migrants in Malaysia, which is one of the major host countries of international migrants from developing nations. The policy on foreign workers was formulated in the mid-1980s to deal with the large number of irregular migrants and their ...

  14. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    International Nuclear Information System (INIS)

    Wang Xuyue; Meng Qingxuan; Kang Renke; Xu Wenji; Guo Dongming; Wang Lianji

    2011-01-01

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-melt ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 μm of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.

  15. Suppression of cavitation in melted tungsten by doping with lanthanum oxide

    International Nuclear Information System (INIS)

    Yuan, Y.; Lu, G.H.; Xu, B.; Fu, B.Q.; Xu, H.Y.; Li, C.; Jia, Y.Z.; Qu, S.L.; Liu, W.; Greuner, H.; Böswirth, B.; Luo, G.-N.

    2014-01-01

    Melting and boiling behaviour of pure tungsten and 1 wt% lanthanum-oxide-doped tungsten (WL10) are investigated, focusing on the material selection with respect to material loss induced by cavitation. Melting experiments under high heat loads are carried out in the high heat flux facility GLADIS. Pulsed hydrogen neutral beams with heat flux of 10 and 23 MW m −2 are applied onto the adiabatically loaded samples for intense surface melting. Melt layer of the two tungsten grades exhibit different microstructure characteristics. Substantive voids owing to cavitation in the liquid phase are observed in pure W and lead to porous resolidified material. However, little cavitation bubbles can be found in the dense resolidified layer of WL10. In order to find out the gaseous sources, vapour collection is performed and the components are subsequently detected. Based on the observations and analyses, the microstructure evolutions corresponding to melting and vapourization behaviour of the two tungsten grades are tentatively described, and furthermore, the underlying mechanisms of cavitation in pure W and its suppression in WL10 are discussed. (paper)

  16. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    Science.gov (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  17. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  18. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    Science.gov (United States)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting

  19. About the Shape of the Melting Line as a Possible Precursor of a Liquid-Liquid Phase Transition

    Science.gov (United States)

    Imre, Attila R.; Rzoska, Sylwester J.

    Several simple, non-mesogenic liquids can exists in two or more different liquid forms. When the liquid-liquid line, separating two liquid forms, meets the melting line, one can expect some kind of break on the melting line, caused by the different freezing/melting behaviour of the two liquid forms. Unfortunately recently several researchers are using this vein of thinking in reverse; seeing some irregularity on the melting line, they will expect a break and the appearance of a liquid-liquid line. In this short paper, we are going to show, that in the case of the high-pressure nitrogen studied recently by Mukherjee and Boehler, the high-pressure data can be easily described by a smooth, break-free function, the modified Simon-Glatzel equation. In this way, the break, suggested by them and consequently the suggested appearance of a new liquid phase of the nitrogen might be artefacts.

  20. 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT

    International Nuclear Information System (INIS)

    Zhou, Xin; Wang, Dianzheng; Liu, Xihe; Zhang, DanDan; Qu, Shilian; Ma, Jing; London, Gary; Shen, Zhijian; Liu, Wei

    2015-01-01

    Microstructure defects set the mechanical property limits for solid Co–Cr–Mo alloy prepared by selective laser melting (SLM). Previous studies were mainly based on 2D SEM images and thus not able to provide information of the 3D morphologies of the complex defects. In this paper, the remaining porosities in Co–Cr–Mo alloy parts prepared by selective laser melting were presented in relation to the laser processing parameters. In order to understand the defect forming mechanism, accurate 3D images of defects inside SLM fabricated Co–Cr–Mo samples were provided by synchrotron radiation micro-CT imaging of 300 μm thick slices cut from a 10 mm cube. With 3D reconstructed images distinctive morphologies of SLM defects spanning across the consolidated powder layers were generated. The faults can be classified as single layer or multi-layers defects. The accidental single layer defects form as gaps between adjacent laser melt tracks or melt track discontinuousness caused by inherent fluid instability under various disturbances. The first formed single layer defect generates often a multi-layer defect spanning for 2–3 subsequent powder layers. By stabilizing the melt pool flow and by reducing the surface roughness through adjusting processing parameters it appears possible to reduce the defect concentrations

  1. Apparatus and methods for investigations into acoustic properties of electronic melts

    International Nuclear Information System (INIS)

    Glazov, V.M.; Timoshenko, V.I.; Kim, S.G.

    1985-01-01

    Apparatus and highly sensitive methods of systematic investigations into acoustic properties of electronic melts are described. A variant of a measuring cell to investigate agressive melts is presented. A new technique for the reception of an acoustic contact with high transmission capacity of ultrasonic wave based on utilization of clarified layers of liquid boron anhydride is described. Results of calibration tests on lead and aluminium melts point to a good agreement with literature data. High sensitivity of the above technique allows one to reveal thin structural effects in melts

  2. Use of gamma surveys from the aircraft for hydrological forecasts on the area with irregular snow pack

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, L K

    1979-01-01

    Gamma snow surveys from the aircraft based on the measurements of the attenuation of gamma-radiation of soils by the snow pack are discussed. Radiation rate depends on the amount of water on the soil surface and in the top layer 30 to 40 cm deep. Therefore, if measurements are made twice (without snow and with snow pack available) water equivalent of snow cover may be determined only when soil moisture content changes do not occur during the period between the dates of gamma surveys. In the areas with frequent winter thaws, standard land snow surveys do not provide snow storage evaluation with the accuracy sufficient for spring flow prediction. It is shown that when gamma-radiation of absolutely dry soils determined at the laboratory is known as well as of naturally moistened soils during the periods of gamma surveys of the snow pack from the aircraft, and when data is available on soil moisture content obtained from the measurements at the base land network, then a reliable estimation of snow storage on the watershed surfaces in the regions with irregular snow cover is quite possible. This ensures a significant accuracy increase of spring snow melt flood forecasting, particularly concerning winters with little snow.

  3. Use of gamma surveys from the airraft for hydrological forecasts on the area with irregular snow pack

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, L K [State Hydrological Institute, Leningrad (USSR)

    1979-01-01

    Gamma snow surveys from aircraft based on the measurement of the attenuation of gamma-radiation of soils by the snow pack are discussed. Radiation rate depends on the amount of water on the soil surface and in the top layer 30 to 40 cm deep. Therefore, if measurements are made twice (without snow and with snow pack available) the water equivalent of the snow cover may be determined only in cases when soil moisture content changes do not occur during the period between the dates of gamma surveys. In areas with frequent winter thaws standard land snow surveys do not provide snow storage evaluation with accuracy sufficient for spring flow prediction. It is shown that when gamma-radiation of absolutely dry soils determined at the laboratory is known, as well as of naturally moistened soils during the periods of gamma surveys of the snow pack from aircraft, and when data is available on soil moisture content obtained from measurements at the base land network, then a reliable estimation of snow storage on the watershed surfaces in regions with irregular snow cover is quite possible. This ensures a significant accuracy increase in spring snow melt flood forecasting, in particular during winters with little snow.

  4. A research about characteristics of longitudinal variations of ES layers irregularities based on CHAMP occultation measurements

    Science.gov (United States)

    Liao, Sunmin

    2018-04-01

    Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.

  5. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  6. Validating predictions made by a thermo-mechanical model of melt segregation in sub-volcanic systems

    Science.gov (United States)

    Roele, Katarina; Jackson, Matthew; Morgan, Joanna

    2014-05-01

    A quantitative understanding of the spatial and temporal evolution of melt distribution in the crust is crucial in providing insights into the development of sub-volcanic crustal stratigraphy and composition. This work aims to relate numerical models that describe the base of volcanic systems with geophysical observations. Recent modelling has shown that the repetitive emplacement of mantle-derived basaltic sills, at the base of the lower crust, acts as a heat source for anatectic melt generation, buoyancy-driven melt segregation and mobilisation. These processes form the lowermost architecture of complex sub-volcanic networks as upward migrating melt produces high melt fraction layers. These 'porosity waves' are separated by zones with high compaction rates and have distinctive polybaric chemical signatures that suggest mixed crust and mantle origins. A thermo-mechanical model produced by Solano et al in 2012 has been used to predict the temperatures and melt fractions of successive high porosity layers within the crust. This model was used as it accounts for the dynamic evolution of melt during segregation and migration through the crust; a significant process that has been neglected in previous models. The results were used to input starting compositions for each of the layers into the rhyolite-MELTS thermodynamic simulation. MELTS then determined the approximate bulk composition of the layers once they had cooled and solidified. The mean seismic wave velocities of the polymineralic layers were then calculated using the relevant Voight-Reuss-Hill mixture rules, whilst accounting for the pressure and temperature dependence of seismic wave velocity. The predicted results were then compared with real examples of reflectivity for areas including the UK, where lower crustal layering is observed. A comparison between the impedance contrasts at compositional boundaries is presented as it confirms the extent to which modelling is able to make predictions that are

  7. Strategic Analysis of Irregular Warfare

    Science.gov (United States)

    2010-03-01

    the same mathematical equations used by Lanchester .10 Irregular Warfare Theory and Doctrine It is time to develop new analytical methods and models...basis on which to build, similar to what Lanchester provided almost 100 years ago. Figure 9 portrays both Lanchester’s approach and an irregular 17

  8. Irregular Migration in Jordan, 1995-2007

    OpenAIRE

    AROURI, Fathi A.

    2008-01-01

    Euro-Mediterranean Consortium for Applied Research on International Migration (CARIM) This paper tackles the question of irregular migration in Jordan through its four main aspects. The first concerns irregular labour migrants and has been approached by using figures showing the socio-economic profile of non Jordanians working in Jordan and, additionally, unemployment in Jordan. This is done by assuming close similarities between legal and irregular labour migrants. The second is an attemp...

  9. Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Abraham, F.F.; Broughton, J.Q.

    1986-01-01

    The pulsed heating of Si (100) and (111) surfaces has been simulated by molecular dynamics. The (111) crystal-melt interface propagates by layer-by-layer growth whereas the (100) interface grows in a continuous fashion. The equilibrium crystal-melt interface is sharp for the (111) orientation and broad for the (100) orientation. These simulations are the first use of nonpairwise potentials to study interfaces between condensed phases, and the results support models of interfaces which heretofore had to be deduced from indirect experimental information

  10. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    International Nuclear Information System (INIS)

    Tammas-Williams, S.; Zhao, H.; Léonard, F.; Derguti, F.; Todd, I.; Prangnell, P.B.

    2015-01-01

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population

  11. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    Energy Technology Data Exchange (ETDEWEB)

    Tammas-Williams, S., E-mail: Samuel.tammas-wiliams@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Zhao, H. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Léonard, F. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Derguti, F.; Todd, I. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Prangnell, P.B. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-04-15

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.

  12. Refraction traveltime tomography based on damped wave equation for irregular topographic model

    Science.gov (United States)

    Park, Yunhui; Pyun, Sukjoon

    2018-03-01

    Land seismic data generally have time-static issues due to irregular topography and weathered layers at shallow depths. Unless the time static is handled appropriately, interpretation of the subsurface structures can be easily distorted. Therefore, static corrections are commonly applied to land seismic data. The near-surface velocity, which is required for static corrections, can be inferred from first-arrival traveltime tomography, which must consider the irregular topography, as the land seismic data are generally obtained in irregular topography. This paper proposes a refraction traveltime tomography technique that is applicable to an irregular topographic model. This technique uses unstructured meshes to express an irregular topography, and traveltimes calculated from the frequency-domain damped wavefields using the finite element method. The diagonal elements of the approximate Hessian matrix were adopted for preconditioning, and the principle of reciprocity was introduced to efficiently calculate the Fréchet derivative. We also included regularization to resolve the ill-posed inverse problem, and used the nonlinear conjugate gradient method to solve the inverse problem. As the damped wavefields were used, there were no issues associated with artificial reflections caused by unstructured meshes. In addition, the shadow zone problem could be circumvented because this method is based on the exact wave equation, which does not require a high-frequency assumption. Furthermore, the proposed method was both robust to an initial velocity model and efficient compared to full wavefield inversions. Through synthetic and field data examples, our method was shown to successfully reconstruct shallow velocity structures. To verify our method, static corrections were roughly applied to the field data using the estimated near-surface velocity. By comparing common shot gathers and stack sections with and without static corrections, we confirmed that the proposed tomography

  13. Fitting Irregular Shape Figures into Irregular Shape Areas for the Nesting Problem in the Leather Industry

    Directory of Open Access Journals (Sweden)

    Guevara-Palma Luis

    2015-01-01

    Full Text Available The nesting problem of irregular shapes within irregular areas has been studied from several approaches due to their application in different industries. The particular case of cutting leather involves several restrictions that add complexity to this problem, it is necessary to generate products that comply with the quality required by customers This paper presents a methodology for the accommodation of irregular shapes in an irregular area (leather considering the constraints set by the footwear industry, and the results of this methodology when applied by a computer system. The scope of the system is to develop a working prototype that operates under the guidelines of a commercial production line of a sponsor company. Preliminary results got a reduction of 70% of processing time and improvement of 5% to 7% of the area usage when compared with manual accommodation.

  14. Hardfacing of duplex stainless steel using melting and diffusion processes

    Science.gov (United States)

    Lailatul, H.; Maleque, M. A.

    2017-03-01

    Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.

  15. A semi-analytical thermal modelling approach for selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; van Keulen, A.; Ayas, C.

    2018-01-01

    Selective laser melting (SLM) wherein a metal part is built in a layer-by-layer manner in a powder bed is a promising and versatile way for manufacturing components with complex geometry. However, components built by SLM suffer from substantial deformation of the part and residual stresses.

  16. Selective laser melting of Al-12Si

    OpenAIRE

    Prashanth, Konda Gokuldoss

    2014-01-01

    Selective laser melting (SLM) is a powder-based additive manufacturing technique consisting of the exact reproduction of a three dimensional computer model (generally a computer-aided design CAD file or a computer tomography CT scan) through an additive layer-by-layer strategy. Because of the high degree of freedom offered by the additive manufacturing, parts having almost any possible geometry can be produced by SLM. More specifically, with this process it is possible to build parts with ext...

  17. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  18. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  19. How ice shelf morphology controls basal melting

    Science.gov (United States)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  20. Electron beam melting of high niobium containing TiAl alloy: feasibility investigation

    Energy Technology Data Exchange (ETDEWEB)

    Terner, Mathieu; Biamino, Sara; Epicoco, Paolo; Fino, Paolo; Pavese, Matteo; Badini, Claudio [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino (Italy); Penna, Andrea; Gennaro, Paolo [AvioProp, Novara (Italy); Hedin, Oscar; Ackelid, Ulf [Arcam AB, Molndal (Sweden); Sabbadini, Silvia; Pelissero, Federica [Avio SpA, Torino (Italy)

    2012-08-15

    Third generation {gamma}-TiAl alloys with a high niobium content, Ti-(47-48)Al-2Cr-8Nb, were processed by electron beam melting (EBM). This near-net-shape additive manufacturing process produces complex parts according to a CAD design. The starting powder is deposited layer by layer on the building table and selectively melted to progressively form the massive part. The EBM parameters such as layer thickness, melting temperature, scanning speed, or building strategy were set up to minimize porosity. The chemical composition of the built material is similar to the composition of the base powder despite a slight evaporation of aluminum and reveals a neglectable oxygen pick-up. The very fine equiaxed microstructure resulting after EBM can be then set up by heat treatment (HT). According to the HT temperature in particular, an equiaxed microstructure, a duplex microstructure with different lamellar ratio and a fully lamellar microstructure is obtained. Not only test bars have been produced but also complex parts such as demo low pressure turbine blades. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting

    Science.gov (United States)

    Zhou, Y. H.; Lin, S. F.; Hou, Y. H.; Wang, D. W.; Zhou, P.; Han, P. L.; Li, Y. L.; Yan, M.

    2018-05-01

    Ti45Al8Nb alloy (in at.%) is designed to be an important high-temperature material. However, its fabrication through laser-based additive manufacturing is difficult to achieve. We present here that a good understanding of the surface structure of raw material (i.e. Ti45Al8Nb powder) is important for optimizing its process by selective laser melting (SLM). Detailed X-ray photoelectron spectroscopy (XPS) depth profiling and transmission electron microscopy (TEM) analyses were conducted to determine the surface structure of Ti45Al8Nb powder. An envelope structure (∼54.0 nm in thickness) was revealed for the powder, consisting of TiO2 + Nb2O5 (as the outer surface layer)/Al2O3 + Nb2O5 (as the intermediate layer)/Al2O3 (as the inner surface layer)/Ti45Al8Nb (as the matrix). During SLM, this layered surface structure interacted with the incident laser beam and improved the laser absorptivity of Ti45Al8Nb powder by ∼32.21%. SLM experiments demonstrate that the relative density of the as-printed parts can be realized to a high degree (∼98.70%), which confirms good laser energy absorption. Such layered surface structure with appropriate phase constitution is essential for promoting SLM of the Ti45Al8Nb alloy.

  2. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S

    2014-01-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  3. Layered graphene-mica substrates induce melting of DNA origami

    Science.gov (United States)

    Green, Nathaniel S.; Pham, Phi H. Q.; Crow, Daniel T.; Burke, Peter J.; Norton, Michael L.

    2018-04-01

    Monolayer graphene supported on mica substrates induce melting of cross-shaped DNA origami. This behavior can be contrasted with the case of origami on graphene on graphite, where an expansion or partially re-organized structure is observed. On mica, only well-formed structures are observed. Comparison of the morphological differences observed for these probes after adsorption on these substrates provides insights into the sensitivity of DNA based nanostructures to the properties of the graphene monolayer, as modified by its substrate.

  4. Disentanglement Effects on the Welding Behaviour of Polymer Melts during the Fused-Filament-Fabrication Method for Additive Manufacturing

    OpenAIRE

    McIlroy, Claire; Olmsted, Peter

    2017-01-01

    Although 3D printing has the potential to transform manufacturing processes, the strength of printed parts often does not rival that of traditionally-manufactured parts. The fused-filament fabrication method involves melting a thermoplastic, followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object. The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface. However, diffusio...

  5. Legal aspects of the EU policy on irregular immigration

    Directory of Open Access Journals (Sweden)

    Voinikov Vadim

    2015-12-01

    Full Text Available This article addresses the issues pertaining to the adoption and development of legislation on irregular migration in the context of uncontrolled growth in the number of immigrants from North Africa and the Middle East to the EU. The article attempts at studying the EU legislation on irregular migration, classifying it, and analysing the prospects of EU migration legislation in the light of an increase in irregular immigration into the EU. The author systematises, classifies the current EU legislation on irregular immigration, and analyses the conditions, in which this legislation was developed. Using the legislation analysis method, the author proposes the following system of EU legislation on irregular immigration: rules preventing assistance to irregular immigration, rules preventing employment of irregular immigrants, rules on the return of irregular migrants and readmission, rules on border control, and rules on collaboration with third countries. The author pays special attention to analysing the current state of irregular immigration to the EU, which was dubbed the ‘greatest migration crisis in Europe’. The conclusion is that the European Union succeeded in the development of pioneering legislation on irregular immigration, which can serve as the basis for reception by other states. However, changes in the political and economic situation in the EU’s southern borderlands made the current legal mechanisms incapable of withstanding new threats. It necessitates a radical reform of the legislation on irregular immigration.

  6. Irregular menstruation according to occupational status.

    Science.gov (United States)

    Kwak, Yeunhee; Kim, Yoonjung

    2017-07-06

    This cross-sectional study explored associations of irregular menstruation with occupational characteristics, using secondary analyses of data from 4,731 women aged 19-54 years, collected from a nationally representative sample, the Korea National Health and Nutrition Examination Survey-V during 2010-2012. The associations between irregular menstruation and occupation were explored using multiple logistic regression. Compared to non-manual workers, service/sales workers had a greater odds of irregular menstruation (adjusted odds ratio [aOR]: 1.44; 95percent confidence interval [CI]: 1.04-1.99) as did manual workers and unemployed women (aOR: 1.56; 95percent CI: 1.10-2.22, aOR: 1.46; 95percent CI: 1.14-1.89, respectively). Compared to regular workers, temporary workers and unemployed women had aORs of 1.52 (95percent CI: 1.08-2.13) and 1.33 (95percent CI: 1.05-1.69), respectively. Also, when compared to full-time workers, part-time workers and unemployed women had greater odds of irregular menstruation (aOR: 1.41; 95percent CI: 1.00-2.00 and aOR: 1.29; 95percent CI: 1.03-1.63, respectively). Furthermore, compared to daytime workers, shift workers and unemployed women had greater odds irregular menstruation (aOR: 1.39; 95percent CI: 1.03-1.88 and aOR: 1.28; 95percent CI: 1.04-1.59, respectively). Women with these occupational characteristics should be screened for early diagnosis and intervention for irregular menstruation.

  7. Irregular conformal block, spectral curve and flow equations

    International Nuclear Information System (INIS)

    Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong

    2016-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of irregular conformal block using the spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2) for the gauge theory) and third order (W_3 symmetry, SU(3)) differential equations of a polynomial with finite degree. The conformal and W symmetry generate the flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  8. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  9. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand

    2015-05-01

    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  10. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of this...

  11. Ethical issues in irregular migration research

    NARCIS (Netherlands)

    Duvell, F.; Triandafyllidou, A.; Vollmer, B.

    2008-01-01

    This paper is concerned with the ethical issues arising for researchers engaged in the study of irregular migration. Irregular migration is by definition an elusive phenomenon as it takes place in violation of the law and at the margins of society. This very nature of the phenomenon raises important

  12. Assimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters

    International Nuclear Information System (INIS)

    Brown, Kristen A.; Harlim, John

    2013-01-01

    In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable

  13. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  14. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  15. Thermocapillary convection of melts and its role in laser-plasma synthesis and laser-induced amorphism

    Science.gov (United States)

    Uglov, A. A.; Smurov, I. Iu.; Gus'kov, A. G.; Semakhin, S. A.

    1987-06-01

    The role of thermocapillary convection in mass transfer processes in melts is investigated analytically and experimentally using vacuum-arc melted Ni63-Ta37 and Cu50-Zr50 alloys. It is shown that thermocapillary convection not only leads to the transfer of alloying components to the deeper layers of the melt but also may produce, in certain cases, a significant temperature redistribution in the liquid phase. Convective transfer dominates over conduction when the product of Re and Pr is greater than 1. In the experiments, the structure of the amorphous and crystalline layers in the solidified alloys is found to be in qualitative agreement with the structure of a thermocapillary vortex.

