WorldWideScience

Sample records for irradiation metastable phase

  1. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr{sup 2+}) irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbing, E-mail: 12hy1@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Zhang, Ken; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Kirk, Mark A. [Material Science Division Argonne National Laboratory, Argonne, IL, 60439 (United States); Long, Fei; Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2016-02-15

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr{sup 2+}) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  2. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  3. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  4. Cooperative photoinduced metastable phase control in strained manganite films

    Science.gov (United States)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  5. Planktic foraminifera form their shells via metastable carbonate phases.

    Science.gov (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M

    2017-11-02

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

  6. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    Science.gov (United States)

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  7. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    Science.gov (United States)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  8. Novel criterion for formation of metastable phase from undercooled melt

    International Nuclear Information System (INIS)

    Kuribayashi, Kazuhiko; Nagashio, Kosuke; Niwata, Kenji; Kumar, M.S. Vijaya; Hibiya, Taketoshi

    2007-01-01

    Undercooling a melt facilitates the preferential nucleation of a metastable phase. In the present study, the formation of metastable phases from undercooled melts was considered from the viewpoint of the competitive nucleation criterion. The classical nucleation theory shows us that the most critical factor for forming a critical nucleus is the interface free energy σ. Furthermore, Spaepen's negentropic model on σ generated the role of the scaling factor α that depends on the polyhedral order in the liquid and solid phases prominent in simple liquids such as the melt of monoatomic metals. In ionic materials such as oxides, however, in which oxygen polyhedrons including a cation at their center are the structural units both in the solid and liquid phases, the entropy of fusion, rather than α, can be expected to become dominant in the determination of σ. In accordance with this idea, using REFeO 3 as the model material (where RE denotes rare-earth elements) the entropy-undercooling regime criterion was proposed and verified

  9. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  10. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  11. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  12. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  13. A popular metastable omega phase in body-centered cubic steels

    Energy Technology Data Exchange (ETDEWEB)

    Ping, D.H., E-mail: ping.de-hai@nims.go.jp [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Geng, W.T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    Steel remains to be one of the most common structural materials in the world as human civilization advances from the Iron Age to the ongoing Silicon Age. Our knowledge of its microstructure evolution and structure–performance relationship is nevertheless still incomplete. We report the observation and characterization of a long ignored metastable phase formed in steels with body-centered cubic (bcc) structure using both transmission electron microscopy and density functional theory calculations. This ω phase has a hexagonal structure and coherent interface with the matrix: a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. It is 3.6% smaller in volume and 0.18 eV higher in energy than bcc-Fe, with atoms in alternating close- and loose-packed layers couple anti-ferromagnetically. Carbon plays a crucial role in promoting bcc to ω transformation. At a concentration higher than 4 at.% they tend to segregate from the bcc matrix to the ω-phase; at about 14 at.%, they can induce bcc to ω transformation; and finally at 25 at.%, they stabilize the ω phase as ω-Fe{sub 3}C. The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms, leading to improved resistance of martensitic steels to irradiation damage. - Highlights: ► A long-ignored metastable ω phase in body-centered cubic (bcc) steel. ► The ω phase has hexagonal structure with lattice parameters a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. ► Carbon enrichment is found to play a crucial role on the bcc-to-ω phase transformation. ► The ω phase is strongly related to the martensitic transformation and twinning structure. ► The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms.

  14. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    Science.gov (United States)

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  15. Thermal stability and phase transformation of metastable phases in Zr-Nb

    International Nuclear Information System (INIS)

    Aurelio, G.; Fernandez Guillermet, Armando

    2003-01-01

    The lattice parameters of the bcc (β) and (Ω) phases occurring metastability in a series of Zr-rich Zr-Nb alloys have been determined at and above room temperature (TR) using neutron diffraction techniques. In the first place, the effect of temperature changes upon the lattice parameters of the β and Ω phases in alloys with 10 and 18 at. % Nb was monitored using neutron thermo-diffraction. A method of analysis is applied to the data, which involve a confrontation between the observed structural properties and an idealized -or 'reference'- behavior (RB) which admits a simple mathematical description. A generalized form of the law of Vegard is adopted as RB for the β phase, whereas a specific RB is proposed for the Ω structure. The experimental data are well accounted for by this interpretation scheme, leading to a picture of the isothermal reactions occurring at high temperature, which involves the transfer of Nb from the Ω to the β phase. Finally, the neutron diffraction data on the Ω phase is combined with an electron microscopy study for the alloy with 10 at. % Nb aged at 773 K, which provides information on the composition of this phase and its evolution towards thermodynamic equilibrium. (author)

  16. Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Mylvaganam, K [Centre for Advanced Materials Technology, University of Sydney, NSW 2006 (Australia); Zhang, L C [School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052 (Australia); Eyben, P; Vandervorst, W [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J, E-mail: k.mylvaganam@usyd.edu.a, E-mail: Liangchi.zhang@unsw.edu.a, E-mail: eyben@imec.b, E-mail: jamody@imec.b, E-mail: vdvorst@imec.b [KU Leuven, Electrical Engineering Department, INSYS, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2009-07-29

    This paper explores the evolution mechanisms of metastable phases during the nanoindentation on monocrystalline silicon. Both the molecular dynamics (MD) and the in situ scanning spreading resistance microscopy (SSRM) analyses were carried out on Si(100) orientation, and for the first time, experimental verification was achieved quantitatively at the same nanoscopic scale. It was found that under equivalent indentation loads, the MD prediction agrees extremely well with the result experimentally measured using SSRM, in terms of the depth of the residual indentation marks and the onset, evolution and dimension variation of the metastable phases, such as {beta}-Sn. A new six-coordinated silicon phase, Si-XIII, transformed directly from Si-I was discovered. The investigation showed that there is a critical size of contact between the indenter and silicon, beyond which a crystal particle of distorted diamond structure will emerge in between the indenter and the amorphous phase upon unloading.

  17. Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase

    International Nuclear Information System (INIS)

    Chen, K.; Kaplan, T.; Mostoller, M.

    1995-01-01

    Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young

  18. A metastable Mg11Sm phase obtained by rapid solidification

    International Nuclear Information System (INIS)

    Budurov, S.

    1993-01-01

    Molten Mg-Sm alloys with a Sm concentration of 4.93, 6.86, and 8.35 at.% were rapidly soldified with the aid of a shock wave gun device. Investigations of the obtained splats were performed with the aid of DSC, X-ray analysis, and metallography. Rapid soldification of the eutectic MgSm 8.35 alloy forms a new Im3m-type phase. (orig.)

  19. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan

    2012-12-04

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  20. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Brä se, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Mü llen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wö ll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  1. A model for metastable magnetism in the hidden-order phase of URu2Si2

    Science.gov (United States)

    Boyer, Lance; Yakovenko, Victor M.

    2018-01-01

    We propose an explanation for the experiment by Schemm et al. (2015) where the polar Kerr effect (PKE), indicating time-reversal symmetry (TRS) breaking, was observed in the hidden-order (HO) phase of URu2Si2. The PKE signal on warmup was seen only if a training magnetic field was present on cool-down. Using a Ginzburg-Landau model for a complex order parameter, we show that the system can have a metastable ferromagnetic state producing the PKE, even if the HO ground state respects TRS. We predict that a strong reversed magnetic field should reset the PKE to zero.

  2. Transportation properties of amorphous state InSb and its metastable middle phase

    International Nuclear Information System (INIS)

    Cao Xiaowen

    1990-09-01

    The variation of the substrate temperature induces the metal-semiconductor transition in the condensation InSb films at low temperatrue. The electron conduction is dominant in the metal-type amorphous InSb and the hole in semiconductor-type one. In the metal-type amorphous InSb the electron-electron is correlated under the field above 0.1T in the temperature region of liquid nitrogen. The structure relaxation leads to not only the increase of the short range order but also the change of electron structure in metal-type amorphous InSb. The first conductance jump originates mainly from the increase of Hall mobility of the carrier, i.e. the increase of the short range order, and the system relaxes from the liquid-like to the lattice-like amorphous state. The three types of the crystallization phase transition for the metal-type amorphous InSb present obviously different transportation behaviours. Both metal-type amorphous state and metastable middle phase of InSb all are one of superconducting system with the lowest carrier concentration (n 0 ∼10 18 cm -3 ). Superconducting T c of the metastable middle phase is related to the state density near Fermi surface, i.e. the higher T c corresponds to the higher state density. The quasi-two-dimensional structure is favourable to superconductivity

  3. W nano-fuzzes: A metastable state formed due to large-flux He"+ irradiation at an elevated temperature

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping

    2016-01-01

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He"+ irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He"+ bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He"+ bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He"+ bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He"+ irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He"+ irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He"+ irradiation at an elevated temperature.

  4. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

    International Nuclear Information System (INIS)

    Xiao-Mei, Zhang; Wei-Li, Wang; Ying, Ruan; Bing-Bo, Wei

    2010-01-01

    Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe 47.5 Cu 47.5 Sn 5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51–329 K (0.19T L ). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling. (condensed matter: structure, mechanical and thermal properties)

  5. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  6. Structural Properties and Thermodynamic Stability of Metastable Phases in the Zr-Nb and Ti-V Systems

    International Nuclear Information System (INIS)

    Aurelio, Gabriela

    2003-01-01

    The structural properties and relative stability of metastable phases have been studied in the Zr-Nb and Ti-V systems.The first part of this Thesis is connected to a previous work performed in our Group (G. Grad, PhD Thesis, Instituto Balseiro, Argentina, 1999).It presents a phenomenological analysis of the systematics of interatomic distances in the omega (Ω ) and bcc (β) phases of the transition metals, which concerns a parameter entering into Pauling's resonating-valence- bond-theory and the structural and bonding properties of the Ω and β phases.Neutron diffraction experiments in Zr-Nb and Ti-V alloys are reported, aimed at studying possible atomic ordering in the Ω phase and the composition dependence of its interatomic distances.An extensive neutron diffraction study was performed on a series of Zr-Nb and Ti-V alloys quenched from high temperatures, where β is the stable phase.Upon quenching, three metastable structures are formed, viz., the hcp (∝ q ) phase, the Ω q phase, and the untransformed β q phase.The structural properties of these metastable phases were determined as a function of the Nb and V contents to generate a reliable experimental database.With such data, a series of issues are discussed related to the structure, relative stability, and phase relations in the alloys and its constitutive elements.The effect of composition upon the lattice parameters of the metastable β q and Ω q phases was combined in a consistent way with a critical analysis of structural and thermophysical data on the metastable phases of Ti and Zr.The relative stability of the metastable ∝ q , Ω q and β q phases in Zr-Nb alloys, and its evolution towards thermodynamic equilibrium, were studied combining neutron thermodiffraction and analytical electron microscopy techniques.During isothermal heat treatments performed at high temperature, the structural properties of the alloys were determined as a function of temperature, time and composition.A method of

  7. Searching for high magnetization density in bulk Fe: the new metastable Fe-6 phase

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Himmetoglu, B; Wang, JP; Wentzcovitch, RM; Cococcioni, M

    2014-11-26

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe-6), and the highest magnetization density (M-s) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe-6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe-6 could become the basis material for high M-s rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high M-s of Fe16N2, which is currently attracting intense research activity.

  8. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  9. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  10. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  11. Energy barriers between metastable states in first-order quantum phase transitions

    Science.gov (United States)

    Wald, Sascha; Timpanaro, André M.; Cormick, Cecilia; Landi, Gabriel T.

    2018-02-01

    A system of neutral atoms trapped in an optical lattice and dispersively coupled to the field of an optical cavity can realize a variation of the Bose-Hubbard model with infinite-range interactions. This model exhibits a first-order quantum phase transition between a Mott insulator and a charge density wave, with spontaneous symmetry breaking between even and odd sites, as was recently observed experimentally [Landig et al., Nature (London) 532, 476 (2016), 10.1038/nature17409]. In the present paper, we approach the analysis of this transition using a variational model which allows us to establish the notion of an energy barrier separating the two phases. Using a discrete WKB method, we then show that the local tunneling of atoms between adjacent sites lowers this energy barrier and hence facilitates the transition. Within our simplified description, we are thus able to augment the phase diagram of the model with information concerning the height of the barrier separating the metastable minima from the global minimum in each phase, which is an essential aspect for the understanding of the reconfiguration dynamics induced by a quench across a quantum critical point.

  12. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    obtain the temperature range in which the HCP metastable phase will be stable. According to the XRD measurements, it is found that the metastable HCP phase exists below 120 C. (orig.)

  13. Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Emami, Hoda; Staykov, Aleksandar; Smith, David J.; Akiba, Etsuo; Horita, Zenji

    2015-01-01

    No binary phases exist in the Mg–Ti binary equilibrium phase diagram and the two elements are totally immiscible even in liquid form. This study shows that four metastable phases (two with the bcc and fcc structures and two with the hcp structures) are formed in the Mg–Ti system by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT). Investigation of hydrogenation properties reveals that these metastable phases are decomposed to pure Mg and Ti during heating before they can absorb the hydrogen in the form of ternary Mg–Ti hydrides. First-principles calculations show that the hydrogenation reaction should occur thermodynamically, and ternary Mg–Ti hydrides with the cubic structure should form at low temperature. However, the slow kinetics for this reaction appears to be the limiting step. Calculations show that the binding energy of hydrogen increases and the thermodynamic stability of hydrides undesirably increases by addition of Ti to Mg

  14. Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table

    Science.gov (United States)

    Nnolim, Neme; Tyson, Trevor

    2002-03-01

    Total energy calculations as a function of strain along the direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.

  15. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  16. Photoelectrochemical properties of orthorhombic and metastable phase SnS nanocrystals synthesized by a facile colloidal method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Po-Chia [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Wang, Sheng-Chang; Shaikh, Muhammad Omar [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan, ROC (China); Lin, Chia-Yu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-12-01

    SnS of orthorhombic (OR) and metastable (SnS) phases were synthesized by using a simple and facile colloidal method. The tin precursor was synthesized using tin oxide (SnO) and oleic acid (OA), while the sulfur precursor was prepared using sulfur powder (S) and oleyamine (OLA). The sulfur precursor was injected into the tin precursor and the prepared SnS nanocrystals were precipitated at a final reaction temperature of 180 °C. The results show that hexamethyldisilazane (HMDS) can be successfully used as a surfactant to synthesize monodisperse 20 nm metastable SnS nanoparticles, while OR phase SnS nanosheets were obtained without HMDS. The direct bandgap observed for the metastable SnS phase is higher (1.66 eV) as compared to the OR phase (1.46 eV). The large blueshift in the direct bandgap of metastable SnS is caused by the difference in crystal structure. The blueshift in the direct band gap value for OR-SnS could be explained by quantum confinement in two dimensions in the very thin nanosheets. SnS thin films used as a photo anode in a photoelectrochemical (PEC) cell were prepared by spin coating on the fluorine-doped tin oxide (FTO) substrates. The photocurrent density of the SnS (metastable SnS)/FTO and SnS (OR)/FTO are 191.8 μA/cm{sup 2} and 57.61 μA/cm{sup 2} at an applied voltage of − 1 V at 150 W, respectively. These narrow band gap and low cost nanocrystals can be used for applications in future optoelectronic devices. - Highlights: • A facile method to synthesize two different phases of SnS having different morphological and optical properties. • The phases and morphologies of SnS nanocrystal can be controlled by adding capping surfactant hexamethyldisilazane (HMDS). • As we know, this is the first metastable SnS photoanode for application in a photoelectrochemical cell.

  17. Multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: the pair approximation and the path probability method with pair distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Erdinc, Ahmet

    2004-01-01

    As a continuation of the previously published work, the pair approximation of the cluster variation method is applied to study the temperature dependences of the order parameters of the Blume-Emery-Griffiths model with repulsive biquadratic coupling on a body centered cubic lattice. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. We study the dynamics of the model by the path probability method with pair distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagram in addition to the equilibrium phase diagram and also the first-order phase transition line for the unstable branches of the quadrupole order parameter is superimposed on the phase diagrams. It is found that the metastable phase diagram and the first-order phase boundary for the unstable quadrupole order parameter always exist at the low temperatures which are consistent with experimental and theoretical works

  18. Punishment in public goods games leads to meta-stable phase transitions and hysteresis

    Science.gov (United States)

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  19. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  20. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    Science.gov (United States)

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

  1. Formation of metastable and equilibrium phases in the decomposition of the β solid solution in Zr alloys

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Kirov, S.A.; Khundzhua, A.G.

    1978-01-01

    The decomposition of the β solid solution is studied in Zr-Nb alloys with adding Mo, Al, V, Fe by the methods of electron microscopy and X-ray diffraction on single crystals. The intermetallic compounds forming during crystallization of the alloys do not influence the precipitation of the ω- and α-phases during ageing. In the local regions of foils prepared by electropolishing after ageing the formation of the metastable f.c.c. phase and in some cases the inverse transformation of two phase state to the parent phase is observed. (author)

  2. From phase transitions to the topological renaissance. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    Science.gov (United States)

    Somogyvári, Zoltán; Érdi, Péter

    2017-07-01

    The neural topodynamics theory of Tozzi et al. [13] has two main foci: metastable brain dynamics and the topological approach based on the Borsuk-Ulam theorem (BUT). Briefly, metastable brain dynamics theory hypothesizes that temporary stable synchronization and desynchronization of large number of individual dynamical systems, formed by local neural circuits, are responsible for coding of complex concepts in the brain and sudden changes of these synchronization patterns correspond to operational steps. But what dynamical network could form the substrate for this metastable dynamics, capable of entering into a combinatorially high number of metastable synchronization patterns and exhibit rapid transient changes between them? The general problem is related to the discrimination between ;Black Swans; and ;Dragon Kings;. While BSs are related to the theory of self-organized criticality, and suggests that high-impact extreme events are unpredictable, Dragon-kings are associated with the occurrence of a phase transition, whose emergent organization is based on intermittent criticality [9]. Widening the limits of predictability is one of the big open problems in the theory and practice of complex systems (Sect. 9.3 of Érdi [2]).

  3. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    International Nuclear Information System (INIS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-01-01

    The new metastable compound Cr 1+x Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni 2 In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr 1+x Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr 1+x Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr 1.6 Sb in Ni 2 In-type structure. • The new Cr-rich phase shows half-metallic behavior

  4. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  5. Synthesis, thermal properties and recrystallization of ball-milled high Tc superconductors. (Topological stabilization of metastable phases)

    International Nuclear Information System (INIS)

    Schulz, R.; Lanteigne, J.; Simoneau, M.; Tessier, P.; Neste, A. van; Strom Olsen, J.O.

    1995-01-01

    Amorphous and nanocrystalline phases have been formed by ball-milling Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O. The strong mechanical deformations induce disorder on the oxygen sublattice and on the cation sites. These order-disorder transformations often produce simple cubic perovskite structures. During recrystallization, the chemical order is restored. Small ordered regions nucleate, grow and produce particular metastable configurations which minimize the total elastic strain energy. The sequence of events giving rise to the various metastable phases has been followed by x-ray diffraction and differential scanning calorimetry and is explained in terms of free energy diagrams. The stress and strain fields associated with the Y-Ba disorder are calculated using the elastic properties of the Y-Ba-Cu-O superconductor. A simple model is proposed to explain the stability of the structures observed after thermal treatments. (orig.)

  6. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  7. Two new Np--Ga phases: α-NpGa2 and metastable m-NpGa2

    International Nuclear Information System (INIS)

    Giessen, B.C.; Elliott, R.O.

    1976-01-01

    Following an earlier study of metastable Np-rich Np--Ga alloys, rapidly quenched Np--Ga alloys with 63 to 80 at. pct. Ga were prepared and studied. Two new NpGa 2 phases, both with an AlB 2 type structure, were found: α-NpGa 2 , with a = 4.246A, c = 4.060A, c/a = 0.956, and m-NpGa 2 , with a = 4.412A, c = 3.642A, c/a = 0.825. While m-NpGa 2 was observed only in very fast quenched (splat cooled) samples and appears to be metastable, α-NpGa 2 is probably an equilibrium phase. In a splat cooled alloy with 75 at. pct. Ga, another, unidentified, metastable phase was observed. Crystal chemical discussions of atomic volumes, interatomic distances and axial ratios are given; the volume difference between the two forms of NpGa 2 is correlated with a valence change of Np

  8. Metastable phases freezing from melts of reciprocal systems PbX + CdI2=CdX + PbI2 (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Odin, I.N.; Chukichev, M.V.

