WorldWideScience

Sample records for irradiation total dose

  1. Total body irradiation: current indications; L`irradiation corporelle totale: les indications actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1998-05-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  2. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  3. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  4. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  5. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  6. Worst-Case Bias During Total Dose Irradiation of SOI Transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Colladant, T.; Paillet, P.; Leray, J.-L; Musseau, O.; Schwank, James R.; Shaneyfelt, Marty R.; Pelloie, J.L.; Du Port de Poncharra, J.

    2000-01-01

    The worst case bias during total dose irradiation of partially depleted SOI transistors (from SNL and from CEA/LETI) is correlated to the device architecture. Experiments and simulations are used to analyze SOI back transistor threshold voltage shift and charge trapping in the buried oxide

  7. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  8. Total body irradiation

    International Nuclear Information System (INIS)

    Novack, D.H.; Kiley, J.P.

    1987-01-01

    The multitude of papers and conferences in recent years on the use of very large megavoltage radiation fields indicates an increased interest in total body, hemibody, and total nodal radiotherapy for various clinical situations. These include high dose total body irradiation (TBI) to destroy the bone marrow and leukemic cells and provide immunosuppression prior to a bone marrow transplant, high dose total lymphoid irradiation (TLI) prior to bone marrow transplantation in severe aplastic anemia, low dose TBI in the treatment of lymphocytic leukemias or lymphomas, and hemibody irradiation (HBI) in the treatment of advanced multiple myeloma. Although accurate provision of a specific dose and the desired degree of dose homogeneity are two of the physicist's major considerations for all radiotherapy techniques, these tasks are even more demanding for large field radiotherapy. Because most large field radiotherapy is done at an extended distance for complex patient geometries, basic dosimetry data measured at the standard distance (isocenter) must be verified or supplemented. This paper discusses some of the special dosimetric problems of large field radiotherapy, with specific examples given of the dosimetry of the TBI program for bone marrow transplant at the authors' hospital

  9. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  10. Dose rate and total dose dependence of the 1/f noise performance of a GaAs operational amplifier during irradiation

    International Nuclear Information System (INIS)

    Hiemstra, D.M.

    1995-01-01

    A pictorial of a sectioned view of the torus of the International Thermonuclear Experimental Reactor (ITER) is shown. Maintenance and inspection of the reactor are required to be performed remotely. This is due to the high gamma radiation environment in vessel during inspection and maintenance activities. The custom GaAs operational amplifier is to be used to readout sensors on the in-vessel manipulator and inspection equipment. The gamma dose rate during maintenance and inspection is anticipated to be 3 Mrad(GaAs)/hour. Here, dose rate and total dose dependence of the 1/f noise performance of a custom GaAs MESFET operational amplifier during irradiation are presented. Dose rate dependent 1/f noise degradation during irradiation is believed to be due to electron trapping in deep levels, enhanced by backgating and shallow traps excited during irradiation. The reduction of this affect with accumulated total dose is believed to be due a reduction of deep level site concentration associated with substitutional oxygen. Post irradiation 1/f noise degradation is also presented.The generation-recombination noise observed post irradiation can be attributed to the production of shallow traps due to ionizing radiation

  11. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  12. Total lymphoid irradiation

    International Nuclear Information System (INIS)

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-01-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen

  13. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  14. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An; Olivera, Gustavo; Somlo, George

    2007-01-01

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribs and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk

  15. Clinical responses after total body irradiation by over permissible dose of γ-rays in one time

    International Nuclear Information System (INIS)

    Jiang Benrong; Wang Guilin; Liu Huilan; Tang Xingsheng; Ai Huisheng

    1990-01-01

    The clinical responses of patients after total body over permissilbe dose γ-ray irradiation were observed and analysed. The results showed: when the dose was above 5 cGy, there was some immunological depression, but no significant change in hematopoietic functions. 5 cases showed some transient changes of ECG, perhaps due to vagotonia caused by psychological imbalance, One case vomitted 3-4 times after 28 cGy irradiation, this suggested that a few times of vomitting had no significance in the estimation of the irradiated dose and the whole clinical manifestations must be concretely analysed

  16. The biological effects of high dose total body irradiation in beagle dogs

    International Nuclear Information System (INIS)

    Luo Qingliang; Liu Xiaolan; Hao Jing; Xiong Guolin; Dong Bo; Zhao Zhenhu; Xia Zhengbiao; Qiu Liling; Mao Bingzhi

    2002-01-01

    Objective: To evaluate the biological effects of Beagle dogs irradiated by γ-rays at different doses. Methods: All Beagle dogs were divided into six groups and were subjected respectively to total-body irradiation (TBI) with a single dose of 6.5, 5.5, 5.0, 4.5, 3, 5 and 2.5 Gy γ-rays delivered by 60 Co sources at 7.224 x 10 -2 C/kg per minute. The general condition, blood cell counts and bone marrow cell CFC assays were observed. Results: Vomiting occurred at 0.5 to 2 hours after TBI in all groups. In 6.5 Gy group 3/5 dogs had blood-watery stool and 1/5 in 5.5 Gy group had watery stool. Diarrhea occurred in all other animals. Only one dog in 2.5 Gy group survived, all of others died. in order of decreasing irradiation dosage, the average survival time was 5.0, 8.0, 9.3, 9.5, 10.5 and 14.1 days, respectively. Conclusions: According to the clinical symptoms, leukocyte count and survival time of the dogs, the irradiation dose which will induce very severe hematopoietic radiation syndrome in Beagle dogs is 4.5 to 5.0 Gy

  17. The carcinogenic risk of high dose total body irradiation in non-human primates

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bartstra, R.W.; Bekkum, D.W. van; Hage, M.H. van der; Zurcher, C.; Zwieten, M.J. van; Hollander, C.F.

    2000-01-01

    High dose total body irradiation (TBI) in combination with chemotherapy, followed by rescue with bone marrow transplantation (BMT), is increasingly used for the treatment of haematological malignancies. With the increasing success of this treatment and its current introduction for treating refractory autoimmune diseases the risk of radiation carcinogenesis is of growing concern. Studies on turnout induction in non-human primates are of relevance in this context since the response of this species to radiation does not differ much from that in man. Since the early sixties, studies have been performed on acute effects in Rhesus monkeys and the protective action of bone marrow transplantation after irradiation with X-rays (average total body dose 6.8 Gy) and fission neutrons (average dose 3.4 Gy). Of those monkeys, which were irradiated and reconstituted with autologous bone marrow, 20 animals in the X-irradiated group and nine animals in the neutron group survived more than 3 years. A group of 21 non-irradiated Rhesus monkeys of a comparable age distribution served as controls. All animals were regularly screened for the occurrence of neoplasms. Complete necropsies were performed after natural death or euthanasia. At post-irradiation intervals of 4-21 years an appreciable number of tumours was observed. In the neutron irradiated group eight out of nine animals died with one or more malignant tumours. In the X-irradiated group this fraction was 10 out of 20. The tumours in the control group, in seven out of the 21 animals, appeared at much older a-e compared with those in the irradiated cohorts. The histogenesis of the tumours was diverse with a preponderance of renal carcinoma, sarcomas among which osteosarcormas, and malignant glomus tumours in the irradiated groups. When corrected for competing risks, the carcinogenic risk of TBI in the Rhesus monkeys is similar to that derived from the studies of the Japanese atomic bomb survivors. The increase of the risk by a

  18. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    International Nuclear Information System (INIS)

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-01-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors

  19. A method for total body irradiation

    International Nuclear Information System (INIS)

    Yasukochi, Hiroshi; Higashi, Shizuka; Okuhata, Yoshitaka; Lee, Keiichi; Ishioka, Kuniaki; Murakami, Koji; Nagai, Jun; Kuniyasu, Yoshio

    1988-01-01

    In these two years, we have treated four infant patients of acute leukemia by Cobalt-60 total body irradiation and bone marrow transplantation. During total body irradiation, thermoluminescence dosimeters were attached to the skin of patients. For four patients, nine dosimetries were performed. Reliability of this method was examined by phantom experiment. Every irradiation for the patient per fraction was 2.4 Gy, that is, 60 cGy for each four positions, right decubitus A-P and PA directions and left decubitus A-P and PA directions under aseptic circumstances. Radiation dose was uniform by this technique for each patient, and average determined dose for surface of the patients was between 87 % and 106 % compared with the air dose of the center of aseptic space (wagon). As the result, we suggest that this method is suitable for the total body irradiation of acute leukemia of infant. (author)

  20. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    International Nuclear Information System (INIS)

    Lucero, J. F.; Rojas, J. I.

    2016-01-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  1. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt [Universidad Nacional de Costa Rica, Heredia (Costa Rica); Hope International, Guatemala (Guatemala); Rojas, J. I., E-mail: isaac.rojas@siglo21.cr [Centro Médico Radioterapia Siglo XXI, San José (Costa Rica)

    2016-07-07

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  2. Cataract incidence after total-body irradiation

    International Nuclear Information System (INIS)

    Zierhut, D.; Lohr, F.; Schraube, P.; Huber, P.; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1997-01-01

    Purpose: Aim of this retrospective study was to evaluate cataract incidence in a homogeneous group of patients after total-body irradiation followed by autologous bone marrow transplantation or peripheral blood stem cell transplantation. Method and Materials: Between 11/1982 and 6/1994 in total 260 patients received in our hospital total-body irradiation for treatment of haematological malignancy. In 1996-96 patients out of these 260 patients were still alive. 85 from these still living patients (52 men, 33 women) answered evaluable on a questionnaire and could be examined ophthalmologically. Median age of these patients was 38,5 years (15 - 59 years) at time of total-body irradiation. Radiotherapy was applied as hyperfractionated total-body irradiation with a median dose of 14,4 Gy in 12 fractions over 4 days. Minimum time between fractions was 4 hours, photons with a energy of 23 MeV were used, and the dose rate was 7 - 18 cGy/min. Results: Median follow-up is now 5,8 years (1,7 - 13 years). Cataract occurred in (28(85)) patients after a median time of 47 months (1 - 104 months). In 6 out of these 28 patients who developed a cataract, surgery of the cataract was performed. Whole-brain irradiation prior to total-body irradiation was more often in the group of patients developing a cataract (14,3%) vs. 10,7% in the group of patients without cataract. Conclusion: Cataract is a common side effect of total-body irradiation. Cataract incidence found in our patients is comparable to results of other centres using a fractionated regimen for total-body irradiation. The hyperfractionated regimen used in our hospital does obviously not result in a even lower cataract incidence. In contrast to acute and late toxicity in other organ/organsystems, hyperfractionation of total-body irradiation does not further reduce toxicity for the eye-lens. Dose rate may have more influence on cataract incidence

  3. Influence of radioprotectors on total body weight evolution and on oxygen consumption in lethal dose irradiated animals. (Preliminary study)

    International Nuclear Information System (INIS)

    Fatome, M.; Martine, G.; Bargy, E.; Andrieu, L.

    Comparison of total body weight evolution and oxygen consumption in lethal dose irradiated animals, protected by various well known radioprotective substances, isolated or in mixture, with evolution and consumption of non protected animals irradiated at the same dose and with these of check animals [fr

  4. New insights into fully-depleted SOI transistor response during total-dose irradiation

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Dodd, P.E.; Burns, J.A.; Keast, C.L.; Wyatt, P.W.

    1999-01-01

    In this paper, we present irradiation results on 2-fully depleted processes (HYSOI6, RKSOI) that show SOI (silicon on insulator) device response can be more complicated than originally suggested by others. The major difference between the 2 process versions is that the RKSOI process incorporates special techniques to minimize pre-irradiation parasitic leakage current from trench sidewalls. Transistors were irradiated at room temperature using 10 keV X-ray source. Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. It appears that the worst-case bias for HYPOI6 process is the bias that causes the largest increase in sidewall leakage. The RKSOI process shows a different response during irradiation, the transition response appears to be dominated by charge trapping in the buried oxide. These results have implications for hardness assurance testing. (A.C.)

  5. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  6. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of "Sweetheart" Passionfruit (Passiflora edulis).

    Science.gov (United States)

    Golding, John B; Blades, Barbara L; Satyan, Shashirekha; Spohr, Lorraine J; Harris, Anne; Jessup, Andrew J; Archer, John R; Davies, Justin B; Banos, Connie

    2015-08-26

    Passionfruit ( Passiflora edulis , Sims, cultivar "Sweetheart") were subject to gamma irradiation at levels suitable for phytosanitary purposes (0, 150, 400 and 1000 Gy) then stored at 8 °C and assessed for fruit quality and total ascorbic acid concentration after one and fourteen days. Irradiation at any dose (≤1000 Gy) did not affect passionfruit quality (overall fruit quality, colour, firmness, fruit shrivel, stem condition, weight loss, total soluble solids level (TSS), titratable acidity (TA) level, TSS/TA ratio, juice pH and rot development), nor the total ascorbic acid concentration. The length of time in storage affected some fruit quality parameters and total ascorbic acid concentration, with longer storage periods resulting in lower quality fruit and lower total ascorbic acid concentration, irrespective of irradiation. There was no interaction between irradiation treatment and storage time, indicating that irradiation did not influence the effect of storage on passionfruit quality. The results showed that the application of 150, 400 and 1000 Gy gamma irradiation to "Sweetheart" purple passionfruit did not produce any deleterious effects on fruit quality or total ascorbic acid concentration during cold storage, thus supporting the use of low dose irradiation as a phytosanitary treatment against quarantine pests in purple passionfruit.

  7. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  8. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  9. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  10. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    Science.gov (United States)

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  12. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  13. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  14. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  15. Fractionated total body irradiation and autologous bone marrow transplantation in dogs: Hemopoietic recovery after various marrow cell doses

    International Nuclear Information System (INIS)

    Bodenburger, U.; Kolb, H.J.; Thierfelder, S.; Netzel, B.; Schaeffer, E.; Kolb, H.

    1980-01-01

    Hemopoietic recovery was studied in dogs given 2400 R fractionated total body irradiation within one week and graded doses of cryopreserved autologous bone marrow. Complete hemopoietic recovery including histology was observed after this dose and sufficient doses of marrow cells. Doses of more than 5.5 x 10 7 mononuclear marrow cells/kg body weight were sufficient for complete recovery in all dogs, 1.5 to 5.5 x 10 7 cells/kg were effective in some of the dogs and less than 1.5 x 10 7 cells/kg were insufficient for complete recovery. Similarly, more than 30000 CFUsub(c)/kg body weight were required for hemopoietic recovery. The optimal marrow cell dose which has been defined as the minimal dose required for the earliest possible recovery of leukocyte and platelet counts was 7-8 x 10 7 mononuclear marrow cells/kg body weight. It has been concluded that fractionated total body irradiation with 2400 R dose not require greater doses of marrow cells for hemopoietic reconstitution than lower single doses and that the hemopoietic microenvironment is not persistently disturbed after this dose. (author)

  16. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  17. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer.

    Science.gov (United States)

    Akın, Mustafa; Ergen, Arzu; Unal, Aysegul; Bese, Nuran

    2014-01-01

    Thyroid gland is one of the radiosensitive endocrine organs in the body. It has been shown that direct irradiation of thyroid with total doses of 26 to 30 Gy can lead to functional abnormalities. In this study, irradiation doses on thyroid gland of the patients who received postoperative chest-wall/breast and regional nodal irradiation were assessed. Retrospective analyses of treatment plans from 122 breast cancer patients who were treated with 3D conformal radiotherapy (3D CRT) planning was performed. All patients received irradiation to supraclavicular/level III lymph nodes in addition to chest-wall/breast. A total dose of 46 Gy was delivered in 25 days to supraclavicular/level III lymph node region while a total dose of 50 Gy was delivered to whole breast/chest-wall. Thyroid gland was contoured on 2-5 mm thickness of computed tomography scans. Absolute thyroid volume, mean thyroid doses were calculated. The mean thyroid volume of all patients was 16.7 cc (min: 1.9 cc, max: 41.6 cc). The mean irradiation dose on was 22.5 Gy (0.32 Gy-46.5 Gy). The level of dose was higher than 26 Gy in 44% of the patients. In majority of the node-positive breast cancer patients treated with 3D CRT, the thyroid gland was exposed to considerable doses. On the other hand, for 44% of the patients are at risk for developing thyroid function abnormalities which should be considered during the routine follow-up.

  18. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  19. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  20. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  1. Implantation of total body irradiation in radiotherapy

    International Nuclear Information System (INIS)

    Habitzreuter, Angela Beatriz

    2010-01-01

    Before implementing a treatment technique, the characteristics of the beam under irradiation conditions must be well acknowledged and studied. Each one of the parameters used to calculate the dose has to be measured and validated before its utilization in clinical practice. This is particularly necessary when dealing with special techniques. In this work, all necessary parameters and measurements are described for the total body irradiation implementation in facilities designed for conventional treatments that make use of unconventional geometries to generate desired enlarged field sizes. Furthermore, this work presents commissioning data of this modality at Hospital das Clinicas of Sao Paulo using comparison of three detectors types for measurements of entrance dose during total body irradiation treatment. (author)

  2. Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice

    International Nuclear Information System (INIS)

    Miyamoto, Miyako; Sakamoto, Kiyohiko

    1987-01-01

    The effect of low dose (0.05 - 1.0 Gy) of total body irradiation (TBI) on non-tumor bearing and tumor bearing mice were investigated. Mice received TBI of 0.1 Gy during 6 - 12 hours before tumor cell inoculation demonstrated to need larger number of tumor cells (approximately 2.5 times) for 50 per cent tumor incidence, compared to recipient mice not to receive TBI. On the other hand, in tumor bearing mice given 0.1 Gy of TBI only tumor cell killing effect was not detected, however enhancement of tumor cell killing effect and prolonged growth delay were observed when tumor bearing mice were treated with 0.1 Gy of TBI in combined with local irradiation on tumors, especially cell killing effect was remarkable in dose range over 6 Gy of local exposure. The mechanism of the effect of 0.1 Gy TBI is considered to be host mediated reactions from the other our experimental results. (author)

  3. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  4. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  5. Total body irradiation as a form of preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Inoue, Toshihiko

    1987-01-01

    The history of total body irradiation and bone marrow transplantation is surprisingly old. Following the success of Thomas et al. in the 1970s, bone marrow transplantation appeared to be the sole curative treatment modality for high-risk leukemia. A supralethal dose of total body irradiation was widely accepted as a form of preparation for bone marrow transplantation. In this paper, I described the present status of bone marrow transplantation for leukemia patients in Japan based on the IVth national survey. Since interstitial pneumonitis was one of the most life threatening complications after bone marrow transplantation, I mentioned the dose, dose-rate and fraction of total body irradiation in more detail. In addition, I dealt with some problems of the total body irradiation, such as dose prescription, compensating contour as well as inhomogeneity, and shielding for the highrisk organs. (author) 82 refs

  6. Dosimetric verification of helical tomotherapy for total scalp irradiation

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Soisson, Emilie; Metcalfe, Peter; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2008-01-01

    Total scalp irradiation is a treatment technique used for a variety of superficial malignancies. Helical tomotherapy is an effective technique used for total scalp irradiation. Recent published work has shown the TomoTherapy planning system to overestimate the superficial dose. In this study, the superficial doses for a helical tomotherapy total scalp irradiation have been measured on an anthropomorphic phantom using radiochromic and radiographic film as well as a new skin dosimeter, the MOSkin. The superficial dose was found to be accurately calculated by the TomoTherapy planning system. This is in contrast to recent reports, probably due to a combination of the smaller dose grid resolution used in planning and this particular treatment primarily consisting of beamlets tangential to the scalp. The superficial dose was found to increase from 33.6 to 41.2 Gy and 36.0 to 42.0 Gy over the first 2 mm depth in the phantom in selected regions of the PTV, measured with radiochromic film. The prescription dose was 40 Gy. The superficial dose was at the prescription dose or higher in some regions due to the bolus effect of the thermoplastic head mask and the head rest used to aid treatment setup. It is suggested that to achieve the prescription dose at the surface (≤2 mm depth) bolus or a custom thermoplastic helmet is used.

  7. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  8. Acute tolerance of hyperfractionated accelerated total body irradiation

    International Nuclear Information System (INIS)

    Latz, D.; Schraube, P.; Wannenmacher, M.

    1996-01-01

    Background: Acute side effects of total body irradiation lead to intense molestations of the patients. Therefore, it is desirable to take measures to reduce these side effects. In a retrospective study the frequency on acute side effects of a hyperfractionated accelerated total body irradiation was assessed and compared to frequencies of other exposure schedules published in the literature. Additionally the influence of ondansetron on the frequency of nausea and vormiting was investigated. Patients and Method: From 1989 to 1992, 76 patients (47 male, 29 female; median age 38 years) underwent total body irradiation before autologeous bone marrow transplantation. They received 3 daily doses of 1.20 Gy each every 4 h on 4 successive days to a total dose of 14,40 Gy. Thirty-nine patients received 3x8 mg (daily, intravenous or per os) ondansetron during the whole course of irradiation. Results: The most relevant side effects were nausea and vomiting. Patients, who did not receive ondansetron (n=37) showed a nausea and emesis rate of 73%. With ondansetron (n=39) nausea and emesis were reduced to 38%. Also the grade of severity of these side effects was reduced. Conclusions: Ondansetron proved to be an effective medicament for relieving nausea and vormiting during total body irradiation. The results obtained are in concordance with those published in the literature. (orig.) [de

  9. Central axis dose verification in patients treated with total body irradiation of photons using a Computed Radiography system

    International Nuclear Information System (INIS)

    Rubio Rivero, A.; Caballero Pinelo, R.; Gonzalez Perez, Y.

    2015-01-01

    To propose and evaluate a method for the central axis dose verification in patients treated with total body irradiation (TBI) of photons using images obtained through a Computed Radiography (CR) system. It was used the Computed Radiography (Fuji) portal imaging cassette readings and correlate with measured of absorbed dose in water using 10 x 10 irradiation fields with ionization chamber in the 60 Co equipment. The analytical and graphic expression is obtained through software 'Origin8', the TBI patient portal verification images were processed using software ImageJ, to obtain the patient dose. To validate the results, the absorbed dose in RW3 models was measured with ionization chamber with different thickness, simulating TBI real conditions. Finally it was performed a retrospective study over the last 4 years obtaining the patients absorbed dose based on the reading in the image and comparing with the planned dose. The analytical equation obtained permits estimate the absorbed dose using image pixel value and the dose measured with ionization chamber and correlated with patient clinical records. Those results are compared with reported evidence obtaining a difference less than 02%, the 3 methods were compared and the results are within 10%. (Author)

  10. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hemopoietic cells

    International Nuclear Information System (INIS)

    Song, C.W.; Kim, T.H.; Khan, F.M.; Kersey, J.H.; Levitt, S.H.

    1981-01-01

    Total body irradiation (TBI) followed by bone marrow transplantation is being used in the treatment of malignant or non-malignant hemopoietic disorders. It has been believed that the ability of hemopoietic cells to repair sublethal radiation damage is negligible. Therefore, several schools of investigators suggested that TBI in a single exposure at extremely low dose rate (5 rad/min) over several hours, or in several fractions in 2-3 days, should yield a higher therapeutic gain, as compared with a single exposure at a high dose rate (26 rad/min). We reviewed the existing data in the literature, in particular, the response of hemopoietic cells to fractionated doses of irradiation and found that the repair capacity of both malignant and non-malignant hemopoietic cells might be greater than has been thought. It is concluded that we should not underestimate the ability of hemopoietic cells to repair sublethal radiation damage in using TBI

  11. Feasibility study of helical tomotherapy for total body or total marrow irradiation

    International Nuclear Information System (INIS)

    Hui, Susanta K.; Kapatoes, Jeff; Fowler, Jack; Henderson, Douglas; Olivera, Gustavo; Manon, Rafael R.; Gerbi, Bruce; Mackie, T. R.; Welsh, James S.

    2005-01-01

    Total body radiation (TBI) has been used for many years as a preconditioning agent before bone marrow transplantation. Many side effects still plague its use. We investigated the planning and delivery of total body irradiation (TBI) and selective total marrow irradiation (TMI) and a reduced radiation dose to sensitive structures using image-guided helical tomotherapy. To assess the feasibility of using helical tomotherapy (A) we studied variations in pitch, field width, and modulation factor on total body and total marrow helical tomotherapy treatments. We varied these parameters to provide a uniform dose along with a treatment times similar to conventional TBI (15-30 min). (B) We also investigated limited (head, chest, and pelvis) megavoltage CT (MVCT) scanning for the dimensional pretreatment setup verification rather than total body MVCT scanning to shorten the overall treatment time per treatment fraction. (C) We placed thermoluminescent detectors (TLDs) inside a Rando phantom to measure the dose at seven anatomical sites, including the lungs. A simulated TBI treatment showed homogeneous dose coverage (±10%) to the whole body. Doses to the sensitive organs were reduced by 35%-70% of the target dose. TLD measurements on Rando showed an accurate dose delivery (±7%) to the target and critical organs. In the TMI study, the dose was delivered conformally to the bone marrow only. The TBI and TMI treatment delivery time was reduced (by 50%) by increasing the field width from 2.5 to 5.0 cm in the inferior-superior direction. A limited MVCT reduced the target localization time 60% compared to whole body MVCT. MVCT image-guided helical tomotherapy offers a novel method to deliver a precise, homogeneous radiation dose to the whole body target while reducing the dose significantly to all critical organs. A judicious selection of pitch, modulation factor, and field size is required to produce a homogeneous dose distribution along with an acceptable treatment time. In

  12. Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Hwan; Kim, Jong Sik; Choi, Ji Min; Shin, Eun Hyuk; Song, Ki Won; Park, Young Hwan

    2007-01-01

    Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = 40 x 40 cm 2 . The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is 14.58-14.92 cGy. Therefore, The surface dose was measured 99.4-101% with got near most to the prescription dose. In clinical case, distance between beam spoiler and patient affect surface dose. If once 50-60 cm of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  13. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  14. Fractionated homogenous total-body irradiation prior to bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Duehmke, E; Brix, F; Hebbinghaus, D; Jensen, M; Wendhausen, H; Schmitz, N

    1985-03-01

    At the University of Kiel, myeloid and acute lymphatic leukemia is treated since 1983 by total-body irradiation applied prior to bone marrow transplantation. Dose deviations in the midplane caused by the irregular surface and tissue inhomogeneities of the patient are reduced down to +-3.5% compared to the central ray, with the help of CT-based individual compensators. This method prevents above all an excessive dose to the lungs. The radiobiologic advantages of fractionated irradiation have been employed for all patients treated hitherto (n = 9). At present, a total body dose of 12 Gy in six fractions is applied within three days. There were no undesired acute radiogenic reactions except a mild acute mucositis found in all patients. Chronic side effects, especially in the lungs, were not demonstrated, too. However, the average follow-up time of 149 days has been rather short. One patient died from relapse of leukemia after a total dose of 10 Gy, another patient died because the transplanted bone marrow was rejected, and a third died from catheter sepsis. Six out of nine patients are in complete remission with a maximum index of Karnofsky. The limited experiences gained hitherto show that the homogeneous accelerated-fractionated total-body irradiation offers essential advantages compared to non-compensated single dose irradiation with respect to the prevention of undesired radiogenic effects in sound tissues and that its therapeutic efficacy is at least the same.

  15. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model

    International Nuclear Information System (INIS)

    Safwat, Akmal; Nielsen, Ole S.; El-Badawy, Samy; Overgaard, Jens

    1996-01-01

    Purpose: Interstitial pneumonitis (IP) is still a major complication after total body irradiation (TBI) and bone marrow transplantation (BMT). It is difficult to determine the exact role of radiation in this multifactorial complication, especially because most of the experimental work on lung damage was done using localized lung irradiation and not TBI. We have thus tested the effect of radiation dose rate and combining cyclophosphamide (CTX) with single fraction TBI on lung damage in a mouse model for BMT. Methods and Materials: TBI was given as a single fraction at a high dose rate (HDR, 0.71 Gy/min) or a low dose rate (LDR, 0.08 Gy/min). CTX (250 mg/kg) was given 24 h before TBI. Bone marrow transplantation (BMT) was performed 4-6 h after the last treatment. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days (LD (50(28))-180 ). Results: The LD 50 for lung damage, ± standard error (SE), increased from 12.0 (± 0.2) Gy using single fraction HDR to 15.8 (± 0.6) Gy using LDR. Adding CTX shifted the dose-response curves towards lower doses. The LD 50 values for the combined treatment were 5.3 (± 0.2) and 3.5 (± 0.2) Gy for HDR and LDR, respectively. This indicates that the combined effect of CTX and LDR was more toxic than that of combined CTX and HDR. Lung damage evaluated by VR demonstrated two waves of VR increase. The first wave of VR increase occurred after 6 weeks using TBI only and after 3 weeks in the combined CTX-TBI treatment, irrespective of total dose or dose rate. The second wave of VR elevation resembled the IP that follows localized thoracic irradiation in its time of occurrence. Conclusions: Lung damage following TBI could be spared using LDR. However, CTX markedly enhances TBI-induced lung damage. The combination of CTX and LDR is more toxic to the lungs than combining CTX and HDR

  16. Total lymphoid irradiation of intractable rheumatoid arthritis

    International Nuclear Information System (INIS)

    Herbst, M.; Fritz, H.; Sauer, R.

    1986-01-01

    Eleven patients with intractable rheumatoid arthritis were treated with fractionated total lymphoid irradiation, (total dose 20 Gy). Lasting improvement in clinical symptoms was found in four patients during treatment and the remaining patients experienced similar benefit within 2 months of irradiation. There was marked reduction in exacerbations and number of joints involved. Morning stiffness, joint swelling and tenderness decreased. Complications included severe fatigue during treatment and acute bacterial arthritis in multiple joints in one patient. Four patients have since died, one of renal failure, another of cardiogenic shock following surgery 3 and 24 months after total lymphoid irradiation. Both had generalised amyloidosis. The third patient developed joint empyema and died of toxic cardiac failure. The fourth died 3 months after resection of a Kaposi's sarcoma complicated by wound infection which responded to treatment. Immunologically, total lymphoid irradiation resulted in suppression of the absolute lymphocyte count and reduction in T-helper cells, the number of T-suppressor cells remaining unchanged. These data provide evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis. Total lymphoid irradiation can induce sustained improvement in clinical disease activity, but severe, possibly fatal, side-effects cannot be ignored. (author)

  17. Total lymphoid irradiation of intractable rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, M.; Fritz, H.; Sauer, R.

    1986-12-01

    Eleven patients with intractable rheumatoid arthritis were treated with fractionated total lymphoid irradiation, (total dose 20 Gy). Lasting improvement in clinical symptoms was found in four patients during treatment and the remaining patients experienced similar benefit within 2 months of irradiation. There was marked reduction in exacerbations and number of joints involved. Morning stiffness, joint swelling and tenderness decreased. Complications included severe fatigue during treatment and acute bacterial arthritis in multiple joints in one patient. Four patients have since died, one of renal failure, another of cardiogenic shock following surgery 3 and 24 months after total lymphoid irradiation. Both had generalised amyloidosis. The third patient developed joint empyema and died of toxic cardiac failure. The fourth died 3 months after resection of a Kaposi's sarcoma complicated by wound infection which responded to treatment. Immunologically, total lymphoid irradiation resulted in suppression of the absolute lymphocyte count and reduction in T-helper cells, the number of T-suppressor cells remaining unchanged. These data provide evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis. Total lymphoid irradiation can induce sustained improvement in clinical disease activity, but severe, possibly fatal, side-effects cannot be ignored.

  18. Collagen synthesis in CBA mouse heart after total thoracic irradiation

    International Nuclear Information System (INIS)

    Murray, J.C.; Parkins, C.S.; Institute of Cancer Research, Sutton

    1988-01-01

    CBA mice were irradiated to the whole thorax with single doses of 240 kVp X-rays in the dose range 8-16 Gy. Collagen and total protein synthesis rates in the heart were measured at 2-monthly intervals using a radio-isotope incorporation techniques. Doses of 10 Gy or greater caused a slight increase in collagen synthesis, followed by significantly reduced collagen synthesis by 16 weeks or longer after treatment. The depression in synthesis appeared correspondingly earlier with increasing dose. Total protein synthesis in heart followed similar patterns although changes were not statistically significant, indicating that the changes reflected alterations to collagen synthesis specifally, and not protein synthesis in geneal. Total hydroxyproline measurements showed no significant changes in heart collagen at any time as a result of X-irradiation. 18 refs.; 7 figs

  19. Statistical analysis of dose heterogeneity in circulating blood: Implications for sequential methods of total body irradiation

    International Nuclear Information System (INIS)

    Molloy, Janelle A.

    2010-01-01

    Purpose: Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these ''sequential'' techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Methods: Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. Results: The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than ±10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times

  20. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation.

    Science.gov (United States)

    Molloy, Janelle A

    2010-11-01

    Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these "sequential" techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than +/- 10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times. However, the EUD was

  1. Quality control of dosimetry in total body irradiation

    International Nuclear Information System (INIS)

    Kallinger, W.

    1986-11-01

    An on-line dose measurement system for the quality control of the treatment of leukemia by means of total body irradiation with Co-60 gamma radiation is introduced. An ionization chamber and 5 diodes arranged on the surface of the patient incorporated with a microprocessor provides useful information and data necessary for the treatment. Following the concerted treatment procedure employing this system, the treatment of leukemia by means of total body irradiation is expected to be improved

  2. In vivo dosimetry with semiconducting diodes for dose verification in total-body irradiation. A 10-year experience

    International Nuclear Information System (INIS)

    Ramm, U.; Licher, J.; Moog, J.; Scherf, C.; Kara, E.; Boettcher, H.D.; Roedel, C.; Mose, S.

    2008-01-01

    Background and purpose: for total-body irradiation (TBI) using the translation method, dose distribution cannot be computed with computer-assisted three-dimensional planning systems. Therefore, dose distribution has to be primarily estimated based on CT scans (beam-zone method) which is followed by in vivo measurements to ascertain a homogeneous dose delivery. The aim of this study was to clinically establish semiconductor probes as a simple and fast method to obtain an online verification of the dose at relevant points. Patients and methods: in 110 consecutively irradiated TBI patients (12.6 Gy, 2 x 1.8 Gy/day), six semiconductor probes were attached to the body surface at dose-relevant points (eye/head, neck, lung, navel). The mid-body point of the abdomen was defined as dose reference point. The speed of translation was optimized to definitively reach the prescribed dose in this point. Based on the entrance and exit doses, the mid-body doses at the other points were computed. The dose homogeneity in the entire target volume was determined comparing all measured data with the dose at the reference point. Results: after calibration of the semiconductor probes under treatment conditions the dose in selected points and the dose homogeneity in the target volume could be quantitatively specified. In the TBI patients, conformity of calculated and measured doses in the given points was achieved with small deviations of adequate accuracy. The data of 80% of the patients are within an uncertainty of ± 5%. Conclusion: during TBI using the translation method, dose distribution and dose homogeneity can be easily controlled in selected points by means of semiconductor probes. Semiconductor probes are recommended for further use in the physical evaluation of TBI. (orig.)

  3. Radiological protection in a patient during a total body irradiation procedure

    International Nuclear Information System (INIS)

    Hernandez O, J. O.; Hinojosa G, J.; Gomez M, E.; Balam de la Vega, J. A.; Deheza V, J. C.

    2010-09-01

    A technique used in the Service of Radiotherapy of the Cancer Center of the American British Cowdray Medical Center (ABC) for the bone marrow transplantation, is the total body irradiation. It is known that the dose calculation, for this irradiation type, is old, since the dosimetric calculation is carried out by hand and they exist infinity of techniques for the patients irradiation and different forms of protecting organs of risk, as well as a great uncertainty in the given dose. In the Cancer Center of the ABC Medical Center, was carried out an irradiation procedure to total body with the following methodology: Computerized tomography of the patient total body (two vacuum mattresses in the following positions: dorsal and lateral decubitus), where is combined the two treatment techniques anterior-posterior and bilateral, skin delineate and reference volumes, dose calculation with the planning system Xi O of CMS, dose determination using an ionization chamber and a lung phantom IMRT Thorax Phantom of the mark CIRS and dosimetry in vivo. In this work is presented the used treatment technique, the results, statistics and the actualization of the patient clinical state. (Author)

  4. CONTRASTING DOSE-RATE EFFECTS OF GAMMA-IRRADIATION ON RAT SALIVARY-GLAND FUNCTION

    NARCIS (Netherlands)

    VISSINK, A; DOWN, JD; KONINGS, AWT

    The aim of this study was to investigate the effects of Co-60 irradiation delivered at high (HDR) and low (LDR) dose-rates on rat salivary gland function. Total-body irradiation (TBI; total doses 7.5, 10 and 12.5 Gy) was applied from a Co-60 source at dose-rates of 1 cGy/min (LDR) and 40 cGy/min

  5. Total lymphoid irradiation in the Wistar rat: technique and dosimetry

    International Nuclear Information System (INIS)

    Hoogenhout, J.; Kazem, I.; de Jong, J.

    1983-01-01

    The technical and dosimetric aspects of total lymphoid irradiation (TLI) in the Wistar rat were evaluated as part of a set-up to develop a new model for tumor xenotransplantation. Information obtained from anatomical dissections, radionuclide imaging of the spleen, lymphography and chromolymphography was used to standardize the localization portals cut out in a lead plate. The two portals encompassed the lymphoid tissue above and below the diaphragm. A specially designed masonite phantom was used to measure the dose distribution in the simulated target volumes. Ionization chamber dosimetery, thermoluminescence dosimetry and film densitometry were used for measuring exposure and absorbed dose. Irradiation was performed with 250 kV X rays (HVL 3.1 mm Cu). The dose rate was regulated by adjusting the treatment distance. The dose inhomogeneity measured in the target volumes varied between 80-100%. The side scatter dose to non target tissues under the shielded area between the two portals ranged between 20-30%. The technique and dosimetry of total lymphoid irradiation in Wistar rats are now standardized and validated and pave the way for tumor xenotransplantation experiments

  6. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  7. Total scalp irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Orton, Nigel; Jaradat, Hazim; Welsh, James; Tome, Wolfgang

    2005-01-01

    Homogeneous irradiation of the scalp poses technical and dosimetric challenges due to the extensive, superficial, curved treatment volume. Conventional treatments on a linear accelerator use multiple matched electron fields or a combination of electron and photon fields. Problems with these techniques include dose heterogeneity in the target due to varying source-to-skin distance (SSD) and angle of beam incidence, significant dose to the brain, and the potential for overdose or underdose at match lines between the fields. Linac-based intensity-modulated radiation therapy (IMRT) plans have similar problems. This work presents treatment plans for total scalp irradiation on a helical tomotherapy machine. Helical tomotherapy is well-suited for scalp irradiation because it has the ability to deliver beamlets that are tangential to the scalp at all points. Helical tomotherapy also avoids problems associated with field matching and use of more than one modality. Tomotherapy treatment plans were generated and are compared to plans for treatment of the same patient on a linac. The resulting tomotherapy plans show more homogeneous target dose and improved critical structure dose when compared to state-of-the-art linac techniques. Target equivalent uniform dose (EUD) for the best tomotherapy plan was slightly higher than for the linac plan, while the volume of brain tissue receiving over 30 Gy was reduced by two thirds. Furthermore, the tomotherapy plan can be more reliably delivered than linac treatments, because the patient is aligned prior to each treatment based on megavoltage computed tomography (MVCT)

  8. Preservation of Minced Meats by Using Medium and High-doses Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.I.; Swailam, H.M.H.; Taha, S.M.A.

    2003-01-01

    The effect of medium (2.5-10 kGy) dose irradiation and high(20-70 kGy) dose irradiation on the microbiological, chemical and organoleptic properties of minced meat samples was studied. It was found that irradiation dose of only 5 kGy greatly reduced all microbial counts and completely eliminated all non-spore forming pathogenic bacteria contaminated minced meat samples. Consequently this irradiation dose extended the refrigerated (3 degree ±1) storage life of these products for more than 8 weeks. This irradiation dose almost did not affect the chemical composition, particularly the main amino acids and main fatty acids of minced meat samples. Panelists could not differentiate between irradiated minced meat samples at this dose and unirradiated samples. High doses irradiation, i.e.40 and 70 kGy were sufficient and efficient in sterilization of minced meat samples and in obtaining long-stable minced meat products (Two years) at ambient temperature. These irradiation doses slightly reduced (not more than 7%) aspartic acid, glutamic acid, methionine and lysine of minced meat. It also decreased the relative percentage of total unsaturated fatty acids by not more than 17 % . These high irradiation doses caused loss of C 18:3 and C 20:1

  9. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  10. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  11. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  12. High-dose irradiation of food

    International Nuclear Information System (INIS)

    Diehl, J.F.

    1999-01-01

    Studies performed on behalf of the International Project on Food Irradiation in the period from 1971 until 1980 resulted in the concluding statement that ''.the irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard; hence, toxicological testing of foods so treated is no longer required.'' Since then, licenses for food irradiation have been restricted to this maximum dose in any country applying this technology. Further testing programmes have been carried out investigating the wholesomeness or hazards of high-dose irradiation, but there has been little demand so far by the food industry for licensing of high-dose irradiation, as there is only a small range of products whose irradiation at higher doses offers advantages for given, intended use. These include eg. spices, dried herbs, meat products in flexible pouch packagings for astronauts, or patients with immune deficiencies. (orig./CB) [de

  13. Total body irradiation for children with malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Sanuki, Eiichi; Maeno, Toshio; Kamata, Rikisaburo; Tanaka, Yoshiaki; Mugishima, Hideo [Nihon Univ., Tokyo (Japan). School of Medicine

    1995-12-01

    Total body irradiation combined with high dose chemotherapy has been performed just before bone marrow transplantation in 35 children with advanced malignancies, with the object of achieving successful transplantation and improving the prognosis. Simulation was performed as follows: back scatter, flatness, dose accumulation using randophantom and dose distribution using a thermo-luminescence dosimeter and linac-graphy. The standard error of dose distribution was within 10%. In neuroblastoma, of which there were 14 cases in stage IV and one case in stage III, the 5-year survival rate was 55%. In leukemia, of which all cases were in the high-risk group (7 cases of acute lymphoblastic leukemia and 2 of acute myeloblastic leukemia) the 5-year survival rate was 55%. The 5 cases having first remission survived disease-free while the 4 cases having non-first remission died. In malignant lymphoma (6 cases in stage IV and one case in stage III, with bulky mass) the 5-year survival rate was 67%. Four cases with other diagnoses (severe aplastic anemia, and others) all survived. As yet no side effects resulting from total body irradiation have been recognized in our cases, but a longer follow-up period is necessary to observe possible late side effects. (author).

  14. Uptake of carbon monoxide by C3H mice following X irradiation of lung only or total-body irradiation with 60Co

    International Nuclear Information System (INIS)

    Rappaport, D.S.; Niewoehner, D.E.; Kim, T.H.; Song, C.W.; Levitt, S.H.

    1983-01-01

    Carbon monoxide uptake (V/sub co/) and ventilation rate (VR) of C3H mice were determined at 14 weeks following either X irradiation of lungs only or total-body irradiation with 60 Co at different dose rates. Following localized X irradiation of lung at 97 /sub c/Gy/min there was a reduction in V/sub co/, which was inversely related to radiation dose, with a small reduction below control levels being detected at 7 Gy, the lowest dose tested. An increase in VR could be detected only at doses of 11 Gy, or more. Another group of animals received 11.5 Gy total-body irradiation at either 26.2 or 4.85 /sub c/Gy/min fllowed by transplantation with syngeneic bone marrow. Following total-body irradiation, V/sub co/ was significantly reduced by about 37% at the higher dose rate and 23% at the lower dose rate. In contrast, a trend toward elevated VR was detected only at the higher dose rate.The results indicate that V/sub co/ is a sensitive indicator of radiation-induced lung injury and that under the experimental conditions used V/sub co/ is a more sensitive indicator of radiation-induced lung injury in C3H mice than VR

  15. Time-dose relationship of erythema in high energy photon irradiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hidetoshi (Gifu Prefectural Tajimi Hospital (Japan)); Sakuma, Sadayuki

    1992-01-01

    Skin doses of 100 patients who were treated with high energy ionizing irradiation during conventional irradiation therapy were measured by thermoluminescence dosimeter (TLD). In 87 of the 100 patients, acute hyperemic change of the skin (erythema) of the irradiated region was observed. In the other 13 patients, alopetia of the scalp was observed. The following conclusions were reached. The time-dose relationship was linear when erythema tolerance was used as an index, but not when alopecia was used. The tolerance dose for erythema was lower than previously reported. The slope of the isoeffect curve on the log-log plot of total absorbed skin dose against total number of days after the first irradiation was 0.68 when erythema was used as an index. This number is larger than previously reported results. We considered that erythema is significantly influenced by fraction size and that hyperfractionation is a promising method of irradiation, especially in Japan. Combined use of chemotherapeutic agents, such as 5-FU, accelerated erythema. The slope of combined treatment was 0.86. Observing acute hyperemic change of skin is considered to be a useful method of investigating the combined effects of chemotherapeutic agents on irradiation. (author).

  16. Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Cui Jiang-Wei; Zhou Hang; Yu De-Zhao; Yu Xue-Feng; Lu Wu; Guo Qi; Ren Di-Yuan

    2015-01-01

    Functional failure mode of commercial deep sub-micron static random access memory (SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result. (paper)

  17. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Kal, H.B.; Kempen-Harteveld, M.L. van; Heijenbrok-Kal, M.H.; Struikmans, H.

    2006-01-01

    Background and Purpose: Total-body irradiation (TBI) is an important part of the conditioning regimen for hematopoietic stem cell transplantation (HSCT) in patients with hematologic malignancies. The results after treatment with various TBI regimes were compared, and dose-effect relationships for the endpoints relapse incidence, disease-free survival, treatment-related mortality, and overall survival were derived. The aim was to define requirements for an optimal treatment schedule with respect to leukemic cell kill and late normal-tissue morbidity. Material and Methods: A literature search was performed. Three randomized studies, four studies comparing results of two or three TBI regimens, and nine reports with results of one specific TBI regimen were identified. Biologically effective doses (BEDs) were calculated. The results of the randomized studies and the studies comparing results of two or three TBI regimens were pooled, and the pooled relative risk (RR) was calculated for the treatments with high BED values versus treatments with a low BED. BED-effect relationships were obtained. Results: RRs for the high BED treatments were significantly lower for relapse incidence, not significantly different for disease-free survival and treatment-related mortality, and significantly higher for overall survival. BED-effect relationships indicate a decrease in relapse incidence and treatment-related mortality and an increase in disease-free and overall survival with higher BED values. Conclusion: 'More dose is better', provided that a TBI setting is used limiting the BEDs of lungs, kidneys, and eye lenses. (orig.)

  18. Prolonged heart xenograft survival using combined total lymphoid irradiation and cyclosporine

    International Nuclear Information System (INIS)

    Knechtle, S.J.; Halperin, E.C.; Saad, T.; Bollinger, R.R.

    1986-01-01

    Total lymphoid irradiation and cyclosporine have profound immunosuppressive properties and permit successful heart allotransplantation. Cyclosporine used alone has not permitted consistently successful transplantation between species in all cases. Total lymphoid irradiation has not been applied to xenotransplantation. The efficacy of total lymphoid irradiation alone and in combination with cyclosporine was examined using an animal model of heart xenotransplantation. Heterotopic heart transplants were performed using inbred Syrian hamsters as donors and Lewis rats as recipients. Total lymphoid irradiation was administered preoperatively over 3 weeks for a total dose of 15 gray. Cyclosporine was started on the day of surgery and was given as a daily intramuscular injection of 2.5, 5, or 10 mg/kg/day until rejection was complete. Neither total lymphoid irradiation nor cyclosporine alone markedly prolonged graft survival. However, combined total lymphoid irradiation and cyclosporine, 5 or 10 mg/kg/day, dramatically prolonged graft survival to greater than 100 days in most recipients. There were no treatment-related deaths. In conclusion, combined total lymphoid irradiation and cyclosporine permit successful long-term survival of heart xenotransplants in this hamster-to-rat model

  19. Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: Implications for biomarker selection.

    Directory of Open Access Journals (Sweden)

    Stephanie D Byrum

    Full Text Available Acute radiation syndrome (ARS is a complex multi-organ disease resulting from total body exposure to high doses of radiation. Individuals can be exposed to total body irradiation (TBI in a number of ways, including terrorist radiological weapons or nuclear accidents. In order to determine whether an individual has been exposed to high doses of radiation and needs countermeasure treatment, robust biomarkers are needed to estimate radiation exposure from biospecimens such as blood or urine. In order to identity such candidate biomarkers of radiation exposure, high-resolution proteomics was used to analyze plasma from non-human primates following whole body irradiation (Co-60 at 6.7 Gy and 7.4 Gy with a twelve day observation period. A total of 663 proteins were evaluated from the plasma proteome analysis. A panel of plasma proteins with characteristic time- and dose-dependent changes was identified. In addition to the plasma proteomics study reported here, we recently identified candidate biomarkers using urine from these same non-human primates. From the proteomic analysis of both plasma and urine, we identified ten overlapping proteins that significantly differentiate both time and dose variables. These shared plasma and urine proteins represent optimal candidate biomarkers of radiation exposure.

  20. Irradiation dose of cosmonauts

    International Nuclear Information System (INIS)

    Makra, Zs.

    1978-01-01

    The results obtained by determining the irradiation dose during the spaceflights of Apollo as well as the Sojouz-3 and Sojouz-9 spacecrafts have been compared in the form of tables. In case of Apollo astronauts the irradiation dose was determined by two methods and its sources were also pointed out, in tables. During Sojouz spacetravels the cosmonauts were exposed to a negligible dose. In spite of this fact the radiation danger is considerable. The small irradiation doses noticed so far are due to the fact that during the spaceflights there was no big proturberance. However, during the future long-range spacetravels a better radiation shielding than the one used up to now will be necessary. (P.J.)