  16. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T

    2015-01-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  17. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  18. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  19. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  20. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Andrew J; Li Lin [Laser Processing Research Centre, Department of Mechanical, Aerospace and Manufacturing Engineering, University of Manchester Institute of Science and Technology, PO Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2004-07-21

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  1. Locating irregularly shaped clusters of infection intensity

    Directory of Open Access Journals (Sweden)

    Niko Yiannakoulias

    2010-05-01

    Full Text Available Patterns of disease may take on irregular geographic shapes, especially when features of the physical environment influence risk. Identifying these patterns can be important for planning, and also identifying new environmental or social factors associated with high or low risk of illness. Until recently, cluster detection methods were limited in their ability to detect irregular spatial patterns, and limited to finding clusters that were roughly circular in shape. This approach has less power to detect irregularly-shaped, yet important spatial anomalies, particularly at high spatial resolutions. We employ a new method of finding irregularly-shaped spatial clusters at micro-geographical scales using both simulated and real data on Schistosoma mansoni and hookworm infection intensities. This method, which we refer to as the “greedy growth scan”, is a modification of the spatial scan method for cluster detection. Real data are based on samples of hookworm and S. mansoni from Kitengei, Makueni district, Kenya. Our analysis of simulated data shows how methods able to find irregular shapes are more likely to identify clusters along rivers than methods constrained to fixed geometries. Our analysis of infection intensity identifies two small areas within the study region in which infection intensity is elevated, possibly due to local features of the physical or social environment. Collectively, our results show that the “greedy growth scan” is a suitable method for exploratory geographical analysis of infection intensity data when irregular shapes are suspected, especially at micro-geographical scales.

  2. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  3. Detecting chaos in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  4. Effects of ZrB{sub 2} on substructure and wear properties of laser melted in situ ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chao, Yuhjin [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Luo, Zhen, E-mail: lz@tju.edu.cn [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Cai, Yangchuan [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-01

    Graphical abstract: - Highlights: • Laser beam partly disperses ZrB{sub 2} particle clusters and showing dispersed particles state after matrix solidification. • Laser melting process narrower cellular spacing in composites than AA6061 matrix. • Compared with matrix alloy, crystal orientation near melted layer edge of the composites is almost random duo to heterogeneous nucleation in melt and pinning effect of laser dispersed ZrB{sub 2} nanoparticles at solidification front. • Laser melted layer shows better wear properties than matrix and composite without laser melting. - Abstract: Aluminum matrix composites reinforced by in situ ZrB{sub 2} particles were successfully fabricated from an Al-KBF{sub 4}-K{sub 2}ZrF{sub 6} system via a direct melt reaction. A laser surface melting strategy is used to improve the surface strength of the in situ ZrB{sub 2p}/6061Al composite, which includes a series of laser-melted composites with different laser power processed by a 2 kW YAG laser generator. XRD and EDS results demonstrated the existence of ZrB{sub 2} nanoparticles in the composite. After laser melting, the penetration depth of the molten pool increases with increasing power density. OM and SEM analysis indicate that the laser melting process yields narrower cellular spacing of the matrix and partly disperses the ZrB{sub 2} particle clusters. Compared with laser-melted matrix alloys, the crystal orientations near the melted layers edge of the composite are almost random due to heterogeneous nucleation in the melt and the pinning effect of laser-dispersed ZrB{sub 2} nanoparticles at the solidification front. Wear test results show that the laser melted layer performs better at wear resistance than both the substrate and the matrix AA6061 by measuring wear mass loss. Compared with composite samples prepared without laser melting, the wear mass loss of the laser melted composites decreased from 61 to 56 mg under a load of 98 N for 60 min.

  5. Fatigue damage estimation using irregularity factor. First report, irregularity factor calculations for narrow and broadband random time histories

    Science.gov (United States)

    Susuki, I.

    1981-11-01

    The results of an analysis of the irregularity factors of stationary and Gaussian random processes which are generated by filtering the output of a pure or a band-limited white noise are presented. An ideal band pass filter, a trapezoidal filter, and a Butterworth type band pass filter were examined. It was found that the values of the irregularity factors were approximately equal among these filters if only the end-slopes were the same rates. As the band width of filters increases, irregularity factors increase monotonically and approach the respective constant values depending on the end-slopes. This implies that the noise characteristics relevant to the fatigue damage such as statistical aspects of the height of the rise and fall or the distribution of the peak values are not changed for a broad band random time history. It was also found that the effect of band limitation of input white noise on irregularity factors is negligibly small.

  6. Ion beam surface treatment: A new capability for rapid melt and resolidification of surfaces

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McIntyre, D.C.; Buchheit, R.G.; Greenly, J.B.; Thompson, M.O.

    1994-01-01

    The emerging capability to produce high average power (5--250 kW) pulsed ion beams at 0.2--2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This technique uses high energy, pulsed (≤100 ns) ion beams to directly deposit energy in the top 2--20 micrometers of the surface of any material. Depth of treatment is controllable by varying the ion energy and species. Deposition of the energy with short pulses in a thin surface layer allows melting of the layer with relatively small energies and allows rapid cooling of the melted layer by thermal diffusion into the underlying substrate. Typical cooling rates of this process (10 9 10 10 K/sec) cause rapid resolidification, resulting in production of non-equilibrium microstructures (nano-crystalline and metastable phases) that have significantly improved corrosion, wear, and hardness properties. We have conducted IBEST feasibility experiments with results confirming surface hardening, nanocrystaline grain formation, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning

  7. Simultaneous observations of ESF irregularities over Indian region using radar and GPS

    Directory of Open Access Journals (Sweden)

    S. Sripathi

    2008-10-01

    Full Text Available In this paper, we present simultaneous observations of temporal and spatial variability of total electron content (TEC and GPS amplitude scintillations on L1 frequency (1.575 GHz during the time of equatorial spread F (ESF while the MST radar (53 MHz located at Gadanki (13.5° N, 79.2° E, Dip latitude 6.3° N, a low latitude station, made simultaneous observations. In particular, the latitudinal and longitudinal extent of TEC and L-band scintillations was studied in the Indian region for different types of ESF structures observed using the MST radar during the low solar activity period of 2004 and 2005. Simultaneous radar and GPS observations during severe ESF events in the pre-midnight hour reveal that significant GPS L band scintillations, depletions in TEC, and the double derivative of the TEC index (DROTI, which is a measure of fluctuations in TEC, obtained at low latitudes coincide with the appearance of radar echoes at Gadanki. As expected, when the irregularities reach higher altitudes as seen in the radar map during pre-midnight periods, strong scintillations on an L-band signal are observed at higher latitudes. Conversely, when radar echoes are confined to only lower altitudes, weak scintillations are found and their latitudinal extent is small. During magnetically quiet periods, we have recorded plume type radar echoes during a post-midnight period that is devoid of L-band scintillations. Using spectral slopes and cross-correlation index of the VHF scintillation observations, we suggest that these irregularities could be "dead" or "fossil" bubbles which are just drifting in from west. This scenario is consistent with the observations where suppression of pre-reversal enhancement (PRE in the eastward electric field is indicated by ionosonde observations of the height of equatorial F layer and also occurrence of low spectral width in the radar observations relative to pre-midnight period. However, absence of L-band scintillations during

  8. On irregularity strength of disjoint union of friendship graphs

    Directory of Open Access Journals (Sweden)

    Ali Ahmad

    2013-11-01

    Full Text Available We investigate the vertex total and edge total modication of the well-known irregularity strength of graphs. We have determined the exact values of the total vertex irregularity strength and the total edge irregularity strength of a disjoint union of friendship graphs.

  9. Influence of laser alloyed layer of carbon steel with tantalum on the structure and surface layer properties

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.; Kac, S.

    1999-01-01

    The paper describes the microstructure and properties (chemical composition and microhardness) of the surface laser alloyed layer with tantalum. The surface alloyed zones varied in microstructure, zones depth and width, as well as Ta content according to the thickness of the coated layer, bonding paint type and process parameters (power and scanning velocity). The electron microprobe analysis of melts showed that higher tantalum content in the melted zone resulted from the thicker original Ta coating as well as slower scanning velocity. Scanning electron microscopy examinations show that dendritic structure of the melted zone becomes evident when carbon was used as one of the components of the binder, while structure is typically martensitic when silicon containing binder was used for powder deposition. Samples covered with Ta and carbon containing binder showed after laser alloying higher hardness than in case of using silicon containing binder. (author)

  10. Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be

    Directory of Open Access Journals (Sweden)

    N.S. Klimov

    2017-08-01

    Full Text Available Material migration in ITER is expected to move beryllium (Be eroded from the first wall primarily to the tungsten (W divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI. The Be layers (1→50µm thick are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks and on tile edges. At 0.5MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER. Be layer of 10µm thick on Be target has higher resistance to plasma irradiation than 1 and 55µm, and retain their integrity up to the maximum pulse number at 0.2MJm−2. For 1µm and 55µm thick on Be target significant Be layer losses were observed at 0.2MJm−2.

  11. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  12. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  13. Melt pool modelling, simulation and experimental validation for SLM

    NARCIS (Netherlands)

    Wits, Wessel

    2017-01-01

    SLM parts are built by successively melting layers of powder in a powder bed. Process parameters are often optimized experimentally by laser scanning a number of single tracks and subsequently determining which settings lead to a good compromise between quality and build speed. However,

  14. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  15. Experimental study of natural convection melting of ice in salt solutions

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory

  16. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behavior

    NARCIS (Netherlands)

    Ocelik, V; Nijman, S.; van Ingen, R; Oliveira, U; De Hosson, J Th M

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied exptl. and theor. by FEM calcns. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminum oxide layer on the Al melt surface

  17. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    International Nuclear Information System (INIS)

    Dziadoń, Andrzej; Mola, Renata; Błaż, Ludwik

    2016-01-01

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al 3 Mg 2 , Mg 17 Al 12 and Mg 2 Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO 2 laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  18. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dziadoń, Andrzej [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Mola, Renata, E-mail: rmola@tu.kielce.pl [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Błaż, Ludwik [Department of Structure and Mechanics of Solids, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2016-08-15

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  19. Characteristics of ionospheric irregularities causing scintillations at VHF/UHF

    International Nuclear Information System (INIS)

    Vats, H.O.; Deshpande, M.R.; Rastogi, R.G.

    1978-01-01

    Some properties of ionization irregularities using amplitude scintillation records of radio beacons from ATS-6 (phase II) at Ootacamund, India have been investigated. For the estimation of scale-size and strength of the irregularities a simple diffraction model has been used which explains only weak and moderate equatorial scintillation observations. It was found that the scale sizes of day time E-region irregularities are smaller than those in the F-region during night time in addition, irregularities are generated initially at large scale sizes which later break up into smaller scale sizes

  20. 14 CFR 135.65 - Reporting mechanical irregularities.

    Science.gov (United States)

    2010-01-01

    ... irregularities and their correction. (b) The pilot in command shall enter or have entered in the aircraft maintenance log each mechanical irregularity that comes to the pilot's attention during flight time. Before each flight, the pilot in command shall, if the pilot does not already know, determine the status of...

  1. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  2. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  3. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  4. High porosity harzburgite and dunite channels for the transport of compositionally heterogeneous melts in the mantle: II. Geochemical consequences

    Science.gov (United States)

    Liang, Y.; Schiemenz, A.; Xia, Y.; Parmentier, E.

    2009-12-01

    In a companion numerical study [1], we explored the spatial distribution of high porosity harzburgite and dunite channels produced by reactive dissolution of orthopyroxene (opx) in an upwelling mantle column and identified a number of new features. In this study, we examine the geochemical consequences of channelized melt flow under the settings outlined in [1] with special attention to the transport of compositionally heterogeneous melts and their interactions with the surrounding peridotite matrix during melt migration in the mantle. Time-dependent transport equations for a trace element in the interstitial melt and solids that include advection, dispersion, and melt-rock reaction were solved in a 2-D upwelling column using the high-order numerical methods outlined in [1]. The melt and solid velocities were taken from the steady state or quasi-steady state solutions of [1]. In terms of trace element fractionation, the simulation domain can be divided into 4 distinct regions: (a) high porosity harzburgite channel, overlain by; (b) high porosity dunite channel; (c) low porosity compacting boundary layer surrounding the melt channels; and (d) inter-channel regions outside (c). In the limit of local chemical equilibrium, melting in region (d) is equivalent to batch melting, whereas melting and melt extraction in (c) is more close to fractional melting with the melt suction rate first increase from the bottom of the melting column to a maximum near the bottom of the dunite channel and then decrease upward in the compacting boundary layer. The melt composition in the high porosity harzburgite channel is similar to that produced by high-degree batch melting (up to opx exhaustion), whereas the melt composition in the dunite is a weighted average of the ultra-depleted melt from the harzburgite channel below, the expelled melt from the compacting boundary layer, and melt produced by opx dissolution along the sidewalls of the dunite channel. Compaction within the dunite

  5. A simple homogeneous model for regular and irregular metallic wire media samples

    Science.gov (United States)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  6. Orbital and Collisional Evolution of the Irregular Satellites

    Science.gov (United States)

    Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.

    2003-07-01

    The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we report a study of the orbital and collisional evolution of the irregular satellites from times after their formation to the present epoch. The purpose of this study is to find out the features of the observed irregular moons that can be attributed to this evolution and separate them from signatures of the formation process. We numerically integrated ~60,000 test satellite orbits to map orbital locations that are stable on long time intervals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit's apocenter to the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by 2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic variations that would indicate

  7. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    International Nuclear Information System (INIS)

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  8. Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien; Renault, Gabriel

    2016-01-01

    An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...

  9. Preparation and properties of thick not intentionally doped GaInP(As)/GaAs layers

    CERN Document Server

    Nohavica, D; Zdansky, K

    1999-01-01

    We report on liquid-phase epitaxial growth of thick layers of GaInP(As), lattice matched to GaAs. Layers with thicknesses up to 10 mu m were prepared in a multi-melt bin, step-cooling, one-phase configuration. Unintentionally doped layers, grown from moderate purity starting materials, show a significant decrease in the residual impurity level when erbium is added to the melt. Fundamental electrical and optical properties of the layers were investigated. (author)

  10. Challenges in Laser Sintering of Melt-Processable Thermoset Imide Resin

    Science.gov (United States)

    Chuang, Kathy C.; Gornet, Timothy; Koerner, Hilmar

    2016-01-01

    Polymer Laser Sintering (LS) is an additive manufacturing technique that builds 3D models layer by layer using a laser to selectively melt cross sections in powdered polymeric materials, following sequential slices of the CAD model. LS generally uses thermoplastic polymeric powders, such as polyamides (i.e. Nylon), and the resultant 3D objects are often weaker in their strength compared to traditionally processed materials, due to the lack of polymer inter-chain connection in the z-direction. The objective of this project is to investigate the possibility of printing a melt-processable RTM370 imide resin powder terminated with reactive phenylethynyl groups by LS, followed by a postcure in order to promote additional crosslinking to achieve higher temperature (250-300 C) capability. A preliminary study to build tensile specimens by LS and the corresponding DSC and rheology study of RTM370 during LS process is presented.

  11. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    Science.gov (United States)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  12. Selective laser melting of Inconel super alloy-a review

    Science.gov (United States)

    Karia, M. C.; Popat, M. A.; Sangani, K. B.

    2017-07-01

    Additive manufacturing is a relatively young technology that uses the principle of layer by layer addition of material in solid, liquid or powder form to develop a component or product. The quality of additive manufactured part is one of the challenges to be addressed. Researchers are continuously working at various levels of additive manufacturing technologies. One of the significant powder bed processes for met als is Selective Laser Melting (SLM). Laser based processes are finding more attention of researchers and industrial world. The potential of this technique is yet to be fully explored. Due to very high strength and creep resistance Inconel is extensively used nickel based super alloy for manufacturing components for aerospace, automobile and nuclear industries. Due to law content of Aluminum and Titanium, it exhibits good fabricability too. Therefore the alloy is ideally suitable for selective laser melting to manufacture intricate components with high strength requirements. The selection of suitable process for manufacturing for a specific component depends on geometrical complexity, production quantity, and cost and required strength. There are numerous researchers working on various aspects like metallurgical and micro structural investigations and mechanical properties, geometrical accuracy, effects of process parameters and its optimization and mathematical modeling etc. The present paper represents a comprehensive overview of selective laser melting process for Inconel group of alloys.

  13. Preparation of melt-spun antimicrobially modified LDH/polyolefin nanocomposite fibers.

    Science.gov (United States)

    Kutlu, Burak; Schröttner, Percy; Leuteritz, Andreas; Boldt, Regine; Jacobs, Enno; Heinrich, Gert

    2014-08-01

    Layered double hydroxide (LDH) was synthesized and organically modified with camphorsulfonic acid (CSA) and ciprofloxacin. The thermal stability of CSA was improved remarkably under LDH shielding. A minimal inhibitory concentration of free CSA against tested bacteria was determined in order to define the essential quantity in LDH modification. The modified LDHs were melt-compounded with high density polyethylene and the prepared nanocomposites were further melt-spun using a piston-type spinning device. The melt-spun fibers were tested for their antimicrobial activity against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. CSA integrated fibers show susceptibility against Gram-positive bacteria and ciprofloxacin integrated fibers showed activity against both Gram-positive and Gram-negative bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Modeling of melt retention in EU-APR1400 ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V. S.; Sulatsky, A. A.; Khabensky, V. B.; Sulatskaya, M. B. [Alexandrov Research Inst. of Technology NITI, Sosnovy Bor (Russian Federation); Gusarov, V. V.; Almyashev, V. I.; Komlev, A. A. [Saint Petersburg State Technological Univ. SPbSTU, St.Petersburg (Russian Federation); Bechta, S. [KTH, Stockholm (Sweden); Kim, Y. S. [KHNP, 1312 Gil 70, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Park, R. J.; Kim, H. Y.; Song, J. H. [KAERI, 989 Gil 111, Daedeokdaero, Yuseong-gu, Daejeon (Korea, Republic of)

    2012-07-01

    A core catcher is adopted in the EU-APR1400 reactor design for management and mitigation of severe accidents with reactor core melting. The core catcher concept incorporates a number of engineering solutions used in the catcher designs of European EPR and Russian WER-1000 reactors, such as thin-layer corium spreading for better cooling, retention of the melt in a water-cooled steel vessel, and use of sacrificial material (SM) to control the melt properties. SM is one of the key elements of the catcher design and its performance is critical for melt retention efficiency. This SM consists of oxide components, but the core catcher also includes sacrificial steel which reacts with the metal melt of the molten corium to reduce its temperature. The paper describes the required properties of SM. The melt retention capability of the core catcher can be confirmed by modeling the heat fluxes to the catcher vessel to show that it will not fail. The fulfillment of this requirement is demonstrated on the example of LBLOCA severe accident. Thermal and physicochemical interactions between the oxide and metal melts, interactions of the melts with SM, sacrificial steel and vessel, core catcher external cooling by water and release of non-condensable gases are modeled. (authors)

  15. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing.

    Science.gov (United States)

    Smith, C J; Tammas-Williams, S; Hernandez-Nava, E; Todd, I

    2017-09-05

    Metallic powder bed additive manufacturing is capable of producing complex, functional parts by repeatedly depositing thin layers of powder particles atop of each other whilst selectively melting the corresponding part cross-section into each layer. A weakness with this approach arises when melting overhanging features, which have no prior melted material directly beneath them. This is due to the lower thermal conductivity of the powder relative to solid material, which as a result leads to an accumulation of heat and thus distortion. The Electron Beam Melting (EBM) process alleviates this to some extent as the powder must first be sintered (by the beam itself) before it is melted, which results in the added benefit of increasing the thermal conductivity. This study thus sought to investigate to what extent the thermal conductivity of local regions in a titanium Ti-6Al-4V powder bed could be varied by imparting more energy from the beam. Thermal diffusivity and density measurements were taken of the resulting sintered samples, which ranged from being loosely to very well consolidated. It was found that the calculated thermal conductivity at two temperatures, 40 and 730 °C, was more than doubled over the range of input energies explored.

  16. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Science.gov (United States)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  17. Irregular activity arises as a natural consequence of synaptic inhibition

    International Nuclear Information System (INIS)

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-01-01

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects

  18. Irregular activity arises as a natural consequence of synaptic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Terman, D., E-mail: terman@math.ohio-state.edu [Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 (United States); Rubin, J. E., E-mail: jonrubin@pitt.edu [Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Diekman, C. O., E-mail: diekman@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  19. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  20. Parallel Computing Strategies for Irregular Algorithms

    Science.gov (United States)

    Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

  1. Ion layers, tides, gravity waves, and electric fields in the upper atmosphere, inferred from Arecibo incoherent scatter radar measurements

    International Nuclear Information System (INIS)

    Morton, Y.T.

    1991-01-01

    This thesis uses data accumulated during 1980-1989 by the Arecibo incoherent scatter radar to study the behavior and physics of ionization irregularities. Low latitude ionization irregularities, known as sporadic-E and intermediate layers, undergo a regular daily descent, convergence, and dumping of ion layers controlled by the neutral tidal wind. A useful way of studying ion layers and their motion is by ion layer trajectory maps which consist of points representing the altitude and time of ionization layers. Two types of maps were used which assigned either a uniform layer intensity or a gray level/pseudo-color to indicate different layer intensities. Important aspects of layer formation are revealed by map analysis. During January, intermediate layers consistently appeared four times per day instead of the normal twice per day pattern. Simulation of ion trajectories based on the ion momentum equation, which includes both Lorentzian and collisional forces, shows that a combination of diurnal, semidiurnal, and six-hour tides is necessary for such a feature to exist, whereas only diurnal and semidiurnal tides are needed to create the normal pattern. The six-hour period tide has not been previously reported. Extra or irregular layers appear frequently in layer trajectory maps, which can be simulated by the addition of gravity waves to the regular tidal wind system. Electric field effects are normally not a factor in low latitude ion layer formation because they are relatively weak and not commonly observed. Layer configurations during a geomagnetic storm, however, indicate that the electric field played an important role in controlling ion motion

  2. Advances in electron dosimetry of irregular fields; Avances en dosimetria de electrones de campos irregulares

    Energy Technology Data Exchange (ETDEWEB)

    Mendez V, J. [Departamento de Radioterapia, Instituto de Enfermedades Neoplasicas, Avenida Angamos Este 2520, Lima 34 (Peru)

    1998-12-31

    In this work it is presented an advance in Electron dosimetry of irregular fields for beams emitted by linear accelerators. At present diverse methods exist which are coming to apply in the Radiotherapy centers. In this work it is proposed a method for irregular fields dosimetry. It will be allow to calculate the dose rate absorbed required for evaluating the time for the treatment of cancer patients. Utilizing the results obtained by the dosimetric system, it has been possible to prove the validity of the method describe for 12 MeV energy and for square field 7.5 x 7.5 cm{sup 2} with percentile error less than 1 % . (Author)

  3. Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems

    International Nuclear Information System (INIS)

    Manai, G.; Delogu, F.

