WorldWideScience

Sample records for irradiation test fuel

  1. HANARO fuel irradiation test(II)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, D. S.; Kim, H. R.; Chae, H. T.; Lee, B. C.; Lee, C. S.; Kim, B. G.; Lee, C. B.; Hwang, W

    2001-04-01

    In order to fulfill the requirement to prove HANARO fuel integrity when irradiated at a power greater than 112.8 kW/m, which was imposed during HANARO licensing, and to verify the irradiation performance of HANARO fuel, the in-pile irradiation test of HANARO fuel has been performed. Two types of test fuel, the un-instrumented Type A fuel for higher burnup irradiation in shorter period than the driver fuel and the instrumented Type B fuel for higher linear heat rate and precise measurement of irradiation conditions, have been designed and fabricated. The test fuel assemblies were irradiated in HANARO. The two Type A fuel assemblies were intended to be irradiated to medium and high burnup and have been discharged after 69.9 at% and 85.5 at% peak burnup, respectively. Type B fuel assembly was intended to be irradiatied at high power with different instrumentations and achieved a maximum power higher than 120 kW/m without losing its integrity and without showing any irregular behavior. The Type A fuel assemblies were cooled for about 6 months and transported to the IMEF(Irradiated Material Examination Facility) for consequent evaluation. Detailed non-destructive and destructive PIE (Post-Irradiation Examination), such as the measurement of burnup distribution, fuel swelling, clad corrosion, dimensional changes, fuel rod bending strength, micro-structure, etc., has been performed. The measured results have been analysed/compared with the predicted performance values and the design criteria. It has been verified that HANARO fuel maintains proper in-pile performance and integrity even at the high power of 120 kw/m up to the high burnup of 85 at%.

  2. HANARO fuel irradiation test (II): revision

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, D. S.; Kim, H.; Chae, H. T.; Lee, C. S.; Kim, B. G.; Lee, C. B

    2001-04-01

    In order to fulfill the requirement to prove HANARO fuel integrity when irradiated at a power greater than 112.8 kW/m, which was imposed during HANARO licensing, and to verify the irradiation performance of HANARO fuel, the in-pile irradiation test of HANARO fuel has been performed. Two types of test fuel, the un-instrumented Type A fuel for higher burnup irradiation in shorter period than the driver fuel and the instrumented Type B fuel for higher linear heat rate and precise measurement of irradiation conditions, have been designed and fabricated. The test fuel assemblies were irradiated in HANARO. The two Type A fuel assemblies were intended to be irradiated to medium and high burnup and have been discharged after 69.9 at% and 85.5 at% peak burnup, respectively. Type B fuel assembly was intended to be irradiated at high power with different instrumentations and achieved a maximum power higher than 120 kW/m without losing its integrity and without showing any irregular behavior. The Type A fuel assemblies were cooled for about 6 months and transported to the IMEF(Irradiated Material Examination Facility) for consequent evaluation. Detailed non-destructive and destructive PIE (Post-Irradiation Examination), such as the measurement of burnup distribution, fuel swelling, clad corrosion, dimensional changes, fuel rod bending strength, micro-structure, etc., has been performed. The measured results have been analysed/compared with the predicted performance values and the design criteria. It has been verified that HANARO fuel maintains proper in-pile performance and integrity even at the high power of 120 kw/m up to the high burnup of 85 at%. This report is the revision of KAERI/TR-1816/2001 on the irradiation test for HANARO fuel.

  3. HRB-22 capsule irradiation test for HTGR fuel. JAERI/USDOE collaborative irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Kazuo; Sawa, Kazuhiro; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    As a JAERI/USDOE collaborative irradiation test for high-temperature gas-cooled reactor fuel, JAERI fuel compacts were irradiated in the HRB-22 irradiation capsule in the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). Postirradiation examinations also were performed at ORNL. This report describes 1) the preirradiation characterization of the irradiation samples of annular-shaped fuel compacts containing the Triso-coated fuel particles, 2) the irradiation conditions and fission gas releases during the irradiation to measure the performance of the coated particle fuel, 3) the postirradiation examinations of the disassembled capsule involving visual inspection, metrology, ceramography and gamma-ray spectrometry of the samples, and 4) the accident condition tests on the irradiated fuels at 1600 to 1800degC to obtain information about fuel performance and fission product release behavior under accident conditions. (author)

  4. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  5. Status of fuel irradiation tests in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  6. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    International Nuclear Information System (INIS)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  7. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  8. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  9. Irradiation test and performance evaluation of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S.

    2002-05-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  10. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  11. RECH-1 test fuel irradiation status report

    International Nuclear Information System (INIS)

    Marin, J.; Lisboa, J.; Olivares, L.; Chavez, J.

    2005-01-01

    Since May 2003, one RECH-1 fuel element has been submitted to irradiation at the HFR-Petten, Holland. By November 2004 the irradiation has achieved its pursued goal of 55% burn up. This irradiation qualification service will finish in the year 2005 with PIE tests, as established in a contractual agreement between the IAEA, NRG, and CCHEN. This report presents the objectives and the current results of this fuel qualification under irradiation. Besides, a brief description of CHI/4/021, IAEA's Technical Cooperation Project that has supported this irradiation test, is also presented here. (author)

  12. Irradiation testing of coated particle fuel at Hanaro

    International Nuclear Information System (INIS)

    Goo Kim, Bong; Sung Cho, Moo; Kim, Yong Wan

    2014-01-01

    TRISO-coated particle fuel is developing to support development of VHTR in Korea. From August 2013, the first irradiation testing of coated particle fuel was begun to demonstrate and qualify TRISO fuel for use in VHTR in the HANARO at KAERI. This experiment is currently undergoing under the atmosphere of a mixed inert gas without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one contains nine fuel compacts and the other five compacts and eight graphite specimens. Each compact has 263 coated particles. After a peak burn-up of about 4 at% and a peak fast neutron fluence of about 1.7 x 10 21 n/cm 2 , PIE will be carried out at KAERI's Irradiated Material Examination Facility. This paper is described characteristics of coated particle fuel, the design of test rod and irradiation device for coated particle fuel, discusses the technical results for irradiation testing at HANARO. (authors)

  13. Irradiation Testing of TRISO-Coated Particle Fuel in Korea

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Yeo, Sunghwan; Jeong, Kyung-Chai; Eom, Sung-Ho; Kim, Yeon-Ku; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung; Kim, Yong Wan

    2014-01-01

    In Korea, coated particle fuel is being developed to support development of a VHTR. At the end of March 2014, the first irradiation test in HANARO at KAERI to demonstrate and qualify TRISO-coated particle fuel for use in a VHTR was terminated. This experiment was conducted in an inert gas atmosphere without on-line temperature monitoring and control, or on-line fission product monitoring of the sweep gas. The irradiation device contained two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The duration of irradiation testing at HANARO was about 135 full power days from last August 2013. The maximum average power per particle was about 165 mW/particle. The calculated peak burnup of the TRISO-coated fuel was a little less than 4 atom percent. Post-irradiation examination is being carried out at KAERI’s Irradiated Material Examination Facility beginning in September of 2014. This paper describes characteristics of coated particle fuel, the design of the test rod and irradiation device for this coated particle fuel, and discusses the technical results of irradiation testing at HANARO. (author)

  14. The 3rd irradiation test plan of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Park, J. H. and others

    2001-05-01

    The objective of the 3rd irradiation test of DUPIC fuel at the HANARO is to estimate the in-core behaviour of a DUPIC pellet that is irradiated up to more than average burnup of CANDU fuel. The irradiation of DUPIC fuel is planned to start at May 21, 2001, and will be continued at least for 8 months. The burnup of DUPIC fuel through this irradiation test is thought to be more than 7,000 MWd/tHE. The DUPIC irradiation rig instrumented with three SPN detectors will be used to accumulate the experience for the instrumented irradiation and to estimate the burnup of irradiated DUPIC fuel more accurately. Under normal operating condition, the maximum linear power of DUPIC fuel was estimated as 55.06 kW/m, and the centerline temperature of a pellet was calculated as 2510 deg C. In order to assess the integrity of DUPIC fuel under the accident condition postulated at the HANARO, safety analyses on the locked rotor and reactivity insertion accidents were carried out. The maximum centerline temperature of DUPIC fuel was estimated 2590 deg C and 2094 deg C for each accident, respectively. From the results of the safety analysis, the integrity of DUPIC fuel during the HANARO irradiation test will be secured. The irradiated DUPIC fuel will be transported to the IMEF. The post-irradiation examinations are planned to be performed at the PIEF and IMEF.

  15. Evaluation of fuel rods behavior - under irradiation test

    International Nuclear Information System (INIS)

    Lameiras, F.S.; Terra, J.L.; Pinto, L.C.M.; Dias, M.S.; Pinheiro, R.B.

    1981-04-01

    By the accompanying of the irradiation of instrumented test fuel rods simulating the operational conditions in reactors, plus the results of post - irradiation exams, tests, evaluation and calibration of analitic modelling of such fuel rods is done. (E.G.) [pt

  16. Preliminary test results for post irradiation examination on the HTTR fuel

    International Nuclear Information System (INIS)

    Ueta, Shohei; Umeda, Masayuki; Sawa, Kazuhiro; Sozawa, Shizuo; Shimizu, Michio; Ishigaki, Yoshinobu; Obata, Hiroyuki

    2007-01-01

    The future post-irradiation program for the first-loading fuel of the HTTR is scheduled using the HTTR fuel handling facilities and the Hot Laboratory in the Japan Materials Testing Reactor (JMTR) to confirm its irradiation resistance and to obtain data on its irradiation characteristics in the core. This report describes the preliminary test results and the future plan for a post-irradiation examination for the HTTR fuel. In the preliminary test, fuel compacts made with the same SiC-coated fuel particle as the first loading fuel were used. In the preliminary test, dimension, weight, fuel failure fraction, and burnup were measured, and X-ray radiograph, SEM, and EPMA observations were carried out. Finally, it was confirmed that the first-loading fuel of the HTTR showed good quality under an irradiation condition. The future plan for the post-irradiation tests was described to confirm its irradiation performance and to obtain data on its irradiation characteristics in the HTTR core. (author)

  17. SP-100 Fuel Pin Performance: Results from Irradiation Testing

    Science.gov (United States)

    Makenas, Bruce J.; Paxton, Dean M.; Vaidyanathan, Swaminathan; Marietta, Martin; Hoth, Carl W.

    1994-07-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pins are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  18. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  19. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  20. PIE Report on the KOMO-3 Irradiation Test Fuels

    International Nuclear Information System (INIS)

    Park, Jong Man; Ryu, H. J.; Yang, J. H.

    2009-04-01

    In the KOMO-3, in-reactor irradiation test had been performed for 12 kinds of dispersed U-Mo fuel rods, a multi wire fuel rod and a tube fuel rod. In this report we described the PIE results on the KOMO-3 irradiation test fuels. The interaction layer thickness between fuel particle and matrix could be reduced by using a large size U-Mo fuel particle or introducing Al-Si matrix or adding the third element in the U-Mo particle. Monolithic fuel rod of multi-wire or tube fuel was also effective in reducing the interaction layer thickness

  1. Irradiation test plan of the simulated DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M. S.; Kim, B. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Simulated DUPIC fuel had been irradiated from Aug. 4, 1999 to Oct. 4 1999, in order to produce the data of its in-core behavior, to verify the design of DUPIC non-instrumented capsule developed, and to ensure the irradiation requirements of DUPIC fuel at HANARO. The welding process was certified for manufacturing the mini-element, and simulated DUPIC fuel rods were manufactured with simulated DUPIC pellets through examination and test. The non-instrumented capsule for a irradiation test of DUPIC fuel has been designed and manufactured referring to the design specification of the HANARO fuel. This is to be the design basis of the instrumented capsule under consideration. The verification experiment, whether the capsule loaded in the OR4 hole meet the HANARO requirements under the normal operation condition, as well as the structural analysis was carried out. The items for this experiment were the pressure drop test, vibration test, integrity test, et. al. It was noted that each experimental result meet the HANARO operational requirements. For the safety analysis of the DUPIC non-instrumented capsule loaded in the HANARO core, the nuclear/mechanical compatibility, thermodynamic compatibility, integrity analysis of the irradiation samples according to the reactor condition as well as the safety analysis of the HANARO were performed. Besides, the core reactivity effects were discussed during the irradiation test of the DUPIC capsule. The average power of each fuel rod in the DUPIC capsule was calculated, and maximal linear power reflecting the axial peaking power factor from the MCNP results was evaluated. From these calculation results, the HANARO core safety was evaluated. At the end of this report, similar overseas cases were introduced. 9 refs., 16 figs., 10 tabs. (Author)

  2. Metallographic analysis of irradiated RERTR-3 fuel test specimens

    International Nuclear Information System (INIS)

    Meyer, M. K.; Hofman, G. L.; Strain, R. V.; Clark, C. R.; Stuart, J. R.

    2000-01-01

    The RERTR-3 irradiation test was designed to investigate the irradiation behavior of aluminum matrix U-MO alloy dispersion fuels under high-temperature, high-fission-rate conditions. Initial postirradiation examination of RERTR-3 fuel specimens has concentrated on binary U-MO atomized fuels. The rate of matrix aluminum depletion was found to be higher than predictions based on low temperature irradiation data. Wavelength Dispersive X-ray Spectroscopy (WDS) indicates that aluminum is present in the interior of the fuel particles. WDS data is supported by a mass and volume balance calculation performed on the basis of image analysis results. The depletion of matrix aluminum seems to have no detrimental effects on fuel performance under the conditions tested to date

  3. New JMTR irradiation test plan on fuels and materials

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Nishiyama, Yutaka; Chimi, Yasuhiro; Sasajima, Hideo; Ogiyanagi, Jin; Nakamura, Jinichi; Suzuki, Masahide; Kawamura, Hiroshi

    2009-01-01

    In order to maintain and enhance safety of light water reactors (LWRs) in long-term and up-graded operations, proper understanding of irradiation behavior of fuels and materials is essentially important. Japanese government and the Japan Atomic Energy Agency (JAEA) have decided to refurbish the Japan Materials Testing Reactor (JMTR) and to install new tests rigs, in order to play an active role for solving irradiation related issues on plant aging and high-duty uses of the current LWRs and on development of next-generation reactors. New tests on fuel integrity under simulated abnormal transients and high-duty irradiation conditions are planned in the JMTR. Power ramp tests of newdesign fuel rods will also be performed in the first stage of the program, which is expected to start in year 2011 after refurbishment of the JMTR. Combination of the JMTR tests with simulated reactivity initiated accident tests in the Nuclear Safety Research Reactor (NSRR) and loss of coolant accident tests in hot laboratories would serve as the integrated fuel safety research on the high performance fuels at extended burnups, covering from the normal to the accident conditions, including abnormal transients. For the materials irradiation, fracture toughness of reactor vessel steels and stress corrosion cracking behavior of stainless steels are being studied in addition to basic irradiation behavior of nuclear materials such as hafnium. The irradiation studies would contribute not only to solve the current problems but also to identify possible seeds of troubles and to make proactive responses. (author)

  4. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  5. Irradiation testing of miniature fuel plates for the RERTR program

    Energy Technology Data Exchange (ETDEWEB)

    Senn, R L; Martin, M M [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    1983-08-01

    An irradiation test facility, which provides a test bed for irradiating a variety of miniature fuel plates miniplates) for the Reduced Enrichment Research and Test Reactors (RERTR) program, has been placed into operation. The objective of these tests is to screen various candidate fuel materials as to their suitability for replacing the highly enriched uranium fuel materials currently used by the world's test and research reactors with a lower enrichment fuel material, without significantly degrading reactor operating characteristics and power levels. The use of low uranium enrichment of about 20% {sup 235}U in place of highly enriched fuel for these reactors would reduce the potential for {sup 235}U diversion. Fuel materials currently being evaluated in this first phase of these screening tests include aluminum-base dispersion-type fuel plates with fuel cores of 1) high uranium content U{sup 3}){sup 8}-Al being developed by ORNL, 2) high uranium content UAI{sub x}-Al being developed by EG and G Idaho, Inc., and 3) very high uranium content U{sub 3}Si-Al- being developed by ANL. The miniplates are 115-mm long by 50-mm wide with overall plate thicknesses of 1.27 or 1.52 mm. The fuel core dimensions vary according to overall plate thicknesses with a minimal clad thickness requirement of 0.20 mm. Sixty such miniplates (thirty of each thickness) can be irradiated in one test facility. The irradiation test facility, designated as HFED-1 is operating in core position E-7 in the Oak Ridge Research Reactor (ORR), a 30-MW water-moderated reactor. The peak neutron flux measured for this experiment is 1.96 x 10{sup 18} neutrons m{sub -2} s{sub -1}. The various types of miniplates will achieve burnups of up to approximately 2.2x10{sup 27} fissions/m{sup 3} of fuel, which will require approximately eight full power months of irradiation. During reactor shutdown periods, the experiment is removed from the reactor, moved to a special poolside station, disassembled, and inspected

  6. Updated FY12 Ceramic Fuels Irradiation Test Plan

    International Nuclear Information System (INIS)

    Nelson, Andrew T.

    2012-01-01

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  7. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  8. Status of irradiation testing and PIE of MOX (Pu-containing) fuel

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Zhou, Y.N.; Ryz, M.A.

    1995-01-01

    This paper describes AECL's mixed oxide (MOX) fuel-irradiation and post-irradiation examination (PIE) program. Post-irradiation examination results of two major irradiation experiments involving several (U, Pu)O 2 fuel bundles are highlighted. One experiment involved bundles irradiated to burnups ranging fro 400 to 1200 MWh/kgHe in the Nuclear Power Demonstration (NPD) reactor. The other experiment consisted of several (U, Pu)O 2 bundles irradiated to burnups of up to 500 Mwh/kgHe in the National Research Universal (NRU) reactor. Results of these experiments demonstrate the excellent performance of CANDU MOX fuel. This paper also outlines the status of current MOX fuel irradiation tests, including the irradiation of various (U, Pu)O 2 bundles. The strategic importance of MOX fuel to CANDU fuel-cycle flexibility is discussed. (author)

  9. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  10. Irradiation test plan of instrumented capsule(05F-01K) for nuclear fuel irradiation in Hanaro (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Kim, B. G.; Choi, M. H. (and others)

    2006-09-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the 03F-05K instrumented fuel capsule were designed and fabricated to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. Now, this capsule was successfully irradiated in the test hole OR5 of HANARO reactor from April 27, 2004 to October 1, 2004 (59.5 full power days at 24-30 MW). The capsule and fuel rods have been be dismantled and fuel rods have been examined at the hot cell of IMEF. The instrumented fuel capsule (05F-01K) was designed and manufactured for a design verification test of the dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of HANARO.

  11. MOX fuel irradiation behavior in steady state (irradiation test in HBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, S; Kamimura, K [Power Reactor and Nuclear Fuel Development Corp., Naka, Ibaraki (Japan)

    1997-08-01

    Two rigs of plutonium-uranium oxide (MOX) fuel rods have been irradiated in Halden boiling water reactor (HBWR) to investigate high burnup MOX fuel behavior for thermal reactor. The objective of irradiation tests is to investigate fuel behavior as influenced by pellet shape, pellet surface treatment, pellet-cladding gap size and MOX fuel powder preparations process. The two rigs have instrumentations for in-pile measurements of the fuel center-line temperature, plenum pressure, cladding elongation and fuel stack length change. The data, taken through in-operation instrumentation, have been analysed and compared with those from post-irradiation examination. The following observations are made: 1) PNC MOX fuels have achieved high burn-up as 59GWd/tMOX (67GWd/tM) at pellet peak without failure; 2) there was no significant difference in fission gas release fraction between PNC MOX fuels and UO{sub 2} fuels; 3) fission gas release from the co-converted fuel was lower than that from the mechanically blended fuel; 4) gap conductance was evaluated to decrease gradually with burn-up and to get stable in high burn-up region. 5) no evident difference of onset LHR for PCMI in experimental parameters (pellet shape and pellet-cladding gap size) was observed, but it decreased with burn-up. (author). 13 refs, 15 figs, 3 tabs.

  12. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  13. Design and fuel fabrication processes for the AC-3 mixed-carbide irradiation test

    International Nuclear Information System (INIS)

    Latimer, T.W.; Chidester, K.M.; Stratton, R.W.; Ledergerber, G.; Ingold, F.

    1992-01-01

    The AC-3 test was a cooperative U.S./Swiss irradiation test of 91 wire-wrapped helium-bonded U-20% Pu carbide fuel pins irradiated to 8.3 at % peak burnup in the Fast Flux Test Facility. The test consisted of 25 pins that contained spherepac fuel fabricated by the Paul Scherrer Institute (PSI) and 66 pins that contained pelletized fuel fabricated by the Los Alamos National Laboratory. Design of AC-3 by LANL and PSI was begun in 1981, the fuel pins were fabricated from 1983 to 1985, and the test was irradiated from 1986 to 1988. The principal objective of the AC-3 test was to compare the irradiation performance of mixed-carbide fuel pins that contained either pelletized or sphere-pac fuel at prototypic fluence and burnup levels for a fast breeder reactor

  14. Fission gas induced deformation model for FRAP-T6 and NSRR irradiated fuel test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Sasajima, Hideo; Fuketa, Toyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hosoyamada, Ryuji; Mori, Yukihide

    1996-11-01

    Pulse irradiation tests of irradiated fuels under simulated reactivity initiated accidents (RIAs) have been carried out at the Nuclear Safety Research Reactor (NSRR). Larger cladding diameter increase was observed in the irradiated fuel tests than in the previous fresh fuel tests. A fission gas induced cladding deformation model was developed and installed in a fuel behavior analysis code, FRAP-T6. The irradiated fuel tests were analyzed with the model in combination with modified material properties and fuel cracking models. In Test JM-4, where the cladding temperature rose to higher temperatures and grain boundary separation by the pulse irradiation was significant, the fission gas model described the cladding deformation reasonably well. The fuel had relatively flat radial power distribution and the grain boundary gas from the whole radius was calculated to contribute to the deformation. On the other hand, the power density in the irradiated LWR fuel rods in the pulse irradiation tests was remarkably higher at the fuel periphery than the center. A fuel thermal expansion model, GAPCON, which took account of the effect of fuel cracking by the temperature profile, was found to reproduce well the LWR fuel behavior with the fission gas deformation model. This report present details of the models and their NSRR test simulations. (author)

  15. Post-Irradiation Examination Test of the Parts of X-Gen Nuclear Fuel Assembly

    International Nuclear Information System (INIS)

    Ahn, S. B.; Ryu, W. S.; Choo, Y. S.

    2008-08-01

    The mechanical properties of the parts of a nuclear fuel assembly are degraded during the operation of the reactor, through the mechanism of irradiation damage. The properties changes of the parts of the fuel assembly should be quantitatively estimated to ensure the safety of the fuel assembly and rod during the operation. The test techniques developed in this report are used to produce the irradiation data of the grid 1x1 cell spring, the grid 1x1 cell, the spring on one face of the 1x1 cell, the inner/outer strip of the grid and the welded part. The specimens were irradiated in the CT test hole of HANARO of a 30 MW thermal output at 300 deg. C during about 100 days From the spring test of mid grid 1x1 cell and grid plate, the irradiation effects can be examined. The irradiation effects on the irradiation growth also were occurred. The buckling load of mid grid 1x1 cell does not change with a neutron irradiation. From the tensile tests, the strengths increased but the elongations decreased due to an irradiation. The tensile test and microstructure examination of the spot and fillet welded parts are performed for the evaluation of an irradiation effects. Through these tests of components, the essential data on the fuel assembly design could be obtained. These results will be used to update the irradiation behavior databases, to improve the performance of fuel assembly, and to predict the service life of the fuel assembly in a reactor

  16. Advanced disassembling technique of irradiated driver fuel assembly for continuous irradiation of fuel pins

    International Nuclear Information System (INIS)

    Ichikawa, Shoichi; Haga, Hiroyuki; Katsuyama, Kozo; Maeda, Koji; Nishinoiri, Kenji

    2012-01-01

    It was necessary to carry out continuous irradiation tests in order to obtain the irradiation data of high burn-up fuel and high neutron dose material for FaCT (Fast Reactor Cycle Technology Development) project. There, the disassembling technique of an irradiated fuel assembly was advanced in order to realize further continuous irradiation tests. Although the conventional disassembling technique had been cutting a lower end-plug of a fuel pin needed to fix fuel pins to an irradiation vehicle, the advanced disassembling technique did not need cutting a lower end-plug. As a result, it was possible to supply many irradiated fuel pins to various continuous irradiation tests for FaCT project. (author)

  17. Experimental data report for Test TS-2 reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo

    1993-02-01

    This report presents experimental data for Test TS-2 which was the second test in a series of Reactivity Initiated Accident (RIA) condition test using pre-irradiated BWR fuel rods, performed at the Nuclear Safety Research Reactor (NSRR) in February, 1990. Test fuel rod used in the Test TS-2 was a short sized BWR (7x7) type rod which was fabricated from a commercial rod irradiated at Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79% and a burnup of 21.3Gwd/tU (bundle average). A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 72±5cal/g·fuel (66±5cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and, results of pre and post pulse irradiation examinations are described in this report. (author)

  18. Irradiation test of fuel containing minor actinides in the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Soga, Tomonori; Sekine, Takashi; Wootan, David; Tanaka, Kosuke; Kitamura, Ryoichi; Aoyama, Takafumi

    2007-01-01

    The mixed oxide containing minor actinides (MA-MOX) fuel irradiation program is being conducted using the experimental fast reactor Joyo of the Japan Atomic Energy Agency to research early thermal behavior of MA-MOX fuel. Two irradiation experiments were conducted in the Joyo MK-III 3rd operational cycle. Six prepared fuel pins included MOX fuel containing 3% or 5% americium (Am-MOX), MOX fuel containing 2% americium and 2% neptunium (Np/Am-MOX), and reference MOX fuel. The first test was conducted with high linear heat rates of approximately 430 W/cm maintained during only 10 minutes in order to confirm whether or not fuel melting occurred. After 10 minutes irradiation in May 2006, the test subassembly was transferred to the hot cell facility and an Am-MOX pin and a Np/Am-MOX pin were replaced with dummy pins including neutron dosimeters. The test subassembly loaded with the remaining four fuel pins was re-irradiated in Joyo for 24-hours in August 2006 at nearly the same linear power to obtain re-distribution data on MA-MOX fuel. Linear heat rates for each pin were calculated using MCNP, accounting for both prompt and delayed heating components, and then adjusted using E/C for 10 B (n, α) reaction rates measured in the MK-III core neutron field characterization test. Post irradiation examination of these pins to confirm the fuel melting and the local concentration under irradiation of NpO 2-x or AmO 2-x in the (U, Pu)O 2-x fuel are underway. The test results are expected to reduce uncertainties on the design margin in the thermal design for MA-MOX fuel. (author)

  19. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  20. Status on the construction of the fuel irradiation test facility

    International Nuclear Information System (INIS)

    Park, Kook Nam; Sim, Bong Shick; Lee, Chung Young; Yoo, Seong Yeon

    2005-01-01

    As a facility to examine general performance of nuclear fuel under irradiation condition in HANARO, Fuel Test Loop(FTL) has been developed which can accommodate 3 fuel pins at the core irradiation hole(IR1 hole) taking consideration user's test requirement. 3-Pin FTL consists of In-Pile Test Section (IPS) and Out-of- Pile System (OPS). Test condition in IPS such as pressure, temperature and the water quality, can be controlled by OPS. 3-Pin FTL Conceptual design was set up in 2001 and had completed detail design including a design requirement and basic Piping and Instrument Diagram (P and ID) in 2004. The safety analysis report was prepared and submitted in early 2005 to the regulatory body(KINS) for review and approval of FTL. In 2005, the development team is going to purchase and manufacture hardware and make a contract for construction work. In 2006, the development team is going to install an FTL system performance test shall be done as a part of commissioning. After a 3-Pin FTL development which is expected to be finished by the 2007, FTL will be used for the irradiation test of the new PWR-type fuel and the usage of HANARO will be enhanced

  1. ORR irradiation experiment OF-1: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

    1977-08-01

    The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10 22 neutrons/cm 2 (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure

  2. The Defect Inspection on the Irradiated Fuel Rod by Eddy Current Test

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, Y. K.; Kim, E. K.

    1996-01-01

    The eddy current test(ECT) probe of differential encircling coil type was designed and fabricated, and the optimum condition of ECT was derived for the examination of the irradiated fuel rod. The correlation between ECT test frequency and phase and amplitude was derived by performing the test of the standard rig that includes inner notches, outer notches and through-holes. The defect of through-hole was predicted by ECT at the G33-N2 fuel rod irradiated in the Kori-1 nuclear power reactor. The metallographic examination on the G33-N2 fuel rod was Performed at the defect location predicted by ECT. The result of metallographic examination for the G33-N2 fuel rod was in good agreement with that of ECT. This proves that the evaluation for integrity of irradiated fuel rod by ECT is reliable

  3. HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.; Chrisensen, Cad L.

    2016-11-01

    High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Test Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two

  4. Fabrication of Non-instrumented capsule for DUPIC simulated fuel irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Kang, Y.H.; Park, S.J.; Shin, Y.T. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In order to develope DUPIC nuclear fuel, the irradiation test for simulated DUPIC fuel was planed using a non-instrumented capsule in HANARO. Because DUPIC fuel is highly radioactive material the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO was designed to remotely assemble and disassemble in hot cell. And then, according to the design requirements the non-instrumented DUPIC capsule was successfully manufactured. Also, the manufacturing technologies of the non-instrumented capsule for irradiating the nuclear fuel in HANARO were established, and the basic technology for the development of the instrumented capsule technology was accumulated. This report describes the manufacturing of the non-instrumented capsule for simulated DUPIC fuel. And, this report will be based to develope the instrumented capsule, which will be utilized to irradiate the nuclear fuel in HANARO. 26 refs., 4 figs. (Author)

  5. POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

    Directory of Open Access Journals (Sweden)

    H.J. RYU

    2013-12-01

    Full Text Available Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr, additional protective coatings (silicide or nitride, and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

  6. Experimental data report for Test TS-1 Reactivity Initiated Accident Test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Horiki, Ohichiro; Yamahara, Takeshi; Ichihashi, Yoshinori; Kikuchi, Teruo

    1992-01-01

    This report presents experimental data for Test TS-1 which was the first in a series of tests, simulating Reactivity Initiated Accident (RIA) conditions using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in October, 1989. Test fuel rod used in the Test TS-1 was a short-sized BWR (7 x 7) type rod which was fabricated from a commercial rod provided from Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79 % and burnup of 21.3 GWd/t (bundle average). Pulse irradiation was performed at a condition of stagnant water cooling, atmospheric pressure and ambient temperature using a newly developed double container-type capsule. Energy deposition of the rod in this test was evaluated to be about 61 cal/g·fuel (55 cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, fuel burnup measurements, transient behavior of the test rod during pulse irradiation and results of post pulse irradiation examinations are contained in this report. (author)

  7. The development of the neutron flux measurement technology using SPNDs during nuclear fuel irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. G.; Kang, Y. H.; Cho, M. S.; Joo, K. N.; Choi, M. H.; Park, S. J.; Shin, Y. T.; Oh, J. M.; Kim, Y. J

    2004-03-01

    As a part of the development of instrumentation technologies for a nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), a study is performed to measure and evaluate the neutron flux at the same position as the nuclear fuel during irradiation test using the SPND(Self Powered Neutron Detector). To perform this study, rhodium type SPNDs and amplifier are selected suitable to irradiation test, and the selected SPNDs are installed in instrumented fuel capsule(02F-11K). The irradiation test using a instrumented fuel capsule are performed in the OR5 vertical hole of HANARO for about 54 days, and SPND output signals are acquired successfully during irradiation test. Acquired SPND signals are analyzed and evaluated as a reliable data by COSMOS Code. This will be utilized for the fuel related research together with fuel center temperature and reactor operation data.

  8. Re-irradiation tests of spent fuel at JMTR by means of re-instrumentation technique

    International Nuclear Information System (INIS)

    Nakamura, Jinichi; Shimizu, Michio; Endo, Yasuichi; Nabeya, Hideaki; Ichise, Kenichi; Saito, Junichi; Oshima, Kunio; Uetsuka, Hiroshi

    1999-01-01

    JAERI has developed re-irradiation test procedures of spent fuel irradiated at commercial reactor by means of re-instrumentation technique. Full length rods irradiated at commercial LWRs were re-fabricated to short length rods, and rod inner pressure gauges and fuel center thermocouples were re-instrumented to the rods. Re-irradiation tests to study the fuel behavior during power change were carried out by means of BOCA/OSF-1 facility at the JMTR. In the tests to study the fission gas release during power change, the rod inner pressure increase was observed during power change, especially during power reduction. The fission gas release during power reduction is estimated to be the release from fission gas bubbles on the grain boundary caused by the thermal stress in the pellet during power reduction. Re-irradiation test of gadolinia added fuel was performed by means of dual re-instrumentation technique (fuel center thermocouples and rod inner pressure gauge). A stepwise fission gas release during power change, and the following fuel center temperature change due to gap conductance change were observed. (author)

  9. Experimental data report for test TS-3 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo; Sobajima, Makoto.

    1993-09-01

    This report presents experimental data for Test TS-3 which was the third test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in September, 1990. Test fuel rod used in the Test TS-3 was a short-sized BWR (7 x 7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79 % and a burnup of 26 Gwd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 94 ± 4 cal/g · fuel (88 ± 4 cal/g · fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  10. Behavior of pre-irradiated fuel under a simulated RIA condition. Results of NSRR Test JM-5

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide; Tanzawa, Sadamitsu; Ishijima, Kiyomi; Kobayashi, Shinsho; Kamata, Hiroshi; Homma, Kozo; Sakai, Haruyuki.

    1995-11-01

    This report presents results from the power burst experiment with pre-irradiated fuel rod, Test JM-5, conducted in the Nuclear Safety Research Reactor (NSRR). The data concerning test method, pre-irradiation, pre-pulse fuel examination, pulse irradiation, transient records and post-pulse fuel examination are described, and interpretations and discussions of the results are presented. Preceding to the pulse irradiation in the NSRR, test fuel rod was irradiated in the Japan Materials Testing Reactor (JMTR) up to a fuel burnup of 25.7 MWd/kgU with average linear heat rate of 33.4 kW/m. The fuel rod was subjected to the pulse irradiation resulting in a desposited energy of 223 ± 7 cal/g·fuel (0.93 ± 0.03 kJ/g·fuel) and a peak fuel enthalpy of 167 ± 5 cal/g·fuel (0.70 ± 0.02 kJ/g·fuel) under stagnant water cooling condition at atmospheric pressure and ambient temperature. Test fuel rod behavior was assessed from pre- and post-pulse fuel examinations and transient records during the pulse. The Test JM-5 resulted in cladding failure. More than twenty small cracks were found in the post-test cladding, and most of the defects located in pre-existing locally hydrided region. The result indicates an occurrence of fuel failure by PCMI (pellet/cladding mechanical interaction) in combination with decreased integrity of hydrided cladding. (author)

  11. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  12. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  13. Design verification test of instrumented capsule (02F-11K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Oh, J. M. [and others

    2004-01-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (Self-Powered Neutron Detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. The test fuel rods were irradiated at less than 350 W/cm to 5.13 GWD/MTU with fuel centerline peak temperature below 1,375 .deg. C. The structural stability of the capsule was satisfied by the naked eye in service pool of HANARO. The capsule and test fuel rods were dismantled and test fuel rods were examined at the hot cell of IMEF (Irradiated Material Examination Facility)

  14. Irradiation tests of THTR fuel elements in the DRAGON reactor (irradiation experiment DR-K3)

    International Nuclear Information System (INIS)

    Burck, W.; Duwe, R.; Groos, E.; Mueller, H.

    1977-03-01

    Within the scope of the program 'Development of Spherical Fuel Elements for HTR', similar fuel elements (f.e.) have been irradiated in the DRAGON reactor. The f.e. were fabricated by NUKEM and were to be tested under HTR conditions to scrutinize their employability in the THTR. The fuel was in the form of coated particles moulded into A3 matrix. The kernels of the particles were made of mixed oxide of uranium and thorium with an U 235 enrichment of 90%. One aim of the post irradiation examination was the investigation of irradiation induced changes of mechanical properties (dimensional stability and elastic behaviour) and of the corrosion behaviour which were compared with the properties determined with unirradiated f.e. The measurement of the fission gas release in annealing tests and ceramografic examinations exhibited no damage of the coated particles. The measured concentration distribution of fission metals led to conclusions about their release. All results showed, that neither the coated particles nor the integral fuel spheres experienced any significant changes that could impair their utilization in the THTR. (orig./UA) [de

  15. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  16. FUJI - a comparative irradiation test with pellet, sphere-pac, and vipac fuel

    International Nuclear Information System (INIS)

    Hellwig, C.; Bakker, K.; Ozawa, T.; Nakamura, M.; Kihara, Y.

    2004-01-01

    Particle fuels such as sphere-pac and vipac fuels have been considered as promising fuel systems for fast reactors, due to their inherent potential in remote operation, cost reduction and incineration of minor actinides or low-decontaminated plutonium. The FUJI test addresses the questions of fabrication of MOX particle fuels with high Pu content (20%) and its irradiation behaviour during the start-up phase. Four kinds of fuel, i.e. MOX sphere-pac, MOX vipac, MOX pellet and Np-MOX sphere-pac fuel, have been and will be simultaneously irradiated under identical conditions in the High Flux Reactor in Petten. First results show that the particle fuel undergoes a dramatic structure change already at the very beginning of the irradiation when the maximum power is reached. The structural changes, i.e. the formation of a central void and the densification of fuel, decrease the fuel central temperature. Thus the fast and strong restructuring helps to prevent central fuel melting at high power levels. (authors)

  17. Microstructure and elemental distribution of americium containing MOX fuel under the short term irradiation tests

    International Nuclear Information System (INIS)

    Tanaka, Kosuke; Hirosawa, Takashi; Obayashi, Hiroshi; Koyama, Shin Ichi; Yoshimochi, Hiroshi; Tanaka, Kenya

    2008-01-01

    In order to investigate the effect of americium addition to MOX fuels on the irradiation behavior, the 'Am-1' program is being conducted in JAEA. The Am-1 program consists of two short term irradiation tests of 10-minute and 24 hour irradiations and a steady-state irradiation test. The short-term irradiation tests were successfully completed and the post irradiation examinations (PIEs) are in progress. The PIEs for Am-containing MOX fuels focused on the microstructural evolution and redistribution behavior of Am at the initial stage of irradiation and the results to date are reported

  18. In-pile instrumentation improvements for fuel irradiations in test reactor

    International Nuclear Information System (INIS)

    Blanc, J.Y.; Bernard, J.L.; Estrade, J.; Geoffroy, G.

    1996-01-01

    Knowledge of fuel limits and safety margins in normal and off-normal transients in nuclear power plants remains a constant preoccupation for electricity producers and fuel manufacturers. Accurate determination of such limits, through fuel irradiation testing in the OSIRIS reactor at Saclay is closely linked to the reliability of appropriate instrumentation techniques. Two paths are currently followed to obtain short experimental rods: segmented fuel coming directly from power plants, or re-fabrication of rods in hot cells with our FABRICE process. It can be associated with instrumentation such as fuel centerline thermocouple in annular pellets, pressure transducer or fission gas release measurement by gamma-spectrometry using helium sweeping, in analytic experiments. Our present development, to be implemented in 1993, is the the centerline instrumentation of a fuel column with solid pellets. Inserting the thermocouple requires a cold drilling machine, using CO 2 freezing of broken UO 2 (with liquid nitrogen). During the fuel rod irradiation itself, we try to lower the uncertainties associated to power determination, using thermal balance or neutronic calibration, or even gamma spectrometry. A description of the new test train designed for the ISABELLE water loop in OSIRIS is given, with special emphasis on instrumentation: a LVDT for measuring fuel rod elongation and eventual clad failure, and increased number and better localization of thermocouples and SPDN. The third part is devoted to the measurements by optical microdensitometry of neutron radiographs of the fuel pellet dish modification after irradiation. Dishes are generally disappearing through thermal and mechanical deformation of the pellet, and this can eventually be modelized to better understand pellet-cladding mechanical interaction. (author). 3 refs, 5 figs

  19. In-pile irradiation test program and safety analysis report of the KAERI fuel for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Wan; Ryu, Woo Suck; Byun, Taek Sang; Park, Jong Man; Lee, Byung Chul; Kim, Hack No; Park, Hee Tae; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-05-01

    Localization of HANARO fuel has been carried out successfully, and design and fabrication technologies of the fuel are recently arrived the final stage of development. The performance of the fuel which has been fabricated in KAERI is confirmed through out-of-pile characterization, and the quality assurance procedure and assessment criteria are described. In order to verify the KAERI fuel, thus, in-pile irradiation test program of the KAERI fuel is scheduled in HANARO. This report summarizes the in-pile testing schedule, design documents of test rods and assemblies, fabrication history and out-of-pile characteristics of test rods, irradiation test condition and power history, post-irradiation examination scheme, linear power generation distribution, and safety analysis results. The design code for HANARO fuel is used to analyze the centerline temperature and swelling of the KAERI fuels. The results show that at 120 kW/m of linear power the maximum centerline temperature is 267 deg C which is much lower than the limitation temperature of 350 deg C, and that the swelling is 9.3 % at 95 at% lower than criterion of 20 %. Therefore, the KAERI fuels of this in-pile irradiation test is assessed to show good performance of integrity and safety in HANARO. 10 tabs., 7 figs., 3 refs. (Author).