  1. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  2. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  3. Effects of low priming dose irradiation on cell cycle arrest of HepG2 cells caused by high dose irradiation

    International Nuclear Information System (INIS)

    Xia Jingguang; Jin Xiaodong; Chinese Academy of Sciences, Beijing; Li Wenjian; Wang Jufang; Guo Chuanling; Gao Qingxiang

    2005-01-01

    Human hepatoma cells hepG2 were irradiated twice by 60 Co γ-rays with a priming dose of 5 cGy and a higher dose of 3 Gy performed 4h or 8h after the low dose irradiation. Effects of the priming dose irradiation on cell cycle arrest caused by high dose were examined with flow cytometry. Cells in G 2 /M phase accumulated temporarily after the 5 cGy irradiation, and proliferation of tumor cells was promoted significantly by the low dose irradiation. After the 3 Gy irradiation, G 2 phase arrest occurred, and S phase delayed temporally. In comparison with 3 kGy irradiation only, the priming dose delivered 4h prior to the high dose irradiation facilitated accumulation of hepG2 cells in G 2 /M phase, whereas the priming dose delivered 8h prior to the high dose irradiation helped the cells to overcome G 2 arrest. It was concluded that effects of the priming dose treatment on cell cycle arrest caused by high dose irradiation were dependent on time interval between the two irradiations. (authors)

  4. Clinical and symptomatological study of pigs subjected to a lethal dose of integral gamma irradiation; Etude clinique et symptomatologique chez le porc soumis a une irradiation gamma totale a dose letale

    Energy Technology Data Exchange (ETDEWEB)

    Vaiman, M; Guenet, J -L; Maas, J; Nizza, P

    1966-05-01

    Results are reported from a clinical and haematological study on a Corsican species of pigs wholly exposed to an approximately lethal dose of {gamma} radiation. The aim of this work was to examine the changes in the irradiation syndrome of irradiation for pigs to make it thus possible to devise further experiments, in particular in the therapeutic field. The dose received was 285 rads (measured as the absorption in the vertical antero-posterior medial plane). Data are presented on cyto-haematological changes in the blood circulating immediately after irradiation, and followed up to death, and changes in the medullary cytology after irradiation. The clinical picture of lethal radiation injury in swine is described. (authors) [French] Les auteurs rapportent les resultats d'une etude clinique et hematologique chez des porcs de race corse irradies in toto a dose sensiblement letale. Le but de cette etude etait de connaitre l'evolution du syndrome aigu d'irradiation chez le porc et de permettre ainsi le developpement d'experimentations ulterieures, en particulier dans le domaine therapeutique. La dose delivree etait de 285 rad (en dose absorbee au niveau du plan median vertical anteroposterieur. L'etude a porte essentiellement: 1. Sur les modifications cyclo-hematologiques du sang circulant immediatement apres l'irradiation, pour les differentes lignees cellulaires; l'evolution de ces modifications a ete notee jusqu'a la mort; 2. Sur les modifications de la cytologie medullaire apres irradiation (evolution du myelogramme et essai d'evaluation de la cellularite de la moelle osseuse);: 3. Sur les signes cliniques, d'ailleurs tres discrets, observes chez les porcs apres irradiation. (auteurs)

  5. Clinical and symptomatological study of pigs subjected to a lethal dose of integral gamma irradiation; Etude clinique et symptomatologique chez le porc soumis a une irradiation gamma totale a dose letale

    Energy Technology Data Exchange (ETDEWEB)

    Vaiman, M.; Guenet, J.-L.; Maas, J.; Nizza, P

    1966-05-01

    Results are reported from a clinical and haematological study on a Corsican species of pigs wholly exposed to an approximately lethal dose of {gamma} radiation. The aim of this work was to examine the changes in the irradiation syndrome of irradiation for pigs to make it thus possible to devise further experiments, in particular in the therapeutic field. The dose received was 285 rads (measured as the absorption in the vertical antero-posterior medial plane). Data are presented on cyto-haematological changes in the blood circulating immediately after irradiation, and followed up to death, and changes in the medullary cytology after irradiation. The clinical picture of lethal radiation injury in swine is described. (authors) [French] Les auteurs rapportent les resultats d'une etude clinique et hematologique chez des porcs de race corse irradies in toto a dose sensiblement letale. Le but de cette etude etait de connaitre l'evolution du syndrome aigu d'irradiation chez le porc et de permettre ainsi le developpement d'experimentations ulterieures, en particulier dans le domaine therapeutique. La dose delivree etait de 285 rad (en dose absorbee au niveau du plan median vertical anteroposterieur. L'etude a porte essentiellement: 1. Sur les modifications cyclo-hematologiques du sang circulant immediatement apres l'irradiation, pour les differentes lignees cellulaires; l'evolution de ces modifications a ete notee jusqu'a la mort; 2. Sur les modifications de la cytologie medullaire apres irradiation (evolution du myelogramme et essai d'evaluation de la cellularite de la moelle osseuse);: 3. Sur les signes cliniques, d'ailleurs tres discrets, observes chez les porcs apres irradiation. (auteurs)

  6. Myeloproliferative disorders in patients with rheumatoid arthritis treated with total body irradiation

    International Nuclear Information System (INIS)

    Urowitz, M.B.; Rider, W.D.

    1985-01-01

    Four patients with refractory rheumatoid arthritis were treated with total body irradiation administered in two sittings, 300 to 400 rads to each half of the body. All four patients had taken antimetabolites prior to receiving total body irradiation, and two continued to use them after total body irradiation. Two patients had taken alkylating agents before, and one had used them after total body irradiation. All patients showed clinical improvement. However, in two patients myeloproliferative disorders developed: a myelodysplastic preleukemia at 40 months after total body irradiation in one and acute myelogenous leukemia at 25 months in the other. Total body irradiation differs from total nodal irradiation in the total dose of irradiation (300 to 400 rads versus 2,000 to 3,000), and in the duration of the therapy (two sittings versus treatment over several weeks to months). Furthermore, the patients in the total body irradiation study frequently used cytotoxic drugs before and/or after irradiation, whereas in one total nodal irradiation study, azathioprine (2 mg/kg per day or less) was permitted, but no other cytotoxic agents were allowed. Rheumatologists may therefore face a binding decision when deciding to treat a patient with rheumatoid arthritis with either a cytotoxic drug or irradiation

  7. The role of low-dose total body irradiation in treatment of non-Hodgkin's lymphoma: a new look at an old method

    International Nuclear Information System (INIS)

    Safwat, A.

    2000-01-01

    The use of low-dose total body irradiation (LTBI) in treatment of lymphomatous malignancies dates back to the 1920s. The usual practice was to give very low individual TBI fraction sizes (0. 1-0.25 Gy) several times a week to a total dose of 1.5-2 Gy. Despite this very low total dose, LTBI could induce long term remissions and was always as effective as the chemotherapy to which it was compared. In modem radiotherapy, LTBI is still a valid option in treatment of chronic lymphocytic leukaemia (CLL) and the advanced stages of indolent low-grade non-Hodgkin's lymphoma (NHL). Its use in the early stages of low-grade NHL is under investigation in a large multi-institutional trial. The efficacy of LTBI is believed to stem from three mechanisms, namely; immune-enhancement, induction of apoptosis, and the intrinsic hypersensitivity to low-radiation doses demonstrated in many cell lines and tumour systems. Thus, LTBI seems to provide 'alternative' mechanisms of action against cancer cells. This should encourage researchers to explore strategies that integrate LTBI in new and innovative experimental treatment protocols that explore the possible synergism between LTBI and chemotherapy, biological response modifiers and/or immunotherapy. The increased incidence of secondary leukaemia that occurs when LTBI is combined with alkylating agents and/or total lymphoid irradiation should be kept in mind when designing such protocols as it may limit the use of LTBI in highly curable diseases and young patients in whom long survival is expected. (author)

  8. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  9. Dose distribution of non-coplanar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiharu; Wada, Yoichi; Takenaka, Eiichi

    1987-02-01

    Non-coplanar irradiations were applied to the treatment of brain tumor. The dose distribution around the target area due to non-coplanar irradiation was half less than the dose when coplanar irradiation used. Integral volume dose due to this irradiation was not always less than that due to conventional opposing or rotational irradiation. This irradiation has the better application to the following;as a boost therapy, glioblastoma multiforme;as a radical therapy, recurrent brain tumor, well differentiated brain tumor such as craniopharyngioma, hypophyseal tumor etc and AV-malformation.

  10. Dose mapping in category I irradiators

    International Nuclear Information System (INIS)

    Mondal, Sandip; Shinde, S.H.; Mhatre, S.G.V.

    2012-01-01

    Category I irradiators such as Gamma Chambers and Blood Irradiators are compact self shielded, dry source storage gamma irradiators offering irradiation volume of few hundred cubic centimeters. In the present work, dose distribution profiles along the central vertical plane of the irradiation volume of Gamma Chamber 900 and Blood Irradiator 2000 were measured using Fricke, FBX, and alanine dosimeters. Measured dose distribution profiles in Gamma Chamber 900 differed from the typical generic dose distribution pattern whereas that in Blood Irradiator 2000 was in agreement with the typical pattern. All reagents used were of analytical reagent grade and were used without further purification. Preparation and dose estimations of Fricke and FBX were carried out as recommended. Alanine pellets were directly placed in precleaned polystyrene container having dimensions 6.5 mm o.d., 32 mm height and 3 mm wall thickness. For these dosimeters, dose measurements were made using e-scan Bruker BioSpin alanine dedicated ESR spectrometer. Specially designed perspex jigs were used during irradiation in Gamma Chamber 900 and Blood Irradiator 2000. These jigs provided the reproducible geometry during irradiation, Absorbance measurements were made using a spectrophotometer calibrated as per the recommended procedure. In Gamma Chamber 900, there is a dose distribution variation of about 34% from top to the center, 18% from center to the bottom, and 15% from center to the periphery. Such a dose distribution profile is largely deviating from the typical profile wherein 15% variation is observed from center to the periphery on all sides. Further investigation showed that there was a nonalignment in the source and sample chamber. However, in Blood Irradiator 2000, there is a dose distribution variation of about 20% from top to the center, 15% from center to the bottom, and 12% from center to the periphery. This pattern is very much similar to the typical profile. Hence it is recommended

  11. The indication and the point at issue in total body irradiation (TBI)

    International Nuclear Information System (INIS)

    Kikuchi, Yuzo; Nishino, Shigeo.

    1992-01-01

    The role of radiation in the cause of interstitial pneumonitis (IP) was analysed here. Also optimal dose fractionation was discussed about total absorbed lung dose, dose rate and fractionation in spect of IP. After all optimal time schedule was recommended 3, 4 and 6 fraction of ≤ 4 Gy of fraction size using conventional and hyperfractionated irradiation. In the end the present condition and the point at issue in the irradiation of blood for prevention GVHD were discussed. (author)

  12. Volume dose of organs at risk in the irradiated volume

    International Nuclear Information System (INIS)

    Hishikawa, Yoshio; Tanaka, Shinichi; Miura, Takashi

    1984-01-01

    Absorbed dose of organs at risk in the 50% irradiated volume needs to be carefully monitored because there is high risk of radiation injury. This paper reports on the histogram of threedimensional volume dose of organs at risk, which is obtained by computer calculation of CT scans. In order to obtain this histogram, CT is first performed in the irradiation field. The dose in each pixel is then examined by the computer as to each slice. After the pixels of all slices in the organ at risk of the irradiated field are classified according to the doses, the number of pixels in the same dose class is counted. The result is expressed in a histogram. The histogram can show the differences of influence to organs at risk given by various radiation treatment techniques. Total volume dose of organs at risk after radiotherapy can also be obtained by integration of each dose of different treatment techniques. (author)

  13. Single dose total lymphoid irradiation combined with cyclophosphamide as immunosuppression for human marrow transplantation in aplastic anemia

    International Nuclear Information System (INIS)

    Kim, T.H.; Kersey, J.H.; Khan, F.M.; Sewchand, W.; Ramsey, N.; Krivit, W.; Coccia, P.; Nesbit, M.E.; Levitt, S.H.

    1979-01-01

    Six patients with aplastic anemia underwent bone marrow transplantation following conditioning with high dose cyclophosphamide and single dose total lymphoid irradiation with 750 rad, 26 rad/min at the midplane of the patient. They all received bone marrow from human leukocyte antigens/mixed lymphocyte culture (HLA/MLC) matched siblings. Five of 6 patients were alive without complications at 12, 11, 7, 4 and 4 months respectively. The remaining patient died from sepis which he had prior to transplantation. There were no graft rejection, graft-vs-Host Disease (GVHD) or interstitial pneumonitis among these patients. The procedure was well tolerated with minimal side effects. The results will be compared with those of groups whose bone marrow was previously transplanted with different immunosuppressive methods

  14. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy

    International Nuclear Information System (INIS)

    McAfee, Steven L.; Powell, Simon N.; Colby, Christine; Spitzer, Thomas R.

    2002-01-01

    Purpose: To evaluate the feasibility of dose escalation of total body irradiation (TBI) above the previously reported maximally tolerated dose, we have undertaken a Phase I-II trial of dose-escalated TBI with autologous peripheral blood stem cell transplantation (PBSCT) for chemotherapy-refractory lymphoma. Methods and Materials: Nine lymphoma patients with primary refractory disease (PRD) or in resistant relapse (RR) received dose-escalated TBI and PBSCT. The three dose levels of fractionated TBI (200 cGy twice daily) were 1,600 cGy, 1,800 cGy, and 2,000 cGy. Lung blocks were used to reduce the TBI transmission dose by 50%, and the chest wall dose was supplemented to the prescribed dose using electrons. Shielding of the kidneys was performed to keep the maximal renal dose at 1,600 cGy. Three patients, two with non-Hodgkin's lymphoma (NHL) in RR and one with PRD Hodgkin's disease, received 1,600 cGy + PBSCT, three patients (two NHL in RR, one PRD) received 1,800 cGy + PBSCT, and three patients with NHL (two in RR, one PRD) received 2,000 cGy + PBSCT. Results: Toxicities associated with this high-dose TBI regimen included reversible hepatic veno-occlusive disease in 1 patient, Grade 2 mucositis requiring narcotic analgesics in 8 patients, and neurologic toxicities consisting of a symmetrical sensory neuropathy (n=4) and Lhermitte's syndrome (n=1). Interstitial pneumonitis developed in 1 patient who received 1,800 cGy after receiving recombinant α-interferon (with exacerbation after rechallenge with interferon). Six (66%) patients achieved a response. Four (44%) patients achieved complete responses, three of which were of a duration greater than 1 year, and 2 (22%) patients achieved a partial response. One patient remains disease-free more than 5 years posttransplant. Corticosteroid-induced gastritis and postoperative infection resulted in the death of 1 patient in complete response, 429 days posttransplant. Conclusion: TBI in a dose range 1,600-2,000 cGy as

  15. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  16. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mackova, N; Praslicka, M; Misurova, E [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R.

  17. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    International Nuclear Information System (INIS)

    Mackova, N.; Praslicka, M.; Misurova, E.

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R. (author)

  18. Intracranial meningiomas after high-dose irradiation

    International Nuclear Information System (INIS)

    Soffer, D.; Gomori, J.M.; Siegal, T.; Shalit, M.N.

    1989-01-01

    Three patients who presented with intracranial meningiomas 12, 15, and 20 years, respectively, after therapeutic high-dose irradiation of a primary brain tumor are described. Analysis of these cases and similar documented cases suggests that meningiomas after high-dose irradiation constitute a recognizable entity. Patients with such tumors received radiation therapy at a young age (mean age, 9.4 years). After a latent period of 2 to 47 years (mean, 19.8 years) they developed meningiomas at the site of irradiation, at a much younger age than patients with ''spontaneous'' meningiomas. Similar to the situation with meningiomas after low-dose irradiation, a relatively high proportion of meningiomas induced by high-dose irradiation tend to be malignant and biologically aggressive. A very young age at the time of irradiation seems to predispose to the induction of malignant meningiomas, rather than benign tumors. These unusual features provide indirect evidence that high-dose radiation may play a role in the pathogenesis of meningiomas.41 references

  19. The application dose of irradiation for decontamination of dried marine fish

    International Nuclear Information System (INIS)

    Feng Min; Ji Ping; Li Lili; Zhu Jiating; Yang Ping; Lin Jiabing; Tang Yuxin; Wang Dening; Liu Chunquan

    2009-01-01

    The effects of irradiation decontamination on golden stripe fish, needle fish and blue whiting fish were studied based on analysis the contents of protein, fat, trace elements, heavy metals etc. before and after irradiation. The irradiation dose of 2.55 ∼ 13.65kGy was applied. The results show that 3kGy is enough to drop the number of total bacteria to less than 10 4 cfu/g; meanwhile, 5kGy is enough to drop the number of coliform bacteria to less than 30MPN/100g, which could meet the requirement of national hygiene standard of marine products of animal origin. Compared with the contents of protein, fat, trace elements, heavy metals, moisture and ash in control, all the contents of these indexes in irradiated samples are not changed significantly, though the content of protein is increased with irradiation dose and the content of moisture is decreased a little, while some trace elements contents are increased if irradiation dose is more than 10.4kGy. It is concluded that, the appropriate irradiation dose range for decontamination application of dried marine fishes is 5 ∼ 10kGy. (authors)

  20. Comparison of radiosensitization by 41 deg. C hyperthermia during low dose rate irradiation and during pulsed simulated low dose rate irradiation in human glioma cells

    International Nuclear Information System (INIS)

    Raaphorst, G. Peter; Ng, Cheng E.; Shahine, Bilal

    1999-01-01

    Purpose: Long duration mild hyperthermia has been shown to be an effective radiosensitizer when given concurrently with low dose rate irradiation. Pulsed simulated low dose rate (PSLDR) is now being used clinically, and we have set out to determine whether concurrent mild hyperthermia can be an effective radiosensitizer for the PSLDR protocol. Materials and Methods: Human glioma cells (U-87MG) were grown to plateau phase and treated in plateau phase in order to minimize cell cycle redistribution during protracted treatments. Low dose rate (LDR) irradiation and 41 deg. C hyperthermia were delivered by having a radium irradiator inside a temperature-controlled incubator. PSLDR was given using a 150 kVp X-ray unit and maintaining the cells at 41 deg. C between irradiations. The duration of irradiation and concurrent heating depended on total dose and extended up to 48 h. Results: When 41 deg. C hyperthermia was given currently with LDR or PSLDR, the thermal enhancement ratios (TER) were about the same if the average dose rate for PSLDR was the same as for LDR. At higher average dose rates for PSLDR the TERs became less. Conclusions: Our data show that concurrent mild hyperthermia can be an effective sensitizer for PSLDR. This sensitization can be as effective as for LDR if the same average dose rate is used and the TER increases with decreasing dose rate. Thus mild hyperthermia combined with PSLDR may be an effective clinical protocol

  1. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  2. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  3. Biological changes in experimental animals after irradiation with sublethal doses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seong; Park, Yong Dae; Jin, Chang Hyun; Byun, Myung Woo; Jeong, Il Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-05-15

    The objective of the present study was to investigate general clinical aspects such as weekly body weight and blood changes, and weekly food intake in gamma-irradiated C57BL/6j male mice fed AIN-76A purified rodent diet for 14 weeks. The mice were whole-body irradiated with 0, 2, 4 and 6 Gy of gamma-rays (Gammacell 40 Exactor, {sup 137}Cs, MDS Nordion) at a dose rate of 1.8 {sub c}Gy per second. The mean body weight change of 6 Gy-irradiated mice significantly decreased when compared to that of the non-irradiated control mice. Moreover, high dose of radiation resulted in decreased levels of AST, ALT, but in increased levels of total cholersterol, triglyceride, HDL-C in mice.

  4. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Li, Zhiguo [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Department of Immunology, Duke University Medical Center, Durham, North Carolina (United States); Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Chen, Benny J., E-mail: chen0032@mc.duke.edu [Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States)

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  5. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    International Nuclear Information System (INIS)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2013-01-01

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells

  6. Effect of prenatal irradiation on total litter birth weight

    International Nuclear Information System (INIS)

    Angleton, G.M.; Lee, A.C.

    1981-01-01

    Total litter weight at birth was used as a response variable to study the effects of in utero irradiations on birth weight. Analyses were performed in such a manner as to allow for variations in litter size and environmental temperatures. No effects due to irradiation were noted for exposures given 8 days postcoitus (dpc) and 55 dpc. However, for exposures given 28 dpc, a 5% decrement in birth weight was found for an 80 rad dose

  7. Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon

    International Nuclear Information System (INIS)

    Zheng, Xiaodan; Guo, Yuqi; Wang, Lei; Zhang, Honghai; Wang, Shaobo; Wang, Li; An, Lei; Zhou, Xianbin; Li, Xia; Yao, Chengfang

    2015-01-01

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3"+, CD8"+, and CD4"+ T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4"+ T cells was delayed more than that of CD8"+ T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the proliferation of Th1 and

  8. Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaodan [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan (China); Guo, Yuqi [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Wang, Lei [Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan (China); Zhang, Honghai [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Wang, Shaobo [Shandong University, Jinan (China); Wang, Li [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); An, Lei [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan (China); Zhou, Xianbin; Li, Xia [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Yao, Chengfang, E-mail: yaocf9941@163.com [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China)

    2015-12-01

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3{sup +}, CD8{sup +}, and CD4{sup +} T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4{sup +} T cells was delayed more than that of CD8{sup +} T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the

  9. Effects of irradiation source and dose level on quality characteristics of processed meat products

    Science.gov (United States)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (Pchanges in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (Poxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  10. The clinic and pathologic picture in the lethal dose irradiated ewes

    International Nuclear Information System (INIS)

    Halagan, J.; Stanikova, A.; Maracek, I.

    2004-01-01

    The history of clinical symptoms as well as pathologic histological and morphological changes after long/lasting gamma irradiation were estimated in seven clinical healthy ewes. The animals were irradiated continually seven days with totally 6.7 Gy per ewe. Clinically recognizable symptoms of the radiation sickness were observed commencing the 4 th after last dose of irradiation. Sharp increase of the body temperature, heart and respiratory frequency rate as well as apathy, anorexia, arrhythmia, dyspnoe, diarrhea, dehydration, polyuria were prevalent in clinical founding . All of the animals were death in course of seven days after last irradiated dose. The gastrointestinal radiation syndrome was typical evidence of gastrointestinal tract and the general hemorrhagic enhancing of the gamma irradiation damage effects was confirmed. (authors)

  11. Treatment of intractable rheumatoid arthritis with total lymphoid irradiation

    International Nuclear Information System (INIS)

    Kotzin, B.L.; Strober, S.; Engleman, E.G.; Calin, A.; Hoppe, R.T.; Kansas, G.S.; Terrell, C.P.; Kaplan, H.S.

    1981-01-01

    Eleven patients with intractable rheumatoid arthritis were treated with total lymphoid irradiation (total dose, 2000 rad) in an uncontrolled feasibility study, as an alternative to long-term therapy with cytotoxic drugs such as cyclophosphamide and azathioprine. During a follow-up period of five to 18 months after total lymphoid irradiation, there was a profound and sustained suppression of the absolute lymphocyte count and in vitro lymphocyte function, as well as an increase in the ratio of Leu-2 (suppressor/cytotoxic) to Leu-3 (helper) T cells in the blood. Persistent circulating suppressor cells of the mixed leukocyte response and of pokeweed mitogen-induced immunoglobulin secretion developed in most patients. In nine of the 11 patients, these changes in immune status were associated with relief of joint tenderness and swelling and with improvement in function scores. Maximum improvement occurred approximately six months after irradiation and continued for the remainder of the observation period. Few severe or chronic side effects were associated with the radiotherapy

  12. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  13. Clinical drawbacks of total lymphoid irradiation: the cons

    International Nuclear Information System (INIS)

    Myers, L.W.; Ellison, G.W.; Fahey, J.L.; Tesler, A.; Gottlieb, M.S.

    1988-01-01

    Success has been reported with use of total lymphoid irradiation (TLI) in organ transplant recipients and in patients with rheumatoid arthritis and other autoimmune diseases. In a well-conducted randomized double blind clinical trial, Cook et al have found that TLI was superior to sham irradiation of patients with multiple sclerosis (MS). However, it is clear from looking at this data that not all patients responded to TLI and that with time disease activity returned. Our own experience with TLI in two MS patients was very disappointing. Despite its apparent benefit in some conditions, considerable drawbacks are associated with TLI. These include high financial cost, unpleasant treatment-related side effects, and the possibility that more serious morbidity as well as mortality may be treatment-related. Furthermore, the optimum therapeutic regimen for TLI has not yet been established. Issues related to cumulative dose, dose per fraction, frequency of fractions, field of irradiation, and interaction with other therapies still need clarification. For these reasons we do not recommend TLI as a treatment for MS

  14. Prooxidate - antioxidate homeostasis in guinea pigs after fractional low-dose irradiation

    International Nuclear Information System (INIS)

    Baraboj, V.A.; Olyijnik, S.A.; Khmelevs'kij, Yi.V.

    1993-01-01

    We studied the influence of fractional total irradiation in the total dose of 1 Gy on the amount of lipids peroxide oxidation (LPO) products and ascorbic acid in the spleen, intestine and brain of guinea-pigs. The obtained date suggest that it is advisable to use ascorbic acid to correct postirradiation changes in the organism exposed to small doses of ionizing radiation

  15. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    International Nuclear Information System (INIS)

    Nalichowski, Adrian; Eagle, Don G.; Burmeister, Jay

    2016-01-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.

  16. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    Energy Technology Data Exchange (ETDEWEB)

    Nalichowski, Adrian, E-mail: nalichoa@karmanos.org [Karmanos Cancer Center, Detroit, MI (United States); Eagle, Don G. [Wayne State University School of Medicine, Detroit, MI (United States); Burmeister, Jay [Karmanos Cancer Center, Detroit, MI (United States); Wayne State University School of Medicine, Detroit, MI (United States)

    2016-10-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.

  17. The effects of dose rate in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Bodenberger, U.; Holler, E.; Thierfelder, S.; Eckstein, R.

    1986-01-01

    In summary the studies in dogs show that the dose rate or exposure time has a great impact on survival of acute radiation syndromes. In contrast the inactivation of colony forming hemopoietic precursors is less influenced by the dose rate. The potential of hemopoietic recovery is determined by the survival of hemopoietic precursor cells. Therefore in patients with a suspected whole body exposure of more than 1.50 Gy, bacterial and fungal decontamination and reverse isolation in a sterile environment has to be started immediately. Human patients treated with about 10 Gy of TBI frequently developed nausea, elevated temperatures and swelling of the parotic glands at the first and second day. The extent of these changes varies from patient to patient. The temperature is rarely elevated above 38.5 0 C. The swelling of parotics and the nausea subside within 48 hours. The presence of such systemic symptoms may suggest the exposure to a lethal dose of radiation. The disappearance of immature red cells, i.e. reticulocytes, and bandforms of granulocytes within the first 5 days supports this suggestion. HLA typing of the victim and his family should be performed as soon as possible after the accident. An HLA-identical sibling would be a suitable bone marrow donor. Unlike therapeutic TBI accidental exposures bring about uncertainties in the calculation of dose, dose distribution and dose rate. Early after irradiation biological changes are extremely variable. Both biological and physical data have to be considered, when microbiological decontamination, reverse isolation and transplantation of bone marrow are to be decided upon. Obviously these intensive therapeutic efforts are limited to a small number of victims. (orig.)

  18. An experimental study of the effect of total lymphoid irradiation on the survival of skin allografts

    International Nuclear Information System (INIS)

    Park, Charn Il; Han, Man Chung

    1981-01-01

    The study was undertaken to determine the effect of fractionated high-dose total lymphoid irradiation (TLI) on the survival of skin allograft despite major histocompatibility difference. Total lymphoid irradiation is a relatively safe form of radiotherapy, has been used extensively to treat lymphoid malignancies in humans with few side effects. A total of 90 rats, Sprague-Dawley rat as recipient and Wistar rat as donor, were used for the experiment, of which 10 rats were used to determine mixed lymphocyte response (MLR) for antigenic difference and skin allografts was performed in 30 rats given total lymphoid irradiation to assess the immunosuppressive effect of total lymphoid irradiation despite major histocompatibility difference. In addition, the peripheral white blood cell counts and the proportion of lymphocytes was studied in 10 rats given total lymphoid irradiation but no skin graft to determine the effects of bone marrow suppression. The results obtained are summarized as follows. 1. The optimum dose of total lymphoid irradiation was between 1800 rads to 2400 rads. 2. The survival of skin graft on rats given total lymphoid irradiation (23.2 ± 6.0 days) was prolonged about three folds as compared to unirradiated control (8.7 ± 1.3 days). 3. Total lymphoid irradiation resulted in a severe leukopenia with marked lymphopenia, but the count was normal by the end of 3rd week. 4. The study suggests that total lymphoid irradiation is a nonlethal procedure that could be used successfully in animals to transplant allograft across major histocompatibility barriers

  19. An experimental study of the effect of total lymphoid irradiation on the survival of skin allografts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Charn Il; Han, Man Chung [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1981-06-15

    The study was undertaken to determine the effect of fractionated high-dose total lymphoid irradiation (TLI) on the survival of skin allograft despite major histocompatibility difference. Total lymphoid irradiation is a relatively safe form of radiotherapy, has been used extensively to treat lymphoid malignancies in humans with few side effects. A total of 90 rats, Sprague-Dawley rat as recipient and Wistar rat as donor, were used for the experiment, of which 10 rats were used to determine mixed lymphocyte response (MLR) for antigenic difference and skin allografts was performed in 30 rats given total lymphoid irradiation to assess the immunosuppressive effect of total lymphoid irradiation despite major histocompatibility difference. In addition, the peripheral white blood cell counts and the proportion of lymphocytes was studied in 10 rats given total lymphoid irradiation but no skin graft to determine the effects of bone marrow suppression. The results obtained are summarized as follows. 1. The optimum dose of total lymphoid irradiation was between 1800 rads to 2400 rads. 2. The survival of skin graft on rats given total lymphoid irradiation (23.2 {+-} 6.0 days) was prolonged about three folds as compared to unirradiated control (8.7 {+-} 1.3 days). 3. Total lymphoid irradiation resulted in a severe leukopenia with marked lymphopenia, but the count was normal by the end of 3rd week. 4. The study suggests that total lymphoid irradiation is a nonlethal procedure that could be used successfully in animals to transplant allograft across major histocompatibility barriers.

  20. Evaluation and comparison of gamma- and electron beam irradiation effects on total and free gossypol of cottonseed meal

    International Nuclear Information System (INIS)

    Shawrang, P.; Mansouri, M.H.; Sadeghi, A.A.; Ziaie, F.

    2011-01-01

    Impact of gamma- and electron beam irradiation on total and free gossypol content of cottonseed meal was assessed by exposing them to doses of 10, 15, 20, 25 and 30 kGy. Gamma rays and electron beam showed the same effects with significant dose-dependent decrease in total and free gossypol content. Based on these results, ionizing irradiation at doses of 25 kGy and above could completely remove free gossypol and bring down total gossypol content to permissible level in poultry feed.

  1. Physicochemical and microbiological quality of raspberries (Rubus idaeus treated with different doses of gamma irradiation

    Directory of Open Access Journals (Sweden)

    Isabela Costa Guimarães

    2013-06-01

    Full Text Available This study was conducted to evaluate the physicochemical and microbiological characteristics of raspberries exposed to different radiation doses. The fruits were harvested in the city of Campestre, MG, packed in polyethylene bags, and transported to the Federal University of Lavras (UFLA, where they were separated into 4 lots. Irradiation was performed at the Center for Development of Nuclear Technology in Belo Horizonte, MG. The doses used were 0 (control, 0.5, 1.0, and 2.0 kGy. After irradiation, the fruits were transported back to UFLA and stored at 1 ºC and 95% relative humidity (RH for 12 days. The physicochemical analyses for mass loss, total soluble solids, titratable acidity, pH, total soluble sugars, total soluble pectin, firmness, vitamin C content, total antioxidant activity, and total phenolic, and the microbiological assays (coliform at 35 and 45 ºC, psychrotrophic and filamentous fungi and yeasts were performed after 0, 3, 6, 9, and 12 days of storage. Lower loss of mass and filamentous fungi and yeast count were observed in the irradiated fruits, and 2 kGy was determined as the most effective dose for microbial control, but this irradiation dose also resulted in increased loss of fruit firmness.

  2. Shelf Life of Tilapia Fillets Treated with low dose Gamma Irradiation

    International Nuclear Information System (INIS)

    Mohamed, W.S.; El-Mossalami, I.I.

    2009-01-01

    The bacterial load (total bacterial count), Psychrophilic count, chemical and sensory examinations in Tilapia fish fillets were determined to evaluate its sanitary status and to increase its storage period during storage at -18 degree C for one year. The experiment was carried out at the time of receiving the samples and after gamma radiation treatment with dose levels of 1, 2 and 3 kGy. The initial total bacterial count was 5.4x10 0 cfu/gm and the psychrophilic count was 4x10 5 cfu/gm; it was slightly increased during freezing storage. The chemical parameters were more indicative in evaluating the shelf life of frozen fish; as they exceeded the permissible limits, so that the frozen non-irradiated samples were rejected after 6 months. The exposure to gamma irradiation at a dose of 1 kGy extended the storage time of the samples to 9 months while irradiation with 3 kGy extended the storage time of the samples to 12 months without changing its quality attributes. The quality during storage at -18 degree C of non irradiated and irradiated fish fillets was investigated every 3 months for one year by measuring the bacterial counts, chemical parameters and sensorial evaluation of the samples to study the effect of irradiation on increasing the storage time of fish fillets. So, it is recommended that fish fillets should be properly cleaned, packaged and exposed to gamma irradiation at a dose of 3 kGy to extend its freezing storage period

  3. Total lymphoid irradiation for multiple sclerosis

    International Nuclear Information System (INIS)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one

  4. Electron beam irradiation facility for low to high dose irradiation applications

    International Nuclear Information System (INIS)

    Petwal, V.C.; Wanmode, Yashwant; Verma, Vijay Pal; Bhisikar, Abhay; Dwivedi, Jishnu; Shrivastava, P.; Gupta, P.D.

    2013-01-01

    Electron beam based irradiation facilities are becoming more and more popular over the conventional irradiator facilities due to many inherent advantages such as tunability of beam energy, availability of radiation both in electron mode and X-ray mode, wide range of the dose rate, control of radiation from a ON-OFF switch and other safety related merits. A prototype experimental facility based on electron accelerator has been set-up at RRCAT to meet the low-dose, medium dose and high-dose requirements for radiation processing of food, agricultural and medical products. The facility can be operated in the energy range from 7-10 MeV at variable power level from 0.05-3 kW to meet the dose rate requirement of 100 Gy to kGy. The facility is also equipped with a Bremsstrahlung converter optimized for X-ray irradiation at 7.5 MV. Availability of dose delivery in wide range with precision control and measurement has made the facility an excellent tool for researchers interested in electron/X-ray beam irradiation. A precision dosimetry lab based on alanine EPR and radiochromic film dosimetry system have been established to characterize the radiation field and precise dose measurements. Electron beam scattering technique has been developed to achieve low dose requirement for EB irradiation of various seeds such as groundnut, wheat, soybeans, moong beans, black gram etc. for mutation related studies. This paper describes various features of the facility together with the dosimetric measurements carried out for qualification of the facility and recent irradiation experiments carried out using this facility. (author)

  5. The biochemical changes of bone collagen after high-dose irradiation

    International Nuclear Information System (INIS)

    Tajiri, Ken

    1980-01-01

    In our clinic, patients with malignant bone tumors have been treated by high-dose irradiation therapy, 10,000-20,000 rads, for primary lesions. In order to study the biochemical changes of normal bone around tumor tissue, especially bone collagen, after high-dose irradiation, the author performed the following experiments. The right knee joint of rabbits was irradiated with either 6,000, 10,000, or 15,000 rads by 60 Co-γ ray. The cortical bone of the right tibial metaphysis was used for analyses and compared with the left tibia of the same rabbit. These studies were followed for one year after the final irradiation. The calcium, phosphorous and collagen contents of irradiated bone were remarkably changed. These data indicate that collagen biosynthesis of irradiated bone was decreased and the calcification was disturbed. An increase in the amount of total soluble collagen and a decrease in the amount of hydroxylysine bound sugar were observed. The ratio of β to α chains of the collagen molecule was also changed by the irradiation. The amount of reducible cross-links per hydroxyproline residue was strikingly increased three months after the final irradiation. These changes were remarkable especially in the 10,000 and 15,000 rads irradiated group and found to be recovered approximately six months to one year after the final irradiation. These findings indicate that high-dose irradiation reduces the stability of bone collagen both with the destruction of sugar bonds of hydroxylysine residues and the replacement of matured collagen matrix to immatured one which contain mostly labile reducible cross-links. (author)

  6. Immunosuppressive effect of total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bendel, V.; Medizinische Hochschule Hannover

    1981-01-01

    Contrary to the immunosuppression by means of wholebody irradiation which is known for a long while but connected with considerable side effects and risks, the total lymphoid irradiation (TLI) is a new possibility of immunosuppression the tolerance of which by man is known by virtue of long-standing experiences with the treatment of malignant lymphatic system diseases. In connexion with organ transplantations, TLI might possibly soon be important for the radiotherapeutist. In the experimentation on animals, the unspecific immunosuppression induced by TLI causes a prolonged survival time of allogeneic skin and organ grafts in certain mammals. Furthermore, a formation of blood chimeras combined with specific, permanent tolerance of organ grafts from the bone marrow donor can be caused by bone marrow transplantation after TLI. First experiences with man have been made. In the German literature, TLI has not been mentioned yet. In the present study, a summary is given on the Anglo-Saxon literature, and the first own experiments with regard to the problem of irradiation dose and transplantation interval are presented. (orig.) [de

  7. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    Science.gov (United States)

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  8. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  9. A study on mice exposure dose for low-dose gamma-irradiation using glass dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Jeong, Dong Hyeok; Son, Tae Gen; Kim, Jung Ki; Yang, Kwang Mo; Kang, Yeong Rok [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, Sang Hee [Dept. of Biomedical Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-12-15

    The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using {sup 137}C{sub s} irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological and Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.

  10. An experimental study on total dose effects in SRAM-based FPGAs

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    In order to study testing methods and find sensitive parameters in total dose effects on SRAM-based FPGA, XC2S100 chips were irradiated by 60 Co γ-rays and tested with two test circuit designs. By analyzing the experimental results, the test flow of configuration RAM and bock RAM was given, and the most sensitive parameter was obtained. The results will be a solid foundation for establishing test specification and evaluation methods of total dose effects on SRAM-based FPGAs. (authors)

  11. Effect of dose rate on inactivation of microorganisms in spices by electron-beams and gamma-rays irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Islam, Md.S.

    1994-01-01

    Total aerobic bacteria in spices used in this study were determined to be 1 x 10 6 to 6 x 10 7 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6-9 kGy of EB (electron-beams) or γ-irradiation were required to reduce the total aerobic bacteria to below 10 3 per gram. However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These differences of radiation sensitivities between EB and γ-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. However, components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and γ-rays. (author)

  12. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  13. Application of a Pelletron accelerator to study total dose radiation effects on 50 GHz SiGe HBTs

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, K.C.; Pushpa, N.; Naik, P.S. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India); Cressler, John D. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Tripathi, Ambuj [Inter University Accelerator Centre (IUAC), New Delhi 110 067 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Total dose effects of 50 MeV Li3+ ion on 50 GHz SiGe HBTs is investigated. Black-Right-Pointing-Pointer Ion irradiated results were compared with Co-60 gamma results. Black-Right-Pointing-Pointer 50 MeV Li ions create more damage in E-B spacer oxide when compared to Co-60 gamma radiation. Black-Right-Pointing-Pointer Co-60 gamma radiation create more damage in STI oxide when compared to 50 MeV Li ions. Black-Right-Pointing-Pointer Worst case total dose radiation effects can be studied using Pelletron accelerator facilities. - Abstract: We have investigated the effects of 50 MeV lithium ion irradiation on the DC electrical characteristics of first-generation silicon-germanium heterojunction bipolar transistors (50 GHz SiGe HBTs) in the dose range of 600 krad to 100 Mrad. The results of 50 MeV Li{sup 3+} ion irradiation on the SiGe HBTs are compared with 63 MeV proton and Co-60 gamma irradiation results in the same dose range in order to understand the damage induced by different LET species. The radiation response of emitter-base (EB) spacer oxide and shallow trench isolation (STI) oxide to different irradiation types are discussed in this paper. We have also focused on the efficacy in the application of a Pelletron accelerator to study total dose irradiation studies in SiGe HBTs.

  14. Alternatives to dose, quality factor and dose equivalent for low level irradiation

    International Nuclear Information System (INIS)

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E.

    1988-01-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to the sensitive target volumes within a small fraction of the cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Normalizing to equal numbers of events produced by different radiations and applying this cell response or hit size effectiveness function (HSEF) should define radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose evaluation, which are confounded when applied to low level irradiations. Examples using both calculation and experimental data are presented. 15 refs., 18 figs

  15. An improved standard total dose test for CMOS space electronics

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Pease, R.L.

    1989-01-01

    The postirradiation response of hardened and commercial CMOS devices is investigated as a function of total dose, dose rate, and annealing time and temperature. Cobalt-60 irradiation at ≅ 200 rad(SiO 2 )/s followed by a 1-week 100 degrees C biased anneal and testing is shown to be an effective screen of hardened devices for space use. However, a similar screen and single-point test performed after Co-60 irradiation and elevated temperature anneal cannot be generally defined for commercial devices. In the absence of detailed knowledge about device and circuit radiation response, a two-point standard test is proposed to ensure space surviability of CMOS circuits: a Co-60 irradiation and test to screen against oxide-trapped charge related failures, and an additional rebound test to screen against interface-trap related failures. Testing implications for bipolar technologies are also discussed

  16. Long-term survival of skin allografts in mice treated with fractionated total lymphoid irradiation

    International Nuclear Information System (INIS)

    Slavin, S.; Strober, S.; Fuks, Z.; Kaplan, H.S.

    1976-01-01

    Treatment of recipient Balb/c mice with fractionated, high-dose total lymphoid irradiation, a procedure commonly used in the therapy of human malignant lymphomas, resulted in fivefold prolongation of the survival of C57BL/Ka skin allografts despite major histocompatibility differences between the strains (H-2/sup d/ and H-2/sup b/, respectively). Infusion of 10 7 (C57BL/Ka x Balb/c)F 1 bone marrow cells after total lymphoid irradiation further prolonged C57BL/Ka skin graft survival to more than 120 days. Total lymphoid irradiation may eventually prove useful in clinical organ transplantation

  17. Dose Distribution of Rectum and Bladder in Intracavitary Irradiation

    International Nuclear Information System (INIS)

    Chu, S. S.; Oh, W. Y.; Suh, C. O.; Kim, G. E.

    1984-01-01

    The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiogram and medical records of 206 patients, who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analyzed. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral cervix to the central axis of ovoid were measured for low dose rate irradiation system and high dose rate remote control after loading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as 4-7cm width and high dose rate system showed as 5-6cm. 2. In Horizontal angulation of tandem to body axis, the low dose rate system revealed mid position 64.6%, left deviation 19.2% and right deviation 16.2%. 3. In longitudinal angulation of tandem to body axis, the mid position was 11.8% and anterior angulation 88.2% in low dose rate system but in high dose rate system, anterior angulation was 98.5%. 4. Down ward displacement of ovoid below external os was only 3% in low dose rate system and 66.6% in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses and TDF were 80, 70 Gy and 131, 123 including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 98, 47 Gy and 230, 73 in high dose rate system but in low dose rate system 125, 52 Gy and 262, 75 respectively. 8. Doses

  18. Influence of burn-in on total-ionizing-dose effect of SRAM device

    International Nuclear Information System (INIS)

    Liu Minbo; Yao Zhibin; Huang Shaoyan; He Baoping; Sheng Jiangkun

    2014-01-01

    The influence of Burn-in on the total-ionizing-dose (TID) effect of SRAM device was investigated. SRAM devices of three different feature sizes were selected and irradiated by "6"0Co source with or without pre-irradiation Burn-in. Some parameters for radiation effect of SRAM device such as upset data, were measured, and the influence on the TID effect of different feature size SRAM devices with or without pre-irradiation Burn-in was obtained. The influence of different temperature Burn-in on radiation resistant capability of SRAM device was studied for 0.25 μm SRAM device. The results show that the smaller the device feature size is, the better the radiation-resistant capability of SRAM device is and the weaker the influence of Burn-in is. And the higher Burn-in temperature is, the more serious the influence of Burn-in on the total-dose radiation effect is. (authors)

  19. Late effects of chronic low dose-rate γ-rays irradiation on mice

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Sasagawa, Sumiko; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Otsu, Hiroshi; Sato, Fumiaki

    2002-01-01

    To evaluate late biological effects of chronic low dose-rate radiation, we are conducting two experiments. Experiment 1 - Late effects of chronic low dose-rate g-rays irradiation on SPF mice, using life-span and pathological changes as parameters. Continuous irradiation with g-rays for 400 days was performed using 137 Cs γ-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8,000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until they died a natural death. As of 2002 March 31, 3,999 of the total 4,000 mice have died. Preliminary analyses of data show that 20 mGy/day suggested a shortened life span in both sexes. Partial results show that the most common lethal neoplasms in the pooled data of non-irradiated control and irradiated male mice, in order of frequency, were neoplasms of the lymphohematopoietic system, liver, and lung. In female mice, neoplasms of the lymphohematopoietic system, soft tissue, and endocrine system were common. Experiment 2 - Effects on the progeny of chronic low dose-rate g-ray irradiated SPF mice: pilot study, was started in 1999 and is currently in progress. (author)

  20. Optimum combination of targeted 131I and total body irradiation for treatment of disseminated cancer

    International Nuclear Information System (INIS)

    Amin, Amin E.; Wheldon, Tom E.; O'Donoghue, Joseph A.; Gaze, Mark N.; Barrett, Ann

    1995-01-01

    Purpose: Radiobiological modeling was used to explore optimum combination strategies for treatment of disseminated malignancies of differing radiosensitivity and differing patterns of metastatic spread. The purpose of the study was to derive robust conclusions about the design of combination strategies that incorporate a targeting component. Preliminary clinical experience of a neuroblastoma treatment strategy, which is based upon general principles obtained from modelling, is briefly described. Methods and Materials: The radiobiological analysis was based on an extended (dose-rate dependent) formulation of the linear quadratic model. Radiation dose and dose rate for targeted irradiation of tumors of differing size was in part based on microdosimetric considerations. The analysis was applied to several tumor types with postulated differences in the pattern of metastatic spread, represented by the steepness of the slope of the relationship between numbers of tumors present and tumor diameter. The clinical pilot study entailed the treatment of five children with advanced neuroblastoma using a combination of 131 I metaiodobenzylguanidine (mIBG) and total body irradiation followed by bone marrow rescue. Results: The theoretical analysis shows that both intrinsic radiosensitivity and pattern of metastatic spread can influence the composition of the ideal optimum combination strategy. High intrinsic radiosensitivity generally favors a high proportion of targeting component in the combination treatment, while a strong tendency to micrometastatic spread favors a major contribution by total body irradiation. The neuroblastoma patients were treated using a combination regimen with an initially low targeting component (2 Gy whole body dose from targeting component plus 12 Gy from total body irradiation). The treatment was tolerable and resulted in remissions in excess of 9 months in each of these advanced neuroblastoma patients. Conclusions: Radiobiological analysis, which

  1. Dosimetry for total body irradiation of rhesus monkeys with 300 kV X- rays

    NARCIS (Netherlands)

    Zoetelief, J.; Wagemaker, G.; Broerse, J.J.

    1998-01-01

    Purpose: To obtain more accurate information on the dose distribution in rhesus monkeys for total body irradiation with orthovoltage X-rays. Materials and methods: Dose measurements were performed with an ionization chamber inside homogeneous cylindrical and rectangular phantoms of various

  2. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  3. Dose rate distribution for products irradiated in a semi-industrial irradiation plant. 1st stage

    International Nuclear Information System (INIS)

    Mangussi, J.

    2005-01-01

    The model of the bulk product absorbed dose rate distribution in a semi industrial irradiation plant is presented. In this plant the products are subject to a dynamic irradiation process: single-plaque, single-direction, four-passes. The additional two passes, also one on each side of the plaque, serve to minimize the lateral dose variation as well as the depth-dose non-uniformity. The first stage of this model takes only into account the direct absorbed dose rate; the model outputs are the depth-dose distribution and the lateral-dose distribution. The calculated absorbed dose in the bulk product and its uniformity-ratio after the dynamic irradiation process for different products is compared. The model results are in good agreement with the experimental measurements in a bulk of irradiated product; and the air absorbed dose rate in the irradiation chamber behind the product subject to the dynamic irradiation process. (author) [es

  4. Parametric relationships for gamma dose and irradiation homogeneity in a sewage sludge irradiator

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1986-01-01

    A study on the inter-relationships between factors governing γ dose and irradiation homogeneity in a sewage sludge irradiator is presented here. The analysis involves a 60 Co irradiator of cylindrical irradiation geometry with batchwise operation for hygienisation of liquid sludge. The influence of the parameters such as the source-target geometry, strength of 60 Co sources in the irradiator, hygienisation dose and rheological and hydraulic characteristics of sewage sludge on the selection of the three critical factors viz. the pumping rate (P) required to maintain turbulent flow regime in the irradiation zone; the mininum re-circulation time (Tsub(m)) essential to achieve a certain degree of homogeneity of dose absorption in the fluid; and the irradiation time (Tsub(i)) required to impart the necessary dose for the desired hygienisation effect in the sludge has been discussed in detail and inter-relationships among these three factors have been worked out. The applicability of the relationships to a typical operating plant has also been elucidated. (author)

  5. Changes in total carbohydrate and total antioxidant activity induced by gamma irradiation of wheat flour

    International Nuclear Information System (INIS)

    Manupriya, B.R.; Shenoy, K. Bhasker; Patil, Shrikant L.; Somashekarappa, H.M.