    2007-01-01

    Molecular dynamics simulations have been employed to investigate the melting mechanisms of four different Cu systems consisting of a surface-free crystalline bulk, a semi-crystal terminating with a free surface and two unsupported particles with a radius of about 4 and 8 nm, respectively. Starting from a relaxed configuration at 300 K, the systems were gradually heated up to the characteristic melting points. The surface-free bulk system underwent homogeneous melting at the limit of superheating, whereas the melting of the semi-crystal and of the nanometer-sized particles occurred with heterogeneous features. In these latter cases, the structural and energetic properties revealed a two-state character with a definite difference between disordered surface layers and bulk-like interiors. In addition, the melting point and the latent heat of fusion of the nanometer-sized particles were significantly depressed with respect to the ones of the semi-crystal, approximately corresponding to the equilibrium values. Pre-melting phenomena took place at the free surfaces at temperatures significantly below the melting point, determining the formation of a solid-liquid interface. Numerical findings indicate that in all the cases the onset of melting is connected with the proliferation and migration of lattice defects and that an intimate relationship exists between homogeneous and heterogeneous melting mechanisms

  4. Two-phase convection in Ganymede's high-pressure ice layer - Implications for its geological evolution

    Science.gov (United States)

    Kalousová, Klára; Sotin, Christophe; Choblet, Gaël; Tobie, Gabriel; Grasset, Olivier

    2018-01-01

    Ganymede, the largest moon in the solar system, has a fully differentiated interior with a layer of high-pressure (HP) ice between its deep ocean and silicate mantle. In this paper, we study the dynamics of this layer using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. While focusing on the generation of water at the silicate/HP ice interface and its upward migration towards the ocean, we investigate the effect of bottom heat flux, the layer thickness, and the HP ice viscosity and permeability. Our results suggest that melt can be generated at the silicate/HP ice interface for small layer thickness ( ≲ 200 km) and high values of heat flux ( ≳ 20 mW m-2) and viscosity ( ≳ 1015 Pa s). Once generated, the water is transported through the layer by the upwelling plumes. Depending on the vigor of convection, it stays liquid or it may freeze before melting again as the plume reaches the temperate (partially molten) layer at the boundary with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the permeability of the HP ice. This process constitutes a means of transporting volatiles and salts that might have dissolved into the melt present at the silicate/HP ice interface. As the moon cools down, the HP ice layer becomes less permeable because the heat flux from the silicates decreases and the HP ice layer thickens.

  5. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  6. Kinetics of final stages of spreading of melts on solid surfaces

    International Nuclear Information System (INIS)

    Khlynov, V.V.; Pastukhov, B.A.; Bokser, Eh.L.

    1978-01-01

    Kinetics of the spreading of Fe, Ni and Co melts over the surface of W-Re alloy (27% Re) was studied at 1580, 1500 and 1540 deg C, respectively. The time variant wetting spot radius and wetting angle were recorded using a modified Langmuir's method. Kinetic equations of the propagation of liquid interfacial layer and of the wetting, satisfactorily describing the obtained experimental data, have been derived. The melts have been found to spread by viscous flow and by migration atoms in small regions adjacent to the wetting perimeter

  7. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet

    International Nuclear Information System (INIS)

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2010-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  8. Grain structure evolution in Inconel 718 during selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, H.; Bauereiß, A., E-mail: Andreas.Bauereiss@fau.de; Singer, R.F.; Körner, C.

    2016-06-21

    Selective electron beam melting (SEBM) is an additive manufacturing method where complex parts are built from metal powders in layers of typically 50 µm. An electron beam is used for heating (about 900 °C building temperature) and selective melting of the material. The grain structure evolution is a result of the complex thermal and hydrodynamic conditions in the melt pool. We show how different scanning strategies can be used to produce either a columnar grain structure with a high texture in building direction or an equiaxed fine grained structure. Numerical simulations of the selective melting process are applied to study the fundamental mechanisms responsible for differing grain structures. It is shown, that the direction of the thermal gradient during solidification can be altered by scanning strategies to acquire either epitaxial growth or stray grains. We show that it is possible to locally alter the grain structure of a part, thus allowing tailoring of the mechanical properties.

  9. Two stage melt-rock interaction in the lower oceanic crust of the Parece Vela basin (Philippine sea), evidence from the primitive troctolites from the Godzilla Megamullion

    Science.gov (United States)

    Sanfilippo, A.; Dick, H. J.; Ohara, Y.

    2011-12-01

    Godzilla Megamullion is a giant oceanic core complex exposed in an extinct slow- to intermediate-spreading segment of the Parece Vela Basin (Philippine sea) [1; 2]. It exposes lower crust and mantle rocks on the sea-floor, offering a unique opportunity to unravel the architecture and the composition of the lower oceanic lithosphere of an extinct back arc basin. Here we present data on primitive troctolites and associated olivine-gabbros from the breakaway area of the Godzilla Megamullion. On the basis of the olivine/plagioclase volume ratio, the troctolites are subdivided into Ol-troctolites (Ol/Pl >1) and Pl-troctolites (Ol/Plthe olivine and a melt crystallizing plagioclase and clinopyroxene. We interpret these rocks as reaction products of a dunite matrix with transient basaltic melts [e.g. 3; 4]. Pl-troctolites have euhedral plagioclase and poikilitic olivine and clinopyroxene. Irregular shapes and inverse zoning of the plagioclase chadacrysts within the olivine indicate disequilibrium between existing plagioclase and an olivine-clinopyroxene saturated melt. The occurrence of plagioclase chadacrysts within clinopyroxene ranging from irregular to euhedral in shape suggests crystallization of new lower-Na plagioclase with the clinopyroxene. Olivine oikocrysts in the Pl-troctolites have low-NiO olivine in equilibrium with a high-MgO melt. The Pl-troctolites, then, may be the product of reaction between a plagioclase cumulate and a basaltic melt produced by mixing the high-MgO melt residual to the formation of the Ol-troctolites with new magma. The effect of melt-rock reaction in the Pl- and Ol- troctolites explains the sharp decrease in plagioclase An with respect to Mg# in clinopyroxene and olivine. Furthermore, the melt is shifted towards lower Na, which is consistent with the low Na8 values of the associated MORB glasses (2.4-2.7 wt %). Our results, then, show that melt-rock interaction was a process active in the lower oceanic crust of the Parece Vela basin and

  10. Role of parametric decay instabilities in generating ionospheric irregularities

    International Nuclear Information System (INIS)

    Kuo, S.P.; Cheo, B.R.; Lee, M.C.

    1983-01-01

    We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature

  11. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method.

    Science.gov (United States)

    Tan, Yu Jun; Tan, Xipeng; Yeong, Wai Yee; Tor, Shu Beng

    2016-11-03

    Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE) of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone) (PLC) fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs) differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.

  12. Experiments and analyses on melt-structure-water interactions during severe accidents

    International Nuclear Information System (INIS)

    Seghal, B.R.; Dinh, T.N.; Bui, V.A.; Green, J.A.; Nourgaliev, R.R.; Okkonen, T.O.; Dinh, A.T.

    1998-04-01

    This report is the final report for the research project Melt Structure Water Interactions (MSWI). It describes results of analytical and experimental studies concerning MSWI during the course of a hypothetical core meltdown accident in a LWR. Emphasis has been placed on phenomena which govern vessel failure mode and timing and the mechanisms and properties which govern the fragmentation and breakup of melt jets and droplets. It was found that: 2-D effects significantly diminished the focusing effect of an overlying metallic layer on top of an oxide melt pool. This result improves the feasibility of in-vessel retention of a melt pool through external cooling of the lower head; phenomena related to hole ablation and melt discharge, in the event of vessel failure, are affected significantly by crust formation; the jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters but also on the melt physical properties, which change as the melt cools down from liquid to solid temperature; film boiling was investigated by developing a two-phase flow model and inserting it in a multi-D fluid dynamics code. It was concluded that the thickness of the film on the surface of a melt jet would be small and that the effects of the film on the process should not be large. This conclusion is contrary to the modeling employed in some other codes. The computer codes were developed and validated against the data obtained in the MSWI Project. The melt vessel interaction thermal analysis code describes the process of melt pool formation and convection and the resulting vessel thermal loadings. In addition, several innovative models were developed to describe the melt-water interaction process. The code MELT-3D treats the melt jet as a collection of particles whose movement is described with a three-dimensional Eulerian formulation. The model (SIPHRA) tracks the melt jet with an additional equation, using the

  13. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  14. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    Science.gov (United States)

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  15. Layer-by-layer self-assembled multilayers on PEEK implants improve osseointegration in an osteoporosis rabbit model.

    Science.gov (United States)

    Liu, Xilin; Han, Fei; Zhao, Peng; Lin, Chao; Wen, Xuejun; Ye, Xiaojian

    2017-05-01

    This study aims to fabricate and deposit nanoscale multilayers on polyetheretherketone (PEEK) to improve cell adhesion and osseointegration. Bio-activated PEEK constructs were designed with prepared surface of different layers of polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) multilayers. Irregular morphology was found on the 5 and 10-layer PEEK surfaces, while "island-like" clusters were observed for 20-layer (20 L) multilayers. Besides, the 20 L PEEK showed more hydrophilic feature than native PEEK, and the surface contact angle reduced from 39.7° to 21.7° as layers increased from 5 to 20. In vitro, modified PEEK allowed excellent adhesion and proliferation of bone marrow stromal cells, and induced higher cell growth rate and alkaline phosphatase level. In vivo, this bio-active PEEK exhibited significantly enhanced integration with bone tissue in an osteoporosis rabbit model. This work highlights layer-by-layer self-assembly as a practical method to construct bio-active PEEK implants for enhanced osseointegration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    Science.gov (United States)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  17. THE TYRRHENIAN SECTION OF SAN GIOVANNI DI SINIS (SARDINIA:STRATIGRAPHIC RECORD OF AN IRREGULAR SINGLE HIGH STAND

    Directory of Open Access Journals (Sweden)

    LUCIANO LECCA

    2007-11-01

    Full Text Available A new analysis of the most representative Upper Pleistocene (Tyrrhenian, MIS 5e section of San Giovanni di Sinis (Oristano, Sardinia has provided a more detailed genetic stratigraphy of a low wave energy beach and temperate lagoon up to emerged peri-lagoonal facies deposits. These peri-lagoonal facies contain remains of fossil vertebrates, which, though few and fragmentary, bear witness to an at least temporary freshwater palaeoenvironment and the presence of deers and terrapins. Besides, the stratigraphy of this outcrop shows shoreface-backshore sandstones overlaying an erosion surface cut on the vertebrate-bearing layers. Facies analysis and sequence stratigraphy of the succession have provided support to a new eustatic interpretation significance. In fact, there appears to be evidence of one irregular single eustatic highstand, rather than two eustatic peaks as previously believed. The facies evolution and the local stratigraphic disconformities are interpreted as being associated with a lateral shift of the depositional environment within the same system formed during the MIS 5e sea level variations. As sea water level continued to rise so an erosional unconformity, caused by wave ravinement, formed between the low wave energy beach-lagoon sequence and the successive wave dominated beach facies sequence. This interpretation is supported by comparison with other sections of the Tyrrhenian in western Sardinia. The maximum sea level attained during the Tyrrhenian stage is a clear indication of a warm-temperate climate which can be correlated to the well known orbital interglacial configuration when the eustatic signal of Greenland's ice sheet melting occurred. SHORT NOTES

  18. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  19. A finite volume alternate direction implicit approach to modeling selective laser melting

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Mohanty, Sankhya

    2013-01-01

    Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation...... is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...

  20. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    Science.gov (United States)

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  1. Penetration of a heated pool into a melting miscible substrate

    International Nuclear Information System (INIS)

    Eck, G.; Werle, H.

    1986-01-01

    Core-catchers have been proposed, which, after a core disruptive accident in a nuclear reactor, prevent containment failure caused by contact of the molten debris with the underlying ex-vessel structural materials. Most of these core-catchers are provided with sacrificial layers which on melting consume some fraction of the decay heat and dilute the heat sources and the fissionable material as the core masses are dissolved by the molten sacrificial material. Dilution of the core masses results in relatively low heat fluxes and temperatures at the wall of the core-catcher and, in addition, reduces the probability of recriticality. An experimental study was conducted on melting systems consisting of a liquid over-lying a solid substrate, which after melting of the solid, are mutually miscible. To initiate melting, the liquid was heated either by a planar heater from above or internally by an ac current. The density of the liquid was varied systematically, and it was found that downward heat transfer increases strongly with this parameter. In addition to heat transfer, mass transfer was studied by measuring the local concentration of the molten material in the liquid. A few experiments were performed in which sideward melting and two-dimensional pool growth were investigated

  2. Microstructure of selective laser melted nickel–titanium

    International Nuclear Information System (INIS)

    Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; Wild, Michael de

    2014-01-01

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution

  3. New Opportunities for Remote Sensing Ionospheric Irregularities by Fitting Scintillation Spectra

    Science.gov (United States)

    Carrano, C. S.; Rino, C. L.; Groves, K. M.

    2017-12-01

    In a recent paper, we presented a phase screen theory for the spectrum of intensity scintillations when the refractive index irregularities follow a two-component power law [Carrano and Rino, DOI: 10.1002/2015RS005903]. More recently we have investigated the inverse problem, whereby phase screen parameters are inferred from scintillation time series. This is accomplished by fitting the spectrum of intensity fluctuations with a parametrized theoretical model using Maximum Likelihood (ML) methods. The Markov-Chain Monte-Carlo technique provides a-posteriori errors and confidence intervals. The Akaike Information Criterion (AIC) provides justification for the use of one- or two-component irregularity models. We refer to this fitting as Irregularity Parameter Estimation (IPE) since it provides a statistical description of the irregularities from the scintillations they produce. In this talk, we explore some new opportunities for remote sensing ionospheric irregularities afforded by IPE. Statistical characterization of irregularities and the plasma bubbles in which they are embedded provides insight into the development of the underlying instability. In a companion paper by Rino et al., IPE is used to interpret scintillation due to simulated EPB structure. IPE can be used to reconcile multi-frequency scintillation observations and to construct high fidelity scintillation simulation tools. In space-to-ground propagation scenarios, for which an estimate of the distance to the scattering region is available a-priori, IPE enables retrieval of zonal irregularity drift. In radio occultation scenarios, the distance to the irregularities is generally unknown but IPE enables retrieval of Fresnel frequency. A geometric model for the effective scan velocity maps Fresnel frequency to Fresnel scale, yielding the distance to the irregularities. We demonstrate this approach by geolocating irregularities observed by the CORISS instrument onboard the C/NOFS satellite.

  4. Recrystallization and modification of the stainless-steel surface relief under photonic heat load in powerful plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation); Khimchenko, L. N. [Project Center ITER (Russian Federation); Zhitlukhin, A. M.; Klimov, N. S. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Pitts, R. A. [ITER Organization (France); Linke, J. [EURATOM Association, Forschungszentrum Jülich GmbH (Germany); Bazylev, B. [IHM, Karlsruhe Institute of Technology (Germany); Belova, N. E.; Karpov, A. V. [National Research Centre Kurchatov Institute (Russian Federation); Kovalenko, D. V.; Podkovyrov, V. L.; Yaroshevskaya, A. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2013-11-15

    Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.

  5. State reconstruction and irregular wavefunctions for the hydrogen atom

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-07-01

    Inspired by a recently proposed procedure by Leonhardt and Raymer for wavepacket reconstruction, we calculate the irregular wavefunctions for the bound states of the Coulomb potential. We select the irregular solutions which have the simplest semiclassical limit.

  6. Tin in granitic melts: The role of melting temperature and protolith composition

    Science.gov (United States)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  7. On a new process for cusp irregularity production

    Directory of Open Access Journals (Sweden)

    H. C. Carlson

    2008-09-01

    Full Text Available Two plasma instability mechanisms were thought until 2007 to dominate the formation of plasma irregularities in the F region high latitude and polar ionosphere; the gradient-drift driven instability, and the velocity-shear driven instability. The former mechanism was accepted as accounting for plasma structuring in polar cap patches, the latter for plasma structuring in polar cap sun aligned arcs. Recent work has established the need to replace this view of the past two decades with a new patch plasma structuring process (not a new mechanism, whereby shear-driven instabilities first rapidly structure the entering plasma, after which gradient drift instabilities build on these large "seed" irregularities. Correct modeling of cusp and early polar cap patch structuring will not be accomplished without allowing for this compound process. This compound process explains several previously unexplained characteristics of cusp and early polar cap patch irregularities. Here we introduce additional data, coincident in time and space, to extend that work to smaller irregularity scale sizes and relate it to the structured cusp current system.

  8. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  9. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    International Nuclear Information System (INIS)

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang

    2016-01-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  10. The Impact of Irregular Warfare on the US Army

    National Research Council Canada - National Science Library

    McDonald, III, Roger L

    2006-01-01

    Although the U.S. Army has yet to clearly define irregular warfare, it is imperative that the Army take near-term action to enhance the ability of Soldiers and units to operate effectively in an irregular warfare environment...

  11. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume

    Science.gov (United States)

    Takahashi, E.; Gao, S.

    2015-12-01

    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  12. Experimental investigation of coolability behaviour of irregularly shaped particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Rashid, M.; Kulenovic, R.; Nayak, A.K.

    2010-01-01

    In case of a severe nuclear reactor accident, the core can melt and form a particulate debris bed in the lower plenum of the reactor pressure vessel (RPV). Due to the decay heat, the particle bed, if not cooled properly, can cause failure of the RPV. In order to avoid further propagation of the accident, complete coolability of the debris bed is necessary. For that, understanding of various phenomena taking place during the quenching is important. In the frame of the reactor safety research, fundamental experiments on the coolability of debris beds are carried out at IKE with the test facility 'DEBRIS'. In the present paper, the boiling and dry-out experimental results on a particle bed with irregularly shaped particles mixed with stainless steel balls have been reported. The pressure drops and dry-out heat fluxes of the irregular-particle bed are very similar to those for the single-sized 3 mm spheres bed, despite the fact that the irregular-particle bed is composed of particles with equivalent diameters ranging from 2 to 10 mm. Under top-flooding conditions, the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial drag force. For bottom-flooding with a liquid inflow velocity higher than about 2.7 mm/s, the pressure gradient generally increases consistently with the vapour velocity and the fluid-particle drag becomes important. The system pressures (1 and 3 bar) have negligible effects on qualitative behaviour of the pressure gradients. The coolability of debris beds is mainly limited by the counter-current flooding limit (CCFL) even under bottom-flooding conditions with low flow rates. The system pressure and the flow rate are found to have a distinct effect on the dry-out heat flux. Different classical models have been used to predict the pressure drop characteristics and the dry-out heat flux (DHF). Comparisons are made among the models and experimental results for

  13. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behaviour

    NARCIS (Netherlands)

    Ocelik, V.; Nijman, S.; van Ingen, R.; Oliveira, U.; de Hosson, J.T.M.; Brebbia, CA; DeHosson, JTM; Nishida, SI

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6A14V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminium oxide layer on

  14. Helical wire stress analysis of unbonded flexible riser under irregular response

    Science.gov (United States)

    Wang, Kunpeng; Ji, Chunyan

    2017-06-01

    A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.

  15. Time and latitudinal distribution of the ionospheric irregularities in Brazil, through the VHF-scintillation and ionogram data analysis

    International Nuclear Information System (INIS)

    Nelson, O.R.

    1984-01-01

    Equatorial ionospheric irregularity distribution morphology, and dynamics, and the dynamics of the ambient ionosphere were investigated. Spread F data from ionograms over Fortaleza (4 0 S; 38 0 O) and Cachoeira Paulista (22,7 0 S; 45 0 O), and simultaneous VHF scintillations of geoestationary satellite beacon received over Natal (5,6 0 S; 33,7 0 O) were used to determine the irregularity local time versus seasonal distribution, over the equatorial and low latitude location, during the solar activity maximum as well as minimum epochs. Concept of flux tube alignment properties of the transequatorial plasma bubbles were used to determine statistical features of the plasma bubble rise velocities. Calculations of plasma bubble rise velocities were then carried out for different solar activity epochs and compared with prereversal enhancement amplitude in the F-layer vertical rise velocities, for the same epochs. Using theoretical considerations on the development of plasma bubble based on flux tube integrated properties, the observed dependence of the plasma bubble rise velocities and the F-region dynamo electric field has been analysed to estimate the average ionizations depletions in the plasma bubble. Possible causes for the lack of correlation often observed between bubble rise velocities and F-Layer velocities also are discussed. (Author) [pt

  16. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  17. Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt

    International Nuclear Information System (INIS)

    Zhou Yong-Zhi; Li Mei; Geng Hao-Ran; Yang Zhong-Xi; Sun Chun-Jing

    2011-01-01

    Hurst's exponent of radial distribution functions (RDFs) within the short-range scope of In, Sn and In-40 wt % Sn melts are determined by the rescaled range analysis method. Hurst's exponents H are between 0.94 and 0.97, which display long-range dependence. Within short-range scope, the number of particles from a reference particle belongs to fractional Brownian motion. After RDF serials are randomly scrambled, Hurst's exponents all dramatically dropped, which proves long-range dependence. H irregularly varies as the temperature rises, but the change tendency is not consistent with the correlation radius r c . (general)

  18. Dimensional Accuracy and Surface Roughness Analysis for AlSi10Mg Produced by Selective Laser Melting (SLM

    Directory of Open Access Journals (Sweden)

    Kamarudin K.

    2016-01-01

    Full Text Available Selective Laser Melting (SLM is an Additive Manufacturing (AM technique that built 3D part in a layer-by-layer method by melting the top surface layer of a powder bed with a high intensity laser according to sliced 3D CAD data. AlSi10Mg alloy is a traditional cast alloy that is broadly used for die-casting process and used in automotive industry due its good mechanical properties. This paper seeks to investigate the requirement SLM in rapid tooling application. The feasibility study is done by examining the surface roughness and dimensional accuracy as compared to the benchmark part produced through the SLM process with constant parameters. The benchmark produced by SLM shows the potential of SLM in a manufacturing application particularly in moulds.

  19. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  20. Software support for irregular and loosely synchronous problems

    Science.gov (United States)

    Choudhary, A.; Fox, G.; Hiranandani, S.; Kennedy, K.; Koelbel, C.; Ranka, S.; Saltz, J.

    1992-01-01

    A large class of scientific and engineering applications may be classified as irregular and loosely synchronous from the perspective of parallel processing. We present a partial classification of such problems. This classification has motivated us to enhance FORTRAN D to provide language support for irregular, loosely synchronous problems. We present techniques for parallelization of such problems in the context of FORTRAN D.

  1. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  2. Saturn's Irregular Moon Ymir

    Science.gov (United States)

    Denk, Tilmann; Mottola, S.