    2001-01-01

    The transformations in the mutual PbX + CdI 2 =CdX + PbI 2 (X=S, Se, Te) systems leading to the crystallization of metastable polytypical modifications of lead iodide in metastable ternary compounds are studied for the first time. Microstructural and X-ray diffraction analyses were conducted. Their phase diagrams were constructed. The luminescence properties of the stable and metastable modifications of the lead iodide and the metastable compound Pb 4 SeI 6 were investigated. The lines 504 and 512 nm are noted in the 2H-PbI 2 cathodoluminescence spectra. The close lines - 508 and 516 nm provide for the 6R-PbI 2 modification. The metastable compound Pb 4 SeI 6 is characterized by the 769 and 868 nm lines [ru

  9. Chemically exfoliated Mo S2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase

    Science.gov (United States)

    Pal, Banabir; Singh, Anjali; Sharada, G.; Mahale, Pratibha; Kumar, Abhinav; Thirupathaiah, S.; Sezen, H.; Amati, M.; Gregoratti, Luca; Waghmare, Umesh V.; Sarma, D. D.

    2017-11-01

    A metastable trigonal phase, existing only as small patches on a chemically exfoliated few-layered, thermodynamically stable 1 H phase of Mo S2 , is believed to critically influence the properties of Mo S2 -based devices. The electronic structure of this metastable phase is little understood in the absence of a direct experimental investigation of its electronic properties, complicated further by conflicting claims from theoretical investigations. We address this issue by investigating the electronic structure of this minority phase in chemically exfoliated Mo S2 few-layered systems by enhancing its contributions with the use of highly spatially resolved (≤120 nm resolution) photoemission spectroscopy and Raman spectroscopy in conjunction with state-of-the-art electronic structure calculations. Based on these results, we establish that the ground state of this phase, arrived at by the chemical exfoliation of Mo S2 using the usual Li intercalation technique, is a small gap (˜90 ±40 meV ) semiconductor in contrast to most claims in the literature; we also identify the specific trigonal structure it has among many suggested ones.

  10. Ti α - ω phase transformation and metastable structure, revealed by the solid-state nudged elastic band method

    Science.gov (United States)

    Zarkevich, Nikolai; Johnson, Duane D.

    Titanium is on of the four most utilized structural metals, and, hence, its structural changes and potential metastable phases under stress are of considerable importance. Using DFT+U combined with the generalized solid-state nudged elastic band (SS-NEB) method, we consider the pressure-driven transformation between Ti α and ω phases, and find an intermediate metastable body-centered orthorhombic (bco) structure of lower density. We verify its stability, assess the phonons and electronic structure, and compare computational results to experiment. Interestingly, standard density functional theory (DFT) yields the ω phase as the Ti ground state, in contradiction to the observed α phase at low pressure and temperature. We correct this by proper consideration of the strongly correlated d-electrons, and utilize DFT+U method in the SS-NEB to obtain the relevant transformation pathway and structures. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under Contract DE-AC02-07CH11358.

  11. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Gao, Lei; Ding, Xiangdong; Sun, Jun; Lookman, Turab; Salje, E. K. H.

    2016-01-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  12. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Salje, E. K. H., E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  13. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  14. Formation of stable and metastable phases in reciprocal systems PbSe + MI2 = MSe + PbI2 (M = Hg, Mn, Sn)

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.; Gapanovich, M.V.

    2004-01-01

    Using data of differential thermal, X-ray phase and microstructural analyses, phase diagrams of reciprocal systems PbSe + MI 2 = MSe + PbI 2 (M=Hg (1), Mn (2), Sn (3)) were constructed. It was ascertained that the HgSe-PbI 2 diagonal in system 1 is stable. Transformations leading to crystallization of metastable ternary compound formed in the system PbSe-PbI 2 and metastable polytypes of lead iodide in systems 1 and 2 in the range of temperatures from 620 to 685 K were studied. New intermediate metastable phases in systems 1, 2 and 3 were prepared by melt quenching. Crystal lattice parameters of the phases crystallizing in the CdCl 2 structural type were defined [ru

  15. Evolution of phase microstructure during irradiation

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1985-11-01

    The phase microstructure of alloys is frequently severely altered during irradiation. Sluggish precipitation reactions including precipitation coarsening are accelerated by irradiation-enhanced diffusion. Radiation-induced segregation redistributes existing precipitate phases within the microstructure, induces precipitation of nonequilibrium phases and affects the composition of phases in multicomponent alloys. The displacement process causes disordering of ordered alloys and frequently amorphization, especially in intermetallic compounds, at low temperature. Although a good qualitative understanding of the basic process involved, i.e., displacement mixing, radiation-enhanced diffusion and radiation-induced segregation exists, methods for detailed quantitative modeling of the evolution of the microstructure of alloys remain to be developed

  16. Elastic energy and metastable phase equilibria for coherent mixtures in cubic systems

    International Nuclear Information System (INIS)

    Williams, R.O.

    1979-02-01

    Expressions were derived for the elastic energy due to coherency for cubic systems for an isotropic structure and for (100) or (111) habit planes for a lamellar structure. For the metastable equilibria the usual tangent compositions are replaced by compositions that are tangent to the elastic energy curve. For a loss of coherency there is an energy decrease due to the elastic effects and a further decrease associated with compositional changes. Information contained within this treatment permits calculation of the x-ray diffraction effects for such structures

  17. W nano-fuzzes: A metastable state formed due to large-flux He{sup +} irradiation at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn

    2016-12-15

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He{sup +} irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He{sup +} bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He{sup +} bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He{sup +} bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He{sup +} irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He{sup +} irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He{sup +} irradiation at an elevated temperature.

  18. Structural and Moessbauer spectral study of the metastable phase Sm(Fe, Co, Ti)10

    International Nuclear Information System (INIS)

    Bessais, L.; Djega-Mariadassou, C.; Koch, E.

    2002-01-01

    We have performed a Moessbauer spectral analysis of nanocrystalline metastable P 6/mmm SmTi(Fe 1-x Co x ) 9 , correlated with structural transformation towards its equilibrium derivative I4/mmm SmTi(Fe 1-x Co x ) 11 . The Rietveld analysis shows that the 3g site is fully occupied, while the 6 l occupation is limited to hexagons surrounding the Fe-Fe dumb-bell pairs 2e. A specific programme for the Wigner-Seitz cell (WSC) calculation of the metastable disordered structure was used. The hyperfine parameter assignment based on the isomer shift correlation with the WSC volumes sequence leads to Co 3g preferential occupation, with Ti location in 6 l sites. The mean hyperfine field increases with Co content in connection with the enhancement of the negative core electron polarization term upon additional Co electron filling. The same trend is observed for each individual site leading to the sequence H HF {2e}≥H HF {6 l }≥H HF {3g}. (author)

  19. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    Science.gov (United States)

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Nuclear prehistory influence on irradiated metallic iron phase composition

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    With application of different Moessbauer spectroscopy applications the phase composition of metallic iron after irradiation by both neutrons and charged particles were studied. Irradiation conditions, method of targets examination and phase composition of samples after irradiation were presented in tabular form. It is shown, that phase composition of irradiated metal is defined by nuclear prehistory. So, in a number of cases abnormals (stabilization of high- and low-temperature structural phases of iron at room temperature after irradiation end) were revealed

  1. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  2. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  3. Decomposition of the metastable phase γU in U-7% and U-7% Mo-0.9% Pt

    International Nuclear Information System (INIS)

    Arico, Sergio F.; Gribaudo, Luis M.

    2004-01-01

    The 'Reduced Enrichment for Research and Test Reactors' is an international project for the development of a nuclear fuel with high density in uranium capable to get a great neutron flux with good capacity for being reprocessed. One of the candidates is a fuel containing U-Mo alloy powder, as bcc metastable phase γ, dispersed in Al powder. In order to know the influence of Pt as a stabilizing element two U-7 wt.% Mo alloys are studied, one of them with 0.9 wt.% Pt. They were fabricated in an arc furnace and both homogenized in composition during 2 h at 1000 C degrees. Then, isothermal treatments at 480, 430 and 350 C degrees were performed at times between 1 and 177 h. The decomposition of the γ phase was studied by metallography and X-ray diffraction analysis. Adding Pt, the start of the decomposition of the γ phase is delayed, but the initial grain size of the alloys is an important variable which has also to be considered. (author) [es

  4. Microstructure and heat resistance of Mg-Al-Zn alloys containing metastable phase

    International Nuclear Information System (INIS)

    Kim, Jeong-Min; Park, Bong-Koo; Jun, Joong-Hwan; Shin, Keesam; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    In this research microstructural studies have been made on cast specimens of AZ91 base alloys containing various amounts of Zn. As the amount of Zn addition increased up to 2%, any new Zn-containing phase did not appear while the Zn content in Mg 17 Al 12 phase continuously increased. A quasi-crystalline phase started to form at Mg 17 Al 12 phase when the added Zn content was about 3 wt.%. The tensile strength and elongation of the alloys at 175 deg. C were observed to increase significantly with increasing Zn content. The quasi-crystalline phase was found to be stable up to 300 deg. C, based on scanning electron microscopy examinations of the specimens heated at different temperatures for 24 h

  5. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  6. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  7. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  8. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  9. Effect of aluminium on formation of metastable phases in titanium-niobium alloys

    International Nuclear Information System (INIS)

    Trenogina, T.L.; Derevyanko, V.N.; Vozilkin, V.A.

    2001-01-01

    Specific features of phase transformations in the alloy of Ti-20Nb-29Al (at.%) are investigated in comparison with those in the aluminium-free Ti-21Nb alloy. It is states that in the alloy Ti-20Nb-29Al on quenching the ordering of β-solid solution takes place with B2-structure formation. The B2-matrix experiences decomposition with the formation of ordered Ω 0 -phase which field ranges up to 700 deg C. The investigation results show that the sequence of phase formation in Ti-Nb-Al and aluminium-free alloys is much the same. The only difference between them is the formation of ordered phases in the alloy Ti-20Nb-29Al [ru

  10. Induced phase transformations and nature of metastable states in ZTLL ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Zavadskij, Eh A

    1987-12-01

    Phase transitions in ZTLL ceramics with zirconium content being 65%, titanium content - 35%, are considered. Peculiarities in the ZTLL behaviour are shown to be caused by the existence of an intermediate range between ferroelectric and antiferroelectric states. The state of samples in the range is determined by their prehistory. It is emphasized that phase transitions in ZTLL can be explained in the framework of the existing models.

  11. Synthesis, characterization and formation mechanism of metastable phase VO2(A) nanorods

    International Nuclear Information System (INIS)

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-01-01

    Graphical abstract: - Highlights: • Pure phases of VO 2 (B) and VO 2 (A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO 2 (B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO 2 (A) phase. • VO 2 (A) nanorods resulted from VO 2 (B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO 2 (A) nanorods were synthesized via the reduction of V 2 O 5 by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO 2 (A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO 2 (B) was firstly formed and then transformed into VO 2 (A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO 2 (A) from VO 2 (B). For VO 2 (A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO 2 (A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO 2 (A) nanorods. VO 2 nanostructures with controllable phases and properties should find their promising applications in a single VO 2 nanodevice

  12. Steady state creep during metastable phase transition in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Youssef, S.B.; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1998-08-16

    The early stages of decomposition of Guinier-Preston zones (G.P. zones) in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys were investigated through creep measurements and electron microscopy observations. It was found that the strengthening and softening of the alloys has been achieved during the formation of metastable phases (G.P. zones and {gamma}`-phase) in the ageing temperature range (428 to 498 K). TEM investigations confirmed that the addition of zirconium to the Al-Ag alloy accelerates the formation and coarsening of the metastable phases. The mean values of activation energy of both alloys were found to be equal to that quoted for precipitate-dislocation interactions. (orig.) 23 refs.

  13. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  14. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-01-15

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works.

  15. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2008-01-01

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works

  16. Synthesis and catalytic activity of the metastable phase of gold phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D. [Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States); Alia, Shaun M.; Pivovar, Bryan S. [Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401 (United States); Vasquez, Yolanda, E-mail: yolanda.vasquez@okstate.edu [Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-10-15

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution

  17. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  18. Formation, structure and magnetism of the metastable defect fluorite phases AVO3.5+x (A=In, Sc)

    International Nuclear Information System (INIS)

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-01-01

    We report the preparation and stability of ScVO 3.5+x and the novel phase InVO 3.5+x . AVO 3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO 3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO 3.5+x structures following this pathway are 0.00≤x≤0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO 3.54 and ScVO 3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A 3+ /V 4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V 4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO 3 bixbyite to AVO 3.5 defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O 6 fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O 7 cubic environment in the defect fluorite structure

  19. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  20. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    Science.gov (United States)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems

  1. Formation of metastable cubic phase in Ce{sub 100−x}Al{sub x} (x=45, 50) alloys and their thermal and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Idzikowski, Bogdan, E-mail: idzi@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Puźniak, Roman [Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa (Poland); Kaczorowski, Dariusz [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2017-01-01

    Ce{sub 100−x}Al{sub x} (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce{sub 55}Al{sub 45} and 3% in Ce{sub 50}Al{sub 50}. The alloy Ce{sub 55}Al{sub 45} shows better thermal stability than Ce{sub 50}Al{sub 50}, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce{sub 55}Al{sub 45} results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce{sub 50}Al{sub 50} and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time. - Highlights: • Synthesis of metastable cubic CeAl phase by rapid quenching. • The Ce ions in Ce{sub 55}Al{sub 45} and Ce{sub 50}Al{sub 50} are in stable trivalent state. • Magnetic transition near 10 K connected with the orthorhombic CeAl phase. • Phase transition at about 20 K originates from the cubic CeAl phase.

  2. Approaching the Type-II Dirac Point and Concomitant Superconductivity in Pt-doping Stabilized Metastable 1T-phase IrTe2

    OpenAIRE

    Fei, Fucong; Bo, Xiangyan; Wang, Pengdong; Ying, Jianghua; Chen, Bo; Liu, Qianqian; Zhang, Yong; Sun, Zhe; Qu, Fanming; Zhang, Yi; Li, Jian; Song, Fengqi; Wan, Xiangang; Wang, Baigeng; Wang, Guanghou

    2017-01-01

    Topological semimetal is a topic of general interest in material science. Recently, a new kind of topological semimetal called type-II Dirac semimetal with tilted Dirac cones is discovered in PtSe2 family. However, the further investigation is hindered due to the huge energy difference from Dirac points to Fermi level and the irrelevant conducting pockets at Fermi surface. Here we characterize the optimized type-II Dirac dispersions in a metastable 1T phase of IrTe2. Our strategy of Pt doping...

  3. HRB-22 irradiation phase test data report

    International Nuclear Information System (INIS)

    Montgomery, F.C.; Acharya, R.T.; Baldwin, C.A.; Rittenhouse, P.L.; Thoms, K.R.; Wallace, R.L.

    1995-03-01

    Irradiation capsule HRB-22 was a test capsule containing advanced Japanese fuel for the High Temperature Test Reactor (HTTR). Its function was to obtain fuel performance data at HTTR operating temperatures in an accelerated irradiation environment. The irradiation was performed in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The capsule was irradiated for 88.8 effective full power days in position RB-3B of the removable beryllium (RB) facility. The maximum fuel compact temperature was maintained at or below the allowable limit of 1300 degrees C for a majority of the irradiation. This report presents the data collected during the irradiation test. Included are test thermocouple and gas flow data, the calculated maximum and volume average temperatures based on the measured graphite temperatures, measured gaseous fission product activity in the purge gas, and associated release rate-to-birth rate (R/B) results. Also included are quality assurance data obtained during the test

  4. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    Science.gov (United States)

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  5. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    Science.gov (United States)

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  6. A model for phase stability under irradiation

    International Nuclear Information System (INIS)

    Abromeit, C.

    The combination of two theoretical models leads to modified criteria of stability of precipitates under heavy particle irradiation. The size of existing or under irradiation newly formed precipitates is limited by a stable radius. Precipitate surface energy effects are included in a consistent manner

  7. On a metastable vacuum burning phenomenon

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    Equations of motion of an interface between two phases with arbitrary equations of state are obtained. It is found that there may take place a process of metastable vacuum burning. It is shown that under some conditions the process of the new phase bubble expansion is described by the detonation wave equations. Possible cosmological consequences of the metastable phase burning effect are briefly discussed. (author)

  8. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    water with a density of 0.921 kg/m3 remains in a homogeneous state during cooling down to the temperaure of −30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. iii) ice melting. Ice melting temperatures of up to 6.8 °C were measured in absence of the vapour bubble, i......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...

  9. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    Zelaya, Maria Eugenia

    2006-01-01

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  10. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    International Nuclear Information System (INIS)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-01-01

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C 4 N 2 H 12 ) 1.5 (Co 0.6 Zn 0.4 ) 2 (HPO 4 ) 2 (PO 4 )·H 2 O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2 1 /c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C 4 N 2 H 12 )Co 0.3 Zn 0.7 (HPO 4 ) 2 ·H 2 O (1D), was also isolated and the crystal structure was determined (monoclinic P2 1 /c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C 4 N 2 H 12 ) 1.5 (Co 0.6 Zn 0.4 ) 2 (HPO 4 ) 2 (PO 4 )·H 2 O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C 4 N 2 H 12 )Co 0.3 Zn 0.7 (HPO 4 ) 2 ·H 2 O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal structure of 1D metastable phase was also determined. • Thermal behavior of 2D compound is strongly dependent on the selected heating rate. • Magnetic

  11. Application of microwave irradiation to organic liquid phase reactions

    International Nuclear Information System (INIS)

    Huang Kun; Liu Hua; Ji Xuelin

    1994-01-01

    Microwave irradiation has been used in organic liquid phase reactions to significantly reduce the reaction time and improve the yield. The proposed mechanism, the development of techniques and reactions, such as Diels-Alder, ene, rearrangement reactions etc., are discussed

  12. Experimental evidence for rhombohedral phase of C70 after irradiation

    International Nuclear Information System (INIS)

    Misof, K.; Fratzl, P.; Vogl, G.

    1993-01-01

    Purely f.c.c. C 70 was irradiated with high-energy heavy ions at low temperature. This led to the appearance of additional Bragg peaks attributed to an irradiation-induced f.c.c.-to-rhombohedral phase transition. On heating to about 570 K the retrasition to the pure f.c.c. phase occurred. Since no irradiation-induced phase transition was obsered in C 60 , the rhombohedral phase appears to be connected with the ''rugby-ball shape'' of C 70 which favours the alignment of the molecules. We propose that irradiation provides the agitation enabling the C 70 molecules to overcome the small energy barriers which otherwise prevent the alignment of the rugby balls over larger regions. (orig.)

  13. Topodynamics of metastable brains

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  14. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  15. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  16. Effective interactions approach to phase stability in alloys under irradiation

    International Nuclear Information System (INIS)

    Enrique, R.A.; Bellon, P.

    1999-01-01

    Phase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results from two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram

  17. Effective interactions approach to phase stability in alloys under irradiation

    International Nuclear Information System (INIS)

    Enrique, R.A.; Bellon, P.

    1999-01-01

    Phase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results form two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges. The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram

  18. The amorphous phase transition in irradiated NiTi alloy

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Kissinger, H.E.; Pelton, A.R.

    1985-01-01

    Observed supralinear dose dependence for the amorphous transformation during irradiation of NiTi is compatible with a cascade overlap model for heavy ion (2.5 MeV Ni + , 6 MeV Ta +++ ) irradiations. A model based on total defect build-up, however, is necessary to explain the amorphous transition induced by electron irradiation and can also be applied to heavy ion irradiation. The cascade effects in this latter model are manifested by non-uniform defect distribution in the lattice. The defect build-up model requires a high activation energy for interstitial migration which is not incompatible with recent findings. The form of the temperature dependence can also be rationalized using a defect build-up model (amorphous phase transition, heavy-ion irradiation, electron irradiation, NiTi, defect build-up, cascade overlap). (author)

  19. Complexity, Metastability and Nonextensivity

    Science.gov (United States)

    Beck, C.; Benedek, G.; Rapisarda, A.; Tsallis, C.