    2015-01-01

    Wheat is a staple food grain in India after rice and occupies number one position in the world. The wheat crop not only gives food grains but also gives fodder for animals. Among many preservation methods irradiation is a current technique used to overcome infestation, contamination and spoilage of stored grains. The present study is aimed to check the changes in composition of irradiated wheat flour. Wheat flour was exposed to five different irradiation doses (0.25 KGy, 0.5KGy, 1KGy, 5KGy and 10 KGy) by using 60 Co gamma-irradiation chamber. Irradiated flour was stored in air sealed polyethylene pouch and plastic container at room temperature for different time intervals (0 th day, 1 month and 3 months). The stored flour was checked for total antioxidant activity by phosphomolybdate method and total carbohydrates concentration by phenol-sulphuric acid method. On 0 th day total antioxidant activity and total carbohydrate concentration was found to be increased at 0.5KGy (0.113 mg/ml and 0.045 mg/ml respectively) when compared to control (0.79 mg/ml and 39.5 mg/ml). Similarly for 1 month stored samples of air sealed polyethylene pouch total antioxidant activity and total carbohydrate concentration was observed to be increased at 0.5KGy (0.117 mg/ml and 0.045mg/ml respectively) when compared to control (0.096 mg/ml and 0.035 mg/ml). But in case of stored samples of plastic container total antioxidant activity increased at 0.25KGy (0.060 mg/ml) and total carbohydrate increased at 5KGy (0.051 mg/ml). Increased and decreased values were found in both factors for 3 months stored samples of air sealed polyethylene pouch and plastic container. Total antioxidant activity increased at 5KGy (0.072 mg/ml) for polyethylene bag samples and at 0.5KGy (0.137 mg/ml) for plastic container sample. Same way total carbohydrate concentration increased at 0.25KGy (0.046 mg/ml) and at 1KGy (0.045 mg/ml) respectively. This increase is due to affects of γ-irradiation on biomolecules by

  6. Increased mortality by septicemia, interstitial pneumonitis and pulmonary fibrosis among bone marrow transplant recipients receiving an increased mean dose rate of total irradiation

    International Nuclear Information System (INIS)

    Ringden, O.; Baaryd, I.; Johansson, B.

    1983-01-01

    Seven bone marrow transplant recipients with acute lymphoblastic leukemia receiving a mean dose rate of 0.07 Gy/min of total body irradiation towards the pelvic midpoint and the lungs had an increased (p<0.01) overall death rate of 86 per cent compared with 33 per cent among 27 patients with acute non-lymphoblastic leukemia or acute lymphoblastic leukemia treated with a mean dose rate of 0.04 Gy/min. Among the patients receiving the higher dose rate there was an increased mortality in causes related to radiation toxicity like early septicemia, interstitial pneumonitis and pulmonary fibrosis, compared with all patients receiving the lower dose rate (p<0.01) and also with 10 patients from this group with acute lymphoblastic leukemia (p<0.02). (Auth.)

  7. Treatment of neuroblastoma. Role of total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dini, G; Perin, G P; Franzone, P; Corvo, R; Scarpati, D

    1986-01-01

    Advanced neuroblastoma, scarcely responsive to conventional therapies, can take advantage of high dose chemio-radiotherapic treatment followed by bone marrow transplant. Nineteen young patients underwent an ablative chemotherapy with high dose Vincristine and Melphalan plus Total Body Irradiation in Genoa, Italy; all of them underwent autologus bone marrow transplantation. Fourteen children were in complete remission (CR), 5 had residual disease. Thirteen are alive after a median of 7 months following transplant; 9 are in CR; 4 have disease; 1 died for toxicity; 5 for relapse. The results seem to suggest that ablative therapy should be given to patients in CR. Toxicity was not remarkable mainly as far as TBI is concerned.

  8. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  9. Effect of Low Gamma Irradiation Doses on Growth and Productivity of Green Bean

    International Nuclear Information System (INIS)

    Mohamed, A.M.M.F.

    2011-01-01

    The field experiment was conducted within the two successive growing seasons of 2007/2008 and 2008/2009 to study the effect of low gamma irradiation doses (0, 10, 20, 30, 40, 50 and 60 Gy) on growth and productivity of green bean cv. Bronco with 3 sowing dates 8, 18 and 28th of October in the first season and 30th of September, 10 and 20th of October in the second season. The results of laboratory determinations showed that gamma irradiation doses did not affect the germination percent but slightly affected germination rate and electrical conductivity. Concerning field experiment, data revealed that green bean plant vegetative growth, i.e., plant height, fresh and dry weight, leaf number and leaf area, at 45 days after planting (DAP) and shoot number at 30, 45 DAP recorded significantly the highest values at the first sowing date in both seasons. With respect of gamma irradiation doses, all the previously mentioned parameters of plant vegetative growth recorded the highest values with 40 Gy at 15, 30, and 45 DAP except number of leaves which recorded the highest value with 30 Gy at 15, 30 and 45 DAP. Concerning shoot number there was no significant difference among several doses at 30 DAP in the first season but in the second season it was 20 Gy and at 45 DAP compared with the control. Also the first sowing date in both seasons gave the highest pod length, fresh and dry weight, plant yield, number of pods per plant, marketable yield per plot and total yield per feddan. Whereas ,the second sowing date led to the lowest pod thickness. In addition, 20 Gy of gamma irradiation doses recorded the highest value of pod length .The 30 Gy dose showed the highest value of pod fresh and dry weight, plant yield and total yield per feddan. In addition ,the 20 and 30 Gy doses led to the highest pod number per plant and marketable yield, concerning pod thickness there was slight difference only in the second season between several doses. The second sowing date in the first season

  10. Early changes in GABA and dlutamine levels and aminotransferase activity in rat brain after total-body γ-irradiation with absolutely lethal doses

    International Nuclear Information System (INIS)

    Rozanov, V.A.; Karpovich, G.A.

    1985-01-01

    The contents of gaama-aminobutyric acid (GABA) and glutamate (GL) as well as GABA-aspartate- and alanine aminotransferase activities were measured in rat cerebellum, cerebral cortex and truncus cerebri 1, 3, 6, 24 and 48 hr following total-body γ-irradiation ( 60 Co) with a dose of 30 Gy. All the indices under study changed in a similar way in the cortex and truncus cerebri while in the cerebellum, GABA level increased and GABA-α-ketoglutarate aminotransfearse activity decreased 60 min after irradiation. The levels of GABA and GL in the cortex and truncus cerebri decreased immediately and increased 24 hr after irradiation. Activity of aminotransferases changed in a phase manner: changes in aspartate- and alanine aminotransferase activity were more pronounced than those of GABA-α-ketoglutarate aminotransferase activity and correlated with the glutamate level changes

  11. The dosimetry of cobalt-60 γ-ray total body irradiation before bone marrow transplantation

    International Nuclear Information System (INIS)

    Dong Fan; Zhang Guiru

    1989-11-01

    The dosimetric considerations of using conventional cobalt-60 unit total body irradiation (TBI) are presented. By extending the source-to-midplane distance (SMD) to 346 cm, a 92 x 98 cm 2 rectangular field with diagonal dimension 134 cm was obtained. The results from the phantom measurements showed: (1) the effective field corresponding to an average-size patient is 25 x 25 cm 2 , and a method for estimating the effective field of human body is given; (2) the midplane doses are consistently higher than those of surfaces, but the dose ratio of midplane to surface decreases as the body thickness increases, and a significant negative correlation is existed between the dose ratio and thickness, thus a linear regression line is fitted; (3) the anterior-posterior (AP) or AP + bilateral irradiation will yield a more uniform dose distribution in the whole body than the bilateral irradiation; (4) the dose uniformity can apparently be improved by the tissue compensation, for which the technique is described

  12. Therapeutic use of fractionated total body and subtotal body irradiation

    International Nuclear Information System (INIS)

    Loeffler, R.K.

    1981-01-01

    Ninety-one patients were treated using fractionated subtotal body (STBI) or total body irradiation (TBI). These patients had generalized lymphomas, Hodgkin's disease, leukemias, myelomas, seminomas, or oat-cell carcinomas. Subtotal body irradiation is delivered to the entire body, except for the skull and extremities. It was expected that a significantly higher radiation dose could be administered with STBI than with TBI. A five- to ten-fold increase in tolerance for STBI was demonstrated. Many of these patients have had long-term emissions. There is little or no treatment-induced symptomatology, and no sanctuary sites

  13. Comparative influence of dose rate and radiation nature, on lethality after big mammals irradiation

    International Nuclear Information System (INIS)

    Destombe, C.; Le Fleche, Ph.; Grasseau, A.; Reynal, A.

    1997-01-01

    For the same dose and the 30 days lethality as biological criterion, the dose rate influence is more important than the radiation nature on the results of an big mammals total body irradiation. (authors)

  14. Total body irradiation and marrow transplantation for acute leukaemia. The Royal Marsden Hospital experience

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, A; Barrett, A J; Powles, R L [Institute of Cancer Research, Sutton (UK). Surrey Branch; Royal Marsden Hospital, London (UK))

    1979-06-01

    The experience with total body irradiation at the Royal Marsden Hospital is described for an elective program of transplantation in patients with acute myeloid leukaemia (AML) in first remission. Dose rate appears to be a critical factor in the reduction of radiation-associated damage and careful monitoring of the actual dose distribution and dose received is mandatory.

  15. Definition of the dose(tempo)-distribution in the biological irradiation-facility of the RIVM

    International Nuclear Information System (INIS)

    Bader, F.J.M.

    1990-02-01

    The RIVM biological irradiation facility (BBF) for the irradiation of biological samples and small animals is a self shielded device and can be safely operated in an existing laboratory environment. There are two 137 Cs sources (15TBq) in a bilateral geometry to give maximum dose uniformity. The easily accessible irradiation chamber is housed in a rotating lead shielding. The dosimetry of BBF was performed by the Dosimetry Section of the RIVM. Experiments were made to determine the absorbed dose in plastic tubes filled with water and the dose distribution over the tube-holder. Separate experiments were made to determine the absorbed dose during the rotation of the irradiation chamber and to check the irradiation timer. For the experiments LiF:Mg,Ti (TLD-100) extruded ribbons were used. The TLDs were calibrated in a collimated beam of 137 Cs gamma rays. The determination of the absorbed dose in water was based on a users biological irradiation set up. The TLDs were individually sealed in thin plastic foil and put in plastic tubes filled for 1/3 with water. The tubes were vertically placed in the tube-holder and placed in the centre of the irradiation chamber. The results show that the absorbed dose in water (determined on January 1, 1990) is equal to 0.97 Gy/timer-unit, with a total uncertainty of 7 percent (1σ). During the rotation of the irradiation chamber the absorbed dose (determined on January 1, 1990) is equal to 0.38 Gy, with a total uncertainty of 15 percent (1σ). The variation of the dose distribution was determined at 15 different measurement points distributed over the tube-holder. The dosis in the measurement point in the centre of the tube-holder was taken as reference value. The maximum observed deviation over the other 14 measurement points amounts to -16 percent of it. The BBF-timer was checked against a special timer. The results indicate that within a range from 2-11 'timer-units' no differences are present. (author). 6 refs.; 6 figs.; 3 fotos

  16. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    International Nuclear Information System (INIS)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A

    2016-01-01

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm"2 size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  17. The irradiation tolerance dose of the proximal vagina

    International Nuclear Information System (INIS)

    Au, Samuel P.; Grigsby, Perry W.

    2003-01-01

    Purpose: The purpose of this investigation was to determine the irradiation tolerance level and complication rates of the proximal vagina to combined external irradiation and low dose rate (LDR) brachytherapy. Also, the mucosal tolerance for fractionated high dose rate (HDR) brachytherapy is further projected based on the biological equivalent dose (BED) of LDR for an acceptable complication rate. Materials and methods: Two hundred seventy-four patients with stages I-IV cervical carcinoma treated with irradiation therapy alone from 1987 to 1997 were retrospectively reviewed for radiation-associated late sequelae of the proximal vagina. All patients received LDR brachytherapy and 95% also received external pelvic irradiation. Follow-up ranged from 15 to 126 months (median, 43 months). The proximal vagina mucosa dose from a single ovoid (single source) or from both ovoids plus the tandem (all sources), together with the external irradiation dose, were used to derive the probability of a complication using the maximum likelihood logistic regression technique. The BED based on the linear-quadratic model was used to compute the corresponding tolerance levels for LDR or HDR brachytherapy. Results: Grades 1 and 2 complications occurred in 10.6% of patients and Grade 3 complications occurred in 3.6%. There were no Grade 4 complications. Complications occurred from 3 to 71 months (median, 7 months) after completion of irradiation, with over 60% occurring in the first year. By logistic regression analysis, both the mucosal dose from a single ovoid or that from all sources, combined with the external irradiation dose, demonstrate a statistically significant fit to the dose response complication curves (both with P=0.016). The single source dose was highly correlated with the all source dose with a cross-correlation coefficient 0.93. The all source dose was approximately 1.4 times the single source dose. Over the LDR brachytherapy dose rate range, the complication rate was

  18. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  19. The irradiation effects and processing dose for pet foods decontamination

    International Nuclear Information System (INIS)

    Zhu Jiating; Feng Min; Liu Chunquan; Zhao Yongfu; Jin Yudong; Ji Ping; Ha Yiming; Gao Meixu; Li Shurong; Wang Feng; Zhou Hongjie

    2009-01-01

    The applied dose range of irradiation processing of 4 kinds of pet foods had been studied. More than 92% microorganisms was inactive at the irradiation dose of 4 kGy, while more than 99% was inactive at 6 kGy. The microorganism load of irradiated pet food by 8 kGy met the requirement of national standards. The 10 kGy irradiation could sterilize the treated pet food. Salmonella had not been checked in irradiated or unirradiated samples. When irradiation dose ranged 4-10 kGy, there was no significant difference on contents of moisture, fat, protein, coarse fiber, carbohydrates, minerals (not including Calcium) or amino acids between irradiated and un-irradiated pet food. There was also no significant change on sensory quality of irradiated samples within this dose range. It is concluded that the recommended irradiation processing dose range for pet foods is 4-10 kGy. (authors)

  20. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  1. Results of Hematopoietic Stem Cell Transplantation After Treatment With Different High-Dose Total-Body Irradiation Regimens in Five Dutch Centers

    International Nuclear Information System (INIS)

    Loes van Kempen-Harteveld, M.; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; Maazen, Richard W. van der; Cornelissen, Jan J.; Eijkenboom, Wil M.H.; Lelie, Johannes P. van der; Oldenburger, Foppe; Barge, Renee M.; Biezen, Anja van; Vossen, Jaak M.J.J.; Noordijk, Evert M.; Struikmans, Henk

    2008-01-01

    Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia and non-Hodgkin's lymphoma. The TBI regimens were normalized by using the biological effective dose (BED) concept. The BED values were divided into three dose groups. Study end points were relapse incidence (RI), non-relapse mortality (NRM), relapse-free survival (RFS), and overall survival (OS). Multivariate analysis was performed, stratified by disease. Results: In the highest TBI dose group, RI was significantly lower and NRM was higher vs. the lower dose groups. However, a significant influence on RFS and OS was not found. Relapses in the eye region were found only after shielding to very low doses. Age was of significant influence on OS, RFS, and NRM in favor of younger patients. The NRM of patients older than 40 years significantly increased, and OS decreased. There was no influence of age on RI. Men had better OS and RFS and lower NRM. Type of transplantation significantly influenced RI and NRM for patients with acute leukemia and non-Hodgkin's lymphoma. There was no influence on RFS and OS. Conclusions: Both RI and NRM were significantly influenced by the size of the BED of single-dose or two-fraction TBI regimens; OS and RFS were not. Age was of highly significant influence on NRM, but there was no influence of age on RI. Hyperfractionated TBI with a high BED might be useful, assuming NRM can be reduced

  2. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  3. Rotational total skin electron irradiation with a linear accelerator

    Science.gov (United States)

    Evans, Michael D.C.; Devic, Slobodan; Parker, William; Freeman, Carolyn R.; Roberge, David; Podgorsak, Ervin B.

    2008-01-01

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source‐to‐surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom‐built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described. PACS numbers: 87.55.ne, 87.53.Hv, 87.53.Mr

  4. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  5. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  6. Effect of fractionated versus unfractionated total body irradiation on the growth of the BN acute myelocytic leukemia

    International Nuclear Information System (INIS)

    Hagenbeek, A.; Martens, A.C.M.

    1981-01-01

    The efficacy of various total body irradiation (TBI) regimens prior to bone marrow transplantation was evaluated in a rat model for acute myelocytic leukemia (Dq = 85.1 cGy gamma ; N = 3.7). Using high dose rate gamma-irradiation (115 cGy/min), fractionated TBI with large total daily doses (400 to 600 cGy), either given as acute doses or as split doses at 8 hr intervals, was most effective. Split doses (2 fractions per day) offered no additional advantage. At the most, a 4 log leukemic cell kill was induced. No lethal toxicity was observed. Nine-hundred cGy flash TBI had a similar anti-tumor effect, but with this regimen almost half of the rats died from radiation-induced toxicity (lungs and gastro-intestinal tract). The results are explained in terms of differences between normal and leukemic cells as regards (a) repair of sublethal damage; and (b) repopulation. Low dose rate continuous gamma-irradiation (0.26 cGy/min) with total doses ranging from 900 to 2000 cGy was also quite effective. Maximally a 4 log cell kill was obtained. With 2000 cGy, 50% of the rats died from the gastro-intestinal tract-syndrome. In addition to the major role played by chemotherapy, TBI is mainly of importance in sterilizing the various sanctuaries in the body which contain leukemic cells anatomically resistant to most cytostatic agents

  7. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  8. Effects of low dose rate irradiation on induction of myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Furuse, Takeshi

    1999-01-01

    We investigated the induction of myeloid leukemia and other kinds of neoplasias in C3H male mice irradiated at several dose rate levels. We compared the incidence of neoplasias among these groups, obtained dose and dose rate effectiveness factors (DDREF) for myeloid leukemia. C3H/He male mice were exposed to whole body gamma-ray irradiation at 8 weeks of age. All mice were maintained for their entire life span and teh pathologically examined after their death. Radiation at a high dose-rate of 882 mGy/min (group H), a medium dose-rate of 95.6 mGy/min (group M), and low dose-rates of 0.298 mGy/min (group L-A), 0.067 mGy/min (group L-B) or 0.016 mGy/min (group L-C) were delivered from 137 Cs sources. The mice in group L were irradiated continuously for 22 hours daily up to total doses of 1, 2, 3, 4, 10 Gy over a period of 3 days to 200 days. As for the induction of neoplasias, myeloid leukemia developed significantly more frequently in irradiated groups than in unirradiated groups. The time distribution of mice dying from myeloid leukemia did not show a difference between groups H and L. The incidence of myeloid leukemia showed a greater increase in the high dose-rate groups than in the low and medium dose-rate groups in the dose range over 2 Gy, it also showed significant increases in the groups irradiated with 1 Gy of various dose rate, but the difference between these groups was not clear. These dose effect curves had their highest values on each curve at about 3 Gy. We obtained DDREF values of 2-3 by linear fittings for their dose response curves of dose ranges in which leukemia incidences were increasing. (author)

  9. TU-CD-304-04: Scanning Field Total Body Irradiation Using Dynamic Arc with Variable Dose Rate and Gantry Speed

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Xu, H; Mutaf, Y; Prado, K [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speed of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.

  10. Dose controlled low energy electron irradiator for biomolecular films.

    Science.gov (United States)

    Kumar, S V K; Tare, Satej T; Upalekar, Yogesh V; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  11. Dose controlled low energy electron irradiator for biomolecular films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.; Tsering, Thupten [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  12. Effect of repeated small-dose γ-ray irradiation on atopic dermatitis in NC/Nga mice

    International Nuclear Information System (INIS)

    Fang, Su-Ping; Muto, Yasuko; Tago, Fumitoshi; Simura, Noriko; Kojima, Shuji

    2006-01-01

    We previously showed that several small-dose 0.5 Gy whole-body γ-ray irradiation inhibits tumor growth in mice via elevation of the interferon (IFN)-γ/interleukin 4 (IL-4) ratio concomitantly with a decrease in the percentage of B cells. Here, we examined whether repeated small-dose (0.5 Gy, 10 times) γ-ray irradiation influences atopic dermatitis in an NC/Nga mouse model. It was found that repeated γ-ray irradiation increased total IgE in comparison with the disease-control group. Levels of IL-4 and IL-5 were increased versus the disease-control group, while IFN-γ was slightly decreased, resulting in a further decrease of the IFN-γ/IL-4 ratio compared with the disease-control group. These results indicate that repeated small-dose γ-ray irradiation may exacerbate atopic dermatitis. This may be because the irradiation induces not helper T lymphocyte 1 (Th1), but Th2 polarization in this atopic mouse model, i.e., the effects of small-dose irradiation may be different in conditions involving immune hypersensitivity and impaired immunity. (author)

  13. THE URINE PROTEOME FOR RADIATION BIODOSIMETRY: EFFECT OF TOTAL BODY VERSUS LOCAL KIDNEY IRRADIATION

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. We used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10 Gy dose of X-rays. Both TBI and LKI altered the urinary protein profile within 24 hours with noticeable differences in Gene Ontology categories. Some proteins including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2 were detected only in the TBI group. Some other proteins including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Up/Uc ratio and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation. PMID:20065682

  14. Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate γ-ray irradiated murine cells

    International Nuclear Information System (INIS)

    Sugihara, Takashi; Tanaka, Kimio; Oghiso, Yoichi; Murano, Hayato

    2008-01-01

    Based on the results of previous microarray analyses of murine NIH3T3/PG13Luc cells irradiated with continuous low-dose-rate (LDR) γ-ray or end-high-dose-rate-irradiations (end-HDR) at the end of the LDR-irradiation period, the inverse dose-rate-effects on gene expression levels were observed. To compare differences of the effects between LDR-irradiation and HDR-irradiation, HDR-irradiations at 2 different times, one (ini-HDR) at the same time at the start of LDR-irradiation and the other (end-HDR), were performed. The up-regulated genes were classified into two types, in which one was up-regulated in LDR-, ini-HDR-, and end-HDR irradiation such as Cdkn1a and Ccng1, which were reported as p53-dependent genes, and the other was up-regulated in LDR- and ini-HDR irradiations such as pro-collagen TypeIa2/Colla2, TenascinC/Tnc, and Fibulin5/Fbln5, which were reported as extra-cellular matrix-related (ECM) genes. The time dependent gene expression patterns in LDR-irradiation were also classified into two types, in which one was an early response such as in Cdkn1a and Ccng1 and the other was a delayed response such as the ECM genes which have no linearity to total dose. The protein expression pattern of Cdkn1a increased dose dependently in LDR- and end-HDR-irradiations, but those of p53Ser15/18 and MDM2 in LDR-irradiations were different from end-HDR-irradiations. Furthermore, the gene expression levels of the ECM genes in embryonic fibroblasts from p53-deficient mice were not increased by LDR- and end-HDR-irradiation, so the delayed expressions of the ECM genes seem to be regulated by p53. Consequently, the inverse dose-rate-effects on the expression levels of the ECM genes in LDR- and end-HDR-irradiations may be explained from different time responses by p53 status. (author)

  15. low dose irradiation growth in zirconium

    International Nuclear Information System (INIS)

    Fortis, A.M.

    1987-01-01

    Low dose neutron irradiation growth in textured and recrystallized zirconium, is studied, at the Candu Reactors Calandria temperature (340 K) and at 77 K. It was necessary to design and build 1: A facility to irradiate at high temperatures, which was installed in the Argentine Atomic Energy Commission's RA1 Reactor; 2: Devices to carry out thermal recoveries, and 3: Devices for 'in situ' measurements of dimensional changes. The first growth kinetics curves were obtained at 365 K and at 77 K in a cryostat under neutron fluxes of similar spectra. Irradiation growth experiments were made in zirconium doped with fissionable material (0,1 at % 235 U). In this way an equivalent dose two orders of magnitude greater than the reactor's fast neutrons dose was obtained, significantly reducing the irradiation time. The specimens used were bimetallic couples, thus obtaining a great accuracy in the measurements. The results allow to determine that the dislocation loops are the main cause of irradiation growth in recrystallized zirconium. Furthermore, it is shown the importance of 'in situ' measurements as a way to avoid the effect that temperature changes have in the final growth measurement; since they can modify the residual stresses and the overconcentrations of defects. (M.E.L.) [es

  16. Comparison of three techniques for skin total irradiation with electrons

    International Nuclear Information System (INIS)

    Batista, Delano V.S.; Bardella, Lucia H.; Rosa, Luiz A.R. da

    2011-01-01

    This paper compared three techniques of skin total irradiation with electrons: 1) horizontal positioning, 2) vertical positioning - rotatory technique and 3) vertical positioning - six fields technique. For that, a anthropomorphic phantom was positioned according to the recommendation for each technique and was i radiated at the linear accelerator by using the 6 MeV electrons. Radiochromic films were positioned on the surface in various regions of the phantom for measurement of absorbed dose. A ionization chamber was positioned inside of equivalent issue plates for dose evaluation due to the photons produced by electron stopping. The technique 2 and 3 have shown too similar in the results and number or discrepant points (8 and 10 respectively) of prescription lower than the technique 1 (22 points). The total body dose of photons of the 1, 2 and 3 techniques was 2.2%, 5.3% and 5.2% respectively

  17. Dose-response relationship for elective neck irradiation of head and neck cancer - facts and controversies

    International Nuclear Information System (INIS)

    Suwinski, R.; Maciejewski, B.; Withers, H.R.

    1998-01-01

    The aim of this study is to assign dose-response relationship for subclinical neck metastases of squamous cell head and neck cancer based on extensive survey of 24 data sets collected from the literature. Neck relapse rates (NRR) without and after elective (ENI) or preoperative irradiation were estimated for each site and stage of primary tumor and the reduction in neck relapse rate was calculated. An average NRR without ENI was 22% (12-35% ) and only 2.5% (0-1 0%) after the ENI with total dose of 46- 50 Gy which gives high reduction rate in the risk of neck recurrences being on the average 89% and 42% (0-46%) after preoperative irradiation using 22-30 Gy. Dose response curve for elective and preoperative irradiation have shown that 50 Gy in 2 Gy fraction reduces the incidence of neck relapses in the NO patients by more than 90% and only by less than 50% after total doses lower than 30 Gy. No correlation between the risk of neck metastases without ENI and the reduction in neck relapses after ENI was found. (authors)

  18. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    International Nuclear Information System (INIS)

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  19. Effect of low-dose gamma irradiation on storage properties in light salted Pseudosciaena crocea

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Yang Xianshi; Li Xueying; Guo Quanyou

    2012-01-01

    To explore the preservation effect of γ irradiation on light salted Pseudosciaena crocea, the influence of 1 kGy low-dose γ irradiation on sensory quality, microbiological and chemical quality including TVC, TVB-N and TBARS contents of light salted P. crocea stored at 25 ℃ was discussed. The results showed that the number of total viable counts significantly decreased after irradiation, during the whole storage, the bacteria numbers of light salted P. crocea treated with irradiation were still less than the control. The concentrations of TVB-N was significantly reduced after irradiation, whereas lipid oxidation was less accelerated. The shelf life could be remarkably prolonged after low-dose γ irradiation. While the shelf life of control group were 9 and 11 days, the shelf life of irradiated light salted P. crocea were extended to 16 and 20 days, respectively. The results can provide technical references for commercial application of seafood irradiation. (authors)

  20. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  1. Integral dose and evaluation of irradiated tissue volume

    International Nuclear Information System (INIS)

    Sivachenko, T.P.; Kalina, V.K.; Belous, A.K.; Gaevskij, V.I.

    1984-01-01

    Two parameters having potentialities of radiotherapy planning improvement are under consideration. One of these two parameters in an integral dose. An efficiency of application of special tables for integral dose estimation is noted. These tables were developed by the Kiev Physician Improvement Institute and the Cybernetics Institute of the Ukrainian SSR Academy of Science. The meaning of the term of ''irradiated tissue volume'' is specified, and the method of calculation of the irradiated tissue effective mass is considered. It is possible to evaluate with higher accuracy tolerance doses taking into account the irradiated mass

  2. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm{sup 2} size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  3. Radiotherapy of ovarian epithelial cancer by total orthogonal field irradiation of the abdomen

    International Nuclear Information System (INIS)

    Delouche, G.; Valinta, D.; Bachelot, F.

    1981-01-01

    Isotopic intraperitoneal curietherapy by 32 P is the simplest method for irradiating the peritoneum, but it has only limited indications. This irradiation has usually to be given by the percutaneous route, but because of the size of the region to be irradiated it raises delicate problems poorly resolved by the traditional methods applied. For this reason, a particular method is suggested including, among other characteristics: 4 orthogonal fields; 2 sessions daily, irradiating one part of the abdomen in the morning and the other part in the afternoon; spreading of the doses in confirmity with current specifications; and modulation of the total dose as a function of the maximum size of the tumoral remnants. Abdominal radiotherapy is currently the method of choice in cases where lesions are in their early stages, in so far as chemotherapy, much more restrictive for the patient, has not yet demonstrated its long-term efficacy. A controlled clinical study is necessary in order to determine the most effective method [fr

  4. Dose-response of photographic emulsions under gamma irradiation

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Do Thi Nguyet Minh; Le Van Vinh

    2003-01-01

    Photographic emulsion is irradiated under gamma rays irradiation of 137 Cs in the IAEA/WHO secondary standard dosimetry laboratory. Dose-response of the film is established. The sensitivity of the film is determined. The dose-rate effect is studied. (author)

  5. Dose measurement method suitable for management of food irradiation

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1990-01-01

    The report describes major features of dose measurement performed for the management of food irradiation processes, and dose measuring methods suitable for this purpose, and outlines some activities for establishing international standards for dose measurement. Traceability studies made recently are also reviewed. Compared with the sterilization of medical materials, food irradiation is different in some major points from a viewpoint of dose measurement: foods can undergo significant changes in bulk density, depending on its properties, during irradiation, and the variation in the uniformity of bulk density can be large within an irradiation unit and among different units. An accurate dosimeter and well-established traceability are essential for food irradiation control, and basically a dosimeter should be high in reproducibility and stable in dose response, and should be easy to readjust for eliminating systematic errors. A new type of dosimeter was developed recently, in which ESR is used to measure the free radicals generated by radiations in crystals of alanine, an amino acid. Standardization of large dose measurement procedures has been carried out by committee E10 set up under ASTM. (N.K.)

  6. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    International Nuclear Information System (INIS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-01-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  7. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Science.gov (United States)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  8. Dose Profiles in ECAL Crystals for Various Irradiation Conditions

    CERN Document Server

    Huhtinen, Mika

    1998-01-01

    Simulated dose profiles in various irradiation and beam test conditions are compared to the expected dose profiles in the ECAL crystals at LHC. Simple front or side irradiations with photons give too steep or too flat dose profiles, respectively. Thus, if dose maxima are fitted to agree, front irradiation underestimate the average dose whereas side irradiations tend to overestimate. Different profiles are difficult to compare reliably, but it seems likely that in both cases the discrepancy is about a factor of 2-3 but in different directions. For most purposes this is likely to be good enough, but should be taken into account in the interpretation of the test results. It is shown that using a customized lead mask between the source and the crystal can significantly improve the agreement between 60 Co side irradiations and the LHC predictions. A 400 MeV/c pion beam incident on a crystal matrix can also reproduce rather well the profiles expected in the barrel ECAL.

  9. Risk management in radiotherapy: analysis for total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Banguero, Y., E-mail: ybanguero@cin.edu.uy [Universidad de la República, Montevideo (Uruguay); Píriz, G.; Guerrero, L.; Cardozo, L.; Quarneti, A. [Centro Hospital Pereira Rossell, Montevideo (Uruguay); Nader, A. [Autoridad Reguladora Nacional de Radioprotección, Montevideo (Uruguay)

    2017-07-01

    Introduction: Management of risk in any technique that is using radiation energy is very important to prevent incidents and accidents. Pretending evaluate the risk in the all process of Total Body Irradiation (TBI), this work present a risk matrix with different possible events than could occur. Methods: SEVRRA-R platform that run in windows is using to build a risk matrix separating the process of TBI in commissioning, prescription, planning and delivering dose. Any stage has a procedure with different errors associated. We build a matrix using all this information to evaluate the kind of risk we have in the technique. Results: It was obtained a template that describes in general the process of TBI with principles events, barriers and consequences. Conclusion: Analyzing the risk in any stage of the process in Total Body irradiation is a useful tool to understand the key points to work in safety for this technique. (author)

  10. Quality characteristics of mechanically deboned chicken meat irradiated with different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Roque, Claudio Vitor; Fukuma, Henrique Takuji; Gomes, Heliana de Azevedo [Brazilian Nuclear Energy Commission (CNEN-MG), Pocos de Caldas, MG (Brazil)]. E-mails: polibrito@yahoo.com.br; cvroque@cnen.gov.br; htfukuma@cnen.gov.br; hgomes@cnen.gov.br; Cipolli, Katia Maria Vieira Avelar Bittencourt [Sao Paulo Agribusiness Technology Agency (APTA), Monte Alegre do Sul, SP (Brazil). Polo Regional do Leste Paulista]. E-mail: katiacipolli@aptaregional.sp.gov.br; Pereira, Jose Luiz [Campinas State University UNICAMP, Campinas, SP (Brazil). Dept. of Food Sciences]. E-mail: pereira@fea.unicamp.br

    2007-07-01

    Mechanically Deboned Chicken Meat (MDCM) is a low cost raw material used in the production of emulsified prepared food, but presents a favorable medium for development of microorganisms. Several studies were carried out with irradiation of edible goods in order to establish a dose that would be capable of decreasing levels of microorganisms without altering the sensorial and nutritional characteristics of the food. Frozen samples of MDCM with skin were irradiated with doses of 0.0 kGy, 3.0 kGy-4.04 kGy.h{sup -1}, and 3.0- 0.32 kGy.h{sup -1}. Individual lots of irradiated and control samples were evaluated during the 11 day refrigeration period for the following parameters: total count of psychotropic bacteria, substances reactive to Thiobarbituric Acid, sensorial evaluation (irradiated odor, oxidized odor, pink and brown colors). The average values in this period were 4.28 log (CFU.g{sup -1}), 2.32 log (CFU.g{sup -1}), and 1.68 log (CFU.g{sup -1}) for control samples, low and high dose rate, respectively. TBARS average values for control samples, low and high dose rate were 0.38 mg.Mal.kg{sup -1}, 2.89 mg.Mal.kg{sup -1}, and 3.64 mg.Mal.kg{sup -}'1, respectively. A difference between irradiated samples and the control sample was observed. The 3.0 kGy-4.04 kGy.h{sup -1} dose rate was verified as the best condition for MDCM processing through the evaluation of all the variables in the conditions of the present study. (author)

  11. Seed irradiation with continuously increasing doses of thermal neutrons

    International Nuclear Information System (INIS)

    Uhlik, J.; Pfeifer, M.; Pittermann, P.

    1977-01-01

    In the 'Raman' pea cv. the biological activity of thermal neutrons was investigated after irradiation of a 780 mm column of seeds for 3000 and 4167 seconds with a flux of 5.607 x 10 9 n.cm -2 per second. For different fractions of the seed column the average density of the neutron flux was calculated. It was proved that for the described method of seed irradiation it was sufficient to determine only the dose approaching the lethal dose. If a sufficiently high column of seeds is used part of the column of seeds will be irradiated with the optimum range of doses. The advantages of the suggested method of irradiation are not only smaller time and technological requirements resulting from the need for the determination of only the critical lethal dose of radiation by means of inhibition tests performed with seedlings, but also a simpler irradiation procedure. The suggested method of irradiation is at least nine times cheaper. (author)

  12. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Rakvin, B.; Maltar-Strmecki, N.; Nakagawa, K.

    2007-01-01

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, T M , was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  13. Radiation optic neuropathy after megavoltage external-beam irradiation: Analysis of time-dose factors

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Million, R.R.

    1994-01-01

    To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 and 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of ≥ 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes ≥1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs

  14. The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2010-02-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. The authors used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10-Gy dose of x-rays. Both TBI and LKI altered the urinary protein profile within 24 h with noticeable differences in gene ontology categories. Some proteins, including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2, were detected only in the TBI group. Some other proteins, including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Urine protein (Up) and creatinine (Uc) (Up/Uc) ratios and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation.

  15. Effects of low-dose continuously fractionated X-ray irradiation on murine peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Xie Yi; Zhang Hong; Dang Bingrong; Hao Jifang; Guo Hongyun; Wang Xiaohu

    2007-01-01

    For estimating biological risks from low doses continual irradiation, we investigated the effects of exposure to continuously fractionated X-rays on murine immune system. The BALB/c mice were irradiated with 0.07Gy at the first day and 0.08 Gy/d in the following 12 days at a dose rate of 0.2 Gy/min. The peripheral blood lymphocyte cycle and death were determined by flow cytometry at the cumulative doses of 0, 0.07, 0.23, 0.39, 0.55, 0.71, 0.87 and 1.03 Gy respectively. The results showed that the cycle of peripheral blood lymphocyte was arrested in G 0 /G 1 at cumulative doses of 0.07, 0.23, 0.71 and 0.87 Gy, and in G 2 /M at cumulative doses of 0.39 and 1.03 Gy; the percentage of death of peripheral blood lymphocyte was ascended with dose increasing, and reached the death peak at cumulative doses of 0.71 Gy. The results suggested that low doses continual X-rays total-body irradiated could result in changes of cellular cycle and death, and some damages to immunocytes, which accorded to linear square model. (authors)

  16. Transcriptome profiling of mice testes following low dose irradiation

    DEFF Research Database (Denmark)

    Belling, Kirstine C.; Tanaka, Masami; Dalgaard, Marlene Danner

    2013-01-01

    ABSTRACT: BACKGROUND: Radiotherapy is used routinely to treat testicular cancer. Testicular cells vary in radio-sensitivity and the aim of this study was to investigate cellular and molecular changes caused by low dose irradiation of mice testis and to identify transcripts from different cell types...... in the adult testis. METHODS: Transcriptome profiling was performed on total RNA from testes sampled at various time points (n = 17) after 1 Gy of irradiation. Transcripts displaying large overall expression changes during the time series, but small expression changes between neighbouring time points were...... selected for further analysis. These transcripts were separated into clusters and their cellular origin was determined. Immunohistochemistry and in silico quantification was further used to study cellular changes post-irradiation (pi). RESULTS: We identified a subset of transcripts (n = 988) where changes...

  17. Dose-effect relationship for cataract induction after single-dose total body irradiation and bone marrow transplantation for acute leukemia

    International Nuclear Information System (INIS)

    Kempen-Harteveld, M. Loes van; Belkacemi, Yazid; Kal, Henk B.; Labopin, Myriam; Frassoni, Francesco

    2002-01-01

    Purpose: To determine a dose-effect relationship for cataract induction, the tissue-specific parameter, α/β, and the rate of repair of sublethal damage, μ value, in the linear-quadratic formula have to be known. To obtain these parameters for the human eye lens, a large series of patients treated with different doses and dose rates is required. The data of patients with acute leukemia treated with single-dose total body irradiation (STBI) and bone marrow transplantation (BMT) collected by the European Group for Blood and Marrow Transplantation were analyzed. Methods and Materials: The data of 495 patients who underwent BMT for acute leukemia, who had STBI as part of their conditioning regimen, were analyzed using the linear-quadratic concept. The end point was the incidence of cataract formation after BMT. Of the analyzed patients, 175 were registered as having cataracts. Biologic effective doses (BEDs) for different sets of values for α/β and μ were calculated for each patient. With Cox regression analysis, using the overall chi-square test as the parameter evaluating the goodness of fit, α/β and μ values were found. Risk factors for cataract induction were the BED of the applied TBI regimen, allogeneic BMT, steroid therapy for >14 weeks, and heparin administration. To avoid the influence of steroid therapy and heparin on cataract induction, patients who received steroid or heparin treatment were excluded, leaving only the BED as a risk factor. Next, the most likely set of α/β and μ values was obtained. With this set, the cataract-free survival rates were calculated for specific BED intervals, according to the Kaplan-Meier method. From these calculations, cataract incidences were obtained as function of the BED at 120 months after STBI. Results: The use of BED instead of the TBI dose enabled the incidence of cataract formation to be predicted in a reasonably consistent way. With Cox regression analysis for all STBI data, a maximal chi-square value was

  18. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  19. Some changes of cholesterol, glucose and total proteins in serum of chicken after effect of low dose of ionizing irradiation

    International Nuclear Information System (INIS)

    Danova, D.; Novakova, J.; Benova, K.; Falis, M.; Sezstakova, E.; Toropila, M.

    2006-01-01

    The aim of investigate was the effect of low-dose ionizing irradiation on the organism of chicken. We investigated changes of concentration of cholesterol and triacylglycerols in time gap 1, 3, 14 and 25 days after expose with a single whole-body gamma irradiation of 3 Gy. (authors)

  20. Effects of low-dose fractionated external irradiation on metabolic and structural characteristics of rat thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Nadolnik, L.; Niatsetskaya, Z. [Institute of Biochemistry, National Academy of Sciences of Belarus, Grodno (Belarus)

    2006-07-01

    Full text of publication follows: The problem of thyroid radiosensitivity to the effect of low dose external ionizing irradiation presently seems to be the least studied, and the experimental findings - the most contradictory. The aim of the work was to study the effects of long-term low-dose fractionated irradiation on the iodide metabolism and structure of the thyroid. Female Wistar rats weighing 140-160 g were irradiated 20 times (5 times a week, for 4 weeks) using a 60 Co installation. The single absorbed doses were 0.1, 0.25 and 0.5 Gy and the total ones - 2.0, 5.0 and 10.0 Gy, respectively. The animals were decapitated after 1 day, 4 and 24 weeks following the last irradiation. The thyroid tissue was used to assay for thyro-peroxidase (T.P.O.) activity as well as total, protein -bound and free iodide concentrations. Microscopic and morphometric examination of histologic thyroid preparations was carried out. Blood was assayed for thyroxin (T4) and triiodothyronine (T3) concentrations. After a day following the irradiation, the thyroid showed a pronounced increase in the concentration of total iodide (30.0-54.4%) as well in that of free (32.1-60.8%) and protein-bound ones (24.4-37.4%). The most pronounced iodide concentration elevation was noted in the 0.1 -Gy animals, with thyroid T.P.O. activity being raised by 48.0%. Only the 0.5 Gy-group had 1.4-1.5-fold reduced thyroid hormone levels. Four weeks after the irradiation, studied parameters of irradiated rats were brought back to the control values, except for the 0.5 Gy-group. However, after 24-weeks, the 0.5-and 0.25- irradiated rats experienced a 12-20% thyroid weight elevation in comparison with the control. The thyroid of these animals demonstrated reduced contents of total and free iodide as well as T.P.O. activity by 24.5 and 34.8%. The 0.1 Gy-group had a 1.7-fold increased T.P.O. activity. The concentration of the thyroid hormones was maintained diminished only in the 0.5 Gy -irradiated group. However

  1. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  2. Genetic efficiency of low-dose chronic irradiation in mammals and fish

    International Nuclear Information System (INIS)

    Goncharova, R.; Ryabokon, N.; Smolich, I.; Slukvin, A.

    2001-01-01

    The problem of biological effects of low-dose chronic irradiation is central radiobiological problem and seems to be very important for human monitoring and risk assessment Since 1986 we are engaged in studying genetic effects of low-dose chronic irradiation in natural populations of small mammals (bank vole - Clethrioiiomys glareolus) inhabiting radiocontaminated monitoring sites, in laboratory hybrid mice CBA*C57BI/6 j exposed to chronic irradiation at radiocontaminated sites, as well as in pond carp (Cyprinus carpio) reared in fish farms in areas contaminated due to the Chernobyl accident. The mean ground depositions in monitoring sites were 8-2330 kBq/m 2 and the mean bottom depositions in ponds were 52-3235 Bq/kg for Cs 137. We used conventional cytogenetics and genetics tests [1-3] and the following approaches in studying on genetic effects of low-dose chronic irradiation: Radiation exposures from external γ- and internal α, β, γ-irradiation from incorporated radionuclides were estimated for each specimen tested. Regression analysis of dose-effect relationships based on comparison of individual genetic end-points with individual absorbed doses was carried out We observed statistically significant changes in the frequencies of genetic end-points, which have been studied in somatic and germ cells, as well as in embryos of irradiated mammals and fish. So, the frequencies of chromosome aberrations in bank vole populations had up to 7-fold increase in comparison with background and pre-accident levels. It is of great importance to emphasize high radio-sensitivity of fertilized eggs (zygotes) and pond carp, embryos produced by chronically irradiated parents. Regression analysis allowed to reveal dependence of the studied parameters' frequencies on radiation exposure namely on the concentrations of basic dose forming radionuclides, absorbed dose rate and whole body absorbed dose. In most cases, dose-effect relationships were better approximated by non

  3. Effects of sub-lethal dose of γ-irradiation on lysosomal enzymes in tissue of pigeon

    International Nuclear Information System (INIS)

    Shah, V.C.; Gadhia, P.K.

    1979-01-01

    Effects of total body γ-irradiation with sub-lethal dose (300 rad) on three lysosomal enzymes namely acid phosphatase, ribonuclease-II and deoxyribonuclease-II have been studied in pigeons. Liver, kidney and spleen were the tissues studied at different intervals like 1-h, 24-h, 48-h, and 72-h of irradiation. The specific activities ('crude' fraction) of acid phosphatase and ribonuclease-II increased significantly in spleen and liver at 48-h of irradiation. The activity of deoxyribonuclease-II in liver and spleen was increased only at 72-h post-irradiation. On the other hand, the total activities of three lysosomal enzymes did not show remarkable change throughout 72-h of irradiation. (author)

  4. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  5. Whole-body irradiation technique: physical aspects; Tecnica de irradiacion corporal total: aspectos fisicos

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Bustos, S.; Zunino, S. [Instituto Privado de Radioterapia. Obispo Oro 425. Cordoba 5000 (Argentina)

    1998-12-31

    The objective of this work has been to implement a Total body irradiation technique that fulfill the following conditions: simplicity, repeatability, fast and comfortable positioning for the patient, homogeneity of the dose between 10-15 %, short times of treatments and In vivo dosimetric verifications. (Author)

  6. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, David J., E-mail: davideaton@nhs.net [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Warry, Alison J. [Department of Radiotherapy Physics, University College London Hospital, London (United Kingdom); Trimble, Rachel E.; Vilarino-Varela, Maria J.; Collis, Christopher H. [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2014-01-01

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013, with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.

  7. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    International Nuclear Information System (INIS)

    Eaton, David J.; Warry, Alison J.; Trimble, Rachel E.; Vilarino-Varela, Maria J.; Collis, Christopher H.

    2014-01-01

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013, with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources

  8. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    Science.gov (United States)

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  9. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents the recommendations of an international group of experts convened by the World Health Organization, in association with the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency, to consider the implications of food irradiated to doses higher than those recommended in 1980 by the Joint Expert Committee on the Wholesomeness of Irradiated Food. Irradiation ensures the hygienic quality of food and extends shelf-life. The public perception of the safety of food irradiation has generally precluded its widespread use. However, current applications of food irradiation to doses over 10 kGy have been in the development of high-quality shelf-stable convenience foods for specific target groups such as immunosuppressed individuals and those under medical care, astronauts and outdoor enthusiasts. The Study Group reviewed data relating to the toxicological, nutritional, radiation chemical and physical aspects of food irradiated to doses above 10kGy from a wide range and number of studies carried out over the last forty years. This report presents a comprehensive summary, along with references, of the effectiveness and safety of the irradiation process. It concludes that foods treated with doses greater than 10kGy can be considered safe and nutritionally adequate when produced under established Good Manufacturing Practice

  10. Studies on the effect of low dose gamma irradiation on the chemical, microbial quality and shelf life of squid

    International Nuclear Information System (INIS)

    Bojayanaik, Manjanaik; Naroth, Kavya; Shetty, Veena; Hiriyur, Somashekarappa

    2014-01-01

    The present investigation was carried out to study the combined effect of low dose gamma irradiation (1, 3 and 5 kGy) and storage at refrigeration (+4℃) and frozen (-18℃) temperatures, on the shelf life extension of fresh squid. The study was based on microbiological and physico-chemical changes occurring in the squid samples. The biochemical parameters such as total volatile base nitrogen and trimethyl amine nitrogen values for irradiated squid samples were significantly lower than non-irradiated samples at both storage temperatures and the rate of decrease was more pronounced in samples irradiated at the higher dose of 3 and 5 kGy (p<0.05). pH values of squid samples were affected by both irradiation dose and storage temperature (p<0.05). Total microbial load for non- irradiated (control) squid samples were higher than the respective irradiated samples at both storage temperatures. The results revealed that the combination of irradiation and low temperature storage resulted in a significant reduction of microbial growth and extend the shelf life of squid at refrigeration and frozen temperature to about 12 and 90 days respectively. (author)

  11. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    Meyn, R.E.; Hunter, N.R.; Milas, L.

    1994-01-01

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  12. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  13. The investigation of fetal doses in mantle field irradiation

    International Nuclear Information System (INIS)

    Karacam, S. C; Gueralp, O. S; Oeksuez, D. C; Koca, A.; Cepni, I.; Cepni, K.; Bese, N.

    2009-01-01

    To determine clinically the fetal dose from irradiation of Hodgkin's disease during pregnancy and to quantify the components of fetal dose using phantom measurements. The fetal dose was measured with phantom measurements using thermoluminescent dosemeters (TLDs). Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. TLDs were placed on the phantom 41, 44, 46.5 and 49.5 cm from the centre of the treatment field. Two TLDs were placed on the surface of the phantom. The estimated total dose to all the TLDs ranged from 8.8 to 13.2 cGy for treatment with 60 Co and from 8.2 to 11.8 cGy for 4 MV photons. It was concluded that the doses in different sections were evaluated to investigate dose changes in different points and depths of fetal tissues in phantom. Precise planning and the use of supplemental fetal shielding may help reduce fetal exposure. (authors)

  14. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    Science.gov (United States)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  15. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  16. Renal toxicity in children undergoing total body irradiation for bone marrow transplant

    International Nuclear Information System (INIS)

    Esiashvili, Natia; Chiang, K.-Y.; Hasselle, Michael D.; Bryant, Cynthia; Riffenburgh, Robert H.; Paulino, Arnold C.