    2012-10-01

    Ymir (diameter 18 km), Saturn's second largest retrograde outer or irregular moon, has been observed six times by the Cassini narrow-angle camera (NAC) during the first 7 months in 2012. The observations span phase angles from 2° up to 102° and were taken at ranges between 15 and 18 million kilometers. From such a distance, Ymir is smaller than a pixel in the Cassini NAC. The data reveal a sidereal rotation period of 11.93 hrs, which is 1.6x longer than the previously reported value (Denk et al. 2011, EPSC/DPS #1452). Reason for this discrepancy is that the rotational light curve shows a rather uncommon 3-maxima and 3-minima shape at least in the phase angle range 50° to 100°, which was not recognizable in earlier data. The data cover several rotations from different viewing and illumination geometries and allow for a convex shape inversion with possibly a unique solution for the pole direction. The model reproduces the observed light curves to a very good accuracy without requiring albedo variegation, thereby suggesting that the lightcurve is dominated by the shape of Ymir. Among Saturn's irregular moons, the phenomenon of more than two maxima and minima at moderate to high phase angles is not unique to Ymir. At least Siarnaq and Paaliaq also show light curves with a strong deviation from a double-sine curve. Their rotation periods, however, remain unknown until more data can be taken. The light curve of Phoebe is fundamentally different to Ymir's because it is mainly shaped by local albedo differences and not by shape. Other reliable rotation periods of irregular satellites measured by Cassini include: Mundilfari 6.74 h; Kari 7.70 h; Albiorix 13.32 h; Kiviuq 21.82 h. More uncertain values are: Skathi 12 h; Bebhionn 16 h; Thrymr 27 h; Erriapus 28 h.

  3. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China); Chen, Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system. (author)

  4. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China)], E-mail: huajunwang@126.com; Chen Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system.

  5. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    International Nuclear Information System (INIS)

    Wang Huajun; Chen Zhihao

    2009-01-01

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system

  6. INTERACTION STUDIES OF CERAMIC VACUUM PLASMA SPRAYING FOR THE MELTING CRUCIBLE MATERIALS

    Directory of Open Access Journals (Sweden)

    JONG HWAN KIM

    2013-10-01

    Full Text Available Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasma-sprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600°C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

  7. Heat transfer modelling and stability analysis of selective laser melting

    International Nuclear Information System (INIS)

    Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate

  8. Uniform irradiation of irregularly shaped cavities for photodynamic therapy

    NARCIS (Netherlands)

    Rem, A. I.; van Gemert, M. J.; van der Meulen, F. W.; Gijsbers, G. H.; Beek, J. F.

    1997-01-01

    It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a

  9. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts

    Science.gov (United States)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart

    2018-02-01

    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  10. Electrosynthesis of tantalum borides in oxygen-free and oxygen-containing fluoride melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Polyakov, E.G.; Makarova, O.V.

    2001-01-01

    Results of electrosynthesis of tantalum borides in fluoride and oxyfluoride melts are compared. It is shown that the single-phase X-ray-amorphous micro-layered coatings form only in the latter case. Linear and square-wave voltammetry, complemented by X-ray diffraction analysis, IR spectroscopy...

  11. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Science.gov (United States)

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  12. Analysis of an Irregular RC Multi-storeyed Building Subjected to Dynamic Loading

    Science.gov (United States)

    AkashRaut; Pachpor, Prabodh; Dautkhani, Sanket

    2018-03-01

    Many buildings in the present scenario have irregular configurations both in plan and elevation. This in future may subject to devastating earthquakes. So it is necessary to analyze the structure. The present paper is made to study three type of irregularity wiz vertical, mass and plan irregularity as per clause 7.1 of IS 1893 (part1)2002 code. The paper discusses the analysis of RC (Reinforced Concrete) Buildings with vertical irregularity. The study as a whole makes an effort to evaluate the effect of vertical irregularity on RC buildings for which comparison of three parameters namely shear force, bending moment and deflection are taken into account.

  13. Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations

    Science.gov (United States)

    Hinson, D. P.; Tyler, G. L.

    1982-01-01

    Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  14. Irregular Dwarf Galaxy IC 1613

    Science.gov (United States)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  15. Regularisation of irregular verbs in child English second language ...

    African Journals Online (AJOL)

    Data was collected from the language of English medium preschool children. The study concludes that when the Blocking Principle interferes, children resort to a novel interlanguage rule that regularises irregular verbs. This interlanguage rule applies in a similar way to all irregular verbs, thus children produce utterances ...

  16. Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System)

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2011-01-01

    of an irregular room model using the FDTD (Finite Difference Time Domain) method has been presented. CABS has been simulated in the irregular room model. Measurements of CABS in a real irregular room have been performed. The performance of CABS was affected by the irregular shape of the room due to the corner...

  17. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    DEFF Research Database (Denmark)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya

    2017-01-01

    , and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surfacespecific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice...

  18. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  19. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  20. Interface interaction and wetting of Sc2O3 exposed to Cu-Al and Cu-Ti melts

    International Nuclear Information System (INIS)

    Barzilai, S.; Nagar, H.; Froumin, N.; Frage, N.; Aizenshtein, M.

    2009-01-01

    Scandia is a thermodynamically stable oxide and could be used as a structural material for a crucible in order to avoid a melt contamination. In the present study wetting experiments of Cu-Al and Cu-Ti melts on Scandia substrate were preformed at 1423 K by a sessile drop method. It was established that Al and Ti additions lead to the improved wetting and that the final contact angle decreases with increasing the additives concentration. For Al containing melts, the contact angle changes gradually with time, and a relatively thick interaction layer, which consists of Al 2 O 3 , Sc 2 O 3 , and metallic channels, was formed at the Sc 2 O 3 /Cu-Al interface. For Ti containing melts, the final contact angle is achieved already during heating, and an extremely thin layer based on a Ti-Sc-O compound was detected by AES at the Sc 2 O 3 /Cu-Ti interface. The results of a thermodynamic analysis, which takes into account the formation free energy of the oxides, involved in the systems, and the thermodynamic properties of the liquid solutions are in a good agreement with the experimental observations. (orig.)

  1. ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device

    Czech Academy of Sciences Publication Activity Database

    Morgan, T.W.; van Eden, G.G.; de Kruif, T.M.; van den Berg, A.; Matějíček, Jiří; Chráska, Tomáš; De Temmerman, G.

    -, T159 (2014), 014022-014022 ISSN 0031-8949. [International Conference on Plasma-Facing Materials and Components for Fusion Applications/14./. Jülich, 13.05.2013-17.05.2013] Institutional support: RVO:61389021 Keywords : melting * tungsten * ELMs * divertor * ITER * DEMO Subject RIV: JG - Metallurgy Impact factor: 1.126, year: 2014 http://iopscience.iop.org/1402-4896/2014/T159/014022/pdf/1402-4896_2014_T159_014022.pdf

  2. Effect of permeable flow on cyclic layering in solidifying magma bodies: Insights from an analog experiment of diffusion-precipitation systems

    Science.gov (United States)

    Toramaru, A.; Yamauchi, S.

    2012-04-01

    increase with distance following geometric progression. Further interestingly each band consists of a lot of very tiny irregular-shaped crystal aggregates. From experimental results and scaling arguments, with regard to the effect of one directional permeable flow on band spacing of cyclic layering, we propose a hypothesis of constant Peclet number that Peclet number (ratio of flow velocity to diffusive velocity) is nearly unity. By applying the hypothesis to natural examples, we can estimate a value of permeable flow velocity of interstitial melts in differentiating magma bodies from values of a band spacing and diffusivity data.

  3. Total edge irregularity strength of (n,t)-kite graph

    Science.gov (United States)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  4. Classical limit of irregular blocks and Mathieu functions

    International Nuclear Information System (INIS)

    Piątek, Marcin; Pietrykowski, Artur R.

    2016-01-01

    The Nekrasov-Shatashvili limit of the N = 2 SU(2) pure gauge (Ω-deformed) super Yang-Mills theory encodes the information about the spectrum of the Mathieu operator. On the other hand, the Mathieu equation emerges entirely within the frame of two-dimensional conformal field theory (2d CFT) as the classical limit of the null vector decoupling equation for some degenerate irregular block. Therefore, it seems to be possible to investigate the spectrum of the Mathieu operator employing the techniques of 2d CFT. To exploit this strategy, a full correspondence between the Mathieu equation and its realization within 2d CFT has to be established. In our previous paper http://dx.doi.org/10.1007/JHEP12(2014)032, we have found that the expression of the Mathieu eigenvalue given in terms of the classical irregular block exactly coincides with the well known weak coupling expansion of this eigenvalue in the case in which the auxiliary parameter is the noninteger Floquet exponent. In the present work we verify that the formula for the corresponding eigenfunction obtained from the irregular block reproduces the so-called Mathieu exponent from which the noninteger order elliptic cosine and sine functions may be constructed. The derivation of the Mathieu equation within the formalism of 2d CFT is based on conjectures concerning the asymptotic behaviour of irregular blocks in the classical limit. A proof of these hypotheses is sketched. Finally, we speculate on how it could be possible to use the methods of 2d CFT in order to get from the irregular block the eigenvalues of the Mathieu operator in other regions of the coupling constant.

  5. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  6. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  7. Track Irregularity Time Series Analysis and Trend Forecasting

    Directory of Open Access Journals (Sweden)

    Jia Chaolong

    2012-01-01

    Full Text Available The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM (1,1 is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.

  8. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes

    Science.gov (United States)

    Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Nishioka, Michi; Yamamoto, Mamoru; Buhari, Suhaila M.; Abdullah, Mardina; Husin, Asnawi

    2017-07-01

    We investigated a postmidnight field-aligned irregularity (FAI) event observed with the Equatorial Atmosphere Radar at Kototabang (0.2°S, 100.3°E, dip latitude 10.4°S) in Indonesia on the night of 9 July 2010 using a comprehensive data set of both neutral and plasma parameters. We examined the rate of total electron content change index (ROTI) obtained from GPS receivers in Southeast Asia, airglow images detected by an all-sky imager, and thermospheric neutral winds and temperatures obtained by a Fabry-Perot interferometer at Kototabang. Altitudes of the F layer (h'F) observed by ionosondes at Kototabang, Chiang Mai, and Chumphon were also surveyed. We found that the postmidnight FAIs occurred within plasma bubbles and coincided with kilometer-scale plasma density irregularities. We also observed an enhancement of the magnetically equatorward thermospheric neutral wind at the same time as the increase of h'F at low-latitude stations, but h'F at a station near the magnetic equator remained invariant. Simultaneously, a magnetically equatorward gradient of thermospheric temperature was identified at Kototabang. The convergence of equatorward neutral winds from the Northern and Southern Hemispheres could be associated with a midnight temperature maximum occurring around the magnetic equator. Equatorward neutral winds can uplift the F layer at low latitudes and increase the growth rate of Rayleigh-Taylor instabilities, causing more rapid extension of plasma bubbles. The equatorward winds in both hemispheres also intensify the eastward Pedersen current, so a large polarization electric field generated in the plasma bubble might play an important role in the generation of postmidnight FAIs.

  9. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  10. Examining U.S. Irregular Warfare Doctrine

    National Research Council Canada - National Science Library

    Kimbrough, IV, James M

    2008-01-01

    ... of insurgency and terrorism. In response to the associated strategic challenges, a growing debate occurred among military historians, strategists, and leaders about the proper principles necessary for contemporary irregular...

  11. Numerical simulations of type II gradient drift irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ferch, R.L.; Sudan, R.N.

    1977-01-01

    Two-dimensional numerical studies of the development of type II irregularities in the equatorial electrojet have been carried out using a method similar to that of McDonald et al., (1974) except that ion inertia has been neglected. This simplification is shown to be a valid approximation whenever the electron drift velocity is small in comparison with the ion acoustic velocity and the values of the other parameters are those appropriate for the equatorial E layer. This code enables us to follow the development of quasi-steady state turbulence from appropriate initial pertubations. The two-dimensional turbulent spectrum of electron density perturbations excited is studied both for the case of devlopment from initial perturbations and for the case of a continuously pumped single driving wave

  12. Traffic dispersion through a series of signals with irregular split

    Science.gov (United States)

    Nagatani, Takashi

    2016-01-01

    We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.

  13. GARCH and Irregularly Spaced Data

    NARCIS (Netherlands)

    Meddahi, N.; Renault, E.; Werker, B.J.M.

    2003-01-01

    An exact discretization of continuous time stochastic volatility processes observed at irregularly spaced times is used to give insights on how a coherent GARCH model can be specified for such data. The relation of our approach with those in the existing literature is studied.

  14. Wüstite in the fusion crust of Almahata Sitta sulfide-metal assemblage MS-166: Evidence for oxygen in metallic melts

    Science.gov (United States)

    Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.

    2013-05-01

    Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.

  15. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  16. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    Science.gov (United States)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  17. Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy

    Science.gov (United States)

    Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal

    2018-05-01

    This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.

  18. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  19. Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor

    Science.gov (United States)

    Liao, L.; Meneghini, R.

    2009-04-01

    The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric

  20. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  1. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  2. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  3. Crime among irregular immigrants and the influence of internal border control

    OpenAIRE

    Leerkes, Arjen; Engbersen, Godfried; Leun, Joanne

    2012-01-01

    textabstractBoth the number of crime suspects without legal status and the number of irregular or undocumented immigrants held in detention facilities increased substantially in theNetherlands between 1997 and 2003. In this period, theDutch state increasingly attempted to exclude irregular immigrants from the formal labour market and public provisions. At the same time the registered crime among irregular migrants rose. The 'marginalisation thesis' asserts that a larger number of migrants hav...

  4. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  5. Prediction of melt geometry in laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Giovanni; Tomesani, Luca; Campana, Giampaolo

    2003-03-15

    In this paper, an analytical model for the evaluation of the melt film geometry in laser cutting of steels is developed. Using as basis, a previous model for kerf geometry estimation developed by the authors, with both reactive and non-reactive process gases, the film thickness and velocity were determined as a function of the kerf depth in the cutting plate. Two criteria were then adopted to predict the quality of the laser cutting operation: the first is based on a minimum acceptable value of the ejection speed of the melt from the bottom of the kerf, the second on the occlusion of the kerf itself due to an excess of molten material in the boundary layer at the kerf width. These criteria determined a feasibility region in the domain of the process and material variables, such as cutting speed, assistant gas pressure, laser beam power and material characteristics. These factors may be successfully used to build a process-planning tool for parameters optimisation and setting, in order to achieve a satisfactory process quality. The model response is in excellent agreement with the feasibility regions reported from experimental data by various authors and demonstrates a relationship between the occurrence of dross adhesion and the two different mechanisms predicted for such a phenomenon were: unsatisfactory ejection speed of the melt film from the bottom of the kerf and occlusion of the kerf.

  6. Fragmentation and melting of the seasonal sea ice cover

    Science.gov (United States)

    Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.

    2017-12-01

    Recent years have seen a rapid reduction in the summer extent of Arctic sea ice. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea ice cover impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea ice cover within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal ice zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea ice reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.

  7. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  8. Measurements of electron density irregularities in the ionosphere of Jupiter by Pioneer 10

    International Nuclear Information System (INIS)

    Woo, R.; Yang, F.

    1976-01-01

    In this paper we demonstrate that when the frequency spectrum of the log amplitude fluctuations is used, the radio occultation experiment is a powerful tool for detecting, identifying, and studying ionospheric irregularities. Analysis of the Pioneer 10 radio occultation measurements reveals that the Jovian ionosphere possesses electron density irregularities which are very similar to those found in the earth's ionosphere. This is the first time such irregularities have been found in a planetary ionosphere other than that of earth. The Pioneer 10 results indicate that the spatial wave number spectrum of the electron density irregularities is close to the Kolmogorov spectrum and that the outer scale size is greater than the Fresnel size (6.15 km). This type of spectrum suggests that the irregularities are probably produced by the turbulent dissipation of irregularities larger than the outer scale size

  9. Structure of a mushy layer at the inner core boundary

    Science.gov (United States)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity

  10. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  11. Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours.

    Science.gov (United States)

    Li, Weilin; Wen, Jian; Xiao, Zhongliang; Xu, Shengxia

    2018-02-22

    To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave.

  12. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study

    Science.gov (United States)

    Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng

    2017-12-01

    The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.

  13. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  14. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    Science.gov (United States)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-04-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called "head wave" is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  15. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  16. Kinetics of the melting front movement in process of centrifugal induction surfacing of powder material with nanoscale modificaters

    Science.gov (United States)

    Sasnouski, I.; Kurylionak, A.

    2018-03-01

    For solving the problem of improving the powder coatings modified by nanostructure components obtained by induction surfacing method tribological characteristics it is necessary to study the kinetics of the powdered layer melting and define the minimum time of melting. For powdered layer predetermined temperature maintenance at sintering mode stage it is required to determine the temperature difference through blank thickness of the for one hundred-day of the define the warm-up swing on of the stocking up by solving the thermal conductivity stationary problem for quill (hollow) cylinder with internal heat source. Herewith, since in practice thickness of the cylinder wall is much less then its diameter and the temperature difference is comparatively small, the thermal conductivity dependence upon the temperature can be treated as negligible. As it was shown by our previous studies, in the induction heating process under powdered material centrifugal surfacing (i.e. before achieving the melting temperature) the temperature distribution in powdered layer thickness may be considered even. Hereinafter, considering the blank part induction heating process quasi-stationarity under Fo big values, it is possible to consider its internal surface heating as developing with constant velocity. As a result of development the melting front movement mathematical model in a powdered material with nanostructure modifiers the minimum surfacing time is defined. It allows to minimize negative impact of thermal influence on formation of applied coating structure, to raise productivity of the process, to lower power inputs and to ensure saving of nonferrous and high alloys by reducing the allowance for machining. The difference of developed mathematical model of melting front movement from previously known is that the surface temperature from which the heat transfer occures is a variable and varies with a time after the linear law.

  17. Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures

    International Nuclear Information System (INIS)

    Xue Ming; Wang Jiang; Deng Bin; Wei Xi-Le; Yu Hai-Tao; Chen Ying-Yuan

    2013-01-01

    The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the ‘Zusanli’ point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate-independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture. (interdisciplinary physics and related areas of science and technology)

  18. Advances in electron dosimetry of irregular fields

    International Nuclear Information System (INIS)

    Mendez V, J.

    1998-01-01

    In this work it is presented an advance in Electron dosimetry of irregular fields for beams emitted by linear accelerators. At present diverse methods exist which are coming to apply in the Radiotherapy centers. In this work it is proposed a method for irregular fields dosimetry. It will be allow to calculate the dose rate absorbed required for evaluating the time for the treatment of cancer patients. Utilizing the results obtained by the dosimetric system, it has been possible to prove the validity of the method describe for 12 MeV energy and for square field 7.5 x 7.5 cm 2 with percentile error less than 1 % . (Author)

  19. New Model for Ionospheric Irregularities at Mars

    Science.gov (United States)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  20. Laboratory duplication of comb layering in the Rhum pluton. [igneous rocks with comb layered texture

    Science.gov (United States)

    Donaldson, C. H.

    1977-01-01

    A description is provided of the texture of harrisite comb layers, taking into account the results of crystallization experiments at controlled cooling rates, which have reproduced the textural change from 'cumulate' to comb-layered harrisite. Melted samples of harrisite were used in the dynamic crystallization experiments considered. The differentiation of a cooling rate run with respect to olivine grain size and shape is shown and three possible origins of hopper olivine in differentiated crystallization runs are considered. It is found that olivine nucleation occurred throughout cooling, except for the incubation period during early cooling. The elongate combed olivines in harrisite apparently grew as the magma locally supercooled to at least 30 C. It is suggested that the branching crystals in most comb layers, including comb-layered harrisite, probably grew along thermal gradients.

  1. Edge irregular total labellings for graphs of linear size

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Miškuf, J.

    2009-01-01

    As an edge variant of the well-known irregularity strength of a graph G = (V, E) we investigate edge irregular total labellings, i.e. functions f : V ∪ E → {1, 2, ..., k} such that f (u) + f (u v) + f (v) ≠ f (u) + f (u v) + f (v) for every pair of different edges u v, u v ∈ E. The smallest possi...

  2. The role of oleate-functionalized layered double hydroxide in the melt compounding of polypropylene nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Donato, R. K.; Luza, L.; da Silva, R. F.; Moro, C. C.; Guzatto, R.; Samios, D.; Matějka, Libor; Dimzoski, Bojan; Amico, S. C.; Schrekker, H. S.

    2012-01-01

    Roč. 32, č. 8 (2012), s. 2396-2403 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z40500505 Keywords : renewable feedstock functionalized nanofiller * polymer-matrix nanocomposite * melt compounding Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.404, year: 2012

  3. Investigation on Melt-Structure-Water Interactions (MSWI) during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Yang, Z.L.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Haraldsson, H.O.; Li, H.X.; Konovakhin, M.; Paladino, D.; Leung, W.H [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1999-08-01

    This report is the final report for the work performed in 1998 in the research project Melt Structure Water Interactions (MSWI), under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The present report describes results of advanced analytical and experimental studies concerning melt-water-structure interactions during the course of a hypothetical severe core meltdown accident in a light water reactor (LWR). Emphasis has been placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Many of the investigations performed in support of this project have produced papers which have been published in the proceedings of technical meetings. A short summary of the results achieved in these papers is provided in this overview. Both experimental and analytical studies were performed to improve knowledge about phenomena of melt-structure-water interactions. We believe that significant technical advances have been achieved during the course of these studies. It was found that: the solidification has a strong effect on the drop deformation and breakup. Initially appearing at the drop surface and, later, thickening inwards, the solid crust layer dampens the instability waves on the drop surface and, therefore, hinders drop deformation and breakup. The drop thermal properties also affect the thermal behavior of the drop and, therefore, have impact on its deformation behavior. The jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters, e.g. the Weber number, but also on the melt physical properties, which change as the melt cools down from the liquidus to the solidus temperature. Additionally, the crust formed on the surface of the melt jet will also reduce the propensity

  4. Investigation on Melt-Structure-Water Interactions (MSWI) during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Yang, Z.L.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Haraldsson, H.O.; Li, H.X.; Konovakhin, M.; Paladino, D.; Leung, W.H

    1999-08-01

    This report is the final report for the work performed in 1998 in the research project Melt Structure Water Interactions (MSWI), under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The present report describes results of advanced analytical and experimental studies concerning melt-water-structure interactions during the course of a hypothetical severe core meltdown accident in a light water reactor (LWR). Emphasis has been placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Many of the investigations performed in support of this project have produced papers which have been published in the proceedings of technical meetings. A short summary of the results achieved in these papers is provided in this overview. Both experimental and analytical studies were performed to improve knowledge about phenomena of melt-structure-water interactions. We believe that significant technical advances have been achieved during the course of these studies. It was found that: the solidification has a strong effect on the drop deformation and breakup. Initially appearing at the drop surface and, later, thickening inwards, the solid crust layer dampens the instability waves on the drop surface and, therefore, hinders drop deformation and breakup. The drop thermal properties also affect the thermal behavior of the drop and, therefore, have impact on its deformation behavior. The jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters, e.g. the Weber number, but also on the melt physical properties, which change as the melt cools down from the liquidus to the solidus temperature. Additionally, the crust formed on the surface of the melt jet will also reduce the propensity

  5. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    Science.gov (United States)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  6. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    Directory of Open Access Journals (Sweden)

    Chaolong Jia

    2014-01-01

    Full Text Available Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described.