    Work and heat fluctuations in systems with deterministic and stochastic forces / E. G. D. Cohen and R. Van Zon -- Is the entropy S[symbol] extensive or nonextensive? / C. Tsallis -- Superstatistics: recent developments and applications / C. Beck -- Two stories outside Boltzmann-Gibbs statistics: Mori's Q-phase transitions and glassy dynamics at the onset of chaos / A. Robledo, F. Baldovin and E. Mayoral -- Time-averages and the heat theorem / A. Carati -- Fundamental formulae and numerical evidences for the central limit theorem in Tsallis statistics / H. Suyari -- Generalizing the Planck distribution / A. M. C. Soma and C. Tsallis -- The physical roots of complexity: renewal or modulation? / P. Grigolini -- Nonequivalent ensembles and metastability / H. Touchette and R. S. Ellis -- Statistical physics for cosmic structures / L. Pietronero and F. Sylos Labini -- Metastability and anomalous behavior in the HMF model: connections to nonextensive thermodynamics and glassy dynamics / A. Pluchino, A. Rapisarda and V. Latora -- Vlasov analysis of relaxation and meta-equilibrium / C. Anteneodo and R. O. Vallejos -- Weak chaos in large conservative systems - infinite-range coupled standard maps / L. G. Moyano, A. P. Majtey and C. Tsallis -- Deterministc aging / E. Barkai -- Edge of chaos of the classical kicked top map: sensitivity to initial conditions / S. M. Duarte Queirós and C. Tsallis -- What entropy at the edge of chaos? / M. Lissia, M. Coraddu and R. Tonelli -- Fractal growth of carbon schwarzites / G. Benedek ... [et al.] -- Clustering and interface propagation in interacting particle dynamics / A. Provata and V. K. Noussiou -- Resonant activation and noise enhanced stability in Josephson junctions / A. L. Pankratov and B. Spagnolo -- Symmetry breaking induced directed motions / C.-H. Chang and T. Y. Tsong -- General theory of Galilean-invariant entropic lattic Boltzmann models / B. M. Boghosian -- Unifying approach to the jamming transition in granular media and

  20. Second phase precipitation in irradiated Type 316 stainless steel cladding

    International Nuclear Information System (INIS)

    Hales, J.W.

    1978-05-01

    Differences in the phase composition of FFTF fuel cans following irradiation in the General Electric Test Reactor compared to HEDL fuel cans prompted laboratory studies to be conducted using cladding from the same lots of material used to fabricate the fuel pins and on cladding sections removed from the plenum area of the irradiated fuel pins to help establish the cause of the observed differences

  1. Microstructural characterization of second phase irradiated Zircaloy-4 particles

    International Nuclear Information System (INIS)

    Flores, Alejandra V.; Vizcaino, Pablo; Banchik, Abraham D.; Bozzano, Patricia B.; Versaci, Raul A.

    2007-01-01

    X-ray diffraction diagrams of neutron irradiated Zircaloy-4 were obtained at the LNLS with the aim to obtain bulk information about the amorphization process in which the Zircaloy-4 second phase particles (SPPs) undergoes due to neutron irradiation. Owing to the low concentration of the SPPs in the alloy (∼0.4 V %), no data regarding to the bulk were obtained until now. The synchrotron experiences allowed to detect five of the more intense lines of the phase C 14 (SPPs structure) in unirradiated Zircaloy-4: (110) θ, (103) θ, (112) θ, (201) θ and (004) θ in the 34 degrees ≤ θ2≤45 degrees Bragg angle range and others of minor intensity. The diagrams of the samples irradiated at moderate doses (1020n/cm 2 ) show these lines even in the as received samples. In contrast, none of these lines are observed for high fluence samples (∼1022neutrons/cm 2 ). In addition, in similar high fluence samples annealed 24 h or 72 h at 600 C degrees the intensity rises just at the 2q range where the C 14 lines were observed, showing a wide peak. That peak is interpreted as a result of the superposition of unresolved diffraction lines corresponding to the Zircaloy SPPs which are in a reconstitution process of crystallization. Analytical Electron Microscopy techniques were used, in order to study the effects on the Zircaloy-4 SPPs and compared with samples of the same material without irradiation. Spots in SAD patterns of non irradiated SPPS, evidences the presence of a C 14 structure, but in irradiated SSP SAD patterns evidences the beginning of an amorphization process. Another important feature to point out is the different Fe / Cr ratio presented in both irradiated and non irradiated SSPs. In non irradiated precipitates the Fe / Cr ratio is approximately 1.5, while in irradiated precipitates the Fe / Cr ratio becomes near 1.0. (author) [es

  2. Phase instability in crystals under irradiation

    International Nuclear Information System (INIS)

    Martin, G.

    1975-01-01

    A diffusion term is introduced in the standard chemical rate model of the defect population in crystals under irradiation. For point defect generation rates larger than a critical value (g*), the uniform point defect population is shown to be unstable with respect to spatial fluctuations of the point defect concentration. g* is temperature dependent. Severala effects including the nucleation of arrays of point defect clusters, or radiation induced precipitation may occur above the instability threshold. Defect-defect interaction potentials play a crucial role in the numerical value of this threshold [fr

  3. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    Energy Technology Data Exchange (ETDEWEB)

    Torre-Fernández, Laura; Khainakova, Olena A. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Amghouz, Zakariae, E-mail: amghouz.uo@uniovi.es [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Khainakov, Sergei A. [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Alfonso, Belén F.; Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, 33007 Oviedo (Spain); García, José R.; García-Granda, Santiago [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal

  4. A new approach to establish both stable and metastable phase equilibria for fcc ordered/disordered phase transition: application to the Al–Ni and Ni–Si systems

    International Nuclear Information System (INIS)

    Yuan Xiaoming; Zhang Lijun; Du Yong; Xiong Wei; Tang Ying; Wang Aijun; Liu Shuhong

    2012-01-01

    Both two-sublattice (2SL) and four-sublattice (4SL) models in the framework of the compound energy formalism can be used to describe the fcc ordered/disordered transitions. When transferring the parameters of 2SL disregarding the metastable ordered states into those of 4SL, inconsistence in either stable or metastable phase diagrams could appear, as detected in both Al–Ni and Ni–Si systems. To avoid such a kind of drawback, this behavior was analyzed and investigated in the Ni–Si and Al–Ni systems with the aid of first–principle calculations. Furthermore, a new approach considering both the stable and metastable fcc ordered phase equilibria deduced from the first–principles calculations was proposed to perform a reliable thermodynamic modeling for the fcc ordered/disordered transition. The Ni–Si system was then thermodynamically assessed using the presently proposed approach. The good agreement between the calculation and experiments demonstrates the reliability of the proposed approach. It is expected that the approach is valid for other systems showing complex ordered/disordered transitions. - Highlights: ► We discuss the drawbacks of order/disorder modeling in the Ni–Si and Al–Ni systems. ► We perform ab initio calculation of thermodynamic properties in the Ni–Si system. ► A CALPHAD–type approach is proposed to model the fcc ordered/disordered transition. ► The Ni–Si system was thermodynamically assessed using the new approach.

  5. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  6. Effect of neutron irradiation on select MAX phases

    International Nuclear Information System (INIS)

    Tallman, Darin J.; Hoffman, Elizabeth N.; Caspi, El’ad N.; Garcia-Diaz, Brenda L.; Kohse, Gordon; Sindelar, Robert L.; Barsoum, Michel W.

    2015-01-01

    Herein we report on the effect of neutron irradiation – of up to 0.1 displacements per atom at 360(20) °C or 695(25) °C – on polycrystalline samples of Ti 3 AlC 2 , Ti 2 AlC, Ti 3 SiC 2 and Ti 2 AlN. Rietveld refinement of X-ray diffraction patterns of the irradiated samples showed irradiation-enhanced dissociation into TiC of the Ti 3 AlC 2 and Ti 3 SiC 2 phases, most prominently in the former. Ti 2 AlN also showed an increase in TiN content, as well as Ti 4 AlN 3 after irradiation. In contrast, Ti 2 AlC was quite stable under these irradiation conditions. Dislocation loops are seen to form in Ti 2 AlC and Ti 3 AlC 2 after irradiation at 360(20) °C. The room temperature electrical resistivity of all samples increased by an order of magnitude after irradiation at 360(20) °C, but only by 25% after 695(25) °C, providing evidence for the MAX phases’ dynamic recovery at temperatures as low at 695(25) °C. Based on these preliminary results, it appears that Ti 2 AlC and Ti 3 SiC 2 are the more promising materials for high-temperature nuclear applications

  7. Influence of second phase dispersion on void formation during irradiation

    International Nuclear Information System (INIS)

    Sundararaman, M.; Banerjee, S.; Krishnan, R.

    Irradiation-induced void formation in alloys has been found to be strongly influenced by the microstructure, the important microstructural parameters being the dislocation density and the nature, density and distribution of second-phase precipitates. The effects of various types of precipitates on void swelling have been examined using the generally-accepted model of void formation : void embryos are assumed to grow in a situation where equal numbers of vacancies and interstitials are continuously generated by the incident irradiation, the interstitials being somewhat perferentially absorbed in some sinks present in the material. The mechanism of the trapping of defects by a distribution of precipitates has been discussed and the available experimental results on the suppression of void formation in materials containing coherent precipitates have been reviewed. Experimental results on the microstructure developed in a nickel-base alloys, Inconel-718 (considered to be a candidate material for structural applications in fast reactors), have been presented. The method of determination of the coherency strain associated with the precipitates has been illustrated with the help of certain observations made on this alloy. The major difficulty in using a two-phase alloy in an irradiation environment is associated with the irradiation-induced instability of the precipitates. Several processes such as precipitate dislocation (in which the incident radiation removes the outer layer of precipitates by recoil), enhanced diffusion disordering, fragmentation of precipitates, etc. are responsible for bringinq about a significant change in the structure of a two-phase material during irradiation. The effect of these processes on the continued performance of a two-phase alloy subjected to irradiation at an elevated temperature has been discussed. (auth.)

  8. Determination of the magnetocaloric entropy change in the presence of phase separation and metastability: The case of Eu0.58Sr0.42MnO3

    International Nuclear Information System (INIS)

    Guillou, F.; Hardy, V.; Fruchart, D.; Zawilski, B.

    2014-01-01

    The magnetocaloric effect (MCE) in the manganite Eu 0.58 Sr 0.42 MnO 3 was derived by different methods, in a field range very sensitive to the phenomenon of phase separation. It turns out that a strong scatter in the MCE features was observed. When the applied field is less than the field required to complete the transition, it is found that the MCE can be strongly overestimated by “standard” indirect measurements. A way to properly estimate the MCE around a first order transition in the presence of phase separation and metastability is proposed. - Highlights: • The entropy change was investigated in an oxide with pronounced metastable effects. • A strong scatter is observed among results derived from several indirect methods. • It is found that even the calorimetric approach can be proned to artefacts. • A method is proposed to evaluate a “real” magnetocaloric entropy change

  9. Theoretical investigation of the long-lived metastable AlO{sup 2+} dication in gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Sghaier, Onsi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Abdallah, Hassan H. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Chemistry, College of Education, Salahaddin University, 44001 Erbil (Iraq); Abdullah, Hewa Y. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Physics, College of Education, Salahaddin University, 44001 Erbil (Iraq); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Al Mogren, Muneerah Mogren [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2016-09-30

    Highlights: • Theoretical investigation of gas-phase molecular species AlO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of AlO. - Abstract: We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO{sup 2+} using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO{sup 2+} is X{sup 2}Π. The internuclear equilibrium distance of AlO{sup 2+}(X{sup 2}Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  10. Crystalline-to-amorphous phase transition in irradiated silicon

    International Nuclear Information System (INIS)

    Seidman, D.N.; Averback, R.S.; Okamoto, P.R.; Baily, A.C.

    1986-01-01

    The amorphous(a)-to-crystalline (c) phase transition has been studied in electron(e - ) and/or ion irradiated silicon (Si). The irradiations were performed in situ in the Argonne High Voltage Microscope-Tandem Facility. The irradiation of Si, at 0 K, with 1-MeV e - to a fluence of 14 dpa failed to induce the c-to-a transition. Whereas an irradiation, at 0 K, with 1.0 or 1.5-MeV Kr+ ions induced the c-to-a transition by a fluence of approx.0.37 dpa. Alternatively a dual irradiation, at 10 0 K, with 1.0-MeV e - and 1.0 or 1.5-MeV Kr+ to a Kr+ fluence of 1.5 dpa - where the ratio of the displacement rates for e - to ions was approx.0.5 - resulted in the Si specimen retaining a degree of crystallinity. These results are discussed in terms of the degree of dispersion of point defects in the primary state of damage and the mobilities of point defects

  11. Stability of nanosized alloy thin films: Faulting and phase separation in metastable Ni/Cu/Ag-W films

    International Nuclear Information System (INIS)

    Csiszár, G.; Kurz, S.J.B.; Mittemeijer, E.J.

    2016-01-01

    A comparative study of Me(=Ni/Cu/Ag)-based, W-alloyed, nanocrystalline, heavily faulted thin films was carried out to identify parameters stabilizing the nanocrystalline nature upon thermal treatment. The three systems, initially of comparably, heavily twinned (twin boundaries at spacings of 1–5 nm) microstructures showed similarities but also strikingly different behaviours upon annealing, as observed by application of in particular X-ray diffraction (line-broadening) analysis and (high resolution) transmission electron microscopy. During annealing in the range of 30–600 °C, (i) segregation at the planar faults (for Me = Ni) and at grain boundaries (for Me = Ni,Cu,Ag), as well as nanoscale phase separation (for Me = Cu,Ag) take place, (ii) distinct grain growth does not occur and (iii) the twin boundaries either are largely preserved ((Ni(W) and Ag(W)) or disappear totally (Cu(W))), which was ascribed to an altered faulting energy, due to change of the amount of W segregated at the twin boundaries, and to the evolution of nano-precipitates. The nanosized films exhibit very large internal (macro)stresses parallel to the surface, which change during annealing in the range of 1 GPa (tensile) to −3 GPa (compressive) and thus are sensitive to the microstructural changes in the films (decomposition and relaxation) that happen on a nanoscale. The results are discussed in terms of thermodynamic and/or kinetic constraints controlling these processes and thus the thermal stability of the systems concerned.

  12. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83B17 During Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Quirinale, D.G.; Messina, D.; Rustan, G.E.; Kreyssig, A.; Prozorov, R.; Goldman, A.I. (Ames); (Iowa State)

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  13. Constitutive modeling of metastable austenitic stainless steel (CD-rom)

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Boisse, P.

    2008-01-01

    A stress-update algorithm is developed for austenitic metastable steels which undergo phase evolution during deformation. The material initially comprises only the soft and ductile austenite phase which due to the phenomenon of mechanically induced martensitic transformation, transforms completely

  14. Phase separation of X-irradiated lenses of rabbit

    International Nuclear Information System (INIS)

    Clark, J.I.; Giblin, F.J.; Reddy, V.N.; Benedek, G.B.

    1982-01-01

    The phase separation temperature (Tcat) was studied as a function of time (age) after the administration of a single dose of radiation (2000 rad), which induces cataract in the rabbit lens. In the normal unirradiated lens, Tcat decreases linearly with age at a rate (DTcat/dt) approximately 2.2 degrees/week. In the irradiated lens, Tcat initially decreases with age much less than the normal lens, then rises sharply with age at the time of the appearance of opacity in the living rabbit eye. We suggest that the phase separation temperature may serve as a sensitive and early indicator of cataractogenic processes in the lens

  15. The liquid metastable miscibility gap in Cu-based systems

    DEFF Research Database (Denmark)

    Curiotto, S.; Greco, R.; Pryds, Nini

    2007-01-01

    Some Cu-based alloys, like Cu–Co, Cu–Fe and Cu–Co–Fe, display a liquid metastable miscibility gap. When the melt is undercooled below a certain temperature depending on the alloy composition, they present a separation in two liquid phases, followed by coagulation before dendritic solidification....... In order to predict the phase equilibria and the mechanisms of microstructure formation, a determination of the metastable monotectics in the phase diagrams is essential. This paper focuses on the up-to-date findings on the Cu–Co, Cu–Fe and Cu–Co–Fe metastable miscibility gap in the liquid phase...

  16. Phase transformations in lithium aluminates irradiated with neutrons

    International Nuclear Information System (INIS)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R.; Bosch, P.

    2003-01-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10 8 Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  17. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  18. Modelling the material behaviour of metastable stainless

    NARCIS (Netherlands)

    Datta, K.; Geijselaers, Hubertus J.M.; Post, J.; Beyer, J.; Huetink, Han; Cesar de Sa, Jose M.A.; Santos, Abel D.

    2007-01-01

    Metastable austenitic stainless steels are designed to be thermodynamically unstable such that deformation even at room temperatures can bring about a change in the phase of face centred cubic austenite to either hexagonal close packed martensite and/or to body centred cubic martensite. This solid

  19. Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase in GaP O4 and in the solid solution AlP O4-GaP O4

    Science.gov (United States)

    Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.

    2017-08-01

    α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.

  20. Study of irradiation induced defects and phase instability in β phase of Zr Excel alloy with in-situ heavy ion irradiation

    International Nuclear Information System (INIS)

    Yu, H.; Yao, Z.; Kirk, M.A.; Daymond, M.R.

    2015-01-01

    In situ heavy ion irradiation with 1 MeV Kr"2"+ was carried out to study irradiation induced phase change and atomic lattice defects in theβ phase of Zr Excel alloy. No decomposition of β-Zr was observed under irradiation at either 200 "oC or 450 "oC. However, ω-Zr particles experienced shape change and shrinkage associated enrichment of Fe in the β/ω interface at 200 "oC irradiation but not at 450 "oC. The defect evolution in the β-phase was examined with single phase Zr-20Nb alloy. It was found that dislocation loops with Burgers vector 1/2 and both present in β-Zr under room temperature irradiation. (author)

  1. Study of irradiation induced defects and phase instability in β phase of Zr Excel alloy with in-situ heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.; Yao, Z., E-mail: 12hy1@queensu.ca [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada); Kirk, M.A. [Argonne National Laboratory, Materials Science Division, Argonne, IL (United States); Daymond, M.R. [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada)

    2015-07-01

    In situ heavy ion irradiation with 1 MeV Kr{sup 2+} was carried out to study irradiation induced phase change and atomic lattice defects in theβ phase of Zr Excel alloy. No decomposition of β-Zr was observed under irradiation at either 200 {sup o}C or 450 {sup o}C. However, ω-Zr particles experienced shape change and shrinkage associated enrichment of Fe in the β/ω interface at 200 {sup o}C irradiation but not at 450 {sup o}C. The defect evolution in the β-phase was examined with single phase Zr-20Nb alloy. It was found that dislocation loops with Burgers vector 1/2<111> and <001> both present in β-Zr under room temperature irradiation. (author)

  2. Formation and microstructure of Al{sub 2}O{sub 3}-YAG eutectic ceramics by phase transformation from metastable system to equilibrium system

    Energy Technology Data Exchange (ETDEWEB)

    Nagira, Tomoya; Yasuda, Hideyuki; Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: nagira@ams.eng.osaka-u.ac.jp

    2009-05-01

    Unidirectionally solidified Al{sub 2}O{sub 3}-YAG(Y{sub 3}Al{sub 5}O{sub 12}: yttrium-aluminum-garnet) eutectic ceramic composites have been recognized as encouraging heat-resistance materials because of the superior mechanical properties at high temperatures. In addition to the excellent mechanical properties at high temperatures, some interesting solidification phenomena have been reported in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The Al{sub 2}O{sub 3}-YAG equilibrium eutectic at 2099 K and the Al{sub 2}O{sub 3}-YAP metastable eutectic at 1975 K exist in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The heating the metastable eutectic up to temperatures above the metastable eutectic temperature produced the undercooled melt. Solidification in the equilibrium path accompanied the melting of the metastable eutectic. The solidification process using undercooled melt resulted in the fine and uniform eutectic structure. In this study, the effect of the initial Al{sub 2}O{sub 3}-YAP particles size on the undercooled melt formation was examined. The Al{sub 2}O{sub 3}-YAP particles with diameters more than several {mu}m resulted in the transformation through the undercooled melt. EBSD analysis showed that the domains of Al{sub 2}O{sub 3} grains with same crystallographic orientation were observed and that their domain size depended on the Al{sub 2}O{sub 3}-YAP particles size. On the other hand, for the Al{sub 2}O{sub 3}-YAP particles with a diameter of 500 nm, the each Al{sub 2}O{sub 3} grain with diameter of about 1 {mu}m had the different crystallographic orientations, which suggested that the transformation from metastable eutectic to equilibrium eutectic occurred in the solid state. The increase in the Al{sub 2}O{sub 3}-YAP free surface area suppressed the undercooled melt formation.