    2009-01-01

    Purpose: Contribution of total body irradiation (TBI) to renal toxicity in children undergoing the bone marrow transplant (BMT) remains controversial. We report our institutional retrospective study that evaluates the frequency of acute and chronic renal dysfunction in children after using total body irradiation (TBI) conditioning regimens. Materials and methods: Between 1995 and 2003, 60 children with hematological malignancies underwent TBI as part of a conditioning regimen before allogeneic BMT. Patients received 4-14 Gy at 1.75-2 Gy/fraction in six-eight fractions. Lung shielding was used in all patients to limit lung dose to less than 10 Gy; renal shielding was not utilized. All patients had baseline renal function assessment and renal dysfunction post-BM was mainly evaluated on the basis of persistent serum creatinine elevation at acute (0-90 days) and chronic (>90 days) intervals after completion of BMT. Results: Acute renal dysfunction (ARD) was documented in 27 patients (45%); the majority had concurrent diagnosis of veno-occlusive disease (VOD) or graft-versus-host disease (GVHD) and other potential causes (sepsis, antibiotic). The risk for delayed renal dysfunction (DRD) at 1 year approached 25% for surviving patients. The ARD was strongly linked with the risk of the DRD. There was no statistically significant relationship between ARD, DRD and underlying diagnosis, GVHD, VOD or TBI doses with both univariate and multivariate analyses. The younger age (<5 years) had significantly increased risk for the development of ARD (p = 0.011). Conclusion: Our analysis validates high incidence of renal dysfunction in the pediatric BMT population. In contrast to other reports we did not find total body irradiation dose to be a risk factor for renal dysfunction. Future prospective studies are needed to assess risk factors and interventions for this serious toxicity in children following allogeneic BM

  17. Biological basis of total body irradiation

    International Nuclear Information System (INIS)

    Dubray, B.; Helfre, S.; Dendale, R.; Cosset, J.M.; Giraud, P.

    1999-01-01

    A comprehensive understanding of the radiobiological bases of total body irradiation (TBI) is made difficult by the large number of normal and malignant tissues that must be taken into account. In addition, tissue responses to irradiation are also sensitive to associated treatments, type of graft and a number of patient characteristics. Experimental studies have yielded a large body of data, the clinical relevance of which still requires definite validation through randomized trials. Fractionated TBI schemes are able to reduce late normal tissue toxicity, but the ultimate consequences of the fractional dose reduction do not appear to be equivocal. Thus, leukemia and lymphoma cells are probably more radio-biologically heterogeneous than previously thought, with several cell lines displaying relatively high radioresistance and repair capability patterns. The most primitive host-type hematopoietic stem cells are likely to be at least partly protected by TBI fractionation and may hamper late engraftment. Similarly, but with possibly conflicting consequences on the probability of engraftment, the persistence of a functional marrow stroma may also be fractionation-sensitive, while higher rejection rates have been reported after T-depletion grafts and fractionated TBI. in clinical practice (as for performance of relevant clinical trials), the influence of these results are rather limited by the heavy logistic constraints created by a sophisticated and time-consuming procedure. Lastly, clinicians are now facing an increasing incidence of second cancers, at least partly induced by irradiation, which jeopardize the long-term prospects of otherwise cured patients. (authors)

  18. Three-dimensional Finite Elements Method simulation of Total Ionizing Dose in 22 nm bulk nFinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chatzikyriakou, Eleni, E-mail: ec3g12@soton.ac.uk; Potter, Kenneth; Redman-White, William; De Groot, C.H.

    2017-02-15

    Highlights: • Simulation of Total Ionizing Dose using the Finite Elements Method. • Carrier generation, transport and trapping in the oxide. • Application in three-dimensional bulk FinFET model of 22 nm node. • Examination of trapped charge in the Shallow Trench Isolation. • Trapped charge dependency of parasitic transistor current. - Abstract: Finite Elements Method simulation of Total Ionizing Dose effects on 22 nm bulk Fin Field Effect Transistor (FinFET) devices using the commercial software Synopsys Sentaurus TCAD is presented. The simulation parameters are extracted by calibrating the charge trapping model to experimental results on 400 nm SiO{sub 2} capacitors irradiated under zero bias. The FinFET device characteristics are calibrated to the Intel 22 nm bulk technology. Irradiation simulations of the transistor performed with all terminals unbiased reveal increased hardness up to a total dose of 1 MRad(SiO{sub 2}).

  19. Dose verification by OSLDs in the irradiation of cell cultures

    International Nuclear Information System (INIS)

    Meca C, E. A.; Bourel, V.; Notcovich, C.; Duran, H.

    2015-10-01

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al 2 O 3 :C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm 3 . Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  20. Endocrine dysfunction after total body irradiation and bone marrow transplantation

    International Nuclear Information System (INIS)

    Feyer, P.; Titlbach, O.; Hoffmann, F.A.; Kubel, M.; Helbig, W.; Leipzig Univ.

    1989-01-01

    Data regarding changes of endocrine parameters after total body irradiation (TBI) and bone marrow transplantation (BMT) are described. Endocrine glands are usually resistant to irradiation under morphological aspects. But new methods of determination and sensitive tests were developed in the last few years. Now it is possible to detect already small functional changes. Endocrine studies in the course of the disease were followed serially in 16 patients with TBI and BMT. Pretransplant conditioning consisted of single-dose irradiation combined with a high-dose, short-term chemotherapy. Reactions of the endocrine system showed a defined temporary order. Changes of ACTH and cortisol were in the beginning. The pituitary-adrenal cortex system responds in a different way. The pituitary-thyroid system develops a short-term 'low-T 3 -syndrome' reflecting the extreme stress of the organism. At the same time we obtained an increase of thyroxine. Testosterone and luteotropic hormone, the sexual steroids showed levels representing a primary gonadal insufficiency. The studies in the posttransplant period yielded a return to the normal range at most of the hormonal levels with the exception of the sexual steroids. Sterility is one of the late effects of TBI. A tendency towards hypothyroidism could be noticed in some cases being only subclinical forms. Reasons and possible therapy are discussed. (author)

  1. Inability of donor total body irradiation to prolong survival of vascularized bone allografts: Experimental study in the rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    At the present time, the toxic side effects of recipient immunosuppression cannot be justified for human non-vital organ transplantation. Total body irradiation has proven effective in ablating various bone-marrow-derived and endothelial immunocompetent cellular populations, which are responsible for immune rejection against donor tissues. Irradiation at a dose of 10 Gy was given to donor rats six days prior to heterotopic transplantation of vascularized bone allografts to host animals. Another group of recipient rats also received a short-term (sixth to fourteenth day after grafting), low dose of cyclosporine. Total body irradiation was able merely to delay rejection of grafts across a strong histocompatibility barrier for one to two weeks, when compared to nonirradiated allografts. The combination of donor irradiation plus cyclosporine did not delay the immune response, and the rejection score was similar to that observed for control allografts. Consequently, allograft viability was quickly impaired, leading to irreversible bone damage. This study suggest that 10 Gy of donor total body irradiation delivered six days prior to grafting cannot circumvent the immune rejection in a vascularized allograft of bone across a strong histocompatibility barrier

  2. Dosimetry and verification of 60Co total body irradiation with human phantom and semiconductor diodes

    Directory of Open Access Journals (Sweden)

    Allahverdi Mahmoud

    2007-01-01

    Full Text Available Total Body Irradiation (TBI is a form of radiotherapy used for patients prior to bone marrow or stem cell transplant to destroy any undetectable cancer cells. The dosimetry characteristics of a 60 Co unit for TBI were studied and a simple method for the calculation of the prescribed dose for TBI is presented. Dose homogeneity was verified in a human phantom. Dose measurements were made in water phantom (30 x 30 x 30 cm 3 , using farmer ionization chamber (0.6 cc, TM30010, PTW and a parallel plate ionization chamber (TM23343, PTW. Point dose measurements for AP/PA irradiation were measured in a human phantom using silicon diodes (T60010L, PTW. The lung dose was measured with an ionization chamber (0.3 cc, TM31013. The validity of the proposed algorithm was checked at TBI distance using the human phantom. The accuracy of the proposed algorithm was within 3.5%. The dose delivered to the mid-lobe of the lung was 14.14 Gy and it has been reduced to 8.16 Gy by applying the proper shield. Dose homogeneity was within ±7% for all measured points. The results indicate that a good agreement between the total prescribed and calculated midplane doses can be achieved using this method. Therefore, it could be possible to use calculated data for TBI treatments.

  3. Determination of effective irradiation dose to maintain quality of garlic cultivars during storage

    International Nuclear Information System (INIS)

    Janagam, Venu Madhav; Sethi, Shruti; Kaur, Charanjit; Singh, Bhupinder; Pal, R.K.

    2014-01-01

    Garlic (Allium sativum L.) is the second most widely cultivated allium vegetable next to onion. India is the second largest producer (4.46%) of garlic after China (81.02%). As freshly harvested garlic is available in the market for three to four months and there is urgent need to store huge quantity of garlic to fulfil the demand of the consumers during the off-season. The major causes of losses in garlic are sprouting, physiological loss in weight (PLW), decay and quality loss. Several investigators have proved the efficacy of the use of ionizing radiations to reduce the losses caused due to sprouting and other factors. The aim of the study was to investigate the effect of irradiation on post harvest quality of garlic and to determine the irradiation dose for maximum quality retention. Two garlic varieties namely, Yamuna Safed (G-1) and Yamuna Safed-4 (G-323) were treated 120 days (just after dormancy break) postharvest with different doses of gamma irradiation (0.075, 0.01 and 0.15 kGy) and their quality parameters were studied upto 210 days at ambient conditions (18-32℃ and 55-65% RH). Effect of irradiation on physical, physiological and biochemical parameters during storage of both the varieties of garlic revealed that 0.1 kGy irradiation dose was most significant in checking sprouting, controlling decay, PLW, respiration rate and retention of total soluble solids (TSS), pyruvic acid, antioxidant activity, total phenols and amylase activity during storage in comparison to non-irradiated samples followed by 0.15 and 0.075 kGy. Among the two varieties studied, the variety G-323 performed better than G-1 with regard to changes in physiological and biochemical parameters during storage. (author)

  4. Serum immunoglobulin levels in humans exposed to therapeutic total-body gamma irradiation

    International Nuclear Information System (INIS)

    Chaskes, S.; Kingdon, G.C.; Balish, E.

    1975-01-01

    Reduced serum immunoglobulin (IgA, IgG, IgM) levels developed in the majority of 27 patients with hematologic disorders after treatment with 100 to 350 R total-body gamma-ray exposures at a dose rate of either 1.5 R/min to 1.5 R/hr. A reduction in IgA of 20 percent or more was found in 66 percent of the cases, while 56 percent showed an IgM decrease, and 49 percent an IgG decrease of 20 percent. The severity of immunoglobulin depression was influenced by the total radiation dose and the patient's primary disease. The occurrence of IgG and IgM depression was greater when the radiation was given at 1.5 R/hr than when the dose rate was 1.5 R/min. Substantial but incomplete recovery toward preirradiation immunoglobulin levels was found for most patients by 7 wk after total-body irradiation (TBI). (U.S.)

  5. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology

    2010-11-15

    To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated

  6. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  7. Effect of gamma irradiation on total carbohydrate concentration of finger millet flour

    International Nuclear Information System (INIS)

    Lathika; Patil, Shrikant L.; Bhasker Shenoy, K.; Somashekarappa, H.M.

    2015-01-01

    Ragi or finger millet (Eleusine coracana L.) is one of the common millets in several regions of India. The effect of gamma irradiation, on ragi flour was investigated in the study. Ragi flour is procured from market. Flour samples of 50 gms were taken in triplicates in a polyethylene pouch, air sealed and subjected to gamma irradiation doses ranging from 0.25 to 10 kGy and stored in polyethylene bags and plastic containers for a period of 30 and 90 days. Within 24 hours of irradiation, the samples were tested for total carbohydrate concentration by phenol-sulphuric acid method. The same was repeated after 30 and 90 days of storage. The comparative study showed that, at 0 day, total carbohydrate concentration has decreased slightly when compared to the non-irradiated sample (0.024 mg/ml). The lowest concentration of carbohydrate is seen at 0.025 kGy (0.019mg/ml). The samples stored in polyethylene bag, after 30 days showed both increase (0.056 mg/ml at 0.025 kGy) and decrease (0.04 mg/ml at 10 kGy) in total carbohydrate concentration when compared to control (0.046 mg/ml). 90 days stored samples showed increase in carbohydrate concentration when compared to control (0.029 mg/ml). The highest carbohydrate concentration is seen in 1 kGy dose (0.037 mg/ml). The samples stored at container after 30 days showed both increase (0.045 mg/ml at 5 kGy) and decrease (0.034 mg/ml at 0.025 mg/ml) of carbohydrate concentration when compared to control (0.043 mg/ml). 90 days stored samples showed decrease in carbohydrate concentration when compared to control (0.034 mg/ml). The lowest concentration is seen at 5 kGy (0.022 mg/ml). (author)

  8. Total lymphoid irradiation

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    An outline review notes recent work on total lymphoid irradiation (TLI) as a means of preparing patients for grafts and particularly for bone-marrow transplantation. T.L.I. has proved immunosuppressive in rats, mice, dogs, monkeys and baboons; when given before bone-marrow transplantation, engraftment took place without, or with delayed rejection or graft-versus-host disease. Work with mice has indicated that the thymus needs to be included within the irradiation field, since screening of the thymus reduced skin-graft survival from 50 to 18 days, though irradiation of the thymus alone has proved ineffective. A more lasting tolerance has been observed when T.L.I. is followed by an injection of donor bone marrow. 50% of mice treated in this way accepted allogenic skin grafts for more than 100 days, the animals proving to be stable chimeras with 50% of their peripheral blood lymphocytes being of donor origin. Experiments of a similar nature with dogs and baboons were not so successful. (U.K.)

  9. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  10. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340 ± 10K

  11. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si + at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340±10K

  12. Effect of ultra-low dose whole-body-irradiation on severe patients with myasthenia gravis

    International Nuclear Information System (INIS)

    Arimori, Shigeru; Koriyama, Kenji

    1982-01-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer. (Ueda, J.)

  13. Effect of ultra-low dose whole-body-irradiation on patients with severe myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Arimori, Shigeru; Koriyama, Kenji (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1982-12-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer.

  14. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    Science.gov (United States)

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-04-08

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

  15. A Cs-137 afterloading device. Preliminary results of cell kinetic effects of low dose-rate irradiation in an experimental tumour

    International Nuclear Information System (INIS)

    Rutgers, D.H.

    1988-01-01

    A Cs-137 afterloading technique is described which can be used in experimental tumours. Preliminary results, obtained with the human cervical carcinoma ME-180 xenografted to nude athymic mice, demonstrated that 20 Gy of low dose-rate irradiation induced an important redistribution of cells over cell cycle. The proportion of cells in G2-phase increased from 14.4% to 44.2% at 140 hours after irradiation. This method allows an accurate calculation of the dose-rate distribution in the tumour. Investigations of the cell kinetic effects of low dose-rate irradiation, at different dose-rates and different total doses, are therefore facilitated by the technique. (orig.) [de

  16. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  17. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [The State University of New York at Buffalo (United States); Wang, IZ [The State University of New York at Buffalo (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  18. Post-irradiation stability of polyvinyl chloride at sterilizing doses

    International Nuclear Information System (INIS)

    Naimian, F.; Katbab, A.A.; Nazokdast, H.

    1994-01-01

    Post-irradiation stability of plasticized PVC irradiated by 60 Co gamma ray at sterilizing doses has been studied. Effects of irradiation upon chemical structure, mechanical properties and rheological behaviour of samples contained different amounts of Di(2-ethylhexyl)phthalate as plasticizer have been investigated. Formation of conjugated double bonds, carbonyl and hydroxyl groups have been followed by UV and FTIR spectrometers up to 6 months after irradiation. FTIR spectra of irradiated samples showed no significant changes in carbonyl and hydroxyl groups even 6 months after irradiation. However, changes in UV-visible spectra was observed for the irradiated samples up to 6 months post-irradiation. This has been attributed to the formation of polyenes which leads to the discoloration of this polymer. Despite a certain degree of discoloration, it appears that the mechanical properties of PVC are not affected by irradiation at sterilizing doses. No change in the melt viscosity of the irradiated PVC samples with post-irradiation was observed, which is inconsistent with the IR results. (author)

  19. Stimulation of seeds by low dose irradiation

    International Nuclear Information System (INIS)

    Lawson, Helen

    1976-05-01

    The first section of the bibliography lists materials on the stimulation of seeds by low dose irradiation, with particular reference to stimulation of germination and yield. The second section contains a small number of selected references on seed irradiation facilities. (author)

  20. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  1. Total body irradiation

    International Nuclear Information System (INIS)

    Barrett, A.

    1988-01-01

    This paper describes body irradiation (TBI) being used increasingly as consolidation treatment in the management of leukaemia, lymphoma and various childhood tumours with the aim of sterilizing any malignant cells or micrometastases. Systemic radiotherapy as an adjunct to chemotherapy offers several possible benefits. There are no sanctuary sites for TBI; some neoplastic cells are very radiosensitive, and resistance to radiation appears to develop less readily than to drugs. Cross-resistance between chemotherapy and radiotherapy does not seem to be common and although plateau effects may be seen with chemotherapy there is a linear dose-response curve for clonogenic cell kill with radiation

  2. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G., E-mail: tiagorusin@ime.eb.b, E-mail: rebello@ime.eb.b, E-mail: vellozo@cbpf.b, E-mail: renatoguedes@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Vital, Helio C., E-mail: vital@ctex.eb.b [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  3. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    International Nuclear Information System (INIS)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G.; Silva, Ademir X.

    2011-01-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  4. High Total Ionizing Dose and Temperature Effects on Micro- and Nano-electronic Devices

    International Nuclear Information System (INIS)

    Gaillardin, M.; Martinez, M.; Paillet, P.; Leray, J.L.; Marcandella, C.; Duhamel, O.; Raine, M.; Richard, N.; Girard, S.; Ouerdane, Y.; Boukenter, A.; Goiffon, V.; Magnan, P.; Andrieu, F.; Barraud, S.; Faynot, O.

    2013-06-01

    This paper investigates the vulnerability of several micro- and nano-electronic technologies to a mixed harsh environment including high total ionizing dose at MGy levels and high temperature. Such operating conditions have been revealed recently for several applications like new security systems in existing or future nuclear power plants, fusion experiments, or deep space missions. In this work, the competing effects already reported in literature of ionizing radiations and temperature are characterized in elementary devices made of MOS transistors from several technologies. First, devices are irradiated using a radiation laboratory X-ray source up to MGy dose levels at room temperature. Devices are grounded during irradiation to simulate a circuit which waits for a wake up signal, representing most of the lifetime of an integrated circuit operating in a harsh environment. Devices are then annealed at several temperatures to discuss the post-irradiation behavior and to determine whether an elevated temperature is an issue or not for circuit function in mixed harsh environments. (authors)

  5. Computer-based anthropometrical system for total body irradiation.

    Science.gov (United States)

    Sánchez-Nieto, B; Sánchez-Doblado, F; Terrón, J A; Arráns, R; Errazquin, L

    1997-05-01

    For total body irradiation (TBI) dose calculation requirements, anatomical information about the whole body is needed. Despite the fact that video image grabbing techniques are used by some treatment planning systems for standard radiotherapy, there are no such systems designed to generate anatomical parameters for TBI planning. The paper describes an anthropometrical computerised system based on video image grabbing which was purpose-built to provide anatomical data for a PC-based TBI planning system. Using software, the system controls the acquisition and digitalisation of the images (external images of the patient in treatment position) and the measurement procedure itself (on the external images or the digital CT information). An ASCII file, readable by the TBI planning system, is generated to store the required parameters of the dose calculation points, i.e. depth, backscatter tissue thickness, thickness of inhomogeneity, off-axis distance (OAD) and source to skin distance (SSD).

  6. Comparative evolution of coagulation disorders in baboons and Pigs after total body irradiation

    International Nuclear Information System (INIS)

    Destombe, C.; Lefleche, P.; Veyret, J.; Grasseau, A.; Agay, D.; Mestries, J.C.

    1994-01-01

    Acute total body irradiation in pigs, with a lethal dose of either gamma or mixed gamma-neutron radiation, induced similar plasmatic coagulation disorders as those observed in baboons. These data validated pathophysiological hypothesis which were developed during previous studies, but do not support the idea of a possible species specific radiosensitivity. (author)

  7. Identification of irradiated foods prospects for post-irradiation estimate of irradiation dose in irradiated dry egg products

    International Nuclear Information System (INIS)

    Katusin-Raxem, B.; Mihaljievic, B.; Razem, D.

    2002-01-01

    Radiation-induced chemical changes in foods are generally very small at the usual processing doses. Some exception is radiation degradation of lipids, which are the components most susceptible to oxidation. A possible use of lipid hydroperoxides (LOOH) as indicators of irradiation is described for whole egg and egg yolk powders. A sensitive and reproducible spectrophotometric method for LOOH measurement based on feric thiocyanate, as modified in our laboratory, was applied. This method enabled the determination of LOOH, including oleic acid hydroperoxides, which is usually not possible with some other frequently used methods. The lowest limit of 0.05 mmol LOOH/kg lipid could be measured. The measurements were performed in various batches of whole egg and egg yolk powders by the same producer, as well as in samples supplied by various producers. Baseline level in unirradiated egg powder 0.110 ± 0.067 mmol LOOH /kgL was established. The formation of LOOH with dose, as well as the influence of age, irradiation conditions, storage time and storage conditions on LOOH were investigated. The irradiation of whole egg and egg yolk powders in the presence of air revealed an initially slow increase of LOOH, caused by an inherent antioxidative capacity, followed by a fast linear increase after the inhibition dose (D o ). In all investigated samples D o of 2 kGy was determined. Hydroperoxides produced in irradiated materials decay with time. In whole egg and egg yolk powders, after an initially fast decay, the level of LOOH continued to decrease by the first-order decay. Nevertheless, after a six months storage it was still possible to unambiguously identify samples which had been irradiated with 2 kGy in the presence of air. Reirradiation of these samples revealed a significant reduction of D o to 1 kGy. In samples irradiated with 4 kGy and kept under the same conditions, the shortening of D o to 0.5 kGy was determined by reirradiation. This offers a possibility for the

  8. Relationship of time--dose factors to tumor control and complications in the treatment of Cushing's disease by irradiation

    International Nuclear Information System (INIS)

    Aristizabal, S.; Caldwell, W.L.; Avila, J.; Mayer, E.G.

    1977-01-01

    The records of the Radiotherapy Division of the Radiology Department of Vanderbilt University Hospital were reviewed for the period 1952 to 1970. During those 19 years 45 patients with a well-documented diagnosis of Cushing's disease were treated initially by external irradiation of the pituitary. All of the patients were treated with megavoltage equipment using photons. When the results of irradiation are compared against total doses of radiation, it is evident that the control rate is unsatisfactory at doses less than 4000 rad and the maximum benefits of irradiation are evident in the 4500 to 5000 rad dose range. It is also clear that the complication rate increases as the dose exceeds 4800 rad. If the various treatment regimens of irradiation are converted to ''equivalent'' doses by the Nominal Standard Dose (NSD) or Time-Dose-Fractionation (TDF) methods, the relationship between ''dose'' and efficacy of therapy and complications is demonstrated. In order to reduce the possibility of treatment-related morbidity, the use of three or more small (4 x 4 cm) treatment portals or rotational techniques is recommended to a pituitary dose of 4600 to 5000 rad treating 5 days a week for 5 to 6 weeks

  9. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts.

    Science.gov (United States)

    Akbari, Mohammad; Farajpour, Mostafa; Aalifar, Mostafa; Sadat Hosseini, Mohammad

    2018-02-01

    The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1-2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.

  10. Incidence of interstitial pneumonia after hyperfractionated total body irradiation before autologous bone marrow/stem cell transplantation

    International Nuclear Information System (INIS)

    Lohr, F.; Schraube, P.; Wenz, F.; Flentje, M.; Kalle, K. von; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1995-01-01

    Purpose/Objectives Interstitial pneumonia (IP) is a severe complication after allogenic bone marrow transplantation (BMT) with incidence rates between 10 % and 40 % in different series. It is a polyetiologic disease that occurs depending on age, graft vs. host disease (GvHD), CMV-status, total body irradiation (TBI) and immunosuppressive therapy after BMT. The effects of fractionation and dose rate are not entirely clear. This study evaluates the incidence of lethal IP after hyperfractionated TBI for autologous BMT or stem cell transplantation. Materials and Methods Between 1982 and 1992, 182 patients (60 % male, 40 % female) were treated with hyperfractionated total body irradiation (TBI) before autologous bone marrow transplantation. Main indications were leukemias and lymphomas (53 % AML, 21 % ALL, 22 % NHL, 4 % others) Median age was 30 ys (15 - 55 ys). A total dose of 14.4 Gy was applied using lung blocks (12 fractions of 1.2 Gy in 4 days, dose rate 7-18 cGy/min, lung dose 9 - 9.5 Gy). TBI was followed by cyclophosphamide (200 mg/kg). 72 % were treated with bone marrow transplantation, 28 % were treated with stem cell transplantation. Interstitial pneumonia was diagnosed clinically, radiologically and by autopsy. Results 4 patients died most likely of interstitial pneumonia. For another 12 patients interstitial pneumonia was not the most likely cause of death but could not be excluded. Thus, the incidence of lethal IP was at least 2.2 % but certainly below 8.8 %. Conclusion Lethal interstitial pneumonia is a rare complication after total body irradiation before autologous bone marrow transplantation in this large, homogeously treated series. In the autologous setting, total doses of 14.4 Gy can be applied with a low risk for developing interstitial pneumonia if hyperfractionation and lung blocks are used. This falls in line with data from series with identical twins or t-cell depleted marrow and smaller, less homogeneous autologous transplant studies. Thus

  11. Intracavitary irradiation of prostatic carcinoma by a high dose-rate afterloading technique

    Energy Technology Data Exchange (ETDEWEB)

    Odelberg-Johnson, O.; Underskog, I.; Johansson, J.E.; Bernshaw, D.; Sorbe, B.; Persson, J.E. (Oerebro Medical Center Hospital (Sweden). Dept. of Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Urology Oerebro Medical Center Hospital (Sweden). Dept. of Gynecologic Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Radiation Physics)

    1991-01-01

    A high dose-rate ({sup 60}Co) afterloading technique was evaluated in a series of 73 patients with prostatic carcinoma stages I-IV. The intraurethral irradiation was combined with external pelvic radiotherapy. A minimum total dose of 78 Gy was delivered to the target volume. In a subgroup of patients extramustine (Estracyt) was given as adjuvant chemohormonal therapy during irradiation. The median follow-up for the whole group was 63 months. The crude 5-year survival rate was 60% and the corrected survival rate 90%. Survival was related to the tumor grade. Local pelvic recurrences were recorded in 17.8%. 'Viable cells' in posttherapy aspiration biopsy were not associated with tumor recurrences or survival. Four patients (5%) had grade 3 late radiation reactions with urethral structure or bladder fibrosis. Urinary tract infections and prior transurethral resections were not associated with a higher frequency of reactions. Concurrent estramustine therapy seemed to increase the frequency of both acute and chronic radiation reactions. Local control, recurrence, and survival were not affected by chemohormonal therapy. The use of tomography, magnetic resonance, and ultrasound as aids to computerized dosimetry may improve local dose distribution and reduce the irradiated volume. (orig.).

  12. The Impact of Heart Irradiation on Dose-Volume Effects in the Rat Lung

    International Nuclear Information System (INIS)

    Luijk, Peter van; Faber, Hette; Meertens, Harm; Schippers, Jacobus M.; Langendijk, Johannes A.; Brandenburg, Sytze; Kampinga, Harm H.; Coppes, Robert P. Ph.D.

    2007-01-01

    Purpose: To test the hypothesis that heart irradiation increases the risk of a symptomatic radiation-induced loss of lung function (SRILF) and that this can be well-described as a modulation of the functional reserve of the lung. Methods and Materials: Rats were irradiated with 150-MeV protons. Dose-response curves were obtained for a significant increase in breathing frequency after irradiation of 100%, 75%, 50%, or 25% of the total lung volume, either including or excluding the heart from the irradiation field. A significant increase in the mean respiratory rate after 6-12 weeks compared with 0-4 weeks was defined as SRILF, based on biweekly measurements of the respiratory rate. The critical volume (CV) model was used to describe the risk of SRILF. Fits were done using a maximum likelihood method. Consistency between model and data was tested using a previously developed goodness-of-fit test. Results: The CV model could be fitted consistently to the data for lung irradiation only. However, this fitted model failed to predict the data that also included heart irradiation. Even refitting the model to all data resulted in a significant difference between model and data. These results imply that, although the CV model describes the risk of SRILF when the heart is spared, the model needs to be modified to account for the impact of dose to the heart on the risk of SRILF. Finally, a modified CV model is described that is consistent to all data. Conclusions: The detrimental effect of dose to the heart on the incidence of SRILF can be described by a dose dependent decrease in functional reserve of the lung

  13. Measurement of radiation dose to the eye-lens with bilateral whole brain irradiation

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Park, Charn Il; Kang, Wee Saing; Choo, Dong Woon

    1985-01-01

    In 40 patients with metastatic brain tumor and acute lymphoblastic leukemia received whole brain irradiation, the dose delivered to the eye lens was measured using T.L.D. chips applied on the eyes as usual shield. The dose to the eye lens was expressed the relative dose to the mid brain dose. Radiotherapy was administrated using Co-60 teletherapy with bilateral whole brain irradiation. The results are as follows: 1. The dose to the right eye from its incipient field is 16.6% of tumor dose while the dose to the same eye from the opposite field is 41.2%. On left eye, 19.2% from incipient field while 39.2% from the opposite field. 2. Total received dose to right and left eyes is 28.9%, 29.8% of tumor dose respectively. 3. Comparing lens shield group with orbit shield group dose is 22.5%, 15.8% of tumor dose, respectively. 4. The dose delivered to the eye lens in ipsilateral side depends upon internal scattering, location of lead shield and penetrating dose of lead in itself. The dose in contralateral side depends upon divergency of radiation beam and patient's malposition. 5. The dose to the eye lens should be less than 10% of tumor dose with adequate shield, also not missing the chance of leptomeningeal recurrence because of overshielding.

  14. Hyperfractionated high-dose total body irradiation in bone marrow transplantation for Ph{sup 1}-positive acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akira; Ebihara, Yasuhiro; Mitsui, Tetsuo [Tokyo Univ. (Japan). Hospital of the Institute of Medical Science] [and others

    1998-12-01

    In two cases of Philadelphia-positive childhood acute lymphoblastic leukemia (Ph{sup 1} ALL), we performed allogeneic bone marrow transplantation (AlloBMT) with preconditioning regimen, including hyperfractionated high-dose total body irradiation (TBI) (13.5 Gy, in 9 fractions). Their disease statuses at BMT were hematological relapse in case 1 and molecular relapse in case 2. Bone marrow donors were unrelated in case 1, and HLA was a partially mismatched mother in case 2. Regimen-related toxicity was tolerable in both cases. Hematological recovery was rapid, and engraftment was obtained on day 14 in case 1 and on day 12 in case 2. BCR/ABL message in bone marrow disappeared on day 89 in case 1 and on day 19 in case 2 and throughout their subsequent clinical courses. Although short-term MTX and Cy-A continuous infusion were used for GVHD prophylaxis, grade IV GVHD was observed in case 1 and grade III in case 2. Both cases experienced hemorrhagic cystitis because of adenovirus type 11 infection. Although case 1 died of interstitial pneumonitis on day 442, case 2 has been free of disease through day 231. AlloBMT for Ph{sup 1} ALL with preconditioning regimen including hyperfractionated high-dose TBI is considered to be worth further investigation. (author)

  15. Dose determination in irradiated chicken meat by ESR method

    International Nuclear Information System (INIS)

    Polat, M.

    1996-01-01

    In this work, the properties of the radicals produced in chicken bones have been investigated by ESR technique to determine the amount of dose applied to the chicken meats during the food irradiation. For this goal, the drumsticks from 6-8 weeks old chickens purchased from a local market were irradiated at dose levels of 0; 2; 4; 6; 8 and 10 kGy. Then, the ESR spectra of the powder samples prepared from the bones of the drumsticks have been investigated. Unirradiated chicken bones have been observed to show a weak ESR signal of single line character. CO-2 ionic radicals of axial symmetry with g=1.9973 and g=2.0025 were observed to be produced in irradiated samples which would give rise to a three peaks ESR spectrum. In addition, the signal intensities of the samples were found to depend linearly on the irradiation dose in the dose range of 0-10 kGy. The powder samples prepared from chicken leg bones cleaned from their meats and marrow and irradiated at dose levels of 1, 2, 3, 4, 5, 6, B, 10, 12,14, 16, 1B, 20 and 22 kGy were used to get the dose-response curve. It was found that this curve has biphasic character and that the dose yield was higher in the 12-1B kGy dose range and a decrease appears in this curve over 18 kGy. The radical produced in the bones were found to be the same whether the irradiation was performed after stripping the meat and removing the marrow from the bone or before the stripping. The ESR spectra of both irradiated and non irradiated samples were investigated in the temperature range of 100 K-450 K and changes in the ESR spectra of CO-2 radical have been studied. For non irradiated samples (controls). the signal intensities were found to decrease when the temperature was increased. The same investigation has been carried out for irradiated samples and it was concluded that the signal intensities relative to the peaks of the radical spectrum increase in the temperature range of 100 K-330 K, then they decrease over 330 K. The change in the

  16. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    International Nuclear Information System (INIS)

    Sakaguchi, N.; Sakaguchi, S.; Miyai, K.

    1992-01-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and the peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4 + T cells mediated the autoimmune prevention but CD8 + T cells did not. CD4 + T cells also appeared to mediate the TLI-induced autoimmune disease because CD4 + T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs

  17. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, A.; Ohnishi, K.; Asakawa, I.; Tamamoto, T.; Yasumoto, J.; Yuki, K.; Ohnishi, T.; Tachibana, A.

    2003-01-01

    Full text: We have studied whether the p53-centered signal transduction pathway induced by acute radiation is interfered with chronic pre-irradiation at a low dose-rate in human cultured cells and whole body of mice. In squamous cell carcinoma cells, we found that a challenge irradiation with X-ray immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge irradiation alone. In addition, the induction of p53-centered apoptosis and the accumulation of its related proteins after the challenge irradiation were strongly correlated with the above-mentioned phenomena. In mouse spleen, the induction of apoptosis and the accumulation of p53 and Bax were observed dose-dependently at 12 h after a challenge irradiation. In contrast, we found significant suppression of them induced by challenge irradiation at a high dose-rate when mice were pre-irradiated with chronic irradiation at a low dose-rate. These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced p53-dependent signal transduction processes. There are numerous papers about p53 functions in apoptosis, radiosensitivity, genomic instability and cancer incidence in cultured cells or animals. According to our data and other findings, since p53 can prevent carcinogenesis, pre-irradiation at a low dose-rate might enhance the predisposition to cancer. Therefore, it is possible that different maximal permissible dose equivalents for the public populations are appropriate. Furthermore, concerning health of human beings, studies of the adaptive responses to radiation are quite important, because the radiation response strongly depends on experience of prior exposure to radiation

  18. Panoramic irradiator dose mapping with pin photodiodes

    International Nuclear Information System (INIS)

    Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Bueno, Carmen Cecilia

    2011-01-01

    In this work we study the possibility of using commercial silicon PIN photodiodes (Siemens, SFH 00206) for dose mapping in the Panoramic Irradiator facility at IPEN-CNEN/SP. The chosen photodiode, that is encased in 1.2 mm thickness polymer layer, displays promising dosimetric characteristics such as small size (sensitive area of 7.00 mm 2 ), high sensitivity and low dark current (≅ 300 pA, at 0 V) together with low-cost and wide availability. The Panoramic facility is an irradiator Type II with absorbed dose certificated by International Dose Assurance Service (IDAS) offered by the International Agency Energy Atomic (IAEA). The charge registered by the diode as a function of the absorbed dose was in excellent agreement with that one calibrated by IDAS. Besides this, the easy handling and fast response of the SFH00206 diode compared to Fricke chemical dosimeters encouraged us to perform dose mapping around the source. (author)

  19. Effects of split-dose irradiation of the rabbit's eye - a histopathological study

    International Nuclear Information System (INIS)

    Grabenbauer, G.G.

    1987-01-01

    Thirty-six rabbits were included in a study investigating into the effects of split-dose 300 KV X-irradiation on the cornea, ciliary body, nictitating membrane and lacrimal gland. In each animal, soly the right the eye was irradiated using total doses of 21 Gy, 30 Gy, 36 Gy and 45 Gy that were administered according to a fixed schedule in fractions of 3 Gy five times per week. After latency periods of six weeks, three months and six months the animals receiving 21 Gy, 30 Gy and 36 Gy showed no changes of the bulbi, eye lids and lacrimal glands that could be ascertained by histopathological evaluation. In the animals exposed to the 45 Gy dose, changes of the cornea and conjunctiva caused by radiation injuries to the lacrimal glands and conjunctival goblet cells started to appear after a minimum period of 3 months. This dose level was also the threshold for the occurrence of corneal damage or even ulceration as a result of secondary reduction or qualitative change of lacrimal secretions. (ECB) [de

  20. Short-term irradiation of the glioblastoma with high-dosed fractions

    International Nuclear Information System (INIS)

    Hinkelbein, W.; Bruggmoser, G.; Schmidt, M.; Wannenmacher, M.

    1984-01-01

    Compared to surgery alone, postoperative radiotherapy leads with glioblastomas (grade IV gliomas) to a significant improvement of the therapeutic results. The prolongation of survival time, however, is to a large extent compensated by the therapy itself (it normally implicates hospitalisation). Therefore, we tested the efficiency of rapid course irradiation with high fractions. 70 patients were treated daily with individual fractions of 3.5 Gy, 4 to 6 fractions per week. The entire dose amounted to 31.5 to 38.5 Gy. The average survival time was 33.5 weeks corresponding to the survival time known from the combined surgical and radiotherapeutical treatment of glioblastomas. An effective increase in therapy-free survival time seems possible, especially when the entire focal dose does not exceed 35 Gy. It is remarkable that the patients with the maximum exposure did not have the longest survival times and rates. Living conditions for the patients were similar to those with conventional fractioning, or even better. Rapid course irradiation with high fractions and a limited total dose (35 Gy) presently is - apart from the accelerated superfractioning - a successful measure to prolong the therapyfree survival time for patients with grade IV gliomas. (orig.) [de

  1. Origins of Total-Dose Response Variability in Linear Bipolar Microcircuits

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.R.; Schrimpf, R.D.; Fleetwood, D.M.; Pease, R.L.; Shaneyfelt, Marty R.; Turflinger, T.; Krieg, J.F.; Maher, M.C.

    2000-01-01

    LM1ll voltage comparators exhibit a wide range of total-dose-induced degradation. Simulations show this variability may be a natural consequence of the low base doping of the substrate PNP (SPNP) input transistors. Low base doping increases the SPNP's collector to base breakdown voltage, current gain, and sensitivity to small fluctuations in the radiation-induced oxide defect densities. The build-up of oxide trapped charge (N ot ) and interface traps (N it ) is shown to be a function of pre-irradiation bakes. Experimental data indicate that, despite its structural similarities to the LM111, irradiated input transistors of the LM124 operational amplifier do not exhibit the same sensitivity to variations in pre-irradiation thermal cycles. Further disparities in LM111 and LM124 responses may result from a difference in the oxide defect build-up in the two part types. Variations in processing, packaging, and circuit effects are suggested as potential explanations

  2. Gamma irradiator dose mapping: a Monte Carlo simulation and experimental measurements

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio R.; Ribeiro, Mariana A.; Grynberg, Suely E.; Ferreira, Andrea V.; Meira-Belo, Luiz Claudio; Sousa, Romulo V.; Sebastiao, Rita de C.O.

    2009-01-01

    Gamma irradiator facilities can be used in a wide range of applications such as biological and chemical researches, food treatment and sterilization of medical devices and products. Dose mapping must be performed in these equipment in order to establish plant operational parameters, as dose uniformity, source utilization efficiency and maximum and minimum dose positions. The isodoses curves are generally measured using dosimeters distributed throughout the device, and this procedure often consume a large amount of dosimeters, irradiation time and manpower. However, a detailed curve doses identification of the irradiation facility can be performed using Monte Carlo simulation, which reduces significantly the monitoring with dosimeters. The present work evaluates the absorbed dose in the CDTN/CNEN Gammacell Irradiation Facility, using the Monte Carlo N-particles (MCNP) code. The Gammacell 220, serial number 39, was produced by Atomic Energy of Canada Limited and was loaded with sources of 60 Co. Dose measurements using TLD and Fricke dosimeters were also performed to validate the calculations. The good agreement of the results shows that Monte Carlo simulations can be used as a predictive tool of irradiation planning for the CDTN/CNEN Gamma Cell Irradiator. (author)

  3. External-beam boost prior to total-body irradiation in relapsed NHL transplant patients

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Jedidiah M; Neuberg, Donna; Freedman, Arnold S; Tarbell, Nancy J; Nadler, Lee M; Mauch, Peter

    1995-07-01

    PURPOSE: To determine the impact of an external beam boost (EBB) on the outcome, relapse pattern and normal tissue toxicities of patients undergoing total-body irradiation (TBI) prior to bone marrow transplantation (BMT) for relapsed NHL. MATERIALS AND METHODS: Between 1982 and 1994, 299 patients at our institution underwent BMT for relapsed NHL. Patients underwent induction chemotherapy (CT) followed by conditioning with cyclophosphamide and 12 Gy TBI delivered in 6 fractions over 3 days. A total of 77 patients had persistent gross disease, defined as 2 cm or greater, after induction CT and received an EBB prior to BMT (EBB cohort). The median EBB dose was 28.8 Gy (range, 5-63), the median field size was 13 cm{sup 2} (range, 5-29.4) and the median time from EBB to BMT was 3 weeks (range, 1-20). A total of 222 patients were free of measurable disease or had disease measuring <2cm after CT and did not receive EBB (no-EBB cohort). To assess normal tissue toxicity, patients' simulation films and/or treatment records were reviewed for all 77 patients treated with local EBB and estimates were made of the percentage lung, heart and kidney in the radiation field. RESULTS: A total of 79 of 222 patients (36%) in the no-EBB cohort have relapsed; 33 of 77 patients (43%) in the EBB cohort have relapsed (p=0.28, by Fisher exact test). Median time to relapse after BMT was 54 months for the no-EBB cohort and 38 months for the EBB cohort (p=0.26, by log-rank test). The 3-year actuarial freedom from relapse (deaths in remission censored) was 59% for the no-EBB cohort (90% CI: 52-66%) and 51% for the EBB cohort (90% CI: 40-62%). Data on site of relapse was available for 101 of the 112 relapses (75 no-EBB, 26 EBB). For the no-EBB cohort 33 of 75 relapses (44%) were in sites of prior nodal disease only. For the EBB cohort, 12 of 26 relapses (46%) were in sites of prior nodal disease only, of these, only 6 (23%) were within the EBB treatment field. A total of 26 patients had thoracic

  4. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    Science.gov (United States)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  5. Barley growth and plant mineral content of plant grown from seeds irradiated by low doses of gamma irradiated and cultured on salt media

    International Nuclear Information System (INIS)

    Charbaji, T.; Arabi, M.I.; Jawhar, M.

    2000-02-01

    Seeds of two barley White Arabi (WA) Pakistani PK30163 (PK) were irradiated with three doses 0,15 and 20 Gy of gamma irradiation. Then they were cultured on (Coic-Lesaint) nutrient media containing several concentrations of NaCl (0, 10, 50, and 100 mmol). The irradiation doses did not affect the shoot growth of plants, whereas the combination between 15 Gy and 50 and 100 mmol NaCl decreased significantly the root growth. Doses of 0 and 20 Gy and 10 mmol NaCl had a positive effect on WA variety wet weight. The 20 Gy and 10 and 50 mmol NaCl significantly reduced the wet weight of PK variety. Dry weight of WA variety was decreased, when the seeds were irradiated by 15 Gy and cultured on media containing 10 and 50 mmol NaCl. WA and PK content of Ca ++ increased when weeds were irradiated by 15 Gy (WA) and 20 Gy (PK) and grown on media containing 10 mmol NaCl. The content of Mg ++ and K ++ of 2 varieties were increased, when seeds were cultured on media containing 10 mmol NaCl. Positive relationship was noticed between Na + and Cl - contents and NaCl concentrations in the media. The NaCl concentrations correlated with the irradiation, negatively effected the total N % of the WA variety, whereas in the absence of irradiation, 10 and 50 mmol NaCl had a positive effect on the total N % of PK variety. Similar effects were produced for the last variety with the dose of 15 Gy and NaCl concentrations in the media. Concentration of 100 mmol NaCl positively affect PO4 -- of unirradiated WA variety, but PO -- of all plants of PK variety was increased with 10 and 50 mmol NaCl. The content of SO4 -- of 2 varieties was increased, when the seeds were exposed to the irradiation of 15 and 20 Gy and cultured on a media containing 10 and 50 mmol NaCl. The ratio of Na/Cl, was generally different from 1 and the Cl - content was higher than Na + content, in seedlings of both barley varieties. (author)

  6. Barley growth and plant mineral content of plant grown from seeds irradiated by low doses of gamma irradiated and cultured on salt media

    Energy Technology Data Exchange (ETDEWEB)

    Charbaji, T; Arabi, M I; Jawhar, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Agriculture

    2000-02-01

    Seeds of two barley White Arabi (WA) Pakistani PK30163 (PK) were irradiated with three doses 0,15 and 20 Gy of gamma irradiation. Then they were cultured on (Coic-Lesaint) nutrient media containing several concentrations of NaCl (0, 10, 50, and 100 mmol). The irradiation doses did not affect the shoot growth of plants, whereas the combination between 15 Gy and 50 and 100 mmol NaCl decreased significantly the root growth. Doses of 0 and 20 Gy and 10 mmol NaCl had a positive effect on WA variety wet weight. The 20 Gy and 10 and 50 mmol NaCl significantly reduced the wet weight of PK variety. Dry weight of WA variety was decreased, when the seeds were irradiated by 15 Gy and cultured on media containing 10 and 50 mmol NaCl. WA and PK content of Ca{sup ++} increased when weeds were irradiated by 15 Gy (WA) and 20 Gy (PK) and grown on media containing 10 mmol NaCl. The content of Mg{sup ++} and K{sup ++} of 2 varieties were increased, when seeds were cultured on media containing 10 mmol NaCl. Positive relationship was noticed between Na{sup +} and Cl{sup -} contents and NaCl concentrations in the media. The NaCl concentrations correlated with the irradiation, negatively effected the total N % of the WA variety, whereas in the absence of irradiation, 10 and 50 mmol NaCl had a positive effect on the total N % of PK variety. Similar effects were produced for the last variety with the dose of 15 Gy and NaCl concentrations in the media. Concentration of 100 mmol NaCl positively affect PO4{sup --} of unirradiated WA variety, but PO{sup --} of all plants of PK variety was increased with 10 and 50 mmol NaCl. The content of SO4{sup --} of 2 varieties was increased, when the seeds were exposed to the irradiation of 15 and 20 Gy and cultured on a media containing 10 and 50 mmol NaCl. The ratio of Na/Cl, was generally different from 1 and the Cl{sup -} content was higher than Na{sup +} content, in seedlings of both barley varieties. (author)

  7. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  8. The effect of low-dose X-irradiation on immune system

    International Nuclear Information System (INIS)

    Ishii, Keiichiro

    1996-01-01

    The hypothesis of radiation hormesis has been proposed. To elucidate the hormetic effect on the immune system, we studied the mitogen-induced proliferation of splenocytes of F344/NSlc rat and BALB/c mouse after low-dose X-irradiation. Con A, PHA or LPS-induced proliferation of rat splenocytes prepared at 4 hr after irradiation was augmented with 5 cGy. This augmentation was observed within a few hours after irradiation, being a temporary effect. In case of mice, the proliferation of splenocytes induced by Con A, PHA or LPS was augmented by irradiation with 2.5 cGy. Thus, some phenomena of hormetic effect on the immune system were observed. However, the mechanism of augmentation of immune splenocytes is uncertainty. Therefore, we examined changes in production of LTB 4 and IL-1 being inflammatory mediators. After 5 cGy irradiation the production of LTB 4 of rat splenocyte showed a significant increase. Furthermore, 2.5 cGy irradiation also enhanced, the biological activity of intracellular IL-1 of LPS-stimulated mouse splenocytes. Additionally, to elucidate the stimulative effect on the antitumor immunity by low-dose X-irradiation, we studied the changes in the incidence of thymic lymphoma using AKR mice and of spontaneous metastasis to lung using tumor bearing mice. The incidence of thymic lymphoma was significantly decreased and the life span was significantly prolonged by periodical low-dose X-irradiation in terms of breeding of AKR mice. By an irradiation with 15 cGy, numbers of lung colony in the tumor bearing mice were decreased by 57% relative to the sham-irradiated controls. Then, IL-6 and TNF-α production of tumor bearing mice splenocytes were enhanced. These findings suggest that the low-dose X-irradiation might have caused a light inflammation and might have induced an augmentation of immune splenocytes. Furthermore, these results indicate that an augmentation of the antitumor immunity was induced by low-dose X-irradiation. (author). 127 refs

  9. The effect of low-dose X-irradiation on immune system

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Keiichiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1996-06-01

    The hypothesis of radiation hormesis has been proposed. To elucidate the hormetic effect on the immune system, we studied the mitogen-induced proliferation of splenocytes of F344/NSlc rat and BALB/c mouse after low-dose X-irradiation. Con A, PHA or LPS-induced proliferation of rat splenocytes prepared at 4 hr after irradiation was augmented with 5 cGy. This augmentation was observed within a few hours after irradiation, being a temporary effect. In case of mice, the proliferation of splenocytes induced by Con A, PHA or LPS was augmented by irradiation with 2.5 cGy. Thus, some phenomena of hormetic effect on the immune system were observed. However, the mechanism of augmentation of immune splenocytes is uncertainty. Therefore, we examined changes in production of LTB{sub 4} and IL-1 being inflammatory mediators. After 5 cGy irradiation the production of LTB{sub 4} of rat splenocyte showed a significant increase. Furthermore, 2.5 cGy irradiation also enhanced, the biological activity of intracellular IL-1 of LPS-stimulated mouse splenocytes. Additionally, to elucidate the stimulative effect on the antitumor immunity by low-dose X-irradiation, we studied the changes in the incidence of thymic lymphoma using AKR mice and of spontaneous metastasis to lung using tumor bearing mice. The incidence of thymic lymphoma was significantly decreased and the life span was significantly prolonged by periodical low-dose X-irradiation in terms of breeding of AKR mice. By an irradiation with 15 cGy, numbers of lung colony in the tumor bearing mice were decreased by 57% relative to the sham-irradiated controls. Then, IL-6 and TNF-{alpha} production of tumor bearing mice splenocytes were enhanced. These findings suggest that the low-dose X-irradiation might have caused a light inflammation and might have induced an augmentation of immune splenocytes. Furthermore, these results indicate that an augmentation of the antitumor immunity was induced by low-dose X-irradiation. 127 refs.