  7. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  8. Material interactions between system components and glass product melts in a ceramic melter

    International Nuclear Information System (INIS)

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  9. Optical evidence for a self-propagating molten buried layer in germanium films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Vega, F.; Chaoui, N.; Solis, J.; Armengol, J.; Afonso, C.N.

    2005-01-01

    This work describes the phase transitions occurring at the film-substrate interface of amorphous germanium films upon nanosecond laser-pulse-induced melting of the surface. Films with thickness ranging from 50 to 130 nm deposited on glass substrates were studied. Real-time reflectivity measurements with subnanosecond time resolution performed both at the air-film and film-substrate interfaces were used to obtain both surface and in-depth information of the process. In the thicker films (≥80 nm), the enthalpy released upon solidification of a shallow molten surface layer induces a thin buried liquid layer that self-propagates in-depth towards the film-substrate interface. This buried liquid layer propagates with a threshold velocity of 16±1 m/s and causes, eventually, melting at the film-substrate interface. In the thinnest film (50 nm) there is no evidence of the formation of the buried layer. The presence of the self-propagating buried layer for films thicker than 80 nm at low and intermediate laser fluences is discussed in terms of the thermal gradient in the primary melt front and the heat released upon solidification

  10. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  11. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  12. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges

    Science.gov (United States)

    Liu, B.; Liang, Y.; Parmentier, E.

    2017-12-01

    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  13. Method and device for catching reactor core melt-down masses in hypothetical accidents of nuclear power plants

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device is to receive the afterheat of the molten core and in this way to prevent afterflow of coolant and a new criticality. A tank below the reactor pressure vessel, with the proper diameter, contains a store of salt or a salt mixture suitable to receive the afterheat of a core melt-down as heat of fusion or conversion. Above the salt, there is a layer of thermoplastics or of a material forming a hardening foam. Coolant eventually continuing to flow out is separated from the core melt by this barrier layer, and thus the build-up of high steam pressures is prevented. Neutron-absorbing materials, like boron salts mixed to the salts, as well as a subdivision of the salt surface, e.g. by means of canalizing firebricks, prevent the formation of new criticality. Further installations within the tank, like pipings or channels, permit the introduction of water after cooling down of the core or salt melt-down mass and to wash out the brine with all radioactive and other constituents for transport to reprocessing or ultimate storage. (HP) [de

  14. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  15. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    Science.gov (United States)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2018-02-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  16. In-Situ Measurement of Ionospheric E-Region Plasma Irregularities over Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Kuang Chao

    2012-01-01

    Full Text Available One ion trap (IT and one retarding potential analyzer (RPA onboard the Taiwan Sounding Rocket V (SR-V were launched to measure ionospheric plasma irregularities on 18 January 2006. After the fairing separated, voltage readings (VG1 of the first grid (G1 in the IT indicated abnormally high negative voltages appeared at the upleg between 83.7 and 120.1 km altitude for 19.7 seconds. It is postulated G1 had temporarily shorted out with the other two grids. Such the anomaly in the VG1 brought out the expansion of a plasma sheath around opening of the IT. More ions were attracted into the collector. Remarkable ion currents detected by the IT led to malfunctions of the RPA simultaneously. In this article, laboratory simulations and the International Reference Ionosphere model are performed to evaluate scale factors for the IT to the anomaly. The calibrated total ion concentration profile at the upleg indicates a peak density of the Es layer at 93.0 km altitude of about 6.9 × 103 # cm-3 with a thickness of 3.4 km. It is very similar to that at the downleg. It implies that the SR-V might encounter the same Es layer twice in a distance of 150 km away.

  17. Multiphysics modeling of selective laser sintering/melting

    Science.gov (United States)

    Ganeriwala, Rishi Kumar

    A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon

  18. Characterizing spontaneous irregular behavior in coupled map lattices

    International Nuclear Information System (INIS)

    Dobyns, York; Atmanspacher, Harald

    2005-01-01

    Two-dimensional coupled map lattices display, in a specific parameter range, a stable phase (quasi-) periodic in both space and time. With small changes to the model parameters, this stable phase develops spontaneous eruptions of non-periodic behavior. Although this behavior itself appears irregular, it can be characterized in a systematic fashion. In particular, parameter-independent features of the spontaneous eruptions may allow useful empirical characterizations of other phenomena that are intrinsically hard to predict and reproduce. Specific features of the distributions of lifetimes and emergence rates of irregular states display such parameter-independent properties

  19. Characterizing spontaneous irregular behavior in coupled map lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dobyns, York [PEAR, Princeton University Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene Wilhelmstrasse 3a, Freiburg 79098 (Germany)]. E-mail: haa@igpp.de

    2005-04-01

    Two-dimensional coupled map lattices display, in a specific parameter range, a stable phase (quasi-) periodic in both space and time. With small changes to the model parameters, this stable phase develops spontaneous eruptions of non-periodic behavior. Although this behavior itself appears irregular, it can be characterized in a systematic fashion. In particular, parameter-independent features of the spontaneous eruptions may allow useful empirical characterizations of other phenomena that are intrinsically hard to predict and reproduce. Specific features of the distributions of lifetimes and emergence rates of irregular states display such parameter-independent properties.

  20. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  1. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  2. Dynamic fragmentation of laser shock-melted tin: experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Resseguier, T. [CNRS ENSMA, Lab Combust and Deton, F-86961 Futuroscope (France); Signor, L.; Dragon, A. [CNRS ENSMA, Mecan and Phys Mat Lab, F-86961 Futuroscope (France); Signor, L.; Roy, G. [CEA Valduc, 21 - Is-sur-Tille (France)

    2010-07-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the 'micro-spall' process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the un-spalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydro-code including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal. (authors)

  3. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W; Chobot, J M; Niskala, B J; Needhammer, C J

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series.

  4. Dynamics of upper mantle rocks decompression melting above hot spots under continental plates

    Science.gov (United States)

    Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor

    2014-05-01

    Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS

  5. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  6. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  7. The structure of plasma-density irregularities in the interplanetary medium

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1975-01-01

    The conflict in the literature as to whether the plasma-density spatial spectrum of the irregularities in the interplanetary medium is of Gaussian or power law form is discussed. Particular attention is paid to the interplanetary scintillation effects ascribed to these irregularities. It is shown that the phase-screen theory of scintillations can be invoked to devise a set of critical tests which provide a means of discriminating between the conflicting hypotheses. Differences in the predicted behaviour of the single sensor temporal spectra of the scintillations for the two irregularity forms provide the main tests of the conflicting hypotheses. However, it is also shown that the two hypotheses lead to different forms of the variation of scintillation index with the observing frequency and the solar elongation of the scintillating source. Consideration is given to the optimum conditions for observing the Fourier and Bessel temporal spectra modulation which is due to the Fresnel filtering of the spatial spectrum. Determination of irregularity shape, orientation and motion in terms of this modulation is also discussed. (author)

  8. On the Automatic Parallelization of Sparse and Irregular Fortran Programs

    Directory of Open Access Journals (Sweden)

    Yuan Lin

    1999-01-01

    Full Text Available Automatic parallelization is usually believed to be less effective at exploiting implicit parallelism in sparse/irregular programs than in their dense/regular counterparts. However, not much is really known because there have been few research reports on this topic. In this work, we have studied the possibility of using an automatic parallelizing compiler to detect the parallelism in sparse/irregular programs. The study with a collection of sparse/irregular programs led us to some common loop patterns. Based on these patterns new techniques were derived that produced good speedups when manually applied to our benchmark codes. More importantly, these parallelization methods can be implemented in a parallelizing compiler and can be applied automatically.

  9. NEOWISE: OBSERVATIONS OF THE IRREGULAR SATELLITES OF JUPITER AND SATURN

    Energy Technology Data Exchange (ETDEWEB)

    Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Bauer, J. M.; Mainzer, A. K.; Masiero, J. R.; Sonnett, S.; Kramer, E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Nugent, C. R.; Cutri, R. M., E-mail: tgrav@psi.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-08-10

    We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE data set. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and provide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular satellites. The best-fit thermal model beaming parameters are comparable to what is observed for other small bodies in the outer solar system, while the visible, W1, and W2 albedos trace the taxonomic classifications previously established in the literature. Reflectance properties for the irregular satellites measured are similar to the Jovian Trojan and Hilda Populations, implying common origins.

  10. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting

    CSIR Research Space (South Africa)

    Moller, Hein

    2016-11-01

    Full Text Available In Selective Laser Melting, the initial units produced are single tracks that overlap to create a single layer; from the sequence of layers, a 3D object is manufactured. The properties of the parts produced by SLM depend heavily on the properties...

  11. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    Science.gov (United States)

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  12. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    International Nuclear Information System (INIS)

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-01-01

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials

  13. Electron beam irradiating process for rendering rough or topographically irregular surface substrates smooth; and coated substrates produced thereby

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1979-01-01

    This disclosure involves a novel process for instantaneous electron-beam curing of very thin low viscosity, solventless coating upon rough, irregular or textured surfaces of a substrate such as paper or the like. Through rather critical timing and energy adjustment procedures, the coating firmly adheres to the surface before the coating can conform to the roughness or texture contour or substantially penetrate into the surface. By this method a solidified very smooth outer surface is provided for the substrate that is particularly used for metalization and other finished layerings. (author)

  14. Crime among irregular immigrants and the influence of internal border control

    NARCIS (Netherlands)

    Leerkes, A.S.; Engbersen, G.; Leun, van der J.P.

    2012-01-01

    Abstract Both the number of crime suspects without legal status and the number of irregular or undocumented immigrants held in detention facilities increased substantially in theNetherlands between 1997 and 2003. In this period, theDutch state increasingly attempted to exclude irregular immigrants

  15. Crime among irregular immigrants and the influence of internal border control

    NARCIS (Netherlands)

    A.S. Leerkes (Arjen); G.B.M. Engbersen (Godfried); J.P. van der Leun (Joanne)

    2012-01-01

    textabstractBoth the number of crime suspects without legal status and the number of irregular or undocumented immigrants held in detention facilities increased substantially in theNetherlands between 1997 and 2003. In this period, theDutch state increasingly attempted to exclude irregular

  16. Melt spreading code assessment, modifications, and initial application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies

  17. Generating Performance Models for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav; Kerbyson, Darren J.; Hoisie, Adolfy

    2017-05-30

    Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scaling when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.

  18. Coaxial monitoring of temperature field in selective pulsed laser melting

    Science.gov (United States)

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong

    2017-10-01

    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  19. Thermal evolutions of two kinds of melt pond with different salinity

    Science.gov (United States)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  20. Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols

    Science.gov (United States)

    Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  1. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols

    International Nuclear Information System (INIS)

    Lau, William K M; Kim, Maeng-Ki; Lee, Woo-Seop; Kim, Kyu-Myong

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (∼5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback-the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  2. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  3. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  4. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  5. Dependence on zenith angle of the strength of 3-meter equatorial electrojet irregularities

    International Nuclear Information System (INIS)

    Ierkic, H.M.; Fejer, B.G.; Farley, D.T.

    1980-01-01

    Radar measurements in Peru were used to deduce the zenith angle dependence of the scattering cross section of plasma irregularities generated by instabilities in the equatorial electrojet. The irregularities probed by the 50 MHz Jicamarca radar had a wavelength of 3m. The cross section for the type 2 irregularities was isotopic in the plane perpendicular to the magnetic field, while the cross section for the stronger type 1 irregularities varied with zenith angle at a rate of approximately 0.3 dB/degree; the horizontally traveling waves were more than 100 times stronger than those traveling vertically

  6. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  7. Spatial irregularities in Jupiter's upper ionosphere observed by voyager radio occultations

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, D.P.; Tyler, G.L.

    1982-07-01

    Dual frequency radio occultation experiments carried out with Voyagers 1 and 2 provided data on the spatial irregularities in Jupiter's ionosphere at four different locations. Sample spectra of weak fluctuations in amplitude and phase of the 3.6-cm and 13-cm wavelength radio signals can be interpreted by using the theory for scattering from an anisotropic power law phase screen. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yielded estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. Equipment limitations and the method of analysis constrain the observations to irregularities of approximate size 1--200 km. No evidence of the inner or outer scale of the irregularities was found. For length scales in the range given, the three-dimensional spatial spectrum obeys a power law with exponent varying from -3.0 to -3.7, and the root mean square fractional variations in electron density are 1--15%. All observed irregularities appear to be anisotropic with axial ratios between 2:1 and 10:1. Ionospheric parameters vary with altitude and latitude. We conclude that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  8. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  9. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  10. Successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

    Science.gov (United States)

    Leuthold, Julien; Blundy, Jon; Holness, Marian

    2014-05-01

    We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt

  11. Quasi-liquid layer theory based on the bulk first-order phase transition

    International Nuclear Information System (INIS)

    Ryzhkin, I. A.; Petrenko, V. F.

    2009-01-01

    The theory of the superionic phase transition (bulk first-order transition) proposed in [1] is used to explain the existence of a quasi-liquid layer at an ice surface below its melting point. An analytical expression is derived for the quasi-liquid layer thickness. Numerical estimates are made and compared with experiment. Distinction is made between the present model and other quasi-liquid layer theories

  12. Suppression of dewetting phenomena during excimer laser melting of thin metal films on SiO2

    International Nuclear Information System (INIS)

    Kline, J.E.; Leonard, J.P.

    2005-01-01

    Pulsed excimer laser irradiation has been used to fully melt 200 nm films of elemental Au and Ni on SiO 2 substrates. With the use of a capping layer of SiO 2 and line irradiation via projection optics, the typical liquid-phase dewetting processes associated with these metals on SiO 2 has been suppressed. In a series of experiments varying line widths and fluence, a process region is revealed immediately above the complete melting threshold for which the films remain continuous and smooth after melting and resolidification. Simple energetic arguments for mechanisms leading to initiation of dewetting support these observations, and a gas-mediated model is proposed to describe the process conditions that are necessary for the suppression of dewetting

  13. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our

  14. Irregular menses: an independent risk factor for gestational diabetes mellitus.

    Science.gov (United States)

    Haver, Mary Claire; Locksmith, Gregory J; Emmet, Emily

    2003-05-01

    Our purpose was to determine whether a history of irregular menses predicts gestational diabetes mellitus independently of traditional risk factors. We analyzed demographic characteristics, body mass index, and menstrual history of 85 pregnant women with gestational diabetes mellitus and compared them with 85 systematically selected control subjects who were matched for age, race, and delivery year. Subjects with pregestational diabetes mellitus, previous gestational diabetes mellitus, family history of diabetes mellitus, weight >200 pounds, previous macrosomic infants, or previous stillbirth were excluded. Demographic characteristics between case and control groups were similar. Mean body mass index was higher among cases (26.5 kg/m(2)) versus control subjects (24.5 kg/m(2), P =.004). Irregular cycles were more prevalent in the cases (24% vs 7%, P =.006). With the use of body mass index as a stratification factor, menstrual irregularity maintained a strong association with gestational diabetes mellitus (P =.014). A history of irregular menstrual cycles was a significant independent predictor of gestational diabetes mellitus. If selective screening is implemented for gestational diabetes mellitus, such history should be considered in the decision of whom to test.

  15. Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-07-01

    Full Text Available E region ionospheric modification experiments have been performed at HAARP using pump frequencies about 50 kHz above and below the second electron gyroharmonic frequency. Artificial E region field-aligned plasma density irregularities (FAIs were created and observed using the imaging coherent scatter radar near Homer, Alaska. Echoes from FAIs generated with pump frequencies above and below 2Ωe did not appear to differ significantly in experiments conducted on summer afternoons in 2008, and the resonance instability seemed to be at work in either case. We argue that upper hybrid wave trapping and resonance instability at pump frequencies below the second electron gyroharmonic frequency are permitted theoretically when the effects of finite parallel wavenumbers are considered. Echoes from a sporadic E layer were observed to be somewhat weaker when the pump frequency was 50 kHz below the second electron gyroharmonic frequency. This may indicate that finite parallel wavenumbers are inconsistent with wave trapping in thin sporadic E ionization layers.

  16. Tungsten melt layer erosion due to J x B force under conditions relevant to ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Kulik, N.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Petrov, Yu.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2007-06-15

    The behavior of tungsten under repetitive hydrogen plasma impacts causing surface melting in conditions of an applied J x B force of up to 20 MN/m{sup 3} is studied with the plasma accelerator QSPA Kh-50. Tungsten samples of EU trademark have been exposed to up to 100 pulses simulating ITER ELMs of the energy load 0.7 MJ/m{sup 2} and the duration 0.25 ms. An electric current J flows across the magnetic field B of 1.4 T, and the resulting J x B force produces a displacement of the melt with formation of an erosion crater and an inclination of the surface profile along the force. Surface morphology and the damage by surface cracks are discussed. Comparisons of experimental results with numerical simulations of the code MEMOS-1.5D are presented.

  17. Backscatter measurements of 11-cm equatorial spread-F irregularities

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    In the equatorial F-region ionosphere, a turbulent cascade process has been found to exist that extends from irregularity spatial wavelengths longer than tens of kilometers down to wavelengths as short as 36 cm. To investigate the small-scale regime of wavelengths less than 36 cm, an equatorial radar experiment was conducted using a frequency of 1320 MHz that corresponds to an irregularity wavelength of 11 cm. The first observations of radar backscatter from 11-cm field-aligned irregularities (FAI) are described. These measurements extend the spatial wavelength regime of F-region FAI to lengths that approach both electron gyroradius and the Debye length. Agreement of these results with the theory of high-frequency drift waves suggests that these observations may be unique to the equatorial ionosphere. That is, the requirement of low electron densities for which the theroy calls may preclude the existence of 11-cm FAI elsewhere in the F-region ionosphere, except in equatorial plasma bubbles

  18. Stromal haze, myofibroblasts, and surface irregularity after PRK.

    Science.gov (United States)

    Netto, Marcelo V; Mohan, Rajiv R; Sinha, Sunilima; Sharma, Ajay; Dupps, William; Wilson, Steven E

    2006-05-01

    The aim of this study was to investigate the relationship between the level of stromal surface irregularity after photorefractive keratectomy (PRK) and myofibroblast generation along with the development of corneal haze. Variable levels of stromal surface irregularity were generated in rabbit corneas by positioning a fine mesh screen in the path of excimer laser during ablation for a variable percentage of the terminal pulses of the treatment for myopia that does not otherwise generate significant opacity. Ninety-six rabbits were divided into eight groups: [see table in text]. Slit lamp analysis and haze grading were performed in all groups. Rabbits were sacrificed at 4 hr or 4 weeks after surgery and histochemical analysis was performed on corneas for apoptosis (TUNEL assay), myofibroblast marker alpha-smooth muscle actin (SMA), and integrin alpha4 to delineate the epithelial basement membrane. Slit-lamp grading revealed severe haze formation in corneas in groups IV and VI, with significantly less haze in groups II, III, and VII and insignificant haze compared with the unwounded control in groups I and V. Analysis of SMA staining at 4 weeks after surgery, the approximate peak of haze formation in rabbits, revealed low myofibroblast formation in group I (1.2+/-0.2 cells/400x field) and group V (1.8+/-0.4), with significantly more in groups II (3.5+/-1.8), III (6.8+/-1.6), VII (7.9+/-3.8), IV (12.4+/-4.2) and VI (14.6+/-5.1). The screened groups were significantly different from each other (p PRK groups. The -9.0 diopter PRK group VI had significantly more myofibroblast generation than the -9.0 diopter PRK with PTK-smoothing group VII (p PRK and the level of stromal surface irregularity. PTK-smoothing with methylcellulose was an effective method to reduce stromal surface irregularity and decreased both haze and associated myofibroblast density. We hypothesize that stromal surface irregularity after PRK for high myopia results in defective basement membrane

  19. Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.

    Directory of Open Access Journals (Sweden)

    Yahya Karimipanah

    Full Text Available A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at a critical regime, which is defined as a transition point between two phases of short lasting and chaotic activity. However, despite the fact that criticality brings about certain functional advantages for information processing, its supporting evidence is still far from conclusive, as it has been mostly based on power law scaling of size and durations of cascades of activity. Moreover, to what degree such hypothesis could explain some fundamental features of neural activity is still largely unknown. One of the most prevalent features of cortical activity in vivo is known to be spike irregularity of spike trains, which is measured in terms of the coefficient of variation (CV larger than one. Here, using a minimal computational model of excitatory nodes, we show that irregular spiking (CV > 1 naturally emerges in a recurrent network operating at criticality. More importantly, we show that even at the presence of other sources of spike irregularity, being at criticality maximizes the mean coefficient of variation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that such a maximized irregularity results in maximum correlation between neuronal firing rates and their corresponding spike irregularity (measured in terms of CV. On the one hand, using a model in the universality class of directed percolation, we propose new hallmarks of criticality at single-unit level, which could be applicable to any network of excitable nodes. On the other hand, given the controversy of the neural criticality hypothesis, we discuss the limitation of this approach to neural systems and to what degree they support the criticality hypothesis in real neural networks. Finally

  20. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification

    Science.gov (United States)

    Chen, Zhen; Xiang, Yu; Wei, Zhengying; Wei, Pei; Lu, Bingheng; Zhang, Lijuan; Du, Jun

    2018-04-01

    During selective laser melting (SLM) of K418 powder, the influence of the process parameters, such as laser power P and scanning speed v, on the dynamic thermal behavior and morphology of the melted tracks was investigated numerically. A 3D finite difference method was established to predict the dynamic thermal behavior and flow mechanism of K418 powder irradiated by a Gaussian laser beam. A three-dimensional randomly packed powder bed composed of spherical particles was established by discrete element method. The powder particle information including particle size distribution and packing density were taken into account. The volume shrinkage and temperature-dependent thermophysical parameters such as thermal conductivity, specific heat, and other physical properties were also considered. The volume of fluid method was applied to reconstruct the free surface of the molten pool during SLM. The geometrical features, continuity boundaries, and irregularities of the molten pool were proved to be largely determined by the laser energy density. The numerical results are in good agreement with the experiments, which prove to be reasonable and effective. The results provide us some in-depth insight into the complex physical behavior during SLM and guide the optimization of process parameters.

  1. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  2. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    International Nuclear Information System (INIS)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-01-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called 'head wave' is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  3. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites

    Science.gov (United States)

    Peng, Q.; Liang, Y.

    2008-12-01

    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  4. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  5. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution (Invited)

    Science.gov (United States)

    Khan, A.; Connolly, J. A.; Pommier, A.