  3. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  4. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  5. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    International Nuclear Information System (INIS)

    Lang, Peter; Wojcik, Tomasz; Povoden-Karadeniz, Erwin; Falahati, Ahmad; Kozeschnik, Ernst

    2014-01-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed

  6. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  7. Metastable and stable magnetic phases in as-cast and annealed Pr80Fe15(B1-xCx)5 alloys (0.0≤x≤1.0)

    International Nuclear Information System (INIS)

    Sanchez Llamazares, J.L.; Lopez, G.; Fidler, J.

    1998-01-01

    In as-cast Pr 80 Fe 15 (B 1-x C x ) 5 , samples metastable A 1 (T c =225 C) was the predominant magnetic phase in the whole composition range, with intrinsic properties that were not affected with increasing C content. Up to x=0.75 this phase coexists with an additional minor magnetic phase having T c =263 C which has been labelled by us to as A 3 . Upon annealing at 600 C A 1 dissolves and the following stable phases were observed: (a) Pr 2 Fe 14 B and A 3 for 0.0≤x≤0.75, and; (b) an unknown stable phase D 1 with coercivity around 2.1 kOe and Curie temperature of 230 C for x=1.0. D 1 is the predominant phase for annealing times less than 8 h while for 8 and 16 h annealing an additional phase with T c =17 C appears. The latter has been tentatively identified as Pr 2 Fe 17 . SEM and X-ray microanalysis studies were performed on Pr 80 Fe 15 C 5 samples in the as-cast state and after 16 h of annealing. The as-cast sample shows large Pr-rich grains immersed in a fine eutectic microstructure consisting of Pr and Fe. In annealed samples, both large square or polygonal grains and a needle-like phase are formed. The latter is believed to be D 1 . (orig.)

  8. Metastability in Field Theory and Statistical Mechanics

    International Nuclear Information System (INIS)

    Carvalho, C.A. de.

    1984-01-01

    After a phase transition analysis which can occur in the framework of a scalar field theory, at finite temperature and in presence of a external field, possibles metastable situations are studied and also how is their relationship with the transitions. In both cases it is used a semiclassical approximation to the theory which, in Statistical Mechanics, corresponds to the droplet-bubble model. (L.C.) [pt

  9. Desensitization of metastable intermolecular composites

    Science.gov (United States)

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  10. In situ transmission electron microscope studies of ion irradiation-induced and irradiation-enhanced phase changes

    International Nuclear Information System (INIS)

    Allen, C.W.

    1992-01-01

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing transmission electron microscopes (TEM) have been performed for several decades, involving irradiation-induced and irradiation-enhanced microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact; the development of TEM specimen holder sin which specimen temperature can be controlled in the range 10-2200 K and the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes and presents two case studies involving in situ experiments performed in an HVEM to illustrate the strategies of such an approach of the materials research of irradiation effects

  11. Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification

    DEFF Research Database (Denmark)

    Nielsen, Mette Skovgaard; Almdal, Kristoffer; Lelieveld, A. van

    2011-01-01

    Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature (RT). A stabilizing effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites was te...... exposure to humidity. Only silanes and phosphate esters of these were able to stabilize the tetragonal phase in water. Even as small amounts of silanes as 0.25 silane molecule per nm2 are able to stabilize the tetragonal phase in water at RT. Aminopropyl trimethoxy silane and γ...

  12. Photodetachment of metastable He-

    International Nuclear Information System (INIS)

    Thompson, J.S.; Dellwo, J.; Compton, R.N.

    1990-01-01

    A crossed-beams apparatus has been used to measure angular distributions and cross sections for photoelectron detachment from metastable He - . Energy- and angle-resolved electron spectroscopy was used to investigate the spectral dependences of the angular distribution of the photoelectrons. The angular distributions along with photoelectron yield measurements were used to determine the cross sections for photodetachment of He - (2 4 P) via the energy resolved He(2 3 P) and He(2 3 S) exit channels. The precision of the cross section measurements was enhanced by exploiting the kinematic effects associated with detachment from a fast beam source. Calculated cross sections for the photodetachment of H - were used to establish an absolute scale for the He - cross section measurements

  13. On Metastability in FPU

    CERN Document Server

    Bambusi, D

    2005-01-01

    We present an analytical study of the Fermi--Pasta--Ulam (FPU) $\\alpha$--model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with some low frequency Fourier modes excited. We show that, correspondignly, a pair of KdV equations constitute the resonant normal form of the system. We also use such a normal form in order to prove the existence of a metastability phenomenon. More precisely, we show that the time average of the modal energy spectrum rapidly attains a well defined distribution corresponding to a packet of low frequencies modes. Subsequently, the distribution remains unchanged up to the time scales of validity of our approximation. The phenomenon is controlled by the specific energy.

  14. Solar-Blind Photodetector with High Avalanche Gains and Bias-Tunable Detecting Functionality Based on Metastable Phase α-Ga2O3/ZnO Isotype Heterostructures.

    Science.gov (United States)

    Chen, Xuanhu; Xu, Yang; Zhou, Dong; Yang, Sen; Ren, Fang-Fang; Lu, Hai; Tang, Kun; Gu, Shulin; Zhang, Rong; Zheng, Youdou; Ye, Jiandong

    2017-10-25

    The metastable α-phase Ga 2 O 3 is an emerging material for developing solar-blind photodetectors and power electronic devices toward civil and military applications. Despite its superior physical properties, the high quality epitaxy of metastable phase α-Ga 2 O 3 remains challenging. To this end, single crystalline α-Ga 2 O 3 epilayers are achieved on nonpolar ZnO (112̅0) substrates for the first time and a high performance Au/α-Ga 2 O 3 /ZnO isotype heterostructure-based Schottky barrier avalanche diode is demonstrated. The device exhibits self-powered functions with a dark current lower than 1 pA, a UV/visible rejection ratio of 10 3 and a detectivity of 9.66 × 10 12 cm Hz 1/2 W -1 . Dual responsivity bands with cutoff wavelengths at 255 and 375 nm are observed with their peak responsivities of 0.50 and 0.071 A W -1 at -5 V, respectively. High photoconductive gain at low bias is governed by a barrier lowing effect at the Au/Ga 2 O 3 and Ga 2 O 3 /ZnO heterointerfaces. The device also allows avalanche multiplication processes initiated by pure electron and hole injections under different illumination conditions. High avalanche gains over 10 3 and a low ionization coefficient ratio of electrons and holes are yielded, leading to a total gain over 10 5 and a high responsivity of 1.10 × 10 4 A W -1 . Such avalanche heterostructures with ultrahigh gains and bias-tunable UV detecting functionality hold promise for developing high performance solar-blind photodetectors.

  15. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  16. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei, E-mail: mli@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Miller, Michael K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Chen, Wei-Ying [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • Thermally-aged CF8 was irradiated with 1 MeV Kr ions at 400 °C. • Atom probe tomography revealed a strong dose dependence of G-phase precipitates. • Phase separation of α and α′ in ferrite was reduced after irradiation. - Abstract: The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α′ phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10{sup 19} ions/m{sup 2} at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α′ spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α′ spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.

  17. The regulation of ras-raf signaling pathway on G1 phase of the irradiated cells

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Liu Nongle; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    Objective: To investigate the way of ras-raf signaling pathway which regulate the G 1 phase in irradiated KG-1 cells. Methods: Blocked the GM-CSF signaling pathway by transfected DN-ras and then momentary transfected cyclin D1 into irradiated KG-1 cells, the effects of cyclin D1 on G 1 phase was examined. Results: The irradiated KG-1 cells transfected DN-ras can't recover form G 1 phase arrest even though the GM-CSF was given,momentary transfected cyclin D1 promote the irradiated KG-1 cells from G 1 arrest. Conclusion: Activation of ras-raf signaling pathway regulate the cell cycle of the irradiated KG-1 cells through promotion the expression of the cyclin D1

  18. A few proofs for nonexistence of the metastable states

    International Nuclear Information System (INIS)

    Blazjevski, Atanas

    2007-01-01

    This paper is the bigger part of one until now unpublished author's work, whose title is 'A few proofs for nonexistence of the metastable states'. Because of a big volume of the work, the problems of supersaturated (metastable) steam which appears at the following of slightly, superheated, saturated or wet steam in the convergent and Laval nozzles will be discussed in the main. This steam is mentioned in the literature as one between of the strongest proofs for existence of metastable states in the substances. In this work the steam is not one -phase gaseous metastable steam, as it was thought until now, but yat it is nonequilibrium wet steam in which during the expanding process in the nozzles extreme small particles condensate, consisted of two, three or only few agglomerated molecules are formed which stay in heat, mechanical and internal nonequilibrium with the rest of the expanding gaseous phase of the steam. It means, that this steam, which is called a supersaturated or metastable steam, in fact does not exist in reality because it is nothing else but only nonequilibrium wet steam consisted of tho phases: the expanding gaseous phase of the steam in the nozzle and the mentioned small and nonequilibrium particles condensate which are formed there...

  19. S-phase cell distribution in the small intestine irradiated at different times of the day. I. Acute irradiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Balzi, M; Cremonini, D; Fabbrica, D [Florence Univ. (Italy). Ist. di Radiologia

    1983-01-01

    The S-phase cell distribution has been analysed to evaluate the behaviour of proliferative cells in the intestinal epithelium after irradiation at different times of the day. A marked reduction of S cell frequency was observed at early intervals after abdominal irradiation; this reduction was particularly evident in the lower half of the crypts. At subsequent intervals a progressive extension of the proliferative compartment, with labelled cells also at the top of the crypt, was present. The irradiated groups generally showed a homogeneous behaviour even if a more marked reduction in S-phase cells was observed in group C. The invertase activity, a brush border enzyme synthetized during the differentiation process, presented a different behaviour at the early intervals in the irradiated groups. When the extension of the proliferative compartment occurred the invertase activity reached values close to zero. The modifications in brush border enzymes and in S-phase cell distribution, at early killing times, led to the hypothesis of an early differentiation.

  20. Heterogeneous phase gamma irradiation of ethylene-hydrogen mixtures

    International Nuclear Information System (INIS)

    Molinari, M.A.; Lires, O.A.; Videla, G.J.

    1975-11-01

    Experiments of radioinduced ethylene hydrogenation were performed. The G yield of volatile saturated hydrocarbons was 0,49 for silica-gel with simultaneous irradiation and 0,09-0,05 for the other solids (silica-alumina and molecular sieve 5A). The highest yield corresponds to 4,5% of saturated products in relation to initial ammount of ethylene (silica-gel). Polymerization was the most important reaction, with yields as high as 95%. Changes in color and appearance of silica-aluminia in contact with moisture was observed, after the irradiation process. (author) [es

  1. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  2. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation

    International Nuclear Information System (INIS)

    Yamashita, S.; Oka, K.; Ohnuki, S.; Akasaka, N.; Ukai, S.

    2002-01-01

    Oxide dispersion-strengthened ferritic steels were irradiated by neutrons up to 21 dpa and studied by microstructural observation and microchemical analysis. The original high dislocation density did not change after neutron irradiation, indicating that the dispersed oxide particles have high stability under neutron irradiation. However, there is potential for recoil resolution of the oxide particles due to ballistic ejection at high dose. From the microchemical analysis, it was implied that some of the complex oxides have a double-layer structure, such that TiO 2 occupied the core region and Y 2 O 3 the outer layer. Such a structure may be more stable than the simple mono-oxides. Under high-temperature irradiation, Laves phase was the predominant precipitate occurring at grain boundaries α phase and χ phase were not observed in this study

  3. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  4. Metastability at the Yield-Stress Transition in Soft Glasses

    Science.gov (United States)

    Lulli, Matteo; Benzi, Roberto; Sbragaglia, Mauro

    2018-04-01

    We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable "fluidized" state, which relaxes back to a metastable "solid" state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.

  5. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-Based alloys with low body-centered cubic phase stability

    International Nuclear Information System (INIS)

    Tane, M.; Hagihara, K.; Ueda, M.; Nakano, T.; Okuda, Y.

    2016-01-01

    Changes in the elastic properties during room-temperature aging (RT aging) of metastable Ti–Nb-based alloy single crystals with low body-centered cubic (bcc)-phase stability were investigated. The elastic stiffness components of Ti–Nb–Ta–Zr alloys with different Nb concentrations were measured by resonant ultrasound spectroscopy during RT aging; the results revealed that shear moduli c ′ and c 44 were increased by RT aging. In the alloy with the lowest Nb concentration, i.e., with the lowest bcc phase stability, shear moduli c ′ and c 44 were enhanced by the largest amount. The increase rates were ∼5% for 1.1 × 10 7  s (127 days), whereas the bulk modulus was hardly changed by aging. In Ti–Nb–Ta–Zr–O alloys with different oxygen concentrations, shear moduli c ′ and c 44 of the alloy with the lowest oxygen concentration increased most significantly. Moreover, the electrical resistivity of Ti–Nb–Ta–Zr and Ti–Nb–Ta–Zr–O alloys was increased by RT aging. Importantly, the enhancements of shear moduli and electrical resistivity were suppressed by increases in the bcc-phase stability (i.e., increase in the Nb concentration) and oxygen concentration; these factors are known to suppress ω (hexagonal) phase formation. However, transmission electron microscopy (TEM) observations revealed that only a diffuse ω structure—an ω-like lattice distortion—was formed after RT aging. On the basis of alloying element effects, TEM observations, and analysis of the changes in elastic properties by using a micromechanics model, it was deduced that the enhancements of shear moduli and electrical resistivity were possibly caused by the formation of a diffuse ω structure.

  6. In-situ studies on phase transformations under electron irradiation in ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    under 1 MeV electron irradiation at 300 K has been recorded in HVEM experiments. The similarity of the diffuse intensity distribution in these two cases brings out the importance of the lattice collapse mechanism in both the cases. 2. Crystallography of the ordered phases in Ni–Mo system. The equilibrium phase diagram of ...

  7. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  8. Cytological evidence for DNA chain elongation after UV irradiation in the S phase

    International Nuclear Information System (INIS)

    Minka, D.F.; Nath, J.

    1981-01-01

    Human cells irradiated with UV light synthesize lower molecular weight DNA than unirradiated cells. This reduction in molecular weight is greater in xeroderma pigmentosum (XP) cells than in normal cells. The molecular weight of DNA is further reduced by the addition of caffeine to XP cells. By several hours after irradiation, DNA fragments are barely detectable. Cells from excision-proficient and excision-deficient XP patients were studied autoradiographically to produce cytological evidence of DNA chain elongation. Replicate cultures with and without caffeine were synchronized and irradiated with UV light during the S phase. Caffeine was removed in G2, and the cells were labeled with 3 H-thymidine. Results showed significantly increased labeling during G2 of excision-deficient XP cells. Labeling was dependent on the time of irradiation and presence of caffeine. The XP variant cells had no increase in labeling for any irradiation time

  9. Collisional interaction between metastable neon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Drunen, Wouter Johannes van

    2008-07-07

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2]{sub 2} and the 3s'[1/2]{sub 0} metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m{sub J} = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10{sup 11} cm{sup -3}, and a central phase-space density of up to 2.2.10{sup -7}. After loading the optical dipole trap from the magnetic trap, 2.5.10{sup 6} atoms with typical temperatures of 0.1 mK, and central densities up to 5.10{sup 10} cm{sup -3} were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10{sup -5}. Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the {sup 3}D{sub 3} line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the {sup 3}P{sub 0} metastable state. From the trap loss measurements we determined the two-body loss coefficient of the {sup 3}P{sub 0} metastable state for both bosonic isotopes {sup 20}Ne and {sup 22}Ne. For {sup 20}Ne we obtained {beta}=6{sup +5}{sub

  10. Collisional interaction between metastable neon atoms

    International Nuclear Information System (INIS)

    Drunen, Wouter Johannes van

    2008-01-01

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2] 2 and the 3s'[1/2] 0 metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m J = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10 11 cm -3 , and a central phase-space density of up to 2.2.10 -7 . After loading the optical dipole trap from the magnetic trap, 2.5.10 6 atoms with typical temperatures of 0.1 mK, and central densities up to 5.10 10 cm -3 were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10 -5 . Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the 3 D 3 line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the 3 P 0 metastable state. From the trap loss measurements we determined the two-body loss coefficient of the 3 P 0 metastable state for both bosonic isotopes 20 Ne and 22 Ne. For 20 Ne we obtained β=6 +5 -4 .10 -10 cm 3 /s and for 22 Ne β = 11 +7 -6 .10 -10 cm 3 /s. (orig.)

  11. Continuous contour phase plates for tailoring the focal plane irradiance profile

    International Nuclear Information System (INIS)

    Dixit, S.N.; Rushford, M.C.; Thomas, I.M.; Perry, M.D.

    1995-01-01

    We present fully continuous phase screens for producing super-Gaussian focal-plane irradiance profiles. Such phase screens are constructed with the assumption of either circular symmetric near-field and far-field profiles or a separable phase screen in Cartesian co-ordinates. In each case, the phase screen is only a few waves deep. Under illumination by coherent light, such phase screens produce high order super-Gaussian profiles in the focal plane with high energy content effects of beam aberrations on the focal profiles and their energy content are also discussed

  12. Characterization of the martensite phase formed during hydrogen ion irradiation in austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun

    2017-10-01

    Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.

  13. Metastable states of plasma particles close to a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A. V., E-mail: shavlov@ikz.ru [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation); Tyumen State Oil and Gas University, 38, Volodarskogo St., 625000, Tyumen (Russian Federation); Dzhumandzhi, V. A. [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation)

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  14. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  15. Nano-pulsed laser irradiation scanning system for phase-change materials

    International Nuclear Information System (INIS)

    Kim, Sookyung; Li Xuezhe; Lee, Sangbin; Kim, Kyung-Ho; Lee, Seung-Yop

    2008-01-01

    Recently, the demand of a laser irradiation tester is increasing for phase change random access memory (PRAM) as well as conventional optical storage media. In this study, a nano-pulsed laser irradiation system is developed to characterize the optical property and writing performance of phase-change materials, based on a commercially available digital versatile disk (DVD) optical pick-up. The precisely controlled focusing and scanning on the material's surface are implemented using the auto-focusing mechanism and a voice coil motor (VCM) of the commercial DVD pick-up. The laser irradiation system provides various writing and reading functions such as adjustable laser power, pulse duration, recording pattern (spot, line and area), and writing/reading repetition, phase transition, and in situ reflectivity measurement before/after irradiation. Measurements of power time effect (PTE) diagram and reflectivity map of Ge 2 Sb 2 Te 5 samples show that the proposed laser irradiation system provides the powerful scanning tool to quantify the optical characteristics of phase-change materials

  16. Interaction of rare gas metastable atoms

    International Nuclear Information System (INIS)

    Wang, A.Z.F.