  20. Performance test of the I and C system (GSF - 2002) for the irradiation tests using a fuel capsule

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Park, S. J.; Kim, B. G.; Ahn, D. H

    2004-12-01

    HANARO is a very important facility in Korea. It offers various types of irradiation tests of nuclear fuels and materials. With the various applications of the HANARO capsule for the academic and industrial applications, new technologies and relevant facilities will become more important especially for the advanced nuclear fuels and materials development. A new I and C system for an irradiation test using an instrumented fuel capsule have been designed and manufactured to provide more qualified data to fuel developer. The performance test which started in 2004, was done to investigate the thermal response of the capsule connected to the gas mixing system of the new I and C system(GSF-2002) in the cold test loop under the HANARO hydraulic operational condition. Main test parameters are mass flow rate of 25, 50 and 100 cc/min of He/Ne gas, gas pressure of 1 to 3 kg/cm{sup 2}, heater power of 1 to 3.4kW and different gas mixing ratios of He to Ne. From the out-pile tests, it was confirmed that the I and C system(GSF-2002) would be feasible for the fuel irradiation tests. Both analytical and test data prepared by this study are directly used for the fuel experiments related to advanced fuel development program.

  1. A study on the measurement and evaluation of neutron flux using SPNDs during nuclear fuel irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Oh, J. M.; Park, S. J.; Lee, B. H.; Seo, C. G.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    As a part of the development of instrumentation technologies for a nuclear fuel irradiation test in HANARO(High-Flux Advanced Nuclear Application Reactor), a study is performed to measure and evaluate the neutron flux at the same position as the nuclear fuel during irradiation test using the SPND(Self Powered Neutron Detector). To perform this study, rhodium type SPNDs and amplifier are selected suitable to irradiation test, and the selected SPNDs are installed in instrumented fuel capsule(02F-11K). The irradiation test using a instrumented fuel capsule are performed in the OR5 vertical hole of HANARO for about 54 days, and SPND output signals are acquired successfully during irradiation test. Acquired SPND signals are analyzed and evaluated as a reliable data by COSMOS Code, and this will be utilized for the fuel related research together with fuel center temperature and reactor operation data.

  2. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  3. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rader, Jordan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.

  4. Irradiated fuel performance evaluation technology development

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Bang, J. G.; Kim, D. H.

    2012-01-01

    Alpha version performance code for dual-cooled annular fuel under steady state operation, so called 'DUOS', has been developed applying performance models and proposed methodology. Furthermore, nonlinear finite element module which could be integrated into transient/accident fuel performance code was also developed and evaluated using commercial FE code. The first/second irradiation and PIE test of annular pellet for dual-cooled annular fuel in the world have been completed. In-pile irradiation test DB of annular pellet up to burnup of 10,000 MWd/MTU through the 1st test was established and cracking behavior of annular pellet and swelling rate at low temperature were studied. To do irradiation test of dual-cooled annular fuel under PWR's simulating steady-state conditions, irradiation test rig/rod design/manufacture of mock-up/performance test have been completed through international collaboration program with Halden reactor project. The irradiation test of large grain pellets has been continued from 2002 to 2011 and completed successfully. Burnup of 70,000 MWd/MTU which is the highest burnup among irradiation test pellets in domestic was achieved

  5. Irradiation of MEU and LEU test fuel elements in DR 3

    International Nuclear Information System (INIS)

    Haack, K.

    1984-01-01

    Irradiation of three MEU and three LEU fuel elements in the Danish reactor DR 3. Thermal and fast neutron flux density scans of the core have been made and the results, related to the U235-content of each fuel element, are compared with the values from HEU fuel elements. The test elements were taken to burn-up percentages of 50-60%. Reactivity values of the test elements at charge and at discharge have been measured and the values are compared with those of HEU fuel elements. (author)

  6. Irradiation effects test series test IE-1 test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.; Mehner, A.S.

    1977-03-01

    The report describes the results of the first programmatic test in the Nuclear Regulatory Commission Irradiation Effects Test Series. This test (IE-1) used four 0.97m long PWR-type fuel rods fabricated from previously irradiated Saxton fuel. The objectives of this test were to evaluate the effect of fuel pellet density on pellet-cladding interaction during a power ramp and to evaluate the influence of the irradiated state of the fuel and cladding on rod behavior during film boiling operation. Data are presented on the behavior of irradiated fuel rods during steady-state operation, a power ramp, and film boiling operation. The effects of as-fabricated gap size, as-fabricated fuel density, rod power, and power ramp rate on pellet-cladding interaction are discussed. Test data are compared with FRAP-T2 computer model predictions, and comments on the consequences of sustained film boiling operation on irradiated fuel rod behavior are provided

  7. A review on the welding technology for the sealing of irradiation test fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kang, Y. H.; Kim, B. G.; Joo, K. N.; Oh, J. M.; Park, S. J.; Shin, Y. T

    2000-02-01

    For the irradiation test of nuclear fuel in a research reactor, the fuel manufacturing technology should be developed in advance. Highly radioactive fission products are produced and can be released from the fuel materials during irradiation. Therefore, The sealing of the test is one of the most important procedure among the test fuel manufacturing processes, considering its impacts on the safety of a reactor operation.many welding techniques such as TIG, EBW, LBW, upset butt welding and flash welding are applied in sealing the end of fuel elements. These welding techniques are adopted in conjunction with the weld material, weldability, weld joint design and cost effectiveness. For fuel irradiation test, the centerline temperature of fuel pellets is one of the important item to be measured. For this, a thermocouple is installed into the center of the fuel pellet. The sealing of the penetration hole of the thermocouple sheath should be conducted and the hole should be perfectly sealed using the dissimilar metal joining technique. For this purpose, the dissimilar metal welding between zircaloy-4 and Inconel or stainless steel is needed to be developed. This report describes the techniques sealing the end cap and the penetration of a thermocouple sheath by welding. (author)

  8. Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.; Sorescu, Ion [Institute for Nuclear Research, Pitesti (Romania). TRIGA Reactor Loop Facility; Parvan, Marcel [Institute for Nuclear Research, Pitesti (Romania). Hot Cells Lab.

    2012-12-15

    Nine PHWR type fuel elements with reduced length were irradiated in loop A of the TRIGA Research Reactor of INR Pitesti. The primary objective of the test was to determine the performance of nuclear fuel fabricated at INR Pitesti at high linear powers in pressurized water conditions. Six fuel elements were irradiated with a ramp power history, achieving a maximum power of 45 kW/m during pre-ramp and of 64 kW/m in the ramp. The maximum discharge burnup was of 216 MWh/kgU. Another three fuel elements with reduced length were irradiated with declining power history. At the beginning of irradiation the fuel elements achieved a maximum linear power of 66 kW/m. The maximum fuel power was about 1.3 times the maximum expected in PHWR. The maximum discharge burnup was 205 MWh/kgU. The elements were destructively examined in the hot cells of INR Pitesti. Temperature-sensitive parameters such as UO{sub 2} grain growth, fission-gas release and sheath deformations were examined. The tests proved the feasibility of irradiating PHWR type fuel elements at linear powers up to 66 kW/m under pressurized water conditions and demonstrated the possibility of more flexible operation of this fuel in power reactors. This paper presents the results of the investigation. (orig.)

  9. Review Paper: Review of Instrumentation for Irradiation Testing of Nuclear Fuels and Materials

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Rempe, Joy L.; Villard, Jean-Francois; Solstadd, Steinar

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in material test reactors (MTRs). Recently, there is increased interest to irradiate new materials and reactor fuels for advanced pressurized water reactors and Gen-IV reactor systems, such as sodium-cooled fast reactors, very high temperature reactors, supercritical water-cooled reactors, and gas-cooled fast reactors. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes ongoing research efforts to deploy new sensors. As described in this paper, a wide range of sensors is available to measure key parameters of interest during fuels and materials irradiations in MTRs. Ongoing development efforts focus on providing MTR users a wider range of parameter measurements with smaller, higher accuracy sensors.

  10. A method to evaluate fission gas release during irradiation testing of spherical fuel - HTR2008-58184

    International Nuclear Information System (INIS)

    Van Der Merwet, H.; Venter, J.

    2008-01-01

    The evaluation of fission gas release from spherical fuel during irradiation testing is critical to understand expected fuel performance under real reactor conditions. Online measurements of Krypton and Xenon fission products explain coated particle performance and contributions from graphitic matrix materials used in fuel manufacture and irradiation rig materials. Methods that are being developed to accurately evaluate fission gas release are described here together with examples of evaluations performed on irradiation tests HFR-K5, -K6 and EU1bis. (authors)

  11. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    International Nuclear Information System (INIS)

    Chun, Yong Bum; Min, Duck Kee; Kim, Eun Ka and others

    2000-12-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  12. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    International Nuclear Information System (INIS)

    Chun, Yong Bum; So, Dong Sup; Lee, Byung Doo; Lee, Song Ho; Min, Duck Kee

    2001-09-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  13. Improving the AGR fuel testing power density profile versus irradiation-time in the advanced test reactor

    International Nuclear Information System (INIS)

    Chang, Gray S.; Lillo, Misti A.; Maki, John T.; Petti, David A.

    2009-01-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235 U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235 U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250degC throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235 U

  14. Development of an End-plug Welding Technology for an Instrumented Fuel Irradiation Test

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yong; Shin, Yoon Taek; Choo, Kee Nam

    2010-01-01

    The irradiation test of end-plug specimens was planned for the evaluation of nuclear fuels performance. To establish the fabrication process, and for satisfying the requirements of the irradiation test, an orbital-GTA weld machine for the specimens of the dual rods was developed, and the preliminary welding experiments for optimizing the process conditions of the specimens of the dual rods were performed. Dual rods with a 9.5mm diameter and a 0.6mm wall thickness of the cladding tubes and end-plugs have been used and the optimum conditions of the pin-hole welding have also been selected. This paper describes the experimental results of the GTA welds of the specimens of the dual rods and the metallography examinations of the GTA welded specimens for various welding conditions for the instrumented fuel irradiation test. These investigations satisfied the requirements of the instrumented irradiation test and the GTA welds for the specimens of the dual rods at the HANARO research reactor

  15. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  16. Instrumentation Technologies for Improving an Irradiation Testing of Nuclear Fuels and Materials at the HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Park, Sung Jae; Choo, Ki Nam

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in Materials Test Reactors (MTRs) or research reactors. Recent effort to deploy new fuels and materials in existing and advanced reactors has increased the demand for well-instrumented irradiation tests. Specifically, demand has increased for tests with sensors capable of providing real-time measurement of key parameters, such as temperature, geometry changes, thermal conductivity, fission gas release, cracking, coating buildup, thermal and fast flux, etc. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes on-going research efforts to deploy new sensors. There is increased interest to irradiate new materials and reactor fuels for advanced PWRs and the Gen-IV reactor systems, such as SFRs (Sodium-cooled Fast Reactors), VHTRs (Very-High-Temperature Reactors), SCWRs (Supercritical-Water-cooled Reactors) and GFRs (Gas-cooled Fast Reactor). This review documents the current state of instrumentation technologies in MTRs in the world, identifies challenges faced by previous testing methods and how these challenges were overcome. A wide range of sensors are available to measure key parameters of interest during fuels and materials irradiations in MTRs. Such sensors must be reliable, small size, highly accurate, and able to withstand harsh conditions. On-going development efforts are focusing on providing MTR users a wider range of parameter measurements with increased accuracy. In addition, development efforts are focusing on reducing the impact of sensor on measurements by reducing sensor size. This report includes not only status of instrumentation using research reactors in the world to irradiate nuclear fuels and materials but also future directions relating to instrumentation technologies for

  17. Irradiation Effects Test Series: Test IE-3. Test results report

    International Nuclear Information System (INIS)

    Farrar, L.C.; Allison, C.M.; Croucher, D.W.; Ploger, S.A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m 2 . After a flow reduction to 2120 kg/s-m 2 , film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions

  18. Irradiation of Superheater Test Fuel Elements in the Steam Loop of the R2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ravndal, F

    1967-12-15

    The design, fabrication, irradiation results, and post-irradiation examination for three superheater test fuel elements are described. During the spring of 1966 these clusters, each consisting of six fuel rods, were successfully exposed in the superheater loop No. 5 in the R2 reactor for a maximum of 24 days at a maximum outer cladding surface temperature of {approx} 650 deg C. During irradiation the linear heat rating of the rods was in the range 400-535 W/cm. The diameter of the UO{sub 2} pellets was 11.5 and 13.0 mm; the wall thickness of the 20/25 Nb and 20/35 cladding was in every case 0.4 mm. The diametrical gap between fuel and cladding was one of the main parameters and was chosen to be 0.05, 0.07 and 0.10 mm. These experiments, to be followed by one high cladding temperature irradiation ({approx} 750 deg C) and one long time irradiation ({approx} 6000 MWd/tU), were carried out to demonstrate the operational capability of short superheater test fuel rods at steady and transient operational environments for the Marviken superheater fuel elements and also to provide confirmation of design criteria for the same fuel elements.

  19. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  20. Post-irradiation analysis of low enriched U-Mo/Al dispersions fuel miniplate tests, RERTR 4 and 5

    International Nuclear Information System (INIS)

    Hofman, G.L.; Finlay, M.R.; Kim, Y.S.

    2005-01-01

    Interpretation of the post irradiation data of U-Mo/Al dispersion fuel mini plates irradiated in the Advanced Test Reactor to a maximum U-235 burn up of 80% are presented. The analyses addresses fuel swelling and porosity formation as these fuel performance issues relate to fuel fabrication and irradiation parameters. Specifically, mechanisms involved in the formation of porosity observed in the U-Mo/Al interaction phase are discussed and, means of mitigating or eliminating this irradiation phenomenon are offered. (author)

  1. Irradiation performance of full-length metallic IFR fuels

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.

    1992-07-01

    An assembly irradiation of 169 full-length U-Pu-Zr metallic fuel pins was successfully completed in FFTF to a goal burnup of 10 at.%. All test fuel pins maintained their cladding integrity during the irradiation. Postirradiation examination showed minimal fuel/cladding mechanical interaction and excellent stability of the fuel column. Fission-gas release was normal and consistent with the existing data base from irradiation testing of shorter metallic fuel pins in EBR-II

  2. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    International Nuclear Information System (INIS)

    Hellwig, Ch.; Kasemeyer, U.

    2001-01-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm 3 . The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  3. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Ch.; Kasemeyer, U

    2001-03-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm{sup 3}. The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  4. Design, irradiation, and post-irradiation examination of the UC and (U,Pu)C fuel rods of the test groups Mol-11/K1 and Mol-11/K2

    International Nuclear Information System (INIS)

    Freund, D.; Elbel, H.; Steiner, H.

    1976-06-01

    The test groups K1 and K2 of the irradiation experiment Mol-11 are reported. Design, irradiation, and post-irradiation examination of the fuel rods irradiated are described. Mol-11/K1 consisted of one fuel rod with UC of 94% T.D. and helium bonding. This test group was intended to prove the high power irradiation capsule in pile. Mol-11/K2 consists of three fuel rods in total. One of these is presently still in the reactor. In this test group mixed carbide fuel of 83% T.D. and 15% Pu content under helium bonding is irradiated. The fuel rod K2-2 was provided with a capillary tube for the continuous measurement of fission gas pressure built up. 1.4988 stainless steel was chosen as cladding material. The final burnup lies between 35 and 70 MWd/kg M. Post-irradiation examination of the two test groups covers a theoretical analysis of the irradiation behaviour. (orig./GSCH) [de

  5. Test requirement for PIE of HANARO irradiated fuel rod

    International Nuclear Information System (INIS)

    Lim, I. C.; Cho, Y. G.

    2000-06-01

    Since the first criticality of HANARO reached in Feb. of 1995, the rod type U 3 Si-A1 fuel imported from AECL has been used. From the under-water fuel inspection which has been conducted since 1997, a ballooning-rupture type abnormality was observed in several fuel rods. In order to find the root cause of this abnormality and to find the resolution, the post irradiation examination(PIE) was proposed as the best way. In this document, the information from the under-water inspection as well as the PIE requirements are described. Based on the information in this document, a detail test plan will be developed by the project team who shall conduct the PIE

  6. Irradiation Effects Test Series: Test IE-3. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, L. C.; Allison, C. M.; Croucher, D. W.; Ploger, S. A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m/sup 2/. After a flow reduction to 2120 kg/s-m/sup 2/, film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions.

  7. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  8. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  9. Welding of metallic fuel elements for the irradiation test in JOYO. Preliminary tests and welding execution tests (Joint research)

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Nakamura, Kinya; Iwai, Takashi; Arai, Yasuo

    2009-10-01

    Irradiation tests of metallic fuels elements in fast test reactor JOYO are planned under the joint research of Japan Atomic Energy Agency (JAEA) and Central Research Institute of Electric Power Industry (CRIEPI). Six U-Pu-Zr fuel elements clad with ferritic martensitic steel are fabricated in Plutonium Fuel Research Facility (PFRF) of JAEA-Oarai for the first time in Japan. In PFRF, the procedures of fabrication of the fuel elements were determined and the test runs of the equipments were carried out before the welding execution tests for the fuel elements. Test samples for confirming the welding condition between the cladding tube and top and bottom endplugs were prepared, and various test runs were carried out before the welding execution tests. As a result, the welding conditions were finalized by passing the welding execution tests. (author)

  10. Irradiation Test in HANARO of the Parts of an X-Gen Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H. (and others)

    2008-08-15

    An instrumented capsule of 07M-13N was designed, fabricated and irradiated for an evaluation of the neutron irradiation properties of the parts of an X-Gen nuclear fuel assembly for PWR requested by KNF. Some specimens requested by Westinghouse Co. and Hanyang university were also inserted. 389 KNF specimens such as bucking and spring test specimens of 1x1 cell spacer grid, tensile, microstructure and tensile of welded parts, irradiation growth, spring test specimens made of HANA tube, Zirlo, Zircaloy-4, Inconel-718 were placed in the capsule. The capsule was composed of 5 stages having many kinds of specimens and an independent electric heater at each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 7 sets of Ni-Ti-Fe (2 sets contain additional Nb-Ag) neutron fluence monitors installed in the capsule. The capsule was irradiated for 59.19days (4 cycles) in the CT test hole of HANARO of a 30MW thermal output at 300 {approx} 420 .deg. C(for KNF specimens) up to a fast neutron fluence of 1.27x10{sup 21}(n/cm{sup 2}) (E>1MeV). After an irradiation test, the main body of the capsule was cut off at the bottom of the protection tube with a cutting system and it was transported to the IMEF (Irradiated Materials Examination Facility). The irradiated specimens were tested to evaluate the irradiation performance of the parts of an X-Gen fuel assembly in the IMEF hot cell.

  11. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  12. Behavior of pre-irradiated fuel under a simulated RIA condition

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide

    1994-07-01

    This report presents results from the power burst experiment with pre-irradiated fuel rod, Test JM-3, conducted in the Nuclear Safety Research Reactor (NSSR). The data concerning test method, pre-irradiation, pre-pulse fuel examination, pulse irradiation, transient records and post-pulse fuel examination are described, and analyses, interpretations, and discussions of the results are presented. Preceding to the pulse irradiation in the NSRR, test fuel rod was irradiated in the Japan Materials Testing Reactor (JMTR) up to a fuel burnup of 19.6MWd/kgU with average linear heat rate of 25.3 kW/m. The fuel rod was subjected to the pulse irradiation resulting in a deposited energy of 174±6 cal/g·fuel and a peak fuel enthalpy of 130±5 cal/g·fuel under stagnant water cooling condition at atmospheric pressure and ambient temperature. Test fuel rod behavior was assessed from pre- and post-pulse fuel examinations and transient records during the pulse. The cladding surface temperature increased to only 150degC, and the test resulted in slight fuel deformation and no fuel failure. An estimated rod-average fission gas release during the transient was about 2.2%. Through the detailed fuel examinations, the information concerning microstructural change in the fuel pellets were also obtained. (author)

  13. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  14. Irradiation test HT-31: high-temperature irradiation behavior of LASL-made extruded fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; Davidson, K.V.; Schell, D.H.

    1977-04-01

    Three LASL-made extruded graphite and coated particle fuel rods have been irradiated in the Oak Ridge National Laboratory High Fluence Isotope Reactor test HT-31. Test conditions were about 9 x 10 21 nvt(E > .18 MeV) at 1250 0 C. The graphite matrix showed little or no effect of the irradiation. LASL-made ZrC containing coated particles with ZrC coats and ZrC-doped pyrolytic carbon coats showed no observable effects of the irradiation

  15. Visual observations of a degraded bundle of irradiated fuel: the Phebus FPT1 test

    International Nuclear Information System (INIS)

    Barrachin, M.; Bottomley, P.D.

    1999-01-01

    The international Phebus-FP (Fission Product) project is managed by the Institut de Protection et Surete Nucleaire in collaboration with Electricite de France (EDF), the European Commission (EC), the USNRC (USA), COG (Canada), NUPEC and JAERI (Japan), KAERI (South Korea), PSI and HSK (Switzerland). It is designed to measure the source-term and to study the degradation of irradiated UO 2 fuel in conditions typical of a severe loss of coolant accident in a pressurised water reactor (PWR). In the first test (FPT0), performed in December '93, a bundle of 20 fresh fuel rods and a central Ag-In-Cd control rod underwent a short 15-day irradiation to generate fission products before testing in the Phebus reactor in Cadarache. The second test (FPT1) was performed in July '96, in the same conditions and geometry, but using irradiated fuel (-23 GWd/tU). In the FPT1 test, the bundle was heated to an estimated 3000 K over a period of 30 minutes in order to induce a substantial liquefaction of the bundle. After the test, the bundle was embedded in epoxy and cut at different levels to investigate the mechanisms of the core degradation. This paper reports the visual observations of the degraded FPT1 bundle, very preliminary interpretations about the scenario of degradation and a comparison between the behaviour of the fuel in the FPT0 and FPT1 tests. (author)

  16. Design and manufacturing of instrumented capsule (02F-06K/02F-11K) for nuclear fuel irradiation test in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S.; Sohn, J. M.; Choo, K. N.; Kim, D. S.; Oh, J. M.; Shin, Y.T.; Park, S.J.; Kim, Y. J.; Seo, C.G.; Ryu, J.S.; Cho, Y. G.

    2003-02-01

    To measure the characteristics of nuclear fuel during irradiation test, it is necessary to develop the instrumented capsule for the nuclear fuel irradiation test. Then considering the requirements for the nuclear fuel irradiation test and the compatibility with OR test hole in HANARO as well as the requirements for HANARO operation and related equipments, the instrumented capsule for the nuclear fuel irradiation test was designed and successfully manufactured. The structural integrity of the capsule design was verified by performing nuclear physics, structural and thermal analyses. And, not only out-of-pile tests such as pressure drop test, vibration test, endurance test, were performed in HANARO design verification test facility, but the mechanical and hydraulic safety of the capsule and the compatibility of the capsule with HANARO was verified

  17. Investigation of TIG welding characteristics with a dual cooled rod for the fuel irradiation test

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Kim, Hyung Kyu

    2008-01-01

    To establish the fabrication process, and for satisfying the requirements of the irradiation test, an TIG(Tungsten Inert Gas) welding machine for the dual cooled rods specimens was developed, and the preliminary welding experiments were performed to optimize the welding process conditions. Cladding tubes of 15.9 and 9 mm for the outer and inner diameters, respectively with a 0.57 mm thickness and end caps were used for the specimens. This paper describes the experimental results of the TIG welds and the micrograph examinations of the TIG welded specimens corresponding to various welding conditions for the dual cooled fuel irradiation test. The investigations revealed that the present TIG process satisfied the requirements for the fuel irradiation test in the HANARO research reactor

  18. Fuels and materials testing capabilities in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Baker, R.B.; Chastain, S.A.; Culley, G.E.; Ethridge, J.L.; Lovell, A.J.; Newland, D.J.; Pember, L.A.; Puigh, R.J.; Waltar, A.E.

    1989-01-01

    The Fast Flux Test Facility (FFTF) reactor, which started operating in 1982, is a 400 MWt sodium-cooled fast neutron reactor located in Hanford, Washington State, and operated by Westinghouse Hanford Co. under contract with U.S. Department of Energy. The reactor has a wide variety of functions for irradiation tests and special tests, and its major purpose is the irradiation of fuel and material for liquid metal reactor, nuclear reactor and space reactor projects. The review first describes major technical specifications and current conditions of the FFTF reactor. Then the plan for irradiation testing is outlined focusing on general features, fuel pin/assembly irradiation tests, and absorber irradiation tests. Assemblies for special tests include the material open test assembly (MOTA), fuel open test assembly (FOTA), closed loop in-reactor assembly (CLIRA), and other special fuel assemblies. An interim examination and maintenance cell (FFTF/IEM cell) and other hot cells are used for nondestructive/destructive tests and physical/mechanical properties test of material after irradiation. (N.K.)

  19. Loss-of-flow test L5 on FFTF-type irradiated fuel

    International Nuclear Information System (INIS)

    Simms, R.; Gehl, S.M.; Lo, R.K.; Rothman, A.B.

    1978-03-01

    Test L5 simulated a hypothetical loss-of-flow accident in an LMFBR using three (Pu, U)O 2 fuel elements of the FTR type. The test elements were irradiated before TREAT Test L5 in the General Electric Test Reactor to 8 at. % burnup at about 40 kW/m. The preirradiation in GETR caused a fuel-restructuring range characteristic of moderate-power structure relative to the FTR. The test transient was devised so that a power burst would be initiated at incipient cladding melting after the loss of flow. The test simulation corresponds to a scenario for FTR in which fuel in high-power-structure subassemblies slump, resulting in a power excursion. The remaining subassemblies are subjected to this power burst. Test L5 addressed the fuel-motion behavior of the subassemblies in this latter category. Data from test-vehicle sensors, hodoscope, and post-mortem examinations were used to construct the sequence of events within the test zone. From these observations, the fuel underwent a predominantly dispersive event just after reaching a peak power six times nominal at, or after, scram. The fuel motion was apparently driven by the release of entrained fission-product gases, since fuel vapor pressure was deliberately kept below significant levels for the transient. The test remains show a wide range of microstructural evolution, depending on the extent of heat deposition along the active fuel column. Extensive fuel swelling was also observed as a result of the lack of the cladding restraint. The results of the thermal-hydraulic calculations with the SAS3A code agreed qualitatively with the postmortem results with respect to the extent of the melting and the dispersal of cladding and fuel. However, the calculated times of certain events did not agree with the observed times

  20. Examinations of the irradiation behaviour of U3Si2 test fuel plates with low enrichment

    International Nuclear Information System (INIS)

    Muellauer, J.

    1989-01-01

    Five low-enriched (19.7% 235 U), high-density (4.7 gU/cm/ 3 ) U 3 Si 2 -test fuel plates (miniplates) with different fine grain contents have been qualified under irradiation. During the course of irradiation up to burnup of 63% 235 U depletion, no released fractions of gaseous or solid fission products from the fuel plate to the rig coolant were detected. The measured swelling rate of the fuel zone (meat) is less than 0.45% ΔV/10 20 fissions/cm 3 the blister-threshold temperature of the fuel plates is above 520 0 C. The favourable irradiation behavior of the U 3 Si 2 fuel plates was not influenced by using higher amounts of fine grained particles (40% [de

  1. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  2. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  3. Irradiation tests report of the 32nd cycle in 'JOYO'

    International Nuclear Information System (INIS)

    1998-09-01

    This report summarizes the operating and irradiation data of the experimental reactor 'JOYO' 32nd cycle, and estimates the 33rd cycle irradiation condition. Irradiation tests in the 31st cycle are as follows: (1) B-type irradiation rig (B9). (a) High burn up performance tests of MONJU' fuel pins, advanced austenitic steel cladding fuel pins, large diameter fuel pins, ferrite steel cladding fuel pins (in collaboration with the USA) and large diameter annular pellet fuel pins. (b) Mixed carbide and nitride fuel pins irradiation tests (in collaboration with JAERI). (2) C-type irradiation rig (C4F). (a) High burn up performance test of advanced austenitic steel cladding fuel pins (in collaboration with France). (3) C-type irradiation rig (C6D). (a) Large diameter fuel pins irradiation test. (4) Absorber Materials Irradiation Rig (AMIR-6). (a) Run to absorber pin's cladding breach. (5) Absorber Materials Irradiation Rig (AMIR-8). (a) High-temperature shroud and Na-bond elements tests. (6) Core Materials Irradiation Rig (CMIR-5-1). (a) Core materials irradiation tests. (7) Structure Materials Irradiation Rigs (SMIR). (a) Material irradiation tests (in collaboration with universities). (b) Surveillance back up tests for MONJU'. (8) MAterial testing RIg with temperature COntrol (MARICO-1). (a) Material irradiation tests (in collaboration with universities), (b) Creep rupture tests of the core materials for the demonstration reactor. (9) Upper core structure irradiation Plug Rig (UPR-1-5). (a) Upper core neutron spectrum effect and accelerated irradiation effect. The maximum burn-up driver assembly 'PFD503' reached 65,600 MWd/t (pin average). (author)

  4. Development, irradiation testing and PIE of UMo fuel at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.

    2005-01-01

    This paper reviews recent U-Mo dispersion fuel development, irradiation testing and postirradiation examination (PIE) activities at AECL. Low-enriched uranium fuel alloys and powders have been fabricated at Chalk River Labs, with compositions ranging from U-7Mo to U-10Mo. The bulk alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, X-ray diffraction and neutron diffraction analysis. The analyses confirmed that the powders were of high quality, and in the desired gamma phase. Subsequently, kilogram quantities of DU-Mo and LEU-Mo powder have been manufactured for commercial customers. Mini-elements have been fabricated with LEU-7Mo and LEU-10Mo dispersed in aluminum, with a nominal loading of 4.5 gU/cm 3 . These have been irradiated in the NRU reactor at linear powers up to 100 kW/m. The mini-elements achieved 60 atom% 235 U burnup in 2004 March, and the irradiation is continuing to a planned discharge burnup of 80 atom% 235 U. Interim PIE has been conducted on mini-elements that were removed after 20 atom% 235 U burnup. The PIE results are presented in this paper. (author)

  5. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    Science.gov (United States)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  6. The physics of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Robin, M.

    1980-01-01

    The knowledge of the neutron irradiation effect is essential in dealing with all subjects related to the fuel. Neutron irradiation provokes fission reactions within the fuel and produces new nuclides. The formation chains are described and the importance of each isotope in the fuel cycle is explained with regards to its own characteristics. To solve the system of equations giving the evolution of different nuclides concentrations, the corresponding effective cross-sections and flux received are given by standard codes used for reactor calculations. A good test for calculation methods is the experimental study of irradiated fuel. Many techniques have been developed for this purpose. The last chapter compares fuel evolution in different reactors, in connection with some specific characteristics. (author)

  7. Non-destructive test for irradiated fuels using X-ray CT system in hot-laboratory

    International Nuclear Information System (INIS)

    Kim, Heemoon; Kim, Gil-Soo; Yoo, Boung-Ok; Tahk, Young-Wook; Cho, Moon-Sung; Ahn, Sang-Bok

    2015-01-01

    To inspect inside of irradiated fuel rod for PIE in hotcell, neutron beam and X-ray have been used. Many hot laboratories in the world have shown the results for NDT by 2-D film data. Currently, computed image processing technology instead of film has been developed and CT was applied to the X-ray and neutron beam system. In this trend, our facility needed to set up X-ray system for irradiated fuel inspection and installed in hotcell with consideration of radiation damage. In this study, X-ray system was tested to be operated with radioactive samples and was performed to inspect fuel rods and observe internal damage and dimensional change. 450kV X-ray CT system was installed in hotcell with modification and tested to check image resolution and radiation damage. The image data were analyzed by 3-D computer software. 8 fuel plates and VHTR rods were inspected and measured internal shape and dimension

  8. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y H; Cho, M S [and others

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  9. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  10. Vibration test report on the instrumented capsule for fuel irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Wu, J. S.; Oh, J. M.; Park, S. J.; Cho, M. S.; Kim, B. G.; Kang, Y. W

    2003-01-01

    The fluid-induced vibration level of instrumented capsule, which was manufactured for fuel irradiation test at the reactor core of HANARO, was investigated. For this purpose, the instrumented capsule was loaded at the OR site of the HANARO design verification test facility that could simulate identical flow condition as the HANARO core. Then, vibration signals of the instrumented capsule subjected to various flow conditions were measured by using vibration sensors. In time domain analysis, maximum amplitudes and RMS values of the measured acceleration and displacement signals were obtained. By using frequency domain analysis, frequency components of the fluid-induced vibration were analyzed. In addition, natural frequencies of the instrumented capsule were obtained by performing modal test. The frequency analysis results showed that the natural frequency components near 7.5Hz and 17.5Hz were dominant in the fluid-induced vibration signal. The maximum amplitude of the accelerations was measured as 12.04m/s{sup 2} that is within the allowable vibrational limit(18.99m/s{sup 2})of the reactor structure. Also, the maximum displacement amplitude was calculated as 0.191mm. Since these vibration levels are remarkably low, excessive vibration is not expected when the irradiation test of the instrumented capsule is performed at the HANARO core.

  11. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  12. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S. (and others)

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  13. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    Directory of Open Access Journals (Sweden)

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  14. Irradiation performance of U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  15. Irradiation performance of metallic fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Porter, D.L.; Batte, G.L.; Hofman, G.L.

    1989-01-01

    Argonne National Laboratory has been working for the past five years to develop and demonstrate the Integral Fast Reactor (IFR) concept. The concept involves a closed system for fast-reactor power generation and on-site fuel reprocessing, both designed specifically around the use of metallic fuel. The Experimental Breeder Reactor-II (EBR-II) has used metallic fuel for all of its 25-year life. In 1985, tests were begun to examine the irradiation performance of advanced-design metallic fuel systems based on U-Zr or U-Pu-Zr fuels. These tests have demonstrated the viable performance of these fuel systems to high burnup. The initial testing program will be described in this paper. 2 figs

  16. UO2-PuO2 fuel pin capsule-irradiations of the test series FR 2-5a

    International Nuclear Information System (INIS)

    Dienst, W.; Goetzmann, O.; Schulz, B.

    1975-06-01

    In the capsule-irradiation test series FR 2-5a, short UO 2 -PuO 2 fuel pins (80 mm fuel length) of 7 mm diameter were irradiated in a thermal neutron flux at mean rod powers of 400 - 450 W/cm and mean cladding surface temperatures of 500 - 550 0 C to burnups of 0.6, 1.8 and 5.0 at% (U + Pu). Void volume redistribution in the fuel pins was examined in micrographs of cross-sections by measuring crack widths, central void diameters, and fuel porosity. The width of the radial cracks at the outer fuel rim was taken as a basis for measuring the irradiation-induced densification of the UO 2 -PuO 2 fuel. The result was that the final fuel density after irradiation-induced densification amounted to 92 - 94% TD and had already been reached after 0.6 at% burnup. The porosity measurement on fuel cross-sections was to show a possible dependence of the radial porosity redistribution on the initial sintered density. Examining the fuel pin diameters after irradiation showed permanent cladding strains after 5 at% burnup, which must be due to mechanical interaction with the fuel. To judge if the chemical compatibility between the fuel and the cladding of Cr-Ni-stainless steel 1.4988, the depths of chemical attack on the cladding inside was measured by micrographs of fuel pin cross-sections. (orig./GSC) [de

  17. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  18. Power ramp tests of MOX fuel rods. HBWR irradiation with the instrument rig, IFA-591

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Abe, Tomoyuki

    2006-03-01

    Plutonium-uranium mixed oxide (MOX) fuel rods of instrumental rig IFA-591 were ramped in HBWR to study the Advanced Thermal Reactor (ATR) MOX fuel behavior during transient operation and to determine a failure threshold of the MOX fuel rods. Eleven segments were base-irradiated in ATR 'FUGEN' up to 18.4 GWd/t. Zirconium liner claddings were adopted for four segments of them. As the results of non-destructive post irradiation examinations (PIEs) after the base-irradiation and before the ramp tests, no remarkable behavior affecting the integrity of fuel assembly and fuel rod was confirmed. All segments to be used for the ramp tests, which consisted of the multi-step ramp tests and the single-step ramp tests, had instrumentations for in-pile measurements of cladding elongation or plenum pressure, and heated up to the maximum linear power of 58.3-68.4 kW/m without failure. The major results of ramp tests are as follows: There is no difference in PCMI behaviors between two type rods of Zry-2 and Zirconium liner claddings from the in-pile measurements of cladding elongation and plenum pressure. The computations of cladding elongation and inner pressure gave slightly lower elongation and pressure than the in-pile measurements during the ramp-test. However, the cladding relaxation during the power hold was in good agreement, and the fission gas release behavior during cooling down could be evaluated by taking into account the relaxation of contact pressure between pellet and cladding. Although the final power during IFA-591 ramp tests reached the higher linear power than the failure threshold power of UO 2 fuel rods, no indication of fuel failure was observed during the ramp tests. The cladding relaxation due to the creep deformation of the MOX pellets at high temperature could be confirmed at the power steps during the multi-ramp test. The fission gas release due to the emancipation from PCMI stress was observed during the power decreasing. The burn-up dependence could be

  19. Nonintrusive irradiated fuel inventory confirmation technique

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-01-01

    Successful tests showing correlation between the intensity of the Cerenkov glow surrounding irradiated fuel assemblies in water-filled spent fuel storage ponds and the exposure and cooling times of assemblies have been concluded. Fieldable instruments used in subsequent tests confirmed that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds

  20. Irradiation Performance of HTGR Fuel in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Ueta, Shohei; Sakaba, Nariaki; Shaimerdenov, Asset; Gizatulin, Shamil; Chekushina, Lyudmila; Chakrov, Petr; Honda, Masaki; Takahashi, Masashi; Kitagawa, Kenichi

    2014-01-01

    A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO_2 (less than 10 % of "2"3"5U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel. (author)

  1. Steady-state irradiation testing of U-Pu-Zr fuel to >18% burnup

    International Nuclear Information System (INIS)

    Pahl, R.G.; Wisner, R.S.; Billone, M.C.; Hofman, G.L.

    1990-01-01

    Tests of austenitic stainless steel clad U-xP-10Zr fuel (x=o, 8, 19 wt. %) to peak burnups as high as 18.4 at. % have been completed in the EBR-II. Fuel swelling and fractional fission gas release are slowly increasing functions of burnup beyond 2 at. % burnup. Increasing plutonium content in the fuel reduces swelling and decreases the amount of fission gas which diffuses from fuel to plenum. LIFE-METAL code modelling of cladding strains is consistent with creep by fission gas loading and irradiation-induced swelling mechanisms. Fuel/cladding chemical interaction involves the ingress of rare-earth fission products. Constituent redistribution in the fuel had not limited steady-state performance. Cladding breach behavior at closure welds, in the gas plenum, and in the fuel column region have been benign events. 3 refs., 5 figs

  2. The Hydraulic Test Procedure for Non-instrumented Irradiation Test Rig of Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan; Park, Chan Kook

    2008-08-15

    This report presents the procedure of pressure drop test, vibration test and endurance test for the non-instrumented rig using the irradiation test in HANARO of advanced PWR annular fuel which were designed and fabricated by KAERI. From the out-pile thermal hydraulic tests, confirm the flow rate at the 200 kPa pressure drop and measure the RMS displacement at this time. And the endurance test is confirmed the wear and the integrity of the non-instrumented rig at the 110% design flow rate. This out-pile test perform the Flow-Induced Vibration and Pressure Drop Experimental Tester(FIVPET) facility. The instruments in FIVPET facility was calibrated in KAERI and the pump and the thermocouple were certified by manufacturer.