  10. ATM phosphorylation in HepG2 cells following continuous low dose-rate irradiation

    International Nuclear Information System (INIS)

    Mei Quelin; Du Duanming; Chen Zaizhong; Liu Pengcheng; Yang Jianyong; Li Yanhao

    2008-01-01

    Objective: To investigate the change of ATM phosphorylation in HepG2 cells following a continuous low dose-rate irradiation. Methods: Cells were persistently exposed to low dose-rate (8.28 cGy/h) irradiation. Indirect immunofluorescence and Western blot were used to detect the expression of ATM phosphorylated proteins. Colony forming assay was used to observe the effect of a low dose-rate irradiation on HepG2 cell survival. Results: After 30 min of low dose-rate irradiation, the phosphorylation of ATM occurred. After 6 h persistent irradiation, the expression of ATM phosphorylated protein reached the peak value, then gradually decreased. After ATM phosphorylation was inhibited with Wortmannin, the surviving fraction of HepG2 cells was lower than that of the irradiation alone group at each time point (P<0.05). Conclusions: Continuous low dose-rate irradiation attenuated ATM phosphorylation, suggesting that continuous low dose-rate irradiation has a potential effect for increasing the radiosensitivity of HepG2 cells. (authors)

  11. Evaluation of absorbed doses during irradiation of patients

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Kozlov, V.A.

    1981-01-01

    Provided is an analysis of a general scheme for the method of control over the dose field realization in the patient's body using direct dose measurements in patients. On the basis of data from literature presented are error limits in the stages of preradiation preparation and irradiation of patients, and in the stage of dose measurement for different irradiation techniques and radiation types. The authors also provide scientific data of their own. It has been concluded that the main emphasis should be placed on the improvement of topometry facilities, field calculation, patients posture and visual control methods of the radiation beam position [ru

  12. Recent advances in understanding total-dose effects in bipolar transistors

    International Nuclear Information System (INIS)

    Schrimpf, R.D.

    1996-01-01

    Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described

  13. The dose penumbra of a custom-made shield used in hemibody skin electron irradiation.

    Science.gov (United States)

    Rivers, Charlotte I; AlDahlawi, Ismail; Wang, Iris Z; Singh, Anurag K; Podgorsak, Matthew B

    2016-11-08

    We report our technique for hemibody skin electron irradiation with a custom-made plywood shield. The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed at 50 cm from the patient. The shield is made of three layers of stan-dard 5/8'' thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield's transmission factor and the extent of the dose penumbra region for two different shield-phantom gaps. The shield transmission factor was found to be about 10%. The width of the penumbra (80%-to-20% dose falloff) was measured to be 12 cm for a 50 cm shield-phantom gap, and reduced slightly to 10 cm for a 35 cm shield-phantom gap. In vivo dosimetry of a real case confirmed the expected shielded area dose. © 2016 The Authors.

  14. Identification of irradiated meat using electron spin resonance (ESR) spectroscopy and estimation of applied dose using re-irradiation

    International Nuclear Information System (INIS)

    Chawla, S.P.; Thomas, Paul; Bongirwar, D.R.

    2001-01-01

    An in-house blind trail on bone-in meat chunks was carried out in which 35 coded samples were correctly identified. The samples were either left unirradiated or had been irradiated to dose of 1, 2.5 or 4 kGy. Using re-irradiation, the dose received by the samples were determined with either linear, quadratic or exponential equation. The quadratic or exponential equation gave more successful estimates of irradiation dose whereas linear fit equations tend to over estimate the dose. (author)

  15. Isodose distributions and dose uniformity in the Portuguese gamma irradiation facility calculated using the MCNP code

    CERN Document Server

    Oliveira, C

    2001-01-01

    A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.

  16. The effect of total body irradiation dose and chronic graft-versus-host disease on leukaemic relapse after allogeneic bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Frassoni, F; Bacigalupo, A [Ospedale San Martino (Italy). Centro Trapianti Midollo Osseo; Scarpati, D [Univ. di Genova (Italy). Ist. di Radiologia; and others

    1989-10-01

    One-hundred and five patients undergoing allo-geneic bone marrow transplantation (BMT) for acute myeloid leukaemia (AML) (n=61) and chronic myeloid leukaemia (n=44) were analysed for risk factors associated with relapse. All patients received marrow from an HLA identical sibling after preparation with cyclophosphamide 120 mg/kg and total body irradiation (TBI) 330 cGy on each of the three days prior to transplantation. A multivariate Cox analysis indicated that a lower TBI dose (less than 990 cGy) was the most significant factor associated with relapse and the second most important factor associated with recurrence of leukaemia was the absence of chronic graft-versus-host-disease (cGvHD). Actuarial relapse incidence was 62%, 28% and 18% for patients with no, limited or extensive chronic GvHD respectively. However, chronic GvHD had no significant impact on survival. Combined stratification for TBI dose and cGvHD showed that the dose effect of TBI on relapse was evident both in patients with and without cGvHD. Chronic GvHD influenced the risk of relapse only in patients receiving less than 990 cGy. These results suggest that a higher dose of TBI, within this schedule, produced long-term disease-free survival in the majority of AMLs and CMLs. Minor radiobiological side effects were experienced, but a small reduction of the dose may significantly increase the risk of relapse. (author).

  17. The effect of total body irradiation dose and chronic graft-versus-host disease on leukaemic relapse after allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Frassoni, F.; Bacigalupo, A.; Scarpati, D.

    1989-01-01

    One-hundred and five patients undergoing allo-geneic bone marrow transplantation (BMT) for acute myeloid leukaemia (AML) (n=61) and chronic myeloid leukaemia (n=44) were analysed for risk factors associated with relapse. All patients received marrow from an HLA identical sibling after preparation with cyclophosphamide 120 mg/kg and total body irradiation (TBI) 330 cGy on each of the three days prior to transplantation. A multivariate Cox analysis indicated that a lower TBI dose (less than 990 cGy) was the most significant factor associated with relapse and the second most important factor associated with recurrence of leukaemia was the absence of chronic graft-versus-host-disease (cGvHD). Actuarial relapse incidence was 62%, 28% and 18% for patients with no, limited or extensive chronic GvHD respectively. However, chronic GvHD had no significant impact on survival. Combined stratification for TBI dose and cGvHD showed that the dose effect of TBI on relapse was evident both in patients with and without cGvHD. Chronic GvHD influenced the risk of relapse only in patients receiving less than 990 cGy. These results suggest that a higher dose of TBI, within this schedule, produced long-term disease-free survival in the majority of AMLs and CMLs. Minor radiobiological side effects were experienced, but a small reduction of the dose may significantly increase the risk of relapse. (author)

  18. Low- and high-dose laser irradiation effects on cell migration and destruction

    Science.gov (United States)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  19. Hyperfractionated total body irradiation for T-depleted HLA identical bone marrow transplants

    International Nuclear Information System (INIS)

    Latini, P.; Checcaglini, F.; Maranzano, E.; Aristei, C.; Panizza, B.M.; Gobbi, G.; Raymondi, C.; Aversa, F.; Martelli, M.F.

    1988-01-01

    Twenty patients suffering from malignant hemopathies (mean age 31.7 years) were given hyperfractionated total body irradiation (TBI) as conditioning for T-depleted HLA identical allogeneic bone marrow transplantation. At an average of 12 months (range of 4.5-22 months) follow-up there were two cases of early death and two cases (11%) of rejection. There were no cases of acute or chronic graft versus host disease nor cases of interstitial pneumonitis. The average time for durable engraftment was 22 days. Disease-free survival at 12 months was 65%. To improve the results and further reduce the percent of rejection, the authors propose intensifying the immunosuppressive conditioning by increasing the cyclophosphamide dose and that of TBI so that a total dose of 1560 cGy is reached. 35 refs.; 1 figure

  20. Molecular characterization of non-thymic lymphomas in mice exposed to continuous low-dose-rate g-ray irradiation

    International Nuclear Information System (INIS)

    Takabatake, T.; Fujikawa, K.; Nakamura, S.; Tanaka, S.; Tanaka, I.; Tanaka-Braga III, I.; Sunaga, Y.; Ichinoche, K.; Sato, F.; Tanaka, K.; Matsumoto, T.

    2004-01-01

    To investigate the effects of continuous low-dose-rate irradiation on life span and neoplasm incidence, SPE B6C3 F1 mice were irradiated with 137Cs-ray at dose-rates of 20, 1 and 0.05 mGy/day with accumulated doses equivalent to 8000, 40 and 20 mGy, respectively. Examination of a total of 3,000 irradiated and 1,000 non-irradiated control mice showed that the life spans of the both sexes irradiated at 20 mGy/day, respectively. Examination of a total of 3,000 irradiated and 1,000 non-irradiated control mice showed that the life spans of the both sexes irradiated at 20 mGy/day were significantly shorter than that of the non-irradiated group. No significant difference in the cause of death and mortality rates was found between the groups. However, non-thymic lymphomas, the most common lethal neoplasm, showed a tendency to develop at an earlier age in mice irradiated with 20 mGy/day, regardless of sex. to obtain clues on the molecular mechanisms underlying the earlier development of non-thymic lymphomas in 20 mGy/day irradiated group, detailed molecular characterizations of non-thymic lymphomas with respect to B-cell or T-cell origin was done by detecting rearrangements in immunoglobulin heavy gene and in T-cell receptor b-and g chain genes by Southem hybridization method. to determine whether the early development of non-thymic lymphomas in 20 mGy/day irradiated group is associated wi the any recurrent chromosomal imbalance such as deletions and amplifications, the genome-wide scanning is also currently in progress by both LOH and array CGH methods. Present data obtained by LOH method show that deletions in parts of chromosomes 11 and 12 were more frequent than in chromosomes 2, 4 and 14 in both the non-irradiated control and 20 mGy/day irradiated groups. this work is supported by grants from Aomori Prefecture, Japan. (Author)

  1. Dose uniformity estimations in the blood irradiator

    International Nuclear Information System (INIS)

    George, J.R.

    2002-01-01

    Use of irradiated blood in transfusions is recognized as the most effective way of preventing Graft Versus Host Disease (GVHD). This paper shows the study carried out in the dose rate variation for various source arrangements for optimising the source-sample chamber geometry, during the development of the Blood Irradiator, Bl-2000

  2. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    International Nuclear Information System (INIS)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo

    1996-01-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  3. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  4. Inhibition of alloxan diabetes by low dose γ-irradiation before alloxan administration

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Takehara, Yoshiki; Yoshioka, Tamotsu; Utsumi, Kozo.

    1994-01-01

    We evaluated the inhibitory effects of whole body 60 Co-γ irradiation at a single low dose on alloxan-induced hyperglycemia in rats. (1) In rats that received alloxan, SOD activity in pancreas significantly decreased, but the decrease was inhibited by irradiation at a dose of 0.5 Gy. (2) Similarly, plasma peroxide, pancreatic peroxide, and blood glucose increased. However, the increase in pancreatic peroxide was inhibited by irradiation at a dose of 0.5 or 1.0 Gy and the increase in blood glucose by irradiation at 0.5 Gy. (3) After alloxan administration, degranulation was observed in cells, but this was inhibited by irradiation at 0.5 Gy. These results suggest that alloxan diabetes was inhibited by the increase of SOD activity in pancreas after low dose irradiation at 0.5 Gy. (author)

  5. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  6. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  7. Introduction of transplantation tolerance after total lymphoid irradiation: cellular mechanisms

    International Nuclear Information System (INIS)

    Strober, S.; King, D.P.; Gottlieb, M.; Hoppe, R.T.; Kaplan, H.S.

    1981-01-01

    High-dose fractionated total lymphoid irradiation (TLI) is a safe, routine regimen used to treat patients with lymphoid malignancies. Although few side effects are associated with the regimen, a profound suppression of cell-mediated immunity is observed for several years after therapy, as judged by both in vivo and in vitro assays. A profound immunosuppression has also been observed in mice and rats given TLI. Recently, we have achieved similar results using TLI in nonmatched bone marrow transplantation in outbred dogs. The experimental work in animals and underlying cellular mechanisms are reviewed here

  8. Radiobiological considerations in the treatment of neuroblastoma by total body irradiation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; O'Donoghue, J.; Gregor, A.; Livingstone, A.; Wilson, L.; West of Scotland Health Boards, Glasgow

    1986-01-01

    Neuroblastoma is a radiosensitive neoplasm for which total body irradiation (TBI) is presently under clinical consideration. Collated data on the radiobiology of human neuroblastoma cells in vitro indicates moderate cellular radiosensitivity and low capacity for accumulation of sublethal damage. Mathematical studies incorporating these parameters suggest that low dose fractionated TBI is unlikely to achieve significant levels of tumour cell kill. When high dose TBI is used in conjuction with bone marrow rescue a tumour 'log cell kill' of 4-5 should be achievable. This effect would be additional to that acheived by chemotherapy. Fractionated TBI with bone marrow rescue may be curative for some patients in clinical remission who are presently destined to relapse. (Auth.)

  9. Estimation of dose in irradiated chicken bone by ESR method

    International Nuclear Information System (INIS)

    Tanabe, Hiroko; Hougetu, Daisuke

    1998-01-01

    The author studied the conditions needed to routinely estimate the radiation dose in chicken bone by repeated re-irradiation and measuring ESR signals. Chicken meat containing bone was γ-irradiated at doses of up to 3kGy, accepted as the commercially used dose. The results show that points in sample preparation and ESR measurement are as follows: Both ends of bone are cut off and central part of compact bone is used for experiment. To obtain accurate ESR spectrum, marrow should be scraped out completely. Sample bone fragments of 1-2mm particle size and ca.100mg are recommended to obtain stable and maximum signal. In practice, by re-irradiating up to 5kGy and extrapolating data of the signal intensity to zero using linear regression analysis, radiation dose is estimated. For example, in one experiment, estimated doses of chicken bones initially irradiated at 3.0kGy, 1.0kGy, 0.50kGy and 0.25kGy were 3.4kGy, 1.3kGy, 0.81kGy and 0.57kGy. (author)

  10. Effect of irradiation dose on sensory characteristics and microbiological contamination of chosen seasonings

    International Nuclear Information System (INIS)

    Kaminski, E.; Wasowicz, E.; Zawirska-Wojtasiak, R.; Czaczyk, K.; Trojanowska, K.

    1991-01-01

    The effects of gamma irradiation (3, 5, 10 kGy) on sensory characteristics, volatiles constituents and microbiological contamination of several seasonings were studied. The dose of 3 kGy reduced microflora effectively, and did not cause evident changes in aroma. Complete sterilization, however, required 7 or 10 kGy particularly in the case of paprika. Such doses substantially changed the smell and taste of seasonings. Is some of them (paprika, mustard, coriander) the total volatiles content increased after radiation

  11. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  12. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.; Sharabi, N.

    2002-11-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays. (author)

  13. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    CERN Document Server

    Shamma, M A; Sharabi, N

    2002-01-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays.

  14. SORCE Level 3 Total Solar Irradiance Daily Average V016

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) data set SOR3TSID contains the total solar irradiance (a.k.a solar constant) data collected by the Total Irradiance Monitor (TIM)...

  15. Cytogenetic investigations of persons exposed to professional chronic low-dose irradiation

    International Nuclear Information System (INIS)

    Rangelov, V.; Mitev, L.; Petrunov, P.; Vesselinova, L.

    2005-01-01

    The problem of long term influence of low-doses occupational irradiation is connected with the real assessment of their consequences. The current cytogenetic investigations were done on persons working under occupational chronic external partial irradiation. Accumulated doses of external irradiation are surveyed. Data give ground for suggestion about the relationship between accumulated dose and chromosomal aberrations. The additional damage factors (diagnostic investigations, chemical substances, tobacco addict) have done the more significant influence upon aberrations appearance increasing

  16. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  17. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  18. Effect of low-dose irradiation on structural and mechanical properties of hyaline cartilage-like fibrocartilage.

    Science.gov (United States)

    Öncan, Tevfik; Demirağ, Burak; Ermutlu, Cenk; Yalçinkaya, Ulviye; Özkan, Lütfü

    2013-01-01

    The aim of this study was to analyze the effect of low-dose irradiation on fibrous cartilage and to obtain a hyaline cartilage-like fibrocartilage (HCLF) with similar structural and mechanical properties to hyaline cartilage. An osteochondral defect was created in 40 knees of 20 rabbits. At the 7th postoperative day, a single knee of each rabbit was irradiated with a total dose of 5.0 Gy in 1.0 Gy fractions for 5 days (radiotherapy group), while the other knee was not irradiated (control group). Rabbits were then divided into four groups of 5 rabbits each. The first three groups were sacrificed at the 4th, 8th and the 12th postoperative weeks and cartilage defects were macroscopically and microscopically evaluated. The remaining group of 5 rabbits was sacrificed at the 12th week and biomechanical compression tests were performed on the cartilage defects. There was no significant biomechanical difference between the radiotherapy and the control group (p=0.686). There was no significant macroscopic and microscopic difference between groups (p=0.300). Chondrocyte clustering was observed in the irradiated group. Low-dose irradiation does not affect the mechanical properties of HCLF in vivo. However, structural changes such as chondrocyte clustering were observed.

  19. Cobalt-60 total body irradiation dosimetry at 220 cm source-axis distance

    International Nuclear Information System (INIS)

    Glasgow, G.P.; Mill, W.B.

    1980-01-01

    Adults with acute leukemia are treated with cyclophosphamide and total body irradiation (TBI) followed by autologous marrow transplants. For TBI, patients seated in a stand angled 45 0 above the floor are treated for about 2 hours at 220 cm source-axis distance (SAD) with sequential right and left lateral 87 cm x 87 cm fields to a 900 rad mid-pelvic dose at about 8 rad/min using a 5000 Ci cobalt unit. Maximum (lateral) to minimum (mid-plane) dose ratios are: hips--1.15, shoulders--1.30, and head--1.05, which is shielded by a compensator filter. Organ doses are small intestine, liver and kidneys--1100 rad, lung--1100 to 1200 rad, and heart--1300 rad. Verification dosimetry reveals the prescribed dose is delivered to within +-5%. Details of the dosimetry of this treatment are presented

  20. Inhibition of alloxan diabetes by low dose {gamma}-irradiation before alloxan administration

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Kiyonori [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Takehara, Yoshiki; Yoshioka, Tamotsu; Utsumi, Kozo

    1994-10-01

    We evaluated the inhibitory effects of whole body {sup 60}Co-{gamma} irradiation at a single low dose on alloxan-induced hyperglycemia in rats. (1) In rats that received alloxan, SOD activity in pancreas significantly decreased, but the decrease was inhibited by irradiation at a dose of 0.5 Gy. (2) Similarly, plasma peroxide, pancreatic peroxide, and blood glucose increased. However, the increase in pancreatic peroxide was inhibited by irradiation at a dose of 0.5 or 1.0 Gy and the increase in blood glucose by irradiation at 0.5 Gy. (3) After alloxan administration, degranulation was observed in cells, but this was inhibited by irradiation at 0.5 Gy. These results suggest that alloxan diabetes was inhibited by the increase of SOD activity in pancreas after low dose irradiation at 0.5 Gy. (author).

  1. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  2. Dose requirements for microbial decontamination of botanical materials by irradiation

    International Nuclear Information System (INIS)

    Razem, D.; Katusin-Razem, Branka

    2002-01-01

    Microbial contamination levels and corresponding resistivities to irradiation (expressed as dose required for the first 90% reduction, D first 9 0% r ed ) were analyzed in a number of various botanical materials. The following generalizations could be made: total aerobic plate count is the most informative measure of contamination; the probability of contamination depends on available surface of the material and processing history: flowers and leaves usually contain more contamination than fruits and seeds, while crude herbs contain more than extracts; liquid extracts are more contaminated than dry ones. At the same time, resistivity to irradiation increases approximately in the reverse order of contamination level on going from flowers and leaves, to fruits and seeds, to liquid and dry extracts. The two quantities, probability of contamination and D first 9 0% r ed being inversely related, the treatment dose needed to reduce initial contamination to tolerable level amounts to between 4 and 30 kGy under a typical scenario, and between 8 and 40 kGy under the worst-case scenario for the whole range of raw materials and botanical products

  3. Effect of milk temperature during irradiation on total bacterial count and keeping quality

    International Nuclear Information System (INIS)

    Sabbour, M.M.; Dawod, A.H.; Newigy, N.A.; Wahab, G.A.M.

    1989-01-01

    Cows' and buffaloes' milk samples were exposed to different doses of gamma radiation (100, 200 and 300 Kr) at 10 and 30°C. Irradiation of milk at 10°C caused more reduction in total bacterial count than that occurred at 30°C. The rate of microbial destruction due to irradiation at 10°C was higher than that occurred at 30°C. The keeping quality was determined daily for 15 days by clot-on-boiling test for samples kept at room temperature and in a refrigerator. The keeping quality recorded for cows' and buffaloes' milk samples in the refrigerator was 4 days, while it was only 1 day at room temperature. Irradiation of milk at 10°C was more effective than irradiation at 30°C, to increase the keeping quality of irradiated milk kept at refrigeration. Irradiation of milk samples at 10°C by 200 Kr increased the keeping quality for two weeks in the refrigerator, i.e. such a treatment increased the keeping quality by 4 folds

  4. Relative effect of radiation dose rate on hemopoietic and nonhemopoietic lethality of total-body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.; McNeill, J.; Karolis, C.; Thames, H.D. Jr.; Travis, E.L.

    1986-01-01

    Experiments were undertaken to determine the influence of dose rate on the toxicity of total-body irrdiation (TBI) with and without syngeneic bone-marrow rescue in mice. The results showed a much greater dose-rate dependence for death from nonhemopoietic toxicity than from bone-marrow ablation, with the ratio of LD 50 's increasing from 1.73 at 25 cGy/min to 2.80 at 1 cGy/min. At the higher dose rates, dose-limiting nonhemopoietic toxicity resulted from late organ injury, affecting the lungs, kidneys, and liver. At 1 cGy/min the major dose-limiting nonhemopoietic toxicity was acute gastrointestinal injury. The implications of these results in the context of TBI in preparation for bone-marrow transplantation are discussed. 15 refs., 4 figs

  5. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.; Bicer, A.; Pamuk, V.

    1997-01-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy (Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15,20 and 25 kGy at 20 o C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirradiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 μmol/kg kGy, and a maximum attainable concentration of 15.853 μmol/kg which may be used for process control and dosimetry. (author)

  6. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    Science.gov (United States)

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  7. Effect of using type A radiation for dose reconstruction in type B irradiated material: A microdosimetry approach

    International Nuclear Information System (INIS)

    Piters, T.M.; Chernov, V.

    2008-01-01

    A model is proposed to explain that in previously γ irradiated calcite, the yield after additive β irradiation tends to incline to the saturation yield of the β radiation even if that yield is lower than the yield after the γ irradiation. However, the proposed model is not specific for calcite and in fact all calculations are done in a fictive material. The proposed model considers, in contrast to existing models, the track nature of γ and β radiations and that these different types of radiations can be distinguished by the dose distribution inside their tracks. The determination of the dose distribution in the tracks for the different types of irradiations is quite complicated and instead we approximate the γ and β tracks by type A and B tracks that have different but homogeneously distributed dose in their track volumes. The trapping of generated free charges in the track was calculated with a simple one electron-one hole trap model. To obtain the total dose response (the average concentration of occupied traps as a function of dose), the yield in one point was averaged over all possible configurations of track overlapping in that point. We determined the slope of the initial part of the response curve (low dose sensitivity) and the saturation yield as function of the track dose. It is observed that the low dose sensitivity and saturation yield both decrease with increasing track dose. Simulations of the response to sequential irradiation first by type A radiation with a 64 Gy track dose and then followed by type B radiation with a track dose of 128 Gy using our model show a similar effect as observed in calcite demonstrating that the track nature of radiation is a plausible cause for the observed effect

  8. The irradiation dose for the inhibition of the sprouting of Baraka variety potatoes

    International Nuclear Information System (INIS)

    Perez Rivero, B.; Salcines, R.; Prieto, E.

    1990-01-01

    Baraka variety potatoes graded in the packing house, were irradiated with doses of 0.08; 0.10; 0.15 and 0.20 kGy after a two weeks curing period. The potatoes were stored for five months at 12 0 +- 2 0 C and relative humidity of 85 to 95%, and to determine the percentages of sprouting, rotting and loss in weight. It was concluded that doses of 0.08 kGy or more inhibited definitively the sprouting process. Less total losses and better commercial quality were obtained with a dose of 0.08 kGy the last of the store. 13 refs

  9. Comparison of three techniques for skin total irradiation with electrons; Comparacao de tres tecnicas de irradiacao total da pele com eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Delano V.S., E-mail: dbatista@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil); Bardella, Lucia H. [Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil); Rosa, Luiz A.R. da, E-mail: lrosa@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-10-26

    This paper compared three techniques of skin total irradiation with electrons: 1) horizontal positioning, 2) vertical positioning - rotatory technique and 3) vertical positioning - six fields technique. For that, a anthropomorphic phantom was positioned according to the recommendation for each technique and was i radiated at the linear accelerator by using the 6 MeV electrons. Radiochromic films were positioned on the surface in various regions of the phantom for measurement of absorbed dose. A ionization chamber was positioned inside of equivalent issue plates for dose evaluation due to the photons produced by electron stopping. The technique 2 and 3 have shown too similar in the results and number or discrepant points (8 and 10 respectively) of prescription lower than the technique 1 (22 points). The total body dose of photons of the 1, 2 and 3 techniques was 2.2%, 5.3% and 5.2% respectively

  10. Study on cellular survival adaptive response induced by low dose irradiation of 153Sm

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong

    1999-01-01

    The present study engages in determining whether low dose irradiation of 153 Sm could cut down the responsiveness of cellular survival to subsequent high dose exposure of 153 Sm so as to make an inquiry into approach the protective action of adaptive response by second irradiation of 153 Sm. Experimental results indicate that for inductive low dose of radionuclide 153 Sm 3.7 kBq/ml irradiated beforehand to cells has obvious resistant effect in succession after high dose irradiation of 153 Sm 3.7 x 10 2 kBq/ml was observed. Cells exposed to low dose irradiation of 153 Sm become adapted and therefore the subsequent cellular survival rate induced by high dose of 153 Sm is sufficiently higher than high dose of 153 Sm merely. It is evident that cellular survival adaptive response could be induced by pure low dose irradiation of 153 Sm only

  11. Renal toxicity after total body irradiation

    International Nuclear Information System (INIS)

    Borg, Martin; Hughes, Timothy; Horvath, Noemi; Rice, Michael; Thomas, Anthony C.

    2002-01-01

    Purpose: To evaluate the incidence of renal dysfunction after total body irradiation (TBI). Methods and Materials: Between 1990 and 1997, 64 patients (median age 50 years) received TBI as part of the conditioning regimen before bone marrow transplantation (BMT). Five patients with abnormal renal function at the beginning of treatment or with incomplete data were excluded. All patients received a total of 12 Gy (6 fractions twice daily for 3 consecutive days) prescribed to the peak lung dose (corrected for lung transmission) at a dose rate of 7.5 cGy/min. Renal shielding was not used. Renal dysfunction was assessed on the basis of the serum creatinine levels measured at the start and end of TBI and at 6, 12, 18, and 24 months after completion of BMT. Cox proportional hazard analysis was used to evaluate the various factors known to affect renal function. Results: Only 4 patients had elevated serum creatinine levels at 12 months and subsequently only 2 of the 33 surviving patients had persistent elevated renal serum creatinine levels 24 months after BMT. A fifth patient developed proteinuria and mildly elevated serum creatinine levels at 2.5 years. In 2 patients, the elevation coincided with disease relapse and normalized once remission was achieved. In the third patient, the elevation in serum creatinine levels coincided with relapse of multiple myeloma and the presence of Bence-Jones proteinuria. The fourth patient was the only patient who developed chronic renal failure secondary to radiation nephritis at 2 years. The etiology of the fifth patient's rise in creatinine was unknown, but may have been secondary to radiation nephritis. On univariate analysis, but not on multivariate analysis, a significant correlation was found between TBI-related renal dysfunction and hypertension before and after BMT. Conclusion: A dose of 12 Gy at 2 Gy/fraction resulted in only 1 case of radiation nephritis in the 59 patients studied 24 months after the completion of TBI and BMT

  12. Edge restenosis: impact of low dose irradiation on cell proliferation and ICAM-1 expression

    Directory of Open Access Journals (Sweden)

    Hannekum Andreas

    2006-07-01

    Full Text Available Abstract Background Low dose irradiation (LDI of uninjured segments is the consequence of the suggestion of many authors to extend the irradiation area in vascular brachytherapy to minimize the edge effect. Atherosclerosis is a general disease and the uninjured segment close to the intervention area is often atherosclerotic as well, consisting of neointimal smooth muscle cells (SMC and quiescent monocytes (MC. The current study imitates this complex situation in vitro and investigates the effect of LDI on proliferation of SMC and expression of intercellular adhesion molecule-1 (ICAM-1 in MC. Methods Plaque tissue from advanced primary stenosing lesions of human coronary arteries (9 patients, age: 61 ± 7 years was extracted by local or extensive thrombendarterectomy. SMC were isolated and identified by positive reaction with smooth muscle α-actin. MC were isolated from buffy coat leukocytes using the MACS cell isolation kit. For identification of MC flow-cytometry analysis of FITC-conjugated CD68 and CD14 (FACScan was applied. SMC and MC were irradiated using megavoltage photon irradiation (CLINAC2300 C/D, VARIAN, USA of 6 mV at a focus-surface distance of 100 cm and a dose rate of 6 Gy min-1 with single doses of 1 Gy, 4 Gy, and 10 Gy. The effect on proliferation of SMC was analysed at day 10, 15, and 20. Secondly, total RNA of MC was isolated 1 h, 2 h, 3 h, and 4 h after irradiation and 5 μg of RNA was used in standard Northern blot analysis with ICAM-1 cDNA-probes. Results Both inhibitory and stimulatory effects were detected after irradiation of SMC with a dose of 1 Gy. At day 10 and 15 a significant antiproliferative effect was found; at day 20 after irradiation cell proliferation was significantly stimulated. Irradiation with 4 Gy and 10 Gy caused dose dependent inhibitory effects at day 10, 15, and 20. Expression of ICAM-1 in human MC was neihter inhibited nor stimulated by LDI. Conclusion Thus, the stimulatory effect of LDI on SMC

  13. Radiological protection in a patient during a total body irradiation procedure; Proteccion radiologica en un paciente durante un procedimiento de TBI (irradiacion de cuerpo entero)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez O, J. O.; Hinojosa G, J.; Gomez M, E.; Balam de la Vega, J. A. [The American British Cowdray Medical Center, I. A. P., Sur 128 No. 143, Col. Americas, 01120 Mexico D. F. (Mexico); Deheza V, J. C., E-mail: johernandezo@abchospital.co [IPN, Escuela Superior de Fisica y Matematicas, Av. Luis Enrique Erro s/n, Edificio No. 9, Unidad Profesional Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2010-09-15

    A technique used in the Service of Radiotherapy of the Cancer Center of the American British Cowdray Medical Center (ABC) for the bone marrow transplantation, is the total body irradiation. It is known that the dose calculation, for this irradiation type, is old, since the dosimetric calculation is carried out by hand and they exist infinity of techniques for the patients irradiation and different forms of protecting organs of risk, as well as a great uncertainty in the given dose. In the Cancer Center of the ABC Medical Center, was carried out an irradiation procedure to total body with the following methodology: Computerized tomography of the patient total body (two vacuum mattresses in the following positions: dorsal and lateral decubitus), where is combined the two treatment techniques anterior-posterior and bilateral, skin delineate and reference volumes, dose calculation with the planning system Xi O of CMS, dose determination using an ionization chamber and a lung phantom IMRT Thorax Phantom of the mark CIRS and dosimetry in vivo. In this work is presented the used treatment technique, the results, statistics and the actualization of the patient clinical state. (Author)

  14. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  15. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  16. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  17. Effect of high-dose irradiation on quality characteristics of ready-to-eat chicken breast

    International Nuclear Information System (INIS)

    Yun, Hyejeong; Haeng Lee, Kyung; Jung Lee, Hyun; Woon Lee, Ju; Uk Ahn, Dong; Jo, Cheorun

    2012-01-01

    High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC–MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy. - Highlights: ► Comparison of high (40 kGy) and low-dose irradiation (5 kGy) on

  18. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  19. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  20. Studies on chronic effects of lower dose level irradiation

    International Nuclear Information System (INIS)

    Yun, T.G.; Yun, Y.S.; Yun, M.S.

    1980-01-01

    This experiment is being carried out to elucidate the chronic effects of Co 60 (γ-ray) - low doses irradiation on JCR mice at 3rd week, 6th week, and 5th month after their birth. Experimental mice at 3rd week of age have been irradiated with Co 60 - 60mR weekly, Co 60 - 500mR weekly and Co 60 - 61R biweekly at the dose rate of 60mR per second for 23 weeks until now. Co 60 - 61R irradiated mice were subdivided into Co 60 - alone group and Co 60 combined with red ginseng extracts group. In their survivor's rate and their body weight etc., no significant differences between control groups and test groups in these experimental mice. Experimented mice at 6 weeks and 5 months of age are also being irradiated with Co 60 in the same doses as the above for 14 weeks and 8 weeks until present. In these experimental groups, there are also no significant differences between control groups and experimental groups in their survivor's rate and their body weight

  1. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  2. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  3. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  4. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  5. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  6. Total body irradiation in the bone marrow transplantation in leukemia:an experience

    International Nuclear Information System (INIS)

    Zapatero, A.; Martin de Vidales, C.; Pinar, B.; Marin, A.; Cerezo, L.; Dominguez, P.; Perez, A.

    1996-01-01

    The purpose of this report was to evaluate long-term survival and morbidity of fractioned total body irradiation (TBI) prior to allogeneicbone marrow transplantation (BMT) for leukemia. From June 1985 to May 1992, 94 patients with acute leukemia and chronic myelogenous leukemia (CML), were treated with high dose cyclophosphamide(CY) and fractionated TBI to a total dose of 12 Gy in six fractions prior to allogeneic BMT. The Kaplan-Meier 5-year overall survival and disease-free survival were 53% +-6 and 48%+- respectively for patients with standard risk disease (first remission of acute leukemia and first chronic phase of CML), and 24%+-7 and 21%+-6 for patients with more advanced disease (p=3D0.01). The incidence of interstitial pneumonitis (IP), venoocclusive disease of the liver (VOD) and grade=3D>II acute graft-versus-host disease (GVHD) were respectively 15%, 29% and 51%. Fractionated TBI combined with high dose CY before allogeneic BMT for leukemia is an effective treatment in prolonging relapse-free survival witha low incidence of lung toxicity. (Author) 13 refs

  7. Total lymphoid irradiation preceding bone marrow transplantation for chronic myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    James, N D; Apperley, J F; Kam, K C; Mackinnon, S; Goldman, J M; Goolden, A W.G.; Sikora, K [Royal Postgraduate Medical School, London (UK)

    1989-03-01

    Between August 1985 and October 1987 35 patients with chronic myeloid leukaemia (CML) were treated by high dose chemotherapy, total body irradiation (TBI) (1000 or 1200 cGy, n=31) and total lymphoid irradiation (TLI) (800 or 600 cGy, n=35) preceding allogeneic bone marrow transplantation (BMT). Both TBI and TLI were given at 200 cGy/fraction. Twenty-three patients had HLA-identical sibling donors, nine patients had HLA-matched but unrelated donors, and three partially HLA-mismatched donors. Twenty-two patients received T-cell depleted marrow. TLI did not add greatly to the toxicity. Four patients had recurrent leukaemia before engraftment was evaluable. The other 31 patients engrafted and no graft failed. Twenty-two patients survive at a median time from transplant of 305 days (range 81-586 days). Fourteen have no evidence of disease; eight have or had only cytogenetic evidence of leukaemia. It is concluded that addition of TLI to pretransplant immunosuppression increases the probability of reliable engraftment in patients receiving T-cell depleted marrow. This is not associated with significantly increased toxicity. (author).

  8. Total lymphoid irradiation preceding bone marrow transplantation for chronic myeloid leukaemia

    International Nuclear Information System (INIS)

    James, N.D.; Apperley, J.F.; Kam, K.C.; Mackinnon, S.; Goldman, J.M.; Goolden, A.W.G.; Sikora, K.

    1989-01-01

    Between August 1985 and October 1987 35 patients with chronic myeloid leukaemia (CML) were treated by high dose chemotherapy, total body irradiation (TBI) (1000 or 1200 cGy, n=31) and total lymphoid irradiation (TLI) (800 or 600 cGy, n=35) preceding allogeneic bone marrow transplantation (BMT). Both TBI and TLI were given at 200 cGy/fraction. Twenty-three patients had HLA-identical sibling donors, nine patients had HLA-matched but unrelated donors, and three partially HLA-mismatched donors. Twenty-two patients received T-cell depleted marrow. TLI did not add greatly to the toxicity. Four patients had recurrent leukaemia before engraftment was evaluable. The other 31 patients engrafted and no graft failed. Twenty-two patients survive at a median time from transplant of 305 days (range 81-586 days). Fourteen have no evidence of disease; eight have or had only cytogenetic evidence of leukaemia. It is concluded that addition of TLI to pretransplant immunosuppression increases the probability of reliable engraftment in patients receiving T-cell depleted marrow. This is not associated with significantly increased toxicity. (author)

  9. Dose measurements in the treatment of mycosis fungoides with total skin irradiation using a 4 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.E.R. [Hospital Real e Benemerita Sociedade Portuguesa de Beneficencia (Brazil); Todo, A.S.; Campos, L.L. [Instituto de Pesquisas Energeticas e Nucleares, CNEN/SP Travessa R, Sao Paulo (Brazil)

    2000-05-01

    The total skin irradiation (TSI) is one of the most efficient techniques in the treatment administered with curative intent of the mycosis fungoides. The cure may be obtained in 10% to 40% of cases. The original Stanford University technique, created in 1960, was applied in a 4.8 MeV linear accelerator, that provided 2.5 MeV electrons in the patient, by the use of 4 couple beams with the patient placed in front of the beam, 3 meters distant from the apparatus. In this work we describe a 4 MeV electrons beam treatment method. We intend to improve the uniformity of the dose in the patient, as well, to reduce the problems with the overlapping treatment fields, that occurs in conventional treatment that uses 1 meter of focus-skin distance, and the treatment time to the patient. Only one modification was done in the apparatus: the dose rate for this treatment was doubled. The patient is placed on a rotative base and he assumes successively 6 positions: stand up and perpendicular to the beam, distant 2.83 meters from the gantry, with 60 degrees of interval between the rotations. In each position, the patient receives a couple of beams (the beam angulation is 19.5 degrees above the transversal axis in the middle of the patient and 19.5 degrees below it). The dosimetric data obtained were compared to the international protocols (AAPM). The delivered doses in the patient were measured with thermoluminescent dosimeters placed on skin surface and with Kodak XV-2 films placed between different slabs of an anthropomorphic phantom. The dose distribution in the phantom shows a good uniformity, in all thickness of interest, so it is possible to use this technique in the treatment of the mycosis fungoides as well Kaposi's sarcoma. (author)

  10. Effect of Low-Dose Irradiation on Biochemical and Immunological Responses

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; El-Gawish, M.A.; Mahdy, E.M.E.; Shosha, W.Gh.

    2008-01-01

    Lipid peroxidation (Malondialdehyde), Lactate dehydrogenase, Iron Concentration, IL-6 and IL-1β concentration were determined in Seventy-two male albino rats divided in two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7, and 1 Gy single dose of gamma radiation. The other was subdivided into 4 irradiated subgroups with fractionated dose .-radiation of 0.3, 0.7 and 1 Gy with 0.1 Gy per day and the last subgroup 1 Gy with 0.2 Gy daily. All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated more than single doses. In conclusion, the data of this study highlight on the beneficial and stimulatory effect of low ionizing radiation doses (≥ 1Gy) whether single or fractionated on some biochemical and immunological parameters. These findings may be fruitful for those who undergo radiotherapy as well as the dose-effect relationship

  11. Radioprotective effect of RSP-CM on mice irradiated with different doses

    International Nuclear Information System (INIS)

    Zhang Xia; Yang Rujun; Zhang Xin; Yang Yunfang; Jin Zhijun; Xiang Yingsong

    2000-01-01

    Objective: To investigate the radioprotective effects of cytokines on hematopoietic impairment of irradiated mice. Methods: Using RSP-CM and LP3-CM respectively originated GM-CSF and G-CSF to treat ICR mice irradiated with different doses of 60 Co γ-rays. The 30-day survival rate of mice, the mean survival days of dead mice were determined and the numbers of peripheral white blood cells and BMC of part of the mice were counted. At the same time, GM clonogenic activity of BM was assayed. Results:RSP-CM could effectively raise 30-day survival rate of mice irradiated with 7.5 Gy. However, LP3-CM had no obvious effect. Judging from the comparative survival ratio, only the RSP-CM treated group showed protective effect on the 8.0 Gy -irradiated mice. The 8.5 Gy-irradiated mice all died within 30 days, indicating that GM-CSF had weak effect on higher dose-irradiated mice. Conclusion: GM-CSF can stimulate the hematopoietic system of irradiated mice, and has dose-effect and time-effect relations. M-CSF used singly has no obvious effect

  12. The dose effect of irradiated rice pollen on double fertilization

    International Nuclear Information System (INIS)

    Wang Houcong; Chen Zhengming; Chen Ruming; Qiu Simi; Yang Juemin; Yang Huijie

    1995-01-01

    The mature panicles of rice were treated with 60 Co γ-rays in the range of 0∼0.372 kGy. The male sterile line used as the female plants were fertilized with γ-irradiated pollen manually. The dose effect of the irradiated pollen on double fertilization was investigated. It was found that double fertilization of the irradiated pollen was suppressed to different degrees as compared with the control. The effect was noticeable as that the fusion time of the male nucleolus with the female one was delayed with the increasing of γ-radiation dose. The delayed time was less than 13 hours when the dose was below 0.186 kGy and it was more than 15 hours when the dose was above 0.279 kGy. Furthermore, several types of deformed embryonic cells and endosperm nuclei were observed

  13. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    International Nuclear Information System (INIS)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk; Jeong, Jong Ryul; Maeng, Cheol Soo; Lee, Myoung Goo

    2016-01-01

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10"-"5 dpa.

  14. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk [KAIST, Daejeon (Korea, Republic of); Jeong, Jong Ryul [Chungnam University, Daejeon (Korea, Republic of); Maeng, Cheol Soo; Lee, Myoung Goo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10{sup -5} dpa.

  15. On-Line High Dose-rate Gamma Irradiation Test of the Profibus/DP module

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Kim, Chang Hoi; Koo, In Soo; Hong, Seok Boong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The field bus data communication is considered for application in nuclear environments. The nuclear facilities, including nuclear power plants, high radioactivity waste disposals, reprocessing plants and thermonuclear fusion installations can benefit from the unique advantages of the field bus communication network for the smart field instruments and controls. A major problem which arises when dealing with one in these nuclear environments, in special circumstances such as the RCS (reactor coolant system) area, is the presence of high gamma-ray irradiation fields. Radioactive constraints for the DBA(design basis accident) qualification of the RTD transmitter installed in the inside of the RCS pump are typically on the order of 4kGy/h with total doses up to 10kGy. In order to use an industrial field bus communication network as an ad-hoc sensor data link in the vicinity of the RCS area of the nuclear power plant, the robust survivability of these system in such intense gamma-radiation fields therefore needs to be verified. We have conducted high dose-rate (up to 4kGy) gamma irradiation experiments on a profibus/DP communication module. In this paper we describe the evolution of its basic characteristics with high dose-rate gamma irradiation and shortly explain the observed phenomena.

  16. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    Science.gov (United States)

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  17. Identification and dose evaluation of irradiated beef containing bones

    International Nuclear Information System (INIS)

    Mangiacotti, M.; Alberti, A.; Fuochi, P.G.; Chiesa, L.M.

    2011-01-01

    Complete text of publication follows. Food irradiation is a well-established technique to extend the food shelf life and to reduce the food-related health hazards caused by pathogenic micro-organisms. At present, radiation treatment is permitted for various categories of food and food ingredients in many countries. At the European level, irradiation of food is regulated by the European Directives 1999/2/EC and 1999/3/EC. Community legislation states that any food or food ingredients, authorised in the European Union, must be labelled with the word 'irradiated' and that every year each Member State has to carry out checks at the product marketing stage to enforce correct labelling. The present work aimed at identifying irradiated beef meat by using a reliable and sensitive detection of DNA comets as screening biological method and performing an Electron Spin Resonance (ESR) spectrometry as confirmatory qualitative standard. The influence of storage conditions and time after irradiation on DNA degradation was also investigated. Furthermore the application of ESR technique as a quantitative method was successfully applied to beef bones, using the approach of calibration curve. Results, although the limited statistics, proved for reliability of the dose reconstruction method and blind tests were carried out resulting in very satisfactory difference between actual treatment dose and reconstructed dose.

  18. Tissue breathing and topology of rats thymocytes surface under acute total γ-irradiation.

    Science.gov (United States)

    Nikitina, I A; Gritsuk, A I

    2017-12-01

    Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation. І. A. Nikitina, A. I. Gritsuk.

  19. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  20. Hemopoiesis in monkeys in the course of and after total chronic irradiation

    International Nuclear Information System (INIS)

    Dzhikikidze, Eh.E.; Kosichenko, L.P.; Kuksova, M.I.

    1992-01-01

    Morphological and cytogenetic changes in blood-formation system of 2 types of monkeys were studied following chronic prolonged irradiation with low daily doses and considerable integral radiation load. Peak decrease of total leukocyte number of 1 mkl in both groups of monkeys at the expense of neutrophils was observed at integral dose of 10.78 Gy and was caused by decrease of index of neutrophil maturation. Violations of hereditary structures of bone marrow cells and peripheric blood lymphocytes were stable. Structural chromosomal aberrations remained in monkeys of both groups up to natural animal death. Quantitative and qualitative violations were less pronounced in macaca rhesus than in hamadryas baboons. This fact revealed high radiosensitivity of the baboons

  1. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    International Nuclear Information System (INIS)

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-01-01

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm 2 fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL-33

  2. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jun Won, E-mail: JUNWON@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoo, Hyun, E-mail: gochunghee@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kwak, Woori, E-mail: asleo02@snu.ac.kr [Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Won Hoon, E-mail: wonhoon@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Cho, Seoae, E-mail: seoae@cnkgenomics.com [C& K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919 (Korea, Republic of); Choi, Yu Jeong, E-mail: yunk9275@daum.net [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Yoon-Jin, E-mail: yjlee8@kirams.re.kr [Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  3. Stimulation effects of low dose-rate irradiation on pancreatic antioxidant activity in type II diabetes model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu; Sakai, Kazuo

    2005-01-01

    The effects of low dose-rate gamma irradiation on the type II diabetes mellitus were investigated in BKS.Cg-+Lepr db /+Lepr db /Jcl (DB mice). Ten-week-old female DB mice (5 mice in each group) were irradiated with gamma ray at 0.35, 0.70, or 1.2 mGy/hr. During the course of the 12 weeks the glucose level slightly increased with little difference between the irradiated and the non-irradiated groups. The plasma insulin concentration decreased within the first 4 weeks in all groups. The level was kept low in the non-irradiated mice; while the insulin level in the irradiated groups showed a tendency to increase. In the 0.70 mGy/hr group the increase was statistically significant after 12 weeks of irradiation. Total activity of SOD, one of antioxidative enzymes, decreased both in non-irradiated and irradiated groups; however the decrease was less in the irradiated groups, especially 0.70 mGy/hr group. In the 0.70 mGy/hr group Mn-SOD activity, one of the components of total SOD activity, increased after 12-week irradiation. A pathological examination of the pancreas revealed that damage to β cells responsible for the secretion of insulin was much less in the 0.70 mGy/hr group compared to that in the non-irradiated group. These results indicated that the low dose-rate irradiation increase the antioxidative capacity in the pancreas to protect β cells from oxidative damage, and the to increase the insulin level. This mechanism would lead the mice to the recovery from the disease and the prolongation of the life span as is demonstrated in our previous report. (author)

  4. Effect of irradiation on total chemical profiles of ten selected local herbs

    International Nuclear Information System (INIS)

    Salmah Moosa; Maizatul Akmam Mohd Nasir

    2010-01-01

    As utilisation of medicinal herbs in food and bio industry increases, mass production and the supply of high quality herbs are required. Restriction on the use of fumigants and preservatives on herbs demands safe hygienic technologies such as irradiation. The stability of the active components of ten local herbs after irradiation was studied. The herbs selected were Hempedu Bumi, Mas Cotek, Tongkat Ali, Kacip Fatimah, Misai Kucing, Dukung Anak, Jarum Tujuh Bilah, Kesom, Pegaga and Sambung Nyawa. The herbs were dried, powdered and irradiated at different doses of gamma radiation (0, 1, 3, 5, 10, 15 and 25 kGy) at room temperature prior to extraction. The herbs were then extracted either in methanol or chloroform and freeze dried. About 10.0 mg of each extract (in triplicates) were weighed into an Eppendorf vial and solubilised in 700 μl CD 3 OD using sonication in an ultrasound bath to obtain a clear solution. This solution was then transferred to a NMR vial and a 1H-NMR spectrum was acquired according to standard Total Quality Profile (TQP) protocol. The results of the statistical analysis showed clearly that all irradiated plant samples did not exhibit any significant pattern of differences. Using SIMCA analysis, we found that there is no statistical basis for separation of control, 1, 5, 10, 15 and 25 kGy irradiated samples on a 95 % confidence limit. TQP analysis for the ten selected herbal plant shows that irradiation up to 25 kGy did not cause significant changes to the total chemical profiles and thus the integrity of the herbal material in the analysed plants. (author)

  5. Total lymphoid irradiation and total body irradiation for allogeneic bone marrow transplantation in aplastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, Koichi; Hishikawa, Yoshio; Taniguchi, Midori; Kamikonya, Norihiko; Miura, Takashi; Kanamaru, Akihisa; Kakishita, Eizo; Kai, Shunro; Hara, Hiroshi (Hyogo Coll. of Medicine, Nishinomiya (Japan))

    Between April 1980 and June 1989, 15 patients with severe aplastic anemia (SAA) were treated at Hyogo College of Medicine with bone marrow transplantation (BMT) after preparation consisting of cyclophosphamide (CY) and total lymphoid irradiation (TLI) or total body irradiation (TBI) for the purpose of reducing the incidence of graft rejection. All patients had initial evidence of engraftment after the first transplantation except for one patient who died of heart failure due to CY on the third day after transplantation and could not be evaluated for engraftment. Rejection later occurred in four of these 14 patients, who then underwent successful regrafting. One of these four patients, who was conditioned with CY alone at the first grafting, underwent successful regrafting after a conditioning regimen of CY and TBI. In the other three patients, irradiation was performed twice as the conditioning regimen. Thus, 14 of 15 patients underwent successful BMT and are alive with restored hematopoietic function. From the above results, the combination of TLI or TBI and CY was considered to be very useful as a conditioning regimen for BMT in patients with SAA. (author).