    1977-11-01

    The physical and chemical properties of metastable rare gas atoms are discussed and summarized. This is followed by a detailed examination of the various possible pathways whereby the metastable's excess electronic energy can be dissipated. The phenomenon of chemi-ionization is given special emphasis, and a theoretical treatment based on the use of complex (optical) potential is presented. This is followed by a discussion on the unique advantages offered by elastic differential cross section measurements in the apprehension of the fundamental forces governing the ionization process. The methodology generally adopted to extract information about the interaction potential for scattering data is also systematically outlined. Two widely studied chemi-ionization systems are then closely examined in the light of accurate differential cross section measurements obtained in this work. The first system is He(2 3 S) + Ar for which one can obtain an interaction potential which is in good harmony with the experimental results of other investigators. The validity of using the first-order semiclassical approximation for the phase shifts calculation in the presence of significant opacities is also discussed. The second reaction studied is He*+D 2 for which measurements were made on both spin states of the metastable helium. A self-consistent interaction potential is obtained for the triplet system, and reasons are given for not being able to do likewise for the singlet system. The anomalous hump proposed by a number of laboratories is analyzed. Total elastic and ionization cross sections as well as rate constants are calculated for the triplet case. Good agreement with experimental data is found. Finally, the construction and operation of a high power repetitively pulsed nitrogen laser pumped dye laser system is described in great details. Details for the construction and operation of a flashlamp pumped dye laser are likewise given

  17. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Songqin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China); Gao, Michael C. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR, 97321 (United States); AECOM, P.O. Box 1959, Albany, OR, 97321 (United States); Yang, Tengfei [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, 100871 (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996 (United States); Zhang, Yong, E-mail: drzhangy@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-11-15

    The microstructures of Al{sub x}CoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  18. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    Science.gov (United States)

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  19. Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    The differential calorimetric technique has been applied to measure the dissolution enthalpy, ΔH irrad δ→α , of zirconium hydrides precipitated in structural components removed from the Argentine Atucha 1 PHWR nuclear power plant after 10.3 EFPY. An average value of ΔH irrad δ→α = 5 kJ/mol H was obtained after the first calorimetric run. That value is seven times lower than the value of ΔH δ→α = 37.7 kJ/mol H recently determined in Zircaloy-4 specimens taken from similar unirradiated structural components using the same calorimetric technique, [1]. Post-irradiation thermal treatments gradually increase that low value towards the unirradiated value with increasing annealing temperature similar to that observed for TSSd irrad . Therefore the same H atom trapping mechanism during reactor operation already proposed to explain the evolution of TSSd irrad is also valid for Q irrad δ→α . As the ratio Q/ΔH is proportional to the number N H of H atoms precipitated as hydrides, the increment of Q irrad δ→α with the thermal treatment indicates that the value of N H also grows with the annealing reaching the value corresponding to the bulk H concentration when ΔH irrad δ→α ≅ 37 kJ/mol H. That is a direct indication that the post-irradiation thermal treatment releases the H atoms from their traps increasing the number of H atoms available to precipitate at the end of each calorimetric run and/or isothermal treatment. (author)

  20. A phase field model for segregation and precipitation induced by irradiation in alloys

    Science.gov (United States)

    Badillo, A.; Bellon, P.; Averback, R. S.

    2015-04-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.

  1. A phase field model for segregation and precipitation induced by irradiation in alloys

    International Nuclear Information System (INIS)

    Badillo, A; Bellon, P; Averback, R S

    2015-01-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni–Si and Al–Zn undersaturated solid solutions subjected to irradiation. (paper)

  2. Phase formation in Zr/Fe multilayers during Kr ion irradiation

    International Nuclear Information System (INIS)

    Motta, A. T.

    1998-01-01

    A detailed study has been conducted of the effect of Kr ion irradiation on phase formation in Zr-Fe metallic multilayers, using the Intermediate Voltage Electron Microscopy (IVEM) at Argonne National Laboratory. Metallic multilayers were prepared with different overall compositions (near 50-50 and Fe-rich), and with different wavelengths (repetition thicknesses). These samples were irradiated with 300 keV Kr ions at various temperatures to investigate the final products, as well as the kinetics of phase formation. For the shorter wavelength samples, the final product was in all cases an amorphous Zr-Fe phase, in combination with Fe, while specially for the larger wavelength samples, in the Fe-rich samples the intermetallic compounds ZrFe 2 and Zr 3 Fe were formed in addition to the amorphous phase. The dose to full reaction decreases with temperature, and with wavelength in a manner consistent with a diffusion-controlled reaction

  3. Metastable states in magnetic nanorings

    DEFF Research Database (Denmark)

    Castaño, F. J.; Ross, C. A.; Frandsen, Cathrine

    2003-01-01

    Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found. This "twi......Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found....... This "twisted" state contains a 360degrees domain wall which can exist over a wide range of applied fields. Four possible configurations of the twisted state are possible. Micromagnetic modeling shows that the twisted state is stabilised in small diameter, narrow rings. Additionally, more complex configurations...

  4. Effects of HVEM irradiation on ordered phases in Ni-Ti

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1983-01-01

    Various ordered phases in the Ni-Ti system were subjected to electron irradiation in the Berkeley HVEM. Austenitic NiTi (B2 structure) disorders and turns amorphous with room-temperature irradiations at accelerating potentials between 1 and 1.5 MeV. Total doses for the onset of amorphiticity range between 0.7 x 10 22 and 3 x 10 22 e.cm -2 (0.4 to 1.0dpa). At 90K the dose requirement decreases to 4 x 10 20 e.cm -2 (approx. 10 -2 dpa). Martensitic NiTi (distorted monoclinic structure) readily detwins and transforms to austenite when irradiated for short times (approx. 10 seconds). Vapor-deposited amorphous films were crystallized to produce NiTi, Phase X (ordered nickel-rich phase with unknown structure) and Ni 3 Ti (DO 24 structure). Upon electron irradiation, NiTi and Phase X disorder and become amorphous, while Ni 3 Ti disorders but does not turn amorphous with doses up to 4 x 10 22 e.cm -2 at 90K. These results are discussed in terms of the requirement of a critical concentration of defects and their relative mobilities. Brimhall's solubility criteria for amorphization of ordered alloys by ion bombardment is apparantly applicable to electron-induced crystalline to amorphous transitions in this alloy

  5. Instability of colliding metastable strings

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  6. Instability of colliding metastable strings

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.

    2013-04-01

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  7. The dehydration of SrTeO3(H2O)--a topotactic reaction for preparation of the new metastable strontium oxotellurate(IV) phase ε-SrTeO3.

    Science.gov (United States)

    Stöger, Berthold; Weil, Matthias; Baran, Enrique J; González-Baró, Ana C; Malo, Sylvie; Rueff, Jean Michel; Petit, Sebastien; Lepetit, Marie Bernadette; Raveau, Bernard; Barrier, Nicolas

    2011-05-28

    Microcrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.7669(5), b = 7.1739(4), c = 8.3311(5) Å, β = 107.210(1)°, V = 443.42(5) Å(3), 1403 structure factors, 63 parameters, R[F(2)>2σ(F(2))] = 0.0208, wR(F(2) all) = 0.0516, S = 1.031. SrTeO(3)(H(2)O) is isotypic with the homologous BaTeO(3)(H(2)O) and is characterised by a layered assembly parallel to (100) of edge-sharing [SrO(6)(H(2)O)] polyhedra capped on each side of the layer by trigonal-prismatic [TeO(3)] units. The cohesion of the structure is accomplished by moderate O-H···O hydrogen bonding interactions between donor water molecules and acceptor O atoms of adjacent layers. In a topochemical reaction, SrTeO(3)(H(2)O) condensates above 150 °C to the metastable phase ε-SrTeO(3) and transforms upon further heating to δ-SrTeO(3). The crystal structure of ε-SrTeO(3), the fifth known polymorph of this composition, was determined from combined electron microscopy and laboratory X-ray powder diffraction studies: P2(1)/c, Z = 4, a = 6.7759(1), b = 7.2188(1), c = 8.6773(2) Å, β = 126.4980(7)°, V = 341.20(18) Å(3), R(Fobs) = 0.0166, R(Bobs) = 0.0318, Rwp = 0.0733, Goof = 1.38. The structure of ε-SrTeO(3) shows the same basic set-up as SrTeO(3)(H(2)O), but the layered arrangement of the hydrous phase transforms into a framework structure after elimination of water. The structural studies of SrTeO(3)(H(2)O) and ε-SrTeO(3) are complemented by thermal analysis and vibrational spectroscopic measurements.

  8. Sequential evolution of different phases in metastable Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) system: crucial role of reaction conditions.

    Science.gov (United States)

    Shukla, Rakesh; Sayed, Farheen N; Phapale, Suhas; Mishra, Ratikant; Tyagi, Avesh K

    2013-07-15

    The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.

  9. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Steinhardt, Paul J., E-mail: steinh@princeton.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544 (United States); Turok, Neil [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2013-10-07

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height (10{sup 10–12} GeV){sup 4}) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  10. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    Science.gov (United States)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-10-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height ( GeV)4) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  11. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    International Nuclear Information System (INIS)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-01-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height (10 10–12 GeV) 4 ) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation

  12. The embryogenesis in Arabidopsis thaliana following the γ-irradiation of the plants in the generative phase

    International Nuclear Information System (INIS)

    Akhundova, G.G.; Grinich, L.I.; Shevchenko, V.V.

    1978-01-01

    The flowers and young pods of the Arabidopsis thaliana (B 3 -B 7 phases of development) were subjected to the γ-irradiation with the dose of 4kr. The irradiation did not influence upon duration of phases of flower development, independently of the phase it has been conducted. Cytological characteristics of embryos are given for each phase under study. The duration of embyogenesis (from zygote up to spherical stage) under control and after irradiation was practically identical. The irradiation excited various anomalies of development. The most frequently met type of violations is the first division of apical cell by transverse septum instead of longitudinal one. Observed were the irregular division of suspensor cells, arrest of embryo apical cell division at normal suspensor division, irregular septum location and irregular form of embryo body. Maximum of violations in seed-lobe formation was marked after irradiation of young pods (B 6 -B 7 phases)

  13. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    Science.gov (United States)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  14. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  15. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  16. From materials control to astrophysics: metastable superconductors

    International Nuclear Information System (INIS)

    Waysand, G.

    1984-01-01

    The basic properties of metastable superconducting materials are reviewed: superheated domain, size of the granules, reading of the change of state. In the case of superheating, the phase transition can occur following two paths: a) increase of temperature (thermal nucleation) which allows an analysis of the calorimetric behavior for particle detection; b) increase of the applied magnetic field which allows the evaluation of surface defects promoting the nucleation of the normal state, and, more generally, the study of the superheated material as a disordered system. The thermal nucleation is useful for X-ray detection in non-destructive control as well as for the solar neutrino detection in real time. The magnetic nucleation is the basis for a proposal of detection of magnetic monopoles by induction [fr

  17. Metastable cosmic strings in realistic models

    International Nuclear Information System (INIS)

    Holman, R.

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed

  18. Metastability in spin polarised Fermi gases and quasiparticle decays

    DEFF Research Database (Denmark)

    Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos

    2011-01-01

    We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each...... the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose...... experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons....

  19. Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters

    International Nuclear Information System (INIS)

    Wang Yuan-Yuan; Ding Jian-Hua; Huang Shao-Song; Zhao Ji-Jun; Liu Wen-Bo; Ke Xiao-Qin; Wang Yun-Zhi; Zhang Chi

    2017-01-01

    A series of material parameters are derived from atomistic simulations and implemented into a phase field (PF) model to simulate void evolution in body-centered cubic (bcc) iron subjected to different irradiation doses at different temperatures. The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. (paper)

  20. Phase transformation induced by swift heavy ion irradiation of pure metals

    International Nuclear Information System (INIS)

    Dammak, H.; Dunlop, A.; Lesueur, D.

    1996-01-01

    It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)

  1. Formation of omega phase under shock pressure, hydrostatic pressure and irradiation

    International Nuclear Information System (INIS)

    Dey, G.K.

    2016-01-01

    The omega transformation is one of the most intriguing phase transformations. The aspects which make it unique and interesting are the facts that this phase can form from two different parent phases viz. the alpha phase and the beta phase. The alpha to omega transformation has been observed under shock and static pressure and the mechanism involved has been studied in detail. Starting from the nucleation stage to the completion of the transformation, various interesting aspects of the mechanism of transformation has emerged in these studies. Although the parent and product phases are same under these conditions of transformation, a variation in the morphology and the kinetics of the product phase indicate different pathways for alpha to omega transformations. Similarly, the beta to omega transformation is also replete with several interesting features. This transformation can occur under application of pressure, thermal activation and also under irradiation. Here again the morphology of the product phase, the nucleation mechanisms and the kinetics of the phase transformation depend on the path of transformation, though the parent and product phases are same in each path. This presentation highlights the formation of the omega phase under different activations including the ones in extreme conditions in pure Zr and Zr based alloys. Theoretical aspects of the feasibility, pathways and kinetics of the transformations are also emphasized. (author)

  2. Nucleation of metastable aragonite CaCO3 in seawater.

    Science.gov (United States)

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A; Ceder, Gerbrand

    2015-03-17

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg:Ca [corrected] ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.

  3. Irradiation as a disinfestation method - update on methyl bromide phase out, regulatory action and emerging opportunities

    International Nuclear Information System (INIS)

    Marcotte, Michelle

    1998-01-01

    Methyl bromide (MeBr), is the most widely used agricultural fumigant in the world for the control of pests and plant diseases. It is used to control pests and diseases in food, agricultural and forestry commodities after harvest, before or during storage or transportation and/or at time of import to control quarantine or storage pests. Knowing MeBr will be phased out has spurred a search for alternative treatments and products, and has placed pressure on regulatory authorities to approve alternatives. Some of methyl bromide use could be replaced with irradiation. Methyl bromide is also used for soil and structural fumigation, and although there is some use of irradiation for packaged soil or greenhouse products, in general, these uses can not be replaced by irradiation. Some radiation processing facilities have either seen increased business to disinfest commodities, or have experienced more inquiries for service. There are many other processes and products competing for this market and irradiation will not win its share of the business without an improved regulatory picture, improved marketing to methyl bromide users and improved information to answer questions from commodity sectors. The United Nations Environment Program - Methyl Bromide Technical Options Committee (MBTOC) provides a venue for the publication or information about the use and availability of irradiation as an alternative to methyl bromide. It provides the technical base to the Montreal Protocol contributing to the setting of phase out dates; this committee is actively researching and assessing all alternatives and needs information about irradiation. The author is a member of the MBTOC committee

  4. Effects of gamma irradiation on the biochemical properties of walnut and pistachio nut in Syria, first phase: just after irradiation

    International Nuclear Information System (INIS)

    Karajoli, M.; Moussa, A.; Al-Kaed, A.; Othman, I.

    1997-05-01

    The report describes a preliminary study that led to explore the possibility of preserving and extending the storage life of walnut and pistachio nut by gamma radiation. Syrian walnut and pistachio nut were irradiated in a Gamma cell (dose rate 0.08 kGy/min). Radiation doses used were 0.50 and 1.00 kGy and the samples were stored at room temperature (25 to 30 Centigrade) after packaging in polyethylene pouches. Fungi infestation was determined before and after gamma radiation treatment. A radiation dose of 1.00 kGy completely inhibited fungi infestation. The present study has, therefore, been conducted to investigate the effects of gamma radiation on the Biochemical properties of walnut and pistachio nut just after irradiation (first phase). Chemical analyses have shown the phosphorus and total proteins value decrease at 0.50 and 1.00 kGy and some significant changes were observed in carbohydrates. A slight decrease in the amount of converted sugars was also observed. Fats in walnut are less vulnerable to gamma radiation than pistachio nut due certainly to the high amount in unsaturated oleic and linoleic acids. In conclusion the effect of gamma radiation on walnut and pantheistic appears nutritionally significant in pistachio nut and less in walnut. More investigations are necessary after a long time of storage to prove their intact nutritional quality and eventually their good digestibility. (author). 6 refs., 6 figs., 22 tabs

  5. effects of gamma irradiation on the biochemical properties of walnut and pistachio nut in Syria, first phase: just after irradiation

    International Nuclear Information System (INIS)

    Othman, I.; Karajoli, M.; Moussa, A.; Al-Kaed, A.

    1998-01-01

    The report describes a preliminary study that led to explore the possibility of preserving and extending the storage life of walnut and pistachio nut by gamma radiation. Syrian walnut and pistachio nut were irradiated in a Gamma cell (dose rate 0.08 kGy/min). Radiation doses used were 0.50 and 1.00 kGy and the samples were stored at room temperature (25 to 30 Centigrade) after packaging in polyethylene pouches. Fungi infestation was determined before and after gamma radiation treatment. A radiation dose of 1.00 kGy completely inhibited fungi infestation. The present study has, therefore, been conducted to investigate the effects of gamma radiation on the Biochemical properties of walnut and pistachio nut just after irradiation (first phase). Chemical analyses have shown the phosphorus and total proteins value decrease at 0.50 and 1.00 kGy and some significant changes were observed in carbohydrates. A slight decrease in the amount of converted sugars was also observed. Fats in walnut are less vulnerable to gamma radiation than pistachio nut due certainly to the high amount in unsaturated oleic and linoleic acids. In conclusion the effect of gamma radiation on walnut and pantheistic appears nutritionally significant in pistachio nut and less in walnut. More investigations are necessary after a long time of storage to prove their intact nutritional quality and eventually their good digestibility. (author). 6 refs

  6. Effects of gamma irradiation on the biochemical properties of walnut and pistachio nut in Syria, first phase: just after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Karajoli, M; Moussa, A; Al-Kaed, A; Othman, I [Atomic Energy Commission, Radiation Technology Unit, Irradiation Plant, Damascus (Syrian Arab Republic)

    1997-05-01

    The report describes a preliminary study that led to explore the possibility of preserving and extending the storage life of walnut and pistachio nut by gamma radiation. Syrian walnut and pistachio nut were irradiated in a Gamma cell (dose rate 0.08 kGy/min). Radiation doses used were 0.50 and 1.00 kGy and the samples were stored at room temperature (25 to 30 Centigrade) after packaging in polyethylene pouches. Fungi infestation was determined before and after gamma radiation treatment. A radiation dose of 1.00 kGy completely inhibited fungi infestation. The present study has, therefore, been conducted to investigate the effects of gamma radiation on the Biochemical properties of walnut and pistachio nut just after irradiation (first phase). Chemical analyses have shown the phosphorus and total proteins value decrease at 0.50 and 1.00 kGy and some significant changes were observed in carbohydrates. A slight decrease in the amount of converted sugars was also observed. Fats in walnut are less vulnerable to gamma radiation than pistachio nut due certainly to the high amount in unsaturated oleic and linoleic acids. In conclusion the effect of gamma radiation on walnut and pantheistic appears nutritionally significant in pistachio nut and less in walnut. More investigations are necessary after a long time of storage to prove their intact nutritional quality and eventually their good digestibility. (author). 6 refs., 6 figs., 22 tabs.

  7. Effects of gamma irradiation on the biochemical properties of walnut and pistachio nut in Syria, first phase: just after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Othman, I; Karajoli, M; Moussa, A; Al-Kaed, A [Atomic Energy commission, Radiation Technology Unit, Damascus, (Syrian Arab Republic)

    1998-03-01

    The report describes a preliminary study that led to explore the possibility of preserving and extending the storage life of walnut and pistachio nut by gamma radiation. Syrian walnut and pistachio nut were irradiated in a Gamma cell (dose rate 0.08 kGy/min). Radiation doses used were 0.50 and 1.00 kGy and the samples were stored at room temperature (25 to 30 Centigrade) after packaging in polyethylene pouches. Fungi infestation was determined before and after gamma radiation treatment. A radiation dose of 1.00 kGy completely inhibited fungi infestation. The present study has, therefore, been conducted to investigate the effects of gamma radiation on the Biochemical properties of walnut and pistachio nut just after irradiation (first phase). Chemical analyses have shown the phosphorus and total proteins value decrease at 0.50 and 1.00 kGy and some significant changes were observed in carbohydrates. A slight decrease in the amount of converted sugars was also observed. Fats in walnut are less vulnerable to gamma radiation than pistachio nut due certainly to the high amount in unsaturated oleic and linoleic acids. In conclusion the effect of gamma radiation on walnut and pantheistic appears nutritionally significant in pistachio nut and less in walnut. More investigations are necessary after a long time of storage to prove their intact nutritional quality and eventually their good digestibility. (author). 6 refs.

  8. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  9. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  10. Geometrically induced metastability and holography

    Energy Technology Data Exchange (ETDEWEB)

    Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Seo, Jihye; Vafa, Cumrun

    2006-10-23

    We construct metastable configurations of branes and anti-branes wrapping 2-spheres inside local Calabi-Yau manifolds and study their large N duals. These duals are Calabi-Yau manifolds in which the wrapped 2-spheres have been replaced by 3-spheres with flux through them, and supersymmetry is spontaneously broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders of the't Hooft parameter, and to the leading order in 1/N. The computation utilizes the same matrix model techniques that were used in the supersymmetric context. This provides a novel mechanism for breaking supersymmetry in the context of flux compactifications.

  11. Metastable growth of pure wurtzite InGaAs microstructures.

    Science.gov (United States)

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.

  12. Numerical transfer-matrix study of a model with competing metastable states

    DEFF Research Database (Denmark)

    Fiig, T.; Gorman, B.M.; Rikvold, P.A.

    1994-01-01

    transition. A recently developed transfer-matrix formalism is applied to the model to obtain complex-valued ''constrained'' free-energy densities f(alpha). For particular eigenvectors of the transfer matrix, the f(alpha) exhibit finite-rangescaling behavior in agreement with the analytically continued...... 'metastable free-energy density This transfer-matrix approach gives a free-energy cost of nucleation that supports the proportionality relation for the decay rate of the metastable phase T proportional to\\Imf alpha\\, even in cases where two metastable states compete. The picture that emerges from this study...