  3. The development of fuel pins and material specimens mixed loading irradiation test rig in the experimental fast reactor Joyo. The development of the fuel-material hybrid rig

    International Nuclear Information System (INIS)

    Oyamatsu, Yasuko; Someya, Hiroyuki

    2013-02-01

    In the experimental fast reactor Joyo, there were many tests using the irradiation rigs that it was possible to be set irradiation conditions for each compartment independently. In case of no alternative fuel element to irradiate after unloading the irradiated compartments, the irradiation test was restarted with the dummy compartment which the fuel elements was not mounted. If the material specimens are mounted in this space, it is possible to use the irradiation space effectively. For these reasons, the irradiation rig (hybrid rig) is developed that is consolidated with material specimens compartment and fuel elements compartment. Fuel elements and material specimens differ greatly with heat generation, so that the most important issue in developing of hybrid rig is being able to distribute appropriately the coolant flow which satisfies irradiation conditions. The following is described by this report. (1) It was confirmed that the flow distribution of loading the same irradiation rig with the compartment from which a flow demand differs could be satisfied. (2) It was confirmed that temperature setting range of hybrid rig could be equivalent to that of irradiation condition. (3) By standardizing the coolant entrance structure of the compartment lower part, the prospect which can perform easily recombination of the compartment from which a type differs between irradiation rigs was acquired. (author)

  4. HRB-22 irradiation phase test data report

    International Nuclear Information System (INIS)

    Montgomery, F.C.; Acharya, R.T.; Baldwin, C.A.; Rittenhouse, P.L.; Thoms, K.R.; Wallace, R.L.

    1995-03-01

    Irradiation capsule HRB-22 was a test capsule containing advanced Japanese fuel for the High Temperature Test Reactor (HTTR). Its function was to obtain fuel performance data at HTTR operating temperatures in an accelerated irradiation environment. The irradiation was performed in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The capsule was irradiated for 88.8 effective full power days in position RB-3B of the removable beryllium (RB) facility. The maximum fuel compact temperature was maintained at or below the allowable limit of 1300 degrees C for a majority of the irradiation. This report presents the data collected during the irradiation test. Included are test thermocouple and gas flow data, the calculated maximum and volume average temperatures based on the measured graphite temperatures, measured gaseous fission product activity in the purge gas, and associated release rate-to-birth rate (R/B) results. Also included are quality assurance data obtained during the test

  5. Irradiation and performance evaluation of DUPIC fuel

    International Nuclear Information System (INIS)

    Bae, Ki Kwang; Yang, M. S.; Song, K. C.

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis

  6. Irradiation and performance evaluation of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M S; Song, K C [and others

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis.

  7. Development of in-pile instruments for fuel and material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Akira; Kitagishi, Shigeru; Kimura, Nobuaki; Saito, Takashi; Nakamura, Jinichi; Ohmi, Masao; Izumo, Hironobu; Tsuchiya, Kunihiko [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    To get measurement data with high accuracy for fuel and material behavior studies in irradiation tests, two kinds of measuring equipments have been developed; these are the Electrochemical Corrosion Potential (ECP) sensor and the Linear Voltage Differential Transformer (LVDT) type gas pressure gauge. The ECP sensor has been developed to determine the corrosive potential under high temperature and high pressure water conditions. The structure of the joining parts was optimized to avoid stress concentration. The ECP sensor showed enough performance at 288degC and at 9MPa conditions. The LVDT type rod inner gas pressure gauge has been developed to measure gas pressure in a fuel element during neutron irradiation. To perform stable measurements with high accuracy under high temperature, high pressure and high dosed environment, the coil material of LVDT was changed to MI cable. As a result of this development, the LVDT type gas pressure gauge showed high accuracy within 1.8% of a full scale, and good stability. (author)

  8. Development of in-pile instruments for fuel and material irradiation tests

    International Nuclear Information System (INIS)

    Shibata, Akira; Kitagishi, Shigeru; Kimura, Nobuaki; Saito, Takashi; Nakamura, Jinichi; Ohmi, Masao; Izumo, Hironobu; Tsuchiya, Kunihiko

    2012-01-01

    To get measurement data with high accuracy for fuel and material behavior studies in irradiation tests, two kinds of measuring equipments have been developed; these are the Electrochemical Corrosion Potential (ECP) sensor and the Linear Voltage Differential Transformer (LVDT) type gas pressure gauge. The ECP sensor has been developed to determine the corrosive potential under high temperature and high pressure water conditions. The structure of the joining parts was optimized to avoid stress concentration. The ECP sensor showed enough performance at 288degC and at 9MPa conditions. The LVDT type rod inner gas pressure gauge has been developed to measure gas pressure in a fuel element during neutron irradiation. To perform stable measurements with high accuracy under high temperature, high pressure and high dosed environment, the coil material of LVDT was changed to MI cable. As a result of this development, the LVDT type gas pressure gauge showed high accuracy within 1.8% of a full scale, and good stability. (author)

  9. DUPIC fuel irradiation test and performance evaluation; the performance analysis of pellet-cladding contact fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K. I.; Kim, H. M.; Yang, K. B.; Choi, S. J. [Suwon University, Whasung (Korea)

    2002-04-01

    Thermal and mechanical models were reviewed, and selected for the analysis of nuclear fuel performance in reactor. 2 dimensional FEM software was developed. Thermal models-gap conductances, thermal conductivity of pellets, fission gas release, temperature distribution-were set and packaged into a software. Both thermal and mechanical models were interrelated to each other, and the final results, fuel performance during irradiation is obtained by iteration calculation. Also, the contact phenomena between pellet and cladding was analysed by mechanical computer software which was developed during this work. dimensional FEM program was developed which estimate the mechanical behavior and the thermal behaviors of nuclear fuel during irradiation. Since there is a importance during the mechanical deformation analysis in describing pellet-cladding contact phenomena, simplified 2 dimensional calculation method is used after the contact. The estimation of thermal fuel behavior during irradiation was compared with the results of other. 8 refs., 17 figs. (Author)

  10. Segmented fuel irradiation program: investigation on advanced materials

    International Nuclear Information System (INIS)

    Uchida, H.; Goto, K.; Sabate, R.; Abeta, S.; Baba, T.; Matias, E. de; Alonso, J.

    1999-01-01

    The Segmented Fuel Irradiation Program, started in 1991, is a collaboration between the Japanese organisations Nuclear Power Engineering Corporation (NUPEC), the Kansai Electric Power Co., Inc. (KEPCO) representing other Japanese utilities, and Mitsubishi Heavy Industries, Ltd. (MHI); and the Spanish Organisations Empresa Nacional de Electricidad, S.A. (ENDESA) representing A.N. Vandellos 2, and Empresa Nacional Uranio, S.A. (ENUSA); with the collaboration of Westinghouse. The objective of the Program is to make substantial contribution to the development of advanced cladding and fuel materials for better performance at high burn-up and under operational power transients. For this Program, segmented fuel rods were selected as the most appropriate vehicle to accomplish the aforementioned objective. Thus, a large number of fuel and cladding combinations are provided while minimising the total amount of new material, at the same time, facilitating an eventual irradiation extension in a test reactor. The Program consists of three major phases: phase I: design, licensing, fabrication and characterisation of the assemblies carrying the segmented rods (1991 - 1994); phase II: base irradiation of the assemblies at Vandellos 2 NPP, and on-site examination at the end of four cycles (1994-1999). Phase III: ramp testing at the Studsvik facilities and hot cell PIE (1996-2001). The main fuel design features whose effects on fuel behaviour are being analysed are: alloy composition (MDA and ZIRLO vs. Zircaloy-4); tubing texture; pellet grain size. The Program is progressing satisfactorily as planned. The base irradiation is completed in the first quarter of 1999, and so far, tests and inspections already carried out are providing useful information on the behaviour of the new materials. Also, the Program is delivering a well characterized fuel material, irradiated in a commercial reactor, which can be further used in other fuel behaviour experiments. The paper presents the main

  11. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  12. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    International Nuclear Information System (INIS)

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas; Harp, Jason Michael

    2016-01-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  13. Status report on the irradiation testing and post-irradiation examination of low-enriched U3O8-Al and UAlsub(x)-Al fuel element by the Netherlands Energy Research Foundation (ECN)

    International Nuclear Information System (INIS)

    Pruimboom, H.; Lijbrink, E.; Otterdijk, K. von; Swanenburg de Veye, R.J.

    1984-01-01

    Within the framework of the RERTR-programme four low-enriched (20%) MTR-type fuel elements have been irradiated in the High Flux Reactor at Petten (The Netherlands) and are presently subjected to postirradiation examination. Two of the elements contain UAlsub(x)-Al and two contain U 3 O 8 -Al fuel. The test irradiation has been completed up to the target burn-up values of 50% and 75% respectively. An extensive surveillance programme carried out during the test period has confirmed the excellent in-reactor behaviour of both types. Post-irradiation examination of the 50% burn-up test elements, comprising of dimensional measurements, burn-up determination, fuel metallography and blister testing, has sofar confirmed the irradiation experiences. Good agreement between calculated and measured power and burn-up characteristics has been found. A survey of the test element characteristics, their irradiation history, the irradiation tests and the preliminary PIE results is given in the paper. (author)

  14. AGR-2 Irradiation Test Final As-Run Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) program. The objectives of the AGR-2 experiment are to: 1. Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. 2. Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. 3. Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tristructural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S.-produced fuel.

  15. AGR-2 Irradiation Test Final As-Run Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel.

  16. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  17. Damage and failure of unirradiated and irradiated fuel rods tested under film boiling conditions

    International Nuclear Information System (INIS)

    Mehner, A.S.; Hobbins, R.R.; Seiffert, S.L.; MacDonald, P.E.; McCardell, R.K.

    1979-01-01

    Power-cooling-mismatch experiments are being conducted as part of the Thermal Fuels Behavior Program in the Power Burst Facility at the Idaho National Engineering Laboratory to evaluate the behavior of unirradiated and previously irradiated light water reactor fuel rods tested under stable film boiling conditions. The observed damage that occurs to the fuel rod cladding and the fuel as a result of film boiling operation is reported. Analyses performed as a part of the study on the effects of operating failed fuel rods in film boiling, and rod failure mechanisms due to cladding embrittlement and cladding melting upon being contacted by molten fuel are summarized

  18. Pre-irradiation testing of experimental fuel elements

    International Nuclear Information System (INIS)

    Basova, B.G.; Davydov, E.F.; Dvoretskij, V.G.; Ivanov, V.B.; Syuzev, V.N.; Timofeev, G.A.; Tsykanov, V.A.

    1979-01-01

    The problems of testing of experimental fuel elements of nuclear reactors on the basis of complex accountancy of the factors defining operating capacity of the fuel elements are considered. The classification of the parameters under control and the methods of initial technological testing, including testing of the fuel product, cladding and fished fuel element, is given. The requirements to the apparatus used for complex testing are formulated. One of the possible variants of representation of the information obtained in the form of the input certificate of a single fuel element under study is proposed. The processing flowsheet of the gathered information using the computer is given. The approach under consideration is a methodological basis of investigation of fuel element operating life at the testing stage of the experimental fuel elements

  19. Design criteria and fabrication in-pile test section of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    Safety state fuel test loop will be equipped in HANARO to obtain the development and betterments of advanced fuel and materials through the irradiation tests. The objective of this study is to determine the design criteria and technical specification of in-pile test section and to specify the manufacturing requirements of in-pile test section. HANARO fuel test loop was designed to meet the CANDU and PWR fuel testing and in-pile section will be manufactured and installed in HANARO. The design criteria and technical specification of in-pile test section could be used the fuel and materials design with for irradiation testing IPS of HANARO fuel test loop. This results will become guidances for the planning and programming of irradiation testing. (author). 12 refs., tabs., figs.

  20. Irradiation test OF-2: high-temperature irradiation behavior of LASL-made fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1977-10-01

    Three LASL-made, substoichiometric ZrC-coated particles with inert kernels, and two high-density molded graphite fuel rods that contained LASL-made, ZrC-coated fissile particles were irradiated in the Oak Ridge Research Reactor test OF-2. The severest test conditions were 8.36 x 10 21 nvt (E greater than 0.18 MeV) at 1350 0 C. The graphite matrix showed no effect of the irradiation. There was no interaction between the matrix and any of the particle coats. The loose ZrC coated particles with inert kernels showed no irradiation effects. The graded ZrC-C coats on the fissile particles were cracked. It is postulated that the cracking is associated with the low LTI deposition rate and is not related to the ZrC

  1. Development of endplug welding technology for irradiation testing capsule

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Shin, Y. T.; Kim, S. S.; Kim, B. K.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    To evaluate the performance of newly developed nuclear fuel, it is necessary to irradiate the fuel at a research reactor and examine the irradiated fuel. For the irradiation test in a reasearch reactor, a fuel assembly which is generally called a capsule should be fabricated, considering the fuel irradiation plan and the characteristics of the reactor to be used. And also the fuel elements containing the developed fuel pellets should be made and assembled into a capsule. In this study, the welding method, welding equipment, welding conditions and parameters were developed to make fuel elements for the irradiation test at the HANARO research reactor. The TIG welding method using automatic orbital tube welding system was adopted and the welding joint design was developed for the fabrication of various kinds of irradiation fuel elements. And the optimal welding conditions and parameters were also established for the endplug welding of Zircaloy-4 cladding tube.

  2. New trends in nuclear fuel experimental irradiation. Modern control and acquisition of the irradiation data

    International Nuclear Information System (INIS)

    Preda, M.; Ciocanescu, M.; Ana, E.M.

    2010-01-01

    With the irradiation devices used in the irradiation tests, the following experiments have been performed in TRIGA-SCN reactor: a) In capsule-type irradiation devices: - fission gases composition determination; - dimensional measurements; - fission gases pressure measurement; - power pre-ramp and ramp; - power cycling; - structural materials testing. b) In loop-type irradiation device: - power ramp; - multiple power ramps; - overpower. Aiming to develop irradiation tests for advanced nuclear fuel elements, it is mandatory to increase the maximum neutron flux in the core with about 20%. This will lead to reactor power increase up to 21 MW. This objective can be reached through: - increasing the number of fuel clusters in the reactor core; - using the 6x6 fuel cluster to replace the present 5x5 clusters; - relocation of the control rods. In this context, the new control system and the data acquisition system operates online and allows real-time data evaluation. (author)

  3. A Study on Structural Strength of Irradiated Spacer Grid for PWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Baek, S. J.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. I.; Kim, Y. H.; Lee, J. J. [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    A fuel assembly consists of an array of fuel rods, spacer grids, guide thimbles, instrumentation tubes, and top and bottom nozzles. In PWR (Pressurized light Water Reactor) fuel assemblies, the spacer grids support the fuel rods by the friction forces between the fuel rods and springs/dimples. Under irradiation, the spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and also bear static and dynamic loads during operation inside the nuclear reactor and transportation for spent fuel storage. Thus, it is important to understand the characteristics of deformation behavior and the change in structural strength of an irradiated spacer grid.. In the present study, the static compression test of a spacer grid was conducted to investigate the structural strength of the irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the structural strength of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. The fuel assembly was dismantled and the irradiated spacer grid was obtained for the compression test. The apparatus for measuring the compression strength of the irradiated spacer grid was developed and installed successfully in the hot cell.

  4. Development of oxygen sensing technology in an irradiated fuel rod. Characteristic test of oxygen sensor

    International Nuclear Information System (INIS)

    Saito, Junichi; Hoshiya, Taiji; Sakurai, Fumio; Sakai, Haruyuki

    1996-03-01

    At the Department of JMTR (Japan Materials Test Reactor), the re-instrumentation technologies to a high burnup fuel rod irradiated in an LWR have been developed to study irradiation behavior of the fuel during power transient. It has been progressed developing a chemical sensor as one of the re-instrumentation technologies. This report summarizes the results of characteristic tests of an oxygen sensor made of Yttria Stabilized Zirconia (YSZ) as a solid electrolyte. Several kinds of experiments were carried out to evaluate the electromotive force (emf) performance, stability and lifetime of the oxygen sensor with Ni/NiO, Cr/Cr 2 O 3 and Fe/FeO, respectively as a reference electrode. From the experimental data, it is suggested that the reference electrode of Ni/NiO reveals the most appropriate characteristic of the sensor to measure the partial oxygen pressure in a fuel rod. It is the final goal of this development to clarify the change of oxygen chemical potential in a fuel rod during power transient. (author)

  5. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  6. Monitoring for fuel sheath defects in three shipments of irradiated CANDU nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1978-01-01

    Analyses of radioactive gases within the Pegase shipping flask were performed at the outset and at the completion of three shipments of irradiated nuclear fuel from the Douglas Point Generating Station to Whiteshell Nuclear Research Establishment. No increases in the concentration of active gases, volatiles or particulates were observed. The activity of the WR-1 bay water rose only marginally due to the storage of the fuel. Other tests indicated that minimal surface contamination was present. These data established that defects in fuel element sheaths did not arise during the transport or the handling of this irradiated fuel. The observation has significance for the prospect of irradiated nuclear fuel transfer and handling in preparation for storage or disposal. (author)

  7. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  8. Irradiated fuel examination using the Cerenkov technique

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.

    1981-03-01

    A technique for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed and demonstrated. This technique provides sufficient qualitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors. Measurements have been made on the Cerenkov glow light intensity from irradiated fuel that show the intensity of this light to be proportional to the cooling time. Fieldable instruments used in several tests confirm that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds. The Cerenkov technique and instrumentation have been shown to be of potential use to operators of reactor spent fuel facilities and away from reactor storage facilities, and to the International Atomic Energy Agency inspectors who provide surveillance of the irradiated fuel stored in these facilities

  9. Accident analysis of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Chi, D. Y

    1998-03-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. The HANARO fuel test loop was designed to match the CANDU and PWR fuel operating conditions. The accident analysis was performed by RELAP5/MOD3 code based on FTL system designs and determined the detail engineering specification of in-pile test section and out-pile systems. The accident analysis results of FTL system could be used for the fuel and materials designer to plan the irradiation testing programs. (author). 23 refs., 20 tabs., 178 figs.

  10. A comprehensive in-pile test of PWR fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang Rixin; Zhang Shucheng; Chen Dianshan (Academia Sinica, Beijing (China). Inst. of Atomic Energy)

    1991-02-01

    An in-pile test of PWR fuel bundle has been conducted in HWRR at IAE of China. This paper describes the structure of the test bundle (3x3-2), fabrication process and quality control of the fuel rod, irradiation conditions and the main Post Irradiation Examination (PIE) results. The test fuel bundle was irradiated under the PWR operation and water chemistry conditions with an average linear power of 381 W/cm and reached an average burnup of 25010 MWd/tU of the fuel bundle. After the test, destructive and non-destructive examination of the fuel rods was conducted at hot laboratories. The fission gas release was 10.4-23%. The ridge height of cladding was 3 to 8 {mu}m. The hydrogen content of the cladding was 80 to 140 ppm. The fuel stack height was increased by 2.9 to 3.3 mm. The relative irradiation growth was about 0.11 to 0.17% of the fuel rod length. During the irradiation test, no fuel rod failure or other abnormal phenomena had been found by the on-line fuel failure monitoring system of the test loop and water sampling analysis. The structure of the test fuel assembly was left undamaged without twist and detectable deformation. (orig.).

  11. The design of in-pile test section for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. N.; Lee, J. M.; Shim, B. S.; Zee, D. Y.; Park, S. H.; Ahn, S. H.; Lee, J. Y.; Kim, Y. J. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    As an equipment for nuclear fuel's general performance irradiation test in HANARO, Fuel Test Loop(FTL) has been developed that can irradiate the pin to the maximum number of 3 at the core irradiation hole(IR1 hole) by considering for it's utility and user's irradiation requirement. 3-Pin FTL consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). IPS consists for IPS Vessel assembly, In-Pool Piping, IPS Support, In-Pool Piping Support etc. Design that such IPS considers interference item consisted to do not bear in existing facilities by one. IVA that is connected to the OPS are controlled and regulated by means of system pressure, system temperature and the water quality. IPS Vessel assembly is consisted of outer pressure vessel, inner pressure vessel, IPS head, inner assembly and test fuel carrier. After 3-Pin FTL development which is expected to be finished by the 2006, FTL will be used for the irradiation test of the new PWR-type fuel and can maximize the usage of HANARO.

  12. Irradiation effects on fuels for space reactors

    International Nuclear Information System (INIS)

    Ranken, W.A.; Cronenberg, A.W.

    1984-01-01

    A review of irradiation-induced swelling and gas release experience is presented here for the three principal fuels UO 2 , UC, and UN. The primary advantage of UC and UN over UO 2 is higher thermal conductivity and attendant lower fuel temperature at equivalent pellet diameter and power density, while UO 2 offers the distinct benefit of well-known irradiation performance. Irradiation test results indicate that at equivalent burnup, temperature, and porosity conditions, UC experiences higher swelling than UO 2 or UN. Fission gas swelling becomes important at fuel temperatures above 1320 K for UC, and at somewhat higher temperatures for UO 2 and UN. Evidence exists that at equivalent fuel temperatures and burnups, high density UO 2 and UN experience comparable swelling behavior; however, differences in thermal conductivity influence overall irradiation performance. The low conductivity of UO 2 results in higher thermal gradients which contribute to fuel microcracking and gas release. As a result UO 2 exhibits higher fractional gas release than UN, at least or burnups up to about 3%

  13. Packaging and transport case of test fuel assembly irradiated in the Creys-Malville reactor

    International Nuclear Information System (INIS)

    Geffroy, J.; Vivien, J.; Pouard, M.; Dujardin, G.N.; Veron, B.; Michoux, H.

    1986-06-01

    Some irradiated fuel assemblies from the fast neutron Creys Malville reactor will be sent to hot laboratories to follow fuel behavior. These test assemblies will be examined after a limited cooling time and transport is realized at high residual power (about 10kW) and cladding temperature should not rise over 500deg C. The fuel assemblies are not dismantled and transported into sodium. The assembly is placed into a case containing sodium plugged and put into a packaging. Dimensioning, thermal behavior, radiation protection and containment are examined [fr

  14. Irradiation effects test Series Scoping Test 1: test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.

    1977-09-01

    The report describes the results of the first scoping test in the Irradiation Effects Test Series conducted by the Thermal Fuels Behavior Program, which is part of the Water Reactor Research Program of EG and G Idaho, Inc. The research is sponsored by the United States Nuclear Regulatory Commission. This test used an unirradiated, three-foot-long, PWR-type fuel rod. The objective of this test was to thoroughly evaluate the remote fabrication procedures to be used for irradiated rods in future tests, handling plans, and reactor operations. Additionally, selected fuel behavior data were obtained. The fuel rod was subjected to a series of preconditioning power cycles followed by a power increase which brought the fuel rod power to about 20.4 kW/ft peak linear heat rating at a coolant mass flux of 1.83 x 10 6 lb/hr-ft 2 . Film boiling occurred for a period of 4.8 minutes following flow reductions to 9.6 x 10 5 and 7.5 x 10 5 lb/hr-ft 2 . The test fuel rod failed following reactor shutdown as a result of heavy internal and external cladding oxidation and embrittlement which occurred during the film boiling operation

  15. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    A critique is presented of current methods of transporting spent nuclear fuel and the inadequacies of the associated contingency plans, with particular reference to the transportation of irradiated fuel through London. Anti-nuclear and pro-nuclear arguments are presented on a number of factors, including tests on flasks, levels of radiation exposure, routine transport arrangements and contingency arrangements. (U.K.)

  16. Technical review on irradiation tests and post-irradiation examinations in JMTR

    International Nuclear Information System (INIS)

    2017-07-01

    The Japan Materials Testing Reactor (JMTR) has been contributing to various R and D activities in the nuclear research such as the fundamental research of nuclear materials/ fuels, safety research and development of power reactors, radio isotope (RI) production since its beginning of the operation in 1968. Irradiation technologies and post irradiation examination (PIE) technologies are the important factors for irradiation test research. Moreover, these technologies induce the breakthrough in area of nuclear research. JMTR has been providing unique capabilities for the irradiation test research for about 40 years since 1968. In future, any needs for irradiation test research used irradiation test reactors will continue, such as R and D of generation 4 power reactors, fundamental research of materials/fuels, RI production. Now, decontamination and new research reactor construction are common issue in the world according to aging. This situation is the same in Japan. This report outlines irradiation and PIE technologies developed at JMTR in 40 years to contribute to the technology transfer and human resource development. We hope that this report will be used for the new research rector design as well as the irradiation test research and also used for the human resource development of nuclear engineers in future. (author)

  17. Out-pile test of non-instrumented capsule for the advanced PWR fuel pellets in HANARO irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Oh, D. S.; Bang, J. K.; Kim, Y. M.; Yang, Y. S.; Jeong, Y. H.; Jeon, H. K.; Ryu, J. S. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    Non-instrumental capsule were designed and fabricated to irradiate the advanced pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. This capsule was out-pie tested at Cold Test Loop-I in KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented capsule of advanced PWR fuel pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the capsule ranges from 13.0 to 32.3 Hz. RMS displacement for non-instrumented capsule of advanced PWR fuel pellet is less than 11.6 {mu}m, and the maximum displacement is less that 30.5 {mu}m. The flow rate for endurance test were 8.19 kg/s, which was 110% of 7.45 kg/s. And the endurance test was carried out for 100 days and 17 hours. The test results found not to the wear satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented capsule.

  18. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    Science.gov (United States)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y

  19. The post-irradiated examination of CANDU type fuel irradiated in the Institute for Nuclear Research TRIGA reactor

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Parvan, M.; Dobrin, R.; Popov, M.; Radulescu, R.; Toma, V.

    1995-01-01

    This post-irradiation examination work has been done under the Research Contract No. 7756/RB, concluded between the International Atomic Energy Agency and the Institute for Nuclear Research. The paper contains a general description of the INR post-irradiation facility and methods and the relevant post-irradiation examination results obtained from an irradiated experimental CANDU type fuel element designed, manufactured and tested by INR in a power ramp test in the 100 kW Pressurised Water Irradiation Loop of the TRIGA 14 MW(th) Reactor. The irradiation experiment consisted in testing an assembly of six fuel elements, designed to reach a bumup of ∼ 200 MWh/kgU, with typical CANDU linear power and ramp rate. (author)

  20. Design Improvements of a Fuel Capsule for Re-irradiation Tests

    International Nuclear Information System (INIS)

    Kang, Young-Hwan; Choi, Myung-Hwan; Kim, Jong Kiun; Youm, Ki Un; Yoon, Ki Byeong; Kim, Bong Goo

    2006-01-01

    The development of an advanced reactor system such as the next generation nuclear plant and other generation IV systems require new fuels, claddings, and structural materials. To characterize the performance of these new materials, it is necessary for us to have leading-edge technology to satisfy the specific test requirements of the recent R and D activities such as the high-fluence- and high burnup- related tests. Thus, new capsule assembling technology and re-instrumentation technology has been developed to meet the demands for the high burnup test at HANARO since 2003. In 2003, a mockup of the capsule assembly machine was designed and fabricated. The performance test which started in 2004 was undertaken to determine and present the main performance characteristics of the capsule assembly machine (CAM) including the special tools. In 2005, a series of analyses using a finite element analysis program, ANSYS and full scale tests in air were performed to improve the design of the capsule's components for an effective utilization of the CAM. The handling tools were fully qualified through the performance tests in 2006. KAERI is now reviewing the water flow area in the top region of a fuel capsule main body for re-irradiation tests and optimizing the design of the central region area of a capsule to be joined with special bolts

  1. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    International Nuclear Information System (INIS)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H.

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project T he Nuclear Fuel Material Development of Research Reactor . And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,

  2. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  3. Direct electrical heating of irradiated metal fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1985-01-01

    The Integral Fast Reactor (IFR) concept proposed by Argonne National Laboratory utilizes a metal fuel core. Reactor safety analysis requires information on the potential for fuel axial expansion during severe thermal transients. In addition to a comparatively large thermal expansion coefficient, metallic fuel has a unique potential for enhanced pre-failure expansion driven by retained fission gas and ingested bond sodium. In this paper, the authors present preliminary results from three direct electrical heating (DEH) experiments performed on irradiated metal fuel to investigate axial expansion behavior. The test samples were from Experimental Breeder Reactor II (EBR-II) driver fuel ML-11 irradiated to 8 at.% burnup. Preliminary analysis of the results suggest that enhanced expansion driven by trapped fission gas can occur

  4. Results of Microstructural Examinations of Irradiated LEU U-Mo Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organization (Australia)

    2009-06-15

    Introduction: The RERTR program is responsible for converting research reactors that use high-enriched uranium fuels to ones that use low-enriched uranium fuels [1]. As part of the development of LEU fuels, a variety of irradiation experiments are being conducted using the Advanced Test Reactor. Based on the results of initial fuel plate testing, adjustments have been made to the characteristics of fuel plates to improve the stability of the fuel microstructure. One improvement has been to add Si to the matrix of a dispersion fuel. This material is also being added at the fuel/cladding interface of a monolithic fuel. This paper will discuss the irradiation performance of these fuels, in terms of the stability of their microstructures during irradiation. Results and discussion: The post-irradiation examinations of fuel plates are performed at the Idaho National Laboratory. These examinations consist of visual examinations of fuel plates, gamma scanning, thickness measurements, oxide thickness measurements, and optical metallographic examinations of the fuel plate microstructures. Microstructural analysis is also performed using scanning electron microscopy. Overall, U-7Mo and U-10Mo alloy fuels have displayed the best irradiation performance, particularly, when a Si-containing Al alloy is used as the dispersion fuel matrix. The benefit of using this type of matrix is that the commonly observed fuel/cladding interaction that occurs during irradiation is reduced and the interaction layer that forms exhibit stable behavior during irradiation. Monolithic-type fuels, which consist of a U-Mo foil encased in Al alloy cladding, are also being developed. These types of fuels are also showing promise and will continue to be developed. One challenge with this type of fuel is in trying to maximize the bond strength at the foil/cladding interface. Fuel/cladding interactions can affect the quality of the boding at this interface. Si is being added to improve the characteristics

  5. Small-scale irradiated fuel electrorefining

    International Nuclear Information System (INIS)

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-01-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program

  6. Report of Post Irradiation Examination for Dry Process Fuel

    International Nuclear Information System (INIS)

    Par, Jang Jin; Jung, I. H.; Kang, K. H.; Moon, J. S.; Lee, C. R.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Yoo, B. O.; Jung, Y. H.; Choo, Y. S.

    2006-08-01

    The spent PWR fuel typically contains 0.9 wt.% of fissile uranium and 0.6 wt.% of fissile plutonium, which exceeds the natural uranium fissile content of 0.711 wt.%. The neutron economy of a CANDU reactor is sufficient to utilize the DUPIC fuel, even though the neutron-absorbing fission products contained in the spent PWR fuel were remained in the DUPIC fuel. The DUPIC fuel cycle offers advantages to the countries operating both the PWR and CANDU reactors, such as saving the natural uranium, reducing the spent fuel in both PWR and CANDU, and acquiring the extra energy by reuse of the PWR spent fuel. This report contains the results of post-irradiation examination of the DUPIC fuel irradiated four times at HANARO from May 2000 to August 2006 present except the first irradiation test of simulated DUPIC fuel at HANARO on August 1999

  7. LEU WWR-M2 fuel assemblies burnable test

    International Nuclear Information System (INIS)

    Kirsanov, G.A.; Konoplev, K.A.; Pikulik, R.G.; Sajkov, Yu. P.; Tchmshkyan, D.V.; Tedoradze, L.V.; Zakharov, A.S.

    2000-01-01

    The results of in-pile irradiation tests of LEU WWR-M2 fuel assemblies with reduced enrichment of fuel are submitted in the report. The tests are made according to the Russian Program on Reduced Enrichment for Research and Test Reactors (RERTR). United States Department of Energy and the Ministry of Atomic Energy of Russian Federation jointly fund this Program. The irradiation tests of 5 WWR-M2 experimental assemblies are carried out at WWR-M reactor of the Petersburg Nuclear Physics Institute (PNPI). The information on assembly design and technique of irradiation tests is presented. In the irradiation tests the integrity of fuel assemblies is periodically measured. The report presents the data for the integrity maintained during the burnup of 5 fuel assemblies up to 45%. These results demonstrate the high reliability of the experimental fuel assemblies within the guaranteed burnup limits specified by the manufacturer. The tests are still in progress; it is planned to test and analyze the change in integrity for burnup of up to 70% - 75% or more. LEU WWR-M2 fuel assemblies are to be offered for export by their Novosibirsk manufacturer. Currently, HEU WWR-M2 fuel assemblies are used in Hungary, Ukraine and Vietnam. LEU WWR-M2 fuel assemblies were designed as a possible replacement for the HEU WWR-M2 fuel assemblies in those countries, but their use can be extended to other research reactors. (author)

  8. Design and manufacturing of 05F-01K instrumented capsule for nuclear fuel irradiation in Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Shin, Y. T.; Park, S. J. (and others)

    2007-07-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in Hanaro. The instrumented capsule(02F-11K) for measuring and monitoring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. It was successfully irradiated in the test hole OR5 of Hanaro from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and manufactured to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule was irradiated in the test hole OR5 of Hanaro reactor from April 26, 2004 to October 1, 2004 (59.5 EFPD at 24 {approx} 30 MW). The six typed dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed and manufactured to enhance the efficiency of the irradiation test using the instrumented fuel capsule. The 05F-01K instrumented fuel capsule was designed and manufactured for a design verification test of the three dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of Hanaro.

  9. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    Energy Technology Data Exchange (ETDEWEB)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  10. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  11. Technical specification of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-03-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the operation limit, safety limit, operation condition and checking points of HANARO fuel test loop. This results will become guidances for the planning of irradiation testing and operation of HANARO fuel test loop. (author). 13 refs., 13 tabs., 8 figs.

  12. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    Science.gov (United States)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  13. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.

  14. Application of neutron radiography to the nondestructive testing of fuel elements before and after irradiation

    International Nuclear Information System (INIS)

    Barbalat, R.; Bayon, G.; Laporte, A.

    1983-12-01

    The neutron radiography installations of Saclay using collimated neutron sources from reactors for non-destructive testing of nuclear fuels and components of the nuclear industry are described. The first installation in a pool for experimental devices before, during and after irradiation near the core allowing imaging of highly radioactive materials. The second, a dry installation, is used for monitoring active fuel elements. The last is used for inactive materials coming from industry [fr

  15. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  16. Bilateral cooperation between Germany and Brazil on fuel irradiation

    International Nuclear Information System (INIS)

    Dias, J.W.

    1977-01-01

    Within the framework of the Government Agreement on Scientific and Technical Cooperation between the Federal Republic of Germany and Brazil, the Brazilian National Atomic Commission and the Juelich Nuclear Research Center (KFA) signed on 23rd April, 1971 an Agreement on Cooperation in the field of Nuclear Research and Reactor Technology. Projects have been elaborated in fields of mutual interest to share activities between the partner institutes in both countries. A typical project is the fuel irradiation programme jointly prepared by NUCLEBRAS and KFA-Juelich. Brazil is planning to use elements of its own production in nuclear power plants to be erected within the German-Brazilian Industrial Agreement. As no material test reactor is available in Brazil it is expedient to irradiate samples of Brazilian production in Germany. Brazilian collaborators will participate in the preparation, execution and post-irradiation examination. In this way an optimum transfer of all information and results is assured. In the first phase, sample rods manufactured in Brazil are irradiated in the FRJ-2 test reactor in Juelich. These rods are assembled under clean conditions in the NUCLEBRAS research centres. The first Brazilian test rods showed excellent in-pile behaviour even under very high fuel rod capacity. In the second phase, fuel rods of original length manufactured and assembled in Brazil will be irradiated in German power plants, and, at the same time, additional irradiations of small samples will be carried out in test reactors. In the third phase, rod clusters and complete fuel elements will be manufactured in Brazil and irradiated in German power plants until target burn-up. All the necessary prerequisites have been fulfilled to meet the above requirements, i.e. mutual interest, good infrastructure maintained by both partners, qualified personnel and last but not least unbureaucratic and effective help by the coordinating offices of NUCLEBRAS and KFA

  17. Irradiation and examination results of the AC-3 mixed-carbide test

    International Nuclear Information System (INIS)

    Mason, R.E.; Hoth, C.W.; Stratton, R.W.; Botta, F.

    1992-01-01

    The AC-3 test was a cooperative Swiss/US irradiation test of mixed-carbide, (U,Pr)C, fuel pins in the Fast Flux Test Facility. The test included 25 Swiss-fabricated sphere-pac-type fuel pins and 66 U.S. fabricated pellet-type fuel pins. The test was designed to operate at prototypical fast reactor conditions to provide a direct comparison of the irradiation performance of the two fuel types. The test design and fuel fabrication processes used for the AC-3 test are presented

  18. Fuel irradiation experience at Halden

    International Nuclear Information System (INIS)

    Vitanza, Carlo

    1996-01-01

    The OECD Halden Reactor Project is an international organisation devoted to improved safety and reliability of nuclear power station through an user-oriented experimental programme. A significant part of this programme consists of studies addressing fuel performance issues in a range of conditions realised in specialised irradiation. The key element of the irradiation carried out in the Halden reactor is the ability to monitor fuel performance parameters by means of in-pile instrumentation. The paper reviews some of the irradiation rigs and the related instrumentation and provides examples of experimental results on selected fuel performance items. In particular, current irradiation conducted on high/very high burn-up fuels are reviewed in some detail

  19. Burnup calculation with estimated neutron spectrum of JMTR irradiation field. Development of the burnup calculation method for fuel pre-irradiated in the JMTR

    International Nuclear Information System (INIS)

    Okonogi, Kazunari; Nakamura, Takehiko; Yoshinaga, Makio; Hosoyamada, Ryuji

    1999-03-01

    As a series of the pulse irradiation tests with the irradiated fuel, the high-enriched fuel rods pre-irradiated in the JMTR as well as the fuels irradiated in commercial reactors have been irradiated in the NSRR. In the pre-irradiation at the JMTR, the test fuels were placed at the irradiation holes in the reflector region far from the driver core to keep the linear heat generation rate of the test fuel low. Accordingly, neutron energy spectra of the irradiation holes for the test fuels are softened due to the higher moderator ratio than in those of the ordinary LWR core, which causes quite different burnup characteristics. JMTR post irradiation condition corresponds to the pre-test condition in the NSRR. Therefore, proper understanding of the condition is quite important for the precise evaluating the energy deposition and FP generation in the test. Then, neutron spectra at the JMTR irradiation field were evaluated and its effects on the burnup calculation were quantified. Basing on the configuration of the JMTR core in the operation cycle No.85, neutron diffusion calculations of 107 groups were executed in 2-D slab (X-Y) geometry of CITATION of SRAC95 code system, and neutron energy spectra of the irradiation hole for the test fuels were evaluated. Burnup calculations of Test JMN-1 fuel with the estimated neutron energy spectra were performed and the results were compared to both the measurements and calculation results with the PWR and BWR libraries in ORIGEN2 code. SWAT code was used to collapse the 107 groups spectra into 1 group libraries for the ORIGEN2 use. The calculation results for both the generation and depletion of U, Pu and Nd with the JMTR libraries obtained in the present study were in the reasonably good agreement with the measurements, while in the case of calculation with the PWR and BWR libraries in ORIGEN2, the generation of fission products having mass numbers from 105 to 130 and some actinides were overestimated by about 1.5 to 3.5 times

  20. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  1. Design and manufacturing of instrumented capsule(03F-05K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Shin, Y. T. [and others

    2004-06-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule(02F-11K) for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (self-powered neutron detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and fabricated to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule is being irradiated in the test hole OR5 of HANARO reactor from April 26, 2004.

  2. Composite fuel behaviour under and after irradiation

    International Nuclear Information System (INIS)

    Dehaudt, P.; Mocellin, A.; Eminet, G.; Caillot, L.; Delette, G.; Bauer, M.; Viallard, I.