    2013-12-01

    Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  6. A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-03-01

    Full Text Available In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL particles is directly spread on top of water in the form of a suspension. After that, with the use of heat, the powder layer is transformed into a melted layer, and following cooling, a thin membrane is obtained. Two different sizes of PCL powder particles (100 µm and 500 µm are used. Results show that membranes made from 100 µm powders have lower thickness, smaller pore size, smoother surface, higher value of stiffness but lower ultimate tensile load compared to membranes made from 500 µm powder. C2C12 cell culture results indicate that the membrane supports cell growth and differentiation. Thus, this novel membrane generation method holds great promise for tissue engineering.

  7. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  8. Frictional melting dynamics in the upper conduit: A chemical answer to a complex physical question

    Science.gov (United States)

    Henton De Angelis, S.; Lavallee, Y.; Kendrick, J. E.; Hornby, A.; von Aulock, F. W.; Clesham, S.; Hirose, T.; Perugini, D.

    2013-12-01

    During volcanic eruptions the generation of frictional heat along the walls of the shallow conduit leads to melting of the rocks along the slip interface. Frictional melting has previously been described as a process out of thermodynamic equilibrium, but upon slip and mingling of the melt batches, homogeneity can be achieved, and may have an h important rheological control on the dynamics of slip. To test melt homogenization in the frictional melt zones of volcanic conduits we performed constant-rate slip experiments under controlled stress conditions using a high-velocity rotary shear apparatus. Volcanic dome samples from three different volcanoes (Volcán De Colima, Soufrière Hills Volcano and Santiaguito Volcano) were investigated. Each sample was subjected to a stress of 1 MPa and slip rate of 1 m/s. For each sample set 5 experiments were conducted: 1) experiment stopped at the onset of melting; 2) experiment stopped on the formation of a full melt layer; 3) experiment stopped after 5m of slip at steady state conditions; 4) experiment stopped after 10m of slip at steady state conditions; 5) experiment stopped after 15m of slip at steady state conditions. We analyzed the resulting proto-melt zones using micron sized X-ray spectroscopy in the high-brightness synchrotron beamline I18 (at Diamond Light Source UK). Particular focus was given to the concentration variance analysis of Rare Earth Elements as their mobilities can be used to precisely quantify the degree and timescale of homogenisation involved during frictional melting. This study refines our understanding of the chemical process of melting and mixing which carry important consequences for the rheological control on the physical dynamics of slip.

  9. Orthogonal cutting of laser beam melted parts

    Science.gov (United States)

    Götze, Elisa; Zanger, Frederik; Schulze, Volker

    2018-05-01

    The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.

  10. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    Science.gov (United States)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  11. Relationship of Powder Feedstock Variability to Microstructure and Defects in Selective Laser Melted Alloy 718

    Science.gov (United States)

    Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.

    2017-01-01

    Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.

  12. Application of the pothole DAF method to vehicles traversing periodic roadway irregularities

    Science.gov (United States)

    Pesterev, A. V.; Bergman, L. A.; Tan, C. A.; Yang, B.

    2005-01-01

    This paper is a sequel to the work discussed in Pesterev et al. (Journal of Sound and Vibration, in press). In that paper, it was suggested that the technique to determine the effect of a local road surface irregularity on the dynamics of a vehicle modelled as a linear multi-degree-of-freedom system relies on the so-called pothole dynamic amplification factor (DAF), which is a complex-valued function specific to the irregularity shape. This paper discusses the companion problem of how to determine the DAF function for an irregularity represented as a superposition of simpler ones. Another purpose of this paper is to demonstrate the application of the pothole DAF functions technique to finding a priori estimates of the effect of irregularities with a repeated structure. Specifically, we solve the problem of finding the conditions under which the dynamic effect of two identical potholes located one after another is greater than that due to the single pothole. We also find the estimate for the number of periods of a periodic irregularity that are sufficient in order to consider the oscillator response as steady state. The discussions are illustrated by numerical examples.

  13. Numerical simulation of fragmentation of hot metal and oxide melts with the computer code IVA3

    International Nuclear Information System (INIS)

    Mussa, S.; Tromm, W.

    1994-01-01

    The phenomena of fragmentation of melts caused by water-inlet from the bottom with the computer code IVA3/11,12,13/ are investigated. With the computer code IVA3 three-component-multiphase flows can be numerically simulated. Two geometrical models are used. Both consist of a cylindrical vessel for water lying beneath a cylindrical vessel for melt. The vessels are connected to each other through a hole. Steel and UO 2 melts are. The following parameters were varied: the type of the melt (steel,UO 2 ), the water supply pressure and the geometry of the hole in the bottom plate through which the water and melt vessels are connected. As results of the numerical simulations temperature and pressure versus time curves are plotted. Additionally the volume flow rates and the volume fractions of the various phases in the vessels and the increase in surface and enthalpy of the melt during the time of simulation are depicted. With steel melts the rate of fragmentation increases with increasing water pressure and melt temperature, whereby stable channels are formed in the melt layer showing a very low flow resistance for steam. With UO 2 the formations of channels are also observed. However, these channels are not so stable that they eventually break apart and lead to the fragmentation of the UO 2 melt in drops. The fragmentation of the steel melt in water vessel is less than that of UO 2 . No essential solidification of the melt is observed in the respective duration of the simulations. However, a small drop in the melt temperature is observed. With a slight or no water pressure the melt flows from the upper vessel into the water vessel via the connecting hole. The processes take place in a very slow manner and with such a low steam production so that despite the occuring pressure peaks no sign of steam explosions could be observed. (orig./HP) [de

  14. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, D. [Institute for Advanced Study (IAS), Princeton, NJ (United States); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S{sup 4}. (orig.)

  15. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    International Nuclear Information System (INIS)

    Gaiotto, D.; Teschner, J.

    2012-03-01

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S 4 . (orig.)

  16. The influence of the crust layer on RPV structural failure under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jianfeng, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Li, Xiangqing [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Bao, Shiyi [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, Lijia [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)

    2017-05-15

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  17. The influence of the crust layer on RPV structural failure under severe accident condition

    International Nuclear Information System (INIS)

    Mao, Jianfeng; Li, Xiangqing; Bao, Shiyi; Luo, Lijia; Gao, Zengliang

    2017-01-01

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  18. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  19. Radar observations of field-aligned plasma irregularities in the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    S. Saito

    2005-10-01

    Full Text Available During the Sporadic E Experiment over Kyushu 2 (SEEK-2 campaign, field-aligned irregularities (FAIs associated with midlatitude sporadic-E (Es layers were observed with two backscatter radars, the Lower Thermosphere Profiler Radar (LTPR and the Frequency Agile Radar (FAR, which were located 40 km apart in Tanegashima, Japan. We conducted observations of FAI echoes from 31 July to 24 August 2002, and the radar data were used to determine launch timing of two sounding rockets on 3 August 2002. Our comparison of echoes obtained by the LTPR and the FAR revealed that echoes often appeared at the FAR about 10min earlier than they did at the LTPR and were well correlated. This indicates that echoing regions drift with a southward velocity component that maintains the spatial shape. Interferometry observations that were conducted with the LTPR from 3 to 8 August 2002, revealed that the quasi-periodic (QP striations in the Range-Time-Intensity (RTI plots were due to the apparent motion of echoing regions across the radar beam including both main and side lobes. In most cases, the echo moved to the east-southeast at an almost constant altitude of 100–110 km, which was along the locus of perpendicularity of the radar line-of-sight to the geomagnetic field line. We found that the QP pattern on the RTI plot reflects the horizontal structure and motion of the (Es layer, and that echoing regions seemed to be in one-dimensionally elongated shapes or in chains of patches. Neutral wind velocities from 75 to 105 km altitude were simultaneously derived with meteor echoes from the LTPR. This is the first time-continuous simultaneous observation FAIs and neutral wind with interferometry measurements. Assuming that the echoing regions were drifting with an ambient neutral wind, we found that the echoing region was aligned east-northeast-west-southwest in eight out of ten QP echo events during the SEEK-2 campaign. A range rate was

  20. Effects of surface irregularities on intensity data from laser scanning: an experimental approach.

    Directory of Open Access Journals (Sweden)

    G. Teza

    2008-06-01

    Full Text Available The results of an experiment carried out with the aim to investigate the role of surface irregularities on the intensity data provided by a terrestrial laser scanner (TLS survey are reported here. Depending on surface roughness, the interaction between an electromagnetic wave and microscopic irregularities leads to a Lambertian-like diffusive light reflection, allowing the TLS to receive the backscattered component of the signal. The described experiment consists in a series of TLS-based acquisitions of a rotating artificial target specifically conceived in order to highlight the effects on the intensity data due to surface irregularity. This target is articulated in a flat plate and in an irregular surface, whose macro-roughness has a characteristic length with the same order of the spot size. Results point out the different behavior of the plates. The intensity of the signal backscattered by the planar element decreases if the incidence angle increases, whereas the intensity of the signal backscattered by the irregular surface is almost constant if the incidence angle varies. Since the typical surfaces acquired in a geological/geophysical survey are generally irregular, these results imply that the intensity data can be easily used in order to evaluate the reflectance of the material at the considered wavelength, e.g. for pattern recognition purposes.

  1. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths. Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  2. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geon; Shin, Kyo Chul [Dankook Univ., College of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., College of Medicine, Seoul (Korea, Republic of); Lee, Hyoung Koo [The Catholic Univ., College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within {+-}1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within {+-}1.0% in most situations and within {+-}3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry.

  3. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    International Nuclear Information System (INIS)

    Yun, Hyong Geon; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within ±1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ±1.0% in most situations and within ±3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry

  4. Deducing Water Concentrations in the Parent Magma of Cumulate Clinopyroxene and Olivine: Implications for a Hydrous Parent Melt of a Primitive Deccan Lava

    Science.gov (United States)

    Seaman, S. J.

    2017-12-01

    Water concentrations of clinopyroxene megacrysts in the Powai ankaramite flow, located near Mumbai, Deccan province, India, indicate that the parent magma of the flow hosted at least 4.3 wt.% water, an unusually high water concentration for a continental flood basalt magma. The Powai flow hosts clinopyroxene and olivine phenocrysts. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by basaltic melt at 6 kb and 1230oC, so the phenocrysts record characteristics of the cumulate parent melt. Clinopyroxene phenocrysts are oscillatorily zoned in water, Mg, Fe, and Ca concentrations, and have concentric bands 100-200 microns thick of 10-20 micron diameter melt inclusions. Olivine phenocrysts host only larger isolated melt inclusions. Zones in the cpx phenocrysts where melt inclusion-rich concentric bands occur have higher concentrations of water than inclusion-free zones. Water concentrations of cpx were used to calculate water concentrations in the melt from which the crystals formed using partition coefficients of Hauri et al. (2004). Water concentrations in the parent magma were between 4.3 and 8.2 wt. % based on water concentrations in cpx. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. Oscillatory zoning in cpx may be a result of repeated growth of cpx in water- richer and water-poorer boundary layers where water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in capture of melt inclusions preserved in water-rich cpx zones. Melt inclusions in olivine phenocrysts preserve lower water concentrations ( 1.2 wt. %) than those indicated by water concentration in cpx phenocrysts. This disparity may be evidence of water loss from melt inclusions in olivine (Gaetani et al., 2009) or may indicate that cpx and ol crystals did not crystallize from the same parent at the same time.

  5. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  6. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    Science.gov (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  7. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  8. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  9. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)

    2016-11-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  10. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    International Nuclear Information System (INIS)

    Jiang, Yu; Baoyin, Hexi

    2016-01-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  11. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  12. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    International Nuclear Information System (INIS)

    Johnson, A.L.

    1988-01-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references

  13. On the Total Edge Irregularity Strength of Generalized Butterfly Graph

    Science.gov (United States)

    Dwi Wahyuna, Hafidhyah; Indriati, Diari

    2018-04-01

    Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .

  14. Exploring Manycore Multinode Systems for Irregular Applications with FPGA Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Ceriani, Marco; Palermo, Gianluca; Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2013-04-29

    We present a prototype of a multi-core architecture implemented on FPGA, designed to enable efficient execution of irregular applications on distributed shared memory machines, while maintaining high performance on regular workloads. The architecture is composed of off-the-shelf soft-core cores, local interconnection and memory interface, integrated with custom components that optimize it for irregular applications. It relies on three key elements: a global address space, multithreading, and fine-grained synchronization. Global addresses are scrambled to reduce the formation of network hot-spots, while the latency of the transactions is covered by integrating an hardware scheduler within the custom load/store buffers to take advantage from the availability of multiple executions threads, increasing the efficiency in a transparent way to the application. We evaluated a dual node system irregular kernels showing scalability in the number of cores and threads.

  15. Numerical simulation of complex part manufactured by selective laser melting process

    Science.gov (United States)

    Van Belle, Laurent

    2017-10-01

    Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.

  16. Focused ion beam structuring of low melting polymeric materials

    International Nuclear Information System (INIS)

    Schmied, R.

    2014-01-01

    strategy was applied for the preparation of ultra-thin lamellas for transmission electron microscopy. The results revealed that the new approach is capable of preserving 10nm thick polymeric interface layers without delamination and / or chemical intermixing of adjacent layers. The successful reduction of chemical damage with increased morphological stabilities by application of the alternative patterning strategy pushes the combination of FIB processing with low melting polymers towards the unavoidable, intrinsic limit of single ion beam pulses. In consequence, this new approach is expected to open new possibilities for FIB-related soft matter processing, which in the past has often been considered to be complicated or even impossible. (author) [de

  17. Radar observations of artificial E-region field-aligned irregularities

    Directory of Open Access Journals (Sweden)

    E. Nossa

    2009-07-01

    Full Text Available Artificial E region field aligned plasma density irregularities (FAIs were generated using HAARP in four different experimental modes and observed with a coherent scatter radar imager located 450 km to the southwest where it could detect field-aligned backscatter. The experiments were conducted in July of 2008, during the Polar Aeronomy and Radio Science Summer School (PARS, during quiet conditions in the daytime when the E layer was dense and absorption was modest. The echoes observed during zenith and magnetic zenith heating experiments were deflected from their nominally anticipated horizontal positions toward the midpoint position. The occurrence of hysteresis when heating with amplitude modulated pulses implied the development of the resonance instability, although the threshold for the onset of instability appeared to be higher than what has been predicted theoretically. Heating experiments involving pump frequencies slightly above and below the second electron gyroharmonic frequency produced no significant differences in the observed echoes. Finally, heating with a pump frequency slightly above the E region critical frequency appears to have produced FAIs at two distinct altitudes where the upper-hybrid resonance condition could be satisfied.

  18. The reconciliation of an F-region irregularity model with sunspot-cycle variations in spread-F occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-11-01

    A recently proposed means of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density (ΔN) so as to simulate the global occurrence probability of the frequency spreading component of spread-F is discussed. This procedure is then used to model experimental spread-F occurrence results. It is found possible to readily simulate the sunspot-maximum results, independently of season, with only small adjustments to the amplitudes of the empirical expressions used to ΔN in the several latitude regimes. However, at sunspot minimum and for each season, the ΔN model requires modification in the equatorial and mid-latitude regions of high irregularity incidence, before successful simulations of the spread-F data can be obtained. These modifications, which include a broadening of the equatorial region and a polewards shift to the mid-latitude region with decreasing sunspot number, are discussed in detail. It is concluded that the scintillation data base, from which the original ΔN model derives, is not sufficiently representative with regard to sunspot number and magnetic index. The use of the spread-F adaptation of the ΔN model, as well as its original scintillation version, to rectify these failings of the ΔN model are also discussed. (author)

  19. Modeling and Experimental Validation of the Electron Beam Selective Melting Process

    Directory of Open Access Journals (Sweden)

    Wentao Yan

    2017-10-01

    Full Text Available Electron beam selective melting (EBSM is a promising additive manufacturing (AM technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM, ② a phase field (PF model of powder sintering (solid-state sintering, and ③ a powder-melting (liquid-state sintering model using the finite volume method (FVM. Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

  20. A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure

    Science.gov (United States)

    Davis, Ashley

    2017-08-01

    In the Solar System, the surface of an icy moon is composed of irregular ice formations at cryogenic temperatures (pumps. The device contains a heated conical probe with a central orifice, which is forced into surface ice and directs the meltwater upward into a reservoir. The force on the probe is proportional to the height of meltwater (pressure) obtained in the system and allows regulation of the melt rate and temperature of the sample. The device can collect 5-50 mL of meltwater from the surface of an ice block at 233-208 K with an environmental pressure of less than 10-2 atm while maintaining a sample temperature between 273 and 293 K. These conditions maintain most biological samples in a pristine state and maintain the integrity of most organisms' structure and function.

  1. Estimation of a melting probe's penetration velocity range to reach icy moons' subsurface ocean

    Science.gov (United States)

    Erokhina, Olga; Chumachenko, Eugene

    2014-05-01

    In modern space science one of the actual branches is icy satellites explorations. The main interest is concentrated around Jovian's moons Europa and Ganymede, Saturn's moons Titan and Enceladus that are covered by thick icy layer according to "Voyager1", "Voyager2", "Galileo" and "Cassini" missions. There is a big possibility that under icy shell could be a deep ocean. Also conditions on these satellites allow speculating about possible habitability, and considering these moons from an astrobiological point of view. One of the possible tasks of planned missions is a subsurface study. For this goal it is necessary to design special equipment that could be suitable for planetary application. One of the possible means is to use a melting probe which operates by melting and moves by gravitational force. Such a probe should be relatively small, should not weight too much and should require not too much energy. In terrestrial case such kind of probe has been successfully used for glaciers study. And it is possible to extrapolate the usage of such probe to extraterrestrial application. One of the tasks is to estimate melting probe's penetration velocity. Although there are other unsolved problems such as analyzing how the probe will move in low gravity and low atmospheric pressure; knowing whether hole will be closed or not when probe penetrate thick enough; and considering what order could be a penetration velocity. This study explores two techniques of melting probe's movement. One of them based on elasto-plastic theory and so-called "solid water" theory, and other one takes phase changing into account. These two techniques allow estimating melting probe's velocity range and study whole process. Based on these technique several cases of melting probe movement were considered, melting probe's velocity range estimated, influence of different factors studied and discussed and an easy way to optimize parameters of the melting probe proposed.

  2. Seismic performance for vertical geometric irregularity frame structures

    Science.gov (United States)

    Ismail, R.; Mahmud, N. A.; Ishak, I. S.

    2018-04-01

    This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.

  3. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  4. Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Mohsen Shanbeh

    2011-01-01

    Full Text Available One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV% of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.

  5. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths.

    Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  6. High-pressure melting curve of KCl: Evidence against lattice-instability theories of melting

    International Nuclear Information System (INIS)

    Ross, M.; Wolf, G.

    1986-01-01

    We show that the large curvature in the T-P melting curve of KCl is the result of a reordering of the liquid to a more densely packed arrangement. As a result theories of melting, such as the instability model, which do not take into account the structure of the liquid fail to predict the correct pressure dependence of the melting curve

  7. Two-temperature hydrodynamic expansion and coupling of strong elastic shock with supersonic melting front produced by ultrashort laser pulse

    International Nuclear Information System (INIS)

    Inogamov, Nail A; Khokhlov, Viktor A; Zhakhovsky, Vasily V; Khishchenko, Konstantin V; Demaske, Brian J; Oleynik, Ivan I

    2014-01-01

    Ultrafast processes, including nonmonotonic expansion of material into vacuum, supersonic melting and generation of super-elastic shock wave, in a surface layer of metal irradiated by an ultrashort laser pulse are discussed. In addition to the well-established two-temperature (2T) evolution of heated layer a new effect of electron pressure gradient on early stage of material expansion is studied. It is shown that the expanding material experiences an unexpected jump in flow velocity in a place where stress exceeds the effective tensile strength provided by used EoS of material. Another 2T effect is that supersonic propagation of homogeneous melting front results in distortion of spatial profile of ion temperature, which later imprints on ion pressure profile transforming in a super-elastic shock wave with time.

  8. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™

    OpenAIRE

    Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.

    2015-01-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high perfo...

  9. Production of micron-sized polymer particles for additive manufacturing by melt emulsification

    Energy Technology Data Exchange (ETDEWEB)

    Fanselow, Stephanie; Schmidt, Jochen; Wirth, Karl-Ernst; Peukert, Wolfgang, E-mail: Wolfgang.Peukert@fau.de [Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen (Germany)

    2016-03-09

    Melt emulsification is an advanced top-down approach that permits to produce spherical particles and thus widens the availability of polymer feed materials for additive manufacturing. In the process the polymer is molten in a continuous phase and droplet breakup is realized in a rotor-stator-device. The stabilization of the newly formed surfaces is quite challenging. Therefore, a new method to identify an appropriate emulsifier by measuring the interfacial tension between the polymer and continuous phase using a high pressure / high temperature cell is presented. The obtained powders are characterized by scanning electron microscopy (SEM) and by a Zimmermann tensile strength tester to determine the powder flowability. The processability of the polymer powders for additive manufacturing is investigated and demonstrated by building single layers by laser beam melting.

  10. Irregular menses predicts ovarian cancer: Prospective evidence from the Child Health and Development Studies.

    Science.gov (United States)

    Cirillo, Piera M; Wang, Erica T; Cedars, Marcelle I; Chen, Lee-May; Cohn, Barbara A

    2016-09-01

    We tested the hypothesis that irregular menstruation predicts lower risk for ovarian cancer, possibly due to less frequent ovulation. We conducted a 50-year prospective study of 15,528 mothers in the Child Health and Development Studies cohort recruited from the Kaiser Foundation Health Plan from 1959 to 1966. Irregular menstruation was classified via medical record and self-report at age 26. We identified 116 cases and 84 deaths due to ovarian cancer through 2011 via linkage to the California Cancer Registry and Vital Statistics. Contrary to expectation, women with irregular menstrual cycles had a higher risk of ovarian cancer incidence and mortality over the 50-year follow-up. Associations increased with age (p irregular menstruation and ovarian cancer-we unexpectedly found higher risk for women with irregular cycles. These women are easy to identify and many may have polycystic ovarian syndrome. Classifying high-risk phenotypes such as irregular menstruation creates opportunities to find novel early biomarkers, refine clinical screening protocols and potentially develop new risk reduction strategies. These efforts can lead to earlier detection and better survival for ovarian cancer. © 2016 UICC.

  11. Comparison of correlation analysis techniques for irregularly sampled time series

    Directory of Open Access Journals (Sweden)

    K. Rehfeld

    2011-06-01

    Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.

    All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.

    We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.