  13. Sink efficiency calculation of dislocations in irradiated materials by phase-field modelling

    International Nuclear Information System (INIS)

    Rouchette, Adrien

    2015-01-01

    The aim of this work is to develop a modelling technique for diffusion of crystallographic migrating defects in irradiated metals and absorption by sinks to better predict the microstructural evolution in those materials.The phase field technique is well suited for this problem, since it naturally takes into account the elastic effects of dislocations on point defect diffusion in the most complex cases. The phase field model presented in this work has been adapted to simulate the generation of defects by irradiation and their absorption by the dislocation cores by means of a new order parameter associated to the sink morphology. The method has first been validated in different reference cases by comparing the sink strengths obtained numerically with analytical solutions available in the literature. Then, the method has been applied to dislocations with different orientations in zirconium, taking into account the anisotropic properties of the crystal and point defects, obtained by state-of-the-art atomic calculations.The results show that the shape anisotropy of the point defects promotes the vacancy absorption by basal loops, which is consistent with the experimentally observed zirconium growth under irradiation. Finally, the rigorous investigation of the dislocation loop case proves that phase field simulations give more accurate results than analytical solutions in realistic loop density ranges. (author)

  14. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  15. Metastable Supersymmetry Breaking in a Cooling Universe

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim S.

    2007-01-01

    I put metastable supersymmetry breaking in a cosmological context. I argue that under reasonable assumptions, the cooling down early Universe favors metastable SUSY-breaking vacua over the stable supersymmetric vacua. To illustrate the general argument, I analyze the early-Universe history of the Intriligator-Seiberg-Shih model

  16. Desensitization and recovery of metastable intermolecular composites

    Science.gov (United States)

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  17. S-phase cell distribution in the small intestine irradiated at different times of the day. 2. Recovery phase

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Balzi, M; Cremonini, D; Fabbrica, D [Florence Univ. (Italy). Ist. di Radiologia

    1983-01-01

    Modifications occurring during recovery in the small intestine of animals exposed to the same radiation dose given at different times of the day were evaluated. S-phase cell distribution along the crypts and invertase activity were evaluated to ascertain the functional capacity of epithelial cells. In animals killed between 5 and 6 days after exposure, S-phase cell distribution and functional conditions tended towards normality although recovery was not complete. Labelled cells occurred also at villus junctions, demonstrating limitation in size of the differentiating compartment. This was confirmed by reduced activity of the brush border enzymes. Animals irradiated at the end of the dark period recovered more quickly and efficiently. In this group, labelled cell distribution was almost the same as in the controls starting from 120 h, and invertase activity was also closer to the controls than in any other group.

  18. Stochastic description of cascade size effects on phase stability under irradiation

    International Nuclear Information System (INIS)

    Martin, G.; Bellon, P.

    1988-01-01

    Cascade size may affect phase stability under irradiation because of two distinct contributions: the replacement to displacement cross section ratio depends on the deposited energy density; ballistic jumps which tend to disorder ordere compounds occur by bursts (of size b), while thermal jumps which restored long range order occur one by one. The latter effect cannot be handled by standard rate theory. A stochastic treatment of the problem, based on a Fokker Planck approximation of the relevant master equation is summarized. It is shown that the possible values of the long range order parameter under irradiation are not affected by the size b of the bursts, but that the respective stability of the former is b dependent. As a consequence, the stability diagram of phases under irradiation varies with b. Such a diagram is computed for the Ni 4 Mo system where three structures are competing: the disordered solid solution, D1 a and DO 23 . A broadening by 100K of the stability domain of the short range ordered structure to the expense of the long range ordered one is predicted when increasing b from 1 to 100. The stochastic potentials introduced in the present treatment are by no means free energies of some constrained state. They can however be computed in a mean field type approximation. 23 refs

  19. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  20. Phase instability of alloys caused by transmutation effects during neutron irradiation

    International Nuclear Information System (INIS)

    Platov, Yu.M.; Pletnev, M.N.

    1994-01-01

    A theory of the phase changes in a two-phase binary A-B alloy in the coarsening condition caused by burnout of solute B due to nuclear reactions is presented. It is shown that this burnout process introduces diffusion redistribution of solute between second phase precipitates and solid solution. The burnout induced solute flux away from second phase precipitates to solid solution maintaining the concentration of element B in the vicinity to its solubility limit and stimulates, thus, the second phase particle dissolution. This occurs in addition to a process decreasing their sizes as a result of direct burnout of atoms B in the precipitates. In the framework of the theory developed here, analytical expressions describing time evolution of the precipitate size distributions, changes of mean radius and number density of the precipitates, and second phase dissolution times are obtained. On the basis of these results and numerical calculations for aluminium-scandium alloy, it is shown that the burnout processes can induce essential phase changes, and thus cause significant changes of the properties of irradiated materials at high neutron fluences. ((orig.))

  1. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    Science.gov (United States)

    Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  2. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gaafar, M.; Abdel Gawad, M.M.H.; El-Muraikhi, M.; Ragab, I.M.

    2004-01-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature T c , as well as the value of specific heat C P max at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically

  3. Metastability at the Yield-Stress Transition in Soft Glasses

    Directory of Open Access Journals (Sweden)

    Matteo Lulli

    2018-05-01

    Full Text Available We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable “fluidized” state, which relaxes back to a metastable “solid” state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.

  4. Specific Features of Structural-Phase State and Properties of Reactor Pressure Vessel Steel at Elevated Irradiation Temperature

    Directory of Open Access Journals (Sweden)

    E. A. Kuleshova

    2017-01-01

    Full Text Available This paper considers influence of elevated irradiation temperature on structure and properties of 15Kh2NMFAA reactor pressure vessel (RPV steel. The steel is investigated after accelerated irradiation at 300°C (operating temperature of VVER-1000-type RPV and 400°C supposed to be the operating temperature of advanced RPVs. Irradiation at 300°C leads to formation of radiation-induced precipitates and radiation defects-dislocation loops, while no carbide phase transformation is observed. Irradiation at a higher temperature (400°C neither causes formation of radiation-induced precipitates nor provides formation of dislocation loops, but it does increase the number density of the main initial hardening phase—of the carbonitrides. Increase of phosphorus concentration in grain boundaries is more pronounced for irradiation at 400°C as compared to irradiation at 300°C due to influence of thermally enhanced diffusion at a higher temperature. The structural-phase changes determine the changes of mechanical properties: at both irradiation temperatures irradiation embrittlement is mainly due to the hardening mechanism with some contribution of the nonhardening one for irradiation at 400°C. Lack of formation of radiation-induced precipitates at T = 400°C provides a small ΔTK shift (17°C. The obtained results demonstrate that the investigated 15Kh2NMFAA steel may be a promising material for advanced reactors with an elevated operating temperature.

  5. Fast production of Bose-Einstein condensates of metastable helium

    Science.gov (United States)

    Bouton, Q.; Chang, R.; Hoendervanger, A. L.; Nogrette, F.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2015-06-01

    We report on the Bose-Einstein condensation of metastable 4He atoms using a hybrid approach, consisting of a magnetic quadrupole and an optical dipole trap. In our setup we cross the phase transition with 2 ×106 atoms, and we obtain pure condensates of 5 ×105 atoms in the optical trap. This approach to cooling 4He provides enhanced cycle stability, large optical access to the atoms and results in the production of a condensate every 6 s—a factor 2 faster than the state of the art. This speed-up will significantly reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable helium atoms to be detected individually.

  6. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesha Angadi, V. [Department of Physics, Bangalore University, Bangalore, Karnataka 560056 (India); Anupama, A.V.; Choudhary, Harish K.; Kumar, R. [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India); Somashekarappa, H.M. [Center for Application of Radioisotopes and Radiation Technology, Mangalore University, Mangalore 574199 (India); Mallappa, M. [Department of Chemistry, Government Science College, Bangalore 560001 (India); Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore, Karnataka 560056 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India)

    2017-02-15

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable ZnFe{sub 2}O

  7. Electrically induced metastability in SI-GaAs studied by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Luo, Y.L.; Beling, C.D.; Fung, S.; Ling, C.C.; Lui, M.K.; Mui, W.K.

    2001-01-01

    Recently, a room temperature electrically induced metastability in semi-insulating (SI)-GaAs has been reported in which the normally high resistance state of SI-GaAs converts into a low resistance state when breakdown electric fields are applied to the metal/Si-GaAs/metal system. The low resistance state persists when the electric field is lowered below the breakdown bias and as such may thus be considered as metastable state of the material. To clarify whether the high field breakdown has its origins in some atomic configurational change induced through high energy electron collisions we have employed positron lifetime spectroscopy. Lifetime spectra that have been taken at the same bias in both the high current and low current phases show that the positron lifetime in the metastable state has no change within the experimental error from that of the normal state, thus suggesting that the metastability is most likely of purely electronic origin. (orig.)

  8. Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit

    Science.gov (United States)

    Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss

    1998-06-05

    The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.

  9. Decadal variability and metastability in the Southern Hemisphere

    Science.gov (United States)

    O'Kane, Terence; Risbey, James; Franzke, Christian; Horenko, Illia; Monselesan, Didier

    2014-05-01

    An examination of systematic changes in the metastability of the southern hemisphere 500hPa circulation is performed using both cluster analysis techniques and split flow blocking indices. The cluster methodology is a purely data-driven approach for parametrisation whereby a multi-scale approximation to non-stationary dynamical processes is achieved through optimal sequences of locally stationary fast Vector Auto-Regressive Factor (VARX) processes and some slow (or persistent) hidden process switching between them. Comparison is made with blocking indices commonly used in weather forecasting and climate analysis to identify dynamically relevant metastable regimes in the 500hPa circulation in both reanalysis and AMIP model data sets. Our analysis characterises the metastable regime in both reanalysis and model data sets prior to 1978 as positive and negative phases of a hemispheric mid-latitude blocking state with the Southern Annular Mode (SAM) associated with a transition state. Post 1978, SAM emerges as a true metastable state replacing the negative phase of the hemispheric blocking pattern. The hidden state frequency of occurrences exhibits strong trends. The blocking pattern dominates in the early 1980s then gradually decreases. There is a corresponding increase in the SAM frequency of occurrence. This trend is largely evident in the reanalysis summer and spring but was not evident in the AMIP data set. Non-stationary cluster analysis was then further used to identify the Southern Oceans response to the systematic changes in the mid-latitude atmospheric circulation and identify dynamical regimes associated with subsurface thermocline anomalies which were found to teleconnect the Pacific and Atlantic regions of the Antarctic Circumpolar Current (ACC).

  10. Effect of grain size on void swelling in irradiated materials: A phase-field approach

    International Nuclear Information System (INIS)

    Chang, Kunok; Lee, Gyeonggeun; Kwon, Junhyun

    2014-01-01

    The progress of swelling is retarded as the average grain diameter increases in a pure copper case. Within the framework of the production bias model (PBM), their experimental results were quantitatively explained. The phase-field method has already been used to investigate the void/bubble behavior in the irradiated materials. In particular, Millett et al. already incorporated the interaction between the point defect and the grain boundary in their study. Therefore, they described the void denuded zones and void peaked zones adjacent to the grain boundaries, which are already observed in the experimental investigations. We performed the phase-field simulation in order to verify the role of the grain diameter on the void swelling in the cascade damage condition. In addition, our results will be compared with the experimental observations or the theoretical works, such as PBM. Two-dimensional phase-field simulations were performed to investigate the void swelling process in the irradiated materials. We clearly observed the void denuded and void peaked zones, which were already observed in formal experimental and computational approaches. We also found that the progress of swelling was retarded as the average grain diameter increased. The triple junctions, which are believed to be a critical factor t affecting the fracture, are the main cites for the void nucleation and growth in our simulations

  11. Changes in distribution of cell cycle phases and DNA content in HeLa S3 cell after irradiation

    International Nuclear Information System (INIS)

    Wang Shunbao

    1992-01-01

    The effects of irradiation and hyperthermia on the distribution in various phases and DNA content of HeLa S 3 cells were analyzed by flow cytometry and an image analysis instrument. A marked increase in DNA content from 6.718 to 9.614(AU) in HeLa S 3 cells after 6 Gy irradiation was seen to correspond with the changes in the distribution of various phases in G 2 + M, from 22% to 52%. Meanwhile, the surviving fraction of HeLa S 3 cells after 6 Gy irradiation was less than 1%. However, after heating at 44 deg C for 10 min, the amount of cells in G 2 + M increased from 22.5% to 52.5% and the surviving fraction after hyperthermia was less than 2.65%. The changes in distribution of various phases after Ir-192 irradiation were similar to those seen after X-ray irradiation. The delay of G 2 + M phase after treatment with 8 Gy plus heating at 44 deg C for 7 min in HeLa S 3 cells was similar to that seen in the case of treatment with 8 Gy alone. As the surviving fraction accompanying the G 2 + M delay after irradiation plus heat treatment was very low, we suggest that the changes of distribution in various phases of HeLa S 3 cells after treatment might be used as a rapid indicator of serious injury

  12. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  13. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D + )-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m 2 , 20 dpa/year for Fe) in a volume of 500 cm 3 for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  14. Isothermal α″ formation in β metastable titanium alloys

    International Nuclear Information System (INIS)

    Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.

    2013-01-01

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″

  15. Isothermal α″ formation in β metastable titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)

    2013-11-15

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.

  16. Effects on auto-irradiation on the solubility of mineral phases enriched by actinides

    International Nuclear Information System (INIS)

    Prot, T.

    1993-07-01

    The scope of the present work is to investigate possible effects of self-irradiation damage induced by α-decay (α-recoil nucleus and α-particle) on the hydrated layer formed by aqueous corrosion of nuclear glass and on alteration phases of a granitic geological repository (calcium carbonate or iron oxides and oxihydroxide) which would be likely irradiated in the framework of high-level radioactive waste disposal, for sufficient concentration of actinides and age. Our experimental procedure relies on a bombardment with external beams of 1.5 to 1.8 MeV He ions and 200 KeV Pb ions, which respectively simulate the radiation effects of α-particles and of α-recoil nuclei. We have observed in a first step, direct irradiation effects (change of volume and refractive index, chemical modification) by means of optical microscopy, microtopographical analysis (surface profilometer) and R.B.S. and X.P.S. In a second step, corrosion tests were performed in static conditions to observe a possible indirect effect (increase of the hydratation rate, actinide release) on the later evolution as for example, a marked increase in solubility (calcium carbonate case)

  17. Differential S-phase progression after irradiation of p53 functional versus non-functional tumour cells

    Directory of Open Access Journals (Sweden)

    Zölzer Friedo

    2014-12-01

    Full Text Available Background. Many pathways seem to be involved in the regulation of the intra-S-phase checkpoint after exposure to ionizing radiation, but the role of p53 has proven to be rather elusive. Here we have a closer look at the progression of irradiated cells through S-phase in dependence of their p53 status.

  18. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  19. Metastability and Rydberg states of triatomic hydrogen

    International Nuclear Information System (INIS)

    Helm, H.

    1991-01-01

    The np,nd and nf Rydberg series of H 3 have been studied by one- or two-photon excitation from the lowest metastable state of H 3 :B2p 2 A 2 ''. The lifetime of the metastable state has been measured and the influence of an external electric field on the Rydberg states has been studied under both aspects of dynamics (field-ionization and field-induced predissociation) and structure (Strak effect)

  20. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    International Nuclear Information System (INIS)

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; Morgan, Dane

    2017-01-01

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10"–"7 dpa/s and 390 °C) and then use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10"–"8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni_3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.

  1. Phase-changes in cell cycle of wound tissue irradiated with 5.21 Gy soft X-rays

    International Nuclear Information System (INIS)

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the phase-changes in cell cycle of wound tissue which was locally irradiated with 5.21 Gy soft X-rays. Methods: Flow cytometry and PI staining were used to analyze cell cycle. Cell proliferation was determined with BrdU labeling. Results: During 3-9 days after irradiation, the percentage of the G 0 /G 1 phase cells in wound of the control side decreased while the percentage of S phase cells increased and reached the highest value on day 9. The percentage of G 2 /M phase cells also increased, and reached its peak on day 15. The percentage of G 0 /G 1 phase cell increased in wound of the irradiation side and was higher than that of the control wound, meanwhile the percentages of S and G 2 /M cells were significantly lower than those of the control wound. In the period of 12-22 days after wounding, the percentage of S phase cells increased and reached its peak value on the 22 th day. When most of cells were in S phase and arrested dramatically. Through the whole healing process, the percentage of G 2 /M in wound of the irradiation side was lower than that of the non-irradiated wound. The BrdU-positive cells were fibroblasts, endothelial cells and smooth muscle cells. Conclusion: These results suggest that G 1 block, S phase arrest, and switch of G 2 /M with suppression of mitotic activity of these cells are induced by local 5.21 Gy soft X-ray irradiation. Therefore, wound healing delay is induced partly by cell cycle arrest

  2. Contribution to the development of the MARS beamline to study oxide dispersion strengthened steels (ODS) irradiated with neutrons using synchrotron source: secondary phases evolution under irradiation

    International Nuclear Information System (INIS)

    Menut, Denis

    2016-01-01

    X-Ray Diffraction (XRD) coupled with X-ray Absorption Fine Structure (XAFS) analyses at the MARS beamline of the synchrotron SOLEIL facility were used to study the microstructural evolution of oxides phases found in oxide dispersion strengthened steels (ODS) irradiated in Material Testing Reactors. Two hold generations of ODS steel grades (DY and MA957) irradiated up to high fluencies (∼75 dpa) were studied. These experiments have required specific developments, in particular a dedicated sample holder. An important milestone was overcome integrating the MARS beamline to the nuclearized facilities accessible for CEA. First, XRD analysis provide new results concerning intermediate sizes of precipitates (around 100 nm) essentially from crystallographic point of view, the nano-sized oxides (from 1 to 10 nm) being not detected, due to the material itself, sample preparation as thin foil and experimental set-up calibration. Secondly, XAFS analysis is not a discriminating technique as soon as the absorber atom is involved in the chemical composition of various precipitates found in ODS. Nevertheless, the stability of the Ti with a coordination number of 5 is evidenced whatever the irradiation conditions. As our experimental study was not able to detect the nano-sized oxides, an alternative way is to perform modeling approach of the behavior of massive oxides under irradiation, compared to experimental analyses under ion irradiations. We have shown that the defect fluorite is an intermediate phase of the crystal-to-amorphous phase transition of the pyrochlore oxide structure, whatever the irradiation conditions and the ratio of the cationic radii, the Ti coordination number remaining around 5 in the amorphous state. (author) [fr

  3. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  4. Electron irradiation effect on the reverse phase transformation temperatures in TiNi shape memory alloy thin films

    International Nuclear Information System (INIS)

    Wang, Z.G.; Zu, X.T.; Fu, Y.Q.; Zhu, S.; Wang, L.M.

    2005-01-01

    In this work, Ti-Ni shape memory alloy thin films were irradiated by 1.7 MeV electron with three types of fluences: 4 x 10 20 , 7 x 10 20 and 1 x 10 21 /m 2 . The influence of electron irradiation on the transformation behavior of the TiNi thin films were investigated by differential scanning calorimetry. The transformation temperatures A s and A f shifted to higher temperature after electron irradiation, the martensite was stabilized. The electron irradiation effect can be easily eliminated by one thermal cycle. The shifts of the transformation temperatures can be explained from the change of potential energy barrier and coherency energy between parent phase and martensite after irradiation

  5. Anisotropic imprint of amorphization and phase separation in manganite thin films via laser interference irradiation

    KAUST Repository

    Ding, Junfeng; Lin, Zhipeng; Wu, Jianchun; Dong, Zhili; Wu, Tao

    2014-01-01

    Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano-to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65(Ca0.75Sr0.25)0.35MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials.

  6. Anisotropic imprint of amorphization and phase separation in manganite thin films via laser interference irradiation

    KAUST Repository

    Ding, Junfeng

    2014-09-16

    Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano-to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65(Ca0.75Sr0.25)0.35MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials.