    1997-01-01

    Two kinds of composite fuels have been irradiated in the SILOE reactor. They are made of UO 2 particles dispersed in a molybdenum metallic (CERMET) or a MgAl 2 O 4 ceramic (CERCER) matrix. The irradiation conditions have allowed to reach a 50000 MWd/t U burn-up in these composite fuels after a hundred equivalent full power days long irradiation. The irradiation is controlled by a continuous measure of the pellet centre line temperature. It allows to have information about the TANOX rods thermal behaviour and the fuels thermal conductivities in comparing the centre line temperature versus linear power curves among themselves. Our results show that the CERMET centre line temperature is much lower than the CERCER and UO 2 ones: 520 deg. C against 980 deg. C at a 300W/cm linear power. After pin puncturing tests the rods are dismantled to recover each fuel pellet. In the CERCER case, the cladding peeling off has revealed that the fuel came into contact with the cladding and that some of the pellets were linked together. Optical microscopy observations show a changing of the MgAl 2 O 4 matrix state around the UO 2 particles at the pellets periphery. This transformation may have caused a swelling and would be at the origin of the pellet-cladding and the pellet-pellet interactions. No specific damage is seen after irradiation. The CERMET pellets are not cracked and remain as they were before irradiation. The CERCER crack network is slightly different from that observed in UO 2 . Kr retention was evaluated by annealing tests under vacuum at 1580 deg. C or 1700 deg. C for 30 minutes. The CERMET fission gas release is lower than the CERCER one. Inter- and intragranular fission gas bubbles are observed in the UO 2 particles after heat treatments. The CERCER pellet periphery has also cracked and the matrix has transformed again around UO 2 particles to present a granular and porous aspect. (author). 4 refs, 6 figs, 2 tabs

  3. Comparative prediction of irradiation test of CNFT and Cise prototypes of CIRENE fuel pins, a prediction by transuranus M1V1J12 code

    International Nuclear Information System (INIS)

    Suwardi

    2014-01-01

    A prototype of fuel pin design for HWR by CIRENE has been realized by Center for Nuclear Fuel Technology CNFT-BATAN. The prototype will be irradiated in PRTF Power Ramp Test (PRTF). The facility has been installed inside RSG-GA Siwabessy at Serpong. The present paper reports the preparation of experimentation and prediction of irradiation test. One previous PCI test report is found in, written by Lysell G and Valli G in 1973. The CNFT fuel irradiation test parameter is adapted to both PRTF and power loop design for RSG-GAS reactor in Serpong mainly the maxima of: rod length, neutrons flux, total power of rod, and power ramp rate. The CNFT CIRENE prototype design has been reported by Futichah et al 2007 and 2010. The AEC-India HWR fuel pin is of 19/22 fuel bundle design has also been evaluated as comparison. The first PCI test prediction has experiment comparison for Cise pin. The second prediction will be used for optimizing the design of ramp test for CNFT CIRENE fuel pin prototype. (author)

  4. Irradiation testing of LEU fuels in the SILOE Reactor - Progress report

    International Nuclear Information System (INIS)

    Merchie, Francis; Baas, Claude; Martel, Patrick

    1985-01-01

    Irradiation of uranium-silicide fuels has continued in the SILOE reactor during the past year. Thickness vs. fission density data from four U 3 Si plates containing 5.5 and 6.0 g U/cm 3 have been analyzed, and the results are presented. The irradiation of a full 60 g U/cm 3 U 3 Si element has begun. In addition, four U 3 Si 2 plates containing 20 to 54 g U/cm 3 are now being irradiated. These irradiations and future plans are discussed in the paper. (author)

  5. Irradiation experience with HTGR fuels in the Peach Bottom Reactor

    International Nuclear Information System (INIS)

    Scheffel, W.J.; Scott, C.B.

    1974-01-01

    Fuel performance in the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) is reviewed, including (1) the driver elements in the second core and (2) the test elements designed to test fuel for larger HTGR plants. Core 2 of this reactor, which is operated by the Philadelphia Electric Company, performed reliably with an average nuclear steam supply availability of 85 percent since its startup in July 1970. Core 2 had accumulated a total of 897.5 equivalent full power days (EFPD), almost exactly its design life-time of 900 EFPD, when the plant was shut down permanently on October 31, 1974. Gaseous fission product release and the activity of the main circulating loop remained significantly below the limits allowed by the technical specifications and the levels observed during operation of Core 1. The low circulating activity and postirradiation examination of driver fuel elements have demonstrated the improved irradiation stability of the coated fuel particles in Core 2. Irradiation data obtained from these tests substantiate the performance predictions based on accelerated tests and complement the fuel design effort by providing irradiation data in the low neutron fluence region

  6. Irradiation effects test series, test IE-5. Test results report

    International Nuclear Information System (INIS)

    Croucher, D.W.; Yackle, T.R.; Allison, C.M.; Ploger, S.A.

    1978-01-01

    Test IE-5, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed three 0.97-m long pressurized water reactor type fuel rods, fabricated from previously irradiated zircaloy-4 cladding and one similar rod fabricated from unirradiated cladding. The objectives of the test were to evaluate the influence of simulated fission products, cladding irradiation damage, and fuel rod internal pressure on pellet-cladding interaction during a power ramp and on fuel rod behavior during film boiling operation. The four rods were subjected to a preconditioning period, a power ramp to an average fuel rod peak power of 65 kW/m, and steady state operation for one hour at a coolant mass flux of 4880 kg/s-m 2 for each rod. After a flow reduction to 1800 kg/s-m 2 , film boiling occurred on one rod. Additional flow reductions to 970 kg/s-m 2 produced film boiling on the three remaining fuel rods. Maximum time in film boiling was 80s. The rod having the highest initial internal pressure (8.3 MPa) failed 10s after the onset of film boiling. A second rod failed about 90s after reactor shutdown. The report contains a description of the experiment, the test conduct, test results, and results from the preliminary postirradiation examination. Calculations using a transient fuel rod behavior code are compared with the test results

  7. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  8. AGR 3/4 Irradiation Test Final As Run Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several fuel and material irradiation experiments have been planned for the Idaho National Laboratory Advanced Reactor Technologies Technology Development Office Advanced Gas Reactor Fuel Development and Qualification Program (referred to as the INL ART TDO/AGR fuel program hereafter), which supports the development and qualification of tristructural-isotropic (TRISO) coated particle fuel for use in HTGRs. The goals of these experiments are to provide irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, support development and validation of fuel performance and fission product transport models and codes, and provide irradiated fuel and materials for post irradiation examination and safety testing (INL 05/2015). AGR-3/4 combined the third and fourth in this series of planned experiments to test TRISO coated low enriched uranium (LEU) oxycarbide fuel. This combined experiment was intended to support the refinement of fission product transport models and to assess the effects of sweep gas impurities on fuel performance and fission product transport by irradiating designed-to-fail fuel particles and by measuring subsequent fission metal transport in fuel-compact matrix material and fuel-element graphite. The AGR 3/4 fuel test was successful in irradiating the fuel compacts to the burnup and fast fluence target ranges, considering the experiment was terminated short of its initial 400 EFPD target (Collin 2015). Out of the 48 AGR-3/4 compacts, 42 achieved the specified burnup of at least 6% fissions per initial heavy-metal atom (FIMA). Three capsules had a maximum fuel compact average burnup < 10% FIMA, one more than originally specified, and the maximum fuel compact average burnup was <19% FIMA for the remaining capsules, as specified. Fast neutron fluence fell in the expected range of 1.0 to 5.5×1025 n/m2 (E >0.18 MeV) for all compacts. In addition, the AGR-3/4 experiment was globally successful in keeping the

  9. AGR-2 irradiation test final as-run report, Rev. 1

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO 2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO 2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO 2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The

  10. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a

  11. Postirradiation examination results for the Irradiation Effects Test 2

    International Nuclear Information System (INIS)

    Ploger, S.A.; Kerwin, D.K.; Croucher, D.W.

    1978-01-01

    This report presents the postirradiation examination results of Test IE-2 in the Irradiation Effects Test Series conducted under the Thermal Fuels Behavior Program. The objectives of this test were to evaluate the influence of previous cladding irradiation and fuel-cladding diametral gap on fuel rod behavior during a power ramp and during film boiling operation. Test IE-2, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed two 0.97-m-long pressurized water reactor type fuel rods fabricated from previously irradiated zircaloy-4 cladding and two similar rods fabricated from unirradiated cladding. The four rods were subjected to a preconditioning period, followed by a power ramp to an average peak rod power of 68 kW/m and steady state operation for one hour at an individual rod coolant mass flux of 4880 kg/s . m 2 . After a flow reduction to 2550 kg/s . m 2 , film boiling occurred on three rods. An additional flow reduction to 2245 kg/s . m 2 produced film boiling on the remaining fuel rod. Maximum time in film boiling was 90 s. None of the four fuel rods failed during the test. Damage caused by film boiling, as characterized by oxidation, oxide spalling, and collapse at fuel pellet interfaces, was found on all four rods. Film boiling regions on these rods showed evidence of fuel melting, fuel centerline void formation, and internal cladding oxidation resulting from fuel-cladding reaction. Effects of fuel-cladding diametral gap and cladding irradiation are summarized. Measured temperatures and metallographically estimated temperatures are compared at several axial fuel rod locations

  12. Observation on the irradiation behavior of U-Mo alloy dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Park, Jong-Man

    2000-01-01

    Initial results from the postirradiation examination of high-density dispersion fuel test RERTR-3 are discussed. The U-Mo alloy fuels in this test were irradiated to 40% U-235 burnup at temperature ranging from 140 0 C to 240 0 C. Temperature has a significant effect on overall swelling of the test plates. The magnitude of the swelling appears acceptable and no unstable irradiation behavior is evident. (author)

  13. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  14. Capsule Development and Utilization for Material Irradiation Tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2003-05-01

    The objective of this project was to establish basic capsule irradiation technology using the multi-purpose research reactor [HANARO] to eventually support national R and D projects of advanced fuel and materials related to domestic nuclear power plants and next generation reactors. There are several national nuclear projects in KAERI, which require several irradiation tests to investigate in-pile behavior of nuclear reactor fuel and materials for the R and D of several types of fuels such as advanced PWR and DUPIC fuels and for the R and D of structural materials such as RPV(reactor pressure vessel) steel, Inconel, zirconium alloy, and stainless steel. At the moment, internal and external researchers in institutes, industries and universities are interested in investigating the irradiation characteristics of materials using the irradiation facilities of HANARO. For these kinds of material irradiation tests, it is important to develop various capsules using our own techniques. The development of capsules requires several leading-edge technologies and our own experiences related to design and fabrication. In the second phase from April 1,2000 to March 31, 2003, the utilization technologies were developed using various sensors for the measurements of temperature, pressure and displacement, and instrumented capsule technologies for the required fuel irradiation tests were developed. In addition, the improvement of the existing capsule technologies and the development of an in-situ measurable creep capsule for specific purposes were done to meet the various requirements of users

  15. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  16. Fabrication and irradiation testing of LEU [low enriched uranium] fuels at CRNL status as of 1987 September

    International Nuclear Information System (INIS)

    Sears, D.F.; Berthiaume, L.C.; Herbert, L.N.

    1987-01-01

    The current status of Chalk River Nuclear Laboratories' (CRNL) program to develop and test low-enriched uranium (LEU), proliferation-resistant fuels for use in research reactors is reviewed. CRNL's fuel manufacturing process has been qualified by the successful demonstration irradiation of 7 full-size rods in the NRU reactor. Now industrial-scale production equipment has been commissioned, and a fuel-fabrication campaign for 30 NRU rods and a MAPLE-X core is underway. Excess capacity could be used for commercial fuel fabrication. In the irradiation testing program, mini-elements with deliberately included core surface defects performed well in-reactor, swelling by only 7 to 8 vol% at 93 atomic percent burnup of the original U-235. The additional restraint provided by the aluminium cladding which flowed into the defects during extrusion contributed to this good performance. Mini-elements containing a variety of particle size distributions were also successfully irradiated to 93 at% burnup in NRU, as part of a study to establish the optimum particle size distribution. Swelling was found to be proportional to the percentage of fines (<44μm particles) contained in the cores. The mini-elements containing the composition normally used at CRNL had swollen by 5.8 vol%, and mini-elements with a much higher percentage of fines had swollen by 6.8 vol%, at 93 at% burnup. Also, a program to develop LEU targets for Mo-99 production, via the technology developed to fabricate dispersed silicide fuel, has started, and preliminary scoping studies are underway. (Author)

  17. Leak testing fuel stored in the ICPP fuel storage basin

    International Nuclear Information System (INIS)

    Lee, J.L.; Rhodes, D.W.

    1977-06-01

    Irradiated fuel to be processed at the Idaho Chemical Processing Plant is stored under water at the CPP-603 Fuel Storage Facility. Leakage of radionuclides through breaks in the cladding of some of the stored fuels contaminates the water with radionuclides resulting in radiation exposure to personnel during fuel handling operations and contamination of the shipping casks. A leak test vessel was fabricated to test individual fuel assemblies which were suspected to be leaking. The test equipment and procedures are described. Test results demonstrated that a leaking fuel element could be identified by this method; of the eleven fuel assemblies tested, six were estimated to be releasing greater than 0.5 Ci total radionuclides/day to the basin water

  18. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    International Nuclear Information System (INIS)

    Thoms, K.R.

    1975-04-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 (Ta-8 percent W-2 percent Hf) and uranium dioxide (UO 2 ) fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1 percent Zr. A total of nine fuel pins was irradiated (four containing porous UN, two containing dense, nonporous UN, and three containing dense UO 2 ) at average cladding temperatures ranging from 931 to 1015 0 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO 2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of 10 -5 . (U.S.)

  19. Analysis of irradiation-induced stresses in coating layers of coated fuel particles for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Fukuda, Kousaku; Sato, Sadao; Toyota, Junji; Shiozawa, Shusaku; Sawa, Kazuhiro; Kashimura, Satoru.

    1991-07-01

    Irradiation-induced stresses in coating layers of coated fuel particles were analyzed by the MICROS-2 code for the fuels of the High Temperature Engineering Test Reactor (HTTR) under its operating conditions. The analyses were made on the standard core fuel (A-type) and the test fuels comprising the advanced SiC-coated particle fuel (B-1 type) and the ZrC-coated particle fuel (B-2 type). For the B-1 type fuel, the stresses were relieved due to the thicker buffer and SiC layers than for the A type fuel. The slightly decreased thickness of the fourth layer for the B-1 type than for the A type fuel had no significant effect on the stresses. As for the B-2 type fuel, almost the same results as for the B-1 type were obtained under an assumption that the ZrC layer as well as the SiC layer undergoes negligible dimension change within the analysis conditions. The obtained results indicated that the B-1 and B-2 type fuels are better than the A type fuel in terms of integrity against the irradiation-induced stresses. Finally, research subjects for development of the analysis code on the fuel behavior are discussed. (author)

  20. Fuel performance analysis for the HAMP-1 mini plate test

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byoung Jin; Tahka, Y. W.; Yim, J. S.; Lee, B. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    U-7wt%Mo/Al- 5wt%Si dispersion fuel with 8gU/cm{sup 3} is chosen to achieve more efficiency and higher performance than the conventional U{sub 3}Si{sub 2} fuel. As part of the fuel qualification program for the KiJang research reactor (KJRR), three irradiation tests with mini-plates are on the way at the High-flux Advanced Neutron Application Reactor (HANARO). The first test among three HANARO Mini-Plate Irradiation tests (HAMP-1, 2, 3) has completed. PLATE code has been initially developed to analyze the thermal performance of high density U-Mo/Al dispersion fuel plates during irradiation [1]. We upgraded the PLATE code with the latest irradiation results which were implemented by corrosion, thermal conductivity and swelling model. Fuel performance analysis for HAMP-1 was conducted with updated PLATE. This paper presents results of performance evaluation of the HAMP-1. Maximum fuel temperature was obtained 136 .deg., which is far below the preset limit of 200 .deg. for the irradiation test. The meat swelling and corrosion thickness was also confirmed that the developed fuel would behave as anticipated.

  1. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch

    2017-05-01

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  2. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: dennis.keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia); Moore, Glenn; Medvedev, Pavel; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States)

    2017-05-15

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  3. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  4. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    Jacquet, P.; Verwimp, A.; Wirix, S.

    2000-01-01

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  5. Continuous parameter determination of irradiated nuclear fuels in the test-reactor

    International Nuclear Information System (INIS)

    Bevilacqua, A.; Junod, E.; Mas, P.; Perdreau, R.

    1977-01-01

    During the irradiation tests of nuclear fuels, the flux level may often be variable by shifting the loops in a high neutron-gradient. So integral fluence measurements are no longer sufficient. The self-powered neutron detectors allow to finely scan instantaneous fluxes. More than 100 such SPN detectors are used on the experiments irradiated in the SILOE reactor. The treatment of the large amount of information is following. A first minicomputer scans all the measurement lines at a variable frequence (10 min to 1 hr) and writes rough voltage values on a magnetic disk. A second computer does a sorting of these values for each set of SPND corresponding to an experiment. At the present time, the main treatment is performed by batch processing by some FORTRAN codes to get time-evolving quantities, such as effective flux, fission power, burn-up, fission product activities, etc. The future development of the system will allow some of these calculations to be performed directly on the second computer in such a manner to control the movements of the loops automatically in view of a given irradiation program

  6. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  7. Irradiation behavior of U{sub 6}Mn-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.K. E-mail: mitchell.meyer@anl.gov; Wiencek, T.C.; Hayes, S.L.; Hofman, G.L

    2000-04-01

    Irradiation testing of U{sub 6}Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U{sub 6}Mn in an unrestrained plate configuration performs similarly to U{sub 6}Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3x10{sup 27} m{sup -3}. Fuel plate failure occurs by fission gas pressure driven 'pillowing' on continued irradiation.

  8. Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon

    2005-01-01

    A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams

  9. Measuring deformation of Fuel pin in a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Heo, S. H.; Yang, T. H.; Hong, J. T.; Joung, C. Y.; Ahn, S. H.; Jang, S. Y.; Kim, J. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, an LVDT core for measuring the longitudinal displacement of fuel pellets and clad was designed and produced. A signal processing method for the prepared core was investigated. The Nuclear Fuel Test Rig is used to observe changes in the characteristics of the fuel according to the neutron irradiation at HANARO (High-flux Advanced Neutron Application Reactor), which is a research reactor. Which are the strain and internal temperature of the irradiated nuclear fuel and the internal pressure of fuel due to fission gas, the characteristics of the fuel are measured using various sensors such as a thermocouple, SPND and LVDT. In this study, two shaped LVDT (Linear Variable Differential Transformer) cores for displacement measurements were designed and manufactured in order to measure the displacement of a fuel pellet and cladding tube using LVDT sensors for measuring electrical signals by converting the physical variation such as the force and displacement into a linear motion. In addition, signals from the manufactured LVDT sensor were collected and calibrated. Moreover, a method for obtaining the displacement in the core according to the sensing signal was planned. A derived equation can used to predict the change in the position of core. A following study should be conducted to test the output signal and real variation of out-pile system. For further work, a performance verification is required for an in-pile irradiation test.

  10. AGR-5/6/7 Irradiation Test Predictions using PARFUME

    Energy Technology Data Exchange (ETDEWEB)

    Skerjanc, William F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-09-14

    PARFUME, (PARticle FUel ModEl) a fuel performance modeling code used for high temperature gas-cooled reactors (HTGRs), was used to model the Advanced Gas Reactor (AGR)-5/6/7 irradiation test using predicted physics and thermal hydraulics data. The AGR-5/6/7 test consists of the combined fifth, sixth, and seventh planned irradiations of the AGR Fuel Development and Qualification Program. The AGR-5/6/7 test train is a multi-capsule, instrumented experiment that is designed for irradiation in the 133.4-mm diameter north east flux trap (NEFT) position of Advanced Test Reactor (ATR). Each capsule contains compacts filled with uranium oxycarbide (UCO) unaltered fuel particles. This report documents the calculations performed to predict the failure probability of tristructural isotropic (TRISO)-coated fuel particles during the AGR-5/6/7 experiment. In addition, this report documents the calculated source term from the driver fuel. The calculations include modeling of the AGR-5/6/7 irradiation that is scheduled to occur from October 2017 to April 2021 over a total of 13 ATR cycles, including nine normal cycles and four Power Axial Locator Mechanism (PALM) cycle for a total between 500 – 550 effective full power days (EFPD). The irradiation conditions and material properties of the AGR-5/6/7 test predicted zero fuel particle failures in Capsules 1, 2, and 4. Fuel particle failures were predicted in Capsule 3 due to internal particle pressure. These failures were predicted in the highest temperature compacts. Capsule 5 fuel particle failures were due to inner pyrolytic carbon (IPyC) cracking causing localized stresses concentrations in the SiC layer. This capsule predicted the highest particle failures due to the lower irradiation temperature. In addition, shrinkage of the buffer and IPyC layer during irradiation resulted in formation of a buffer-IPyC gap. The two capsules at the two ends of the test train, Capsules 1 and 5 experienced the smallest buffer-IPyC gap

  11. Irradiation effects test series, test IE-5. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Croucher, D. W.; Yackle, T. R.; Allison, C. M.; Ploger, S. A.

    1978-01-01

    Test IE-5, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed three 0.97-m long pressurized water reactor type fuel rods, fabricated from previously irradiated zircaloy-4 cladding and one similar rod fabricated from unirradiated cladding. The objectives of the test were to evaluate the influence of simulated fission products, cladding irradiation damage, and fuel rod internal pressure on pellet-cladding interaction during a power ramp and on fuel rod behavior during film boiling operation. The four rods were subjected to a preconditioning period, a power ramp to an average fuel rod peak power of 65 kW/m, and steady state operation for one hour at a coolant mass flux of 4880 kg/s-m/sup 2/ for each rod. After a flow reduction to 1800 kg/s-m/sup 2/, film boiling occurred on one rod. Additional flow reductions to 970 kg/s-m/sup 2/ produced film boiling on the three remaining fuel rods. Maximum time in film boiling was 80s. The rod having the highest initial internal pressure (8.3 MPa) failed 10s after the onset of film boiling. A second rod failed about 90s after reactor shutdown. The report contains a description of the experiment, the test conduct, test results, and results from the preliminary postirradiation examination. Calculations using a transient fuel rod behavior code are compared with the test results.

  12. Irradiation tests of U3Si2-Al fuels up to very high fission densities

    International Nuclear Information System (INIS)

    Nuding, M.; Boening, K.

    2001-01-01

    The new research reactor of the Munich Technical University (TUM), the FRM-II, will have U 3 Si 2 -Al as the fuel. This fuel is considered qualified and optimally usable in the light of findings obtained in the RERTR program (Reduced Enrichment for Research and Test Reactors). The RERTR program was conducted to develop new fuel for the use of low enriched uranium (LEU) in research reactors. As the unique properties of the FRM-II in research and application are based also on achieving a very compact reactor core with highly enriched uranium (HEU), additional irradiation tests were performed on the basis of the RERTR program. They were run in close cooperation with the French Commissariat a l'Energie Atomique (CEA) in its SILOE and OSIRIS facilities, among others. After extensive evaluation, also of other studies, these tests confirm the RERTR findings about fuel swelling behavior and, consequently, the suitability of U 3 Si 2 -Al (HEU) for use in the compact core of the FRM-II. (orig.) [de

  13. Reusable fuel test assembly for the FFTF

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies

  14. Radionuclides release from re-irradiated fuel under high temperature and pressure conditions. Gamma-ray measurements of VEGA-5 test

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Akihide; Kudo, Tamotsu; Nakamura, Takehiko; Kanazawa, Toru; Kiuchi, Toshio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program is being performed at JAERI to clarify mechanisms of radionuclides release from irradiated fuel during severe accidents and to improve source term predictability. The fifth VEGA-5 test was conducted in January 2002 to confirm the reproducibility of decrease in cesium release under elevated pressure that was observed in the VEGA-2 test and to investigate the release behavior of short-life radionuclides. The PWR fuel of 47 GWd/tU after about 8.2 years of cooling was re-irradiated at Nuclear Safety Research Reactor (NSRR) for 8 hours before the heat-up test. After that, the two pellets of 10.9 g without cladding were heated up to about 2,900 K at 1.0 MPa under the inert He condition. The experiment reconfirmed the decrease in cesium release rate under the elevated pressure. The release data on short-life radionuclides such as Ru-103, Ba-140 and Xe-133 that have never been observed in the previous VEGA tests without re-irradiation was obtained using the {gamma} ray measurement. (author)

  15. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  16. Safeguards approach for irradiated fuel

    International Nuclear Information System (INIS)

    Harms, N.L.; Roberts, F.P.

    1987-03-01

    IAEA verification of irradiated fuel has become more complicated because of the introduction of variations in what was once presumed to be a straightforward flow of fuel from reactors to reprocessing plants, with subsequent dissolution. These variations include fuel element disassembly and reassembly, rod consolidation, double-tiering of fuel assemblies in reactor pools, long term wet and dry storage, and use of fuel element containers. This paper reviews future patterns for the transfer and storage of irradiated LWR fuel and discusses appropriate safeguards approaches for at-reactor storage, reprocessing plant headend, independent wet storage, and independent dry storage facilities

  17. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  18. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  19. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  20. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  1. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  2. Irradiation-induced dimensional changes of fuel compacts and graphite sleeves of OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Minato, Kazuo; Kobayashi, Fumiaki; Tobita, Tsutomu; Kikuchi, Teruo; Kurobane, Shiro; Adachi, Mamoru; Fukuda, Kousaku

    1988-06-01

    Experimental data are summarized on irradiation-induced dimensional changes of fuel compacts and graphite sleeves of the first to ninth OGL-1 fuel assemblies. The range of fast-neutron fluence is up to 4 x 10 24 n/m 2 (E > 0.18 MeV); and that of irradiation temperature is 900 - 1400 deg C for fuel compacts and 800 - 1050 deg C for graphite sleeves. The dimensional change of the fuel compacts was shrinkage under these test conditions, and the shrinkage fraction increased almost linearly with fast-neutron fluence. The shrinkage fraction of the fuel compacts was larger by 20 % in the axial direction than in the radial direction. Influence of the irradiation temperature on the dimensional-change behavior of the fuel compacts was not observed clearly; presumably the influence was hidden by scatter of the data because of low level of the fast-neutron fluence and the resultant small dimensional changes. (author)

  3. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  4. Energy deposition in NSRR test fuels

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Tanzawa, Sadamitsu; Tanzawa, Tomio; Kitano, Teruaki; Okazaki, Shuji

    1978-02-01

    Interpretation of fuel performance data collected during inpile testing in the NSRR requires a knowledge of the energy deposition or enthalpy increase in each sample tested. The report describes the results of absolute measurement of fission products and contents of uranium in irradiated test fuels which were performed to determine the energy deposition. (auth.)

  5. Rules for the licensing of new experiments in BR2: application to the test irradiation of new MTR-fuels

    International Nuclear Information System (INIS)

    Joppen, F.

    2000-01-01

    New types of MTR fuel elements are being developed and require a qualification before routine operation could be authorized. During the test irradiation the new fuel elements .are considered as experimental devices and their irradiation is allowed according to the procedures for experiments. Authorization is based on the advice .of a consultative committee on experiments. This procedure is valid as long as the irradiation is covered by the actual reactor license. An additional license or an amendment is only required if due to the experiment the risk for the workers or the environment is increased in a significant way. A few experimental fuel plates loaded in the primary loop of the reactor will not increase this risk. The source term for potential radioactive releases remains more or less the same. The probability for an accident can be limited by restricting the heat flux and surface temperature. (author)

  6. Coordinated irradiation plan for the Fuel Refabrication and Development Program

    International Nuclear Information System (INIS)

    Barner, J.O.

    1979-04-01

    The Department of Energy's Fuel Refabrication and Development (FRAD) Program is developing a number of proliferation-resistant fuel systems and forms for alternative use in nuclear reactors. A major portion of the program is the development of irradiation behavioral information for the fuel system/forms with the ultimate objective of qualifying the design for licensing and commercial utilization. The nuclear fuel systems under development include denatured thoria--urania fuels and spiked urania--plutonia or thoria--plutonia fuels. The fuel forms being considered include pellet fuel produced from mechanically mixed or coprecipitated feed materials, pellet fuel fabricated from partially calcined gel-derived or freeze-dried spheres (hybrid fuel) and packed-particle fuel produced from sintered gel-derived spheres (sphere-pac). This document describes the coordinated development program that will be used to test and demonstrate the irradiation performance of alternative fuels

  7. Post-irradiation studies of test plates for low enriched fuel elements for research reactors

    International Nuclear Information System (INIS)

    Groos, E.; Buecker, H.J.; Derz, H.; Schroeder, R.

    1988-07-01

    In developing new fuels for research reactor elements that allow the use of low enriched uranium (LEU) 3 Si 2 , U 3 Si 1.5 , U 3 Si 1.3 and U 3 Si. Even up to high burnup rates (80% fifa) U 3 Si 2 was proved to be a reliable fuel that according to the test results achieved to date complies with all necessary requirements above all with respect to dimensional stability. U 3 Si showed significant changes of the fuel microstructure associated with considerably higher fuel swelling, that will probably exclude its use in research reactor operation. The irradiation of U 3 Si 1.3 and U 3 Si 1.5 plates had to be terminated untimely. Up to a burnup of 40% fifa these plates behaved quite well. An extrapolation to higher burnup rates, however only seems to be possible with reservations. (orig./HP) [de

  8. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    Science.gov (United States)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  9. Design criteria of out-pile system of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-07-01

    The objective of HANARO aims at the development and localization of nuclear technologies through the engineering tests. Thus it is very important the design and installation of the irradiation test facilities to be installed at the irradiation hole for verification test of the fuel performance are in connection with maximization of the utilization of HANARO. The principle subjects of this study are to presend and informed the detail design criteria and technical specification of out-pile system of HANARO fuel test loop for the developing of the fuel and reactor material. This results will become guidance for the planning of the irradiation testing using the HANARO fuel test loop. (author). 16 refs., 31 tabs., 9 figs.

  10. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  11. Postirradiation examination results for the Irradiation Effects Scoping Test 2

    International Nuclear Information System (INIS)

    Mehner, A.S.

    1977-01-01

    The postirradiation examination results are reported for two rods from the second scoping test (IE-ST-2) of the Nuclear Regulatory Commission Irradiation Effects Program. The rods were irradiated in the in-pile test loop of the Power Burst Facility at the Idaho National Engineering Laboratory. Rod IE-005 was fabricated from fresh fuel and cladding previously irradiated in the Saxton Reactor. Rod IE-006, fabricated from fresh fuel and unirradiated cladding, was equipped with six developmental cladding surface thermocouples. The rods were preconditioned, power ramped, and then subjected to film boiling operation. The performance of the rods and the developmental thermocouples are evaluated from the post irradiation examination results. The effects of prior irradiation damage in cladding are discussed in relation to fuel rod behavior during a power ramp and subsequent film boiling operation

  12. Element bow profiles from new and irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    Dennier, D.; Manzer, A.M.; Ryz, M.A.

    1996-01-01

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  13. Tests on CANDU fuel elements sheath samples

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Prisecaru, I.

    2016-01-01

    This work is a study of the behavior of CANDU fuel elements after irradiation. The tests are made on ring samples taken from fuel cladding in INR Pitesti. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory. By metallographic and ceramographic examination we determinate that the hydride precipitates are orientated parallel to the cladding surface. A content of hydrogen of about 120 ppm was estimated. After the preliminary tests, ring samples were cut from the fuel rod, and were subject of tensile test on an INSTRON 5569 model machine in order to evaluate the changes of their mechanical properties as consequence of irradiation. Scanning electron microscopy was performed on a microscope model TESCAN MIRA II LMU CS with Schottky FE emitter and variable pressure. The analysis shows that the central zone has deeper dimples, whereas on the outer zone, the dimples are tilted and smaller. (authors)

  14. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  15. Fabrication of the instrumented fuel rods for the 3-Pin Fuel Test Loop at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Park, Sung Jae; Shin, Yoon Tag; Lee, Jong Min; Ahn, Sung Ho; Kim, Soo Sung; Kim, Bong Goo; Kim, Young Ki; Lee, Ki Hong; Kim, Kwan Hyun

    2008-09-01

    The 3-Pin Fuel Test Loop(hereinafter referred to as the '3-Pin FTL') facility has been installed at HANARO(High-flux Advanced Neutron Application Reactor) and the 3-Pin FTL is under a test operation. The purpose of this report is to fabricate the instrumented fuel rods for the 3-Pin FTL. The fabrication of these fuel rods was based on experiences and technologies of the instrumented fuel rods for an irradiation fuel capsule. The three instrumented fuel rods of the 3-Pin FTL have been designed. The one fuel rod(180 .deg. ) was designed to measure the centerline temperature of the nuclear fuels and the internal pressure of the fuel rod, and others(60 .deg. and 300 .deg. ) were designed to measure the centerline temperature of the fuel pellets. The claddings were made of the reference material 1 and 2 and new material 1 and 2. And nuclear fuel was used UO 2 (2.0w/o) pellet type with large grain and standard grain. The major procedures of fabrication are followings: (1) the assembling and weld of fuel rods with the pellet mockups and the sensor mockups for the qualification tests, (2) the qualification tests(dimension measurements, tensile tests, metallography examinations and helium leak tests) of weld, (3) the assembling and weld of instrumented fuel rods with the nuclear pellets and the sensors for the irradiation test, and (4) the qualification tests(the helium leak test, the dimensional measurement, electric resistance measurements of sensors) of test fuel rods. Satisfactory results were obtained for all the qualification tests of the instrumented fuel rods for the 3-Pin FTL. Therefore the three instrumented fuel rods for the 3-Pin FTL have been fabricated successfully. These will be installed in the In-Pile Section of 3-Pin FTL. And the irradiation test of these fuel rods is planned from the early next year for about 3 years at HANARO

  16. Gamma scanning of the irradiated HANARO fuels

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Lee, K. S.; Park, D. G.; Baik, S. Y.; Song, W. S.; Kim, T. Y.; Seo, C. K.

    1997-02-01

    To conform the burnup state of the fuels, we have transported the irradiated HANARO fuels from the reactor to IMEF (Irradiated Material Examination Facility), and executed gamma scanning for the fuels. By measuring the gamma-rays from the irradiated fuels we could see the features of the relative burnup distributions in the fuel bundles. All of 17 fuel bundles were taken in and out between HANARO and IMEF from March till August in 1996, and we carried out the related regulations. Longitudinal gamma scanning and angular gamma scanning are done for each fuel bundle without dismantlement of the bundles. (author). 5 tabs., 25 figs

  17. Study on the behavior of irradiated light water reactor fuel during out-of-pile annealing

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kanazawa, Hiroyuki; Uno, Hisao; Sasajima, Hideo

    1988-11-01

    Using the pre-irradiated light water reactor fuel (burnup: 35 MWd/kgU) and the slightly irradiated NSRR fuel (burnup: 5.6 x 10 -6 MWd/kgU), FP gas release rate up to the temperature of 2273 K was measured through out-of-pile annealing test. Results of this experiment were compared with those of ORNL annealing test (SFD/HI-test series) performed in USA. Obtained conclusions are: (1) Maximum release rate of Kr gas in light water reactor fuel was 6.4 % min -1 at temperature of 2273 K. This was in good agreement with ORNL data. FP gas release rate during annealing test was increased greatly with increasing fuel burnup and annealing temperature. (2) No FP was detected in NSRR slightly irradiated fuel up to the temperature of 1913 K. (author)

  18. The Thermal-hydraulic Performance Test Report for the Non-instrumented Irradiation Test Rig of Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan

    2008-09-15

    This report presents the results of pressure drop test, vibration test and endurance test for the non-instrumented rig using the irradiation test in HANARO of the double cooled annular fuel which were designed and fabricated by KAERI. From the out-pile thermal hydraulic tests, corresponding to the pressure drop of 200 kPa is measured to be about 9.72 kg/sec. Vibration frequency for the non-instrumented rig ranges from 5.0 to 10.7 kg/s. RMS(Root Mean Square) displacement for non-instrumented rig is less than 11.73 m, and the maximum displacement is less than 54.87m. The flow rate for endurance test were 10.5 kg/s, which was 110% of 9.72 kg/s. And the endurance test was carried out for 3 days. The test results found not to the wear and satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented rig. This test was performed at the FIVPET facility.

  19. Characterization of LWR fuel rod irradiations with power transients in the BR2 reflector

    International Nuclear Information System (INIS)

    Ponsard, B.; Bodart, S.; Meer, K. van der; Raedt, C. de

    1996-01-01

    Fuel rod irradiations in reflector positions of the materials testing reactor BR2 are becoming increasingly important. A typical example is that of irradiation devices containing single LWR fuel rods, to be tested in the framework of a new international fuel investigation and development programme. Some of the irradiations will comprise power transients with central fuel melting (at 2800 deg. C), the power increase being obtained by decreasing the pressure in a He-3 neutron absorbing screen and/or by varying the BR2 reactor operating power. A total power variation by a factor of at least 2.5 in the fuel rod irradiated could thus be achieved. In some of the rods, central temperature measurements (up to 2000 deg. C) will be carried out. Both fresh and pre-irradiated fuel rods are concerned in the programme. For these irradiations, the accurate knowledge of the neutron-induced fission heating and of the gamma heating is required, as one of the purposes of the programme consists in establishing the correlation among the thermal conductivity, the burn-up and the irradiation temperature. Calibration work among various measuring methods and between measurements and one- and two-dimensional calculations is being pursued. (author). 10 refs, 15 figs, 3 tabs

  20. Status of steady-state irradiation testing of mixed-carbide fuel designs

    International Nuclear Information System (INIS)

    Harry, G.R.

    1983-01-01

    The steady-state irradiation program of mixed-carbide fuels has demonstrated clearly the ability of carbide fuel pins to attain peak burnup greater than 12 at.% and peak fluences of 1.4 x 10 23 n/cm 2 (E > 0.1 MeV). Helium-bonded fuel pins in 316SS cladding have achieved peak burnups of 20.7 at.% (192 MWd/kg), and no breaches have occurred in pins of this design. Sodium-bonded fuel pins in 316SS cladding have achieved peak burnups of 15.8 at.% (146 MWd/kg). Breaches have occurred in helium-bonded fuel pins in PE-16 cladding (approx. 5 at.% burnup) and in D21 cladding (approx. 4 at.% burnup). Sodium-bonded fuel pins achieved burnups over 11 at.% in PE-16 cladding and over 6 at.% in D9 and D21 cladding

  1. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  2. In-pile tests of HTGR fuel particles and fuel elements

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Kolesov, V.S.; Deryugin, A.I.

    1985-01-01

    Main types of in-pile tests for specimen tightness control at the initial step, research of fuel particle radiation stability and also study of fission product release from fuel elements during irradiation are described in this paper. Schemes and main characteristics of devices used for these tests are also given. Principal results of fission gas product release measurements satisfying HTGR demands are illustrated on the example of fuel elements, manufactured by powder metallurgy methods and having TRISO fuel particles on high temperature pyrocarbon and silicon carbide base. (author)

  3. Reactor transients tests for SNR fuel elements in HFR reactor

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-01-01

    In HFR reactor, fuel pins of LMFBR reactors are putted in irradiation specimen capsules cooled with sodium for reactor transients tests. These irradiation capsules are instrumented and the experiences realized until this day give results on: - Fuel pins subjected at a continual variation of power - melting fuel - axial differential elongation of fuel pins

  4. Characterization of an irradiated RERTR-7 fuel plate using transmission electron microscopy

    International Nuclear Information System (INIS)

    Gan, J.; Keiser, D.D. Jr.; Miller, B.D.; Robinson, A.B.; Medvedev, P.

    2010-01-01

    Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the Reduced Enrichment Research and Test Reactor RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper will discuss the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization. (author)

  5. Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for Kijang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Man; Tahk, Young Wook; Jeong, Yong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); and others

    2017-08-15

    The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U–Mo fuel. Plate-type U–7 wt.% Mo/Al–5 wt.% Si, referred to as U–7Mo/Al–5Si, dispersion fuel with a uranium loading of 8.0 gU/cm{sup 3}, was selected to achieve higher fuel efficiency and performance than are possible when using U{sub 3}Si{sub 2}/Al dispersion fuel. To qualify the U–Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U–7Mo/Al–5Si dispersion fuel (8 gU/cm{sup 3}), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U–7Mo/Al–5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U–Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U–Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

  6. Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

    Directory of Open Access Journals (Sweden)

    Jong Man Park

    2017-08-01

    Full Text Available The construction project of the Kijang research reactor (KJRR, which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U–Mo fuel. Plate-type U–7 wt.% Mo/Al–5 wt.% Si, referred to as U–7Mo/Al–5Si, dispersion fuel with a uranium loading of 8.0 gU/cm3, was selected to achieve higher fuel efficiency and performance than are possible when using U3Si2/Al dispersion fuel. To qualify the U–Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1], containing U–7Mo/Al–5Si dispersion fuel (8 gU/cm3, were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U–7Mo/Al–5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U–Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U–Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

  7. Irradiation experiments of recycled PuO2-UO2 fuels by SAXTON reactor, (1)

    International Nuclear Information System (INIS)

    Yumoto, Ryozo; Akutsu, Hideo

    1975-01-01

    Seventy two mixed oxide fuel rods made by PNC were irradiated in Saxton Core 3. This paper generally describes the fuel specifications, the power history of the fuel and the post-irradiation examination of the PNC fuel. The specifications of the 4.0 w/o and 5.0 w/o enriched PuO 2 fuel rods with zircaloy-4 cladding are presented in a table and a figure. The positions of PNC fuel rods in the Saxton reactor are shown in a figure. Sixty eight 5.0 w/o PuO 2 -UO 2 fuel rods were assembled in a 9 x 9 rod array together with zircaloy-4 bars, a flux thimble, and a Sb-Be source. The power history of the Saxton Core 3 and the irradiation history of the PNC fuel rods are summarized in tables. The peak power and burnup of each fuel rod and the axial power profile are also presented. The maximum linear power rate and burnup attained were 512W/cm and 8700 MWD/T, respectively. As for the post irradiation examination, the items of nondestructive test, destructive test, and cladding test are presented together with the working flow diagram of the examination. It is concluded that the performance of all fuel rods was safe and satisfactory throughout the power history. (Aoki, K.)