  6. Modifying effect of low dose irradiation

    International Nuclear Information System (INIS)

    Kalendo, G.S.

    1989-01-01

    It is shown that irradiation of Hela cells with stimulating doses of 0,1 Gy changes the cells' response to the subsequent radiation effect of greater value: instead of DNA synthesis inhibition stimulation takes place. Modifying effect of preliminary irradiation with 0,1 Gy manifests it self only in case if there is a certain time interval not less than 3 minutes and not more than 10 minutes (3-5 minutes is optimal interval). Data on modifying effect with 0,1 Gy at subcellular and cellular-population levels are presented. 21 refs.; 6 figs

  7. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  8. Pre-1989 epidemiological surveys of low-level dose pre-conception irradiation

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1990-01-01

    Information from 59 pre-1989 epidemiological surveys concerning pre-conception irradiation at doses less than 0.1 Gy has been collated to determine whether any consistent patterns of health effects emerge. The surveys are considered in three groups: childhood malignancies, Down's syndrome and indicators of reproductive damage. Although a pattern is observed for Down's syndrome, no reliable associations are apparent for childhood malignancies (where all surveys pre-date the Gardner survey at Sellafield) or indications of reproductive damage. The twelve surveys of Down's syndrome in relation to maternal pre-conception irradiation received for medical reasons show a pattern consistent with a doubling dose of about 20 mGy. This doubling dose value is, however, not based on individual measurements of ovarian dose and is inconsistent with results from high-level dose surveys. There is no association between paternal irradiation and Down's syndrome. (author)

  9. Relaxation behavior and dose dependence of radiation induced radicals in irradiated mango

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kakita, Daisuke; Kaimori, Yoshihiko; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    Mangoes are imported to Japan after treated with hot water. Recently, irradiated mangoes imported to U. S. are widely used. This paper reports on the ESR method for analyzing the radiation induced radicals of irradiated mangoes. Upon the γ ray irradiation, a strong single peak in the flesh and skin of mangoes was observed at g=2.004. This singlet peak may be attributed to organic free radicals. The ESR spectra of the flesh and skin of mangoes showed the radiation induced radicals due to cellulose by irradiation over 12 kGy. The relaxation times (T 1 and T 2 ) of the singlet signal were calculated. T 2 showed dose response according to increasing the irradiation dose levels, while T 1 was almost constant. The value of (T 1 T 2 ) 1/2 showed the dependence of irradiation dose level. (author)

  10. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-31

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  11. Wholesomeness of food irradiated with doses above 10 kGy

    Energy Technology Data Exchange (ETDEWEB)

    Kaferstein, F [Director, Programme of Food Safety and Food Aid, WHO, CH-1211, Geneva 27, (Switzerland)

    1998-12-31

    Strictly from the scientific point of view, no ceiling should be set for food irradiated with doses greater than the currently recommended upper level of 10 kGy by the Codex Alimentarius Commission. The food irradiation technology itself is safe to such a degree that as long as sensory qualities of food are retained and harmful microorganisms are destroyed, the actual amount of ionizing radiation applied is of secondary consideration. That was the main conclusion of a week-long meeting on high dose irradiation organized jointly by the World Health Organization (WHO), the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA). The knowledge of what can and does occur chemically in high dose irradiated foods which derives from over 50 years of research tells us that one can go as high as 75 kGy, as has already been done in some countries, and the result is the same food is safe and wholesome and nutritionally adequate. (Author)

  12. Wholesomeness of food irradiated with doses above 10 kGy

    International Nuclear Information System (INIS)

    Kaferstein, F.

    1997-01-01

    Strictly from the scientific point of view, no ceiling should be set for food irradiated with doses greater than the currently recommended upper level of 10 kGy by the Codex Alimentarius Commission. The food irradiation technology itself is safe to such a degree that as long as sensory qualities of food are retained and harmful microorganisms are destroyed, the actual amount of ionizing radiation applied is of secondary consideration. That was the main conclusion of a week-long meeting on high dose irradiation organized jointly by the World Health Organization (WHO), the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA). The knowledge of what can and does occur chemically in high dose irradiated foods which derives from over 50 years of research tells us that one can go as high as 75 kGy, as has already been done in some countries, and the result is the same food is safe and wholesome and nutritionally adequate. (Author)

  13. Wholesomeness of food irradiated with doses above 10 kGy

    Energy Technology Data Exchange (ETDEWEB)

    Kaferstein, F. [Director, Programme of Food Safety and Food Aid, WHO, CH-1211, Geneva 27, (Switzerland)

    1997-12-31

    Strictly from the scientific point of view, no ceiling should be set for food irradiated with doses greater than the currently recommended upper level of 10 kGy by the Codex Alimentarius Commission. The food irradiation technology itself is safe to such a degree that as long as sensory qualities of food are retained and harmful microorganisms are destroyed, the actual amount of ionizing radiation applied is of secondary consideration. That was the main conclusion of a week-long meeting on high dose irradiation organized jointly by the World Health Organization (WHO), the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA). The knowledge of what can and does occur chemically in high dose irradiated foods which derives from over 50 years of research tells us that one can go as high as 75 kGy, as has already been done in some countries, and the result is the same food is safe and wholesome and nutritionally adequate. (Author)

  14. A comparative study of total body irradiation as a method of inducing granulocyte depletion in mice

    International Nuclear Information System (INIS)

    Bogman, M.J.J.T.; Cornelissen, I.M.H.A.; Berden, J.H.M.; Jong, J. de; Koene, R.A.P.

    1984-01-01

    Since conventional methods of inducing depletion of polymorphonuclear granulocytes (PMNs) in mice, such as treatment with cytostatic drugs and anti-PMN sera, proved to be insufficient to induce a stable PMN depletion for several days, and were accompanied by considerable toxic side effects, we induced neutrophil depletion in mice by total body irradiation (TBI) in a single dose of 6.0 Gy (600 rads.) at a dose rate of 0.20 Gy/min. This treatment reduced the number of PMNs in the peripheral circulation to values below 150/μl from day 3-10 after irradiation. The number of lymphocytes fell simultaneously. Platelet counts remained above 60% of normal values during the first 7 days after irradiation. Complement levels were not significantly affected by TBI. The results show that TBI of 6.0 Gy induces pronounced and stable PMN depletion in mice for at least 7 days. Furthermore, under an aseptic regimen the mice can be kept in good condition and losses are less than 5%. (Auth.)

  15. Features of aseptic granulomatous imflammation in rats subjected to the chronic action of gamma irradiation in small doses

    Energy Technology Data Exchange (ETDEWEB)

    Goranov, I; Krushkov, I; Statelov, V; Bratanov, M; Nacheva, V; Gospodinova, D; Serafimov, A

    1976-04-01

    Wistar rats were given a Co-60 dose of 2 r/day over a period of 8 months, or a total dose of 400 r. Two sterile sponge scraps of the same size and form were introduced subcutaneously into the intracapsular space of rats in the control and irradiated groups. Cuts were made in the subcutaneous tissue near the implanted foreign bodies. A vigorous inflammatory reaction developed in the unirradiated animals. The skin granulated normally. The irradiated animals showed a general bleeding of the tissues at the implantation site. A number of deviations were noted during the tissue granulation of the irradiated rats. The migration of leucocytes into the infected site was decreased. The formation of macrophage elements and their activity was lower in the irradiated animals. The reaction of the connective tissue turned out to be a rather sensitive test of the disruptive effects of long-term irradiation. 11 refs.

  16. Suppression of carcinogenesis in mice by adaptive responses to low dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kazuo; Iwasaki, Toshiyasu; Hoshi, Yuko; Nomura, Takaharu; Ina, Yasuhiro; Tanooka, Hiroshi [Central Research Institute of Electric Power Industry, Low Dose Radiation Research Center, Komae, Tokyo (Japan)

    2003-07-01

    Effects of prolonged low-dose-rate irradiation on the process of carcinogenesis were examined in mice treated with chemical carcinogen or irradiated with high doses of X-rays. Female ICR mice, 5 week-old, 35 in each group, were exposed to gamma-rays from a {sup 137}Cs source in the long-term low dose rate irradiation facility at CRIEPI. The dose rate was 2.6 mGy/hr (A), 0.96 mGy/hr (B), or 0.30 mGy/hr (C). Thirty-five days later, the mice were injected into the groin with 0.5 mg of methylcholanthrene (MC) dissolved in olive oil and irradiation was continued. Cumulative tumor incidences after 216 days following MC injection were 89% in group A, 76% in group B, and 94% in group C. That in non-irradiated control group was 94%. The difference in the tumor incidence between the control and position B was statistically significant, indicating the suppressive effect of the low dose rate irradiation on the process of MC-induced carcinogenesis with an optimum dose rate around 1 mGy/hr. In B6C3F1 mice, although the suppression of tumor incidence was not observed, there was a significant delay in tumor appearance in the irradiated mice between 100-150 days after MC injection. A group of 20 female C57BL/6N mice, 5 weeks old, were exposed to gamma-rays at 0.95 mGy/hr for 5 weeks. Then, they were exposed weekly to 1.8 Gy whole body X-irradiation (300 kVp) for consecutive 4 weeks to induce thymic lymphoma. Another group received only the fractionated irradiation. The first mouse died from thymic lymphoma appeared 89 days after the last irradiation in the group received only the fractionated irradiation, while 110 days in the group combined with the low dose rate irradiation. (author)

  17. Establishing the irradiation dose for paper decontamination

    International Nuclear Information System (INIS)

    Moise, Ioan Valentin; Virgolici, Marian; Negut, Constantin Daniel; Manea, Mihaela; Alexandru, Mioara; Trandafir, Laura; Zorila, Florina Lucica; Talasman, Catalina Mihaela; Manea, Daniela; Nisipeanu, Steluta; Haiducu, Maria; Balan, Zamfir

    2012-01-01

    Museums, libraries and archives are preserving documents that are slowly degrading due to the inherent ageing of the cellulose substrate or to the technological errors of the past (acid paper, iron gall ink). Beside this, large quantities of paper are rapidly damaged by biological attacks following natural disasters and improper storage conditions. The treatment of paper documents with ionizing radiation can be used for mass decontamination of cultural heritage items but conservators and restaurators are still reserved because of the radiation induced degradation. We conducted a study for establishing the dose needed for the effective treatment of paper documents, taking into account the biological burden and the irradiation effects on paper structure. We used physical testing specific to paper industry and less destructive analytical methods (thermal analysis). Our results show that an effective treatment can be performed with doses lower than 10 kGy. Old paper appears to be less affected by gamma radiation than recent paper but the sampling is highly affected by the non-uniform degree of the initial degradation status. The extent of testing for degradation and the magnitude of acceptable degradation should take into account the biological threat and the expected life time of the paper documents. - RESEARCH HIGHLIGHTS: ► For doses <15 kGy, the measurement uncertainty of mechanical properties is higher than the radiation induced degradation. ► The statistics of measuring induced degradation may be improved by testing both mechanical properties and thermal decomposition of paper. ►Because of the large variability of paper samples, testing to only one irradiation dose has no or reduced relevance. ►It was choused for the irradiation of paper items from archives and collections a dose range of 5–7 kGy.

  18. Melanin is Effective Radioprotector against Chronic Irradiation and Low Radiation Doses

    International Nuclear Information System (INIS)

    Mosse, I.; Plotnikova, S.; Kostrova, L.; Molophei, V.; Dubovic, B.

    2001-01-01

    Full text: Earlier we found pigment melanin ability to reduce significantly genetic consequences of acute irradiation in animals (drosophila, mice) and cultured human cells and to decrease strongly 'genetic load' accumulated in irradiated populations. The influence of melanin isolated from human hair on genetic effects of chronic irradiation in mice has been investigated. Melanin suspension or distilled water were injected every day into stomach of animals during 1-3 Gy g-irradiation with dose rate 0.007Gy/h. Levels of reciprocal translocations in germ cells were analysed cytologically. Melanin influence on genetic effect of chronic irradiation was shown to be even more effective than that of acute one. Radioadaptive response was used in order to study melanin influence on low radiation dose effect. We have demonstrated adaptive response in mice germ cells and bone marrow cells frequency of chromosomal aberrations in these cells after 0.2+1.5 Gy was about half as much as 1.7 Gy effect. Melanin injection 2 hours before the conditioning dose of 0.2 Gy resulted in the same mutation level as before 1.7 Gy adaptive response was not found. If melanin was applied between the first and second doses, both adaptive reaction and protection led to 4-fold decrease in aberration level. Thus melanin is able to remove completely low radiation dose effect. Complete toxicological tests have been conducted. The pigment melanin is not toxic and does not possess a mutagenic, teratogenic or carcinogenic activity. Melanin could be used in medicine for people protection against genetic consequences of long-term irradiation at low doses. (author)

  19. Effect of low doses gamma-irradiation on yield and nitrogen utilization in potato

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Sharanek, A.

    1998-01-01

    Twelve field experiments were conducted in two seasons (1992 and 1993) in three regions of Syria (Damascus, Al-Salamia and Al-Ghab). Tubers of potato (Solanum tuberosum L. var Diamont) were irradiation with gamma-radiation from a 60 Co source, using doses of 0,1,2,3,5 and 10 Gy, at dose rate of 0.15 Gy/min. The irradiated tubers were sown 5-6 days after irradiation, in a randomized complete block design with four replicates and two rates of nitrogen fertilizer (0 and 120 Kg/N/ha). Irradiation and N application significantly increased dry matter production by 24% (for optimal dose) and 38% respectively. The tuber yields were increased by 28.7% for N application and between 13.6 and 19.7 for optimal dose, as a mean for all experiments and regions. Presowing tubers irradiation with 3 Gy. dose also Increased N uptake at harvest by 21.6, 16.6 and 18% for Damascus, Al-Salamia and Al-Ghab respectively. irradiation had negligible effects on N concentration and both Scratch and Vitamin C contents in tubers. (author)

  20. Effects of low doses gamma irradiation on yield and nitrogen utilization in potato

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Sharanik, A.

    1997-12-01

    Twelve field experiments were conducted in two seasons (1992 and 1993) in three regions of Syria (Damascus, Al-Salamia and Al-Ghab). Tubers of potato (Solanum tuberosum L. var Diamont) were irradiated with gamma-radiation from a 60 Co source, using doses of 0,1,2,3,5 and 10 Gy, at dose rate of 0.15 Gy/min. The irradiated tubers were sown 5-6 days after irradiation, in a randomized complete block design with four replicates and two rates of nitrogen fertilizer (0 and 120 Kg/N/ha). Irradiation and N application significantly increased dry matter production by 24% (for optimal dose) and 38% respectively. The tuber yields were increased by 28.7% for N application and between 13.6 and 19.7 for optimal dose, as a mean for all experiments and regions. Presowing tubers irradiation with 3 Gy. dose also Increased N uptake at harvest by 21.6, 16.6 and 18% for Damascus, Al-Salamia and Al-Ghab respectively. irradiation had negligible effects on N concentration and both Scratch and Vitamin C contents in tubers. (author)

  1. Shelf-stable food through high dose irradiation

    International Nuclear Information System (INIS)

    Placek, V.; Svobodova, V.; Bartonicek, B.; Rosmus, J.; Camra, M.

    2004-01-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75 deg. C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30 deg. C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Rez 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO x -containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested

  2. Shelf-stable food through high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Placek, V. E-mail: pla@ujv.cz; Svobodova, V.; Bartonicek, B.; Rosmus, J.; Camra, M

    2004-10-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75 deg. C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30 deg. C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Rez 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO{sub x}-containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested.

  3. Histochemical study on effects of low dose γ-irradiation on acid phosphatase in liver of the pigeons Columbus livia intermedia Strickland

    International Nuclear Information System (INIS)

    Gadhia, P.K.; Shah, V.C.

    1982-01-01

    Effects of total body γ-irradiation with sub-lethal dose (400 rads) on acid phosphatase have been studied in the liver of pigeon. The histochemical study showed increased activity of acid phosphatase in liver after 48 hr and 72 hr of irradiation. (author)

  4. Dose-rate effects in synchronous mammalian cells in culture. II. A comparison of the life cycle of HeLa cells during continuous irradiation or multiple-dose fractionation

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.

    1977-01-01

    The life cycle of synchronized S3 HeLa cells was examined during continuous irradiation at a dose rate of approximately 37 rad/hr and during multiple dose fractionation schedules of the same average dose rate (total dose / overall time = average dose rate). For all regimes given at this dose rate the effects on the life cyclee were similar. Cells progressed through G1 and S without appreciable delay and experienced a minimum G2 delay of about 10 hr. Cells eventually entered mitosis but virtually none were able to complete a successful division

  5. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    Science.gov (United States)

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  6. Pathological consequences of chronic low daily dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.; Miller, A.C.; Ramakrishnan, N. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States); Fritz, T.E.

    2000-07-01

    The quantitative relationships between the chronic radiation exposure parameters of dose-rate and total dose in relation to associated health risks was examined in dogs. At a dose-rate of 75, 128, and 263 mGy/d the incidence of acute lymphohematopoietic suppression (aplastic anemia) and associated septic complications was 73%, 87%, and 100%, respectively, and it increased in dose-dependent manner. By contrast, at dose-rates below 75 mGy/d, late cancers contributed significantly to the death of relatively long-lived animals, whose mean survival time was 1800 days. Myeloproliferative disease (MPD), mainly myeloid leukemia, was the dominant pathology seen at the higher daily dose-rates (18.8-75 mGy/d). When daily exposure was carried out continuously, the incidence of MPD was quite high. It should be noted that the induction radiation-induced MPD in this study was highly significant, because spontaneous MPD is exceedingly rare in the dog. However, when the daily dose-rate was reduced further or exposure was discontinued, the incidence of MPD declined significantly. At these lower dose-rates, solid tumors contributed heavily to the life-shortening effects of chronic irradiation. The induction and progression of these survival-compromising, late forms of pathology appeared to be driven by the degree of hematopoietic suppression that occurred early during the exposure phase, and in turn by the capacity of hematopoietic system to repair itself, recover, and to accommodate under chronic radiation stress. (K.H.)

  7. Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code

    International Nuclear Information System (INIS)

    Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade

    2013-01-01

    The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)

  8. Response of mouse lung to irradiation at different dose-rates

    International Nuclear Information System (INIS)

    Hill, R.P.

    1983-01-01

    Groups of LAF1 mice were given thoracic irradiation using 60 Co γ-rays at dose-rates of 0.05 Gy/min (LDR) or 1.1 Gy/min (HDR) and the death of the animals was monitored as a function of time. It was found that the time pattern of animal deaths was similar for the two different dose-rates. Dose response curves for animals dying at various times up to 500 days after irradiation were calculated and the LD 50 values determined. The curves for the LD 50 values, plotted as a function of the time at analysis for treatment at HDR or LDR, were essentially parallel to each other but separated by a factor (LDR/HDR) of about 1.8. This indicates that the sparing effect of LDR treatment is the same for deaths occurring during the early pneumonitis phase or during the late fibrotic phase of lung damage. The available information on the response of patients to whole thoracic irradiation, given for either palliation or piror to bone marrow transplantation, suggests that for similar dose-rates to those studied here the ratio (LDR/HDR) is only 1.2 to 1.3. This difference between the animal and human data may reflect the modifying effect of the large doses of cytotoxic drugs used in combination with the irradiation of bone marrow transplant patients

  9. Absorbed dose modeled for a liquid circulating around a Co-60 irradiator

    International Nuclear Information System (INIS)

    Mangussi, J.

    2013-01-01

    A model for the distribution of the absorbed dose in a volume of liquid circulating into an active tank containing a Co-60 irradiator is presented. The absorbed dose, the stir process and the liquid recirculation into the active tank are modeled. The absorbed dose for different fractions of the volume is calculated. The necessary irradiation times for the achievement of the required absorbed dose are evaluated. (author)

  10. In vivo dosimetry of high-dose fractionated irradiation in an experimental set-up with rats

    Energy Technology Data Exchange (ETDEWEB)

    Fortan, L; Van Hecke, H; Van Duyse, B; De Neve, W; De Meerleer, B [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Pattyn, P; Van Renthergem, K [Ghent University (Belgium). Dept. of Surgery

    1995-12-01

    The feasibility to irradiate a limited section of a rat abdomen with well-defined edges was assessed. Because of the relative small volume involved, in vivo dosimetry with TLDs was necessary in providing us information about the accuracy of the irradiation method. Three to five days prior to the start of the radiotherapy treatment, two plastic strips - each containing a TLD-dosimeter (Harshaw TLD10 LiF rods, 1 mm dia x 6 mm) sealed in polyethylene tubing, and a lead bean - were implanted in the rat abdomen. The plastic strips made a closed loop around the bowel, through the mesenterium, and were fixed with a single stitch on the inner abdominal wall. One loop was made in the hepatic area; another was made in the lower abdomen, around the rectosigmoid. Conscious animals were irradiated using a purpose-build plexi-holder, with rear legs immobilised to avoid longitudinal movements. The implanted lead beans enabled us to simulate the rat prior to each radiation session. This way, the radiation field could be set up individually for each rat, in such way that the rectosigmoid area received full dose and the hepatic area received no irradiation dose at all. Irradiation was carried out, using 5 MV photons of a linear accelerator. Fifteen animals per group were irradiated according a conventional (2.0 Gy / fraction; 5 fractions / week) or a hyperfractionated (1.6 Gy / fraction; 2 daily fractions; 5 days / week) schedule, with different total doses. Prior to implantation, TLDs were individually calibrated and checked for stability. After removal from the abdomen . TLDs were tested again for accuracy. TLDs with an unacceptable read-out curve were rejected (about 2 to 4 TLDs per group of 15). The obtained accumulated doses - as determined by TLD read-outs-were comparable to the theoretical doses, indicating that fractionated radiation of small fields, with well defined mark off, in rats is feasible.

  11. In vivo dosimetry of high-dose fractionated irradiation in an experimental set-up with rats

    International Nuclear Information System (INIS)

    Fortan, L.; Van Hecke, H.; Van Duyse, B.; De Neve, W.; De Meerleer, B.; Pattyn, P.; Van Renthergem, K.

    1995-01-01

    The feasibility to irradiate a limited section of a rat abdomen with well-defined edges was assessed. Because of the relative small volume involved, in vivo dosimetry with TLDs was necessary in providing us information about the accuracy of the irradiation method. Three to five days prior to the start of the radiotherapy treatment, two plastic strips - each containing a TLD-dosimeter (Harshaw TLD10 LiF rods, 1 mm dia x 6 mm) sealed in polyethylene tubing, and a lead bean - were implanted in the rat abdomen. The plastic strips made a closed loop around the bowel, through the mesenterium, and were fixed with a single stitch on the inner abdominal wall. One loop was made in the hepatic area; another was made in the lower abdomen, around the rectosigmoid. Conscious animals were irradiated using a purpose-build plexi-holder, with rear legs immobilised to avoid longitudinal movements. The implanted lead beans enabled us to simulate the rat prior to each radiation session. This way, the radiation field could be set up individually for each rat, in such way that the rectosigmoid area received full dose and the hepatic area received no irradiation dose at all. Irradiation was carried out, using 5 MV photons of a linear accelerator. Fifteen animals per group were irradiated according a conventional (2.0 Gy / fraction; 5 fractions / week) or a hyperfractionated (1.6 Gy / fraction; 2 daily fractions; 5 days / week) schedule, with different total doses. Prior to implantation, TLDs were individually calibrated and checked for stability. After removal from the abdomen . TLDs were tested again for accuracy. TLDs with an unacceptable read-out curve were rejected (about 2 to 4 TLDs per group of 15). The obtained accumulated doses - as determined by TLD read-outs-were comparable to the theoretical doses, indicating that fractionated radiation of small fields, with well defined mark off, in rats is feasible

  12. Bone marrow transplantation for girls with aplastic anemia utilizing modified field of total lymphoid irradiation and cyclophosphamide

    International Nuclear Information System (INIS)

    Hanada, Ryoji; Kawakami, Tetsuo; Akuta, Naoko; Moriwaki, Kohichi; Kato, Shizue; Inaba, Toshiya; Hayashi, Yasuhide; Yamamoto, Keiko

    1990-01-01

    A preparative regimen for allogeneic bone marrow transplantation, consisting of total lymphoid irradiation (TLI) with 750 cGy and cyclophosphamide (CY), was used in five girls with aplastic anemia. All patients received bone marrow from HLA matched/mixed lymphocyte culture negative siblings. In our regimen the 'inverted Y' field to irradiate the pelvic nodes was modified, which did not include the whole pelvic cavity in an attempt to protect the ovaries from irradiation. Although some of the pelvic nodes was supported not to be irradiated in order to protect the ovaries, engraftment occurred in all five patients including four who had been transfused prior to transplantation. All five are alive from 47 days to 1378 days (median 285 days) after transplantation without tranplantation-associated complications. The calculated dose to the ovaries was sixteen percent of the entire dose of the regimen. Both of the two evaluable patients that had received tranplantation just before or during the puberty are developing normal sex maturity including menstruation. This study suggests that our preparative regimen is effective not only for engraftment of the donor marrow but also for protecting the ovaries from irradiation. (author)

  13. Action of 50 R X-ray doses on the breeding function of C3H strain mice - effect of splitting the dose, action of repeated irradiations on successive generations

    International Nuclear Information System (INIS)

    Alix, D.

    1965-01-01

    X-rays exposure effect was studied on C3H strain mice, at the standpoint of the effects produced on breeding function. The method used with this purpose was the following: single doses 20 - 30 - 40 and 50 R/dose, fractional doses: 50 R/total dose, divided in 2 - 5 - 10 or 25 irradiations distributed in one month duration. The offsprings were irradiated at the same doses than the parents, consanguinity being maintained. Statistical treatment of results was carried out, that led at the following conclusions: 1) Couples receiving single exposure of 50 R or two exposures of 25 R at one month interval give comparable results. Fractional doses do not involve the slightest diminution of X-rays effect. 2) 30 R exposure brings about a decrease in fertility, with an increase in abortions. Fertility of 20 R irradiated couples remains below controls. 3) After ten times 5 R and twenty-five 2 R, the number of abortions is the largest. Ovarian function is particularly sensitive to X-rays; one may think that twenty-five 2 R give injuries conditioning non-viability of conception products, smaller doses should produce mutations and yield births of altered genotype individuals. (author) [fr

  14. Total lymphoid irradiation for treatment of intractable cardiac allograft rejection

    International Nuclear Information System (INIS)

    Hunt, S.A.; Strober, S.; Hoppe, R.T.; Stinson, E.B.

    1991-01-01

    The ability of postoperative total lymphoid irradiation to reverse otherwise intractable cardiac allograft rejection was examined in a group of 10 patients in whom conventional rejection therapy (including pulsed steroids and monoclonal or polyclonal anti-T-cell antibody therapy) had failed to provide sustained freedom from rejection. Follow-up periods range from 73 to 1119 days since the start of total lymphoid irradiation. No patient died or sustained serious morbidity because of the irradiation. Three patients have had no further rejection (follow-up periods, 105 to 365 days). Two patients died--one in cardiogenic shock during the course of total lymphoid irradiation, the other with recurrent rejection caused by noncompliance with his medical regimen. Total lymphoid irradiation appears to be a safe and a moderately effective immunosuppressive modality for 'salvage' therapy of cardiac allograft rejection unresponsive to conventional therapy

  15. EFFECTS OF SEED IRRADIATION ON 14C FIXATION AND ANTIOXIDANT ACTIVITY OF VITAMIN C AND TOTAL PHENOLS OF CANOLA LEAVES

    International Nuclear Information System (INIS)

    KAMEL, H.A.

    2008-01-01

    Seeds of canola were gamma irradiated with doses of 10, 25, 50, 100 and 200 Gy then cultivated in 30 cm plastic pots containing 7 kg clay soil. After 45 days of cultivation, plants were used to measure 14 C fixation capacity, vitamin C, total phenol, free proline and peroxidase activity in addition to the antioxidant activity. The results showed decrease in the chlorophyll content and 14 C fixation at all gamma doses. Irradiation of canola seeds caused significant reduction in vitamin C and phenol content, while significant increase was occurred in free proline and peroxidase activity. Antioxidant activity of vitamin C was higher than that of phenols at all doses used

  16. Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation.

    Science.gov (United States)

    Wong, Jeffrey Y C; Rosenthal, Joseph; Liu, An; Schultheiss, Timothy; Forman, Stephen; Somlo, George

    2009-01-01

    Total-body irradiation (TBI) has an important role in patients undergoing hematopoietic cell transplantation (HCT), but is associated with significant toxicities. Targeted TBI using helical tomotherapy results in reduced doses to normal organs, which predicts for reduced toxicities compared with standard TBI. Thirteen patients with multiple myeloma were treated in an autologous tandem transplantation Phase I trial with high-dose melphalan, followed 6 weeks later by total-marrow irradiation (TMI) to skeletal bone. Dose levels were 10, 12, 14, and 16 Gy at 2 Gy daily/twice daily. In a separate allogeneic HCT trial, 8 patients (5 with acute myelogenous leukemia, 1 with acute lymphoblastic leukemia, 1 with non-Hodgkin's lymphoma, and 1 with multiple myeloma) were treated with TMI plus total lymphoid irradiation plus splenic radiotherapy to 12 Gy (1.5 Gy twice daily) combined with fludarabine/melphalan. For the 13 patients in the tandem autologous HCT trial, median age was 54 years (range, 42-66 years). Median organ doses were 15-65% that of the gross target volume dose. Primarily Grades 1-2 acute toxicities were observed. Six patients reported no vomiting; 9 patients, no mucositis; 6 patients, no fatigue; and 8 patients, no diarrhea. For the 8 patients in the allogeneic HCT trial, median age was 52 years (range, 24-61 years). Grades 2-3 nausea, vomiting, mucositis, and diarrhea were observed. In both trials, no Grade 4 nonhematologic toxicity was observed, and all patients underwent successful engraftment. This study shows that TMI using helical tomotherapy is clinically feasible. The reduced acute toxicities observed compare favorably with those seen with standard TBI. Initial results are encouraging and warrant further evaluation as a method to dose escalate with acceptable toxicity or to offer TBI-containing regimens to patients unable to tolerate standard approaches.

  17. Image-Guided Total-Marrow Irradiation Using Helical Tomotherapy in Patients With Multiple Myeloma and Acute Leukemia Undergoing Hematopoietic Cell Transplantation

    International Nuclear Information System (INIS)

    Wong, Jeffrey Y.C.; Rosenthal, Joseph; Liu An; Schultheiss, Timothy; Forman, Stephen; Somlo, George

    2009-01-01

    Purpose: Total-body irradiation (TBI) has an important role in patients undergoing hematopoietic cell transplantation (HCT), but is associated with significant toxicities. Targeted TBI using helical tomotherapy results in reduced doses to normal organs, which predicts for reduced toxicities compared with standard TBI. Methods and Materials: Thirteen patients with multiple myeloma were treated in an autologous tandem transplantation Phase I trial with high-dose melphalan, followed 6 weeks later by total-marrow irradiation (TMI) to skeletal bone. Dose levels were 10, 12, 14, and 16 Gy at 2 Gy daily/twice daily. In a separate allogeneic HCT trial, 8 patients (5 with acute myelogenous leukemia, 1 with acute lymphoblastic leukemia, 1 with non-Hodgkin's lymphoma, and 1 with multiple myeloma) were treated with TMI plus total lymphoid irradiation plus splenic radiotherapy to 12 Gy (1.5 Gy twice daily) combined with fludarabine/melphalan. Results: For the 13 patients in the tandem autologous HCT trial, median age was 54 years (range, 42-66 years). Median organ doses were 15-65% that of the gross target volume dose. Primarily Grades 1-2 acute toxicities were observed. Six patients reported no vomiting; 9 patients, no mucositis; 6 patients, no fatigue; and 8 patients, no diarrhea. For the 8 patients in the allogeneic HCT trial, median age was 52 years (range, 24-61 years). Grades 2-3 nausea, vomiting, mucositis, and diarrhea were observed. In both trials, no Grade 4 nonhematologic toxicity was observed, and all patients underwent successful engraftment. Conclusions: This study shows that TMI using helical tomotherapy is clinically feasible. The reduced acute toxicities observed compare favorably with those seen with standard TBI. Initial results are encouraging and warrant further evaluation as a method to dose escalate with acceptable toxicity or to offer TBI-containing regimens to patients unable to tolerate standard approaches

  18. Pilot production of the wedge filter for the TBI (total body irradiation)

    International Nuclear Information System (INIS)

    Ikezaki, Hiromi; Ikeda, Ikuo; Maruyama, Yasushi; Nako, Yasunobu; Tonari, Ayako; Kusuda, Junko; Takayama, Makoto

    2007-01-01

    Total body irradiation (TBI) is performed by various methods, such as a long SSD method and a translational couch method. For patient safety in carrying out TBI, the patient should be placed on the supine position and prone position near the floor. TBI is performed from 2 opposite ports (AP/PA) with a linear accelerator (10 MV X-ray). We experimented with a wedge filter for TBI created by us, which makes dose distribution to a floor uniform. The wedge filter, made of iron alloy, was attached to the linear accelerator. In designing the wedge filter, thickness of the lead-made wedge filter can be calculated numerically from the ratio of linear attenuation coefficient of iron alloy and lead. In measuring the dose profile for a phantom of 20 cm thick, dose homogeneity less than 10% was proved by the wedge filter for TBI. (author)

  19. Study on the change of total fat content and fatty acid composition of the ethanol extract from cooking drips of thunnus thynnus by ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Sub; Choi, Jong Il; Kim, Hyun Joo; Kim, Jin Kyu; Byun, Myung Woo; Lee, Ju Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yoo, Cheon Woo; Kim, Ju Bong [Dongwon Research and Development Center, Seongnam (Korea, Republic of); Hwang, Young Jung [Division of Food Science, Jinju International University, Jinju (Korea, Republic of); Chung, Young Jin [Dept. of Food and Nutrition, Chungnam National University, Daejeon (Korea, Republic of)

    2008-05-15

    This study was conducted to examine the effect of a gamma irradiation (GM) and an electron-beam irradiation (EB) on the total fat content and fatty acid composition of ethanol extract from cooking drips of Thunnus thynnus (ECT). The total fat content of samples were determined by fat extraction (Folch method) and fatty acid composition was by gas chromatography mass spectrometry (GC-MS) after fat extraction. The results showed that total fat contents were not changed by GM and EB up to the dose of 50 kGy. The content of unsaturated fatty acids (USFA) such as vaccenic acid and DHA, was decreased by irradiation. But, the content of palmitoleic acid was not changed by GM. In contrast, the content of saturated fatty acids(SFA) such as myristic acid and palmitic acid, was increased by the irradiation. But, the content of stearic acid was decreased with the increase of irradiation dose. Also, it has been shown that the GM had further affected the change of fatty acid content than EB.

  20. Study on the change of total fat content and fatty acid composition of the ethanol extract from cooking drips of thunnus thynnus by ionizing irradiation

    International Nuclear Information System (INIS)

    Lee, Hee Sub; Choi, Jong Il; Kim, Hyun Joo; Kim, Jin Kyu; Byun, Myung Woo; Lee, Ju Woon; Yoo, Cheon Woo; Kim, Ju Bong; Hwang, Young Jung; Chung, Young Jin

    2008-01-01

    This study was conducted to examine the effect of a gamma irradiation (GM) and an electron-beam irradiation (EB) on the total fat content and fatty acid composition of ethanol extract from cooking drips of Thunnus thynnus (ECT). The total fat content of samples were determined by fat extraction (Folch method) and fatty acid composition was by gas chromatography mass spectrometry (GC-MS) after fat extraction. The results showed that total fat contents were not changed by GM and EB up to the dose of 50 kGy. The content of unsaturated fatty acids (USFA) such as vaccenic acid and DHA, was decreased by irradiation. But, the content of palmitoleic acid was not changed by GM. In contrast, the content of saturated fatty acids(SFA) such as myristic acid and palmitic acid, was increased by the irradiation. But, the content of stearic acid was decreased with the increase of irradiation dose. Also, it has been shown that the GM had further affected the change of fatty acid content than EB

  1. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  2. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  3. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, Akihisa

    2002-01-01

    We investigated whether chronic irradiation at a low dose-rate interferes with the p53-centered signal transduction pathyway induced by radiation in human cultured cells and C57BL/6N mice. In in vitro experiments, we found that a challenge with X-ray irradiation immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge alone in glioblastoma cells (A-172). In addition, the levels of p53-centered apoptosis and its related proteins after the challenge were strongly correlated with the above-mentioned phenomena in squamous cell carcinoma cells (SAS/neo). In in vivo experiments, the accumulation of p53 and Bax, and the induction of apoptosis were observed dose-dependently in mouse spleen at 12 h after a challenge with X-rays (3.0 Gy). However, we found significant suppression of p53 and Bax accumulation and the induction of apoptosis 12 h after challenge irradiation at 3.0 Gy with a high doses-rate following chronic pre-irradiation (1.5 Gy, 0.001 Gy/min). These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced signaling and/or p53 stability. (author)

  4. Accelerated hyperfractionated hepatic irradiation in the management of patients with liver metastases: Results of the RTOG dose escalating protocol

    International Nuclear Information System (INIS)

    Russell, A.H.; Clyde, C.; Wasserman, T.H.; Turner, S.S.; Rotman, M.

    1993-01-01

    This study was prepared to address two objectives: (a) to determine whether progressively higher total doses of hepatic irradiation can prolong survival in a selected population of patients with liver metastases and (b) to refine existing concepts of liver tolerance for fractionated external radiation. One hundred seventy-three analyzable patients with computed tomography measurable liver metastases from primary cancers of the gastrointestinal tract were entered on a dose escalating protocol of twice daily hepatic irradiation employing fractions of 1.5 Gy separated by 4 hr or longer. Sequential groups of patients received 27 Gy, 30 Gy, and 33 Gy to the entire liver and were monitored for acute and late toxicities, survival, and cause of death. Dose escalation was implemented following survival of 10 patients at each dose level for a period of 6 months or longer without clinical or biochemical evidence of radiation hepatitis. The use of progressively larger total doses of radiation did not prolong median survival or decrease the frequency with which liver metastases were the cause of death. None of 122 patients entered at the 27 Gy and 30 Gy dose levels revealed clinical or biochemical evidence of radiation induced liver injury. Five of 51 patients entered at the 33 Gy level revealed clinical or biochemical evidence of late liver injury with an actuarial risk of severe (Grade 3) radiation hepatitis of 10.0% at 6 months, resulting in closure of the study to patient entry. The study design could not credibly establish a safe dose for hepatic irradiation, however, it did succeed in determining that 33 Gy in fractions of 1.5 Gy is unsafe, carrying a substantial risk of delayed radiation injury. The absence of apparent late liver injury at the 27 Gy and 30 Gy dose levels suggests that a prior clinical trial of adjuvant hepatic irradiation in patients with resected colon cancer may have employed an insufficient radiation dose (21 Gy) to fully test the question

  5. Identification and dose assessment of irradiated cardamom and cloves by EPR spectrometry

    International Nuclear Information System (INIS)

    Beshir, W.B.

    2014-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cardamom and cloves and assesses the absorbed dose to radiation processed cardamom and cloves are examined. The results were successful for identifying both irradiated and unirradiated cardamom and cloves. Additive reirradiation of cardamom and cloves produces reproducible dose–response functions, which can be used to assess the initial dose by back-extrapolation. Third degree polynomial function was used to fit the EPR signal/dose curves. It was found that this 3rd degree polynomial function provides satisfactory results without correction of decay for free radicals. The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over a storage period of almost 8 months. The calculated G-value (The number of radicals per 100 eV of absorbed energy) for cardamom and cloves was found 0.07±0.01 and 0.055±0.01, respectively. - Highlights: • The EPR analysis of cardamom and cloves prove the sample has been irradiated or not. • Dose additive can be used for evaluation of the absorbed dose in cardamom and cloves. • The 3rd polynomial function can be used to fit the data and the estimated dose. • The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over 2 months

  6. Studies on adaptive response of lymphocyte transformation induced by low-dose irradiation

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Tian Hailin; Zou Huawei

    1995-10-01

    Human peripheral blood lymphocytes stimulated by mitogen in vitro for 24 h were exposed to low-dose γ-ray irradiation (0.5∼4.0 cGy, adaptive dose). They showed an adaptive response to the inhibition of 3 H-TdR incorporation by subsequent higher acute doses of γ-ray (challenge dose). At the interval of 24 h between adaptive dose and challenge dose, the strongest adaptive response induced by low-dose irradiation was found. It is also found that the response induced by 1.0 cGy of adaptive dose was more obvious than that by other doses and that 3.0 Gy of challenge dose produced the strongest adaptive response. As the challenge doses increased, the adaptive response reduced. (2 figs., 2 tabs.)

  7. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  8. Irradiation of meningioma: a prototype circumscribed tumor for planning high-dose irradiation of the brain

    International Nuclear Information System (INIS)

    Friedman, M.

    1977-01-01

    The purpose of this report is to provide specific data concerning the radiation dose required to destroy meningioma, and to demonstrate that radiation doses much greater than the alleged tolerance dose, can be administered to the brain in some patients. Most meninglomas are not responsive to irradiation, but, some surgically incurable lesions benefit from irradiation with radically high doses to small volumes of tissue. The arrest of 7 of 12 consecutive meningiomas in adults for periods of 2 to 17 years following maximum tumor doses up to 8800 R in 40 days is reported in this paper. All patients, when irradiated, had active tumor in the form of inoperable primary tumor, recurrence, or known postoperative residual tumor. Three of the successful results were achieved with orthovoltage radiation. The incidence of brain damage may be acceptable to the patient when it is related to arrest of tumor growth but he must be forewarned of possible brain damage. The factors influencing the radioresponsiveness of meningioma are: the required tumor lethal dose, histology and vascularity of the tumor, anatomical site in the brain, treatment technique for each tumor site, small size of the treated volume, growth rate of the tumor, displacement of normal brain tissue by tumor, inherent individual variations of tumor and normal tissues, quality of the radiation, and tolerance of normal brain tissues. The role of these factors is discussed in the light of modern radiobiological concepts

  9. Low-dose irradiation for controlling prostate cancer

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    2003-01-01

    Prostate cancer is the second most commonly diagnosed cancer among North American men and the second leading cause of death in those aged 65 and over. The American Cancer Society recommends testing those over age 50 who are expected to live at least 10 years, even though the ability of early detection to decrease prostate cancer mortality has not been demonstrated. So controversy exists about the appropriateness of screening because of the considerable economic and social burden of diagnosing and treating prostate cancer, coupled with the projected large increase in the number of new cases as the population ages. This very important public health issue could be addressed at low cost by total-body low-dose irradiation therapy to stimulate the patient's own defences to prevent and control most cancers, including prostate cancer, with no symptomatic side effects. (author)

  10. Total ionizing dose radiation hardness of the ATLAS MDT-ASD and the HP-Agilent 0.5 um CMOS process

    CERN Document Server

    Posch, C

    2002-01-01

    A total ionizing dose (TID) test of the MDT-ASD, the ATLAS MDT front-end chip has been performed at the Harvard Cyclotron Lab. The MDT-ASD is an 8-channel drift tube read-out ASIC fabricated in a commercial 0.5 um CMOS process (AMOS14TB). The accumulated TID at the end of the test was 300 krad, delivered by 160 MeV protons at a rate of approximately 70 rad/sec. All 10 irradiated chips retained their full functionality and performance and showed only irrelevantly small changes in device parameters. As the total accumulated dose is substantially higher than the relevant ATLAS Radiation Tolerance Criteria (RTCtid), the results of this test indicate that MDT-ASD meets the ATLAS TID radiation hardness requirements. In addition, the results of this test correspond well with results of a 30 keV gamma TID irradiation test performed by us on an earlier prototype at the CERN x-ray facility as well as with results of other irradiation test on this process found in literature.

  11. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    Purpose: To describe a newly developed technique to study radiation tolerance of rat spinal cord to continuous interstitial irradiation (IRT) at different dose rates. Material and methods: Two parallel catheters are inserted just laterally on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters are afterloaded with two 192 Ir wires of 4 cm length each (activity 1-2.3 mCi/cm) for the low dose rate (LDR) IRT or connected to the HDR micro-Selectron for the high dose rate (HDR) IRT. Spinal cord target volume is located at the level of Th 12 -L 2 . Due to the rapid dose fall-off around the implanted sources, a dose inhomogeneity across the spinal cord thickness is obtained in the dorso-ventral direction. Using the 100% reference dose (rate) at the ventral side of the spinal cord to prescribe the dose, experiments have been carried out to obtain complete dose response curves at average dose rates of 0.49, 0.96 and 120 Gy/h. Paralysis of the hind-legs after 5-6 months and histopathological examination of the spinal cord of each irradiated rat are used as experimental endpoints. Results: The histopathological damage seen after irradiation is clearly reflected the inhomogeneous dose distribution around the implanted catheters, with the damage predominantly located in the dorsal tract of the cord or dorsal roots. With each reduction in average dose rate, spinal cord radiation tolerance is significantly increased. When the dose is prescribed at the 100% reference dose rate, the ED 50 (induction of paresis in 50% of the animals) for the HDR-IRT is 17.3 Gy. If the average dose rate is reduced from 120 Gy/h to 0.96 or 0.49 Gy/h, a 2.9- or 4.7-fold increase in the ED 50 values to 50.3 Gy and 80.9 Gy is observed; for the dose prescribed at the 150% reference dose rate (dorsal side of cord) ED 50 values are 26.0, 75.5 and 121.4 Gy, respectively. Using different types of analysis and in dependence of the dose prescription and reference dose rate, the

  12. TCTE Level 3 Total Solar Irradiance Daily Means V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) Calibration Transfer Experiment (TCTE) data set TCTE3TSID contains daily averaged total solar irradiance (a.k.a solar constant) data...

  13. Effect of gamma irradiation on shelf life extension, total counts of microbials and biochemical sensory change on luncheon meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Mehyou, A.