  12. Experimental and theoretical study of the onset of the growth of an irregular metal electrodeposit

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Graciela [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Rosso, Michel; Chazalviel, Jean-Noel [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Chassaing, Elisabeth [IRDEP, EDF R and D, 6 Quai Watier, 78401 Chatou (France)

    2007-11-20

    Electrodeposition of a metal can produce aggregates with very irregular morphologies, in particular dendrites. In order to better understand these phenomena, we studied the preliminary stage of copper growth from copper sulfate by in situ optical experiments and impedance spectroscopy. Experiments were performed in a thin layer cell put in a vertical position, with cathode on top. Using a vertical cell instead of a horizontal one tends to stabilize the electrochemical system. The concentration measured by optical absorption is in agreement with theoretical prediction at the onset of polarization. Close to the limiting current density, oscillations were observed in the cell voltage. Impedance spectra could be fitted either using a simple equivalent circuit at low current density, or more complex calculations at high current density. (author)

  13. Optimized Irregular Low-Density Parity-Check Codes for Multicarrier Modulations over Frequency-Selective Channels

    Directory of Open Access Journals (Sweden)

    Valérian Mannoni

    2004-09-01

    Full Text Available This paper deals with optimized channel coding for OFDM transmissions (COFDM over frequency-selective channels using irregular low-density parity-check (LDPC codes. Firstly, we introduce a new characterization of the LDPC code irregularity called “irregularity profile.” Then, using this parameterization, we derive a new criterion based on the minimization of the transmission bit error probability to design an irregular LDPC code suited to the frequency selectivity of the channel. The optimization of this criterion is done using the Gaussian approximation technique. Simulations illustrate the good performance of our approach for different transmission channels.

  14. Drug Intoxicated Irregular Fighters: Complications, Dangers, and Responses

    National Research Council Canada - National Science Library

    Kan, Paul R

    2008-01-01

    .... Drug consumption in contemporary wars has coincided with the use of child soldiers, has led to increased unpredictability among irregular fighters, provided the conditions for the breakdown of social...

  15. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  16. Artificial periodic irregularities in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    M. T. Rietveld

    1996-12-01

    Full Text Available Artificial periodic irregularities (API are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the

  17. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  18. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  19. Irregular ionization and scintillation of the ionosphere in equator region

    International Nuclear Information System (INIS)

    Shinno, Kenji

    1974-01-01

    The latest studies on the scintillation in satellite communication and its related irregularities of ionosphere are reviewed. They were made clear by means of spread-F, the direct measurement with scientific satellites, VHF radar observation, and radio wave propagation in equator region. The fundamental occurrence mechanism may be instability of plasma caused by the interaction of movement of neutral atmosphere and magnetic field. Comparison of the main characteristics of scintillation, namely the dependence on region, solar activity, season, local time, geomagnetic activity, movement in ionosphere, scattering source, frequency and transmission mode, was made and the correlation among spread-F, TEP and scintillation was summarized. The latest principal studies were the observations made by Intelsat and by ATS. Scintillation of Syncom-3 and Intelsat-II-F2 and spread-F by ionosphere observation were compared by Huang. It is reasonable to consider that the occurrence of scintillation is caused by the irregularities in ionosphere which are particular in equator region, because of the similar characteristics of spread-F and VHF propagation in the equator region. These three phenomena may occur in relation to the irregularities of ionosphere. Interpretation of spread-F and the abnormal propagation wave across the equator are given. The study using VHF radar and the movement of irregular ionization by the direct observation with artificial satellites are reviewd. (Iwakiri, K.)

  20. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [EFDA-CSU, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Pestchanyi, S.E. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2007-06-15

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  1. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Science.gov (United States)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  2. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Loarte, A.; Pestchanyi, S.E.

    2007-01-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated

  3. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  4. Tracking the course of the manufacturing process in selective laser melting

    Science.gov (United States)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  5. Irregular Warfare: New Challenges for Civil-Military Relations

    National Research Council Canada - National Science Library

    Cronin, Patrick M

    2008-01-01

    .... Irregular warfare introduces new complications to what Eliot Cohen has called an unequal dialogue between civilian and military leaders in which civilian leaders hold the true power but must modulate...

  6. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  7. Method of determining effects of heat-induced irregular refractive index on an optical system.

    Science.gov (United States)

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  8. Significance of scatter radar studies of E and F region irregularities at high latitudes

    International Nuclear Information System (INIS)

    Greenwald, R.A.

    1983-01-01

    This chapter considers the mechanisms by which electron density irregularities may be generated in the high latitude ionosphere and the techniques through which they are observed with ground base radars. The capabilities of radars used for studying these irregularities are compared with the capabilities of radars used for incoherent scatter measurements. The use of irregularity scatter techniques for dynamic studies of larger scale structured phenomena is discussed. Topics considered include E-region irregularities, observations with auroral radars, plasma drifts associated with a westward travelling surge, and ionospheric plasma motions associated with resonant waves. It is shown why high latitude F-region irregularity studies must be made in the HF frequency band (3-30 MHz). The joint use of the European Incoherent Scatter Association (EISCAT), STARE and SAFARI facilities is examined, and it is concluded that the various techniques will enhance each other and provide a better understanding of the various processes being studied

  9. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  10. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    Science.gov (United States)

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  11. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    Science.gov (United States)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  12. [Comparision of Different Methods of Area Measurement in Irregular Scar].

    Science.gov (United States)

    Ran, D; Li, W J; Sun, Q G; Li, J Q; Xia, Q

    2016-10-01

    To determine a measurement standard of irregular scar area by comparing the advantages and disadvantages of different measurement methods in measuring same irregular scar area. Irregular scar area was scanned by digital scanning and measured by coordinate reading method, AutoCAD pixel method, Photoshop lasso pixel method, Photoshop magic bar filled pixel method and Foxit PDF reading software, and some aspects of these methods such as measurement time, repeatability, whether could be recorded and whether could be traced were compared and analyzed. There was no significant difference in the scar areas by the measurement methods above. However, there was statistical difference in the measurement time and repeatability by one or multi performers and only Foxit PDF reading software could be traced back. The methods above can be used for measuring scar area, but each one has its advantages and disadvantages. It is necessary to develop new measurement software for forensic identification. Copyright© by the Editorial Department of Journal of Forensic Medicine

  13. Irregular flowering patterns in terrestrial orchids: theories vs. empirical data

    Directory of Open Access Journals (Sweden)

    P. Kindlmann

    2001-11-01

    Full Text Available Empirical data on many species of terrestrial orchids suggest that their between-year flowering pattern is extremely irregular and unpredictable. A long search for the reason has hitherto proved inconclusive. Here we summarise and critically review the hypotheses that were put forward as explanations of this phenomenon: irregular flowering was attributed to costs associated with sexual reproduction, to herbivory, or to the chaotic behaviour of the system represented by difference equations describing growth of the vegetative and reproductive organs. None of these seems to explain fully the events of a transition from flowering one year to sterility or absence the next year. Data on the seasonal growth of leaves and inflorescence of two terrestrial orchid species, Epipactis albensis and Dactylorhiza fuchsii and our previous results are then used here to fill gaps in what has been published until now and to test alternative explanations of the irregular flowering patterns of orchids.

  14. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Science.gov (United States)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  15. Effect of Exogenous Zirconia Nanophases on the Structural Properties of the Sulfur- and Tin-Containing Nickel Melts

    Science.gov (United States)

    Anuchkin, S. N.

    2017-11-01

    The surface tension and the density of the nickel melts with introduced ZrO2 nanoparticles are studied by the sessile drop method using a digital camera and computer processing of images. The revealed differently directed effects of nanoparticles on the surface tension in the Ni-Sn and Ni-S systems points to a change in the structure of the melt-gas surface layer. The nanoparticles are shown to affect the adsorption of surfactants, and the surface layer is likely to consist of adsorbed Ni + (ZrO2-surfactant) ensembles. The ZrO2 content in a metal is determined using the technique of separate determination of the zirconium content dissolved in a metal and zirconium in the form of ZrO2. It was found that, at 0.10 wt % ZrO2 initially present in a metal, 0.021-0.031 wt % ZrO2 are retained in samples; that is, about 70 rel % ZrO2 are removed to the interface in the form of ensembles. Auger spectroscopy analysis of the Ni-Sn-ZrO2 surface film detected 5-10 rel % Zr in the surface layer.

  16. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    Science.gov (United States)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  17. Observations of inner plasmasphere irregularities with a satellite-beacon radio-interferometer array

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Hoogeveen, G.; Carlos, R.C.; Wu, G.; Fejer, B.G.; Kelley, M.C.

    1996-01-01

    A radio-interferometer array illuminated by 136-MHz beacons of several geosynchronous satellites has been used to study small (≥10 13 m -2 ) transient disturbances in the total electron content along the lines of sight to the satellites. High-frequency (f>3 mHz) electron content oscillations are persistently observed, particularly during night and particularly during geomagnetically disturbed periods. The oscillations move across the array plane at speeds in the range 200 endash 2000 m/s, with propagation azimuths that are strongly peaked in lobes toward the western half-plane. Detailed analysis of this azimuth behavior, involving comparison between observations on various satellite positions, indicates compellingly that the phase oscillations originate in radio refraction due to geomagnetically aligned plasma density perturbations in the inner plasmasphere. The motion of the phase perturbations across the array plane is caused by EXB drift of the plasma medium in which the irregularities are embedded. We review the statistics of 2.5 years of around-the-clock data on the local time, magnetic disturbance, seasonal, and line-of-sight variations of these observed irregularities. We compare the irregularities close-quote inferred electrodynamic drifts to what is known about midlatitude plasma drift from incoherent scatter. Finally, we show in detail how the observation of these irregularities provides a unique and complementary monitor of inner plasmasphere irregularity incidence and zonal drift.copyright 1996 American Geophysical Union

  18. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  19. Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms

    Science.gov (United States)

    Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.

    2017-12-01

    Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during

  20. Automatic Control of Silicon Melt Level

    Science.gov (United States)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  1. Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-07-01

    Full Text Available E region ionospheric modification experiments have been performed at HAARP using pump frequencies about 50 kHz above and below the second electron gyroharmonic frequency. Artificial E region field-aligned plasma density irregularities (FAIs were created and observed using the imaging coherent scatter radar near Homer, Alaska. Echoes from FAIs generated with pump frequencies above and below 2Ωe did not appear to differ significantly in experiments conducted on summer afternoons in 2008, and the resonance instability seemed to be at work in either case. We argue that upper hybrid wave trapping and resonance instability at pump frequencies below the second electron gyroharmonic frequency are permitted theoretically when the effects of finite parallel wavenumbers are considered. Echoes from a sporadic E layer were observed to be somewhat weaker when the pump frequency was 50 kHz below the second electron gyroharmonic frequency. This may indicate that finite parallel wavenumbers are inconsistent with wave trapping in thin sporadic E ionization layers.

  2. Influence of long-wavelength track irregularities on the motion of a high-speed train

    Science.gov (United States)

    Hung, C. F.; Hsu, W. L.

    2018-01-01

    Vertical track irregularities over viaducts in high-speed rail systems could be possibly caused by concrete creep if pre-stressed concrete bridges are used. For bridge spans that are almost uniformly distributed, track irregularity exhibits a near-regular wave profile that excites car bodies as a high-speed train moves over the bridge system. A long-wavelength irregularity induces low-frequency excitation that may be close to the natural frequencies of the train suspension system, thereby causing significant vibration of the car body. This paper investigates the relationship between the levels of car vibration, bridge vibration, track irregularity, and the train speed. First, this study investigates the vibration levels of a high-speed train and bridge system using 3D finite-element (FE) transient dynamic analysis, before and after adjustment of vertical track irregularities by means of installing shimming plates under rail pads. The analysis models are validated by in situ measurements and on-board measurement. Parametric studies of car body vibration and bridge vibration under three different levels of track irregularity at five train speeds and over two bridge span lengths are conducted using the FE model. Finally, a discontinuous shimming pattern is proposed to avoid vehicle suspension resonance.

  3. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  4. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  5. Comparison of boron diffusion in silicon during shallow p{sup +}/n junction formation by non-melt excimer and green laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Aid, Siti Rahmah; Matsumoto, Satoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Fuse, Genshu [SEN Corporation, SBS Tower 9F, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097 (Japan); Sakuragi, Susumu [Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka, Kanagawa 237-8555 (Japan)

    2011-12-15

    The combination of Ge pre-amorphization implantation, low-energy boron implantation, and non-melt laser annealing is a promising method for forming ultrashallow p{sup +}/n junctions in silicon. In this study, shallow p{sup +}/n junctions were formed by non-melt annealing implanted samples using a green laser (visible laser). The dopant diffusion, activation, and recrystallization of an amorphous silicon layer were compared with those obtained in our previous study in which non-melt annealing was performed using a KrF excimer laser (UV laser). The experimental results reveal that only slight diffusion of boron in the tail region occurred in green-laser-annealed samples. In contrast, remarkable boron diffusion occurred in KrF-laser-annealed samples for very short annealing times. Recrystallization of the amorphous silicon layer was slower in green-laser-annealed samples than in KrF-laser-annealed samples. We consider the penetration depth and the pulse duration are important factors that may affect boron diffusion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  7. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2012-05-31

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniques in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.

  8. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder

    International Nuclear Information System (INIS)

    Thijs, Lore; Kempen, Karolien; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Graphical abstract: -- Abstract: This study shows that AlSi10Mg parts with an extremely fine microstructure and a controllable texture can be obtained through selective laser melting (SLM). Selective laser melting creates complex functional products by selectively melting powder particles of a powder bed layer after layer using a high-energy laser beam. The high-energy density applied to the material and the additive character of the process result in a unique material structure. To investigate this material structure, cube-shaped SLM parts were made using different scanning strategies and investigated by microscopy, X-ray diffraction and electron backscattered diffraction. The experimental results show that the high thermal gradients occurring during SLM lead to a very fine microstructure with submicron-sized cells. Consequently, the AlSi10Mg SLM products have a high hardness of 127 ± 3 Hv0.5 even without the application of a precipitation hardening treatment. Furthermore, due to the unique solidification conditions and the additive character of the process, a morphological and crystallographic texture is present in the SLM parts. Thanks to the knowledge gathered in this paper on how this texture is formed and how it depends on the process parameters, this texture can be controlled. A strong fibrous 〈1 0 0〉 texture can be altered into a weak cube texture along the building and scanning directions when a rotation of 90° of the scanning vectors within or between the layers is applied

  9. Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost

    Science.gov (United States)

    Rybarczyk, Maria K.; Gontarek, Emilia; Lieder, Marek; Titirici, Maria-Magdalena

    2018-03-01

    Implementing metal-free electrocatalysts for the oxygen reduction reaction (ORR) and revealing crucial chemical or topographical parameters driving their activity are vital for the development of power cells. The carbon-based catalysts are very often synthesized through carbonization of biopolymers, in particular, those one containing nitrogen groups such as chitosan. Unfortunately, the resulting carbonaceous materials usually lack specific porosity and exhibit low catalytic activity. Here, we demonstrate that pyrolysis of chitosan in a ZnCl2 melt assisted by the presence of LiCl results not only in a highly porous activated carbon material with a specific surface area of 1317.97 m2/g and the total nitrogen content of 6.5%, but also induces unexpected curvature in the grown graphitic layers. This is the first work that shows curved graphene layers obtained from a biopolymer precursor by its pyrolytic decomposition in the melted salt media. On the other hand, a carbonaceous material obtained from chitosan but without the salts has very low specific surface area of 7.8 m2/g, possesses no specific structural features, and contains 4.7% of nitrogen. The electrochemical studies show, that the former material is highly active towards four-electron pathway of the ORR in terms of an onset potential (0.89 V vs RHE) and the turnover frequency (TOFmax = 0.095 e site-1 s-1). We attribute this high catalytic performance to the presence of the pyridinic and pyrrolic sites in the structure. The ORR kinetics is probably further promoted by curvature in the graphitic layers.

  10. Energy-balance and melt contributions of supraglacial lakes, Langtang Khola, Nepal

    Science.gov (United States)

    Miles, E. S.; Willis, I. C.; Pellicciotti, F.; Steiner, J. F.; Buri, P.; Arnold, N. S.

    2014-12-01

    As Himalayan debris-covered glaciers retreat and thin in response to climate warming, their long, low-gradient tongues generate substantial meltwater which often collects to form surface lakes. Supraglacial lakes on debris covered glaciers present a mechanism of atmosphere-glacier energy transfer that is poorly-studied, and only conceptually included in mass-balance studies. The ponded water can enhance energy transfer as compared to dry debris cover, while also acting as a reservoir of melt-available energy. Supraglacial lakes occur in association with debris-free ice cliffs, another poorly-constrained but critical component of glacier melt. Understanding the role of supraglacial lakes requires precise monitoring of lake volume, estimation of inlet and outlet flows, and consideration of the energy balance across three surfaces: atmosphere-lake, lake-ice, and lake-saturated debris layer. This research progresses previous modeling work on the energy and mass balance of such supraglacial lakes. Lakes were monitored during the monsoon of 2013 on Lirung Glacier in the Langtang Himal of Nepal with pressure transducers and temperature sensors, while UAV-derived DEMs were used to determine lake geometry. Lake albedo was measured to vary between 0.08 and 0.12, and a nearby on-glacier AWS was used to drive the energy balance. Results indicate that the lakes act as a significant recipient of energy, and suggest that lakes are an important part of an active supraglacial hydrologic system during the monsoon. Melt generated by the lake in contact with bare ice is calculated to be 3-5 cm/day, while energy conducted through saturated lake-bottom debris only resulted in 1-2 mm/day melt. The subaqueous melt rates are of similar magnitude to observed ice-cliff melt rates, allowing lake-cliff systems to persist. Energy leaving the lake system through englacial conduits may be the most important contribution to the glacier's mass balance, driving surface evolution to form new ice

  11. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    International Nuclear Information System (INIS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-01-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  12. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Science.gov (United States)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  13. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  14. Uniform irradiation of irregularly shaped cavities for photodynamic therapy.

    Science.gov (United States)

    Rem, A I; van Gemert, M J; van der Meulen, F W; Gijsbers, G H; Beek, J F

    1997-03-01

    It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a cubical box, a sphere, a cylinder and a 'bottle-neck' geometry have been investigated experimentally and the results have been compared with computed light distributions obtained using the 'radiosity method'. A high reflection coefficient of the mould and the best uniform direct irradiance possible on the inside of the mould were found to be important determinants for achieving a uniform light distribution.

  15. Selective laser melting of Invar 36: Microstructure and properties

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Adkins, Nicholas J.E.; Attallah, Moataz M.

    2016-01-01

    Invar 36 samples have been fabricated by selective laser melting at a constant laser power but with varied laser scanning speeds. Some samples were further heat treated or hot isostatically pressed (HIPed). The obtained microstructures were studied using optical and electron microscopes, X-ray diffraction and electron backscatter diffraction techniques and the properties evaluated through both tensile testing and thermal expansion measurement. It was found that the as-fabricated samples show very low porosity (<0.5%) when the laser scanning speeds are below 3200 mm/s but show remarkably increased porosity above 3200 mm/s (at 400 W). Increased scanning speed also led to increasingly irregular-shaped laser scanned tracks together with an increased number of pores on sample surfaces and keyhole features within the samples, all indicative of increasingly unstable melt flow behaviour. The as-fabricated microstructure was dominated by columnar γ grains decorated by nanosized α precipitates, resulting in development of texture. Heat treatment did not change microstructure significantly while HIPing closed the majority of pores but also caused pronounced coarsening of α precipitates especially those located at grain boundaries during subsequent slow cooling. With the presence of elongated pores, the vertically built samples were found to show much lower elongation than horizontally built samples while in the absence of pores their ductility has been significantly improved but their tensile strengths are still lower than the latter. The vertically built samples generally failed in a transgranular mode while the horizontally built samples failed in an intergranular mode. HIPing greatly degraded tensile properties due to the presence of coarse grain boundary α precipitates weakening the bonding between grains. Irrespective of building orientations, the as-fabricated samples show low coefficients of thermal expansion below 300 °C comparable to conventionally

  16. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  17. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    Science.gov (United States)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the

  18. Study on coating layer of ceramic materials for SFR fuel slugs

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Jonghwan; Kim, Kihwan; Ko, Youngmo; Woo, Yoonmyung; Lee, Chanbock

    2013-01-01

    The plasma-sprayed coating can provide the crucible with a denser, more durable, coating layer, compared with the more friable coating layer formed by slurry-coating. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels. Reducing these interactions will result in a fuel loss reduction. According to coating and U-Zr interaction results preformed in previous experience, Y 2 O 3 , TiC, and TaC coating materials were selected as promising coating materials Various combinations of coating conditions such as; coating thickness, double multi-layer coating methods were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. To develop a coating method and material for crucibles to prevent material interactions with U-TRU-Zr fuels, the refractory coating was performed using vacuum plasma-sprayed method onto niobium rod. The various combinations of coating conditions such as; coating thickness, double multi-layer coating methods were investigated to find the bonding effect to withstand the thermal stress. Most of coating method samples did not maintain integrity in the U-Zr-RE melt because of the cracks or the microcracks of the coating layer, presumably formed from the thermal expansion difference. Only the double-layer coated rod with TaC and Y 2 O 3 powders, which is, which consists of vacuum plasma-sprayed TaC bond coating with the coating thickness of 100μm onto niobium rod and vacuum plasma-sprayed Y 2 O 3 coating with the coating thickness of 100μm on the top of the bond coating layer, survived the 2 cycles dipping test of U-Zr-RE melt this is likely caused by good adhesion of the TaC coating onto the niobium rod and the chemical inertness

  19. Breaking Down Anonymity: Digital surveillance on irregular migrants in Germany and the Netherlands

    NARCIS (Netherlands)

    D.W.J. Broeders (Dennis)

    2009-01-01

    textabstractThe presence of irregular migrants causes a tough problem for policy makers. Political and popular aversion against the presence of irregular migrants has mounted in most West-European societies for years, yet their presence remains. Their exact numbers are obviously unknown - only

  20. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  1. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  2. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  3. Melting of Au and Al in nanometer Fe/Au and Fe/Al multilayers under swift heavy ions: A thermal spike study

    International Nuclear Information System (INIS)

    Chettah, A.; Wang, Z.G.; Kac, M.; Kucal, H.; Meftah, A.; Toulemonde, M.

    2006-01-01

    Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)] y and [Fe(3 nm)/Al(x)] y with x ranging between 1 and 10 nm, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of 208 Pb, 132 Xe and 84 Kr ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems

  4. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  5. [Artificial cycle therapy of acupuncture and moxibustion for irregular menstruation].

    Science.gov (United States)

    Wu, Jie; Yang, Lijie; Chen, Yajie; Li, Qing; Chen, Lin

    2015-03-01

    Through the discussion on TCM physiological characters of females in follicular, ovulatory, luteal and menstrual phases and treatment principles, the clinical application of artificial cycle therapy of acupuncture and moxibustion was introduced for irregular menstruation and the typical cases were attached. It is suggested that the menstrual cycle follows the growth-consumption rule of yin, yang, qi and blood. The corresponding treatment principles should be applied in accordance with the change rule of menstrual cycle. Hence, it is worth to adopt the artificial cycle therapy of acupuncture and moxibustion for irregular menstruation in clinical application.