  8. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below

  9. Calibration of the enigma code for Finnish reactor fuel with support from experimental irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Kelppe, S; Ranta-Puska, K [VTT Energy, Jyvaeskylae (Finland)

    1997-08-01

    Assessment by VTT of the ENIGMA fuel performance code, the original version by Nuclear Electric plc of the UK amended by a set of WWER specific materials correlations, is described. The given examples of results include analyses for BWR 9 x 9 fuel, BWR fuel irradiated in the reinstrumented test of an international Riso project, pre-characterized commercial WWER fuel irradiated in Loviisa reactor in Finland, and instrumented WWER test fuel irradiations in the MR reactor in Russia. The effects of power uncertainty and some model parameters are discussed. Considering the fact that the described cases all mean prototypic application of the code, the results are well encouraging. The importance of the accuracy in temperature calculations is emphasized. (author). 2 refs, 12 figs, 1 tab.

  10. Irradiation Effects Test Series: Test IE-2. Test results report

    International Nuclear Information System (INIS)

    Allison, C.M.; Croucher, D.W.; Ploger, S.A.; Mehner, A.S.

    1977-08-01

    The report describes the results of a test using four 0.97-m long PWR-type fuel rods with differences in diametral gap and cladding irradiation. The objective of this test was to provide information about the effects of these differences on fuel rod behavior during quasi-equilibrium and film boiling operation. The fuel rods were subjected to a series of preconditioning power cycles of less than 30 kW/m. Rod powers were then increased to 68 kW/m at a coolant mass flux of 4900 kg/s-m 2 . After one hour at 68 kW/m, a power-cooling-mismatch sequence was initiated by a flow reduction at constant power. At a flow of 2550 kg/s-m 2 , the onset of film boiling occurred on one rod, Rod IE-011. An additional flow reduction to 2245 kg/s-m 2 caused the onset of film boiling on the remaining three rods. Data are presented on the behavior of fuel rods during quasiequilibrium and during film boiling operation. The effects of initial gap size, cladding irradiation, rod power cycling, a rapid power increase, and sustained film boiling are discussed. These discussions are based on measured test data, preliminary postirradiation examination results, and comparisons of results with FRAP-T3 computer model calculations

  11. Experimental Irradiations of Materials and Fuels in the BR2 Reactor: An Overview of Current Programmes

    International Nuclear Information System (INIS)

    Van Dyck, S.; Koonen, E.; Verwerft, M.; Wéber, M.

    2013-01-01

    The BR2 material test reactor offers a variety of experimental irradiation possibilities for testing of materials, fuels and instruments. The current paper gives an overview of the recent and ongoing programmes in order to illustrate the experimental potential of the reactor. Three domains of applications are reviewed: Irradiation of materials and fuels for pressurised water reactors (PWR); irradiation of materials for accelerator driven systems (ADS), cooled by liquid lead alloys; and irradiation of fuel for Material Test Reactors (MTR). For PWR relevant tests, a dedicated loop is available, providing a full simulation of the thermo hydraulic conditions of a PWR. ADS related tests require particular control of the irradiation environment and the necessary safety precautions in order to avoid 210 Po contamination. In-core mechanical testing of materials is done in comparison and complimentarily to post-irradiation examinations in order to assess flux related effects on the deformation behaviour of materials. (author)

  12. Safety assessment of U–Mo fuel mini plates irradiated in HANARO reactor

    International Nuclear Information System (INIS)

    Jo, Daeseong; Kim, Haksung

    2015-01-01

    Highlights: • Neutronic and thermal-hydraulic analyses of U–Mo fuel irradiated in HANARO reactor. • A mock-up irradiation target was designed and tested to measure the flow rate. • During normal operation, boiling does not occur. • During limiting accidents, boiling occurs. However, fuel integrity is maintained. - Abstract: Neutronic and thermal hydraulic characteristics of U–Mo fuel mini plates irradiated in the HANARO reactor were analyzed for the safety assessment of these plates. A total of eight fuel plates were double-stacked; each stack contained three 8.0 gU/cc U–7Mo fuel plates and one 6.5 gU/cc U–7Mo fuel plate. The neutronic and thermal hydraulic analyses were carried out using the MCNP code and TMAP code, respectively. The core status used in the study was the equilibrium core, and four Control Absorber Rod (CAR) locations were considered: 350 mm, 450 mm, 550 mm, and 650 mm away from the bottom of the core. For the fuels in the lower stack, the maximum heat flux was found at the CAR located at 450 mm. For the fuels in the upper stack, the maximum heat flux was found at the CAR located at 650 mm. The axial power distributions for the upper and lower stacks were selected on the basis of thermal margin analyses. A mock-up irradiation target assembly was designed and tested at the out-of-pile test facility to measure the flow rate through the irradiation site, given that the maximum flow rate through the irradiation site at the HANARO reactor is limited to 12.7 kg/s. For conservative analyses, measurement and correlation uncertainties and engineering hot channel factors were considered. During normal operation, the minimum ONB temperature margins for the lower and upper stacks are 41.6 °C and 31.8 °C, respectively. This means that boiling does not occur. However, boiling occurs during the limiting accidents. Nevertheless, the fuel integrity is maintained since the minimum DNBR are 1.96 for the Reactivity Insertion Accident (RIA) and 2

  13. Irradiation of Parts of the X-Gen Nuclear Fuel Assembly made by KNF in HANARO

    International Nuclear Information System (INIS)

    Choo, K. N.; Cho, M. S.; Shin, Y. T.; Kim, B. G.; Lee, S. H.; Eom, K. B.

    2008-01-01

    An instrumented capsule has been developed at HANARO (High flux Advanced Neutron Application ReactOr) for the neutron irradiation tests of materials. The capsule system has been actively utilized for the various material irradiation tests requested by users from research institutes, universities, and the industries. As a preliminary test, some specimens made of the parts of a nuclear fuel assembly were inserted in the 05M-07U instrumented capsule and successfully irradiated at HANARO. Based on the results and experience, a new irradiation capsule of 07M-13N was designed, fabricated, and irradiated at HANARO for the evaluation of the neutron irradiation properties of the parts of the X-Gen nuclear fuel assembly made by KNF (Korea Nuclear Fuel). Specimens such as bucking and spring test specimens of spacer grid, microstructure and tensile test specimens of welded parts, tensile, irradiation growth and spring test specimens made of HANA tube, Zirlo, Zircaloy-4 and Inconel-718 were placed in the capsule. The capsule was loaded into the CT test hole of HANARO of a 30MW thermal output and the specimens were irradiated at 295 - 460 .deg. C up to a fast neutron fluence of 1.2x10 21 (n/cm 2 ) (E>1.0MeV)

  14. In-pile irradiation of rock-like oxide fuels

    International Nuclear Information System (INIS)

    Nitani, N.; Kuramoto, K.; Yamashita, T.; Nakano, Y.; Akie, H.

    2001-01-01

    Five kinds of ROX fuels were prepared and irradiated using 20% enriched U instead of Pu. Non-destructive and destructive post-irradiation examinations were carried out. FP gas release rates of the particle-dispersed type fuels and homogeneously-blended type fuels were larger than that of the Yttria-stabilized zirconia containing UO 2 single phase fuel. From results of SEM and EPMA, decomposition of the spinel was observed. The decomposition of the spinel is probably avoided by lowering the irradiation temperature, less than 1700 K. The regions suffering the irradiation damage of the particle dispersed type fuels were less than those of the homogeneously-blended type fuels. (author)

  15. In-pile irradiation of rock-like oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nitani, N.; Kuramoto, K.; Yamashita, T.; Nakano, Y.; Akie, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Five kinds of ROX fuels were prepared and irradiated using 20% enriched U instead of Pu. Non-destructive and destructive post-irradiation examinations were carried out. FP gas release rates of the particle-dispersed type fuels and homogeneously-blended type fuels were larger than that of the Yttria-stabilized zirconia containing UO{sub 2} single phase fuel. From results of SEM and EPMA, decomposition of the spinel was observed. The decomposition of the spinel is probably avoided by lowering the irradiation temperature, less than 1700 K. The regions suffering the irradiation damage of the particle dispersed type fuels were less than those of the homogeneously-blended type fuels. (author)

  16. An investigation on the irradiation behavior of atomized U-Mo/Al dispersion rod fuels

    International Nuclear Information System (INIS)

    Park, J.M.; Ryu, H.J.; Lee, Y.S.; Lee, D.B.; Oh, S.J.; Yoo, B.O.; Jung, Y.H.; Sohn, D.S.; Kim, C.K.

    2005-01-01

    The second irradiation fuel experiment, KOMO-2, for the qualification test of atomized U-Mo dispersion rod fuels with U-loadings of 4-4.5 gU/cc at KAERI was finished after an irradiation up to 70 at% U 235 peak burn-up and subjected to the IMEF (Irradiation material Examination Facility) for a post-irradiation analysis in order to understand the fuel irradiation performance of the U-Mo dispersion fuel. Current results for PIE of KOMO-2 revealed that the U-Mo/Al dispersion fuel rods exhibited a sound performance without any break-away swelling, but most of the fuel rods irradiated at a high linear power showed an extensive formation of the interaction phase between the U-Mo particle and the Al matrix. In this paper, the analysis of the PIE results, which focused on the diffusion related microstructures obtained from the optical and EPMA (Electron Probe Micro Analysis) observations, will be presented in detail. And a thermal modeling will be carried out to calculate the temperature of the fuel rod during an irradiation. (author)

  17. Microstructural evolution and Am migration behaviour in Am-containing fuels at the initial stage of irradiation

    International Nuclear Information System (INIS)

    Tanaka, Kosuke; Miwa, Shuhei; Sato, Isamu; Osaka, Masahiko; Hirosawa, Takashi; Obayashi, Hiroshi; Koyama, Shin-ichi; Yoshimochi, Hiroshi; Tanaka, Kenya

    2010-01-01

    In order to investigate the effect of americium addition to MOX fuels on the irradiation behaviour, the 'Am-1' programme is being conducted in JAEA. The Am-1 programme consists of two short-term irradiation tests of 10-minute and 24-hour irradiations and a steady-state irradiation test. The short-term irradiation tests were successfully completed and the post-irradiation examinations (PIE) are in progress. The PIE for Am-containing MOX fuels focused on the microstructural evolution and redistribution behaviour of Am at the initial stage of irradiation and the results to date are reported. The successful development of fabrication technology with remote handling and the evaluation of thermo-chemical properties based on the out-of-pile experiments are described with an emphasis on the effects of Am addition on the MOX fuel properties. (authors)

  18. Fabrication, irradiation and post-irradiation examinations of MO2 and UO2 sphere-pac and UO2 pellet fuel pins irradiated in a PWR loop

    International Nuclear Information System (INIS)

    Linde, A. van der; Lucas Luijckx, H.J.B.; Verheugen, J.H.N.

    1982-01-01

    The document reports in detail the fuel pin fabrication data and describes the irradiation conditions and history. All the relevant results of the non-destructive and destructive post-irradiation examinations are reported. They include: visual inspection and chemical analysis of crud; length and diameter measurements; neutron radiography and gamma scanning; juncture tests and fission gas analysis (including residual gas in fuel samples); microscopy and alpha + beta/gamma autoradiography; microprobe investigations; burn-up and isotopic analysis; and hydrogen analysis in clad. The data and observations obtained are discussed in detail and conclusions are given. The irradiation and post-irradiation examinations of the R-109 pins have shown the safe, pre-calculable performance of LWR fuel pins containing mixed-oxide sphere-pac fuel with the fissile material mainly present in the large spheres

  19. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    International Nuclear Information System (INIS)

    Nickel, H.

    1990-05-01

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO 2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10 -5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.) [de

  20. Achievements of Japanese fuel irradiation experiments in HBWR

    International Nuclear Information System (INIS)

    1992-10-01

    OECD NEA Halden Reactor Project started in 1958, and JAERI has been participated in the Project since 1967 on behalf of Japanese Government. During the participation period, not only JAERI but also many Japanese companies and PNC, which cooperated with JAERI, have carried out many irradiation tests of fuel at HBWR. The Committee of the Halden Joint Research Programme was organized by agencies and companies, which joined the cooperative researches, and the committee has worked to promote the cooperative researches. This report summarizes the achievements of the Halden Joint Research Programme on fuel irradiation tests between Jan. 1988 and Dec. 1990., as the Halden Project renews the agreement every three years. Some researches, which have not yet been completed in the period, are also included in this report. (author)

  1. Performance evaluation of large U-Mo particle dispersed fuel irradiated in HANARO

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Oh, Seok Jin; Jang, Se Jung; Yu, Byung Ok; Lee, Choong Seong; Seo, Chul Gyo; Chae, Hee Taek; Kim, Chang Kyu

    2008-01-01

    U-Mo/Al dispersion fuel is being developed as advanced fuel for research reactors. Irradiation behavior of U-Mo/Al dispersion fuel has been studied to evaluate its fuel performance. One of the performance limiting factors is a chemical interaction between the U-Mo particle and the Al matrix because the thermal conductivity of fuel meat is decreased with the interaction layer growth. In order to overcome the interaction problem, large-sized U-Mo particles were fabricated by controlling the centrifugal atomization conditions. The fuel performance behavior of U-Mo/Al dispersion fuel was estimated by using empirical models formulated based on the microstructural analyses of the post-irradiation examination (PIE) on U-Mo/Al dispersion fuel irradiated in HANARO reactor. Temperature histories of U-Mo/Al dispersion fuel during irradiation tests were estimated by considering the effect of an interaction layer growth on the thermal conductivity of the fuel meat. When the fuel performances of the dispersion fuel rods containing U-Mo particles with various sizes were compared, fuel temperature was decreased as the average U-Mo particle size was increases. It was found that the dispersion of a larger U-Mo particle was effective for mitigating the thermal degradation which is associated with an interaction layer growth. (author)

  2. Post-irradiation examination of Oconee 1 fuel - cycle 1 destructive test phase

    International Nuclear Information System (INIS)

    1979-07-01

    Standard B and W Mark-B (15 x 15) pressurized water reactor fuel rods were destructively examined after one cycle of irradiation in the Oconee 1 reactor. Fuel rod average burnup ranged from 10,603 to 11,270 MWd/mtU for the rods examined. Data obtained included fuel rod extraction loads, rod dimensional changes, cladding tensile properties, fuel pellet gap length, fission product distribution, fission gas and crud composition, fuel densification, chemical burnup analysis, and fuel and cladding microstructure. As expected, parametric changes were well within the design envelope. Superficial corrosion and wear were found at spacer grid contact points. However, the 19 rods examined were structurally sound and exhibited no indications of cladding defects associated with pelletcladding interactions

  3. An Analysis of the Thermal and Structure Behaviour of the UO2-PuO2-Fuel in the Irradiation Experiment of the UO2-PuO2-Fuel in the Irradiation Experiment FR2 Capsule Test Series 5a

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Helmut, E.

    1981-01-01

    In the Karlsruhe research reactor FR2 nine fuel pins were irradiated within three irradiation capsules in the course of the test series 5a. The pins contained UO 2 -PuO 2 fuel pellets. They reached bump values of about 6, 17 and 47 Mwd/Kg Me with linear rod powers of 400 to 600 W/cm and clad surface temperature between 500 and 700 degree centigree. A detailed analysis of the fuel structuration data (columnar-grain and equiaxed- -grain growth regions) have allowed to determine, with the help of physic-mathematical models, the radii of these regions and the heat transfer through the contact zone between fuel and clad depending on the bump. The results of the analysis showed that the fuel surface temperature rose with increasing burnup. (Author) 16 refs

  4. Apparatus for inspecting a irradiated nuclear fuel rod

    International Nuclear Information System (INIS)

    Saura, Hideaki; Yonemura, Eizo.

    1975-01-01

    Object: To increase safety and inspection efficiency by operating irradiated fuel rods, which are accommodated in a water-filled pool after being taken out from the reactor. Structure: When making inspection of irradiated fuel rods, particularly the cladding tube thereof, a fuel box which stores irradiated fuel rods in a water pool is secured to a securement mechanism with slime removal apparatus and inspection apparatus on either side capable of being vertically moved, and it is then stopped at a water depth of about 2 meters. When the lid of the box is opened, irradiated fuel rods are taken out with gripping means and then secured together with the gripping means to an operation base provided on the outside of the pool. Thereafter, the box is lowered by operating pedals on the operation base to completely pull out the irradiated fuel rods from the box, and the irradiated fuel rods are then horizontally moved and then held in a suspended state. Next a slime removal apparatus in raised by operating pedals and an inspection element assembly are progressively raised for inspection of the state of the cladding tube of each fuel rod after removal of slime therefrom. (Nakamura, S.)

  5. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    OpenAIRE

    ALEKSEY. L. IZHUTOV; VALERIY. V. IAKOVLEV; ANDREY. E. NOVOSELOV; VLADIMIR. A. STARKOV; ALEKSEY. A. SHELDYAKOV; VALERIY. YU. SHISHIN; VLADIMIR. M. KOSENKOV; ALEKSANDR. V. VATULIN; IRINA. V. DOBRIKOVA; VLADIMIR. B. SUPRUN; GENNADIY. V. KULAKOV

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; th...

  6. Annealing tests of in-pile irradiated oxide coated U-Mo/Al-Si dispersed nuclear fuel

    Science.gov (United States)

    Zweifel, T.; Valot, Ch.; Pontillon, Y.; Lamontagne, J.; Vermersch, A.; Barrallier, L.; Blay, T.; Petry, W.; Palancher, H.

    2014-09-01

    U-Mo/Al based nuclear fuels have been worldwide considered as a promising high density fuel for the conversion of high flux research reactors from highly enriched uranium to lower enrichment. In this paper, we present the annealing test up to 1800 °C of in-pile irradiated U-Mo/Al-Si fuel plate samples. More than 70% of the fission gases (FGs) are released during two major FG release peaks around 500 °C and 670 °C. Additional characterisations of the samples by XRD, EPMA and SEM suggest that up to 500 °C FGs are released from IDL/matrix interfaces. The second peak at 670 °C representing the main release of FGs originates from the interaction between U-Mo and matrix in the vicinity of the cladding.

  7. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  8. Post-irradiation examination of the first SAP clad UO{sub 2} fuel elements irradiated in the X-7 organic loop

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. D.; Aspila, K.

    1962-02-15

    Seven fuel elements composing the first in-reactor test at Chalk River of SAP sheathing were irradiated in the X-7 organic loop. Activity, denoting a fuel failure, was detected in the loop coolant immediately after reactor start up; the fuel string was consequently removed from the loop nine hours later. Leak tests disclosed that five of the seven elements were defective. Inspection of the specimens showed essentially no change in element dimensions. Practically no organic fouling film was observed on the surface of the SAP cladding; organic coolant was found inside four of the defective elements. The appearance of the UO{sub 2} fuel was consistent with the irradiation time and the heat ratings achieved during the test. (author)

  9. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk form, on the order of 7 x 10 20 cm -3 , far short of he approximately 20 x 10 20 cm -3 goal established for the RERTR Program. The purpose of the irradiation experiments on silicide fuels in the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix. The first group of experimental 'mini' fuel plates have recently reached the program's goal burnup and are in various stages of examination. Although the results to date indicate some limitations, it appears that within the range of parameters examined thus far the uranium silicide dispersion holds promise for satisfying most of the needs of the RERTR Program. The twelve experimental silicide dispersion fuel plates that were irradiated to approximately their goal exposure show the 30-vol % U 3 Si-Al plates to be in a stage of relatively rapid fission-gas-driven swelling at a fission density of 2 x 10 20 cm -3 . This fuel swelling will likely result in unacceptably large plate-thickness increases. The U 3 Si plates appear to be superior in this respect; however, they, too, are starting to move into the rapid fuel-swelling stage. Analysis of the currently available post irradiation data indicates that a 40-vol % dispersed fuel may offer an acceptable margin to the onset of unstable thickness changes at exposures of 2 x 10 21 fission/cm 3 . The interdiffusion between fuel and matrix

  10. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  11. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  12. Fuel or irradiation subassembly

    International Nuclear Information System (INIS)

    Seim, O.S.; Hutter, E.

    1975-01-01

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins

  13. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  14. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  15. Fuel integrity project: analysis of light water reactor fuel rods test results

    International Nuclear Information System (INIS)

    Dallongeville, M.; Werle, J.; McCreesh, G.

    2004-01-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  16. Fuel integrity project: analysis of light water reactor fuel rods test results

    Energy Technology Data Exchange (ETDEWEB)

    Dallongeville, M.; Werle, J. [COGEMA Logistics (AREVA Group) (France); McCreesh, G. [BNFL Nuclear Sciences and Technology Services (United Kingdom)

    2004-07-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  17. Gamma scanning of mixed carbide and oxide fuel pins irradiated in FBTR

    International Nuclear Information System (INIS)

    Jayaraj, V.V.; Padalakshmi, M.; Ulaganathan, T.; Venkiteswaran, C.N.; Divakar, R.; Joseph, Jojo; Bhaduri, A.K.

    2016-01-01

    Fission in nuclear fuels results in a number of fission products that are gamma emitters in the energy range of 100 keV to 3 MeV. The gamma emitting fission products are therefore amenable for detection by gamma detectors. Assessment of the fission product distribution and their migration behavior through gamma scanning is important for characterizing the in reactor behavior of the fuel. Gamma scanning is an important non destructive technique used to evaluate the behavior of irradiated fuels. As a part of Post Irradiation Examinations (PIE), axial gamma scanning has been carried out on selected fuel pins of the FBTR Mark I mixed carbide fuel sub-assemblies and PFBR MOX test fuel sub-assembly irradiated in FBTR. This paper covers the results of gamma scanning and correlation of gamma scanning results with other PIE techniques

  18. Development of cutting device for irradiated fuel rod

    International Nuclear Information System (INIS)

    Lee, E. P.; Jun, Y. B.; Hong, K. P.; Min, D. K.; Lee, H. K.; Su, H. S.; Kim, K. S.; Kwon, H. M.; Joo, Y. S.; Yoo, K. S.; Joo, J. S.; Kim, E. K.

    2004-01-01

    Post Irradiation Examination(PIE) on irradiated fuel rods is essential for the evaluation of integrity and irradiation performance of fuel rods of commercial reactor fuel. For PIE, fuel rods should be cut very precisely. The cutting positions selected from NDT data are very important for further destructive examination and analysis. A fuel rod cutting device was developed witch can cut fuel rods longitudinal very precisely and can also cut the fuels into the same length rod cuts repeatedly. It is also easy to remove the fuel cutting powder after cutting works and it can extend the life time of cutting device and lower the contamination level of hot cell

  19. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  20. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  1. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: Dennis.Keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia)

    2012-06-15

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  2. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1995-01-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding-was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2 MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  3. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1997-08-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was.not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  4. FFTF utilization for irradiation testing

    International Nuclear Information System (INIS)

    Corrigan, D.C.; Julyk, L.J.; Hoth, C.W.; McGuire, J.C.; Sloan, W.R.

    1980-01-01

    FFTF utilization for irradiation testing is beginning. Two Fuels Open Test Assemblies and one Vibration Open Test Assembly, both containing in-core contact instrumentation, are installed in the reactor. These assemblies will be used to confirm plant design performance predictions. Some 100 additional experiments are currently planned to follow these three. This will result in an average core loading of about 50 test assemblies throughout the early FFTF operating cycles

  5. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Bauer, T.H.; Holland, J.W.

    1995-01-01

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis is placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel

  6. Performance evaluation of UO2-Zr fuel in power ramp tests

    International Nuclear Information System (INIS)

    Knudsen, P.; Bagger, C.

    1977-01-01

    In power reactors using UO 2 -Zr fuel, rapid power increases may lead to failures in fuel pins that have been irradiated at steady or decreasing heat loads. This paper presents results which extend the experience with power ramp performance of high burn-up fuel pins. A test fuel element containing both pellet and vipac UO 2 -Zr fuel pins was irradiated in the HBWR at Halden for effectively 2 1/2 years to an average burn-up of 21,000 MWD/te UO 2 at gradually decreasing power levels. The subsequent non-destructive characterization revealed formation of transverse cracks in the vipac fuel columns. After the HBWR irradiation, five of the fuel pins were power ramp tested individually in the DR 3 Reactor at Riso. The ramp rates in this test series were in the range 3-60 W/cm min. The maximum local heat loads seen in the ramp tests were 20-120% above the highest levels experienced at the same axial positions during the HBWR irradiation. Three pellets and one vipac fuel pin failed, whereas another vipac pin gave no indication of clad penetration. Profilometry after the ramp testing indicated the formation of small ridges for both types of fuel pins. For vipac fuel, the ridges were less regularly distributed along the pin length than for pellet fuel. Neutron radiography revealed the formation of additional transverse and longitudinal fuel cracks during the power ramps for both types of fuel pins. The observed failures seemed to be marginal since little or no indication as to the locations of the clad penetrations could be derived from the non-destructive post-irradiation examinations. The cases have been analyzed by means of the Danish fuel performance codes. The calculations, which are in general agreement with the observations, are discussed. The results of the investigations indicate qualitative similarities in over power performance of the two fuel types

  7. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Science.gov (United States)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  8. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J. E-mail: jnoirot@cea.fr; Desgranges, L.; Chauvin, N.; Georgenthum, V

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl{sub 2}O{sub 4} spinel inert matrix and around 40% weight of UO{sub 2} to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  9. Post-irradiation examinations of THERMHET composite fuels for transmutation

    International Nuclear Information System (INIS)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-01-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2 O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour

  10. EDF energy generation UK transport of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [EDF Energy, London, (United Kingdom)

    2015-07-01

    This paper give an overview of irradiated fuel transport in the UK. It describes the design of irradiated fuel flask used by EDF Energy; operational experience and good practices learnt from over 50 years of irradiated fuel transport. The AGRs can store approximately 9 months generation of spent fuel, hence the ability to transport irradiated fuel is vital. Movements are by road to the nearest railhead, typically less than 2 miles and then by rail to Sellafield, up to 400 miles, for reprocessing or long term storage. Road and rail vehicles are covered. To date in the UK: over 30,000 Magnox flask journeys and over 15,000 AGR A2 flask journeys have been carried out.

  11. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  12. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within a specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.

  13. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  14. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-12-15

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%{sup 235}U; the mini-rods were irradiated to an average burnup of ∼ 85%{sup 235}U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  15. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    International Nuclear Information System (INIS)

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60% 235 U; the mini-rods were irradiated to an average burnup of ∼ 85% 235 U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%

  16. Nitride fuels irradiation performance data base

    International Nuclear Information System (INIS)

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  17. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  18. Qualification program for JHR fuel elements: Irradiation of the first JHR test assembly in the BR2-Evita loop

    International Nuclear Information System (INIS)

    Anselmet, M.-C.; Lemoine, P.; Koonen, E.; Benoit, P.; Gouat, P.; Claes, W.; Geens, F.; Miras, G.; Brisson, S.

    2010-01-01

    An experimental program has been designed by CEA to qualify the behaviour of the JHR fuel under conditions representative of the reactor operating ones. This program uses the SCK.CEN facilities, irradiating JHR lead test elements in the BR2 reactor, inside its central channel which has been particularly arranged for this objective (Evita loop). As a first step in the program, a two cycle irradiation (4 weeks by cycle) started mid-July 2009 and ended mid-November (EVITA-1). After a cooling phase, this first JHR lead test element will be submitted to post-irradiation examination. The second JHR test element began its irradiation in the first quarter of 2010; its unloading is planned before the end of 2010, after 5 cycles in the BR2 reactor. The results of these two experiments are expected as input information for the Safety Authority Report. This paper presents the qualification program with the objectives assigned to each phase (irradiation, examination). A first interpretation of the irradiation data for the first element is presented, so as the information available on the progress of the following phases of the programme. (author)

  19. Structural analysis on the open basket type instrumented capsule for fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Sik; Kang, Y. H.; Kim, B. G.; Cho, M. S.; Sohn, J. M.; Choo, K. N.; Oh, J. M.; Shin, Y. T.; Park, S. J. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    To develop the open basket type instrumented capsule to be used for the irradiation test of various nuclear fuels, it is necessary to ensure the compatibility of the capsule with HANARO and the structural integrity of the capsule. The dimensions of the open basket type instrumented capsule were determined in the basis of the pressure drop criteria in OR test hole of HANARO(mass flow rate <12.7kg/s, pressure drop {delta}P>200kPa). From the buckling stability analysis for this capsule, the critical buckling load P{sub cr} was 7.5kN. The vertical impact stress of the capsule under unit impact load was evaluated by the transient analysis, and the maximum vertical impact load calculated from the impact stress and the allowable stress was 60.5kN. Under the loading of the calculated Pcr, the maximum vertical impact stress was 20.4MPa. The structural integrity of the capsule under a horizontal impact loading was also examined. The mechanical stresses occurred by the pressure difference at the inner and outer surface of cladding and by the coolant pressure at the surface of cladding were 3.1MPa and 43.3MPa, respectively. These stress values were lower than the allowable stress in each case. Therefore, it was ensured that the instrumented capsule for the irradiation test of various nuclear fuels met the criteria on the structural integrity during installing and testing the capsule in HANARO. 8 refs., 61 figs., 3 tabs. (Author)

  20. Review of direct electrical heating experiments on irradiated mixed-oxide fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Bandyopadhyay, G.

    1982-01-01

    Results of approximately 50 out-of-reactor experiments that simulated various stages of a loss-of-flow event with irradiated fuel are presented. The tests, which utilized the direct electrical heating technique to simulate nuclear heating, were performed either on fuel segments with their original cladding intact or on fuel segments that were extruded into quartz tubes. The test results demonstrated that the macro- and microscopic fuel behavior was dependent on a number of variables including fuel heating rate, thermal history prior to a transient, the number of heating cycles, type of cladding (quartz vs stainless steel), and fuel burnup

  1. UN TRISO Compaction in SiC for FCM Fuel Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.

  2. Development and testing of metallic fuels with high minor actinide content

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Kennedy, J.R.; Keiser, D.D.; Hilton, B.A.; Frank, S.M.; Kim, Y.-S.; Chang, G.; Ambrosek, R.G.

    2003-01-01

    Metallic alloys are promising candidates for use as fuels for transmutation and in advanced closed nuclear cycles. Metallic alloys have high heavy metal atom density, relatively high thermal conductivity, favorable gas release behavior, and lend themselves to remote recycle processes. Both non-fertile and uranium-bearing metal fuels containing minor actinide are under consideration for use as transmutation fuels by the U.S. Advanced Fuel Cycle (AFC) program, however, little irradiation performance data exists for fuel forms containing significant fractions of minor actinides. The first irradiation tests of non-fertile high-actinide-content fuels are scheduled to begin in early 2003 in the Advanced Test Reactor (ATR). The irradiation test matrix was designed to provide basic information on the irradiation behavior of binary Pu-Zr alloy fuel and the effect of the minor actinides americium and neptunium on alloy fuel behavior, together and separately. Five variants of transuranic containing zirconium-based alloy fuels are included in the AFC-1 irradiation test matrix. These are (in wt.%) Pu-40Zr, Pu-60Zr, Pu-12Am-40Zr, Pu-10Np-40Zr and Pu-10Np-10Am-40Zr. PuN-ZrN based fuels containing Am and Np are also included. All five of the fuel alloys have been fabricated in the form of cylindrical fuel slugs by arc-casting. Short melt times, on the order or 5-20 seconds, prevent the volatilization of significant quantities of americium metal, despite the high melt temperatures characteristic of the arc-melting process. Alloy microstructure have been characterized by x-ray diffraction and scanning electron microscopy. Thermal analysis has also been performed. The AFC-1 irradiation experiment configuration consists of twenty-four sodium bonded fuel specimens sealed in helium filled secondary capsules. The first capsule has a design burnup to 7 at.% 239 Pu; goal peak burnup of the second capsule is ∼18 at%. Capsule assemblies are placed within an aluminum flow-through basket

  3. Characterization of irradiated fuel rods using pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Martin, M.R.; Francis, W.C.

    1975-11-01

    A number of irradiated fuel rods and unfueled zircaloy cladding tubes (''water tubes'') were obtained from the Saxton reactor through arrangements with the Westinghouse Electric Corporation for use in subsequent irradiation effects and fuel behavior programs. A comprehensive nondestructive and corroborative destructive characterization program was undertaken on these fuel rods and tubes by ANC to provide baseline data on their characteristics prior to further testing and for comparison against post-post data. This report deals primarily with one portion of the NDT program performed remotely in the hot cells. The portion of interest in this paper is the pulsed eddy current inspection used in the nondestructive phase of the work. 6 references

  4. LOCA scenario tests of irradiated fuel rod specimens

    International Nuclear Information System (INIS)

    Scott, Harold

    2004-01-01

    Full text: The NRC's cladding performance program at Argonne National Laboratory (ANL) is testing fueled high-burnup segments subjected to LOCA integral phenomena. The data are provided to NRC and the nuclear industry for their independent assessment of the adequacy of licensing criteria for LOCA events. The tests are being conducted with high-burnup 30 cm segments from Limerick (9x9 Zry-2) and H.B. Robinson (15x15 Zry-4) reactors. Prior to testing, sibling samples are characterized with respect to fuel morphology, fuel-cladding bond, cladding oxide layer thickness, hydrogen content and high-temperature steam oxidation kinetics. Specimens that survive quench are subjected to four-point bend tests, followed by local diametral compression tests. The retention of post-quench ductility is a more limiting requirement than surviving thermal stresses during quench. Companion tests are conducted with unirradiated cladding to generate baseline data for comparison with the high-burnup fuel results. LOCA integral tests have the following sequential steps: stabilization of temperature, internal pressure and steam flow at 300 C, ramping of temperature (∼5C/s) through ballooning and burst to 1204 C, hold at 1204 C for 1-5 minutes, slow-cooling (∼3C/s) to 800 C, and water quenching at ∼800C. Two high-burnup tests were completed in 2002 with Limerick BWR rod segments: ramp to burst in argon followed by slow cooling; and the LOCA test with 5-minute hold time at 1204 C, followed by slow cooling. With the exception of burst-opening shape, results for burst temperature, burst pressure, burst length, and ballooning strain profile are more similar to, than different from, results for unirradiated Zry-2 cladding exposed to the same time-temperature history. The 3rd Limerick test with quench was performed in December 2003, and a 4th Limerick test was performed in March 2004. Tests on high-burnup Robinson PWR fuel segments are scheduled to begin in June 2004. The presentation points

  5. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl, E-mail: k.verfondern@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Xhonneux, André, E-mail: xhonneux@lrst.rwth-aachen.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Nabielek, Heinz, E-mail: heinznabielek@me.com [Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Allelein, Hans-Josef, E-mail: h.j.allelein@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, Chair for Reactor Safety and Reactor Technology, 52072 Aachen (Germany)

    2014-07-01

    Highlights: • HFR-EU1 irradiation test demonstrates high quality of HTGR spherical fuel elements. • Irradiation performance is in good agreement with German fuel performance modeling. • International benchmark exercise expected first particle to fail at ∼13–17% FIMA. • EOL silver release is predicted to be in the percentage range. • EOL cesium and strontium are expected to remain at a low level. - Abstract: Various countries engaged in the development and fabrication of modern HTGR fuel have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under HTGR operating and accident conditions. Verification and validation studies are conducted by code-to-code benchmarking and code-to-experiment comparisons as part of international exercises. The methodology developed in Germany since the 1980s represents valuable and efficient tools to describe fission product release from spherical fuel elements and TRISO fuel performance, respectively, under given conditions. Continued application to new results of irradiation and accident simulation testing demonstrates the appropriateness of the models in terms of a conservative estimation of the source term as part of interactions with HTGR licensing authorities. Within the European irradiation testing program for HTGR fuel and as part of the former EU RAPHAEL project, the HFR-EU1 irradiation experiment explores the potential for high performance of the presently existing German and newly produced Chinese fuel spheres under defined conditions up to high burnups. The fuel irradiation was completed in 2010. Test samples are prepared for further postirradiation examinations (PIE) including heatup simulation testing in the KÜFA-II furnace at the JRC-ITU, Karlsruhe, to be conducted within the on-going ARCHER Project of the European Commission. The paper will describe the application of the German computer models to the HFR-EU1 irradiation test and

  6. A Study on Cell Size of Irradiated Spacer Grid for PWR Fuel

    International Nuclear Information System (INIS)

    Jin, Y. G.; Kim, G. S.; Ryu, W. S. and others

    2014-01-01

    The spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and grid spring force decreases under irradiation. This reduction of contact force might cause grid-to-rod fretting wear. The fretting failure of the fuel rod is one of the recent significant issues in the nuclear industry from an economical as well as a safety concern. Thus, it is important to understand the characteristics of cell spring behavior and the change in size of grid cells for an irradiated spacer grid. In the present study, the dimensional measurement of a spacer grid was conducted to investigate the cell size of an irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the fretting wear performance of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. Hot cell examinations include dimensional measurements for the irradiated spacer grid. The change of cell sizes was dependent on the direction of the spacer grids, leading to significant gap variations. It was found that the change in size of the cell springs due to irradiation-induced stress relaxation and creep during the fuel residency in the reactor core affect the contact behavior between the fuel rod and the cell spring

  7. Postirradiation examination results for the Irradiation Effects Test IE-5

    International Nuclear Information System (INIS)

    Cook, T.F.; Ploger, S.A.; Hobbins, R.R.

    1978-03-01

    The results are presented of the postirradiation examination of four pressurized water reactor type fuel rods which were tested in-pile under a fast power ramp and film boiling operation during Irradiation Effects (IE) Test 5. The major objectives of this test were to evaluate the effects of simulated fission products on fuel rod behavior during a fast power ramp, to determine the effects of high initial internal pressure on a fuel rod during film boiling, and to assess fuel rod property changes that occur during film boiling in a fuel rod with previously irradiated cladding. The overall condition of the rods and changes that occurred in fuel and cladding as a result of the power ramp and film boiling operation, as determined from the postirradiation examination, are reported and analyzed. Effects of the simulated fission products on fuel rod behavior during a power ramp are discussed. The effect of high internal pressure on rod behavior during film boiling is evaluated. Cladding temperatures are estimated at various axial and circumferential locations. Cladding embrittlement by oxidation is also assessed

  8. Irradiation of novel MTR fuel plates in BR2

    International Nuclear Information System (INIS)

    Verboomen, B.; Aoust, Th.; Beeckmans De Westmeerbeeck, A.; De Raedt, Ch.

    2000-01-01

    Since the end of 1999, novel MTR fuel plates with very high-density meat are being irradiated in BR2. The purpose of the irradiation is to investigate the behaviour of these fuel plates under very severe reactor operation conditions. The novel fuel plates are inserted in two standard six-tube BR2 fuel elements in the locations normally occupied by the standard outer fuel plates. The irradiation in BR2 was prepared by carrying out detailed neutron Monte Carlo calculations of the whole BR2 core containing the two experimental fuel elements for various positions in the reactor and for various azimuthal orientations of the fuel elements. Comparing the thus determined fission density levels and azimuthal profiles in the new MTR fuel plates irradiated in the various channels allowed the experimenters to choose the most appropriate BR2 channel and the most appropriate fuel element orientation. (author)

  9. Irradiation performance of U-Pu-Zr metal fuels for liquid-metal-cooled reactors

    International Nuclear Information System (INIS)

    Tsai, H.; Cohen, A.B.; Billone, M.C.; Neimark, L.A.