  7. Formation of metastable tetragonal zirconia nanoparticles: Competitive influence of the dopants and surface state

    Energy Technology Data Exchange (ETDEWEB)

    Gorban, Oksana, E-mail: matscidep@aim.com [Donetsk Institute for Physics and Engineering named after A.A. Galkin of the NAS of Ukraine, Nauki av. 46, Kyiv 03680 (Ukraine); Synyakina, Susanna; Volkova, Galina; Gorban, Sergey; Konstantiova, Tetyana [Donetsk Institute for Physics and Engineering named after A.A. Galkin of the NAS of Ukraine, Nauki av. 46, Kyiv 03680 (Ukraine); Lyubchik, Svetlana, E-mail: s_lyubchik@yahoo.com [REQUIMTE, Universida de Nova de Lisboa, 2829-516 Caparica (Portugal)

    2015-12-15

    The effect of the surface modification of the nanoparticles of amorphous and crystalline partially stabilized zirconia by fluoride ions on stability of the metastable tetragonal phase was investigated. Based on the DSC, titrimetry and FTIR spectroscopy data it was proven that surface modification of the xerogel resulted from an exchange of the fluoride ions with the basic OH groups. The effect of the powder pre-calcination temperature before modification on the formation of metastable tetragonal phase in partially stabilized zirconia was investigated. It was shown that the main factor of tetragonal zirconia stabilization is the state of nanoparticles surface at pre-crystallization temperatures.

  8. Comparison of. gamma. i-irradiation-induced accumulation of ataxia telangiesctasia and control cells in G sub 2 phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, P.R. (Royal Brisbane Hospital, Herston (Australia)); Lavin, M.F. (Queensland Inst. of Medical Research, Brisbane (Australia))

    1989-09-01

    Recent reports from a number of laboratories have linked radiosensitivity in ataxia telangiectasia (AT) to a large and prolonged block of some cells in G{sub 2} phase. Previous results from this laboratory, largely with one Epstein-Barr virus-transformed A-T lymphoblastoid cell line, presented evidence for a dramatic increase in the number of cells in G{sub 2} phase over controls during a 24 h period post irradiation. We describe here a study of the effect of {gamma}-radiation on G{sub 2} phase delay in several A-T cell lines. Based on previous results with several cell lines 24 h post irradiation was selected as the optimum time to discriminate between G{sub 2} phase delay in control and A-T cells. All A-T homozygotes showed a signigicantly greater number of cells in G{sub 2} phase, 24 h post irradiation, than observed in controls. A more prolonged delay in G{sub 2} phase after irradiation was seen in different A-T cell types that included lymphoblastoid cells, fibroblasts and SV40-transformed fibroblasts. At the radiation dose used it was not possibel to distinguish A-T heterozygotes from controls (Author). 28 refs.; 2 figs.; 1 tab.

  9. Comparison of γ i-irradiation-induced accumulation of ataxia telangiesctasia and control cells in G2 phase

    International Nuclear Information System (INIS)

    Bates, P.R.; Lavin, M.F.

    1989-01-01

    Recent reports from a number of laboratories have linked radiosensitivity in ataxia telangiectasia (AT) to a large and prolonged block of some cells in G 2 phase. Previous results from this laboratory, largely with one Epstein-Barr virus-transformed A-T lymphoblastoid cell line, presented evidence for a dramatic increase in the number of cells in G 2 phase over controls during a 24 h period post irradiation. We describe here a study of the effect of γ-radiation on G 2 phase delay in several A-T cell lines. Based on previous results with several cell lines 24 h post irradiation was selected as the optimum time to discriminate between G 2 phase delay in control and A-T cells. All A-T homozygotes showed a signigicantly greater number of cells in G 2 phase, 24 h post irradiation, than observed in controls. A more prolonged delay in G 2 phase after irradiation was seen in different A-T cell types that included lymphoblastoid cells, fibroblasts and SV40-transformed fibroblasts. At the radiation dose used it was not possibel to distinguish A-T heterozygotes from controls (Author). 28 refs.; 2 figs.; 1 tab

  10. Metastable carbon in two chondritic porous interplanetary dust particles

    International Nuclear Information System (INIS)

    Rietmeijer, F.J.M.; Mackinnon, I.D.R.

    1987-01-01

    An analytical electron microscope study is presented on carbonaceous material in two chondritic porous aggregates, W7029* A and W7010* A2, from the Johnson Space Center Cosmic Dust Collection. The finding of well-ordered carbon-2H (lonsdaleite) in the two aggregates suggests that a record of hydrocarbon carbonization may be preserved in these materials. This carbon is a metastable phase resulting from hydrous pyrolysis below 300-350 0 C and may be a precursor to poorly graphitized carbons in primitive extra terrestrial materials. (UK)

  11. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Sude; Song, Guolin; Li, Wei; Fan, Pengfei; Tang, Guoyi [Institute of Advanced Materials, Graduated School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2010-10-15

    Microencapsulated phase change material (MEPCM), paraffin, with polymethylmethacrylate shell was prepared by introducing UV irradiation to an O/W emulsion polymerization for approximately 30 min under constant stirring. The results of differential scanning calorimetry analyses indicate that the latent heat and the content of paraffin of microcapsules are 101 J g{sup -1} and 61.2 wt%, respectively. The phase transition temperature of MEPCM ranges from 24 to 33 C. The MEPCM was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Thermal gravimetric analysis results show that the MEPCM is degraded into two distinguishable steps. Accelerated thermal cycling tests also indicate that the MEPCM displays a good thermal reliability. Gypsum boards composed of as-prepared MEPCM show a good temperature-regulated property. Based on all these results, it can be concluded that the microencapsulated paraffin as MEPCMs have good potential for thermal energy storage purposes such as phase change material slurries, solar space heating applications, textiles and building materials. (author)

  12. Effects of gamma irradiation on different phases of coffee borer Hypothenemus hampei (Ferrari, 1867)

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Silva, A.L. da.

    1974-10-01

    Two experiments carried out in order to determine immediate lethal doses (LD sub(I)) for gamma irradiation of larvae, pupae and adults hypothenemus hampei (Ferrari, 1867) are presented. One experiment aimed only the determination of LD sub(I) for the adults of the coffee borer-outside the coffee-berries. The other to obtain the equivalent data for insects inside the coffee-berry, for all phases of the development cycle of the insect. It was found that LD sub(I) for larvae was around 350 Krad and for pupae around 400 Krad. For the adults, the LD sub(I) for insects outside the coffee-berry was 475 Krad and 525 for insects inside the coffee-berry. It was found that smaller doses caused a pronunced decrease in the insect lifetime, lifetime decrease proportionally as the irradiation dose increase. According to the results obtained, is postulated that this species of coffee-borer may be considered resistant to gamma radiation [pt

  13. Enhancement of postreplication repair in ultraviolet-light-irradiated Chinese hamster cells by irradiation in G2 or s-phase

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Aebersold, P.M.; Setlow, R.B.

    1978-01-01

    Postreplication repair in synchronous Chinese hamster cells was determined after split doses of ultraviolet (uv) radiation. Repair was enhanced by irradiation of cells in G 2 or S-phase with a small dose of uv radiation at least 1.5 h before a three-fold larger dose of uv. There was significantly greater enhancement when the first dose was given in G 2 than when it was given in the S-phase 0.5 to 1.5 h before the test dose. These data indicate that enhancement of postreplication repair does not require active DNA replication and qualitatively is independent of when in the cell cycle the cells are irradiated

  14. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m{sup 2}, 20 dpa/y in Fe, in a volume of 500 cm{sup 3} and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  15. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    International Nuclear Information System (INIS)

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m 2 , 20 dpa/y in Fe, in a volume of 500 cm 3 and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  16. Electron-irradiation induced changes in the phases and photocatalytic activity of TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sapnar, K.B.; Dhole, S.D. [Department of Physics, University of Pune, Pune 411007 (India); Bhoraskar, V.N., E-mail: vnb@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer The phases of TiO{sub 2} nanoparticles have been changed by electron irradiation. Black-Right-Pointing-Pointer The photocatalytic activity of TiO{sub 2} gets enhanced after electron irradiation. Black-Right-Pointing-Pointer The brookite phase has appeared in TiO{sub 2} after electron irradiation. - Abstract: Samples of TiO{sub 2} nanoparticles, with mixed anatase and rutile phases, were irradiated with 6.5 MeV electrons at fluences, 1.5, 2.0, 2.5, 3.0, and 3.5 Multiplication-Sign 10{sup 15} e cm{sup -2} and characterized by several methods. With increasing electron fluence, a continuous decrease in the average particle size from {approx}80 nm to around 30 nm were observed along with a decrease in the rutile and the anatase phases of TiO{sub 2}, but at different rates, and growth of the TiO{sub 2} brookite phase at slow rate. The photocatalytic activities of different electron irradiated TiO{sub 2} samples, in the photodegradation of methylene blue, were studied by recording UV-Vis absorption spectra of the respective solutions. On electron irradiation, even though the rutile phase in the TiO{sub 2} was decreasing, the photocatalytic activity of the nanoparticles increased continuously with fluence up to {approx}3.0 Multiplication-Sign 10{sup 15} e cm{sup -2}, but decreased at 3.5 Multiplication-Sign 10{sup 15} e cm{sup -2}. The energy levels introduced by the brookite phase and the electron induced defects in TiO{sub 2} could have effectively reduced the electron-hole recombination rate in the absence of the rutile phase. The observed enhancement in the photocatalytic activity of the irradiated TiO{sub 2} is attributed to the formation of small size particles, the introduction of the oxygen related vacancies and other defects, the growth of the brookite phase, and increased absorption of radiation over the ultraviolet and visible range.

  17. {sup 197}Au irradiation study of phase-change memory cell with GeSbTe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liangcai; Song, Zhitang; Lian, Jie; Rao, Feng; Liu, Bo; Song, Sannian; Liu, Weili; Feng, Songlin [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou, Xilin; Liu, Xuyan [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China)

    2010-10-15

    A {sup 197}Au ion source was used to irradiate a Ge{sub 2}Sb{sub 2}Te{sub 5}-alloy-based phase-change memory (PCM) cell to study the ion-irradiation effect on the properties of the cell. The PCM devices with the tungsten (W) heating electrode of 260 nm diameter were fabricated by 0.18 {mu}m complementary metal-oxide-semiconductor (CMOS) technology. Four different doses (10{sup 10}, 10{sup 11}, 10{sup 12}, and 5 x 10{sup 12} ions/cm{sup 2}, respectively) were applied to irradiate the PCM cell. The samples before and after irradiation were characterized by current-voltage and resistance measurements at room temperature. It is found that the cell properties (resistance value of the amorphous and crystalline states, threshold voltage, and current for phase transition, etc.) have hardly changed, even for the sample irradiated up to 10{sup 12} ions/cm{sup 2} dose, and the cell still has good set-reset operation ability (above 10{sup 5} cycles). Furthermore, the resistance ratio remains at 1000 even after 10{sup 5} cycles of the set-reset operation. The results show the PCM cell with Ge{sub 2}Sb{sub 2}Te{sub 5} alloy has a strong ion-irradiation tolerance. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ying [Argonne National Laboratory, Argonne, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Lian, Tiangan [Electric Power Research Institute, Palo Alto, CA 94304 (United States)

    2015-09-15

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 10{sup 19} ions/m{sup 2} (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite–austenite phase boundary and presence of M{sub 23}C{sub 6} carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M{sub 23}C{sub 6} carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M{sub 23}C{sub 6} carbides at 350 °C and 400 °C.

  19. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Science.gov (United States)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.

  20. Material Characterization of Fatigue Specimens made from Meta-stable Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Niffenegger, M.; Grosse, M.; Kalkhof, D.; Leber, H. [Paul Scherrer Institut Villigen (Switzerland); Vincent, A.; Pasco, L.; Morin, M. [Insa de Lyon (France)

    2003-07-01

    The main objective of the EU-project CRETE (Contract No.: FIS5-1999-00280) was to assess the capability and the reliability of innovative NDT-inspection techniques for the detection of material degradation, induced by thermal fatigue and neutron irradiation, of metastable austenitic and ferritic low-alloy steel. Several project partners tested aged or irradiated samples, using various techniques (acoustic, magnetic and thermoelectric). However, these indirect methods require a careful interpretation of the measured signal in terms of micro-structural evolutions due to ageing of the material. Therefore the material had to be characterized in its undamaged, as well as in its damaged state. The present report summarises only the material characterization of the fatigue specimens. It is issued simultaneously as an PSI Bericht and the CRETE work package 3 (WP3) report. Each partner according to their own specifications purchased three materials under investigation, namely AISI 347, AISI 321 and AISI 304L. After sending the material to PSI, all fatigue specimens were manufactured by the same Swiss company. Each partner was responsible for his fatigue tests which are documented in the report WP1, written by FANP. In order to characterize the material in its unfatigued as well as in its fatigued state and to consider microstructural changes related to fatigue damage the methods listed below were employed either by PSI or by INSA de Lyon: (1) Inductive Coupled Plasma Emission Photometry (ICP-OES) was applied to determine the chemical composition, (2) Scanning electron microscopy (SEM) for observing cracks, slip bands between grain and twin boundaries, - Ferromaster for measuring the magnetic permeability, (3) Physical Properties Measuring System (PPMS) for measuring magnetization characteristics, (4) Neutron- and advanced X-ray diffraction methods for the quantitative determination of martensite, - Transmission electron microscopy (TEM) for the observation of crystalline

  1. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  2. Pressure and temperature phase diagram of Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Catillon, G. [Université Paris-Est, G2I, EA4119, 5 Blvd. Descartes, F-77454 Marne la Vallée Cedex 2 (France); Chartier, A., E-mail: alain.chartier@cea.fr [CEA, DEN, DMN, SCCME, F-91191 Gif-Sur-Yvette Cedex (France)

    2014-11-21

    The pressure and temperature phase diagram of Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation are calculated by means of molecular dynamics calculations. The critical temperature for amorphization obeys a linear law with pressure. Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation transits towards the fluorite above this temperature and amorphizes below. The configuration of the Ti interstitial reveals to be the key of the amorphizability of Gd{sub 2}Ti{sub 2}O{sub 7}. Its stability depends upon disorder and pressure. Low pressure promotes the stabilization of Ti linked-polyhedra that drive the system to the amorphous state under irradiation. Conversely, high pressure activates its destabilization to interstitials that recombine with vacancies, driving the system to the fluorite structure under irradiation.

  3. Entropy-driven metastable defects in silicon

    International Nuclear Information System (INIS)

    Hamilton, B.; Peaker, A.R.; Pantelides, S.T.

    1989-01-01

    The known metastable defects are usually describable by a configuration coordinate diagram in which two energy minima are separated by a barrier. This diagram does not change with temperature and each configuration is stable over some temperature range. Here we report the observation of a novel metastability: A configuration change occurs spontaneously and abruptly at a critical temperature, giving rise to a discontinuous DLTS (deep level transient spectroscopy) spectrum. We propose that this phenomenon is a manifestation of entropy variations in the configurational space. (author) 12 refs., 4 figs

  4. Modification of phase transitions in swift heavy ion irradiated and MMA-grafted ferroelectric fluoro-polymers

    International Nuclear Information System (INIS)

    Petersohn, E.; Betz, N.; Le Moel, A.

    1994-01-01

    Ferroelectric polyvinylidene fluoride (β) and copolymers of vinylidene fluoride trifluoroethylene (P(VDF/TrFE)) films were irradiated with swift heavy ions and post irradiation grafted with methyl methacrylate (MMA). We have studied the influence of irradiation parameters such as the ion fluence, the type of ion and the electronic stopping power, on the melting and crystallization temperatures and the ferroelectric-paraelectric phase transitions, by differential scanning calorimetry (DSC) and dielectric measurements. The relation between the shift in the transition temperatures and the ion fluence is described by a single term equation. Ion track grafting with MMA affects the ferroelectric-paraelectric phase transitions in P(VDF/TrFE) and leads to a strong amorphization of the polymer films. The grafting in β PVDF occurs mainly on the surface of the samples and no change in the transition temperatures is observed. (authors). 12 refs., 6 figs., 2 tabs

  5. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  6. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  7. Prediction of irradiation induced microstructures in the AgCu model alloy using a multiscale method coupling atomistic and phase field modelling

    OpenAIRE

    Demange, Gilles; Pontikis, Vassilis; Lunéville, Laurence; Simeone, David

    2016-01-01

    In this work, a multiscale approach based on phase field was developed to simulate the microstructure's evolution under irradiation in binary systems, from atomic to microstructural scale. For that purpose, an efficient numerical scheme was developed. In the case of AgCu alloy under Krypton ions irradiation, phenomenological parameters were computed using atomistic methods, as a function of the temperature and the irradiation flux. As a result, we predicted the influence of the irradiation fl...

  8. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase task description

    Energy Technology Data Exchange (ETDEWEB)

    Ida, M.; Nakamura, H.; Sugimoto, M.; Yutani, T.; Takeuchi, H. [eds.] [Japan Atomic Energy Research Inst., Tokai Research Establishment, Fusion Neutron Laboratory, Tokai, Ibaraki (Japan)

    2000-08-01

    In 2000, a 3 year Key Element technology Phase (KEP) of the International Fusion Materials Irradiation Facility (IFMIF) has been initiated to reduce the key technology risk factors needed to achieve continuous wave (CW) beam with the desired current and energy and to reach the corresponding power handling capabilities in the liquid lithium target system. In the KEP, the IFMIF team (EU, Japan, Russian Federation, US) will perform required tasks. The contents of the tasks are described in the task description sheet. As the KEP tasks, the IFMIF team have proposed 27 tasks for Test Facilities, 12 tasks for Target, 26 tasks for Accelerator and 18 tasks for Design Integration. The task description by RF is not yet available. The task items and task descriptions may be added or revised with the progress of KEP activities. These task description sheets have been compiled in this report. After 3 years KEP, the results of the KEP tasks will be reviewed. Following the KEP, 3 years Engineering Validation Phase (EVP) will continue for IFMIF construction. (author)

  9. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    Science.gov (United States)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    .12 Gy(-1) for protons), which suggests that the higher level of survival of gamma-irradiated cells could be attributed to the persistence of nonlethally irradiated thyrocytes and/or the capacity to repair damage more effectively than cells exposed to equal physical doses of protons. The final assessment in this study was radiation-induced cell cycle phase redistribution. Gamma rays and protons produced a similar dose-dependent redistribution toward a predominantly G(2)-phase population. From our cumulative results, it seems likely that a majority of the proton-irradiated cells would not continue to divide. In conclusion, these findings suggest that there are quantitative and qualitative differences in the biological effects of proton beams and gamma rays. These differences could be due to structured energy deposition from the tracks of primary protons and the associated high-LET secondary particles produced in the targets. The results suggest that a simple dose-equivalent approach to dosimetry may be inadequate to compare the biological responses of cells to photons and protons.

  10. The phase transport and reactions of γ-irradiated aqueous-ionic liquids

    International Nuclear Information System (INIS)

    Howett, S.; Joseph, J.; Noel, J.J.; Wren, J.C.

    2010-01-01

    A novel technology based on the transfer of chemical species across water/ionic liquid interfaces via specific complexation reactions is currently being considered for the separation and sequestration of metal ion contaminants from radioactive waste effluents in the nuclear fuel cycle. An ideal solvent for these applications should have a high intrinsic selectivity for a targeted metal or group of metals (e.g., trans-Pu actinides, lanthanides, or other fission products), an efficient switching mechanism (between complexation and decomplexation), and a high immiscibility with aqueous solutions. These characteristics must be maintained in the chemical, radiation, and mass transport environments present during the separation process. Ionic liquids (ILs) have an almost negligible vapour pressure and high thermal stability. Their ability to dissolve a wide range of substrate molecules and potential to be highly resilient in radiation fields make ILs particularly promising media. The separation efficiency of the biphasic system will depend on many parameters, including the aqueous oxidation state of the targeted metal ion, and the thermodynamics and kinetics of interfacial transport and metal-ligand complex formation at the water/IL interface or in the IL phase. The most uncertain and unstudied area for these applications is the effect of ionizing radiation on the stability and separation efficiency of the biphasic system. The present study investigates the effect of γ-radiation on gas/IL and water/IL interfacial stability and mass transfer with trihexyltetradecylphosphonium bis(trifluoromethyl-sulfonyl)imide, a phosphonium-based IL. The IL, in contact with either gas or water, was irradiated at a dose rate of 6.4 kGy·h -1 . Gas-phase samples were analyzed by gas chromatography-mass spectrometry (GC-MS) and the changes in the IL and aqueous phases were monitored by conductivity measurements and Raman spectroscopy. In this paper we discuss these observations and their

  11. The occurrence of an ordered fcc phase in neutron irradiated M316 stainless steel

    International Nuclear Information System (INIS)

    Cawthorne, C.; Brown, C.