  6. Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    Science.gov (United States)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Mommert, M.; Szakáts, R.; Müller, T.; Kiss, L. L.

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  7. Properties of the Irregular Satellite System around Uranus Inferred from K2 , Herschel , and Spitzer Observations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Szakáts, R.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Mommert, M. [Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011 (United States); Müller, T., E-mail: farkas.aniko@csfk.mta.hu [Max-Plank-Institut für extraterrestrsiche Pyhsik, Garching (Germany)

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel /PACS and Spitzer /MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  8. On the total irregularity strength of caterpillar with each internal vertex has degree three

    Science.gov (United States)

    Indriati, Diari; Rosyida, Isnaini; Widodo

    2018-04-01

    Let G be a simple, connected and undirected graph with vertex set V and edge set E. A total k-labeling f:V \\cup E\\to \\{1,2,\\ldots,k\\} is defined as totally irregular total k-labeling if the weights of any two different both vertices and edges are distinct. The weight of vertex x is defined as wt(x)=f(x)+{\\sum }xy\\in Ef(xy), while the weight of edge xy is wt(xy)=f(x)+f(xy)+f(y). A minimum k for which G has totally irregular total k-labeling is mentioned as total irregularity strength of G and denoted by ts(G). This paper contains investigation of totally irregular total k-labeling and determination of their total irregularity strengths for caterpillar graphs with each internal vertex between two stars has degree three. The results are ts({S}n,3,n)=\\lceil \\frac{2n}{2}\\rceil, ts({S}n,3,3,n)=\\lceil \\frac{2n+1}{2}\\rceil and ts({S}n,3,3,3,n)=\\lceil \\frac{2n+2}{2}\\rceil for n > 4:

  9. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    International Nuclear Information System (INIS)

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin

    2015-01-01

    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  10. A Review of Atomic Layer Deposition for Nanoscale Devices

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-12-01

    Full Text Available Atomic layer deposition (ALD is a thin film growth technique that utilizes alternating, self-saturation chemical reactions between gaseous precursors to achieve a deposited nanoscale layers. It has recently become a subject of great interest for ultrathin film deposition in many various applications such as microelectronics, photovoltaic, dynamic random access memory (DRAM, and microelectromechanic system (MEMS. By using ALD, the conformability and extreme uniformity of layers can be achieved in low temperature process. It facilitates to be deposited onto the surface in many variety substrates that have low melting temperature. Eventually it has advantages on the contribution to the wider nanodevices.

  11. Annual layering in the NGRIP ice core during the Eemian

    Directory of Open Access Journals (Sweden)

    A. Svensson

    2011-12-01

    Full Text Available The Greenland NGRIP ice core continuously covers the period from present day back to 123 ka before present, which includes several thousand years of ice from the previous interglacial period, MIS 5e or the Eemian. In the glacial part of the core, annual layers can be identified from impurity records and visual stratigraphy, and stratigraphic layer counting has been performed back to 60 ka. In the deepest part of the core, however, the ice is close to the pressure melting point, the visual stratigraphy is dominated by crystal boundaries, and annual layering is not visible to the naked eye. In this study, we apply a newly developed setup for high-resolution ice core impurity analysis to produce continuous records of dust, sodium and ammonium concentrations as well as conductivity of melt water. We analyzed three 2.2 m sections of ice from the Eemian and the glacial inception. In all of the analyzed ice, annual layers can clearly be recognized, most prominently in the dust and conductivity profiles. Part of the samples is, however, contaminated in dust, most likely from drill liquid. It is interesting that the annual layering is preserved despite a very active crystal growth and grain boundary migration in the deep and warm NGRIP ice. Based on annual layer counting of the new records, we determine a mean annual layer thickness close to 11 mm for all three sections, which, to first order, confirms the modeled NGRIP time scale (ss09sea. The counting does, however, suggest a longer duration of the climatically warmest part of the NGRIP record (MIS5e of up to 1 ka as compared to the model estimate. Our results suggest that stratigraphic layer counting is possible basically throughout the entire NGRIP ice core, provided sufficiently highly-resolved profiles become available.

  12. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  13. Effect of an intermediate tungsten layer on thermal properties of TiC coatings ion plated onto molybdenum

    International Nuclear Information System (INIS)

    Fukutomi, M.; Fujitsuka, M.; Shikama, T.; Okada, M.

    1985-01-01

    Among the various low-Z coating-substrate systems proposed for fusion reactor first-wall applications, molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. The thermal stabilities of TiC layers ion plated onto the molybdenum substrate are discussed with particular reference to the interfacial reaction between the TiC coating and molybdenum. The deposition of an intermediate tungsten layer was found to be very effective in suppressing the formation of reaction layers, resulting in a marked improvement in thermal stabilities of TiC--Mo systems. Thermal shock test using a pulsed electron beam showed that the TiC coatings remained adherent to the molybdenum substrates during energy depositions high enough to melt the substrates within the area of beam deposition. The melt area of the TiC coatings apparently decreased when a tungsten intermediate layer was applied

  14. Laser melting of groove defect repair on high thermal conductivity steel (HTCS-150)

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Fazliana, F.; Reza, M. S.; Ismail, I.; Khairil, C. M.

    2018-02-01

    This paper presents laser melting repair of groove defect on HTCS-150 surface using Nd:YAG laser system. Laser melting process was conducted using JK300HPS Nd:YAG twin lamp laser source with 1064 nm wavelength and pulsed mode. The parameters are pulse repetition frequency (PRF) that is set from 70 to 100 Hz, average power ( P A) of 50-70 W, and laser spot size of 0.7 mm. HTCS-150 samples were prepared with groove dimension of 0.3 mm width and depths of 0.5 mm using EDM wire cut. Groove defect repaired using laser melting process on groove surface area with various parameters' process. The melted surface within the groove was characterized for subsurface hardness profile, roughness, phase identification, chemical composition, and metallographic study. The roughness analysis indicates high PRF at large spot size caused high surface roughness and low surface hardness. Grain refinement of repaired layer was analyzed within the groove as a result of rapid heating and cooling. The hardness properties of modified HTCS inside the groove and the bulk surface increased two times from as received HTCS due to grain refinement which is in agreement with Hall-Petch equation. These findings are significant to parameter design of die repair for optimum surface integrity and potential for repairing crack depth and width of less than 0.5 and 0.3 mm, respectively.

  15. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  16. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  17. The effect of earthquake on architecture geometry with non-parallel system irregularity configuration

    Science.gov (United States)

    Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri

    2017-12-01

    Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a

  18. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  19. Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding

    International Nuclear Information System (INIS)

    Barick, A.K.; Tripathy, D.K.

    2010-01-01

    Thermoplastic polyurethane (TPU) nanocomposites based on organically modified layered silicate (OMLS) were prepared by melt intercalation process followed by compression molding. Different percentage of organoclays was incorporated into the TPU matrix in order to examine the influence of the nanoscaled fillers on nanostructure morphology and material properties. The microscopic morphology of the nanocomposites was evaluated by wide angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The observation revealed that both nanoclay-polymer interactions and shear stress developed during melt mixing are responsible for the effectively organoclay dispersion in TPU matrix resulting intercalated/exfoliated morphology. Thermal stability of the nanocomposites measured by thermogravimetric analysis (TGA) was improved significantly with the addition of nanoclay. The differential scanning calorimetry (DSC) analysis reveals that melting point of the nanocomposites increased with incorporation of nanoclay. The dynamic mechanical properties of the TPU nanocomposites were analyzed using a dynamic mechanical thermal analyzer (DMTA), which indicates that the storage modulus (E'), loss modulus (E''), and glass transition temperature (T g ) are significantly increased with increasing nanoclay content.

  20. Evaluation of irregular menses in perimenarcheal girls: a pilot study.

    Science.gov (United States)

    Browner-Elhanan, Karen J; Epstein, Jonathan; Alderman, Elizabeth M

    2003-12-01

    Acyclic vaginal bleeding in girls within three years of menarche is most commonly attributed to an immature hypothalamic-pituitary-ovarian axis. Assuming this diagnosis may preclude the practitioner from performing more definitive studies and thereby diagnosing other, treatable causes of menstrual irregularities. A retrospective chart review of 178 girls presenting to an inner-city hospital-based adolescent clinic within three years of menarche was performed. Personal and family medical and menarcheal history was assessed, and findings on physical and laboratory examination performed were evaluated. Of the 178 girls still perimenarcheal at presentation, 47 were the focus of this study. Of these, 39 had no significant findings on physical examination, while 3 had signs of functional ovarian hyperandrogenism (FOH) including obesity, hirsutism, and moderate acne with corresponding LH/FSH ratios>3, although pelvic ultrasound examination revealed normal ovaries. Four of the 39 patients with normal physical exams had LH/FSH testing done, and 1 of the 4 had an abnormal LH/FSH ratio, indicating possible FOH. Two of the 47 patients were pregnant. Other laboratory abnormalities included microcytic, hypochromic anemia in patients, and an elevated Erythrocyte Sedimentation Rate in a patient later diagnosed with a rheumatologic disorder. Those perimenarcheal girls presenting with irregular menses and findings including obesity, acne, or pallor, were likely to have treatable causes of menstrual irregularities. In one of the four girls with a normal physical examination, hormonal testing indicated possible FOH, thus suggesting that hormonal evaluation of perimenarcheal girls with menstrual irregularities may be justified, as it may reveal previously unsuspected pathology.

  1. Irregular Warfare: Impact on Future Professional Military Education

    National Research Council Canada - National Science Library

    Paschal, David G

    2006-01-01

    ... to operate effectively in an irregular warfare environment. The utility of a decisive war between nation states continues to decline and will eventually reach critical mass based upon the extreme imbalance of military power and a U.S. monopoly...

  2. Research on making reactor buildings of irregular plan and elevation forms aseismatic

    International Nuclear Information System (INIS)

    Okawa, Izuru; Yamauchi, Yasuyuki

    1997-01-01

    The necessity of pursuing the possibility of irregular form buildings as the condition of location for construction is limited, and the rational and economical arrangement of equipment and piping is considered. In order to know the effect that irregular forms exert to the aseismatic ability of buildings, it is indispensable to develop the program for precision three-dimensional elastoplastic analysis at the time of earthquakes. As the means of solving the problem, the introduction of seismic insulation structure is conceivable. The investigation of seismic insulator and its modeling and the analysis of earthquake response were carried out, and the irregular form and the effect of seismic insulation were investigated, and the results of vibration test using test specimens were summarized. The concrete items of investigation were the characteristics of input earthquake motion, the techniques of analysis, the parametric study taking the input and various characteristics of buildings in consideration, and the synthetic assessment. The vibration table experiment and the static loading experiment for the purpose of grasping the response behavior in the case of irregular form of wall type and seismic insulation type structures were carried out, and the results are reported. (K.I.)

  3. Irregular analytical errors in diagnostic testing - a novel concept.

    Science.gov (United States)

    Vogeser, Michael; Seger, Christoph

    2018-02-23

    In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC

  4. Improvement of wear resistance of machine elements by plasma spraying followed by hardening in the chlorine-barium melt

    International Nuclear Information System (INIS)

    Fominykh, V.V.; Stepanov, V.V.

    1979-01-01

    Proposed is the mathematical model, allowing to choose the optimal regime of sprayed coating hardening in the BaCl 2 salt melt. The method of hardening of machine elements by spraying wear resistance coatings of the Ni-Cr-B-Si alloys is described. It is established that diffusion heating followed by coating melting in the BaCl 2 solution increases the adhesion of sprayed layer to substrate metal. The formation of intermediate intermetallic compounds of the Ni 3 Si and Ni 3 Fe types takes place as a result of diffusion of interacting material atoms and valence electron joining

  5. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  6. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    Science.gov (United States)

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  7. Characterizing the nature of melt-rock reaction in peridotites from the Santa Elena Ophiolite, NW Costa Rica

    Science.gov (United States)

    Carr, D.; Loocke, M. P.; Snow, J. E.; Gazel, E.

    2017-12-01

    The Santa Elena Ophiolite (SEO), located on the northwestern coast of Costa Rica, consists primarily of preserved oceanic mantle and crustal rocks thrust above an accretionary complex. The SEO is predominantly characterized by mantle peridotites (i.e., primarily spinel lherzolite with minor amounts of harzburgite and dunite) cut and intruded by minor pegmatitic gabbros, layered gabbros, plagiogranites, and doleritic and basaltic dykes. Previous studies have concluded that the complex formed in a suprasubduction zone (SSZ) setting based on the geochemical nature of the layered gabbros and plagiogranites (i.e., depleted LREE and HFSE and enriched LILE and Pb), as well, as the peridotites (i.e., low-TiO2, Zr, and V, and high MgO, Cr, and Ni)(Denyer and Gazel, 2009). Eighteen ultramafic samples collected during the winter 2010/2011 field season (SECR11) exhibit abundant evidence for melt-rock reaction (e.g., disseminated plagioclase and plagioclase-spinel, clinopyroxene-spinel, and plagioclase-clinopyroxene symplectites) and provide a unique opportunity to characterize the textural and chemical nature of melt-rock reaction in the SEO. We present the results of a petrologic investigation (i.e., petrography and electron probe microanalysis) of 28 thin sections (19 spinel lherzolites, of which 14 are plagioclase-bearing, 4 pyroxenite veins, and 5 harzburgites) derived from the SECR11 sample set. The results of this investigation have the potential to better our understanding of the nature of melt generation and migration and melt-rock interaction in the SEO mantle section and shed further light on the complex petrogenetic history of the SEO. Denyer, P., Gazel, E., 2009, Journal of South American Earth Sciences, 28:429-442.

  8. Melt processing of Bi-Ca-Sr-Cu-O superconductors

    International Nuclear Information System (INIS)

    Zanotto, E.D.; Cronin, J.P.; Dutta, B.

    1988-01-01

    Several Bi-Ca-Sr-Cu-O compositions were melted in Al/sub 2/O/sub 3/ or Pt crucibles at temperatures between 1050C and 1200C. As-quenched specimens crystallized from the upper surfaces, while the bottom layers were glassy. Glass formation was improved for higher Bi/sub 2/O/sub 3/ concentrations. The crystalline portions were highly conductive, while the glassy layers were insulating. Both did not show superconductivity down to 10K. Thermal treatment in air caused a dramatic effect on the electronic properties; and annealing at 865C for long periods converted the two types of specimens (previously glassy or crystalline) to superconductors, at least for one composition. Aluminum impurity (up to 8.6 atom. pct.) had no detectable effect on the transition temperatures, i.e., T/sub c/ 85K for all superconducting samples. The flake-like (Bi/sub 2/Ca/sub 1/Sr/sub 2/Cu/sub 2/) phase, reported by other authors, was responsible for superconductivity

  9. Interaction of steel, titanium and zirconium with melted chlorides containing copper and zinc

    International Nuclear Information System (INIS)

    Ozeryanaya, I.N.; Manukhina, T.I.; Shibanov, B.S.

    1976-01-01

    Cu and Zn coatings were obtained by contact displacement of their molten chlorides. Cu was deposited on Kh18N10T stainless steel, and Zn was deposited on Ti or Zr at 400-550 0 . Cu was displaced from the electrolyte by all components in the steel. A smooth coating exhibited high adhesion. According to metallography there was a transition layer of a Ni-Cr solid solution between the surface Cu layer and steel. With electronegetiol Ti and Zr, contact deposition of Zn or Cu from chloride melts was possible. The coatings were multilayer and exhibited adequate adhesion. The coating consisted of an intermetallic compound of Ti or Zr with Zn

  10. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  11. Analysis and optimisation of vertical surface roughness in micro selective laser melting

    International Nuclear Information System (INIS)

    Abele, Eberhard; Kniepkamp, Michael

    2015-01-01

    Surface roughness is a major disadvantage of many additive manufacturing technologies like selective laser melting (SLM) compared to established processes like milling or drilling. With recent advancements the resolution of the SLM process could be increased to layer heights of less than 10 μm leading to a new process called micro selective laser melting (μSLM). The purpose of this paper is to analyze the influence of the μSLM process parameters and exposure strategies on the morphology of vertical surfaces. Contour scanning using varying process parameters was used to increase the surface quality. It is shown that it is possible to achieve average surface roughness of less than 1.7 μm using low scan speeds compared to 8–10 μm without contour scanning. Furthermore it is shown that a contour exposure prior to the core exposure leads to surface defects and thus increased roughness. (paper)

  12. Lubricating and waxy esters, I. Synthesis, crystallization, and melt behavior of linear monoesters.

    Science.gov (United States)

    Bouzidi, Laziz; Li, Shaojun; Di Biase, Steve; Rizvi, Syed Q; Narine, Suresh S

    2012-01-01

    Four pure jojoba wax-like esters (JLEs), having carbon chain length of 36, 40 (two isomers) and 44, were prepared by Steglish esterification of fatty acids (or acid chlorides) with fatty alcohols at room temperature. Calorimetric and diffraction data was used to elucidate the phase behavior of the esters. The primary thermal parameters (crystallization and melting temperatures) obtained from the DSC of the symmetrical molecules correspond well with the carbon numbers of the JLEs. However, the data also suggests that carbon number is not the only factor since the symmetry of the molecule also plays a significant role in the phase behavior. Overall, the JLEs show very little polymorphic activity at the experimental conditions used, suggesting that they are likely to transform the same way during melting as well as crystallization, a characteristic which may be useful in designing new waxes and lubricants. The XRD data clearly show that the solid phase in all samples consists of a mixture of a β-phase and a β'-phase; fully distinguishable by their characteristic diffraction peaks. Subtle differences between the subcell patterns and phase development of the samples were observed. Different layering of the samples was also observed, understandably because of the chain length differences between the compounds. The long spacings were perfectly linearly proportional to the number of carbon atoms. The length of the ester layers with n carbon atoms can be calculated by a formula similar to that used for the layers in linear alkane molecules. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  14. Irregular HF radio propagation on a subauroral path during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2006-08-01

    Full Text Available The impact of the main ionospheric trough, sporadic structures, gradients and inhomogeneities of the subpolar ionosphere during substorms on the signal amplitude, azimuthal angles of arrival, and propagation modes for the radio path Ottawa (Canada-St. Petersburg (Russia was considered. This subauroral path with the length of about 6600 km has approximately an east-west orientation. The main goals are to carry out numerical modeling of radio propagation for the path and to compare the model calculations with experimental results. Wave absorption and effects of focusing and divergence of rays were taken into consideration in the radio wave modeling process. The following basic results were obtained: The signal amplitude increases by 20–30 dB 1–1.5 h before the substorm expansion phase onset. At the same time the signal azimuth deviates towards north of the great circle arc for the propagation path. Compared with quiet periods there are effects due to irregularities and gradients in the area of the polar edge of the main ionospheric trough on the passing signals. Propagation mechanisms also change during substorms. The growth of signal amplitude before the substorm can be physically explained by both a decrease of the F2-layer ionization and a growth of the F2-layer height that leads to a decrease of the signal field divergence and to a drop of the collision frequency. Ionospheric gradients are also important. This increase of signal level prior to a substorm could be used for forecasting of space weather disturbed conditions.

  15. Diffusion-controlled melting in granitic systems at 800-900degC and 100-200 MPa. Temperature and pressure dependence of the minimum diffusivity in granitic melts

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Yamaguchi, Takashi; Iwamoto, Manji-rou; Eguchi, Hibiki; Isobe, Hiroshi; Nishiyama, Tadao

    2012-01-01

    This paper presents the temperature and pressure dependence of the minimum binary diffusivity in granitic melts. The minimum diffusivities are determined by monitoring the temporal development of the diffusion-controlled melt layer(DCM) in granitic systems (albite (Ab)-quartz (Qtz)-H 2 O and orthoclase (Or)-Qtz-H 2 O) gathered during 31 melting experiments under conditions of 800-900degC and 100-200 MPa for durations of 19-72 h. The DCM is formed between single crystals (Ab or Or crystals) and powdered quartz in all runs and is characterized by a distinct concentration gradient. The maximum thickness of the DCM increases systematically with temperature, pressure, and run duration. Temporal development of the DCM obeys the parabolic growth rate law, using which the diffusivity can be estimated. Plots of concentrations along the diffusion paths in ternary diagrams (Na 2 O-Al 2 O 3 -SiO 2 diagram for the Ab-Qtz-H 2 O system and K 2 O-Al 2 O 3 -SiO 2 diagram for the Or-Qtz-H 2 O system) show linear trends rather than S-shaped trends, indicating that binary nature of diffusion occurs in these systems. Therefore, the diffusive component can be interpreted as an albite component or orthoclase and quartz components (SiO 2 ) rather than an oxide or a cation. (author)

  16. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  17. Description of the heating and expansion process of a water drop enclosed in a hot melt

    International Nuclear Information System (INIS)

    Froehlich, G.; Berg, E. von.

    1985-11-01

    In the present study a simple model for the description of the heating- and expansion-process of a water drop enclosed in hot melt is developed. The model is valid between the first contact of melt and water up to the beginning of evaporation. A possible superheating by retardation of ebullition is disregarded. The balance equations for energy, mass and momentum as well as the equation of state are integrated over the radial space coordinate in both media using appropriate profiles of temperature, pressure and velocity. Thereby a system of coupled ordinary differential equations is formed for the variables of the model which are now time dependent only. The equations are solved numerically by means of a FORTRAN-program. The influence of parameters (melt-temperature, heat-transfer-coefficient between melt and water as well as drop radius) are studied. It is shown that always very rapidly a vapor-layer forms around the water drop, while the inner part of the drop did not yet 'notice' anything of the heating process. An approximation formula for the time-transfer-coefficients between melt and water. Due to this approximation, the time up to incipience of evaporation grows proportional to the drop radius, which means that in the frame of the present model even small droplets won't evaporate as a whole instantaneously. (orig.) [de

  18. Irregular Polyomino-Shaped Subarrays for Space-Based Active Arrays

    Directory of Open Access Journals (Sweden)

    R. J. Mailloux

    2009-01-01

    Full Text Available This paper presents new results showing the application of polyomino-based subarrays to limited field of view and wideband, wide-angle scanning. This technology can reduce the number of phase controls in arrays used for limited sector coverage or the number of time delay devices for wideband radar or communications, and so can reduce the cost of space-based active arrays. We concentrate on the wideband application. Results are presented by comparing the gain and peak sidelobe results of irregular polyomino subarray-based arrays with those of rectangular subarrays. It is shown that using irregular polyomino subarrays can result in a major decrease in sidelobes while presenting, in most cases, only a few tenths of a dB gain reduction compared to rectangular subarrays.

  19. Third-order theory for multi-directional irregular waves

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2012-01-01

    A new third-order solution for multi-directional irregular water waves in finite water depth is presented. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential. Expressions for the velocity potential at...

  20. High-performance polymer/layered silicate nanocomposites

    Science.gov (United States)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the