    1994-10-01

    This report discusses a fuel system utilizing metallic U-Pu-Zr alloys which has been developed for advanced liquid metal-cooled reactors (LMRs). Result's from extensive irradiation testing conducted in EBR-II show a design having the following key features can achieve both high reliability and high burnup capability: a cast nominally U-20wt %Pu-10wt %Zr slug with the diameter sized to yield a fuel smear density of ∼75% theoretical density, low-swelling tempered martensitic stainless steel cladding, sodium bond filling the initial fuel/cladding gap, and an as-built plenum/fuel volume ratio of ∼1.5. The robust performance capability of this design stems primarily from the negligible loading on the cladding from either fuel/cladding mechanical interaction or fission-gas pressure during the irradiation. The effects of these individual design parameters, e.g., fuel smear density, zirconium content in fuel, plenum volume, and cladding types, on fuel element performance were investigated in a systematic irradiation experiment in EBR-II. The results show that, at the discharge burnup of ∼11 at. %, variations on zirconium content or plenum volume in the ranges tested have no substantial effects on performance. Fuel smear density, on the other hand, has pronounced but countervailing effects: increased density results in greater cladding strain, but lesser cladding wastage from fuel/cladding chemical interaction

  10. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  11. The out-of-pile test for internal pressure measurement of nuclear fuel rod using LVDT

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sohn Jae; Kang, Y. H.; Kim, B. G. [and others

    2001-11-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO, the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT. The objectives of this test were to understand the LVDT's characteristics and to study its application techniques for fuel irradiation technology. It will be required to analyze the acquired internal pressure of fuel rod during fuel irradiation test in HANARO. The out-of-pile test system for pressure measurement was developed, and the test with the LVDT at room temperature(19 .deg. C) were performed. A out-of-pile test were implemented in 1 kg/cm{sup 2} increment from 1 kg/cm{sup 2} to 30 kg/cm{sup 2} and repeated 6 times at each condition. The LVDT's sensitivities were obtained by following two ways, the one by test and the other by calculation from characteristics data. These two sensitivities were compared and analyzed. The calculation method for internal pressure of nuclear fuel rod at specified temperature was also established. This report describes the system configuration, the out-of-pile test procedures, and the results. The results of the out-of-pile test will be used to predict accurately the internal pressure of fuel rod during irradiation test. And, the well qualified out-of-pile tests are needed to understand the LVDT's detail characteristics for the detail design of the fuel irradiation capsule.

  12. Gamma irradiation tests of concrete material recommended for storage casks of spent nuclear fuel arising from Cernavoda NPP

    International Nuclear Information System (INIS)

    Dulama, M.; Deneanu, N.; Dulama, C.; Baboescu, E.

    2001-01-01

    Considerable effort is being devoted to the Romania's Nuclear Spent Fuel and Waste Management R and D Program to develop engineered barriers for the containment of nuclear fuel waste under conditions of deep geological disposal. Engineering practice suggests that the concrete should fulfil the requirements of long term physical stability and resistance to radiation. With an appropriate system of metal reinforcement, it should be possible to obtain the tensile and impact strength required, avoiding the risk of mechanical damage during handling and emplacement. In accordance with the concept developed by CITON-Bucharest, presently, the dry storage of spent nuclear fuel is thought by two choices: - The alternative of dry storage type MMB3; - The alternative of dry storage type TRANSTOR. By using ORIGEN and PELSHIE computer codes, we evaluated the gamma radiation dose absorbed by the concrete walls of the storage vault both in MMB3 and in TRANSTOR designing variants. The irradiation tests were performed at the Gamma Irradiation Facility of the Institute for Nuclear Research. (authors)

  13. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Science.gov (United States)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  14. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  15. Irradiation performance updates on Korean advanced fuels for PWRs

    International Nuclear Information System (INIS)

    Jang, Y.K.; Jeon, K.L.; Kim, Y.H.; Yoo, J.S.; Kim, J.I.; Shin, J.C.; Chung, J.G.; Park, J.R.; Chung, S.K.; Kim, T.W.; Yoon, Y.B.; Park, K.M.; Yoo, M.J.; Kim, M.S.; Lee, T.H.

    2010-01-01

    The developments of advanced nuclear fuels for PWRs were started in 1999 and in 2001, respectively: PLUS7 TM for eight operating optimized power reactors of 1000 MWe class (OPR1000) and four advanced power reactors of 1400 MWe class (APR1400) under construction, and 16ACE7 TM and 17ACE7 TM for an operating 16x16 Westinghouse type plant and six operating 17x17 Westinghouse type plants. The design targets were as follows: batch average burnup up to 55 GWD/MTU, over 10% thermal margin increase, improvement of the mechanical integrity of higher seismic capability, higher debris or grid fretting wear performance, higher control rod insertion capability, increase of neutron economy, improvement of manufacturability, solving incomplete rod insertion (IRI) issue and top nozzle screw failure issue, etc. in comparison of the existing nuclear fuels. The irradiation tests using each four LTAs (Lead Test Assemblies) during 3 cycles were completed in three Korean nuclear reactors until 2009. The eight irradiation performance items which are assembly growth, rod growth, grid width growth, assembly bow, rod bow, assembly twist, rod diameter and cladding oxidation were examined in pool-side after each cycle and evaluated. The irradiation tests could be continued by expecting the good performances for next cycle from the previous cycle. After 2 cycle irradiations, the region implementation could be started in 15 nuclear power plants. Even though the verifications using the LTAs were completed, each surveillance program was launched and the irradiation performance data were being updated during region implementation. In addition to pool-side examinations (PSEs) by assembly-wise during irradiation tests, six rod-wise performance items were also examined in pool-side using each LTA after discharge. All performance items met their design criteria as a result of the evaluation. Even though the interesting ones among the irradiation performance parameters were assembly and grid growths

  16. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  17. The out-of-pile test for internal pressure measurement of nuclear fuel rod using LVDT

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Kim, D. S.; Joo, K. N.; Park, S. J.; Kang, Y. H.; Kim, Y. K.; Yeum, K. I. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT(Linear Variable Differential Transformer). The objectives of this test were to understand the LVDT's characteristics and to study its application techniques for fuel irradiation technology. It will be required to analyze the acquired internal pressure of fuel rod during fuel irradiation test in HANARO. Therefore, the out of pile test system for pressure measurement was developed, and the test with the LVDT at room temperature were performed. This test were implemented in 1 kg/cm{sup 2} increment from 1 kg/cm{sup 2} to 30 kg/cm{sup 2}, and repeated 6 times at same condition. The LVDT's sensitivities were obtained by following two ways, the one by test and the other by calculation from characteristics data. These two sensitivities were compared and analyzed. The calculation method for internal pressure of nuclear fuel rod at specified temperature was also established. The results of the out-of-pile test will be used to predict accurately the internal pressure of fuel rod during irradiation test. And, the well qualified out-of-pile tests are needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation capsule.

  18. Laser cutting equipment for dismantling irradiated PFR fuel sub-assemblies

    International Nuclear Information System (INIS)

    Higginson, P.R.; Campbell, D.A.

    1981-01-01

    Laser cutting was identified as a possible technique for dismantling irradiated Prototype Fast Reactor (P.F.R.) fuel sub-assemblies and initial trials showed that it could be used to make essentially swarf free cuts in P.F.R. wrapper material provided sufficient laser power was available to allow use of an inert cutting gas. A programme of development work has established a technique for inert gas cutting with the reliable, commercially available Ferranti MF 400 laser and equipment for laser cutting of sub-assemblies has been installed in the Irradiated Fuel Cave at P.F.R. Test cuts carried out with this equipment on un-irradiated wrapper sections have shown it to be easy to operate remotely, optically stable and reliable in operation. (author)

  19. Irradiation of mixed UO2-PuO2 oxide samples for fast neutron reactor fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.; Bloch, J.; Conte, M.; Hayet, L.; Lauthier, J.C.; Leclere, J.

    1968-01-01

    Thermal flux irradiation testings of small mixed oxide pellets UPuO 2 fuel elements were performed in support of the fuel reference design for the Phenix fast reactor. The effects of different parameters (stoichiometry, pellet density, pellet clad gap). on the behaviour of the oxide (temperature distribution, microstructural changes, fission gas release) were investigated in various irradiation conditions. In particular, the effect of fuel density decrease and power rate increase on thermal performances were determined on short term irradiations of porous fuels. (authors) [fr

  20. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  1. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    International Nuclear Information System (INIS)

    Karam, M.; Dimayuga, F.C.; Montin, J.

    2010-01-01

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O 2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt.% Th and 1.53 wt.% Pu in (Th, Pu)O 2 . The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O 2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O 2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O 2 fuel performance characteristics were superior to UO 2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  2. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J.; Johnson, S.G.

    2009-01-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  3. Irradiation performance of HTGR fuel in HFIR experiment HRB-13

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    1982-03-01

    Irradiation capsule HRB-13 tested High-Temperature Gas-Cooled Reactor (HTGR) fuel under accelerated conditions in the High Flux Isotope Reactor (HFIR) at ORNL. The ORNL part of the capsule was designed to provide definitive results on how variously misshapen kernels affect the irradiation performance of weak-acid-resin (WAR)-derived fissile fuel particles. Two batches of WAR fissile fuel particles were Triso-coated and shape-separated into four different fractions according to their deviation from spericity, which ranged from 9.6 to 29.7%. The fissile particles were irradiated for 7721 h. Heavy-metal burnups ranged from 80 to 82.5% FIMA (fraction of initial heavy-metal atoms). Fast neutron fluences (>0.18 MeV) ranged from 4.9 x 10 25 neutrons/m 2 to 8.5 x 10 25 neutrons/m 2 . Postirradiation examination showed that the two batches of fissile particles contained chlorine, presumably introduced during deposition of the SiC coating

  4. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 g U/cm 3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼63% 235 U burnup). (author)

  5. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼ 63% 235 U burnup)

  6. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  7. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  8. The Analysis Of Spent Fuel Utilization For A Gamma Irradiator

    International Nuclear Information System (INIS)

    MS, Pudjijanto; Setiyanto

    2002-01-01

    The gamma irradiator using RSG-GAS spent fuels was analyzed. The cylindrical geometry of the irradiator was designed by locating the spent fuels the cylindrical periphery. The analysis was focused to evaluate the feasibilities of the irradiator as a fruits and vegetables irradiator. The spent fuels activities were calculated using Origen2 code, while the dose rate at the irradiation positions was determined by linear attenuation model with transport coefficient. The evaluated results showed that the cylindrical geometry of irradiators with diameter around 1-1.5 m gave the effective dose rate for fruits and vegetables preservation. It can be concluded that one can use the RSG-GAS spent fuels effectively as a gamma irradiator for certain applications

  9. Imminent: Irradiation Testing of (Th,Pu)O{sub 2} Fuel - 13560

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Julian F. [Thor Energy AS, Sommerrogaten 13-15, Oslo 0255 (Norway); Franceschini, Fausto [Westinghouse Electric Company LLC, 1000 Cranberry Woods Drive, Cranberry Township, PA 16066 (United States)

    2013-07-01

    Commercial-prototype thorium-plutonium oxide (Th-MOX) fuel pellets have been loaded into the material test reactor in Halden, Norway. The fuel is being operated at full power - with instrumentation - in simulated LWR / PHWR conditions and its behaviour is measured 'on-line' as it operates to high burn-up. This is a vital test on the commercialization pathway for this robust new thoria-based fuel. The performance data that is collected will support a fuel modeling effort to support its safety qualification. Several different samples of Th-MOX fuel will be tested, thereby collecting information on ceramic behaviours and their microstructure dependency. The fuel-cycle reasoning underpinning the test campaign is that commercial Th- MOX fuels are an achievable intermediate / near-term SNF management strategy that integrates well with a fast reactor future. (authors)

  10. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  11. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  12. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  13. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    Energy Technology Data Exchange (ETDEWEB)

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  14. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  15. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  16. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    International Nuclear Information System (INIS)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  17. Use of TRIGA flip fuel for improved in-core irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    Use of standard TRIGA fuel (20% enriched uranium) in a reactor provides a suitable facility for in-core irradiations. However, large numbers of in-core samples irradiated for long periods (many months) can be handled more economically with a TRIGA loaded with FLIP fuel. As an example, ten or more in-core thermionic devices (each worth 50 to 80 cents with respect to a water-filled position) were irradiated in the Mark III TRIGA at General Atomic Company for 18 months with only a modest change in excess reactivity due to core burnup. A core loading of FLIP fuel has been added to the General Atomic Mark F reactor in order to provide numerous in-core irradiation sites for the production of radioisotopes. Since the worth of a 500-gram sample of a molybdenum compound (used for the production of {sup 99}Mo) is about 25 to 50 cents with respect to a water-filled position, use of a FLIP- TRIGA core will permit the irradiation of more than 5 kilograms of a molybdenum compound. A procedure is under development for the production of {sup 99}Mo with relatively high specific activity. Several techniques to concentrate {sup 99}Mo have been tested experimentally. The results will be reported. (author)

  18. In-cell facility for performing mechanical-property tests on irradiated cladding

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Haglund, R.C.; Mattas, R.F.

    1978-11-01

    A new facility was developed for testing cladding sections of LWR fuel rods. This facility and the accompanying test procedures have improved the level of in-cell mechanical-testing capabilities, making them comparable to existing capabilities for unirradiated cladding. The new facility is currently being used to study the susceptibility of irradiated Zircaloy cladding from LWR fuel rods to iodine stress-corrosion cracking. Preliminary testing results indicate a systematic effect of temperature, stress and irradiation on the susceptibility of annealed and stress-relieved Zircaloy-2. Experimental data obtained to date are being used to develop a stress-corrosion cracking model for LWR fuel rod failure. SEM examination of the undisturbed fracture surface of specimens that failed by pinhole leakage provides useful information on crack propagation and morphology

  19. Feasibility study on the transient fuel test loop installation

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lee, C. Y.

    1997-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. The objective of this study is to investigate and analyze the test capsules and loops in research reactors of the other countries and to design preliminarily the eligible transient fuel test facility to be installed in HANARO. The principle subjects of this study are to analyze the contents, kinds and scopes of the irradiation test facilities for nuclear technology development. The guidances for the basic and detail design of the transient fuel test facility in the future are presented. The investigation and analysis of various kinds of test facilities that are now in operation at the research reactors of nuclear advanced countries are carried out. Based on the design data of HANARO the design materials for an eligible transient fuel test facility comprises two pacts : namely, in pile test fuel in reactor core site, and out of pile system regulates the experimental conditions in the in pile test section. Especially for power ramping and cycling selection of the eligible power variation equipment in HANARO is carried out. (author). 13 refs., 4 tabs., 46 figs

  20. Overview of fuel testing capabilities at the OECD Halden reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W [Institutt for Atomenergi, Halden (Norway). OECD Halden Reaktor Projekt

    1994-12-31

    Fuel performance and reliability investigations at the OECD Haiden Reactor Project are described. They are supported by a variety of irradiation rigs, suitable irradiation techniques and a range of instrumentation. Testing capabilities and applications are mainly aimed at exploring mechanisms of fuel behaviour and high burnup. Examples of fuel performance taken from data provided by the Halden Project for the IAEA Co-ordinated Research Programme FUMEX are presented. A number of heavily instrumented rigs to suit different test objects have been developed: base irradiation rig, gas meter rig, diameter measurement rig, ramp rig, gas flow rig, instrumented fuel assembly. In core-measurements and variety of sensors as : fuel thermocouples, bellows pressure transducers, fuel stack elongation detectors, cladding diameter gauge and cladding elongation detectors have been used. Techniques which make it possible to obtain reliable data for all relevant burnups from beginning-of-life to ultra high exposure reaching 100 Mwd/kg UO{sub 2} are described. 7 figs., 3 refs.

  1. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  2. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  3. Preliminary nuclear design for test MOX Fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  4. Management of irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Lupien, Mario

    1985-01-01

    The nuclear industry, like any other industrial activity, generates waste and, since these radioactive products are known to be hazardous both to man and his natural environment, they are subject to stringent controls. The irradiated fuel is also highly radioactive and remains so for thousands of years. It is estimated that by the year 2000, nuclear reactors in Canada alone will have produced some 50 Gg of radioactive fuel which is stored at the nuclear plant site itself. The nuclear industry plays a leading role in the research and development effort to find suitable waste-management methods. Its R and D programs cover many scientific fields, including chemistry, and therefore demand a considerable amount of coordination. The knowledge acquired in this multidisciplinary context should form a basis for solving many of today's industrial-waste problems. This paper describes the various stages in the long management process. In the medium term, the irradiated fuel will be stored in surface installations but the long-term solution proposed is to emplace the used fuel or the fuel recycle waste deep underground in a stable geologic formation

  5. Some results on development, irradiation and post-irradiation examinations of fuels for fast reactor-actinide burner (MOX and inert matrix fuel)

    International Nuclear Information System (INIS)

    Poplavsky, V.; Zabudko, L.; Moseev, L.; Rogozkin, B.; Kurina, I.

    1996-01-01

    Studies performed have shown principal feasibility of the BN-600 and BN-800 cores to achieve high efficiency of Pu burning when MOX fuel with Pu content up to 45% is used. Valuable experience on irradiation behaviour of oxide fuel with high Pu content (100%) was gained as a result of operation of two BR-10 core loadings where the maximum burnup 14 at.% was reached. Post-irradiation examination (PIE) allowed to reveal some specific features of the fuel with high plutonium content. Principal irradiation and PIE results are presented in the paper. Use of new fuel without U-238 provides the maximum burning capability as in this case the conversion ratio is reduced to zero. Technological investigations of inert matrix fuels have been continued now. Zirconium carbide, zirconium nitride, magnesium oxide and other matrix materials are under consideration. Inert matrices selection criteria are discussed in the paper. Results of technological study, of irradiation in the BOR-60 reactor and PIE results of some inert matrix fuels are summarized in this report. (author). 2 refs, 1 fig., 3 tabs

  6. Testing of HTR UO{sub 2} TRISO fuels in AVR and in material test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kania, Michael J., E-mail: MichaelJKania@googlemail.com [Retired from Lockheed Martin Corp, 20 Beach Road, Averill Park, NY 12018 (United States); Nabielek, Heinz, E-mail: heinznabielek@me.com [Retired from Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Verfondern, Karl [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Allelein, Hans-Josef [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, 52072 Aachen (Germany)

    2013-10-15

    The German High Temperature Reactor Fuel Development Program successfully developed, licensed and manufactured many thousands of spherical fuel elements that were used to power the experimental AVR reactor and the commercial THTR reactor. In the 1970s, this program extended the performance envelope of HTR fuels by developing and qualifying the TRISO-coated particle system. Irradiation testing in real-time AVR tests and accelerated MTR tests demonstrated the superior manufacturing process of this fuel and its irradiation performance. In the 1980s, another program direction change was made to a low enriched UO{sub 2} TRISO-coated particle system coupled with high-quality manufacturing specifications designed to meet new HTR plant design needs. These needs included requirements for inherent safety under normal operation and accident conditions. Again, the German fuel development program met and exceeded these challenges by manufacturing and qualifying the low-enriched UO{sub 2} TRISO-fuel system for HTR systems with steam generation, gas-turbine systems and very high temperature process heat applications. Fuel elements were manufactured in production scale facilities that contained near defect free UO{sub 2} TRISO coated particles, homogeneously distributed within a graphite matrix with very low levels of uranium contamination. Good irradiation performance for these elements was demonstrated under normal operating conditions to 12% FIMA and under accident conditions not exceeding 1600 °C.

  7. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.

  8. Irradiation of pressurized water reactor fuel rods in the Forschungsreaktor Juelich 2

    International Nuclear Information System (INIS)

    Gaertner, M.

    1978-10-01

    Test fuel rods have been irradiated in FRJ-2 to study the interaction between fuel and cladding as well as hydride orientation stability in the prehydrided cladding. The fuel rods achieved burn-ups of 3.500 to 10.000 MWd/tU at surface temperatures of 333 0 C and power levels up to 620 W/cm. (orig.) [de

  9. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  10. CANFLEX fuel bundle cross-flow endurance test (test report)

    International Nuclear Information System (INIS)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs

  11. CANFLEX fuel bundle cross-flow endurance test (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.

  12. Fission gas behaviour and interdiffusion layer growth in in-pile and out-of-pile irradiated U-Mo/Al nuclear fuels

    International Nuclear Information System (INIS)

    Zweifel, Tobias

    2014-01-01

    Worldwide, research and test reactors are to convert their fuel from highly towards lower enriched uranium, among them the FRM II. One prospective fuel is an alloy of uranium and molybdenum (abbr. U-Mo). Test irradiations showed an insufficient irradiation behavior of this new fuel due to the growth of an interdiffusion layer (abbr. IDL) between the U-Mo fuel and the surrounding Al matrix. Furthermore, this layer accumulates fission gases. In this work, heavy ion irradiated U-Mo/Al layer systems were studied and compared to in-reactor irradiated fuel to study the fission gas dynamics. It is demonstrated that the gas behavior is identical for both in-reactor and out-of-reactor approaches.

  13. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  14. EDF requirements for hot cells examinations on irradiated fuel

    International Nuclear Information System (INIS)

    Segura, J.C.; Ducros, G.

    2002-01-01

    The objectives of increasing French Nuclear Power Plants (NPP) availability while lengthening the fuel irradiation cycle and reaching higher burnups lead EDF to carry out on site and hot cell examinations. The data issued from such fuel behaviour monitoring programmes will be used to ascertain that the design criteria are met. Data are also needed for modelling, development and validation. The paper deals quickly with the logistics linked to the selection and transport of fuel rods from NPP to hot cell laboratory. Hot cell PIEs remain a valuable method to obtain data in such fields as PCI (Pellet-Cladding Interaction), internal pressure, FGR (Fission Gas Release), oxide thickness, metallurgical aspects. The paper introduces burnup determination methods, inner pressure evaluation, preparation of samples for further irradiation such as power ramps for PCI and RIA (Reactivity Initiated Accident) testing. The nuclear microprobe of Perre Suee laboratory is also presented. (author)

  15. Post-irradiation examination of a 13000C-HTR fuel experiment Project J 96.M3

    International Nuclear Information System (INIS)

    Bueger, J. de; Roettger, H.

    1977-01-01

    A large variety of loose coated fuel particles have been irradiated in the BR2 at Mol/Belgium at temperatures between 1200 0 C and 1400 0 C and up to a fast neutron fluence of 1.2x1022 cm -2 (E>0.1 MeV) as a Euratom sponsored experiment for the advanced testing of HTR fuel. The specimens have been provided by Belgonucleaire and the Dragon Project. A short description of the experiment as well as the results of post-irradiation examination mainly carried out at Petten (N.H.), The Netherlands, are presented here. The post-irradiation examination has shown that the required performance can be achieved by a number of the tested fuel specimens without serious damage

  16. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  17. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  18. Modeling of coated fuel particles irradiation behavior

    International Nuclear Information System (INIS)

    Liang Tongxiang; Phelip, M.

    2006-01-01

    In this report, PANAMA code was used to estimate the CP performance under normal and accident condition. Under the normal irradiation test (1000 degree C 625 efpd, 10% FIMA), for intact CP fuel, failure fraction is in the level of 10 -7 . As-fabricated SiC failed particles results in the through coatings failed particles much earlier than the intact particles does, OPyC layer does not fail immediately after irradiation starts. The significant failures start at beyond the burnup of about 7% FIMA. Under the accident condition, the calculated results showed that when the heating temperature is much higher than 1850 degree C, the failure fraction of coated particle can reach the level of 1 percent. The CP fuel fails significantly if it has a buffer layer thinner than 65 urn, SiC layer thinner than 30 μm. High burnup CP need to develop small size kernel, thick buffer layer and thick SiC layer. (authors)

  19. Current and prospective fuel test programmes in the MIR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, A.L.; Burukin, A.V.; Iljenko, S.A.; Ovchinnikov, V.A.; Shulimov, V.N.; Smirnov, V.P. [State Scientific Centre of Russia Research Institute of Atomic Reactors, Ulyanovsk region (Russian Federation)

    2007-07-01

    MIR reactor is a heterogeneous thermal reactor with a moderator and a reflector made of metal beryllium, it has a channel-type design and is placed in a water pool. MIR reactor is mainly designed for testing fragments of fuel elements and fuel assemblies (FA) of different nuclear power reactor types under normal (stationary and transient) operating conditions as well as emergency situations. At present six test loop facilities are being operated (2 PWR loops, 2 BWR loops and 2 steam coolant loops). The majority of current fuel tests is conducted for improving and upgrading the Russian PWR fuel, these tests involve issues such as: -) long term tests of short-size rods with different modifications of cladding materials and fuel pellets; -) further irradiation of power plant re-fabricated and full-size fuel rods up to achieving 80 MW*d/kg U; -) experiments with leaking fuel rods at different burnups and under transient conditions; -) continuation of the RAMP type experiments at high burnup of fuel; and -) in-pile tests with simulation of LOCA and RIA type accidents. Testing of the LEU (low enrichment uranium) research reactor fuel is conducted within the framework of the RERTR programme. Upgrading of the gas cooled and steam cooled loop facilities is scheduled for testing the HTGR fuel and sub-critical water-cooled reactor, correspondingly. The present paper describes the major programs of the WWER high burn-up fuel behavior study in the MIR reactor, capabilities of the applied techniques and some results of the performed irradiation tests. (authors)

  20. Irradiation behaviors of coated fuel particles, (3)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Iwamoto, Kazumi; Ikawa, Katsuichi

    1980-07-01

    This report is concerning to the irradiation experiments of the coated fuel particles, which were performed by 72F-6A and 72F-7A capsules in JMTR. The coated particles referred to the preliminary design of VHTR were prepared for the experiments in 1972 and 1973. 72F-6A capsule was irradiated at G-10 hole of JMTR fuel zone for 2 reactor cycles, and 72F-7A capsule had been planned to be irradiated at the same irradiation hole before 72F-6A. However, due to slight leak of the gaseous fission products into the vacuum system controlling irradiation temperature, irradiation of 72F-7A capsule was ceased after 85 hrs since the beginning. In the post irradiation examination, inspection to surface appearance, ceramography, X-ray microradiography and acid leaching for the irradiated particle samples were made, and crushing strength of the two particle samples was measured. (author)

  1. Proposal for a project to irradiation of fuel rods in hydraulic rabbit loop of R-2 reactor, Studsvik, Sweden

    International Nuclear Information System (INIS)

    Almeida, M.R.; Ambrozio, F.; Carvalho, S.R.B.

    1974-01-01

    It is planning to perform irradiation test on 21 little samples during a short time. These samples are formed by fuel rods covered with zircaloy 4. It contains UO sub(2) natural pellets and UO sub(2) enriched pellets. The type of fuel and the effects of some parameters, such as diametral gap, irradiation time, power liner density, thermal treatment, over the performance of the samples, will be studied. The parameters variations will be measured by pre and post-irradiation tests. Computer codes has been used in order to simulate the samples performance. The safety test performance via those simulations leads to conclusions that irradiation does not cause damage to integrity of the fuel rods. (M.I.)

  2. Analysis of Radial Plutonium Isotope Distribution in Irradiated Test MOX Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Lee, Byung Ho; Koo, Yang Hyun; Kim, Han Soo

    2009-01-15

    After Rod 3 and 6 (KAERI MOX) were irradiated in the Halden reactor, their post-irradiation examinations are being carried out now. In this report, PLUTON code was implemented to analyze Rod 3 and 6 (KAERI MOX). In the both rods, the ratio of a maximum burnup to an average burnup in the radial distribution was 1.3 and the contents of {sup 239}Pu tended to increase as the radial position approached the periphery of the fuel pellet. The detailed radial distribution of {sup 239}Pu and {sup 240}Pu, however, were somewhat different. To find the reason for this difference, the contents of Pu isotopes were investigated as the burnup increased. The content of {sup 239}Pu decreased with the burnup. The content of {sup 240}Pu increased with the burnup by the 20 GWd/tM but decreased over the 20 GWd/tM. The local burnup of Rod 3 is higher than that of Rod 6 due to the hole penetrated through the fuel rod. The content of {sup 239}Pu decreased more rapidly than that of {sup 240}Pu in the Rod 6 with the increased burnup. It resulted in a radial distribution of {sup 239}Pu and {sup 240}Pu similar to Rod 3. The ratio of Xe to Kr is a parameter to find where the fissions occur in the nuclear fuel. In both Rod 3 and 6, it was 18.3 in the whole fuel rod cross section, which showed that the fissions occurred in the plutonium.

  3. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  4. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  5. Test Results of PBMR Fuel Spheres

    International Nuclear Information System (INIS)

    Koshcheev, Konstantin; Diakov, Alexander; Beltyukov, Igor; Barybin, Andrey; Chernetsov, Mikhail

    2014-01-01

    Results of pre-irradiation testing of fuel spheres (FS) and coated particles (CP) manufactured by PBMR SOC (Republic of South Africa) are described. The stable high quality level of major characteristics (dimensions, CP coating structure, uranium-235 contamination of the FS matrix graphite and the outer PyC layer of the CP coating) are shown. Results of a methodical irradiation test of two FS in helium and neon medium at temperatures of 800 to 1300 °C with simultaneous determination of release-to-birth ratios for major gaseous fission products (GFP) are described. (author)

  6. The growth of intra-granular bubbles in post-irradiation annealed UO2 fuel

    International Nuclear Information System (INIS)

    White, R.J.

    2001-01-01

    Post-irradiation examinations of low temperature irradiated UO 2 reveal large numbers of very small intra-granular bubbles, typically of around 1 nm diameter. During high temperature reactor transients these bubbles act as sinks for fission gas atoms and vacancies and can give rise to large volumetric swellings, sometimes of the order of 10%. Under irradiation conditions, the nucleation and growth of these bubbles is determined by a balance between irradiation-induced nucleation, diffusional growth and an irradiation induced re-solution mechanism. This conceptual picture is, however, incomplete because in the absence of irradiation the model predicts that the bubble population present from the pre-irradiation would act as the dominant sink for fission gas atoms resulting in large intra-granular swellings and little or no fission gas release. In practice, large fission gas releases are observed from post-irradiation annealed fuel. A recent series of experiments addressed the issue of fission gas release and swelling in post-irradiation annealed UO 2 originating from Advanced Gas Cooled Reactor (AGR) fuel which had been ramp tested in the Halden Test reactor. Specimens of fuel were subjected to transient heating at ramp rates of 0.5 deg. C/s and 20 deg. C/s to target temperatures between 1600 deg. C and 1900 deg. C. The release of fission gas was monitored during the tests. Subsequently, the fuel was subjected to post-irradiation examination involving detailed Scanning Electron Microscopy (SEM) analysis. Bubble-size distributions were obtained from seventeen specimens, which entailed the measurement of nearly 26,000 intra-granular bubbles. The analysis reveals that the bubble densities remain approximately invariant during the anneals and the bubble-size distributions exhibit long exponential tails in which the largest bubbles are present in concentrations of 10 4 or 10 5 lower than the concentrations of the average sized bubbles. Detailed modelling of the bubble

  7. Description of the PIE facility for research reactors irradiated fuels in CNEA

    International Nuclear Information System (INIS)

    Bisca, A.; Coronel, R.; Homberger, V.; Quinteros, A.; Ratner, M.

    2002-01-01

    The PIE Facility (LAPEP), located at the Ezeiza Atomic Center (CAE), was designed to carry out destructive and non-destructive post-irradiation examinations (PIE) on research and power reactor spent fuels, reactor internals and other irradiated materials, and to perform studies related with: Station lifetime extension; Fuel performance; Development of new fuels; and Failures and determination of their causes. LAPEP is a relevant facility where research and development can be carried out. It is worth mentioning that in this facility the PIE corresponding to the Surveillance Program for the Atucha I Nuclear Power Plant (CNA-1) were successfully performed. Materials testing during the CNA-1 repair and the study of failures in fuel element plugs of the Embalse Nuclear Power Plant (CNE) were also performed. (author)

  8. Experimental irradiation of UMo fuel: Pie results and modeling of fuel behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Plancq, D.; Huet, F.; Guigon, B.; Lemoine, P.; Sacristan, P.; Hofman, G.; Snelgrove, J.; Rest, J.; Hayes, S.; Meyer, M.; Vacelet, H.; Leborgne, E.; Dassel, G.

    2002-01-01

    Seven full-sized U Mo plates containing ca. 8 g/cm 3 of uranium in the fuel meat have been irradiated since the beginning of the French U Mo development program. The first three of them with 20% 235 U enrichment were irradiated at maximum surfacic power under 150 W/cm 2 in the OSIRIS reactor up to 50% burn-up and are under examination. Their global behaviour is satisfactory: no failure and a low swelling. The other four plates were irradiated in the HFR Petten at maximum surfacic power between 150 and 250 W/cm 2 with two enrichments 20 and 35%. The experiment was stopped after two cycles due to a fuel failure. The post- irradiation examinations were completed in 2001 in Petten. Examinations showed a correct behaviour of 20% enriched plates and an abnormal behaviour of the two other plates (35%-enriched) with a clad failure on the plate 4. The fuel failure appears to result from a combination of factors that led to high corrosion cladding and high fuel meat temperatures. (author)

  9. Design considerations and operating experience with wet storage of Ontario Hydro's irradiated fuel

    International Nuclear Information System (INIS)

    Frost, C.R.; Naqvi, S.J.; McEachran, R.A.

    1987-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor irradiated fuel storage water pools (or irradiated fuel bays) are described. There are two types of bay known respectively as primary bays and auxiliary bays, used for at-reactor irradiated fuel storage. Irradiated fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. The major considerations in irradiated fuel bay design, including site-specific requirements, reliability and quality assurance, are discussed. The monitoring of critical fuel bay components, such as bay liners, the development of high storage density fuel containers, and the use of several irradiated fuel bays at each reactor site have all contributed to the safe handling of the large quantities of irradiated fuel over a period of about 25 years. Routine operation of the irradiated fuel bays and some unusual bay operational events are described. For safety considerations, the irradiated fuel in storage must retain its integrity. Also, as fuel storage is an interim process, likely for 50 years or more, the irradiated fuel should be retrievable for downstream fuel management phases such as reprocessing or disposal. A long-term experimental program is being used to monitor the integrity of irradiated fuel in long-term wet storage. The well characterized fuel, some of which has been in wet storage since 1962 is periodically examined for possible deterioration. The evidence from this program indicates that there will be no significant change in irradiated fuel integrity (and retrievability) over a 50 year wet storage period

  10. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  11. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  12. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content

  13. Characterization of spent fuel approved testing material: ATM-106

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thornhill, C.K.

    1988-10-01

    The characterization data obtained to date are described for Approved Testing Material (ATM)-106 spent fuel from Assembly BT03 of pressurized-water reactor Calvert Cliffs No. 1. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well- characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCWRM) program. ATM-106 consists of 20 full-length irradiated fuel rods with rod-average burnups of about 3700 GJ/kgM (43 MWd/kgM) and expected fission gas release of /approximately/10%. Characterization data include (1) as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) calculated nuclide inventories and radioactivities in the fuel and cladding; and (6) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel rod are being conducted and will be included in planned revisions of this report. 12 refs., 110 figs., 81 tabs

  14. CEA fuel pencil qualification under irradiation: from component conception to fuel assembly irradiation in a power reactor

    International Nuclear Information System (INIS)

    Marin, J.-F.; Pillet, Claude; Francois, Bernard; Morize, Pierre; Petitgrand, Sylvie; Atabek, R.-M.; Houdaille, Brigitte.

    1981-06-01

    Fabrication of fuel pins made of uranium oxide pellets and of a zircaloy 4 cladding is described. Irradiation experiment results are given. Thermomechanical behavior of the fuel pin in a power reactor is examined [fr

  15. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  16. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  17. Post-irradiation examination of fuel elements of Tarapur Atomic Power Station (Report-I)

    International Nuclear Information System (INIS)

    Bahl, J.K.; Sah, D.N.; Chatterjee, S.; Sivaramkrishnan, K.S.

    1979-01-01

    Detailed post-irradiation examination of three initial load fuel elements of the Tarapur Atomic Power Station (TAPS) has been carried out. The causes of the element failures have been analysed. It was observed that almost 90% of the length of the elements exoerienced nodular corrosion. It has been estimated that nodular corrosion would seriously affect the wall thickness and surface temperature of higher rated elements. Lunar shaped fret marks have also been observed at some spacer grid locations in the elements. The depth of the largest fret mark was measured to be 16.9% clad wall thickness. Detailed metallographic examination of the clad and fuel in the three elements has been done. The temperatures at different structural regions of the fuel cross-sections have been estimated. The change in fuel density during irradiation has been evaluated by comparing the irradiated fuel diameter with the mean pellet design diameter. The performance of the end plug welds and spacer grid sites in the elements has been assessed. The burnup distribution along the length of the elements has been evaluated by gamma scanning. The redistribution of fission products in the fuel has been examined by gamma scanning and beta-gamma autoradiography. Mechanical properties of the irradiated cladding have been examined by ring tensile testing. (auth.)

  18. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  19. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  20. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M.

    1992-11-01

    This report discusses three furnace heating tests which were conducted with irradiated, HT9-clad and U-19wt.%Pu-l0wt.%Zr-alloy fuel, Mk-V-type fuel elements in the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory, Illinois. In general, very significant safety margins for fuel-element cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results will be given, as well as discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction found in high-temperature testing of irradiated metallic fuel elements

  1. The transportation of PuO2 and MOX fuel and management of irradiated MOX fuel

    International Nuclear Information System (INIS)

    Dyck, H.P.; Rawl, R.; Durpel, L. van den

    2000-01-01

    Information is given on the transportation of PuO 2 and mixed-oxide (MOX) fuel, the regulatory requirements for transportation, the packages used and the security provisions for transports. The experience with and management of irradiated MOX fuel and the reprocessing of MOX fuel are described. Information on the amount of MOX fuel irradiated is provided. (author)

  2. Post-irradiation examination of U3SIX-AL fuel element manufactured and irradiated in Argentina

    International Nuclear Information System (INIS)

    Ruggirello, Gabriel; Calabroni, Hector; Sanchez, Miguel; Hofman, Gerard

    2002-01-01

    As a part of CNEA's qualification program as a supplier of low enriched Al-U 3 Si 2 dispersion fuel elements for research reactors, a post irradiation examination (PIE) of the first prototype of this kind, called P-04, manufactured and irradiated in Argentina, was carried out. The main purpose of this work was to set up various standard PIE techniques in the hot cell, looking forward to the next steps of the qualification program, as well as to acquire experience on the behaviour of this nuclear material and on the control of the manufacturing process. After an appropriate cooling period, on May 2000 the P-04 was transported to the hot cell in Ezeiza Atomic Centre. Non destructive and destructive tests were performed following the PIE procedures developed in Argonne National Laboratory (ANL), this mainly included dimensional measurement, microstructural observations and chemical burn-up analyses. The methodology and results of which are outlined in this report. The results obtained show a behaviour consistent with that of other fuel elements of the same kind, tested previously. On the other hand the results of this PIE, specially those concerning burn-up analysis and stability and corrosion behaviour of the fuel plates, will be of use for the IAEA Regional Program on the characterization of MTR spent fuel. (author)

  3. Fabrication of MOX fuel element clusters for irradiation in PWL, CIRUS

    International Nuclear Information System (INIS)

    Roy, P.R.; Purushotham, D.S.C.; Majumdar, S.

    1983-01-01

    Three clusters, each containing 6 zircaloy-2 clad short length fuel elements of either MOX or UO 2 fuel pellets were fabricated for irradiation in pressurized water loop of CIRUS. The major objectives of the programme were: (a) to optimize the various fabrication parameters for developing a flow sheet for MOX fuel element fabrication; (b) to study the performance of the MOX fuel elements at a peak heat flux of 110 W/cm 2 ; and (c) to study the effect of various fuel pellet design changes on the behaviour of the fuel element under irradiation. Two clusters, one each of UO 2 and MOX, have been successfully irradiated to the required burn-up level and are now awaiting post irradiation examinations. The third MOX cluster is still undergoing irradiation. Fabrication of these fuel elements involved considerable amount of developing work related to the fabrication of the MOX fuel pellets and the element welding technique and is reported in detail in this report. (author)

  4. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  5. The Design and Manufacturing Report of Plug Type Non-Instrumented Rig for Irradiation Test in HANARO OR Hole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Bang, Je Geon; Lim, Ik Sung; Kim, Sun Ki; Yang, Yong Sik; Song, Kun Woo

    2008-09-15

    This project is developed the plug type non-instrumented irradiation test rig of the advanced nuclear fuel in HANARO for pursuit advanced performance in High Performance Fuel Technology Development as a part Nuclear Mid and Long-term R and D Program. This irradiation rig was confirmed the integrity and HANARO core compatibility by the optimum design and the thermal hydraulic out-pile test in FIVPET. The characteristic of plug type non-instrument rig is to possible irradiation test of variable in-pile condition and reduced the wastes for reusable as function. This plug type non-instrumented rig was satisfied the quality assurance requirements and written out the end of manufacturing report. This plug type non-instrumented rig is adopt to the irradiation test for nuclear fuel irradiation test in HANARO OR hole.