    1999-11-01

    To investigate the effect of gamma irradiation and sodium nitrate on storability and marketability of luncheon, packed luncheon was exposed to several treatments; gamma irradiation at doses 0, 1, 2, 3 and 4 KGy using a 60 CO package irradiator, mixed with sodium nitrite (NaNO 2 ) 60 mg/Kg meat, with no irradiation and a combined treatment of both NaNO 2 treatment and irradiated with a dose of 2 KGy only. Half of the irradiated and unirradiated samples were stored in refrigeration (1-4 centigrade), to study storability and the second half were stored at room temperature (18-20 centigrade) to study marketability of luncheon. During storage period the population of microorganisms, biochemical changes and sensory properties were evaluated every two weeks for the refrigerated samples and weekly for the unrefrigerated samples. The results indicated that gamma irradiation and sodium nitrite reduced the counts of microorganisms and increased the shelf-life of luncheon. Both treatments (irradiation, sodium nitrite) increased total acidity, lipid oxidation, and the volatile basic nitrogen (VBN) immediately after processing and reduced all of them through out storage. Sensory evaluation (firmness, color, taste, and flavor) indicated no significant differences (P>0.05) between treated and untreated samples. (author)

  14. Effect of gamma irradiation on shelf life extension, total counts of microbials and biochemical sensory change on luncheon meat

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M; Mehyou, A [Atomic Energy Commission, Dept. of Radiation Technology, Damascus (Syrian Arab Republic)

    1999-11-01

    To investigate the effect of gamma irradiation and sodium nitrate on storability and marketability of luncheon, packed luncheon was exposed to several treatments; gamma irradiation at doses 0, 1, 2, 3 and 4 KGy using a {sup 60} CO package irradiator, mixed with sodium nitrite (NaNO{sub 2}) 60 mg/Kg meat, with no irradiation and a combined treatment of both NaNO{sub 2} treatment and irradiated with a dose of 2 KGy only. Half of the irradiated and unirradiated samples were stored in refrigeration (1-4 centigrade), to study storability and the second half were stored at room temperature (18-20 centigrade) to study marketability of luncheon. During storage period the population of microorganisms, biochemical changes and sensory properties were evaluated every two weeks for the refrigerated samples and weekly for the unrefrigerated samples. The results indicated that gamma irradiation and sodium nitrite reduced the counts of microorganisms and increased the shelf-life of luncheon. Both treatments (irradiation, sodium nitrite) increased total acidity, lipid oxidation, and the volatile basic nitrogen (VBN) immediately after processing and reduced all of them through out storage. Sensory evaluation (firmness, color, taste, and flavor) indicated no significant differences (P>0.05) between treated and untreated samples. (author)

  15. Serum metabonomics of rats irradiated by low-dose γ-rays

    Directory of Open Access Journals (Sweden)

    Ying HE

    2014-08-01

    Full Text Available Objective To explore the effect of low-dose γ-rays on the metabolites in rat serum. Methods Sixteen healthy male SD rats were randomly divided into control group and irradiated group (n=8. The rats in irradiated group were irradiated by 60Co γ-rays with a dose rate of 72mGy/h for 7 days (1 hour per day. At the 7th day after irradiation, blood samples were taken from abdominal aorta to obtain the serum. The metabolic fingerprints of serum were obtained from the two groups of rats, and 1H nuclear magnetic resonance (NMR spectroscopy, principal component analysis (PCA and orthogonal signal correction-partial least squares (OSC-PLS method were used for pattern recognition, and the difference in metabolite profile between two groups was identified by SIMCA-P software. Results The rat serum 1H NMR spectra revealed a significant difference between control group and irradiated group, the OSC-PLS plots of the serum samples presented marked clustering between two groups. Compared with the control group, the content of lipid, glucose, creatine, glycine/glucose, high density lipoprotein, low density lipoprotein, very low density lipoprotein/low density lipoprotein and unsaturated fatty acid increased, while the content of lactic acid, threonine/lipid, alanine, N-acetyl glycoprotein 1, N-acetyl glycoprotein 2, saturated fatty acid and phosphatidyl choline decreased in irradiated group. Conclusion Irradiation with low-dose γ-ray could induce changes in metabolites in rat serum, concerning mainly immune function, energy metabolism, carbohydrate metabolism and lipid metabolism. DOI: 10.11855/j.issn.0577-7402.2014.07.02

  16. Pathomorphology of spleen lymphocyte apoptosis in large dose 60Co γ-irradiated mice

    International Nuclear Information System (INIS)

    Gao Linlu; Cui Yufang; Yang Hong; Xia Guowei; Peng Ruiyun; Gao Yabing; Wang Dewen

    2000-01-01

    Objective: The aim of the authors was to investigate the pathomorphology changes of spleen lymphocyte apoptosis after 60 Co γ-irradiation. Methods: The mice were irradiated with 6, 9, 12, 15 and 20 Gy of 60 Co γ-rays. At different times after irradiation, the mice were sacrificed and the pathological changes of spleen lymphocyte were observed by light and transmission electron microscopies. Results: Spleen lymphocyte decreased evidently and the peak of apoptosis in spleen lymphocyte was dependent on radiation dose and the time after irradiation. Conclusion: After γ-irradiation with large doses, pathological changes of spleen lymphocyte apoptosis in mice can be divided into obviously different stages. The main causes of death of spleen lymphocytes are different in different dose groups

  17. Effective Equivalent Doses of External Irradiation of Population by Man-made Radionuclides from the Soil in the Sarajevo Region Over the Period of 1986-1989

    International Nuclear Information System (INIS)

    Saracevic, L.; Samek, D.; Hasanbasic, D.; Gradascevic, N.

    1998-01-01

    Assessment of exposition of human body to radioactive materials is seen as radiation-hygienic measure of utmost importance, since the doses absorbed due to radionuclides present in soil, air, food and water are significant integral parts of the total dose that the human being receives in all kinds and conditions of exposition. External irradiation by radionuclides deposed in soil is a major contributor to the whole dose of irradiation of population. Assuming that fission radionuclides Cs-134 and Cs-137 had a specially significant contribution to the total dose of irradiation of the population over the investigation period (1986-1989), we established their levels of activity in the soil in different localities of the Sarajevo region, and then calculated the effective equivalent dose for the population for each year of investigation. The mean values for the yearly effective equivalent doses of external irradiation of the population by fission radionuclides Cs-134 and Cs-137 from the soil in the Sarajevo region were 0.77 mSv/year in 1989. Contribution by Cs-134 to the total effective equivalent dose was 63.64 % in 1986 year, to be reeducated in 1987 to 45.67 %, in 1988 to 35.89 % and in the year 1989 to 33.33 %. The effective equivalent dose was different to a great extent by the investigated localities (town sections) during the started period. It can be inferred from the above that the average population of the Sarajevo region did not receive a larger dose of radiation than the one established by the International Commission for Radiological Protection as the limit for subsequent exposition to radiation. (author)

  18. Clastogenic effects in human lymphocytes exposed to low and high dose rate X-ray irradiation and vitamin C

    International Nuclear Information System (INIS)

    Konopacka, M; Rogolinski, J.

    2011-01-01

    In the present work we investigated the ability of vitamin C to modulate clastogenic effects induced in cultured human lymphocytes by X-irradiation delivered at either high (1 Gy/min) or low dose rate (0.24 Gy/min). Biological effects of the irradiation were estimated by cytokinesis-block micronucleus assay including the analysis of the frequency of micronuclei (MN) and apoptotic cells as well as calculation of nuclear division index (NDI). The numbers of micronucleated binucleate lymphocytes (MN-CBL) were 24.85 ± 2.67% and 32.56 ± 3.17% in cultures exposed to X-rays (2 Gy) delivered at low and high dose rates, respectively. Addition of vitamin C (1-20 μg/ml) to the medium of cultures irradiated with the low dose rate reduced the frequency of micronucleated lymphocytes with multiple MN in a concentration-dependent manner. Lymphocytes exposed to the high dose rate radiation showed a U-shape response: low concentration of vitamin C significantly reduced the number of MN, whereas high concentration influenced the radiation-induced total number of micronucleated cells insignificantly, although it increased the number of cells with multiple MN. Addition of vitamin C significantly reduced the fraction of apoptotic cells, irrespective of the X-ray dose rate. These results indicate that radiation dose rate is an important exposure factor, not only in terms of biological cell response to irradiation, but also with respect to the modulating effects of antioxidants. (authors)

  19. Effect of large dose gamma-ray irradiation on polyimide

    International Nuclear Information System (INIS)

    Morita, Yohsuke; Watanabe, Kiyoshi; Yagyu, Hideki.

    1988-01-01

    In the radiation environment of atomic energy, space and so on, with the heightening of the performance of equipment, the organic materials having the radiation resistance up to several hundreds MGy have been demanded. Polyimide is one of a small number of the polymers which are considered to be applicable to such environment. However, actually the characteristics as the insulator for such large dose radiation environment have not been sufficiently verified. In this study, the gamma-ray of as large dose as 100 MGy was irradiated on the polyimides having different chemical structure in the air and in nitrogen, and the change of their mechanical and electrical characteristics was elucidated, at the same time, the structural change was examined. The four kinds of polyimides used for the experiment were three kinds of thermosetting type and thermoplastic polyether imide. Co-60 gamma-ray was irradiated at the dose rate of 17 kGy/h at room temperature. The tensile properties, volume resistivity, dielectric tangent, gel fraction, glass transition temperature and IR spectra were examined. In the air, the characteristics lowered by large dose irradiation due to the severance of main chains. In nitrogen, the deterioration was extremely slight, and cross-linking occurred. (K.I.)

  20. Radiation therapy for angiosarcoma of the scalp: treatment outcomes of total scalp irradiation with X-rays and electrons.

    Science.gov (United States)

    Hata, Masaharu; Wada, Hidefumi; Ogino, Ichiro; Omura, Motoko; Koike, Izumi; Tayama, Yoshibumi; Odagiri, Kazumasa; Kasuya, Takeo; Inoue, Tomio

    2014-10-01

    Wide surgical excision is the standard treatment for angiosarcoma of the scalp, but many patients are inoperable. Therefore, we investigated the outcome of radiation therapy for angiosarcoma of the scalp. Seventeen patients with angiosarcoma of the scalp underwent radiation therapy with total scalp irradiation. Four patients had cervical lymph node metastases, but none had distant metastases. A median initial dose of 50 Gy in 25 fractions was delivered to the entire scalp. Subsequently, local radiation boost to the tumor sites achieved a median total dose of 70 Gy in 35 fractions. Fourteen of the 17 patients developed recurrences during the median follow-up period of 14 months after radiation therapy; 7 had recurrences in the scalp, including primary tumor progression in 2 patients and new disease in 5, and 12 patients developed distant metastases. The primary progression-free, scalp relapse-free, and distant metastasis-free rates were 86, 67, and 38 % at 1 year and 86, 38, and 16 % at 3 years, respectively. Thirteen patients died; the overall and cause-specific survival rates were both 73 % at 1 year and 23 and 44 % at 3 years, respectively. The median survival time was 16 months. There were no therapy-related toxicities ≥ grade 3. Total scalp irradiation is safe and effective for local tumor control, but a dose of ≤ 50 Gy in conventional fractions may be insufficient to eradicate microscopic tumors. For gross tumors, a total dose of 70 Gy, and > 70 Gy for tumors with deep invasion, is recommended.

  1. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  2. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  3. Effect of Gamma Irradiation Doses on Some Chemical Characteristics of Cotton Seed Oil

    International Nuclear Information System (INIS)

    Saleh, O.I.

    2011-01-01

    Cotton Seeds c.v. Giza 85 (Gossypium hirsutum L.) were exposed to gamma irradiation doses of 0.5, 1.0 and 1.5 kGy to improve some chemical characteristics of cotton seed oil i.e. saturated and unsaturated fatty acids, gossypol and βsitosterol that were bound oil. The presented study showed that, the saturated fatty acids; lauric, palmitic and stearic increased when the cotton seeds were exposed to gamma irradiation doses of 0.5 up to 1.5 kGy, On the other hand, arachidic acid content decreased in all the irradiated treatments compared with untreated cotton seed. The unsaturated fatty acid oleic was increased in irradiated cotton seed samples compared with untreated one, while linoleic, the major unsaturated fatty acid decreased in irradiated cotton seed oil than untreated seeds. Gossypol and βsitosterol, bound oil, in irradiated cotton seeds increased gradually with gamma irradiated doses compared with untreated control samples

  4. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  5. Alkaline and Acid Phosphatase Activity in Blood Plasma of Chickens Irradiated by Low dose Gamma Radiation

    International Nuclear Information System (INIS)

    Petar, K.; Marinko, V.; Saveta, M.; Miljenko, S.

    2004-01-01

    In our previous paper (Kraljevic et, al, 2000; Kraljevic et al 2002) we showed that the growth of the chickens hatched from eggs irradiated with 0.15 Gy gamma-rays before incubation was significantly higher than in controls during the fattening period (1-42 days). The concentration of total protein, glucose and cholesterol in the blood plasma of the same chickens was also significantly changed. In this paper an attempt was made to determine the effect of irradiation of eggs by low dose ionizing radiation before incubation upon activity of alkaline and acid phosphatase in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens were irradiated by dose of 0.15 Gy gamma radiation (60 Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 6, 10, 20, 30 and 42. The activity of both enzymes was determined spectrophotometrically by using Boehring Mannheim GmbH optimized kits. the activity of alkaline phosphatase in blood plasma was decreased on days 42, and the activity of acid phosphatase in the blood plasma of the same chickens was increased on day 42. Obtained results confirm our early obtained results that low dose of gamma radiation has effects upon metabolic processes in the chickens hatched from eggs irradiated before incubation. (Author)

  6. Dose Escalation of Total Marrow Irradiation With Concurrent Chemotherapy in Patients With Advanced Acute Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jeffrey Y.C., E-mail: jwong@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Forman, Stephen; Somlo, George [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Rosenthal, Joseph [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Department of Pediatrics, City of Hope National Medical Center, Duarte, California (United States); Liu An; Schultheiss, Timothy; Radany, Eric [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Palmer, Joycelynne [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Stein, Anthony [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States)

    2013-01-01

    Purpose: We have demonstrated that toxicities are acceptable with total marrow irradiation (TMI) at 16 Gy without chemotherapy or TMI at 12 Gy and the reduced intensity regimen of fludarabine/melphalan in patients undergoing hematopoietic cell transplantation (HCT). This article reports results of a study of TMI combined with higher intensity chemotherapy regimens in 2 phase I trials in patients with advanced acute myelogenous leukemia or acute lymphoblastic leukemia (AML/ALL) who would do poorly on standard intent-to-cure HCT regimens. Methods and Materials: Trial 1 consisted of TMI on Days -10 to -6, etoposide (VP16) on Day -5 (60 mg/kg), and cyclophosphamide (CY) on Day -3 (100 mg/kg). TMI dose was 12 (n=3 patients), 13.5 (n=3 patients), and 15 (n=6 patients) Gy at 1.5 Gy twice daily. Trial 2 consisted of busulfan (BU) on Days -12 to -8 (800 {mu}M min), TMI on Days -8 to -4, and VP16 on Day -3 (30 mg/kg). TMI dose was 12 (n=18) and 13.5 (n=2) Gy at 1.5 Gy twice daily. Results: Trial 1 had 12 patients with a median age of 33 years. Six patients had induction failures (IF), and 6 had first relapses (1RL), 9 with leukemia blast involvement of bone marrow ranging from 10%-98%, 5 with circulating blasts (24%-85%), and 2 with chloromas. No dose-limiting toxicities were observed. Eleven patients achieved complete remission at Day 30. With a median follow-up of 14.75 months, 5 patients remained in complete remission from 13.5-37.7 months. Trial 2 had 20 patients with a median age of 41 years. Thirteen patients had IF, and 5 had 1RL, 2 in second relapse, 19 with marrow blasts (3%-100%) and 13 with peripheral blasts (6%-63%). Grade 4 dose-limiting toxicities were seen at 13.5 Gy (stomatitis and hepatotoxicity). Stomatitis was the most frequent toxicity in both trials. Conclusions: TMI dose escalation to 15 Gy is possible when combined with CY/VP16 and is associated with acceptable toxicities and encouraging outcomes. TMI dose escalation is not possible with BU/VP16 due to

  7. Medical irradiation and the use of the ''effective dose equivalent'' concept

    International Nuclear Information System (INIS)

    Persson, B.R.R.

    1980-01-01

    The aim of this paper is to demonstrate the use of the effective dose for all kinds of medical irradiation. In order to estimate the 'somatic effective dose' the weighting factors recommended by ICRP 26 have been separated into those for somatic effects and for genetic effects. Calculation of the effective dose in diagnostic radiology procedures must consider the various technical parameters which determine the absorbed dose in the various organs, i.e. beam quality, typical entrance dose and the number of films of each view. Knowledge about these parameters is not always well established and therefore the effective dose estimates are very uncertain. The average dose absorbed by various organs in the case of administration of radionuclides to the body depends to a much higher degree on biological parameters than in the case of external irradiation. In contrast to the variability and lack of reliability of biological data, the physical methods for internal dose calculation are quite elaborate. However, these methods have to be extended to involve the target dose from the radioactivity distributed within the remaining parts of the body. An attempt was made to estimate the somatic effective dose for the most common diagnostic X-ray and nuclear medicine procedures. This would make it possible to compare the risk of X-ray and nuclear medicine techniques on a more equitable basis. The collective effective dose from medical irradiation is estimated for various countries on the basis of reported statistical data. (H.K.)

  8. Total Ionizing Dose Effects on Threshold Switching in 1T-Tantalum Disulfide Charge-Density-Wave Devices

    OpenAIRE

    Liu, G.; Zhang, E. X.; Liang, C. D.; Bloodgood, M. A.; Salguero, T. T.; Fleetwood, D. M.; Balandin, A. A.

    2017-01-01

    The 1T polytype of TaS2 exhibits voltage-triggered threshold switching as a result of a phase transition from nearly commensurate to incommensurate charge density wave states. Threshold switching, persistent above room temperature, can be utilized in a variety of electronic devices, e.g., voltage controlled oscillators. We evaluated the total-ionizing-dose response of thin film 1T-TaS2 at doses up to 1 Mrad(SiO2). The threshold voltage changed by less than 2% after irradiation, with persisten...

  9. Multi-institutional Feasibility Study of a Fast Patient Localization Method in Total Marrow Irradiation With Helical Tomotherapy: A Global Health Initiative by the International Consortium of Total Marrow Irradiation

    International Nuclear Information System (INIS)

    Takahashi, Yutaka; Vagge, Stefano; Agostinelli, Stefano; Han, Eunyoung; Matulewicz, Lukasz; Schubert, Kai; Chityala, Ravishankar; Ratanatharathorn, Vaneerat; Tournel, Koen; Penagaricano, Jose A.; Florian, Sterzing; Mahe, Marc-Andre; Verneris, Michael R.; Weisdorf, Daniel J.

    2015-01-01

    Purpose: To develop, characterize, and implement a fast patient localization method for total marrow irradiation. Methods and Materials: Topographic images were acquired using megavoltage computed tomography (MVCT) detector data by delivering static orthogonal beams while the couch traversed through the gantry. Geometric and detector response corrections were performed to generate a megavoltage topogram (MVtopo). We also generated kilovoltage topograms (kVtopo) from the projection data of 3-dimensional CT images to reproduce the same geometry as helical tomotherapy. The MVtopo imaging dose and the optimal image acquisition parameters were investigated. A multi-institutional phantom study was performed to verify the image registration uncertainty. Forty-five MVtopo images were acquired and analyzed with in-house image registration software. Results: The smallest jaw size (front and backup jaws of 0) provided the best image contrast and longitudinal resolution. Couch velocity did not affect the image quality or geometric accuracy. The MVtopo dose was less than the MVCT dose. The image registration uncertainty from the multi-institutional study was within 2.8 mm. In patient localization, the differences in calculated couch shift between the registration with MVtopo-kVtopo and MVCT-kVCT images in lateral, cranial–caudal, and vertical directions were 2.2 ± 1.7 mm, 2.6 ± 1.4 mm, and 2.7 ± 1.1 mm, respectively. The imaging time in MVtopo acquisition at the couch speed of 3 cm/s was <1 minute, compared with ≥15 minutes in MVCT for all patients. Conclusion: Whole-body MVtopo imaging could be an effective alternative to time-consuming MVCT for total marrow irradiation patient localization

  10. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  11. Time and dose dependent expression in the proteome of human peripheral blood mononuclear cells with γ-irradiation

    International Nuclear Information System (INIS)

    Nishad, S.; Ghosh, Anu

    2014-01-01

    The aim of present study is to investigate time and dose dependent differential protein expression pattern of human peripheral blood mononuclear cells (PBMCs) after acute gamma irradiation. For this purpose, PBMCs extracted from eight healthy individuals were irradiated using 60 Co gamma rays (0.3 Gy and 1 Gy) and compared with sham irradiated controls. Total proteins were extracted 1 and 4 hour post irradiation and analyzed using 2-D gel electrophoresis. A fold change of 1.5 in spot intensity was considered as 'biological significant'. Protein identification was performed by MALDI-TOF mass spectrometry. The MS/MS spectra were interrogated using Mascot 2.1 for searching against SWISS-PROT database. One-hour post irradiation, 18 proteins showed a significant difference between the sham (0 Gy) and 0.3 Gy irradiated group (6 proteins up-regulated and 12 proteins down-regulated) and 17 proteins between the sham (0 Gy) and 1 Gy irradiated group (9 proteins up-regulated and 8 down-regulated). Four hours after irradiation, 16 proteins were differentially expressed between the sham irradiated and 0.3 Gy treated group (5 proteins up-regulated and 11 proteins downregulated). Relatively high dose of 1 Gy showed modulation of 13 proteins (5 proteins upregulated and 8 proteins down regulated) after 4 hours. There were 15 proteins that were observed both at the early time point of 1-hour and the late time point of 4-hour. Important among these were, proteins involved in cytoskeletal organization like Actin, Plastin-2, Vinculin, PDZ and LIM domain protein, WD repeat containing protein and the chaperone proteins like HSP 90-alpha and Protein disulfide-isomerase A3. Proteins like thiol specific antioxidant peroxiredoxin-6 (indicating increased levels of ROS and oxidative stress) showed dose specific expression while proteins like Ras-related Rap-1b-like protein (involved in cell survival) were observed with both 0.3 Gy and 1 Gy. During the study, human peripheral blood

  12. In vivo dosimetry study of semi-conductors EPD-20 in total body irradiation technique; Etude de la dosimetrie in vivo par semi-conducteurs EPD-20 dans les conditions de l'irradiation corporelle totale

    Energy Technology Data Exchange (ETDEWEB)

    Besbes, M.; Kochbati, L.; Ben Abdennabi, A.; Abdessaied, S.; Salem, L.; Frikha, H.; Nasr Ben Ammar, C.; Hentati, D.; Gargouri, W.; Messai, T.; Benna, F.; Maalej, M. [Institut Salah-Azaiz, Service de radiotherapie oncologique, Tunis (Tunisia); Mahjoubi, H. [Institut superieur des technologies medicales de Tunis, Dept. de biophysique, Tunis (Tunisia); Farhat, L. [CHU Habib-Bourguiba, Service de radiotherapie oncologique, Sfax (Tunisia)

    2010-01-15

    Purpose: The objective of this work was the study of in vivo dosimetry performed in a series of 54 patients receiving total body irradiation (T.B.I.) at the Salah-Azaiz Institute of Tunis since 2004. In vivo dosimetry measurements were compared to analytically calculated doses from monitor units delivered. Patients and method: The irradiation was conducted by a linear accelerator (Clinac 1800, Varian, Palo Alto, USA) using nominal X-rays energies of 6 MV and 18 MV, depending on the thickness of the patient at the abdomen. The dose was measured by semi-conductors p-type E.P.D.-20. These diodes were calibrated in advance with an ionization chamber 'P.T.W. Farmer' type of 0.6 cm{sup 3} and were placed on the surface of plexiglas phantom in the same T.B.I. conditions. A study of dosimetric characteristics of semi-conductors E.P.D.-20 was carried out as a function of beam direction and temperature. Afterwards, we conducted a comparative analysis of doses measured using these detectors during irradiation to those calculated retrospectively from monitor units delivered to each patient conditioned by T.B.I.. Results: Experience showed that semi-conductors are sensitive to the angle of beam radiation (0-90 degrees) and the temperature (22-40 Celsius degrees). The maximum variation is respectively 5 and 7%, but in our irradiation conditions these correction factors are less than 1%. The analysis of the results of the in vivo dosimetry had shown that the ratio of the average measured doses and analytically calculated doses at the abdomen, mediastinum, right lung and head are 1.005, 1.007, 1.0135 and 1.008 with a standard deviation 'type A' respectively of 3.04, 2.37, 7.09 et 4.15%. Conclusion: In vivo dosimetry by semi-conductors is in perfect agreement with dosimetry by calculation. However, in vivo dosimetry using semiconductors is the only technique that can reflect the dose actually received instantly by the patient during T.B.I. given the many factors

  13. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    International Nuclear Information System (INIS)

    Williams, Jerry R.; Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-01-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses (∼2 Gy HDR, ∼6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications

  14. Total Ionizing Dose effects in 130-nm commercial CMOS technologies for HEP experiments

    CERN Document Server

    Gonella, L; Silvestri, M; Gerardin, S; Pantano, D; Re, V; Manghisoni, M; Ratti, L; Ranieri, A

    2007-01-01

    The impact of foundry-to-foundry variability and bias conditions during irradiation on the Total Ionizing Dose (TID) response of commercial 130-nm CMOS technologies have been investigated for applications in High Energy Physics (HEP) experiments. n- and p-channel MOSFETs from three different manufacturers have been irradiated with X-rays up to more than 100 Mrad (SiO2). Even though the effects of TID are qualitatively similar, the amount of degradation is shown to vary considerably from foundry to foundry, probably depending on the processing of the STI oxide and/or doping profile in the substrate. The bias during irradiation showed to have a strong impact as well on the TID response, proving that exposure at worst case bias conditions largely overestimates the degradation a device may experience during its lifetime. Overall, our results increase the confidence that 130-nm CMOS technologies can be used in future HEP experiments even without Hardness-By-Design solutions, provided that constant monitoring of th...

  15. Total body irradiation with a reconditioned cobalt teletherapy unit.

    Science.gov (United States)

    Evans, Michael D C; Larouche, Renée-Xavière; Olivares, Marina; Léger, Pierre; Larkin, Joe; Freeman, Carolyn R; Podgorsak, Ervin B

    2006-01-01

    While the current trend in radiotherapy is to replace cobalt teletherapy units with more versatile and technologically advanced linear accelerators, there remain some useful applications for older cobalt units. The expansion of our radiotherapy department involved the decommissioning of an isocentric cobalt teletherapy unit and the replacement of a column-mounted 4-MV LINAC that has been used for total body irradiation (TBI). To continue offering TBI treatments, we converted the decommissioned cobalt unit into a dedicated fixed-field total body irradiator and installed it in an existing medium-energy LINAC bunker. This article describes the logistical and dosimetric aspects of bringing a reconditioned cobalt teletherapy unit into clinical service as a total body irradiator.

  16. Post operative high dose rate intravaginal irradiation in endometrial cancer: a safe and effective outpatient treatment

    International Nuclear Information System (INIS)

    Chen, Peter; Gibbons, Susan; Vicini, Frank; Weiner, Sheldon; Dmuchowski, Carl; Mele, Beth; Brabbins, Donald; Jennings, John; Gustafson, Gary; Martinez, Alvaro

    1995-01-01

    Purpose: We reviewed our experience with out patient high dose rate (HDR) intravaginal irradiation given post-operatively in endometrial cancer to assess local control, survival, and toxicity when used alone or in combination with external beam irradiation. Methods and Materials: From (12(88)) to (12(92)), 78 patients underwent TAH/BSO and received post-operative HDR intravaginal irradiation for endometrial cancer. Pathologic stage distribution was IB/IC: 56%, II: 22%, III: 22%. Adjuvant therapy was given in one of three schemes: HDR vaginal radiation alone (6 weekly fractions of 500 cGy prescribed 5 mm from the applicator surface treating the upper 4 cm of the vagina), pelvic irradiation with vaginal HDR (500 cGy x 4 weekly fractions) or whole abdomen/pelvic irradiation (WAPI) with vaginal HDR treatment (500 cGy x 3 weekly fractions). Prior to the first HDR vaginal treatment, a simulation with placement of vaginal apex metallic markers was performed to assure proper positioning of the intravaginal cylinders. Pelvic midline blocking was designed from the HDR intravaginal simulation films. The 55 patients who underwent combined external beam irradiation/brachytherapy received a median dose to the pelvis of 5040 cGy (range 25.2-51.6 Gy), and a median total vaginal dose of 5060 cGy (range 30.0-57.6 Gy). Results: Median follow-up is 37 months (range 6-73 months). Local control (vaginally) is 98.7%. The one vaginal failure was in the distal vagina, outside the treatment volume. All other failures (4) were distant with the vagina controlled [3 intra-abdominal and one bone/intra-abdominal]. For stages I and II, the disease free survival is 92.8%. For stage III the disease free survival is 86.5%. Median overall time to failure is 14.3 months (range 8.5-18.6 months). In terms of acute toxicity, no grade 3-4 acute toxicity of the vagina or bladder was seen. However, 9% acute GI toxicity was encountered. Chronic grade 1-2 toxicities included: vaginal 21.8% (foreshortening and

  17. Dose response of artificial irradiation of fluvial sediment sample for ESR dating

    International Nuclear Information System (INIS)

    Liu Chunru; Yin Gongming; Gao Lu; Li Jianping; Han Fei; Lin Min

    2011-01-01

    ESR dating samples need be irradiated to obtain dose response curve and the equivalent dose. The artificial dose rate is about 1 x 10 -1 -1 x 10 2 Gy/min, whereas the natural dose rate is about 3 Gy/ka. Therefore, one must be sure whether the much higher artificial dose rate is suitable for the ESR dating study. In this paper, we use different artificial dose rate to irradiate the same fluvial sample and measure the quartz Al centre ESR signal under the same conditions. The dose response curves are compared, in an attempt to gain a preliminary knowledge on that problem and build a good foundation for our ESR dating studies on fluvial samples. (authors)

  18. Lipid peroxidation in microsomes of murine bone marrow after low-dose γ-irradiation

    International Nuclear Information System (INIS)

    Schwenke, K.; Coslar, S.; Muehlensiepen, H.; Altman, K.I.; Feinendegen, L.E.

    1994-01-01

    The principal aim of the study was to investigate the effect of low-dose γ-irradiation on lipid peroxidation (LPO) in murine bone marrow. To this end, the degree of LPO in suspensions of microsomes of murine bone marrow cells (BMC) was determined in terms of malondialdehyde (MDA) formation after whole-body or in vitro exposure to various doses of γ-radiation. These effects were compared to some extent with similar effects in liver and spleen preparations. As to the effect of γ-irradiation on LPO in BMC, the response depends on the dose level and on whether whole-body or in vitro exposures are involved. Whole-body irradiation did not result in an increase in LPO in BMC microsomes, even at such high doses as 15 Gy, although hepatic microsomes showed a marked increase. In contrast, in vitro irradiation of BMC microsomes with 0.1, 10 and 50 Gy brought about an increase in LPO. This increase was already significant (P < 0.05) at 0.1 Gy following a post-irradiation incubation and substantial at 50 Gy, even without subsequent incubation. The results show that low doses of γ-irradiation are able to induce an elevation of LPO in murine BMC microsomes, but only after in vitro irradiation. In the case of whole-body irradiation cellular radical scavengers and other metabolic reactions may prevent a measurable increase in LPO. This is partly illustrated by the case of vitamin-E deficiency, where a substantial increase in LPO in BMC microsomes is observed even without γ-irradiation in comparison with euvitaminotic mice because normally occurring radicals are not scavenged sufficiently. (orig.)

  19. Gamma-irradiated onions as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Vaijapurkar, S.G.; Agarwal, Deepshikha; Chaudhuri, S.K.; Ram Senwar, Kana; Bhatnagar, P.K.

    2001-01-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied

  20. Radiation effect and response of DNA synthesis in lymphocytes induced by low dose irradiation

    International Nuclear Information System (INIS)

    Zhao Yujie; Su Liaoyuan; Zou Huawei; Kong Xiangrong

    1999-01-01

    The ability of DNA synthesis in lymphocytes were measured by using 3 H-TdR incorporation method. This method was used to observe the damage of lymphocytes irradiated by several challenge doses (0.5-0.8 Gy) and adaptive response induced by previous low dose irradiation. The results show that DNA synthesis was inhibited by challenge dose of radiation and was adapted by previous 0.048 Gy irradiation

  1. Dose rate determinations in the Portuguese Gamma Irradiation Facility: Monte Carlo simulations and measurements

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Ferro de Carvalho, A.

    2000-01-01

    A simulation study of the Portuguese Gamma Irradiation Facility, UTR, has been carried out using the MCNP code. The work focused on the optimisation of the dose distribution inside the irradiation cell, dose calculations inside irradiated samples and dose calculations in critical points for protection purposes. Calculations were carried out at points inside and outside the irradiation cell, where different behaviour was expected (distance from the source, radiation absorption and scattering in irradiator structure and walls). The contributions from source, irradiator structure, sample material, carriers, walls, ceiling and floor to the photon spectra and air kerma at those points are reported and discussed. Air kerma measurements were also carried out using an ionisation chamber. Good agreement was found between experimental and calculated air kermas. (author)

  2. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta (University and Hospital, Policlinico, Perugia (Italy). Radiation Oncology Service); Aversa, Franco; Martelli, M.F. (University and Hospital, Policlinico, Perugia (Italy). Department of Haematology); Raymondi, Carlo (University and Hospital, Policlinico, Perugia (Italy). Radiation Physics Service)

    1991-10-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab.

  3. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    International Nuclear Information System (INIS)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta; Aversa, Franco; Martelli, M.F.; Raymondi, Carlo

    1991-01-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab

  4. Quality of fresh-cut Iceberg lettuce and spinach irradiated at doses up to 4 kGy

    International Nuclear Information System (INIS)

    Fan Xuetong; Guan Wenqiang; Sokorai, Kimberly J.B.

    2012-01-01

    Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O 2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO 2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O 2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22–40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality. - Highlights: ▶ Headspace composition in the modified atmosphere packages of cut lettuce was affected by irradiation. ▶ Fresh-cut lettuce in adapted atmosphere could tolerate 1 or 2 kGy rays without quality deterioration in look and texture. ▶ Lettuce irradiated at doses higher than 2 kGy developed sogginess. ▶ Irradiated spinach maintained a good appearance at doses of 3 and 4 kGy. ▶ Higher doses (3 and 4 kGy) of radiation decreased consumers' likingness and purchase intent of irradiated spinach.

  5. Somatic radiation risk in case of irradiation of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Nocken, U.; Ewen, K.; Makoski, H.B.

    1983-09-01

    The somatic dose index for irradiation of the brain was determined for the 10 MeV bremsstrahlung of a linear electron-accelerator. A small volume rotation technique and the irradiation of the total neurocranium were chosen as extreme conditions for the radiation exposure of the skull. On the basis of a target volume dose of 50 Gy for the total irradiation series, the somatic dose index of the small volume technique is within the scope of coronarography. In case of irradiation of the total neurocranium, however, the somatic dose index largely exceeds the maximum values of X-ray diagnosis.

  6. Kidney allograft tolerance in diabetic patients after total lymphoid irradiation (TLI)

    Energy Technology Data Exchange (ETDEWEB)

    Ang, K.K.; Vanrenterighem, Y.; Waer, M.; Michielsen, P.; Schueren, E. van der (University Hospital St. Rafael, Leuven (Belgium)); Vandeputte, M. (Louvain Univ. (Belgium). Rega Institute for Medical Research)

    1985-04-01

    The value of total lymphoid irradiation (TLI) combined with low dose prednisone as sole immunosuppressive regimen in renal allograft transplantation in humans has been investigated. Seventeen patients with end-stage diabetic nephropathy received TLI to a cumulative dose of 20-30 Gy in fractions of 1 Gy. Cadaver kidneys were grafted as soon as they were available after completion of TLI. Profound and long-term immunosuppression has been achieved in 17 patients. Six patients live already more than one year and 7 for less than one year with a functioning kidney graft. One patient returned to chronic hemodialysis 11 months after transplantation and died of pericardial tamponade one month later. One patient had severe acute rejection for which cyclosporine A was administered; he died of septic shock as a consequence of immune deficiency a month later. The other two patients succumbed to other causes (myocardial infarction and hyperglycemia).

  7. Sterility and Sexual Competitiveness of Tapachula-7 Anastrepha ludens Males Irradiated at Different Doses.

    Science.gov (United States)

    Orozco-Dávila, Dina; Adriano-Anaya, Maria de Lourdes; Quintero-Fong, Luis; Salvador-Figueroa, Miguel

    2015-01-01

    A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed.

  8. Treatment of carcinoma of uterine cervix with high-dose-rate intracavitary irradiation using Ralstron

    International Nuclear Information System (INIS)

    Suh, C.O.; Kim, G.E.; Loh, J.J.K.

    1988-01-01

    From May 1979 through December 1981, a total of 530 patients with carcinoma of the uterine cervix were treated with radiation therapy with curative intent. Of the 530 patients, 365 were treated with a high-dose-rate remote-controlled afterloading system (RALS) using a cobalt source, and 165 patients received a low dose rate using a radium source. External pelvic irradiation with a total of 40-50 Gy to the whole pelvis followed by intracavitary radiation (ICR) with a total dose of 30-39 Gy in ten to 13 fractions to point A was the treatment protocol. ICR was given three times a week with a dose of 3 Gy per fraction. Five-year actuarial survival rate with high-dose-rate ICR by stage was as follows: stage I:82.7% (N = 19) stage II:69.6% (N = 184), and stage III:52.2% (N = 156). The above results were comparable with those with conventional low-dose-rate ICR treatment, and late complications were far less. The application of high-dose-rate ICR was technically simple and easily performed on an outpatient basis without anesthesia, and the patients tolerated it very well. Radiation exposure to personnel was virtually none as compared with that of low-dose-rate ICR. Within a given period of time, more patients can be treated with high-dose-rate ICR because of the short treatment time. The authors therefore conclude that high-dose-rate ICR is suitable for a cancer center where a large number of patients are to be treated

  9. Proton and photon absorbed-dose conversion coefficients for embryo and foetus from top-down irradiation geometry

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    Absorbed-dose conversion coefficients are calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months when the mother's body is exposed to protons and photons from top-down (TOP) direction. It provides data sets in addition to other standard irradiation geometries published previously. The TOP-irradiation geometry is considered here, because high-energy particles are often peaked from the TOP direction onboard aircraft. The results show that absorbed-doses from high-energy particles could be underestimated significantly if isotropic (ISO) irradiation geometry is assumed. For protons of 100 GeV, absorbed-doses from TOP irradiation are ∼2.3-2.9 times higher than the doses from ISO irradiation for different foetal ages. For 10 GeV photons, foetal doses from TOP irradiation are ∼6.8-12 times higher than the doses from ISO irradiation. The coefficients from TOP-irradiation geometry are given in wide energy ranges, from 100 MeV to 100 GeV for protons and from 50 V to 10 GeV for photons. They can, therefore, be used in various applications whenever exposure from the TOP-irradiation direction is concerned. (authors)

  10. Sustained improvement of intractable rheumatoid arthritis after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Field, E.H.; Strober, S.; Hoppe, R.T.

    1983-01-01

    Total lymphoid irradiation (TLI) was administered to 11 patients who had intractable rheumatoid arthritis that was unresponsive to conventional medical therapy, including aspirin, multiple nonsteroidal antiinflammatory drugs, gold salts, and D-penicillamine. Total lymphoid irradiation was given as an alternative to cytotoxic drugs such as azathioprine and cyclophosphamide. After radiotherapy, 9 of the 11 patients showed a marked improvement in clinical disease activity as measured by morning stiffness, joint tenderness, joint swelling, and overall functional abilities. The mean improvement of disease activity in all patients ranged from 40-70 percent and has persisted throughout a 13-28 month followup period. This improvement permitted the mean daily steroid dose to be reduced by 54%. Complications included severe fatigue and other constitutional symptoms during radiotherapy, development of Felty's syndrome in 1 patient, and an exacerbation of rheumatoid lung disease in another. After therapy, all patients exhibited a profound T lymphocytopenia, and a reversal in their T suppressor/cytotoxic cell to helper cell ratio. The proliferative responses of peripheral blood mononuclear cells to phytohemagglutinin, concanavalin A, and allogeneic leukocytes (mixed leukocyte reaction) were markedly reduced, as was in vitro immunoglobulin synthesis after stimulation with pokeweed mitogen. Alterations in T cell numbers and function persisted during the entire followup period, except that the mixed leukocyte reaction showed a tendency to return to normal values

  11. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    International Nuclear Information System (INIS)

    Xiao Yao; Guo Hong-Xia; Zhang Feng-Qi; Zhao Wen; Wang Yan-Ping; Zhang Ke-Ying; Ding Li-Li; Luo Yin-Hong; Wang Yuan-Ming; Fan Xue

    2014-01-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed. (interdisciplinary physics and related areas of science and technology)

  12. Prophylactic action of Alpha-tocopherol against Gamma irradiation changes in total lipid and phospholipid contents of brain cerebral hemispheres in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Mahdy, A M; Helen, N S; Roushdy, H M [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1987-12-31

    Male albino rats were intraperitoneally injected with Gamma tocopherol (vitamin E) at 10 mg/100 g animal body weight, 2 hr, before irradiation exposure. exposure. Rats were then exposed to a whole body dose of gamma irradiation at 7 Gy. Rats were sacrificed 1, 3, 7 and 10 days post irradiation. The two cerebral hemispheres were taken to determine the phospholipids and total lipid contents. whole body gamma irradiation of rats at 7 Gy caused a significant decrease in the levels of both phospholipids and total lipid contents in the cerebral hemispheres on the 3 rd, 7 Th, and 10 Th days post-irradiation, the decrease was insignificant on the 1 st day post exposure. The variations were less pronounced in rats treated with vitamin E. The results obtained were discussed in view of the relevant literature. 2 tabs.

  13. Chromosomal aberrations in bone marrow cells of rats irradiated with different gamma-doses and protected with adeturon

    International Nuclear Information System (INIS)

    Ivanov, B.; Mileva, M.; Bulanova, M.; Pantev, T.

    1982-01-01

    Sexually mature wistor rats were irradiated on cesium gamma source ''IGUR-1'' with emissive power 3.25 mA/kg. The animals were divided in five groups of 10 rats each. They were irradiated respectively with 0.0129 C/kg, O, 0.0258 C/kg, 0.0516 C/kg, 0.1032 C/kg and control group. Five animals of each group received 300 meg/g weight Adeturone 15 minutes before exposure. The animals were sacrifices 20 hours after irradiation and preparations made from bone-marrow cells for chromosomal analysis. The number of structural chromosomal aberrations, aberrant cells and total number of aberrations in protected and in nonprotected cells were read under high-power microscope. The results were statistically processed by variation and regression analysis. It was found that Adeturone displays strong protective effect on the hereditary cell structures in all animals exposed to doses higher than 0.0129 C/kg, with the exception of chromatid fragments at a dose of 0.0258 C/kg. Mathematical models of the curves of the yields of chromatid and chromosomal fragments, aberrant cells and total number of aberrations in protected and nonprotected animals were described. (authors)

  14. The effect of γ-irradiation on changes of blood chemistry in RC-MAP after irradiation

    International Nuclear Information System (INIS)

    Hirose, Tetsuhito; Katayama, Norifumi; Okamoto, Yukiharu; Tsuda, Tadaaki; Ota, Kiichiro; Nishioka, Shingo; Tsumura, Michiyo; Yukawa, Mariko

    1997-01-01

    Irradiation to transfused blood is obligated to prevent from post transfusion graft-versus-host disease (PT-GVHD) by inactivation of lymphocytes. The rule of irradiated dose was not determined, it's dose being ranged from 15 to 50 Gy, but it's dose was done by each institute. We investigated an adequate dose of irradiation to blood on effects of plasma Na, potassium (K), Chloride (Cl), LDH, GOT, BUN and total protein (T.P) after irradiation of transfused blood. By comparison of plasma Na and K in non-irradiated blood, plasma K was increased and decreased in a parallelism of period of stored irradiated blood, two days after it's irradiation. Effects of Na and K levels were dose dependent. LDH level was increased in a time-dependency, but not by it's dose plasma Cl, LDH, GOT, BUN and T.P levels were not influenced. Our results indicated that the mechanism of RBC permeability after irradiation seemed to be inactivated Na-K ATPase activity in RBC cell membrane. (author)

  15. Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration

    International Nuclear Information System (INIS)

    Setiyanto; Pudjijanto MS; Ardani

    2006-01-01

    To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)

  16. Combined use of low dose gamma irradiation and fenoxycarb, as a means of protection against infestation of wheat grains with khapra beetle Trogoderma granarium, Everts

    International Nuclear Information System (INIS)

    Ghanem, I; Al-Ek, H.

    2006-04-01

    Larvae of khapra beetle were exposed to one of the following treatments: Rearing on wheat grains treated with varying concentrations of fenoxycarb. Irradiation with varying doses of gamma rays followed by rearing on non-treated wheat grains. Irradiation with varying doses of gamma rays followed by rearing on fenoxycarb-treated wheat grains. The development of these larvae was followed and the percentage of each developmental stage was recorded. Results indicate that the combined use of radiation and fenoxycarb resulted in a accumulative effect that leads to the reduction in the doses of both treatments needed to achieve a complete abolition of adult emergence. Within five weeks of commencement about 85% of the larvae in the control treatment have reached adulthood, eggs laid by these adults have hatched into life larvae. When larvae were irradiated with gamma ray, development was disrupted and percentages of emerging adults decreased with the increase in irradiation dose. At a dose of 100 Gy adult emergence was abolished and no adults were found five weeks from the start of the experiment. Likewise, Rearing of larvae on fenoxycarb-treated grains resulted in a disruption of development and a dose of 1ppm was necessary to achieve total abolishment of adult emergence. However, when a combination of gamma ray and fenoxycarb treatment was applied a accumulative effect was observed resulting in a reduction in the doses of irradiation and fenoxycarb needed to achieve similar results. The doses needed to achieve a total absence of adult emergence were reduced to 50Gy and 0.063 ppm for irradiation and fenoxycarb treatment respectively. The significance of the above results is discussed, and an explanation to the observed accumulative effect is offered. (author)

  17. Male gonadal dose an adjuvant 3-D-pelvic irradiation after anterior resection of rectal cancer. Influence to fertility

    International Nuclear Information System (INIS)

    Piroth, M.D.; Hensley, F.; Wannenmacher, M.; Zierhut, D.

    2003-01-01

    Background: Rectal cancer is a common malignant disease and occurs not infrequently in younger men. We verified the dose to the testes from scattered radiation in adjuvant pelvic irradiation following anterior resection of rectal cancer. Patients and Method: We measured the scattered gonadal dose of 18 patients in vivo with thermoluminescence detectors, which were fixed on four defined points on the scrotum during radiation on three consecutive days. All patients were treated three-dimensionally planned using a three-field box lying in prone position in a bellyboard. A total dose of 50.4 Gy was given in 28 fractions of 1.8 Gy. From 45 up to 50.4 Gy the radiation fields were modified to lateral-opposing fields which were shortened from the top to protect the small bowel. Results: The mean gonadal dose per fraction of all patients was 0.057 Gy (median 0.05 Gy) with a range between 0.035 and 0.114 Gy. The standard deviation was 0.02 Gy. The calculated cumulative mean gonadal dose after 28 fractions was 1.60 Gy (0.98-3.19 Gy). Conclusions: Germinal epithelium is very sensitive to low-dose irradiation, according to a negative fractionation effect. It is known that gonadal total doses of 1 Gy with single doses of 0.03-0.05 Gy can result in a temporary azoospermia with following recovery in most cases. If gonadal total doses exceed 1.5 Gy a substantial increase in irreversible azoospermia must be expected. With respect to the data reported in the literature our measured mean gonadal total dose of 1.60 Gy will lead with high probability to an irreversible infertility. Because of the small number of patients in our study, the data must be interpreted with caution, however, it is very important in patient's informed consent to draw attention to the high risk of infertility. The possibility of sperm cryoconservation should be discussed with the patient. (orig.) [de

  18. Evaluation of the efficacy of palliative irradiation with high fractionated doses and planned intervals of patients with advanced cancer of the oral cavity and pharynx

    International Nuclear Information System (INIS)

    Skolyszewski, J.; Reinfuss, M.

    1988-01-01

    200 patients, previously not treated, with advanced highly differentiated cancer of the oral cavity and pharynx have been palliatively irradiated in the Oncology Center in Cracow in the years 1976-1985. Megavoltage irradiation with fractionated doses 4-5 Gy up to the dose of 20 Gy to the tumor with 4-5 fractions during 4-7 days has been applied. 64 patients received 20 Gy as simple dose, in 65 cases such dose has been repeated after month. 71 patients have been irradiated for the third time with similar dose after another 1 month interval. Partial regression of 25-50% of the tumor volume has been obtained after the first series of irradiation in 19% of patients and more than 50% in 28% of patients, complete regression in 4% of patients. 15,5% of the total number of patients survived 1 year since the initiation of the irradiation, 5% without symptoms of the neoplasm. Worse prognosis is connected with major advancement of the tumor (T 4 , N 2 ), poor general condition, cachexia and alcohol addition. Absence of improvement after the first series of irradiations indicates the non-effectiveness of the treatment. Palliative treatment by irradiation with high fractionated doses and planned interval is a safe and efficacious method. 1 fig., 6 tabs., 14 refs. (author)

  19. Effect of gamma irradiation on the total nitrogen and protein content in body during different stages of silkworm development

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.T.

    1996-01-01

    The aim was to determine the effect of gamma irradiation of eggs of silk moth in B 2 stage in doses of 1.00, 2.00 and 3.00 Gy on the changes of total nitrogen and protein content during different stages of Bombyx mori L. development. Highest levels of total nitrogen and protein were found in silk gland 14.032-14.355 mg%, followed by pupae - 7.448-8.092 and 46.550-48.906 mg%, moths after egg laying - 6.650-7.825 and 41.563-48.906 mg% and silkworm hemolymph - 6.920-6.980 and 43.250-43.625 mg%, respectively. The irradiation of eggs with 2.00 and 3,00 Gy gamma rays stimulated the increase of total nitrogen and protein content in silk gland by 6.66-7.3% compared to non-irradiated eggs of the same breed. 14 refs., 3 tabs. (author)

  20. Treatment of cervical carcinoma by total hysterectomy and postoperative external irradiation

    International Nuclear Information System (INIS)

    Papavasiliou, C.; Yiogarakis, D.; Pappas, J.; Keramopoulos, A.

    1980-01-01

    The survival rates of 36 patients with early cervical carcinoma who had undergone total hysterectomy and bilateral salpingoophorectomy (THBSO) were compared to the survival rates of 41 patients who were subjected to the radical operation. As an integral part of their therapy both groups postoperatively received adequate doses of external beam supervoltage irradiation. Satisfactory results were obtained in both groups of patients. According to these results THBSO followed by postoperative radiotherapy is adequate treatment for early cervical carcinoma. In comparison to the radical operation or curietherapy alone this type of treatment has the advantage of requiring less surgical or radiotherapeutic expertise; it probably is associated with less morbidity

  1. Protective effect of hypoxia in the ram testis during single and split-dose X-irradiation

    International Nuclear Information System (INIS)

    Vliet, J. van; Wensing, C.J.G.; Bootsma, A.L.; Peperzeel, H.A. van; Schipper, J.