  6. Preliminary decay heat calculations for the fuel loaded irradiation loop device of the RMB multipurpose Brazilian reactor

    Energy Technology Data Exchange (ETDEWEB)

    Campolina, Daniel; Costa, Antonio Carlos L. da; Andrade, Edison P., E-mail: campolina@cdtn.br, E-mail: aclp@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2017-07-01

    The structuring project of the Brazilian Multipurpose Reactor (RMB) is responsible for meeting the capacity to develop and test materials and nuclear fuel for the Brazilian Nuclear Program. An irradiation test device (Loop) capable of performing fuel test for power reactor rods is being conceived for RMB reflector. In this work preliminary neutronic calculations have been carried out in order to determine parameters to the cooling system of the Loop basic design. The heat released as a result of radioactive decay of fuel samples was calculated using ORIGEN-ARP and it resulted less than 200 W after 1 hour of irradiation interruption. (author)

  7. Evaluation of the effect of probe design parameters on ECT signal and development of eddy current probe for irradiated fuel rods

    International Nuclear Information System (INIS)

    Kwank, S. W.; Han, Y. K.; Woo, S. K.; Kim, T. W.; Park, J. Y.; Kim, B. J.; Park, J. Y.

    1999-01-01

    Eddy current test(ECT) is used to inspect not only the failed fuel rods but also peripheral rods during repairing of the failed fuel rods, to detect internal defects in irradiated fuel rods which could not be detected by ultrasonic test and visual test, and to obtain the data for determining the root cause of fuel rod failure. This study evaluates the effect of properties of test article, irradiated fuel rods, on the impedance diagram in order to reduce the difficulty of ECT signal analysis. The optimum eddy current probe design conditions for inspecting the irradiated fuel rods, is estimate by using experimental equations and the probe is manufactured based on the estimated conditions. The performance of developed eddy current probe and the optimum conditions is proved through characteristic comparison experiment with the probe purchased from the foreign vendor

  8. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  9. Irradiation behaviour of a 500 mm long hollow U3Si fuel element irradiated under BLW conditions

    International Nuclear Information System (INIS)

    Feraday, M.A.; Chalder, G.H.; Cotnam, K.D.

    1969-07-01

    A 500 mm long Zircaloy-clad element of U 3 Si (4.3 wt% Si) containing a 13% central void was irradiated to an average burnup of 3600 MWd/tonne U at an average linear power output of 790 W/cm, in boiling water coolant at 55 bars pressure. A larger diameter increase (1.5%) at the mid-plane of the element than elsewhere was attributed to the reduced restraint imposed on the fuel in this area as a consequence of β annealing a section of the cold worked sheath. Diameter increases in the cold worked portions of the sheath (average 0.7%) were greater than in similar elements irradiated in pressurized water at 96 bars pressure the difference is attributed to higher linear power output of the element in this test. External swelling of the element before filling of the central void was complete is attributed to the higher silicon content of the fuel compared with previous tests. No reaction between U 3 Si and Zircaloy was observed at a fuel sheath interface temperature near 400 o C. (author)

  10. 78 FR 50313 - Physical Protection of Irradiated Reactor Fuel in Transit

    Science.gov (United States)

    2013-08-19

    ... Irradiated Reactor Fuel in Transit AGENCY: Nuclear Regulatory Commission. ACTION: Orders; rescission. SUMMARY... the NRC published a final rule, ``Physical Protection of Irradiated Fuel in Transit,'' on May 20, 2013... of Irradiated Reactor Fuel in Transit'' (RIN 3150-AI64; NRC-2009-0163). The final rule incorporates...

  11. Feasibility study of the Dragon reactor for HTGR fuel testing

    International Nuclear Information System (INIS)

    Wallroth, C.F.

    1975-01-01

    The Organization of European Community Development (OECD) Dragon high-temperature reactor project has performed HTGR fuel and fuel element testing for about 10 years. To date, a total of about 250 fuel elements have been irradiated and the test program continues. The feasibility of using this test facility for HTGR fuel testing, giving special consideration to U. S. needs, is evaluated. A detailed description for design, preparation, and data acquisition of a test experiment is given together with all possible options on supporting work, which could be carried out by the experienced Dragon project staff. 11 references. (U.S.)

  12. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  13. Characterization of spent fuel approved testing material---ATM-105

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

  14. Irradiation of a 19 pin subassembly with mixed carbide fuel in KNK II

    Science.gov (United States)

    Geithoff, D.; Mühling, G.; Richter, K.

    1992-06-01

    The presentation deals with the fabrication, irradiation and nondestructive postirradiation examinations of LMR fuel pins with mixed (U, Pu)-carbide fuels. The mixed carbide fuel was fabricated by the European Institute of Transuranium Elements using various fabrication procedures. Fuel composition varied therefore in a wide range of tolerances with respect to oxygen and phase content and microstructure. The 19 carbide pins were irradiated in the fast neutron flux of the KNK II reactor to a burn-up of about 7 at% without any failure in the centre of a KNK "carrier element" at a maximum linear rating of 800 W/cm. After dismantling in the Hot Cells of KfK nondestructive examinations were carried out comprising dimensional controls, radiography, γ-scanning and eddy-current testing. The results indicate differences in fuel behaviour with respect to composition of the fuel.

  15. Irradiation of Argentine MOX fuels: Post-irradiation results and analysis

    International Nuclear Information System (INIS)

    Marino, A.C.; Perez, E.; Adelfang, P.

    1997-01-01

    The irradiation of the first Argentine prototypes of PHWR MOX fuels began in 1986. These experiments were made in the HFR-Petten reactor, Holland. The rods were prepared and controlled in the CNEA's facility. The postirradiation examinations were performed in the Kernforschungszentrum, Karlsruhe, Germany and in the JRC, Petten. The first rod has been used for destructive pre-irradiation analysis. The second one as a pathfinder to adjust systems in the HFR. Two additional rods including iodine doped pellets were intended to simulate 15000 MWd/T(M) burnup. The remaining two rods were irradiated until 15000 MWd/T(M) (BU15 experiment). One of them underwent a final ramp with the aim of verifying fabrication processes and studying the behaviour under power transients. BACO code was used to define the power histories and to analyze the experiments. This paper presents the postirradiation examinations for the BU15 experiments and a comparison with the BACO outputs for the rod that presented a failure during the ramp test of the BU15 experiment. (author). 17 refs, 30 figs, 5 tabs

  16. Irradiation facilitates at the advanced test reactor

    International Nuclear Information System (INIS)

    Grover, Blaine S.

    2006-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC - formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950's with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The paper has the following contents: ATR description and capabilities; ATR operations, quality and safety requirements; Static capsule experiments; Lead experiments; Irradiation test vehicle; In-pile loop experiments; Gas test loop; Future testing; Support facilities at RTC; Conclusions. To summarize, the ATR has a long history in fuel and material irradiations, and will be fulfilling a critical role in the future fuel and material testing necessary to develop the next generation reactor systems and advanced fuel cycles. The

  17. Postirradiation examination results for the Irradiation Effects Test Series IE-ST-2, Rod IE-002

    International Nuclear Information System (INIS)

    Murdock, B.A.

    1977-12-01

    A postirradiation examination was conducted on a zircaloy-clad, UO 2 -fueled, pressurized water reactor (PWR) type rod which had been tested in the Power Burst Facility as part of the Irradiation Effects Test Series of the Thermal Fuels Behavior Program. The fuel rod, previously irradiated to a burnup of 15,800 MWd/t was subjected to a power ramp from 28 to 55 kW/m peak power at an average ramp rate of 4 kW/m/min. Posttest fuel restructuring and relocation, fission product redistribution, and fuel rod cladding deformation were evaluated and analyzed

  18. Irradiation behavior of low-enriched U/sub 6/Fe-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, G.L.; Domagala, R.F.; Copeland, G.L.

    1987-10-01

    An irradiation test of miniature fuel plates containing low-enriched (20% /sup 235/U)U/sub 6/Fe dispersed and clad in Al was performed. The postirradiation examination shows U/sub 6/Fe to form extensive fission gas bubbles at burnups of only approx. = 20% of the original 20% fuel enrichment. Plate failure by fission gas-driven pillowing occurred at approx. = 40% burnup. This places U/sub 6/FE at the lowest burnup capability among low enriched dispersion fuels that have been tested for use in research and test reactors

  19. Fuel fabrication processes, design and experimental conditions for the joint US-Swiss mixed carbide test in FFTF (AC-3 test)

    International Nuclear Information System (INIS)

    Stratton, R.W.; Ledergerber, G.; Ingold, F.; Latimer, T.W.; Chidester, K.M.

    1993-01-01

    The preparation of mixed carbide fuel for a joint (US-Swiss) irradiation test in the US Fast Flux Test Facility (FFTF) is described, together with the experiment design and the irradiation conditions. Two fabrication routes were compared. The US produced 66 fuel pins containing pellet fuel via the powder-pellet (dry) route, and the Swiss group produced 25 sphere pac pins of mixed carbide using the internal gelation (wet) route. Both sets of fuel met all t the requirements of the specifications concerning soichiometry, chemical composition and structure. The pin designs were as similar as possible. The test operated successfully in the FFTF for 620 effective full power days until October 1988 and reached over 8% burn up with peak powers of around 80 kW/m. The conclusions were that the choice of sphere pac or pellet fuel for reactor application is dependent on preferred differences in fabrication (e.g. economics and environmental factors) and not on differences in irradiation behaviour. (orig.)

  20. Dry storage of irradiated nuclear fuels and vitrified wastes

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A review is given of the work of GEC Energy Systems Ltd. over the years in the dry storage of irradiated fuel. The dry-storage module (designated as Cell 4) for irradiated magnox fuel recently constructed at Wylfa nuclear power station is described. Development work on the long-term dry storage of irradiated oxide fuels is reported. Four different methods of storage are compared. These are the pond, vault, cask and caisson stores. It is concluded that there are important advantages with the passive air-cooled ESL dry stove. (U.K.)

  1. Conceptual design of experimental LFR fuel element for testing in TRIGA reactor, ACPR zone

    International Nuclear Information System (INIS)

    Nastase, D.; Olteanu, G.; Ioan, M.; Pauna, E.

    2013-01-01

    In the pulsed area of the TRIGA reactor (ACPR zone), the irradiation tests called ''rapid insertions of reactivity on different types of nuclear fuel elements'' are usually realized. During these tests, in the fuel element high powers for a relatively short period of time (about few milliseconds) are generated. The generated heat in fuel pellets raise their central temperature to values over 100 deg C. The conceptual design of an experimental fuel element proposed to be developed and presented in this paper must fulfill a couple of requirements, as follows: to ensure full compatibility with irradiation device sample holder (compatibility is achieved through reduced length of the fuel stack pellets - this way assures a flow flattening on the entire length of the fuel element); to be compatible with the project of irradiated fuel bundle in Lead cooled Fast Reactors (LFR). (authors)

  2. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5 wt. % Fs) are presented. (The symbol 'Fs' designates fissium, a 'pseudo-element' which, in reality, is an alloy whose composition is representative of fission products that remain in reprocessed fuel). The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations with the measurements shows quantitative agreement in both the magnitude and the axial variation of the retained gas content. (orig.)

  3. Post-irradiation examination of a failed PHWR fuel bundle of KAPS-2

    International Nuclear Information System (INIS)

    Mishra, Prerna; Unnikrishnan, K.; Viswanathan, U.K.; Shriwastaw, R.S.; Singh, J.L.; Ouseph, P.M.; Alur, V.D.; Singh, H.N.; Anantharaman, S.; Sah, D.N.

    2006-08-01

    Detailed post irradiation examination was carried out on a PHWR fuel bundle irradiated at Kakrapar Atomic Power Station unit 2 (KAPS-2). The fuel bundle had failed early in life at a low burnup of 387 MWd/T. Non destructive and destructive examination was carried out to identify the cause of fuel failure. Visual examination and leak testing indicated failure in two fuel pins of the outer ring of the bundle in the form of axial cracks near the end plug location. Ultrasonic testing of the end cap weld indicated presence of lack of fusion type defect in the two fuel pins. No defect was found in other fuel pins of the bundle. Metallographic examination of fuel sections taken from the crack location in the failed fuel pin showed extensive restructuring of fuel. The centre temperature of the fuel had exceeded 1700 degC at this location in the failed fuel pin, whereas fuel centre temperature in the un-failed fuel pin was only about 1300 degC. Severe fuel clad interaction was observed in the failed fuel pin at and near the location of failure but no such interaction was observed in the un-failed fuel pins. Several incipient cracks originating from the inside surface were found in the cladding near failure location in addition to the main through wall crack. The incipient cracks were filled with interaction products and hydride platelets were present at tip of the cracks. It was concluded from the observations that the primary cause of failure was the presence of a part-wall defect in the end cap weld of the fuel pins. These defects opened up during reactor operation leading to steam ingress into the fuel, which caused high fuel centre temperature and severe fuel-cladding interaction resulting in secondary failures. A more stringent inspection and quality control of end plug weld during fabrication using ultrasonic test has been recommended to avoid such failure. (author)

  4. Fuel rod-grid interaction wear: in-reactor tests (LWBR development program)

    International Nuclear Information System (INIS)

    Stackhouse, R.M.

    1979-11-01

    Wear of the Zircaloy cladding of LWBR irradiation test fuel rods, resulting from relative motion between rod and rod support contacts, is reported. Measured wear depths were small, 0.0 to 2.7 mils, but are important in fuel element behavior assessment because of the local loss of cladding thickness, as well as the effect on grid spring forces that laterally restrain the rods. An empirical wear analysis model, based on out-of-pile tests, is presented. The model was used to calculate the wear on the irradiation test fuel rods attributed to a combination of up-and-down motions resulting from power and pressure/temperature cycling of the test reactor, flow-induced vibrations, and assembly handling scratches. The calculated depths are generally deeper than the measured depths

  5. SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/cladding interface, particularly the interaction zone that had developed during fabrication and irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-Mo powders of an irradiated dispersion fuel.

  6. Fuels and materials research under the high neutron fluence using a fast reactor Joyo and post-irradiation examination facilities

    International Nuclear Information System (INIS)

    Soga, Tomonori; Ito, Chikara; Aoyama, Takafumi; Suzuki, Soju

    2009-01-01

    The experimental fast reactor Joyo at Oarai Research and Development Center (ORDC) of Japan Atomic Energy Agency (JAEA) is Japan's sodium-cooled fast reactor (FR). In 2003, this reactor's upgrade to the 140MWt MK-III core was completed to increase the irradiation testing capability. The MK-III core provides the fast neutron flux of 4.0x10 15 n/cm 2 s as an irradiation test bed for improving the fuels and material of FR in Japan. Three post-irradiation examination (PIE) facilities named FMF, MMF and AGF related to Joyo are in ORDC. Irradiated subassemblies and core components are carried into the FMF (Fuel Monitoring Facility) and conducted nondestructive examinations. Each subassembly is disassembled to conduct some destructive examinations and to prepare the fuel and material samples for further detailed examinations. Fuel samples are sent to the AGF (Alpha-Gamma Facility), and material samples are sent to the MMF (Materials Monitoring Facility). These overall and elaborate data provided by PIE contribute to investigate the irradiation effect and behavior of fuels and materials. This facility complex is indispensable to promote the R and D of FR in Japan. And, the function and technology of irradiation test and PIE enable to contribute to the R and D of innovative fission or fusion reactor material which will be required to use under the high neutron exposure. (author)

  7. An equipment for the dimensional characterization of irradiated fuel channels

    International Nuclear Information System (INIS)

    Cederquist, H.

    1985-01-01

    The reuse of irradiated fuel channels in BWRs is highly beneficial. However, one prerequisite for reuse of a fuel channel is the detailed knowledge of its dimensions, which are affected by irradiation and pressure drop during operation. Therefore an equipment for fast and accurate dimensional measurement of irradiated fuel channels has been developed. The measurements are carried out when the fuel assembly is supported in the same manner as in the reactor core. The equipment utilizes stationary ultrasonic transducers that measure the fuel channel at a number of predetermined axial levels. Measurement data are fed into a computer which calculates the requested dimensional characteristics such as transversal flatness, bow, twist, side perpendicularity etc. Data are automatically printed for subsequent evaluation. Measurements can be performed both when the fuel channel is placed on a fuel bundle and on an empty fuel channel

  8. Results of tests with open fuel in KNK II

    International Nuclear Information System (INIS)

    Schmitz, G.

    1987-03-01

    For the operation of Liquid Metal Cooled Fast Breeder Reactors with cladding failures the consequences of increased contamination by fission products and fuel and the possibility of failure propagation to adjacent fuel pins due to fuel swelling have to be envisaged. To clarify some of these problems a KNK II test program involving open fuel was defined with the first experiments of this program being performed between October 1981 and May 1984. After the description of the test equipment and of the test program, the results will be presented on delayed neutron measurements, fission gas measurements and post irradiation examinations. The report will conclude with a discussion of the results [de

  9. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  10. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  11. Nondestructive assay methods for irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Hsue, S.T.; Crane, T.W.; Talbert, W.L. Jr.; Lee, J.C.

    1978-01-01

    This report is a review of the status of nondestructive assay (NDA) methods used to determine burnup and fissile content of irradiated nuclear fuels. The gamma-spectroscopy method measures gamma activities of certain fission products that are proportional to the burnup. Problems associated with this method are migration of the fission products and gamma-ray attenuation through the relatively dense fuel material. The attenuation correction is complicated by generally unknown activity distributions within the assemblies. The neutron methods, which usually involve active interrogation and prompt or delayed signal counting, are designed to assay the fissile content of the spent-fuel elements. Systems to assay highly enriched spent-fuel assemblies have been tested extensively. Feasibility studies have been reported of systems to assay light-water reactor spent-fuel assemblies. The slowing-down spectrometer and neutron resonance absorption methods can distinguish between the uranium and plutonium fissile contents, but they are limited to the assay of individual rods. We have summarized the status of NDA techniques for spent-fuel assay and present some subjects in need of further investigation. Accuracy of the burnup calculations for power reactors is also reviewed

  12. Development of thermocouple re-instrumentation technique for irradiated fuel rod. Techniques for making center hole into UO2 pellets and thermocouple re-instrumentation to fuel rod

    International Nuclear Information System (INIS)

    Shimizu, Michio; Saito, Junichi; Oshima, Kunio

    1995-07-01

    The information on FP gas pressure and centerline temperature of fuel pellets during power transient is important to study the pellet clad interaction (PCI) mechanism of high burnup LWR fuel rods. At the Department of JMTR, a re-instrumentation technique of FP gas pressure gage for an irradiated fuel rod was developed in 1990. Furthermore, a thermocouple re-instrumentation technique was successfully developed in 1994. Two steps were taken to carry out the development program of the thermocouple re-instrumentation technique. In the first step, a drilling technique was developed for making a center hole of the irradiated fuel pellets. Various drilling tests were carried out using dummy of fuel rods consisted of Ba 2 FeO 3 pellets and Zry-2 cladding. On this work it is important to keep the pellets just the state cracked at a power reactor. In these tests, the technique to fix the pellets by frozen CO 2 was used during the drilling work. Also, diamond drills were used to make the center hole. These tests were completed successfully. A center hole, 54mm depth and 2.5mm diameter, was realized by these methods. The second step of this program is the in-pile demonstration test on an irradiated fuel rod instrumented dually a thermocouple and FP gas pressure gage. The demonstration test was carried out at the JMTR in 1995. (author)

  13. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  14. Physics calculations for the RIA 1-3 irradiated rod test

    International Nuclear Information System (INIS)

    Young, T.E.

    1981-06-01

    The RIA 1-3 test would employ a square array of four pre-irradiated BWR rods to provide information on fuel failure modes and consequences of postulated Reactivity Initiated Accidents in power reactors. Calculations were done to: (1) predict R-O power distributions in the test rods for thermal-hydraulic and fuel-failure analysis; and (2) predict the steady-state and transient ratios of test fuel energy deposition to core energy deposition (Figures of Merit). Fission distributions for the test were computed with the RAFFL Monte Carlo code using an external neutron current source from a complete-reactor radial calculation with the SCAMP S/sub n/ code. Energies per fission for the rods were computed using the SINBAD buildup and depletion code, the GAMSOR gamma ray source code, and the QAD-BSA point-kernel shielding code. The calculated rod average-to-test average energy deposition ratios are 0.99, 0.99, and 0.97 for the rods irradiated to approximately 12 CWd/tu, and 1.04 for the rod irradiated to 4.8 GWd/tu. The maximum deviation of the power density of 1/12-rod azimuthal segments from the rod average is 4%. For an estimated control rod position of 0.591 m withdrawn the predicted radial average energy deposition at the axial peak in an average test rod is 1.71 (kW/m)/MW during preconditioning, and 1.84 (kJ/kg UO 2 ) MW.S during the burst. 16 figures, 7 tables

  15. System of leak inspection of irradiated fuel

    International Nuclear Information System (INIS)

    Delfin L, A.; Castaneda J, G.; Mazon R, R.; Aguilar H, F.

    2007-01-01

    The International Atomic Energy Agency (IAEA) through the project RLA/04/18 Irradiated Fuel Management in Research reactors, recommended among other that the participant countries (Brazil, Argentina, Chile, Peru and Mexico), develop the sipping tool to generate registrations of the state that keep the irradiated fuels in the facilities of each country. The TRIGA Mark lll Reactor (RTMIII) Department, generated a project that it is based on the dimensions of the used fuel by the RTMIII, for design and to build an inspection system of irradiated fuel well known as SIPPING. This technique, provides a high grade of accuracy in the detection of gassy fission products or liquids that escape from the enveloping of fuels that have flaws or flights. The operation process of the SIPPING is carried out generating the migration of fission products through the creation of a pressure differential gas or vacuum to identify fuel assemblies failed by means of the detection of the xenon and/or krypton presence. The SIPPING system, is a device in revolver form with 4 tangential nozzles, which will discharge the fluid between the external surface of the enveloping of the fuel and the interior surface of the encircling one; the device was designed with independent pieces, with threaded joining and with stamps to impede flights of the fluid toward the exterior of the system. The System homogenizes and it distributes the fluid pressure so that the 4 nozzles work to equality of conditions, for what the device was designed in 3 pieces, an internal that is denominated revolver, one external that calls cover, and a joining called mamelon that will unite with the main encircling of the system. The detection of fission products in failed fuels, its require that inside the encircling one where the irradiated fuel element is introduced, be generated a pressure differential of gas or vacuum, and that it allows the samples extraction of water. For what generated a top for the encircling with the

  16. The achivements of Japanese fuel irradiation experiments in HBWR

    International Nuclear Information System (INIS)

    Ichikawa, Michio; Yanagisawa, Kazuaki; Domoto, Kazunari

    1984-02-01

    OECD Halden Reactor Project celebrated the 25th anniversary in 1983. The JAERI has been participating in the Project since 1967 on behalf of Japanese Government. Since the participation, thirty-six Japanese instrumented fuel assemblies have been irradiated in HBWR. The irradiation experiments were either sponsored by JAERI or by domestic organizations under the joint research agreements with JAERI, beeing steered by the Committee for the Joint Research Programme. The cooperative efforts have attained significant contributions to the development of water reactor fuel technology in Japan. This report review the irradiation experiments of Japanese fuel assemblies. (author)

  17. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  18. Thermal conductivity of fresh and irradiated U-Mo fuels

    Science.gov (United States)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  19. Irradiation behaviour of a 500 mm long hollow U{sub 3}Si fuel element irradiated under BLW conditions

    Energy Technology Data Exchange (ETDEWEB)

    Feraday, M A; Chalder, G H; Cotnam, K D

    1969-07-15

    A 500 mm long Zircaloy-clad element of U{sub 3}Si (4.3 wt% Si) containing a 13% central void was irradiated to an average burnup of 3600 MWd/tonne U at an average linear power output of 790 W/cm, in boiling water coolant at 55 bars pressure. A larger diameter increase (1.5%) at the mid-plane of the element than elsewhere was attributed to the reduced restraint imposed on the fuel in this area as a consequence of {beta} annealing a section of the cold worked sheath. Diameter increases in the cold worked portions of the sheath (average 0.7%) were greater than in similar elements irradiated in pressurized water at 96 bars pressure the difference is attributed to higher linear power output of the element in this test. External swelling of the element before filling of the central void was complete is attributed to the higher silicon content of the fuel compared with previous tests. No reaction between U{sub 3}Si and Zircaloy was observed at a fuel sheath interface temperature near 400{sup o}C. (author)

  20. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    International Nuclear Information System (INIS)

    Sears, D.F.; Wood, J.C.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.

    1985-01-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released 85 Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary 85 Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  1. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D F; Wood, J C; Berthiaume, L C; Herbert, L N; Schaefer, J D

    1985-07-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released {sup 85}Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary {sup 85}Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  2. Re-irradiation and limit testing of the fuels PWR type reactors

    International Nuclear Information System (INIS)

    Roche, M.; Molvault, M.

    1978-01-01

    In view of investigating the neutron radiation behavior of PWR fuel pins, the S.P.S. (Services des Piles de Saclay) developed a set of experimental means used at OSIRIS in Saclay Nuclear Research Center. Said devices are shown to be able to meet present problems concerning can failures, power and temperature cycling, remote-control studies. These means can also be used either for statistical studies, they can then receive several samples, or for analytical studies in instrumented devices of large capacity and accelerated irradiation rate [fr

  3. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  4. Post-irradiation examinations of inert matrix nitride fuel irradiated in JMTR (01F-51A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Honda, Junichi; Hatakeyama, Yuichi; Ono, Katsuto; Matsui, Hiroki; Arai, Yasuo

    2007-03-01

    A plutonium nitride fuel pin containing inert matrix such as ZrN and TiN was encapsulated in 01F-51A and irradiated in JMTR. Minor actinides are surrogated by plutonium. Average linear powers and burnups were 408W/cm, 30000MWd/t(Zr+Pu) [132000MWd/t-Pu] for (Zr,Pu)N and 355W/cm, 38000MWd/t(Ti+Pu) [153000MWd/t-Pu] for (TiN,PuN). The irradiated capsule was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pin. Very low fission gas release rate of about 1.6% was measured. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  5. Recent status of development and irradiation performance for plate type fuel elements with reduced 235U enrichment at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.W.

    1984-01-01

    According to the present state of development full size test fuel elements with the maximum uranium densities of 2,2 g U/cm 3 meat for UAlsub(x), 3,2 g U/cm 3 meat for U 3 O 8 and 4,8 g U/cm 3 meat for U 3 Si 2 can be fabricated at NUKEM in production scale. Special chemical procedures for the uranium recovery were developed ensuring an economic fuel fabrication process. The post irradiation examinations (PIE) of 12 UAlsub(x) (U density 2,2 g U/cm 3 meat) and U 3 O 8 (up to 3,1 g U/cm 3 meat) test plates irradiated in the ORR, Oak Ridge research reactor, were terminated. All 12 test plates show unobjectionable irradiation behavior. Extensive irradiation tests on full size fuel elements were performed. All inserted elements show perfect irradiation behavior. The PIE of the first HFR Petten U 3 O 8 fuel elements are in progress. The full size ORR U 3 Si 2 fuel elements with so far highest uranium density of 4,76 g U/cm 3 meat achieved a burnup of 50 % loss of 235 U up to May 1983. One element was withdrawn from the reactor for PIE, the second will be irradiated to a burnup of 75 % loss of 235 U. The further development is concentrated on Usub(x)Sisub(y) fuel with highest uranium density. U 3 Si miniplates with up to 6,1 g U/cm 3 meat are supplied meeting the required specification, U 3 Si miniplates with 6,7 g U/cm 3 are in fabrication. (author)

  6. The high temperature out-of-pile test of LVDT for elongation measurement of fuel pellet

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Jo, M. S.; Joo, K. N.; Park, S. J.; Gang, Y. H.; Kim, Y. J. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the elongation measurement technique of the fuel pellet is being developed using LVDT(Linear Variable Differential Transformer). The well qualified out-of-pile test were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation instrumented capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for fuel pellet elongation was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C with increasing the elongation from 0 to 5 mm. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT and elongation detector at high temperature was introduced. It is known that the results will be used to predict accurately the elongation of fuel pellet during irradiation test.

  7. Postirradiation examination and evaluation of Peach Bottom fuel test element FTE-6

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Holzgraf, J.F.; Jensen, D.D.

    1977-09-01

    Fuel test element FTE-6 was irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) for 645 equivalent full power days. Four fuel varieties, contained in H-327 graphite bodies, were tested. A primary result of this test has been to demonstrate acceptable performance even with calculated high stresses in the graphite bodies. Heterogeneous fuel loadings in the element caused local power peaking and azimuthal power variations, deforming the graphite fuel bodies and thereby causing bowing nearly five times as large as the diametral clearance within the sleeve. The axial stresses resulting from interference between the fuel bodies and sleeve were estimated to have reached 45% of the ultimate material strength at the end of the irradiation. Residual stresses from differential contraction within the fuel body resulted in probable in-plane stress levels of 130% of the material strength at the end-of-life shutdown and of up to 150% of the strength at shutdown during the irradiation cycle. The high in-plane stresses are local peaks at the corners of a sharp notch in the element, which may account for the stresses failing to cause damage. The lack of observable damage, however, indicates that the methods and data used for stress analysis give results that are either fairly accurate or conservative

  8. Recent irradiation tests for future nuclear system at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Yang, Seong Woo; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-05-15

    The capsule at HANARO is a device that evaluates the irradiation effects of nuclear materials and fuels, which can reproduce the environment of nuclear power plants and accelerate to reach to the end of life condition. As the integrity assessment and the extension of lifetime of nuclear power plants are recently considered as important issues in Korea, the requirements for irradiation test are gradually being increased. The capacity and capability irradiation tests at HANARO are becoming important because Korea strives to develop SFR (Sodium-cooled Fast Reactor) and VHTR (Very High Temperature Reactor) among the future nuclear system and to export the research reactors and to develop the fusion reactor technology.

  9. Transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  10. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  11. Fuel fabrication and post-irradiation examination

    Energy Technology Data Exchange (ETDEWEB)

    Venter, P J; Aspeling, J C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  12. Fuel fabrication and post-irradiation examination

    International Nuclear Information System (INIS)

    Venter, P.J.; Aspeling, J.C.

    1990-01-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  13. Evolution of fuel rod support under irradiation consequences on the mechanical behavior of fuel assembly

    International Nuclear Information System (INIS)

    Billerey, A.; Bouffioux, P.

    2002-01-01

    The complete paper follows. According to the fuel management policy in French PWR with respect to high burn-up, the prediction of the mechanical behavior of the irradiated fuel assembly is required as far as excessive deformations of fuel assembly might lead to incomplete Rod Cluster Control Assembly insertion (safety problems) and fretting wear lead to leaking rods (plant operation problems). One of the most important parameter is the evolution of the fuel rod support in the grid cell as it directly governs the mechanical behavior of the fuel assembly and consequently allows to predict the behavior of irradiated structure in terms of (i) axial and lateral deformation (global behavior of the assembly) and (ii) fretting wear (local behavior of the rod). Fuel rod support is provided by a spring-dimple system fixed on the grid. During irradiation, the spring force decreases and a gap between the rod and the spring might open. This phenomenon is due to (i) irradiation-induced stress relaxation for the spring and for the dimples, (ii) grid growth and (iii) reduction of rod diameter. Two models have been developed to predict the behavior of the rod in the grid cell. The first model is able to evaluate the spring force relaxation during irradiation. The second one is able to evaluate the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (i) the creep laws of the grid materials, (ii) the growth law of the grid, (iii) the evolution of rod diameter and (iv) the design of the fuel rod support. The objectives of this paper are to: (i) evaluate the consequences of grid support design modifications on the fretting sensitivity in terms of predicted maximum gap during irradiation and operational time to gap appearance; (ii) evaluate, using a non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the mechanical behavior of the full assembly in terms of axial and

  14. SEM characterization of an irradiated monolithic U-10Mo fuel plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.; Finlay, M.R.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/AA6061 cladding interface, particularly the interaction zone that had developed during fabrication and any continued development during irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-7Mo powders of an irradiated dispersion fuel. (author)

  15. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported

  16. Irradiation behavior of uranium-molybdenum dispersion fuel: Fuel performance data from RERTR-1 and RERTR-2

    International Nuclear Information System (INIS)

    Meyer, M.K.; Clark, C.R.; Hayes, S.L.; Strain, R.V.; Hofman, G.L.; Snelgrove, J.L.; Park, J.M.; Kim, K.H.

    1999-01-01

    This paper presents quantitative data on the irradiation behavior of uranium-molybdenum fuels from the low temperature RERTR-1 and -2 experiments. Fuel swelling measurements of U-Mo fuels at ∼40% and ∼70% burnup are presented. The rate of fuel-matrix interaction layer growth is estimated. Microstructures of fuel in the pre- and postirradiation condition were compared. Based on these data, a qualitative picture of the evolution of the U-Mo fuel microstructure during irradiation has been developed. Estimates of uranium-molybdenum fuel swelling and fuel-matrix interaction under high-power research reactor operating conditions are presented. (author)

  17. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  18. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  19. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  20. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  1. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    International Nuclear Information System (INIS)

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  2. Design of a transportation cask for irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  3. Final Report on Design, Fabrication and Test of HANARO Instrumented Capsule (07M-13N) for the Researches of Irradiation Performance of Parts of X-Gen Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H. (and others)

    2008-08-15

    An instrumented capsule of 07M-13N was designed, fabricated and irradiated for an evaluation of the neutron irradiation properties of the parts of a X-Gen nuclear fuel assembly for PWR requested by KNF. Some specimens of control rod materials of AP1000 reactor requested by Westinghouse Co. were inserted in this capsule as a preliminary irradiation test and Polyimide specimens requested by Hanyang university were also inserted. 463 specimens such as buckling and spring test specimens of cell spacer grid, tensile, microstructure and tensile of welded parts, irradiation growth, spring test specimens made of HANA tube, Zirlo, Zircaloy-4, Inconel-718, Polyimide, Ag and Ag-In-Cd alloys were placed in the capsule. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 7 sets of neutron fluence monitors installed in the capsule. A new friction welded tube between STS304 and Al1050 alloys was introduced in the capsule to prevent a coolant leakage into a capsule during a capsule cutting process in HANARO. The capsule was irradiated for 95.19 days (4 cycles) in the CT test hole of HANARO of a 30MW thermal output at 230 {approx} 420 .deg. C. The specimens were irradiated up to a maximum fast neutron fluence of 1.27x10{sup 21}(n/cm{sup 2}) (E>1.0MeV) and the dpa of the irradiated specimens were evaluated as 1.21 {approx} 1.97. The irradiated specimens were tested to evaluate the irradiation performance of the parts of an X-Gen fuel assembly in the IMEF hot cell and the obtained results will be very valuable for the related researches of the users.

  4. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    International Nuclear Information System (INIS)

    Billerey, Antoine; Waeckel, Nicolas

    2005-01-01

    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  5. A model to predict failure of irradiated U–Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Senor, David J.; Casella, Andrew M.

    2016-12-15

    Highlights: • Simple model to predict failure of dispersion fuel meat designs. • Evaluated as a function of fabrication parameters and irradiation conditions. • Predictions compare well with experimental measurements of miniature fuel plates. • Interaction layer formation reduces matrix strength and increases temperature. • Si additions to the matrix appear effective only at moderate heat flux and burnup. - Abstract: Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO{sub 2}-stainless steel dispersion fuels and uses currently available thermal–mechanical property information for the materials of interest in the currently proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as onset of pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the {sup 235}U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of

  6. Remote helium leak test of the DUPIC fuel rod

    International Nuclear Information System (INIS)

    Kim, W. K; Kim, S. S.; Lim, S. P.; Lee, J. W.; Yang, M. S.

    1998-01-01

    DUPIC(Direct Use of spent PWR fuel In CANDU reactor) is one of dry reprocessing fuel cycles to reuse irradiated PWR fuel in CANDU power plant. DUPIC fuel is so radioactive that DUPIC fuel is remotely fabricated at hot cell such as IMEF hot cell in which radiation is shielded and remote operation is possible. In this study, Helium leakage has been tested for the simulated DUPIC fuel rod manufactured by Nd:YAG laser end-cap welding at simulated hot cell. The remote inspection technique has been developed to evaluate the soundness of DUPIC fuel fabricated through new processes. Vacuum chamber has been developed to be remotely operated by manipulators at hot cell. As the result of remote test, Helium leakage of DUPIC fuel rod is around background level, CANDU specification has been satisfied. In the result of the study, remote test has been successfully performed at the simulated hot cell, and the soundness of DUPIC fuel rod welded by Nd:YAG laser has been confirmed

  7. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  8. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  9. An Investigation on Irradiation-induced Grid Width Growth in Advanced Fuels

    International Nuclear Information System (INIS)

    Jang, Young Ki; Jeon, Kyeong Lak; Kim, Yong Hwan; Kim, Jae Ik; Hwang, Sun Tack; Kim, Man Su; Lee, Tae Hyoung; Yoo, Myeong Jong; Yoon, Yong Bae; Kim, Tae Wan

    2011-01-01

    The spacer grids for fuel assembly are fabricated from preformed Zircaloy or Inconel strips interlocked in an egg crate fashion and welded or brazed together. The spacer grid is the important component to maintain the fuel rod array by providing positive lateral restraint to the fuel rods but only frictional restraint to axial fuel rod motion. To improve economy and safety aspects, advanced nuclear fuels of PLUS7, 16ACE7 and 17ACE7 were developed. The former is for Optimized Power Reactor of 1000 MWe (OPR1000) and Advanced Power Reactor of 1400 MWe (APR1400) and the latter two are for 16x16 and 17x17 Westinghouse type reactors, respectively. The material for top and bottom spacer grids on these advanced fuels are Inconel and the mid grids are Zirlo patented by Westinghouse. For neutron economy, the fuel assemblies are arranged very closely and the gaps between assemblies are kept to around 1 mm based on the worst case. The Zirconium-based alloys grow during irradiation in reactor. The large growth may cause some difficulties in loading and unloading fuel assemblies during refueling outage in reactor. The severe growth may cause some problems that fuel assemblies may be stuck within the core shroud and a modification of loading pattern is required. In addition, the grid growth with grid spring relaxation may cause different rod vibration behavior and results in the different wear mechanism. The grid width growth on the advanced fuels were predicted by using the growth models before the irradiation in reactor and were examined using lead test assemblies (LTAs) after each cycle in Ulchin unit 3 and Kori units 2 and 3, respectively. To reconfirm irradiation performance results using LTAs, the additional examinations are being performed through the surveillance programs on the commercially supplied fuels in Yonggwang unit 5 and Kori units 2 and 4. It is investigated on this study whether the grid widths on the advanced fuels meet their criteria and the predicted models

  10. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    International Nuclear Information System (INIS)

    Hoth, C.W.

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components

  11. Measurement of burnup in FBR MOX fuel irradiated to high burnup

    International Nuclear Information System (INIS)

    Koyama, Shin-ichi; Osaka, Masahiko; Sekine, Takashi; Morozumi, Katsufumi; Namekawa, Takashi; Itoh, Masahiko

    2003-01-01

    The burnup of fuel pins in the subassemblies irradiated at the range from 0.003 to 13.28% FIMA in the JOYO MK-II core were measured by the isotope dilution analysis. For the measurement, 75 and 51 specimens were taken from the fuel pins of driver fuel and irradiation test subassemblies, respectively. The data of burnup could be obtained within an experimental error of 4%, and were compared with the ones calculated by 3-dimensional neutron diffusion codes MAGI and ESPRIT-J, which are used for JOYO core management system. Both data of burnup almost agree with each other within an error of 5%. For the fuel pins loaded at the outer region of the subassembly in the 4th row, which was adjacent to reflectors, however, some of the calculation results were 15% less at most than the measured values. It is suggested from the calculation by a Monte Carlo code MCNP-4A that this difference between the calculated and the measured data attribute from the softening of neutron flux in the region adjacent to the reflector. (author)

  12. Pathfinder irradiation of advanced fuel (Th/U mixed oxide) in a power reactor

    International Nuclear Information System (INIS)

    Brant Pinheiro, R.

    1993-01-01

    Within the joint Brazilian-German cooperative R and D Program on Thorium Utilization in Pressurized Water Reactors carried out from 1979 to 1988 by Nuclebras/CDTN, KFA-Juelich, Siemens/KWU and NUKEM, a pathfinder irradiation of Th/U mixed oxide fuel in the Angra 1 nuclear power reactor was planned. The objectives of this irradiation testing, the irradiation strategy, the work performed and the status achieved at the end of the joint Program are presented. (author)

  13. Irradiation behaviors of coated fuel particles, (4)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Ogawa, Toru; Ikawa, Katsuichi; Iwamoto, Kazumi; Ishimoto, Kiyoshi

    1981-09-01

    Loose coated fuel particles prepared in confirmity to a preliminary design for the multi-purpose VHTR in fiscal 1972 - 1974 were irradiated by 73F - 12A capsule in JMTR. Main purpose for this irradiation experiment was to examine irradiation stability of the candidate TRISO coated fuel particles for the VHTR. Also the coated particles possessing low-density kernel (90%TD), highly anisotropic OLTI-PyC and ZrC coating layer were loaded with the candidate particles in this capsule. The coated particles were irradiated up to 1.5 x 10 21 n/cm 2 of fast neutron fluence (E > 0.18 MeV) and 3.2% FIMA of burnup. In the post irradiation examination it was observed that among three kinds of TRISO particles exposed to irradiation corresponding to the normal operating condition of the VHTR ones possessing poor characteristics of the coating layers did not show a good stability. The particles irradiated under abnormally high temperature condition (> 1800 0 C) revealed 6.7% of max. EOL failure fraction (95% confidence limit). Most of these particles were failed by the ameoba effect. Furthermore, among four kinds of the TRISO particles exposed to irradiation corresponding to the transient condition of the VHTR (--1500 0 C) the two showed a good stability, while the particles possessing highly anisotropic OLTI-PyC or poorly characteristic coating layers were not so good. (author)

  14. Fuel pins irradiation: experimental devices and analytical behaviour

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1996-01-01

    In this text we present the general characteristics of adapted irradiation loops in research reactors and the main results that we can expected with these loops in the behaviour field of PWR and LMFBR fuels( fuel densification, fuel cladding interactions, fission products release, reactor accidents)

  15. Future Transient Testing of Advanced Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by

  16. Future Transient Testing of Advanced Fuels

    International Nuclear Information System (INIS)

    Carmack, Jon

    2009-01-01

    The transient in-reactor fuels testing workshop was held on May 4-5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat energie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric - Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  17. LVDT Development for High Temperature Irradiation Test and Application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Yong; Ban, Chae Min; Choo, Kee Nam; Jun, Byung Hyuk [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The LVDT (Linear Variable Differential Transformer) is used to measure the elongation and pressure of a nuclear fuel rod, or the creep and fatigue of the material during a reactor irradiation test. This device must be a radiation-resistant LVDT for use in a research reactor. Norway Halden has LVDTs for an irradiation test by the own development and commercialized. But Halden's LVDTs have limited the temperature of the use until to 350 .deg. C. So, KAERI has been developing a new LVDT for high temperature irradiation test. This paper describes the design of a LVDT, the fabrication process of a LVDT, and the result of the performance test. The designed LVDT uses thermocouple cable for coil wire material and one MI cable as signal cable. This LVDT for a high temperature irradiation test can be used until a maximum of 900 .deg. C. Welding is a very important factor for the fabrication of an LVDT. We are using a 150W fiber laser welding system that consists of a welding head, monitoring vision system and rotary index.

  18. Study of Irradiation Effect onto Uranium silicide Fuel

    International Nuclear Information System (INIS)

    Suparjo

    1998-01-01

    The irradiation effect onto the U 3 Si-Al and U 3 Si 2 -Al dispersion type of fuel element has been studied. The fuel material performs swelling during irradiation due to boehmite (Al 2 O 3 (H 2 O)) formation in which might occurs inside the meat and on the cladding surface, the interaction between the fuel and aluminium matrix that produce U(Al,Si) 3 phase, and the formation of fission gas bubble inside the fuel. At a constant fission density, the U 3 Si-Al fuel swelling is higher than that of U 3 Si 2 -Al fuel. The swellings of both fuels increase with the increasing of fission density. The difference of swelling behavior was caused by formation of large bubble gases generated from fission product of U 3 Si fuel and distributed non-uniformly over all of fuel zone. On the other hand, the U 3 Si 2 fission produced small bubble gases, and those were uniformly distributed. The growth rate of fission gas bubble in the U 3 Si fuel has shown high diffusivity, transformation into amorph material and thus decrease its mechanical strength

  19. Post-irradiation examinations of uranium-plutonium mixed nitride fuel irradiated in JMTR (89F-3A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Arai, Yasuo; Kimura, Yasuhiko; Nagashima, Hisao; Sekita, Noriaki

    2000-03-01

    Two helium-bonded fuel pins filled with uranium-plutonium mixed nitride pellets were encapsulated in 89F-3A and irradiated in JMTR up to 5.5% FIMA at a maximum linear power of 73 kW/m. The capsule cooled for ∼5 months was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pins. Very low fission gas release rate of about 2 ∼ 3% was observed, while the diametric increase of fuel pin was limited to ∼0.4% at the position of maximum reading. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  20. Final report on development and operation of instrumented irradiation capsules for creep experiments on nuclear fuels at FR2

    International Nuclear Information System (INIS)

    Haefner, H.E.; Philipp, K.; Blumhofer, M.

    1980-02-01

    The capsule test rig No. 154 removed from FR2 in April 1979 was the last irradiation rig in a long series of creep experiments. The target of the irradiation tests, started exactly ten years ago, was to investigate the creep behaviour of various ceramic nuclear fuels under different in-pile irradiation conditions. An irradiation test rig had been developed for this purpose which allowed the continuous measurement of changes in length of fuel specimens. A total of 28 capsule test rigs each containing two packages of creep specimens have been irradiated in FR2 during this decade. They included 23 specimen stacks of UO 2 , 16 specimen stacks of UO 2 -PuO 2 , 4 specimen stacks of UN, 10 specimen stacks of (U,Pu) C, and 13 reference specimens of molybdenum. Besides the description of the test facility, the report provides above all a survey of the operation data applicable to the specimens and of the operating experience gathered as well as of the findings obtained in post-irradiation examinations. (orig.) [de

  1. MODEL SIMULATION OF GEOMETRY AND STRESS-STRAIN VARIATION OF BATAN FUEL PIN PROTOTYPE DURING IRRADIATION TEST IN RSG-GAS REACTOR

    Directory of Open Access Journals (Sweden)

    Suwardi Suwardi

    2015-03-01

    Full Text Available MODEL SIMULATION OF GEOMETRY AND STRESS-STRAIN VARIATION OF BATAN FUEL PIN PROTOTYPE DURING IRRADIATION TEST IN RSG-GAS REACTOR*. The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared at the CNFT (Center for Nuclear Fuel Technology then a ramp test will be performed. The present work is part of designing first irradiation experiments in the PRTF (Power Ramp Test Facility of RSG-GAS 30 MW reactor. The thermal mechanic of the pin during irradiation has simulated. The geometry variation of pellet and cladding is modeled by taking into account different phenomena such as thermal expansion, densification, swelling by fission product, thermal creep and radiation growth. The cladding variation is modeled by thermal expansion, thermal and irradiation creeps. The material properties are modeled by MATPRO and standard numerical parameter of TRANSURANUS code. Results of irradiation simulation with 9 kW/m LHR indicates that pellet-clad contacts onset from 0.090 mm initial gaps after 806 d, when pellet radius expansion attain 0.015 mm while inner cladding creep-down 0.075 mm. A newer computation data show that the maximum measured LHR of n-UO2 pin in the PRTF 12.4 kW/m. The next simulation will be done with a higher LHR, up to ~ 25 kW/m. MODEL SIMULASI VARIASI GEOMETRI DAN STRESS-STRAIN DARI PROTOTIP BAHAN BAKAR PIN BATAN SELAMA UJI IRADIASI DI REAKTOR RSG-GAS. Pusat Teknologi Bahan Bakar Nuklir (PTBBN telah menyiapkan tangkai (pin bahan bakar pendek perdana yang berisi pelet UO2 alam dalam kelongsong paduan zircaloy untuk dilakukan uji iradiasi daya naik. Penelitian ini merupakan bagian dari perancangan percobaan iradiasi pertama di PRTF (Power Ramp Test Fasility yang terpasang di reaktor serbaguna RSG-GAS berdaya 30 MW. Telah dilakukan pemodelan dan simulasi kinerja termal mekanikal pin selama iradiasi. Variasi geometri pelet dan kelongsong selama pengujian dimodelkan dengan memperhatikan fenomena ekspansi termal

  2. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  3. Transmission electron microscopy characterization of irradiated U-7Mo/Al-2Si dispersion fuel

    International Nuclear Information System (INIS)

    Gan, J.; Keiser, D.D.; Wachs, D.M.; Robinson, A.B.; Miller, B.D.; Allen, T.R.

    2010-01-01

    The plate-type dispersion fuels, with the atomized U(Mo) fuel particles dispersed in the Al or Al alloy matrix, are being developed for use in research and test reactors worldwide. It is found that the irradiation performance of a plate-type dispersion fuel depends on the radiation stability of the various phases in a fuel plate. Transmission electron microscopy was performed on a sample (peak fuel mid-plane temperature ∼109 deg. C and fission density ∼4.5 x 10 27 f m -3 ) taken from an irradiated U-7Mo dispersion fuel plate with Al-2Si alloy matrix to investigate the role of Si addition in the matrix on the radiation stability of the phase(s) in the U-7Mo fuel/matrix interaction layer. A similar interaction layer that forms in irradiated U-7Mo dispersion fuels with pure Al matrix has been found to exhibit poor irradiation stability, likely as a result of poor fission gas retention. The interaction layer for both U-7Mo/Al-2Si and U-7Mo/Al fuels is observed to be amorphous. However, unlike the latter, the amorphous layer for the former was found to effectively retain fission gases in areas with high Si concentration. When the Si concentration becomes relatively low, the fission gas bubbles agglomerate into fewer large pores. Within the U-7Mo fuel particles, a bubble superlattice ordered as fcc structure and oriented parallel to the bcc metal lattice was observed where the average bubble size and the superlattice constant are 3.5 nm and 11.5 nm, respectively. The estimated fission gas inventory in the bubble superlattice correlates well with the fission density in the fuel.

  4. Improvement of the center boring device for the irradiated fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Koji; Onozawa, Atsushi; Kimura, Yasuhiko; Sakuraba, Naotoshi; Shiina, Hidenori; Harada, Akito; Nakata, Masahito [Japan Atomic Energy Agency, Nuclear Science Research Inst., Tokai, Ibaraki (Japan)

    2012-03-15

    The power ramp tests performed at JMTR in Oarai R and D Center are objected to study the safety margin of the high burnup fuels. One of the important parameters measured during this test is the center temperature of the fuel pellet. For this measurement, a thermocouple is installed into the hole bored at the pellet center by the center boring device, which can fix the fuel pellet with the frozen CO{sub 2} gas during its boring process. At the Reactor Fuel Examination Facility (RFEF) in Tokai R and D Center, several improvements were applied for the previous boring device to gain its performance and reliability. The major improvements are the change of the drill bit, modification of the boring process and the optimization of the remote operability. The mock-up test will be performed with the irradiated fuel pellet to confirm the benefit of improvement. This study was conducted under a contract with the Nuclear and Industrial Safety Agency (NISA) of the Ministry of Economy, Trade and Industry (METI). (author)

  5. Postirradiation examination of a low enriched U3Si2-Al fuel element manufactured and irradiated at Batan, Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Sugondo, S.; Nasution, H.

    1994-01-01

    The first low-enriched U 3 Si 2 -Al dispersion plate-type fuel element produced at the Nuclear Fuel Element Center, BATAN, Indonesia, was irradiated to a peak 235 U burnup of 62%. Postirradiation examinations performed to data shows the irradiation behavior of this element to be similar to that of U 3 Si 2 -Al plate-type fuel produced and tested at other institutions. The main effect of irradiation on the fuel plates is a thickness increase of 30--40 μm (2.5-3.0%). This thickness increase is almost entirely due to the formation of a corrosion layer (Boehmite). The contribution of fuel swelling to the thickness increase is rather small (less than 10 μm) commensurate with the burnup of the fuel and the relatively moderate as-fabricated fuel volume fraction of 27% in the fuel meat

  6. Development of treatment technology of radio-contaminated coolant in fuel test loop

    International Nuclear Information System (INIS)

    Kim, J. Y.

    1997-10-01

    In 1995, the installation of KMRR located in KAERI provided a milestone in independence of nuclear technologies in Korea. The independence of technologies is only possible through the enormous investment for research and through the active approaches for various experiments. The performance of various experiments enhanced the risk of environmental pollution and the nuclear fuel irradiation test is one of those experiments. The damage of fuel which might happen any time in irradiation test, will discharge high level radioactive materials from the inside of failed fuel and will gradually contaminate the cooling water in near vicinity. Accordingly, the proper management of coolant having high temperature and high level . (author). refs., tabs., figs

  7. Development of treatment technology of radio-contaminated coolant in fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    In 1995, the installation of KMRR located in KAERI provided a milestone in independence of nuclear technologies in Korea. The independence of technologies is only possible through the enormous investment for research and through the active approaches for various experiments. The performance of various experiments enhanced the risk of environmental pollution and the nuclear fuel irradiation test is one of those experiments. The damage of fuel which might happen any time in irradiation test, will discharge high level radioactive materials from the inside of failed fuel and will gradually contaminate the cooling water in near vicinity. Accordingly, the proper management of coolant having high temperature and high level . (author). refs., tabs., figs.

  8. Impact of fission gas on irradiated PWR fuel behaviour at extended burnup under RIA conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Schmitz, F.

    1996-01-01

    With the world-wide trend to increase the fuel burnup at discharge of the LWRs, the reliability of high burnup fuel must be proven, including its behaviour under energetic transient conditions, and in particular during RIAs. Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup. The potential for swelling and transient expansion work under rapid heating conditions characterizes the high burnup fuel behaviour by comparison to fresh fuel. This effect is resulting from the steadily increasing amount of gaseous and volatile fission products retained inside the fuel structure. An attempt is presented to quantify the gas behaviour which is motivated by the results from the global tests both in CABRI and in NSRR. A coherent understanding of specific results, either transient release or post transient residual retention has been reached. The early failure of REP Na1 with consideration given to the satisfactory behaviour of the father rod of the test pin at the end of the irradiation (under load follow conditions) is to be explained both by the transient loading from gas driven fuel swelling and from the reduced clad resistance due to hydriding. (R.P.)

  9. Transient fuel and target performance testing for the HWR-NPR

    International Nuclear Information System (INIS)

    Jicha, J.J. Jr.

    1990-01-01

    This paper describes a five year program of fuel target transient performance testing and model development required for the safety assessment of the HWR new production reactor. Technical issues are described, focusing on fuel and target behavior during extremely low probability transients which can lead to fuel melting. Early work on these issues is reviewed. The program to meet remaining needs is described. Three major transient-testing activities are included: in-cell experiments on small samples of irradiated fuel and target, small-scale phenomenological experiments in the ACRR reactor, and limited-integral experiments in the TREAT reactor. A coordinated development of detailed fuel and target behavior models is also described

  10. A disposal centre for irradiated nuclear fuel: conceptual design study

    International Nuclear Information System (INIS)

    1980-09-01

    This report describes a conceptual design of a disposal centre for irradiated nuclear fuel. The surface facilities consist of plants for the preparation of steel cylinders containing irradiated nuclear fuel immobilized in lead, shaft headframe buildings, and all necessary support facilities. The undergound disposal vault is located on one level at a depth of 1000 metres. The cylinders containing the irradiated fuel are emplaced on a one-metre thick layer of backfill material and then completely covered with backfill. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  11. Progress in the development of very high density research and test reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, Idaho 83415 (United States)

    2009-06-15

    New nuclear fuels are being developed to enable many of the most important research and test reactors worldwide to convert from high enriched uranium (HEU) fuels to low enriched uranium (LEU) fuels without significant loss in performance. The last decade of work has focused on the development of uranium-molybdenum alloy (U-Mo) based fuels and is an international effort that includes the active participation of more than ten national programs. The US RERTR program, under the NNSA's Global Threat Reduction Initiative (GTRI), is in the process of developing both dispersion and monolithic U-Mo fuel designs. While the U-Mo fuel alloy has behaved extremely well under irradiation, initial testing (circa 2003) revealed that the U-Mo fuels dispersed in aluminum had an unexpected tendency toward unstable swelling (pillowing) under high-power conditions. Technical investigations were initiated worldwide at this time by the partner programs to understand this behavior as well as to develop and test remedies. The behavior was corrected by modifying the chemistry of the U-Mo/Al interfaces in both fuel designs. In the dispersion fuel design, this was accomplished by the addition of small amounts of silicon to the aluminum matrix material. Two methods are under development for the monolithic fuel design, which include the application of a thin layer of silicon or a thin zirconium based diffusion barrier at the fuel/clad interface. This paper gives an overview of the current status of U-Mo fuel development, including basic research results, manufacturing aspects, results of the latest irradiations and post irradiation examinations, the approach to fuel performance qualification, and the scale-up and commercialization of fabrication technology. (authors)

  12. Heat and radiation analysis of NPP Krsko irradiated fuel

    International Nuclear Information System (INIS)

    Lalovic, M.

    1986-01-01

    Radioactive and heat potential for irradiated fuel in the region 2 with burnup of 13400 MWd/tHM, and in the region 4A with burnup of 9360 MWd/tHM for NPP KRSKO, was calculated. Computer code KORIGEN (Karlsruhe Oak Ridge Isotope Generation and Depletion Code) was used. The aspects of radiation (mainly gamma and neutrons) and of heat production was considered with respect to their impact on fuel handing and waste management. Isotopic concentrations for irradiated fuel was calculated and compared with Westinghouse data. (author)

  13. Monte Carlo simulation of irradiation of MTR fuel plates in the BR2 reactor using a full-scale 3-d model with inclined channels

    International Nuclear Information System (INIS)

    Kuzminov, V. V; Koonen, E.; Ponsard, B.

    2002-01-01

    A three-dimensional full-scale Monte Carlo model of the BR2 reactor has been developed for simulation of irradiation conditions of materials and fuel loaded in various irradiation devices. This new reactor model includes a detailed geometrical description of the inclined reactor channels, the irradiation devices loaded in these channels including the materials to be tested/loaded in these devices, the burn-up of the BR2 fuel elements and the poisoning of the beryllium matrix. Recently a benchmark irradiation of new irradiation device for testing and qualification of MTR fuel plates has been performed. For this purpose the detailed irradiation conditions of fuel plates had to be predetermined. Monte Carlo calculations of neutron fluxes and heat load distributions in irradiated MTR fuel plates were performed taking into account the contents of all loaded experimental devices in the reactor channels. A comparison of the calculated and measured values of neutron fluxes and of heat loads in the BR2 reactor is presented in this paper. The comparison is part of the validation process of the new reactor model. It also serves to establish the capability to conduct a fuel plate irradiation program under requested and well- known irradiation conditions. (author)

  14. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  15. Review of WWER fuel and material tests in the Halden reactor

    International Nuclear Information System (INIS)

    Volkov, B.; Kolstad, E.

    2006-01-01

    A review of the tests with WWER fuels and materials conducted in HBWR over the years of cooperation with Russia is presented. The first test with old generation WWER-440 fuel and PWR specification fuel was carried out from 1995 to 1998. Some differences between these fuels regarding irradiation induced densification and pellet design as well as similar fuel thermal behaviour, swelling and FGR were revealed during the test. The data from this test are reviewed and compared with PIE recently performed to confirm the in-pile measurements. The second test was started in March 1999 with the main objective to study different modified WWER fuels also in comparison with PWR fuel. The results indicated that all these modified WWER fuels exhibit improved densification properties relative to earlier tested fuel. In-pile data on fuel densification have been analysed with respect to as fabricated fuel microstructure and can be used for verification of fuel behaviour models. Corrosion and creep tests in the Halden reactor encompass WWER cladding alloys and some results are given. Prospective WWER fuel and material tests foreseen within the frame of the joint program of OECD HRP are also presented. (authors)

  16. Thermophysical properties of the irradiated uranium-zirconium fuel

    International Nuclear Information System (INIS)

    Gajduchenko, A.B.

    2008-01-01

    The dependence of the thermophysical properties of metallic nuclear fuel, i.e. Zr alloy 40U, in a wide temperature range as a function of accumulated fission products amount is presented. Both non-irradiated and irradiated test pieces with different degrees of accumulation of fission products, i.e. 0.4, 0.6, and 0.9 g/cm 3 , are investigated. The specific heat is measured in the range of 50-1000 deg C, the thermal diffusivity is measured in the range 300-1000 deg C, and the variation of the dimensions and density of the samples on heating is also investigated. The thermal conductivity in the range of 50-1000 deg C is calculated on the basis of the experimental data [ru

  17. The second Euratom sponsored 9000C HTR fuel irradiation experiment in the HFR Petten Project E 96.02: Pt.2. Post-irradiation examination

    International Nuclear Information System (INIS)

    Roettger, R.; Bueger, J. de; Schoots, T.

    1977-01-01

    A large variety of HTR fuel specimens, loose coated particles, coupons and compacts provided by Belgonucleaire, the Dragon Project and the KFA Juelich have been irradiated in the HFR at Petten at about 900 0 C up to a maximum fast neutron fluence of about 7x10 21 cm -2 (EDN) as a Euratom sponsored experiment. The maximum burn-ups were between 11 and 18.5% FIMA. The results of the post-irradiation examinations, comprising visual inspection, dimensional measurements, microradiography, metallography, and burn-up determinations are presented in this part 2 of the final report. The examinations have shown that the endurance limit of most of the tested fuel varieties is beyond the reached irradiation values

  18. Qualification of the on-line power determination of fuel elements in irradiation devices in the BR2 reactor

    International Nuclear Information System (INIS)

    Vermeeren, L.; Dekeyser, J.; Gouat, P.; Kalcheva, S.; Koonen, E.; Kuzminov, V.; Verwimp, A.; Weber, M.

    2005-01-01

    Fuel irradiation tests require an on-line monitoring of the fuel power. In the BR2 reactor, this is performed by continuously measuring the enthalpy change in the coolant of the irradiation device and complementing this information with data on power losses, heating of structure parts and spatial power profiles from mock-up test experiments and from calculations. Since a few years Monte Carlo codes (MCNP) are used, describing the BR2 core in great detail for every reactor cycle with its specific core load, yielding not only reliable relative values, but also calculated absolute local power values in agreement with data from PIE analyses. Several methods were conceived to combine the experimental and calculated data for the on-line calculation of the local linear power in the fuel elements; their internal consistency and the consistency with gamma spectroscopy data and data from radiochemical fission product analysis was checked. The data show that fuel irradiations in BR2 can be performed in a well-controlled way, with an accurate and reliable on-line follow-up of the fuel power. (author)

  19. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  20. Power-to-melt evaluation of fresh mixed-oxide fast reactor fuel. Technical improvements of the post-irradiation-experiment and the evaluation of the results for the power-to-melt test PTM-2 in 'JOYO'

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya; Kushida, Naoya; Koizumi, Atsuhiro

    1999-11-01

    The second Power-To-Melt (PTM) test, PTM-2, was performed in the experimental fast reactor 'JOYO'. All of the twenty-four fuel pins of the irradiation vehicle, B5D-2, for the PTM-2 test, were provided for post-irradiation-experiment (PIE) to evaluate the PTM values. In this study, the PIE technique for PTM test was established and the PTM results were evaluated. The findings are as follows: The maximum fuel-melting ratio on the transverse section was 10.7%, and was within the limit of fuel-melting in this PTM test enough. Unexpected fuel-melting amount to a ratio of 11.8% was found at ∼24 mm below the peak power elevation in a test fuel pin. It is possible that this arose from secondary fuel-melting. Combination of metallographical observation with X-ray microanalysis of plutonium distribution was very effective for the identification of once-molten fuel zone. The PTM evaluation suggested that dependence of the PTM on the fuel pellet density was stronger than that of previous foreign PTM tests, while the dependence on the pellet-cladding gap and the oxygen-to-metal ratio was indistinctly. The dependence on the cladding temperature and the fill gas composition was not shown as well. (author)

  1. Irradiation Planning for Fully-Ceramic Micro-encsapsulated fuel in ATR at LWR-relevant conditions: year-end report on FY-2011

    International Nuclear Information System (INIS)

    Ougouag, Abderrafi M.; Sen, R. Sonat; Pope, Michael A.; Boer, Brian

    2011-01-01

    This report presents the estimation of required ATR irradiation levels for the DB-FCM fuel design (fueled with Pu and MAs). The fuel and assembly designs are those considered in a companion report [R. S. Sen et al., FCRandD-2011- 00037 or INL/EXT-11-23269]. These results, pertaining to the DB-FCM fuel, are definitive in as much as the design of said fuel is definitive. In addition to the work performed, as required, for DB-FCM fuel, work has started in a preliminary fashion on single-cell UO2 and UN fuels. These latter activities go beyond the original charter of this project and although the corresponding work is incomplete, significant progress has been achieved. However, in this context, all that has been achieved is only preliminary because the corresponding fuel designs are neither finalized nor optimized. In particular, the UO2 case is unlikely to result in a viable fuel design if limited to enrichment at or under 20 weight % in U-235. The UN fuel allows reasonable length cycles and is likely to make an optimal design possible. Despite being limited to preliminary designs and offering only preliminary conclusions, the irradiation planning tasks for UO2 and UN fuels that are summarized in this report are useful to the overall goal of devising and deploying FCM-LWR fuel since the methods acquired and tested in this project and the overall procedure for planning will be available for planning tests for the finalized fuel design. Indeed, once the fuel design is finalized and the expected burnup level is determined, the methodology that has been assembled will allow the prompt finalization of the neutronic planning of the irradiation experiment and would provide guidance on the expected experimental performance of the fuel. Deviations from the expected behavior will then have to be analyzed and the outcome of the analysis may be corrections or modifications for the assessment models as well as, possibly, fuel design modifications, and perhaps even variation of

  2. The Analysis of RSG-GAS Spent Fuel Elements Utilization as a Gamma Irradiator

    International Nuclear Information System (INIS)

    Pudjijanto MS; Setiyanto

    2004-01-01

    A gamma irradiator using RSG-GAS spent fuels was analyzed. The cylindrical geometry of the irradiator was designed using spent fuels placed in the cylindrical periphery. The analysis especially was focused to evaluate the feasibilities of the irradiator for foods and non-foods which need not too high dose rates. While the spent fuels activities were calculated by ORIGEN2 code, the dose rates at the irradiation positions were determined by linear attenuation model with transport coefficient. The evaluated results showed that the cylindrical geometry of the irradiator with diameter around 1-1.5 m gave the effective dose rate for irradiation needs the dose rate about 2 kGy/hr. Regarding this work, it can be concluded that one can use the unutilized spent fuels effectively as a gamma irradiator for certain applications. (author)

  3. VHTR-fuel irradiation capsules for VT-1 hole of JRR-2

    International Nuclear Information System (INIS)

    Kikuchi, Teruo; Kikuchi, Akira; Tobita, Tsutomu; Kashimura, Satoru; Miyasaka, Yasuhiko

    1977-02-01

    Irradiations of VHTR fuels were made in the VT-1 irradiation hole of JRR-2. Three capsules, VP-1, VP-2 and VP-4, which contained fuel compacts, were irradiated for 300 hr at temperatures of 950 0 , 1370 0 and 1500 0 C up to the estimated burn-ups of 0.74, 0.87 and 0.80%FIMA, respectively. And, to study the amoeba effect of fuel particles, two capsules, VP-3 and VP-5, were irradiated for 300 hr at temperatures of 1650 0 and 1670 0 C up to the estimated burn-ups of 0.38 and 0.33%FIMA, respectively. (auth.)

  4. TEM investigation of irradiated U-7 weight percent Mo dispersion fuel

    International Nuclear Information System (INIS)

    Van den Berghe, S.

    2009-01-01

    In the FUTURE experiment, fuel plates containing U-7 weight percent Mo atomized powder were irradiated in the BR2 reactor. At a burn-up of approximately 33 percent 235 U (6.5 percent FIMA or 1.41 10 21 fissions/cm 3 meat), the fuel plates showed an important deformation and the irradiation was stopped. The plates were submitted to detailed PIE at the Laboratory for High and Medium level Activity. The results of these examinations were reported in the scientific report of last year and published in open literature. Since then, the microstructural aspects of the FUTURE fuel were studied in more detail using transmission electron microscopy (TEM), in an attempt to understand the nature of the interaction phase and the fission gas behavior in the atomized U(Mo) fuel. The FUTURE experiment is regarded as the definitive proof that the classical atomized U(Mo) dispersion fuel is not stable under irradiation, at least in the conditions required for normal operation of plate-type fuel. The main cause for the instability was identified to be the irradiation behavior of the U(Mo)-Al interaction phase which is formed between the U(Mo) particles and the pure aluminum matrix during irradiation. It is assumed to become amorphous under irradiation and as such cannot retain the fission gas in stable bubbles. As a consequence, gas filled voids are generated between the interaction layer and the matrix, resulting in fuel plate pillowing and failure. The objective of the TEM investigation was the confirmation of this assumption of the amorphisation of the interaction phase. A deeper understanding of the actual nature of this layer and the fission gas behaviour in these fuels in general can allow a more oriented search for a solution to the fuel failures

  5. Design and Testing for a New Thermosyphon Irradiation Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heat loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total

  6. Experimental fuel channel for samples irradiation at the RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Markovic, H.; Sokcic-Kostic, M.; Miric, I.; Prokic, M.; Strugar, P.

    1984-12-01

    An 80% enriched UO 2 fuel channel at the RB nuclear reactor in the 'Boris Kidric' Institute of Nuclear Sciences is modified for samples irradiation by fast neutrons. Maximum sample diameter is 25 mm and length up to 1000 mm. Characteristics of neutron and gamma radiation fields of this new experimental channel are investigated. In the centre of the channel, the main contribution to the total neutron absorbed dose, i.e. 0.29 Gy/Wh of reactor operation, is due to the fast neutron spectrum component. Only 0.05 Gy and 0.07 Gy in the total neutron absorbed dose are due to intermediate and thermal neutrons, respectively. At the same time the gamma absorbed dose is 0.35 Gy. The developed experimental fuel channel, EFC, has wide possibilities for utilization, from fast neutron spectrum studies, electronic component irradiations, dosemeters testing, up to cross-section measurements. (author)

  7. Behavior of irradiated ATR/MOX fuel under reactivity initiated accident conditions (Joint research)

    International Nuclear Information System (INIS)

    Sasajima, Hideo; Fuketa, Toyoshi; Nakamura, Takehiko; Nakamura, Jinichi; Uetsuka, Hiroshi

    2000-03-01

    Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20 MWd/kgHM were conducted at the NSRR in JAERI to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Deformation of the fuel rods due to PCMI occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet. (author)

  8. FEMAXI-7 analysis on behavior of medium and high burnup BWR fuels during base-irradiation and power ramp

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyanagi, Jin, E-mail: ohgiyanagi.jin@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hanawa, Satoshi; Suzuki, Motoe; Nagase, Fumihisa [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two power ramp experiments of BWR fuels were analyzed by FEMAXI-7 code. Black-Right-Pointing-Pointer Calculated FGR and cladding deformation showed reasonable agreement with PIE data. Black-Right-Pointing-Pointer High temperature FGR could be predicted by the enhanced Turnbull FG diffusion constant. Black-Right-Pointing-Pointer Local PCMI model in the code could reasonably predict cladding ridging deformation. - Abstract: Irradiation behavior of medium and high burnup BWR fuels during base-irradiation and subsequent power ramp test is analyzed by a fuel performance code FEMAXI-7. The code has a 1.5-D cylindrical geometry (4 axial segments) to have a coupled solution of thermal analysis and FEM mechanical analysis. Two kinds of target fuels are selected; one was subjected to a power ramp test in the DR3 reactor at RISO after the base-irradiation in a commercial BWR, and the other was subjected to the power ramp test in the DR3 reactor after the base-irradiation in the Halden boiling water reactor. The calculated values such as fission gas release after the base-irradiation and a cladding diameter profile before and after the ramp test show a reasonable agreement with measured data. In addition, the calculated ridging deformation of the cladding before and after the ramp test, which is obtained by using a local pellet-cladding mechanical interaction (PCMI) analysis geometry in FEMAXI-7, is compared with the measured data, and it is found that the FEMAXI-7 code is applicable to the local PCMI analysis of medium and high burnup rods under normal operation and power ramp conditions.

  9. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J. F.; Robinson, A. B.; Madden, J.

    2017-10-01

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 1021 f/cm3, 7.4 × 1014 f/cm3/s and 123 °C, and 5.5 × 1021 f/cm3, 11.0 × 1014 f/cm3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al3Mg2 and Al12Mg17 along with precipitates of MgO, Mg2Si and FeAl5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.

  10. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    International Nuclear Information System (INIS)

    Long, Jr. E.L.

    2001-01-01

    Seven full-sized Peach Bottom Reactor fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10 21 neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10 21 , but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum

  11. LWR fuel rod testing facilities in high flux reactor (HFT) Petten for investigation of power cycling and ramping behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Markgraf, J; Perry, D; Oudaert, J [Commission of the European Communities, Joint Reserach Centre, Petten Establishment, Petten (Netherlands)

    1983-06-01

    LWR fuel rod irradiation experiments are being performed in HFR's Pool Side Facility (PSF) by means of pressurized boiling water capsules (BWFC). For more than 6 years the major application of these devices has been in performing irradiation programs to investigate the power ramp behaviour of PWR and BWR rods which have been pre-irradiated in power reactors. Irradiation devices with various types of monitoring instrumentation are available, e.g. for fuel rod length, fuel stack length, fuel rod internal pressure and fuel rod central temperature measurements. The application scope covers PWR and BWR fuel rods, with burn-up levels up to 45 MWd/kg(U), max. linear heat generation rates up to 700 W/cm and simulation of constant power change rates between 0.05 and 1000 W/cm.min. The paper describes the different designs of LWR fuel rod testing facilities and associated non-destructive testing devices in use at the HFR Petten. It also addresses the new test capabilities that will become available after exchange of the HFR vessel in 1983. Furthermore it shows some typical results. (author)

  12. Post-Irradiation Examination of Fuel Pin R54-F20A, Irradiated in a NaK Environment. RCN Report

    International Nuclear Information System (INIS)

    Kwast, H.

    1972-12-01

    Fuel pin R54-F20A has been irradiated in a NaK-environment. Temperature measurements in the NaK were carried out at average linear fission powers of 552 and 825 W/cm respectively. A maximum average canning temperature of 920°C was reached. The fuel pin was irradiated for about 50 minutes at the maximum irradiation conditions, while the total irradiation time was two hours. The irradiation had to be broken off before the end condition was reached because of malfunctioning of the fuelfailure detection system. No power peaking did occur at the upper and lower interfaces between the 50%-enriched UO 2 - and the natural UO 2 + 8 w/o UB 4 pellet. About 35% of the fuel has molten, but the fuel pin did not fail. The irradiation has been carried out in the Poolside Facility (PSF) of the High Flux Reactor (HFR) at Petten. (author)

  13. Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuel. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-04-01

    Fast reactors are vital for ensuring the sustainability of nuclear energy in the long term. They offer vastly more efficient use of uranium resources and the ability to burn actinides, which are otherwise the long-lived component of high level nuclear waste. These reactors require development, qualification, testing and deployment of improved and innovative nuclear fuel and structural materials having very high radiation resistance, corrosion/erosion and other key operational properties. Several IAEA Member States have made efforts to advance the design and manufacture of technologies of fast reactor fuels, as well as to investigate their irradiation behaviour. Due to the acute shortage of fast neutron testing and post-irradiation examination facilities and the insufficient understanding of high dose radiation effects, there is a need for international exchange of knowledge and experience, generation of currently missing basic data, identification of relevant mechanisms of materials degradation and development of appropriate models. Considering the important role of nuclear fuels in fast reactor operation, the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) proposed a Technical Meeting (TM) on 'Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels', which was hosted by the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russian Federation, from 30 May to 3 June 2011. The TM included a technical visit to the fuel production plant MSZ in Elektrostal. The purpose of the meeting was to provide a forum to share knowledge, practical experience and information on the improvement and innovation of fuels for fast reactors through scientific presentations and brainstorming discussions. The meeting brought together 34 specialists from national nuclear agencies, R and D and design institutes, fuel vendors and utilities from 10 countries. The presentations were structured into four sections: R and D Programmes on FR Fuel

  14. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  15. Irradiation performance of experimental fast reactor 'JOYO' MK-1 driver fuel assemblies

    International Nuclear Information System (INIS)

    Itaki, Toshiyuki; Kono, Keiichi; Tachi, Hirokatsu; Yamanouchi, Sadamu; Yuhara, Shunichi; Shibahara, Itaru

    1985-01-01

    The experimental fast reactor ''JOYO'' completed it's breeder core (MK-I) operation in January 1982. The MK-I driver fuel assemblies were removed from the core sequencially in order of burnup increase and have been under postirradiation examination (PIE). The PIE has almost been completed for 30 assemblies including the highest burnup assemblies of 48,000 MWD/MTM. It has been confirmed that all fuel assemblies have exhibited satisfactory performance without detrimental assembly deformation or without any indications of fuel pin breach. The irradiation conditions of the MK-I core were somewhat more moderate than those conditions envisioned for prototypic reactor. However the results of the examination revealed the typical irradiation behavior of LMFBR fuels, although such characteristics were benign as compared with those anticipated in high burnup fuels. Systematic performance data have been accumulated through the fuel fabrication, irradiation and postirradiation examination processes. Based on these data, the MK-I fuel designing and fabrication techniques were totally confirmed. This technical experience and the associated insight into irradiation behavior have established a milestone to the next step of fast reactor fuel development. (author)

  16. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  17. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    International Nuclear Information System (INIS)

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  18. Cerenkov methodology for monitoring irradiated reactor fuel

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.

    1984-01-01

    Attribute measurement methods for confirming declared irradiated fuel inventories at nuclear installations under safeguards surveillance are of significant interest to inspectors. High-gain measurements of the intensity of the Cerenkov glow from exposed assemblies in water-filled storage ponds are promising for this purpose because the measured intensities depend on cooling times and burnup. We have developed a Cerenkov Measuring Device, a hand-held instrument that examines irradiated fuel assemblies in water-filled storage ponds and measures the intensity of the associated Cerenkov glow. In addition, we have developed a method for making such high-gain measurements in the presence of intense ambient light

  19. Metal fuel manufacturing and irradiation performance

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Walters, L.C.

    1992-01-01

    The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed

  20. Radiochemical analyses of several spent fuel Approved Testing Materials

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Wildung, N.J.

    1994-09-01

    Radiochemical characterization data are described for UO 2 and UO 2 plus 3 wt% Gd 2 O 3 commercial spent nuclear fuel taken from a series of Approved Testing Materials (ATMs). These full-length nuclear fuel rods include MLA091 of ATM-103, MKP070 of ATM-104, NBD095 and NBD131 of ATM-106, and ADN0206 of ATM-108. ATMs 103, 104, and 106 were all irradiated in the Calvert Cliffs Nuclear Power Plant (Reactor No.1), a pressurized-water reactor that used fuel fabricated by Combustion Engineering. ATM-108 was part of the same fuel bundle designed as ATM-105 and came from boiling-water reactor fuel fabricated by General Electric and irradiated in the Cooper Nuclear Power Plant. Rod average burnups and expected fission gas releases ranged from 2,400 to 3,700 GJ/kgM. (25 to 40 Mwd/kgM) and from less than 1% to greater than 10%, respectively, depending on the specific ATM. The radiochemical analyses included uranium and plutonium isotopes in the fuel, selected fission products in the fuel, fuel burnup, cesium and iodine on the inner surfaces of the cladding, 14 C in the fuel and cladding, and analyses of the gases released to the rod plenum. Supporting examinations such as fuel rod design and material descriptions, power histories, and gamma scans used for sectioning diagrams are also included. These ATMs were examined as part of the Materials Characterization Center Program conducted at Pacific Northwest Laboratory provide a source of well-characterized spent fuel for testing in support of the US Department of Energy Office of Civilian Radioactive Waste Management Program