    1988-01-01

    Spertogonial stem-cell survival in the ram was studied after single (6Gy) and split-dose X-irradiation both under normal and hypoxic conditions. Hypoxia was induced by inflation of an occluder implanted around the testicular artery. The occluders were inflated about 10 min before irradiation and deflated immediately after. Stem-cell survival was measured at 5 or 7 weeks after irradiation by determination of the Repopulation Index (RI) in histological testis sections. The RI-values after fractionated irradiation were only half those after single dose irradiation. Hypoxia had a protective effect on the stem-cell survival. After split-dose irradiation under hypoxic conditions two times more stem cells survived than under normal oxic conditions; the RI-values increased from 34% (oxic) to 68% (hypoxic). This effect of hypoxia was also found after single dose irradiation where the RI-values increased from 68% (oxic) to 84% (hypoxic). The development of the epithelium in repopulated tubules was also studied. Under hypoxia, a significantly higher fraction of tubules with complete epithelium was found after single (38 vs. 4%) as well as after split-dose irradiation (12 vs. 0%)

  2. Search for the lowest irradiation dose from literatures on radiation-induced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1975-12-01

    A survey of past case reports concerning radiation-induced breast cancer was carried out in order to find the lowest irradiation dose. The search of literature published since 1951 revealed 10 cases of radiation-induced breast cancer. Only 5 cases had precise descriptions of the irradiation dose. The lowest irradiation dose was estimated at 1470 rads in the case of external X-ray irradiation for tuberous angioma. All of cases of radiation-induced breast cancer had received radiation for the treatment of nonmalignant tumors, such as pulmonary tuberculosis, mastitis, and tuberous angioma. There also were three statistical studies. The first concerned atomic bomb survivors, the second, pulmoanry tuberculous patients subjected to frequent fluoroscopies, and the third, patients of acute post partum mastitis. These statistical studies had revealed a significant increase in the incidence of breast cancer in the irradiated group, but there was little information about the lowest irradiation dose. It was noticed that radiation-induced breast cancer was more numerous in the upper inner quadrant of the breast. Most histopathological findings of radiation-induced breast cancer involved duct cell carcinoma. The latent period was about 15 years.

  3. [Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].

    Science.gov (United States)

    Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M

    2017-10-01

    Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. Radiation retinopathy after external-beam irradiation: Analysis of time-dose factors

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Mendenhall, W.M.

    1994-01-01

    To investigate the risk of radiation-induced retinopathy according to total radiation dose and fraction size, based on both retorspective and prospectively collected data. Between October 1964 and May 1989, 68 retinae in 64 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 26 years; mean, 9 years; median, 8 years). Twenty-seven eyes in 26 patients developed radiation retinopathy resulting in visual acuity of 20/200 or worse. The mean and median times to the onset of symptoms attributable to retinal ischemia were 2.8 and 2.5 years, respectively. Fourteen of the injured eyes developed rubeosis iridis and/or neovascular glaucoma. Radiation retinopathy was not observed at doses below 45 Gy, but increased steadily in incidence at doses ≥45Gy. In the range of doses between 45 and 55 Gy, there was an increased risk of injury among patients who received doses per fraction of ≥1.9Gy (p - .09). There was also a trend toward increased risk of injury among patients who received chemotherapy (two of two vs. four of ten in the 45-51 Gy range; p - .23). The lowest dose associated with retinopathy was 45 Gy delivered to a diabetic patient by twice-a-day fractionation. The data did not suggest an increased risk of radiation retinopathy with increasing age. The current study suggests the importance of total dose as well as dose per fraction, and adds support to a small body of literature suggesting that patients with diabetes mellitus or who receive chemotherapy are at increased risk of injury. A sigmoid dose-response curve is constructed from our current data and data from the literature. 36 refs., 5 figs., 4 tabs

  5. Dose distribution, using homogeneous material before the reload of the JS-6500 irradiator

    International Nuclear Information System (INIS)

    Carrasco A, H.

    1991-10-01

    The objective of this report is to determine the dose distribution inside the aluminum containers used for the industrial irradiation, as well as to locate the positions of maximum and minimum doses, before the reloading of the JS-6500 Irradiator. (Author)

  6. Radiation dose in critical organs due to non-coplanar irradiation of the pituitary gland

    International Nuclear Information System (INIS)

    Schulte, R.W.M.; Rittmann, K.L.; Meinass, H.J.; Rennicke, P.

    1996-01-01

    In order to estimate the somatic and genetic risk associated with a non-coplanar linac-based radiation technique of the pituitary gland, systematic secondary-dose measurements in a phantom and sample measurements of the dose near critical organs of patients were performed. For measurements of the dose outside the primary radiation field an acrylic-PVC phantom was used which was irradiated with a single field (4x4 cm 2 ). Eight patients with pituitary tumors were treated isocentrically with a combination of sagittal and transverse rotational arcs. To measure the dose in critical organs, LiF thermoluminescence dosimeters (TLD) in chip form were placed onto 1 eyelid, the skin over the thyroid, and the patient's clothes covering the region of breasts and ovaries of female patients and the testicles of male patients. Measurements were performed for all patients during 1 sagittal irradiation and for the majority of patients during 1 transverse irradiation. The phantom measurements demonstrated that the secondary dose measured on the patients surface can be considered as a good approximation for the dose in adjacent organs. The median dose in critical organs for sagittal irradiation was in the range of 25.8 mGy (eyes) to 1.9 mGy (testicles), and for transverse irradiation in the range of 23.3 mGy (eyes) to 1.3 mGy (testicles). The ratio of median organ doses for sagittal and transverse irradiation was 2.1 for the thyroid gland, 1.1 for the eyes, and 1.5 for the other organs. The dose in critical organs due to non-coplanar irradiation of the pituitary gland is only a small fraction of the dose delivered to the reference point of the planning target volume. The risk of a radiation-induced tumor and a genetic consequence associated with these small doses is generally less than 1% and 0.1%, respectively. (orig./MG) [de

  7. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  8. Orientation of streptococcus agalactiae irradiation dose for subclinical mastitis vaccine in dairy cows

    International Nuclear Information System (INIS)

    Tuasikal, B.J.; Estuningsih, S.; Pasaribu, F.H.; Wibawan, I.W.T.

    2012-01-01

    An experiment to determine the effect of gamma-ray irradiation in debilitating Streptococcus agalactiae as a cause of subclinical mastitis (inflammation of the udder) in cows has been conducted. S. agalactiae bacteria was isolated from subclinical mastitis found in dairy cows in the field was then observed for its cell growth. The bacteria which have reached mid-log phase of growth, were divided into 5 treatment groups, of which each was irradiated at dose level of 0; 25; 50; 75; and 100Gy. Irradiated bacteria subsequently were grown on Brain Heart Infusion agar (BHI), and each of its colonies was counted for LD50 determination. The obtained curves from irradiated treatment bacterial shown viability percentage by the linier equation of Y = 95.414 e -0,0371X ; R 2 = 0.9979, while Y = % viability and X = dose of irradiation. The calculation done in this experiment shows that irradiation dose of 17.4 Gy weaken the bacteria pathogenicity of S. agalactiae to the level of LD 50 . (author)

  9. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    International Nuclear Information System (INIS)

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-01-01

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs

  10. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  11. The effect of low dose gamma irradiation on maize production (1985-1988)

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, K.

    1990-06-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain field crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on maize in Syria. Our experiments were carried out in controlled, in field conditions, and in a large scale application. Samples of air dried seeds of maize (Var. Gota-82 and LG-11) of previous season were irradiated by gamma-rays from a 137 Cs sourse using doses of 5, 7.5, 10, 15, 20, 30, 40 and 50 Gy. at dose rate of 9.8 - 9.2 Gy/min. Then were planted after 2 days from irradiation with unirradiated control, in complete randomized block design and replicated 4 times for four seasons (1985-1988). The date revealed that gamma irradiation, at interval doses of 5 - 10 Gy led to, first: Acceleration of seed germination, faster development, intensive development of root system, increase plant hieght (12 - 19%) and significant increase in ear size and number, and second: Increase both green mass (15 - 35%) and seed yield (10 - 31%), and percentage of seed protein (2 - 17%). Large scale applications were performed in 1987 and 1988 using a transportable irradiation unit POC-1 137 Cs and dose of 7.5 Gy. A significant yield increase was obtained from all fields. The average percentage increment varied from 13 - 30% which is approximately 382-765 Kg/h. Therefore, presowing seed irradiation with low doses gamma irradiation ranging from 5 to 10 Gy, was found to be feasible for application in qualitative and quantitative improvement of maize yield. (author). 38 refs., 12 figs., 44 tabs

  12. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  13. Genetic effects of low-dose irradiation in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Zajnulin, V.G.; Shaposhnikov, M.V.; Yuraneva, I.N.

    2000-01-01

    Influence of chronic γ-irradiation at the dose rate of 0.17 cGy/h on the rate of genetic variability in the laboratory strains of Drosophila Melanogaster with genotypic distinguishes by families of mobile genetic elements and of systems of hybrid disgenesis and also violations in reparation processes control mechanisms. It was shown that the rates of induction of recessive lethal mutations depended on genotype of investigated strains. In the different strains an increase as well as a decrease of the mutation rate were observed. Also in was established that irradiation leads to the increase in frequencies of the gonads sterility and mutability of the sn w and h(w + ) in the P-M and H-E dysgenic crosses. Obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation [ru

  14. Total dose radiation effects of pressure sensors fabricated on uni-bond-SOI materials

    International Nuclear Information System (INIS)

    Zhu Shiyang; Huang Yiping; Wang Jin; Li Anzhen; Shen Shaoqun; Bao Minhang

    2001-01-01

    Piezoresistive pressure sensors with a twin-island structure were successfully fabricated using high quality Uni-bond-SOI (On Insulator) materials. Since the piezoresistors were structured by the single crystalline silicon overlayer of the SOI wafer and were totally isolated by the buried SiO 2 , the sensors are radiation-hard. The sensitivity and the linearity of the pressure sensors keep their original values after being irradiated by 60 Co γ-rays up to 2.3 x 10 4 Gy(H 2 O). However, the offset voltage of the sensor has a slight drift, increasing with the radiation dose. The absolute value of the offset voltage deviation depends on the pressure sensor itself. For comparison, corresponding polysilicon pressure sensors were fabricated using the similar process and irradiated at the same condition

  15. Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel

    International Nuclear Information System (INIS)

    Mosbrucker, P.L.; Brown, D.W.; Anderoglu, O.; Balogh, L.; Maloy, S.A.; Sisneros, T.A.; Almer, J.; Tulk, E.F.; Morgenroth, W.; Dippel, A.C.

    2013-01-01

    Material harvested from several positions within a nuclear fuel duct (the ACO-3 duct) used in a 6-year irradiation of a fuel assembly in the Fast Flux Test Reactor Facility (FFTF) was examined using neutron and high-energy X-ray diffraction. Samples with a wide range of irradiation dose and irradiation temperature history, reaching doses of up to 147 dpa and temperatures of up to 777 K, were examined. The response of various microstructural characteristics such as the weight fraction of M 23 C 6 carbides, the dislocation density and character, and the crystallographic texture were determined using whole profile analysis of the diffraction data and related to the macroscopic mechanical behavior. For instance, the dislocation density was observed to be intimately linked with observed flow strength of the irradiated materials, following the Taylor law. In general, at the high doses studied in this work, the irradiation temperature is the predominant controlling factor of the dislocation density and, thus, the flow strength of the irradiated material. The results, representing some of the first diffraction work done on samples exposed to such a high received dose, demonstrate how non-destructive and stand-off diffraction techniques can be used to characterize irradiation induced microstructure and at least estimate mechanical properties in irradiated materials without exposing workers to radiation hazards

  16. Model of the dose rate for a semi industrial irradiation plant. Pt. 2

    International Nuclear Information System (INIS)

    Mangusi, Josefina

    2004-01-01

    The second stage of the model for the absorbed dose rate in air for the enclosure of a half-industrialist irradiation plant operating with cobalt-60 sources holden in plan geometry is presented. The sensibility of the model with the treatment of the support structure of the irradiator is analyzed and verified with experimental measurements with good accord. The model of the absorbed dose rate in air in the case of an interposed material between the radioactive sources and the point of interest includes in its calculation a set of secondary radioactive sources created by the Compton scattering of the primary radiation. The accord of the calculated absorbed dose rate and the experimental measured ones is good. The transit dose due to the irradiator moving until its dwell position is also modeled. The isodose curves for a set of irradiator parallel planes are also generated. (author) [es

  17. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease in bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation

  18. Caffeine protects mice against whole-body lethal dose of {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Hebbar, S.A.; Kale, S.P.; Kesavan, P.C. [Biosciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    1999-06-01

    Administration of caffeine (1,3,7-trimethylxanthine), a major component of coffee, to Swiss mice at doses of 80 or 100 mg/kg body weight 60 min prior to whole-body lethal dose of {gamma}-irradiation (7.5 Gy) resulted in the survival of 70 and 63% of animals, respectively, at the above doses in contrast to absolutely no survivors (LD-100/25 days) in the group exposed to radiation alone. Pre-treatment with a lower concentration of caffeine (50 mg/kg) did not confer any radioprotection. The protection exerted by caffeine (80 mg/kg), however, was reduced from 70 to 50% if administered 30 min prior to irradiation. The trend statistics reveal that a dose of 80 mg/kg administered 60 min before whole-body exposure to 7.5 Gy is optimal for maximal radioprotection. However, caffeine (80 mg/kg) administered within 3 min after irradiation offered no protection. While there is documentation in the literature that caffeine is an antioxidant and radioprotector against the toxic pathway of radiation damage in a wide range of cells and organisms, this is the first report demonstrating unequivocally its potent radioprotective action in terms of survival of lethally whole-body irradiated mice. (author)

  19. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Kropf Siegfried

    2011-09-01

    Full Text Available Abstract Background To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Materials and methods Fifty patients with 76 malignant liver tumors treated by computed tomography (CT-guided high-dose-rate brachytherapy (HDR-BT were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Results Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p p = 0.001 and p = 0.004, respectively. There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose

  20. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  1. Aging irradiation of polymers. Dose-rate and test sequence influence

    International Nuclear Information System (INIS)

    Alba, C.; Carlin, F.; Chenion, J.; Lemaire, F.; Le Meur, M.; Petitjean, M.

    1984-05-01

    This work brings up results of the irradiation dose-rate influence on mechanical and electrical properties of technical polymer materials evolution. Polymer samples were subjected to 3.3.10 -2 Gy.s -1 and 2.8.10 -1 Gy.s -1 dose-rate. Heat and radiation simultaneous action is usualy simulated sequentialy. The hardest simulation on the polymer is the sequence of irradiation followed by thermal aging not the reverse. This study was carried out on eight polymer materials among those used in the electrical appliances for P.W.R. nuclear power plants [fr

  2. Increase of onion yield through low dose of gamma irradiation of its seeds

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Wiendl, F.W.; Wiendl, J.A.; Vedovatto, A.; Arthur, V.

    1995-01-01

    The increase of onions' yield could be achieved by the common farmer through the use of nuclear techniques. This report describes the results obtained with the irradiation of onion seeds, with low doses of gamma radiations (Cobalt-60), at doses of 0 (control), 150, 400 and 700 Gy. Beyond the proper onion's variety als use of low dose rates of 13.1, 39.2 and 52.3 Gy per hour were of the great importance during irradiation. The results showed to be promising both in laboratory studies and in the field, resulting in an increase of onions production: A greater number of seedlings, bulbs and a higher yield in weight per hectar were planted. In the field the most promising dose and dose rate to the variety ''Super-X'' were respectively 150 Gy and 13.1 Gy per hour, yielding an 24.9 percent heavier weight of onions than the control. The other tested variety was ''Granex-33'', which did not respond so favorable to irradiation. However, also with this variety we harvested a 2.1 percent heavier weight than its control, if the onion seeds were irradiated with the dose of 700 Gy at a dose rate of 13.1 Gy per hour. (Author)

  3. The effect of irradiation dose and age of bird on the ESR signal in irradiated chicken drumsticks

    International Nuclear Information System (INIS)

    Gray, R.; Stevenson, M.H.; Kilpatrick, D.J.

    1990-01-01

    Groups of 20 broiler chickens of the same genetic strain and reared under identical conditions were slaughtered at either 4, 5, 6, 7 or 8 weeks of age. Pairs of drumsticks were removed from each bird and groups were either not irradiated or irradiated at 2.5, 5.0, 7.5 or 10.0 kGy using a cobalt 60 source. Bone samples were excised, fragmented, freeze dried and ground prior to the determination of free radical concentration using electron spin resonance (ESR) spectroscopy. Increasing irradiation dose gave a highly significant increase in free radical concentration whilst for each irradiation dose, bones from younger birds gave significantly lower concentrations compared to those for older birds. Crystallinity coefficient increased linearly with age of bird and this may account in part for the increased signal observed as the birds aged. (author)

  4. Effect of low doses gamma irradiation on seed, bulblets and bulbs of onion

    International Nuclear Information System (INIS)

    Al-Oudat, Mohammad

    1991-10-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on onion in Syria. The effect of low doses gamma irradiation on onion seeds, bulblets and bulbs of two local varieties, red and white, was studied during three consecutive seasons (1986 - 1988). Air dried seeds were irradiated by gamma rays from 137 Cs source. Five, 10, 15, 20 and 30 GY, were applied at dose rate of 9.8 Gy/min. The irradiation of onion bulblets and bulbs were carried out with gamma-rays from 60 Co source at a dose rate of 0.5 Gy/min. using 1, 2, 3, 4 and 5 Gy. Within 7 - 10 days after irradiation, both controlled and irradiated seeds, bulblets and bulbs were sown in the field in complete randomized block design with 4 replicates. Irradiation of seeds with doses of 5, 10 and 15 Gy led to highly significant increases in bulblets yield in the three seasons. The increases ranged from 14.5 to 22.1 for red variety and from 16.2 to 22.3 for white variety. The irradiation of bulblets with 1 and 2 Gy increase significantly the yield of bulbs by 21.6 - 26.0% for red variety and 21.6 - 24.4% for white variety. A considerable increase in seed yield was obtained after irradiation of bulbs with 1 and 2 Gy doses. The average increment was about 21.0% for both varieties. Large scale application were performed in 1989 and 1990 using doses of 10 Gy for seeds and 1 Gy for bulblets and bulbs. A considerable increase in the yield was obtained. The average percentage increment was 16.9% and 23.3% for seeds, 18.6 and 20.9% for bulblets, 24.8 and 27.3% for bulbs, for red and white varieties respectively. Therefore, presowing irradiation of seeds, bulblets and bulbs of onion with low doses of gamma-rays (5 - 15 Gy for seeds and 1 - 2 Gy for bulblets and bulbs) can be of practical application resulting in improvement of yield of

  5. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    International Nuclear Information System (INIS)

    Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T

    2015-01-01

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as 187 W, 56 Mn, 24 Na and 28 Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws

  6. Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, A. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Lupinacci, A. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Frazer, D.; Bailey, N.; Vo, H.; Howard, C. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Jiao, Z. [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States); Minor, A.M. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Chou, P. [Electric Power Research Institute, Palo Alto, CA (United States); Hosemann, P., E-mail: peterh@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)

    2017-04-01

    Recent developments in micromechanical testing have allowed for the efficient evaluation of radiation effects in micron-scale volumes of ion-irradiated materials. In this study, both nanoindentation and in situ SEM microcompression testing are carried out on 10 dpa proton beam irradiated 304 stainless steel to assess radiation hardening and radiation-induced deformation mechanisms in the material. Using a focused ion beam (FIB), arrays of 2 μm × 2 μm cross-section microcompression pillars are fabricated in multiple dose regimes within the same grain, providing dose-dependent behavior in a single crystal orientation. Analysis of the microcompression load-displacement data and real-time SEM imaging during testing indicates significant hardening, as well as increased localization of deformation in the irradiated material. Although nanoindentation results suggest that irradiation hardening saturates at low doses, microcompression results indicate that the pillar yield stress continues to rise with dose above 10 dpa in the tested orientation. - Highlights: •Mechanical properties are probed in small volumes of proton irradiated 304SS. •Nanoindentation indicates saturation of irradiation hardening at doses of 5–10 dpa. •Microcompression of irradiated specimens suggest localized deformation.

  7. Prenatal effects of ancestral irradiation in inbred mice

    International Nuclear Information System (INIS)

    Sprackling, L.E.S.

    1975-01-01

    Mice from 13 inbred strains (S, Z, E, Bab, BaB, BrR, C, K, N, Q, G, CFW, CF1) received continuous cobalt 60 irradiation at low dose rates for varying numbers of consecutive generations. Some Bab and BaB mice had received continuous irradiation for from 24 to 31 generations and the other mice had up to six generations of continuous irradiation in their ancestry. At weaning, the mice were removed from the irradiation room and were mated within strains either to sibs or nonsibs. Ancestral and direct irradiation doses were calculated. The ancestral dose was the effective accumulated dose to the progeny of the mated mice. The direct dose was the amount of irradiation received by any mated female from her conception to her weaning. Each irradiated or control female was scored as fertile or sterile and in utero litter counts were made in pregnant females that were dissected past the tenth day of pregnancy; the sum of moles, dead embryos, and live embryos was the total in utero litter size. A ratio of the living embryos to the total number of embryos in utero was determined for each litter. An increase in ancestral or direct irradiation dose significantly decreased fertility in 11 of the 13 strains. The fertility curves for the pooled data were sigmoid in the area of the doses below those that caused complete sterility. Among the controls, there were significant strain differences in total litter size and in the ratio. Strain X--Y plots, with ancestral or direct doses plotted against total litter size or ratio, revealed the tendency for litter size to decrease as dose increased. The only trend shown for ratio was for the litters with ratios of 0.50 or less to appear more frequently among the irradiated mice. The few corpora lutea counts revealed nothing of significance. Generally, there was a definite trend toward fewer mice alive in utero among the irradiated mice

  8. Effect of vacuum-packaging and low dose gamma irradiation on the microbial, bio-chemical quality and shelf life of peeled shrimp (Litopenaeus vannamei) during ice storage

    International Nuclear Information System (INIS)

    Bojayanaik, Manjanaik; Naroth, Kavya; Prasad, Surjith; Shetty, Veena; Hiriyur, Somashekarappa; Patil, Rajashekar

    2015-01-01

    The present investigation was carried out to see the combined effect of vacuum packaging and low dose gamma irradiation (3kGy) on the shelf life of peeled and undeveined shrimp (Litopeanus vannamie) during ice storage. The fresh farm raised shrimps were peeled and un deveined, packed in high density polyethylene bags (aerobic and vacuum packaging) and were divided into four groups viz. control (C), Irradiated (I), Vacuum packed (V) and vacuum-packed with irradiation (VI). The two groups (I and VI) were irradiated at 3 kGy (Dose rate at the rate 6.043 kGy/hr) and aseptically stored in ice in an insulated polystyrene box. All the samples were periodically analysed for microbial (Total bacterial load, total Coliform, Faecal Coliforms, Staphylococcus, Salmonella, Vibrios and E. coli) and bio chemical (TVB-N, TMA, TBARS and pH) quality. The results revealed that the combination of low dose gamma irradiation and vacuum packaging had a significant effect on microbial load (p>0.05). The TVB-N, TMA-N, TBARS and pH were significantly lower in vacuum packed with irradiation when compare to non-irradiated and aerobically packed shrimp (p> 0.05), and shelf life of peeled shrimp extended up to 21 days in ice storage. (author)

  9. Can prenatal low-dose irradiation affect behavior of adult rats?

    International Nuclear Information System (INIS)

    Smajda, B.; Tomasova, L.; Kokocova, N.

    2011-01-01

    The aim of our study was to determine whether exposure of very low dose gamma-rays during the critical phase of brain development affects some selected behavioral parameters in adult rats. Pregnant female Wistar rats were irradiated with 1 Gy gamma-rays from a cobalt source at 17 th day of pregnancy. The progeniture of irradiated as well as non-irradiated females have undergone behavioral tests at the age of 3 months. Irradiated animals exhibited lower locomotor and exploratory activity in the open field test. (authors)

  10. Design and characteristics of a 4 MV total body irradiator

    International Nuclear Information System (INIS)

    Lutz, W.R.; Chin, L.M.

    1988-01-01

    A facility for total body X-ray irradiation (TBI) has been built using two 4 MV linear accelerators, one mounted under the ceiling, the other in a floor-pit. The distance between the two sources is 410 cm to produce a field size of 200 cm x 75 cm in the midplane. This field covers the patient, lying supine on a stretcher halfway between the sources. Components from commercially available accelerators were used. Special beam hardening and flattening filters were built to achieve acceptable dose profiles in the large field. The primary collimator was modified to produce a 235 cm x 92 cm field at 205 cm from the source, while movable focused collimators were designed to define fields up to 220 cm x 80 cm. Because of the wide beams, large rectangular parallel-plate ionization chambers were built to serve as beam monitors. The dose rate at 205 cm distance from the sources can be set between 5 and 80 cGy/min, each machine contributing half. The dosimetric characteristics are practically the same for both units. The per cent depth dose for the TBI beams is 76% at a source-surface distance of 195 cm. The half value layer decreases by 12% from the centre to near the edge of the beam. Owing to the large field size, the surface dose for the TBI beams is about 80% of the dose at 1 cm depth. The dose delivery has been verified to be within 2% of the calculated value at the reference point in a homogeneous water humanoid phantom. Measurements indicate that lung doses can be predicted by the ratio-of-TMR (tissue-to-maximum ratio) method with acceptable accuracy. Lead sheets are used as attenuators to prevent excessive lung doses. (author). 7 refs, 7 figs

  11. Effects of prolonged irradiation by low dose-rate ionizing radiation on the gene expression of hemopoietic factors of mice

    Energy Technology Data Exchange (ETDEWEB)

    Shirata, Katsutoshi; Saitou, Mikio; Yanai, Takanori; Sato, Fumiaki [Institute for Environmental Science, Rokkasho, Aomori (Japan)

    2000-07-01

    To evaluate the effect of prolonged low-dose irradiation on the gene expression of hemopoietic factors in tissues, gene expression was analyzed in the spleen as a hemopoietic tissue that is well known to be one of the most sensitive tissues to irradiation. SPF C3H/HeN female mice (Clea Japan Inc.) were irradiated under SPF conditions with {sup 137}Cs {gamma}-rays at doses of 2, 4, 6, and 8 Gy and a dose rate of 20 mGy/day. Non-irradiated mice of the same age were maintained as controls. At the end of the period of irradiation, both groups of mice were sacrificed and dissected to extract total RNA from their tissues. Reverse transcriptase-polymerase chain reaction (RT-PCR) and the Northern hybridization were employed to detect gene expression. RT-PCT showed no marked changes in the gene expression of GM-CSF. IL-6 gene expression was shown to tend to be enhanced by prolonged low-dose irradiation. The results of Northern hybridization showed that IL-6 mRNA was expressed slightly in both groups, and it was too weak to compare the difference in mRNA expression level between the irradiated group and the controls. No mRNA expression of GM-CSF was detected by Northern hybridization. Based on these results, it was concluded that the gene expression levels of IL-6 and GM-CSF were inadequate to detect the chemiluminescence signals without amplification. It was therefore concluded that improvement of detection sensitivity and larger RNA samples would be necessary for further analysis of the gene expression of hemopoietic factors. (K.H.)

  12. Evaluation of low doses of gamma irradiation in the formation of mineralization nodules in osteoblasts culture

    Energy Technology Data Exchange (ETDEWEB)

    Targino, Bárbara; Pinto, Thais Lazarine; Silva, Evily Fernandes; Somessari, E.S.R.; Bellini, Maria Helena; Affonso, Regina [Instituto De Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    stained with Alizarin red S (Sigma). All in three biological replicates (a total of 54 samples) and multiple comparisons were assessed by One-way ANOVA followed by Bonferroni's tests with GraphPad Prism version 6.0 software. P< 0.05 was considered statistically significant. Results: Plating efficiency (PF) analysis is generally considered to be the gold standard of assays for testing the sensitivity of cell lines to ionizing radiation or other cytotoxic agents in vitro. The results obtained were a PF of 30% for non-irradiated culture, however, the irradiated culture obtained 40% in relation to the no-irradiated one, already with 0.5 Gy, and this percentage was maintained in the other larger doses. Regarding the evaluation of the formation of mineralization nodules, significant difference in 0.5 Gy group was observed compared with the control group (0 Gy), 64.7±1.8 and 53.0±0.9, respectively. The groups of 1.0, 1.5 and 2.0 Gy obtained a decrease in the mineralization nodules. The data obtained with increasing irradiation produced an increase of mineralization nodules up to 0.5 Gy and in the higher doses had a decrease. Applying the data in a non-linear function it is observed that the line has a decreasing tendency with the negative angular coefficient. This analysis is in agreement with the hormesis model, in which low doses induce a stimulatory effect while high doses cause inhibition4. Conclusions: This study is one among the first that investigating the biophysics of low-dose gamma-irradiation on MC3T3-E1 culture, focusing on the potential applications in bone replacement therapy. (author)

  13. Evaluation of low doses of gamma irradiation in the formation of mineralization nodules in osteoblasts culture

    International Nuclear Information System (INIS)

    Targino, Bárbara; Pinto, Thais Lazarine; Silva, Evily Fernandes; Somessari, E.S.R.; Bellini, Maria Helena; Affonso, Regina

    2017-01-01

    stained with Alizarin red S (Sigma). All in three biological replicates (a total of 54 samples) and multiple comparisons were assessed by One-way ANOVA followed by Bonferroni's tests with GraphPad Prism version 6.0 software. P< 0.05 was considered statistically significant. Results: Plating efficiency (PF) analysis is generally considered to be the gold standard of assays for testing the sensitivity of cell lines to ionizing radiation or other cytotoxic agents in vitro. The results obtained were a PF of 30% for non-irradiated culture, however, the irradiated culture obtained 40% in relation to the no-irradiated one, already with 0.5 Gy, and this percentage was maintained in the other larger doses. Regarding the evaluation of the formation of mineralization nodules, significant difference in 0.5 Gy group was observed compared with the control group (0 Gy), 64.7±1.8 and 53.0±0.9, respectively. The groups of 1.0, 1.5 and 2.0 Gy obtained a decrease in the mineralization nodules. The data obtained with increasing irradiation produced an increase of mineralization nodules up to 0.5 Gy and in the higher doses had a decrease. Applying the data in a non-linear function it is observed that the line has a decreasing tendency with the negative angular coefficient. This analysis is in agreement with the hormesis model, in which low doses induce a stimulatory effect while high doses cause inhibition4. Conclusions: This study is one among the first that investigating the biophysics of low-dose gamma-irradiation on MC3T3-E1 culture, focusing on the potential applications in bone replacement therapy. (author)

  14. Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Perry B; Bahadori, Amir A [Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Eckerman, Keith F [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Lee, Choonsik [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892 (United States); Bolch, Wesley E, E-mail: wbolch@ufl.edu [Nuclear and Radiological/Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R{sup 2} = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  15. Chemical changes after irradiation and post-irradiation storage in tilapia and Spanish mackerel

    International Nuclear Information System (INIS)

    Al-Kahtani, H.A.; Abu-Tarboush, H.M.; Bajaber, A.S.; Atia, M.; Abou-Arab, A.A.; El-Mojaddidi, M.A.

    1996-01-01

    Influence of gamma irradiation (1.5-10 kGy) and post-irradiation storage up to 20 days at 2 +/- 2 degrees C on some chemical criteria of tilapia and spanish mackerel were studied. Total volatile basic nitrogen formation was lower in irradiated fish than in the unirradiated. Irradiation also caused a larger increase in thiobarbituric acid values which continued gradually during storage. Some fatty acids decreased by irradiation treatments at all doses. Thiamin loss was more severe at higher doses (greater than or equal to 4.5 kGy), whereas riboflavin was not affected. Alpha and gamma tocopherols of tilapia and alpha, beta, gamma, and delta tocopherols, in Spanish mackerel, decreased with increased dose and continued to decrease during 20-day post-irradiation storage

  16. Effects of irradiation at different dose rates on the onset of type I diabetes in model mice

    International Nuclear Information System (INIS)

    Nomura, Takashi; Sakai, Kazuo

    2003-01-01

    We previously demonstrated that low-dose irradiation (0.5 Gy) increased the level of antioxidants and decreased the level of lipid peroxide in normal mice. We also found that 0.5 Gy-irradiation of NOD mice suppressed the onset of type I diabetes. These results were obtained by the irradiation at high dose rate. The aim of the present study is to examine the effects at the low dose rate. The mice were acutely irradiated with 0.5 Gy of X-rays (300 kVp) at 94.2 Gy/hr at 10, 11, 12, 13 or 14 weeks of age, or chronically irradiated with 0.5 Gy of 137 Cs γ-rays at 0.95 mGy/hr starting at 10,11,12,13 or 14 weeks of age. When irradiated at 12th week with the high dose rate X-rays, the onset of diabetes suppressed, and the increase in the specific activity of superoxide dismutase (SOD) in pancreas was observed. On the other hand, the low dose rate γ-rays delivered from 12th week of age to 14th was less effective in the suppression of the incidence of diabetes than the high dose rate X-rays at the 12-14 weeks of age. Furthermore, the significant increase in pancreatic SOD activity was not observed after the low dose irradiation. Splenic macrophage activities of superoxide generation were not affected by the high dose rate irradiation nor the low dose rate irradiation. (author)

  17. Effective dose as an irritating influence during fractionated γ-irradiation

    International Nuclear Information System (INIS)

    Karpov, V.N.; Ushakov, I.B.; Davydov, B.I.

    1990-01-01

    The study of early neurological disturbances (END) in rats after fractionated γ-irradiation with doses of 37.5-225 Gy at dose rate of 30.11 Gy/min has demonstrated that the initial response of animals to pulse ionizing radiation is a function of the electric charge induced by ionizing radiation. A change in the probability of occurrence of each of the END symptoms, with the increased intervals between exposures, is merely an indirect indication of the eliminating mechanisms and is intricately connected with the irritating charge value. The proposed empiric relationships permit to correlate the probability of END symptom occurrence with the continuous quantitative parameter of fractionated irradiation, that is, with an effective dose as an analogue of the irritating effect

  18. Experimental research on fresh mussel meat irradiated by high-dose electron beam

    International Nuclear Information System (INIS)

    Xiao Lin; Lu Ruifeng; Hu Huachao; Wang Chaoqi; Liu Yanna

    2011-01-01

    The sterilization storage of fresh mussel irradiated high-dose electron beam was studied. From the subjective assessment by the weighted average of the test and other determined parameters, it can be concluded that the flavor of fresh mussel meat sealed canned food irradiated by high-dose electron beam has not been significant affected, and various micro-organisms can be killed effectively, which means that the irradiated fresh mussel meat can be preserved for long-term at room temperature. Therefore the method might resolve the problems induced by traditional frozen preservation methods. (authors)

  19. Transplantation tolerance in primates following total lymphoid irradiation and allogeneic bone marrow injection. II. Renal allographs

    International Nuclear Information System (INIS)

    Myburgh, J.A.; Smit, J.A.; Hill, R.R.H.; Browde, S.

    1980-01-01

    A modified regimen of fractionated total lymphoid irradiation and allogeneic bone marrow (BM) injection in chacma baboons produced transplantation tolerance for allografted kidneys from the BM donors, and substantial chimerism without evidence of graft-versus-host disease. Increasing the dose of nucleated BM cells injected 4-fold over that used in liver transplantation resulted consistently in normal graft function in the early weeks after transplantation. Bone marrow injection and challenge with renal allografts could be delayed for at least 3 weeks after completion of irradiation. If it can be shown that this period can be extended even further, the protocols will be relevant to the circumstances of clinical cadaveric renal transplantation

  20. Total-dose radiation-induced degradation of thin film ferroelectric capacitors

    International Nuclear Information System (INIS)

    Schwank, J.R.; Nasby, R.D.; Miller, S.L.; Rodgers, M.S.; Dressendorfer, P.V.

    1990-01-01

    Thin film PbZr y Ti 1-y O 3 (PZT) ferroelectric memories offer the potential for radiation-hardened, high-speed nonvolatile memories with good retention and fatigue properties. In this paper we explore in detail the radiation hardness of PZT ferroelectric capacitors. Ferroelectric capacitors were irradiated using x-ray and Co-60 sources to dose levels up to 16 Mrad(Si). The capacitors were characterized for their memory properties both before and after irradiation. The radiation hardness was process dependent. Three out of four processes resulted in capacitors that showed less than 30% radiation-induced degradation in retained polarization charge and remanent polarization after irradiating to 16 Mrad(Si). On the other hand, one of the processes showed significant radiation-induced degradation in retained polarization charge and remanent polarization at dose levels above 1 Mrad(Si). The decrease in retained polarization charge appears to be due to an alteration of the switching characteristics of the ferroelectric due to changes in the internal fields. The radiation-induced degradation is recoverable by a postirradiation biased anneal and can be prevented entirely if devices are cycled during irradiation. The authors have developed a model to simulate the observed degradation

  1. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  2. High doses dosimetry in irradiation process in Argentine

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.

    1997-01-01

    These report describes the lung dose dosimetry procedures of the Semi-Industrial Irradiation Plant in Ezeisa Atomic (500,00 Ci of Co 60) and Industrial Picorrad Plant (400,00 Ci of Co 60) using the nitrate dosimeter

  3. Improvement of dose distribution of esophageal irradiation using the field-within-a-field technique

    International Nuclear Information System (INIS)

    Iwai, Tsugunori; Okabe, Keigo; Yamato, Hidetada; Murakami, Jyunji; Nakazawa, Yasuo; Kato, Mitsuyoshi

    2002-01-01

    The wide radiation field for mediastinal dose distribution should be inhomogeneous with the usual simple opposed beam irradiation. The purpose of this study was to improve the dose distribution of the mediastinum using a conventional planning system with a dose-volume histogram (DVH) and the field-in-field technique. Three-dimensional (3D) dose distribution is obtained in bilateral opposed-field irradiation. An overdose area obtained from the 3D dose distribution is defined and reprojected into the irradiation field. A new reduced field is created by removing the reprojected overdose area. A 3D dose distribution is again obtained and compared with the results from first one. Procedures were repeated until each of the target volumes was within ±5% of the prescribed dose and the irradiation volume within 107% or less of the prescribed dose. From the DVH analysis, our field-within-a-field technique resulted in a more uniform dose distribution within the conventional planning. The field-within-a-field technique involves many parameters, and an inverse planning algorithm is suitable for computation. However, with our method, the forward planning system is adequate for planning, at least in a relatively straightforward planning system such as bilateral opposed fields therapy. (author)

  4. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  5. Problems following hippocampal irradiation in interventional radiologists - doses and potential effect:a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cumak, V.; Morgun, A.; Bakhanova, O.; Loganovs'kij, K.; Loganovs'ka, T.; Marazziti, D.

    2015-01-01

    This study aimed at investigating radiation exposure of hippocampus in interventional medical professionals irradiated in the operating room, and to compare doses in the hippocampus with the effective dose (protection quantity), as well as with the doses measured by individual dosimeter, in order to estimate probability of reaching levels of radiation induced cognitive and other neuropsychiatric alterations during their working career, through a Monte Carlo simulation. The results showed that cranial irradiation was very heterogeneous and depended on the projection: doses of left and right hippocampi may be different up to a factor of 2.5; under certain conditions, the dose of the left hippocampus may be twice the effective dose, estimated by conventional double dosimetry algorithm. The professional span doses of the irradiated hippocampus may overcome the threshold able to provoke possible cognitive and emotional-behavioral impairment. Therefore, in-depth studies of the effects of brain irradiation in occupationally exposed interventional medical personnel appear urgently needed and crucial

  6. Prediction of total dose effects on sub-micron process metal oxide semiconductor devices

    International Nuclear Information System (INIS)

    Kamimura, Hiroshi; Kato, Masataka.

    1991-01-01

    A method for correcting leakage currents is described to predict the radiation-induced threshold voltage shift of sub-micron MOSFETs. A practical model for predicting the leakage current generated by irradiation is also given on the basis of experimental results on 0.8-μm process MOSFETs. The constants in the threshold voltage shift model are determined from the 'true' I-V characteristic of the MOSFET, which is obtained by correction of leakage currents due to characteristic change of a parasitic transistor. In this way, the threshold voltage shift of the n-channel MOSFET irradiated at a low dose rate of 2 Gy(Si)/h was also calculated by using data from a high dose rate irradiation experiment (100 Gy(Si)/h, 5 h). The calculated result well represented the tendency of measured data on threshold voltage shift. The radiation-induced leakage current was considered to decay approximately in two exponential modes. The constants in this leakage current model were determined from the above high dose rate experiment. The response of leakage current predicted at a low dose rate of 2 Gy(Si)/h approximately agreed with that measured during and after irradiation. (author)

  7. A new kind of radiation dose indicators for control of food irradiation processing

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Pham Duy Duong; Nguyen Dinh Duong; Kojima, T.

    2007-01-01

    A new kind of label dosimeters based on the polyvinyl butyral and dye compounds including leuco malachite green and methyl orange was developed for use as devices for discriminating and monitoring radiation treatment in food irradiation. The dosimeters change their color from orange-yellow to greenish under irradiation with gamma rays or electrons to dose just about 3 kGy. The greenish continue to develop to deep-green upon the increase of dose to 10 kGy. This makes the indicators useful for the dose range of food irradiation application, especially in treatment of frozen meat and sea products for elimination of micro-organism. The indicators were made in a stick-on label type showing attractive characteristics in use. The orange-yellow color before irradiation keep well stable under normal conditions in laboratory. The green after irradiation maintained as long as 6 months in practical conditions of products. New indicators can fill the gap in the demand of labeling indicators of food irradiation in our country as well as the world. (author)

  8. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R{sup 2}) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated. (author)

  9. The development of radiocaries after high-dose irradiation

    International Nuclear Information System (INIS)

    Willich, N.; Gundacker, K.; Rohloff, R.

    1988-01-01

    39 patients, who were irradiated with doses of 50 to 70 Gy for ENT-tumors over a period of 3.5 months to three years prior to the examination, showed a rapidly progressing caries of the teeth inside the target volume. The teeth outside the target volume developed a caries of less extent. Radiation induced xerostomia, effects of the irradiation of the soft tissues, nutrition habits and hygienics are discussed as causes for the damage of the teeth. (orig.) [de

  10. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  11. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation

    Science.gov (United States)

    Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339

  12. Irradiation preservation study on Beijing roast duck by low dose

    Energy Technology Data Exchange (ETDEWEB)

    Weiguo, Wang; Yongbao, Gu; Fengmei, Li [Beijing Normal Univ., BJ (China). Inst. of Low Energy Nuclear Physics; and others

    1989-02-01

    The irradiation technique combined with freezing has been used to control the microorganism in Beijing Roast Duck. Cobal-60 was chosen as {gamma}-ray source. The absorbed dose was 2 kGy on an average. After irrdiation, the microbe counts have reached the tolerable. Compared with untreated ducks, the irradiated ones showed no remarkable change in nutrition, chemistry, vitamin etc. It has been proved through test that the irradiated frozen Beijing Roast Duck is wholesome.

  13. Irradiation preservation study on Beijing roast duck by low dose

    International Nuclear Information System (INIS)

    Wang Weiguo; Gu Yongbao; Li Fengmei

    1989-01-01

    The irradiation technique combined with freezing has been used to control the microorganism in Beijing Roast Duck. Cobal-60 was chosen as γ-ray source. The absorbed dose was 2 kGy on an average. After irrdiation, the microbe counts have reached the tolerable. Compared with untreated ducks, the irradiated ones showed no remarkable change in nutrition, chemistry, vitamin etc. It has been proved through test that the irradiated frozen Beijing Roast Duck is wholesome

  14. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation.

    Science.gov (United States)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T; Komorowski, Richard; Fish, Brian L; Migrino, Raymond Q; Harmann, Leanne; Hopewell, John W; Kronenberg, Amy; Patel, Shailendra; Moulder, John E; Baker, John E

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20-120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.

  15. Statistical evaluation of the dose-distribution charts of the National Computerized Irradiation Planning Network

    International Nuclear Information System (INIS)

    Varjas, Geza; Jozsef, Gabor; Gyenes, Gyoergy; Petranyi, Julia; Bozoky, Laszlo; Pataki, Gezane

    1985-01-01

    The establishment of the National Computerized Irradiation Planning Network allowed to perform the statistical evaluation presented in this report. During the first 5 years 13389 dose-distribution charts were calculated for the treatment of 5320 patients, i.e. in average, 2,5 dose-distribution chart-variants per patient. This number practically did not change in the last 4 years. The irradiation plan of certain tumour localizations was performed on the basis of the calculation of, in average, 1.6-3.0 dose-distribution charts. Recently, radiation procedures assuring optimal dose-distribution, such as the use of moving fields, and two- or three-irradiation fields, are gaining grounds. (author)

  16. Effect of the dose of irradiation on the conservation of the spice

    International Nuclear Information System (INIS)

    Ben Abdelkader, Houcine

    2008-01-01

    The effect of the gamma rays treatment emitted by a source of cobalt 60 in dose of 0, 3, 6 and 10 kGy on the microbiological and psycho-chemical properties of three samples of spice (hot pepper, fennel and coriander) have been studied. This study allowed us to measure the effect of these doses of irradiation on the lengthening of the lengthen conservation during storage of eight weeks to ambient temperature. The results show that the irradiation is very effective from a microbiological stand point. In fact, starting from 10 kGy the spices was not contaminated any more. The irradiation until a dose of dose 10 kGy has not generated any significant modifications, mainly in the physico-chemical parameters of the spices. But high diminishing has ac cured in water potency. Regarding colour variation, the irradiation has permitted the creation of a brighter colour for the three spices treated. A long the follow up we have an important multiplication in all bacteria existent in the three spices. Hew ever for the spices treated in 10 kGy we did not get any recontamination. (Author)

  17. Effects of low dose irradiation on NK activity of normal individuals and patients with cancer

    International Nuclear Information System (INIS)

    Tian Hailin; Su Liaoyuan

    1994-10-01

    Effects of low dose irradiation on NK activity of lymphocytes and on K 562 cells were studied. The NK activity was determined by means of 3 H-TdR release assay. While 3 H-TdR incorporation was used to reflect functional changes of K 562 cells after low dose irradiation. 21 patients with cancer and 10 normal individuals were detected. The results indicated that the NK activity of lymphocytes in normal individuals increased significantly after 10 and 50 cGy γ-ray irradiation, while in patients with cancer the NK activity of lymphocytes increased only at the dose of 50 cGy irradiation. The increase of NK activity in normal individuals was higher than that in patients with cancer after same doses of irradiation. When K 562 cells were irradiated by 10 cGy γ-rays, the 3 H-TdR incorporation value increased. After exposed to over 50 cGy the stimulating effect disappeared

  18. Dose volume relationships for intraoperatively irradiated saphenous nerve

    International Nuclear Information System (INIS)

    Gillette, E.L.; Powers, B.E.; Gillette, S.M.; Thames, H.D.; Childs, G.; Vujaskovic, Z.; LaRue, S.M.

    1995-01-01

    Purpose/Objective: Intraoperative radiation therapy (IORT) is used to deliver high single doses of radiation to the tumor bed following surgical removal of various abdominal malignancies. The advantage of IORT is the ability to remove sensitive normal tissues from the treatment field and to limit the volume of normal tissue irradiated. The purpose of this study was to determine dose-volume relationships for retroperitoneal tissues. Materials and methods: 134 adult beagle dogs were irradiated to the surgically exposed paraaortic area. Normal tissues included in the treatment field were aorta, peripheral nerve, ureter, bone and muscle. Groups of 4 - 8 dogs were irradiated to doses ranging from 18 - 54 Gy for a 2x5 cm field, from 12 - 46 Gy for a 4x5 cm field, and 12 - 42 Gy to an 8x5 cm field. The radiations were done using 6 MeV electrons from a linear accelerator. Dogs were observed for three years after radiation. Electrophysiologic procedures were done prior to irradiation and annually following irradiation. The procedures included electromyography of the pelvic limb and paralumbar muscles supplied by the L1 to S1 spinal nerves to determine presence and degree of motor unit disease. Motor nerve conduction velocities of the proximal and distal sciatic nerves were determined. Sensory nerve conduction velocities of the saphenous nerve were also determined. Evoked lumbosacral and thoraco-lumbar spinal cord potentials were evaluated following stimulation of the left sciatic nerve. In addition to electrophysiologic studies, neurologic examinations were done prior to treatment and at six month intervals for the three year observation period. At the three year time period, dogs were euthanatized, sections of peripheral nerve taken, routinely processed, stained with Masson's trichrome and evaluated histomorphometrically using point count techniques. Results: Twenty-two dogs were euthanatized prior to the three year observation period due to peripheral nerve damage

  19. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, Jutta [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Anderegg, Ulf; Saalbach, Anja [Department for Dermatology, Venerology and Allergology, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Rosin, Britt; Patties, Ina; Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Kamprad, Manja [Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Scholz, Markus [Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstr. 16-18, 04103 Leipzig (Germany); Hildebrandt, Guido, E-mail: Guido.Hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock (Germany); Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany)

    2011-05-10

    Ionizing irradiation could act directly on immune cells and may induce bystander effects mediated by soluble factors that are released by the irradiated cells. This is the first study analyzing both the direct effect of low dose ionizing radiation (LDIR) on the maturation and cytokine release of human dendritic cells (DCs) and the functional consequences for co-cultured T-cells. We showed that irradiation of DC-precursors in vitro does not influence surface marker expression or cytokine profile of immature DCs nor of mature DCs after LPS treatment. There was no difference of single dose irradiation versus fractionated irradiation protocols on the behavior of the mature DCs. Further, the low dose irradiation did not change the capacity of the DCs to stimulate T-cell proliferation. But the irradiation of the co-culture of DCs and T-cells revealed significantly lower proliferation of T-cells with higher doses. Summarizing the data from approx. 50 DC preparations there is no significant effect of low dose ionizing irradiation on the cytokine profile, surface marker expression and maturation of DCs in vitro although functional consequences cannot be excluded.

  20. The role of total body irradiation in preparation for bone marrow transplantation in acute leukaemia. A review

    International Nuclear Information System (INIS)

    Zwaan, F.E.

    1979-01-01

    From extrapolation obtained from animal studies and radiation accidents, it is assumed that for man the LD 50 (30) will be between 300-500 rads total body irradiation (TBI) and the LD 100 at least 600 rads TBI. A dose of 1000 rads TBI is generally used in man for conditioning for bone marrow transplantation. In acute leukemia, total body irradiation is usually associated with cytoreductive chemotherapy. In Seattle 110 patients underwent bone marrow transplantation for acute leukemia in relapse. 15 patients became long term survivors. The main cause of failure were GVH, interstitial pneumonitis and leukemic relapse. New attempts are being made to improve the results: (1) better cytoreductive therapy preceding transplantation, (2) bone marrow transplantation during remission of the disease, (3) prevention of interstitial pneumonitis by modifications of the TBI technique