    1977-01-01

    A small precipitate giving a superlattice type diffraction pattern has been observed in M316 type stainless steel irradiated in the Dounreay Fast Reactor. The precipitate was observed in cold worked and solution treated samples which were unstressed and irradiated below 540 0 C, but not in those irradiated above this temperature or in the stressed samples. (B.D.)

  12. Quantum mechanical look at the radioactive-like decay of metastable dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Urbanowski, Krzysztof [University of Zielona Gora, Institute of Physics, Zielona Gora (Poland)

    2017-12-15

    We derive the Shafieloo, Hazra, Sahni and Starobinsky (SHSS) phenomenological formula for the radioactive-like decay of metastable dark energy directly from the principles of quantum mechanics. To this aim we use the Fock-Krylov theory of quantum unstable states. We obtain deeper insight on the decay process as having three basic phases: the phase of radioactive decay, the next phase of damping oscillations, and finally the phase of power-law decay. We consider the cosmological model with matter and dark energy in the form of decaying metastable dark energy and study its dynamics in the framework of non-conservative cosmology with an interacting term determined by the running cosmological parameter. We study the cosmological implications of metastable dark energy and estimate the characteristic time of ending of the radioactive-like decay epoch to be 2.2 x 10{sup 4} of the present age of the Universe. We also confront the model with astronomical data which show that the model is in good agreement with the observations. Our general conclusion is that we are living in the epoch of the radioactive-like decay of metastable dark energy which is a relict of the quantum age of the Universe. (orig.)

  13. Decay of Metastable State with Account of Agglomeration and Relaxation Processes

    Directory of Open Access Journals (Sweden)

    Victor Kurasov

    2016-01-01

    Full Text Available Theoretical description of the metastable phase decay kinetics in the presence of specific connections between the embryos of small sizes has been given. The theory of the decay kinetics in the presence of relaxation processes is constructed in analytical manner. The m-mers nucleation is investigated and the global kinetics of decay is also constructed in this case analytically.

  14. Inelastic collision rates of trapped metastable hydrogen

    NARCIS (Netherlands)

    Landhuis, D; Matos, L; Moss, SC; Steinberger, JK; Vant, K; Willmann, L; Greytak, TJ; Kleppner, D

    We report the first detailed decay studies of trapped metastable (2S) hydrogen. By two-photon excitation of ultracold H samples, we have produced clouds of at least 5x10(7) magnetically trapped 2S atoms at densities greater than 4x10(10) cm(-3) and temperatures below 100 muK. At these densities and

  15. Inflating metastable quark-gluon plasma universe

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Kaempfer, B.; Sysoev, V.M.

    1990-01-01

    We show within the Friedmann model with the equation of state p(T)=aT 4 -AT that our universe has expanded exponentially when it was in a metastable quark-gluon plasma state. The scale factor during that epoch increased by many orders of magnitude. 13 refs.; 5 figs

  16. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  17. Growth kinetics of metastable (331) nanofacet on Au and Pt(110) surfaces

    International Nuclear Information System (INIS)

    Ndongmouo, U.T.; Houngninou, E.; Hontinfinde, F.

    2006-12-01

    A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (331) nanofacets on Au and Pt(110) surfaces. The results show that under experimental atomic fluxes, the (331) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(001) surface in the kinetic 6-vertex model. (author)

  18. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. As a result, damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions

  19. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    Science.gov (United States)

    Lam, N. Q.; Okamoto, P. R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. Damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions.

  20. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  1. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  2. Synthesizing single-phase β-FeSi2 via ion beam irradiations of Fe/Si bilayers

    International Nuclear Information System (INIS)

    Milosavljevic, M.; Dhar, S.; Schaaf, P.; Bibic, N.; Lieb, K.P.

    2001-01-01

    This paper presents results on the direct synthesis of the β-FeSi 2 phase by ion beam mixing of Fe/Si bilayers with Xe ions. The influence of the substrate temperature, ion fluence and energy on the growth of this phase was investigated using Rutherford backscattering (RBS), X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). Complete growth of single-phase β-FeSi 2 was achieved by 205 keV Xe ion irradiation to a fluence of 2x10 16 ions/cm 2 at 600 deg. C. We propose a two-step reaction mechanism involving thermal and ion beam energy deposition

  3. Postoperative vaginal cuff irradiation using high dose rate remote afterloading: a Phase II clinical protocol

    International Nuclear Information System (INIS)

    Noyes, William R.; Bastin, Kenneth; Edwards, Scott A.; Buchler, Dolores A.; Stitt, Judith A.; Thomadsen, Bruce R.; Fowler, Jack F.; Kinsella, Timothy J.

    1995-01-01

    Purpose: In September 1989, a postoperative Phase II high dose rate (HDR) brachytherapy protocol was started for International Federation of Gynecology and Obstetrics (FIGO) Stage I endometrial adenocarcinoma. This review reports the overall survival, local control, and complication rates for the initial 63 patients treated in this Phase II study. Methods and Materials: High dose rate brachytherapy was delivered using an Iridium-192 HDR remote afterloader. Sixty-three patients were entered into the Phase II protocol, each receiving two vaginal cuff treatments 1 week apart (range 4-12 days) with vaginal ovoids (diameter 2.0-3.0 cm). No patient received adjuvant external beam radiation. A dose of 32.4 Gy in two fractions was prescribed to the ovoid surface in 63 patients. The first three patients treated at our institution received 15, 16.2, and 29 Gy, respectively, to determine acute effects. Results: At a median follow-up of 1.6 years (range 0.75-4.3 years) no patient has developed a vaginal cuff recurrence. One regional recurrence (1.6%) occurred at 1.2 years at the pelvic side wall. This patient is alive and without evidence of disease 7 months after completion of salvage irradiation, which resulted in the only vaginal stenosis (1.6%). Fourteen patients (22%) experienced vaginal apex fibrosis by physical exam, which was clinically symptomatic in four patients. Two patients reported stress incontinence; however, these symptoms were noted prior to their HDR therapy. One patient died 2.4 years after HDR therapy due to cardiovascular disease without evidence of cancer at autopsy. Conclusion: Preliminary results of our phase II HDR vaginal cuff protocol for postoperative FIGO Stage IA, Grade 3 or Stage IB, Grade 1-2 patients demonstrate that 32.4 Gy in two fractions is well tolerated by the vaginal cuff mucosa. Local control appears comparable to our prior experience and others with low dose rate (LDR) brachytherapy. Additional patient accrual and further follow

  4. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  5. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  6. Capability of X-ray diffraction for the study of microstructure of metastable thin films

    Directory of Open Access Journals (Sweden)

    David Rafaja

    2014-11-01

    Full Text Available Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,AlN samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species.

  7. Effect of ion irradiation on nanoscale TiS2 systems with suppressed Titania phase

    International Nuclear Information System (INIS)

    Hazarika, Saurabh J; Mohanta, Dambarudhar; Tripathi, A; Kanjilal, D.

    2016-01-01

    Titanium disulfide (TiS 2 ), being an important of the transition metal dichalcogenide, (TMDC) family, has drawn numerous interest owing to exhibition of tunable band gap as well as high carrier mobility. In this work, we highlight preparation of TiS 2 nanopowder with minimal TiO 2 content and also demonstrate modified properties upon swift heavy ion irradiation on TiS 2 nanoparticles dispersed PVA films. Different properties of the irradiated samples have been characterized through diffraction, microscopic and spectroscopic techniques. As a result of irradiation, due to agglomeration of particles, the grain size is found to increase. We could also observe a red shift after irradiation with increasing fluence, leading to easy flow of electron from valence to conduction band, which shows that conduction of electrons is more in case of irradiated films compared to the pristine one and thus there may be a possibility of using the irradiated samples in various optoelectronic devices. (paper)

  8. DNA double strand breaks in the acute phase after synchrotron pencilbeam irradiation

    International Nuclear Information System (INIS)

    Fernandez-Palomo, C; Trippel, M; Schroll, C; Nikkhah, G; Schültke, E; Bräuer-Krisch, E; Requardt, H; Bartzsch, S

    2013-01-01

    Introduction. At the biomedical beamline of the European Synchrotron Radiation Facility (ESRF), we have established a method to study pencilbeam irradiation in-vivoin small animal models. The pencilbeam irradiation technique is based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. Using γH2AX as marker, we followed the development of DNA double strand breaks over 48 hrs after whole brain irradiation with the pencilbeam technique. Method. Almost square pencilbeams with an individual size of 51 × 50 μm were produced with an MSC collimator using a step and shoot approach, while the animals were moved vertically through the beam. The center-to-center distance (ctc) was 400 μm, with a peak-to-valley dose ratio (PVDR) of about 400. Five groups of healthy adult mice received peak irradiation doses of either 330 Gy or 2,460 Gy and valley doses of 0.82 Gy and 6.15 Gy, respectively. Animals were sacrificed at 2, 12 and 48 hrs after irradiation. Results. DNA double strand breaks are observed in the path of the pencilbeam. The size of the damaged volume undergoes changes within the first 48 hours after irradiation. Conclusions. The extent of DNA damage caused by pencilbeam irradiation, as assessed by H2AX antibody staining, is dose- dependent

  9. Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV-vis light irradiation

    International Nuclear Information System (INIS)

    Liu Guanglong; Zhu Duanwei; Zhou Wenbing; Liao Shuijiao; Cui Jingzhen; Wu Kang; Hamilton, David

    2010-01-01

    A novel photodegradable polyethylene-boron-goethite (PE-B-goethite) composite film was prepared by embedding the boron-doped goethite into the commercial polyethylene. The goethite catalyst was modified by boron in order to improve its photocatalytic efficiency under the ultraviolet and visible light irradiation. Solid-phase photocatalytic degradation of the PE-B-goethite composite film was carried out in an ambient air at room temperature under ultraviolet and visible light irradiation. The properties of composite films were compared with those of the pure PE films and the PE-goethite composite films through performing weight loss monitoring, scanning electron microscope (SEM) analysis, FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The photo-induced degradation of PE-B-goethite composite films was higher than that of the pure PE films and the PE-goethite composite films under the UV-irradiation, while there has been little change under the visible light irradiation. The weight loss of the PE-B-goethite (0.4 wt.%) composite film reached 12.6% under the UV-irradiation for 300 h. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  10. A Note on Scenarios of Metastable Water

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Nezbeda, Ivo

    2010-01-01

    Roč. 75, č. 5 (2010), s. 593-605 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802; GA AV ČR IAA200760905; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : metastable water * spinodal * scenarios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  11. Investigation of metastable ions by mass spectrometry

    International Nuclear Information System (INIS)

    Szilagyi, Z.

    1998-01-01

    Metastable decompositions of ions was studied by various methods. The results are summarized in three chapters in this thesis. The development of a method can be used for evaluation of experimental data is described in the first chapter; the second one presents an example for the application of the developed method; and the laser power dependence of MALDI-TOF PSD (matrix-assisted laser desorption/ionization time-of-flight post-source decay) spectra is discussed in chapter three. (author)

  12. Metastability of Queuing Networks with Mobile Servers

    Science.gov (United States)

    Baccelli, F.; Rybko, A.; Shlosman, S.; Vladimirov, A.

    2018-04-01

    We study symmetric queuing networks with moving servers and FIFO service discipline. The mean-field limit dynamics demonstrates unexpected behavior which we attribute to the metastability phenomenon. Large enough finite symmetric networks on regular graphs are proved to be transient for arbitrarily small inflow rates. However, the limiting non-linear Markov process possesses at least two stationary solutions. The proof of transience is based on martingale techniques.

  13. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  14. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  15. Phase II trial of proton beam accelerated partial breast irradiation in breast cancer

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Lee, Nam Kwon; Kim, Ja Young; Kim, Yeon-Joo; Moon, Sung Ho; Kim, Tae Hyun; Kim, Joo-Young; Kim, Dae Yong; Cho, Kwan Ho; Shin, Kyung Hwan

    2013-01-01

    Background and purpose: Here, we report the results of our phase II, prospective study of proton beam accelerated partial breast irradiation (PB-APBI) in patients with breast cancer after breast conserving surgery (BCS). Materials and methods: Thirty patients diagnosed with breast cancer were treated with PB-APBI using a single-field proton beam or two fields after BCS. The treatment dose was 30 cobalt gray equivalent (CGE) in six CGE fractions delivered once daily over five consecutive working days. Results: All patients completed PB-APBI. The median follow-up time was 59 months (range: 43–70 months). Of the 30 patients, none had ipsilateral breast recurrence or regional or distant metastasis, and all were alive at the last follow-up. Physician-evaluated toxicities were mild to moderate, except in one patient who had severe wet desquamation at 2 months that was not observed beyond 6 months. Qualitative physician cosmetic assessments of good or excellent were noted in 83% and 80% of the patients at the end of PB-APBI and at 2 months, respectively, and decreased to 69% at 3 years. A good or excellent cosmetic outcome was noted in all patients treated with a two-field proton beam at any follow-up time point except for one. For all patients, the mean percentage breast retraction assessment (pBRA) value increased significantly during the follow-up period (p = 0.02); however, it did not increase in patients treated with two-field PB-APBI (p = 0.3). Conclusions: PB-APBI consisting of 30 CGE in six CGE fractions once daily for five consecutive days can be delivered with excellent disease control and tolerable skin toxicity to properly selected patients with early-stage breast cancer. Multiple-field PB-APBI may achieve a high rate of good-to-excellent cosmetic outcomes. Additional clinical trials with larger patient groups are needed

  16. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  17. Corundum-to-spinel structural phase transformation in alumina

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Shogo [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Ishimaru, Manabu, E-mail: ishimaru@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Sina, Younes; McHargue, Carl J.; Sickafus, Kurt E. [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2200 (United States); Alves, Eduardo [Unit of Physics and Accelerators, Ion Beam Laboratory, Instituto Superior Técnico/Instituto Tecnológico e Nuclear, EN. 10 2686-953 Sacavém (Portugal)

    2015-09-01

    Several polymorphs exist in alumina (Al{sub 2}O{sub 3}), and they transform to a stable α-phase with a hexagonal corundum structure on thermal annealing. This structural change is irreversible as a function of temperature, and transformation of corundum to another metastable crystalline phase has never been observed by heat treatments. In this study, we irradiated single crystals of Al{sub 2}O{sub 3} with Zr ions and obtained an irradiated microstructure consisting of a buried α-Al{sub 2}O{sub 3} layer surrounded on top and bottom by layers of a defect cubic spinel Al{sub 2}O{sub 3} phase. We examined the thermal stability of this microstructure using transmission electron microscopy and X-ray diffraction. We found that the corundum phase completely transforms to the spinel phase following annealing at 1173 K for 1 h: the thermodynamically stable phase transforms to the metastable phase by heat treatments. We discuss this unusual structural change within the context of our results as well as previous observations.

  18. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation

    International Nuclear Information System (INIS)

    Willner, Jochen; Vordermark, Dirk; Schmidt, Michael; Gassel, Andreamaria; Flentje, Michael; Wirtz, Hubert

    2003-01-01

    Purpose: Type II cells and the surfactant system have been proposed to play a central role in pathogenesis of radiation pneumonitis. We analyzed the secretory function and proliferation parameters of alveolar type II cells in the early (until 24 h) and late phase (1-5 weeks) after irradiation (RT) in vitro and in vivo. Methods and Materials: Type II cells were isolated from rats according to the method of Dobbs. Stimulation of secretion was induced with terbutaline, adenosine triphosphate (ATP), and 12-O-tetradecanoylphorbol-13-acetate (TPA) for a 2-h period. Determination of secretion was performed using 3 H-labeled phosphatidylcholine. For the early-phase analysis, freshly isolated and adherent type II cells were irradiated in vitro with 9-21 Gy (stepwise increase of 3 Gy). Secretion stimulation was initiated 1, 6, 24, and 48 h after RT. For late-phase analysis, type II cells were isolated 1-5 weeks after 18 Gy whole lung or sham RT. Each experiment was repeated at least fivefold. Flow cytometry was used to determine cell cycle distribution and proliferating cell nuclear antigen index. Results: During the early-phase (in vitro) analysis, we found a normal stimulation of surfactant secretion in irradiated, as well as unirradiated, cells. No change in basal secretion and no dose effect were seen. During the late phase, 1-5 weeks after whole lung RT, we observed enhanced secretory activity for all secretagogues and a small increase in basal secretion in Weeks 3 and 4 (pneumonitis phase) compared with controls. The total number of isolated type II cells, as well as the rate of viable cells, decreased after the second post-RT week. Cell cycle alterations suggesting an irreversible G 2 /M block occurred in the second post-RT week and did not resolve during the observation period. The proliferating cell nuclear antigen index of type II cells from irradiated rats did not differ from that of controls. Conclusion: In contrast to literature data, we observed no direct

  19. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  20. Large strain cyclic behavior of metastable austenic stainless steel

    International Nuclear Information System (INIS)

    Geijselaers, H.J.M.; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-01-01

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations

  1. Large strain cyclic behavior of metastable austenic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Geijselaers, H.J.M., E-mail: h.j.m.geijselaers@utwente.nl; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-04-17

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations.

  2. Gas-phase and liquid-phase pre-irradiation grafting of AAc onto LDPE and HDPE films for pervaporation membranes

    International Nuclear Information System (INIS)

    Rao Zhigong; Li Guixiang; Sugo, Takanobu; Okamoto, Jiro

    1992-01-01

    A study has been made on gas-phase and liquid-phase pre-irradiation grafting of acrylic acid onto LDPE and HDPE films for pervaporation membranes of ethanol-water mixtures. It was found that the degree of grafting, percent volume change of grafted membranes and length of grafting chains depend on the methods of grafting, crystal state of substrate films and diffusion rate of the monomer in the films. The pervaporation characteristics of grafted membranes is influenced directly by the surface hydrophilicity of grafted membranes, temperature of the feed, degree of grafting, crosslinking of grafted chains and alkaline metal ions in the functional groups. The potassium ion exchange membrane of HDPE synthesized by gas-phase grafting has better pervaporation efficiency. At 80 wt% ethanol in the feed, 25 o C feed temperature and 70% degree of grafting a grafted membrane has a 0.65 kg/m 2 h flux and a separation factor of 20. (Author)

  3. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  4. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate[Lithium potassium sulphate; Phase transition; Impurity effect; Thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.; Gaafar, M.; Abdel Gawad, M.M.H.; El-Muraikhi, M.; Ragab, I.M

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO{sub 4} have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature T{sub c}, as well as the value of specific heat C{sub P{sub max}} at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  5. Transient cognitive dynamics, metastability, and decision making.

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2008-05-01

    Full Text Available The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.

  6. Multilevel control of the metastable states in a manganite film

    Science.gov (United States)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Chen, Binbin; Xu, Haoran; Wang, Ze; Wang, Lingfei; Gao, Guanyin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-06-01

    For high density memory applications, the dynamic switching between multilevel resistance states per cell is highly desirable, and for oxide-based memory devices, the multistate operation has been actively explored. We have previously shown that for La2/3Ca1/3MnO3 films, the antiferromagnetic charge-ordered-insulator (COI) phase can be induced via the anisotropic epitaxial strain, and it competes with the doping-determined ferromagnetic-metal (FMM) ground state in a wide temperature range. Here, we show that for the phase competitions, in various magnetic fields and/or thermal cycling, the reappearance of the COI phase and thus the resistance and magnetization can be manipulated and quantified in a multilevel manner at lower temperatures. Furthermore, by using a high-field magnetic force microscope, we image the COI/FMM domain structures in accordance with the transport measurements, and find that the evolving domains or the phase fraction ratios do underline the metastability of the reappeared COI droplets, possibly protected by the energy barriers due to accommodation strain. These results may add new insights into the design and fabrication of future multilevel memory cells.

  7. Metastable structure formation during high velocity grinding

    International Nuclear Information System (INIS)

    Samarin, A.N.; Klyuev, M.M.

    1984-01-01

    Metastable structures in surface layers of samples are; investigated during force high-velocity abrasive grinding. Samples of martensitic (40Kh13), austenitic (12Kh18N10T), ferritic (05Kh23Yu5) steels and some alloys, in particular KhN77TYuR (EhI437B), were grinded for one pass at treatment depth from 0.17 up to 2.6 mm. It is established that processes of homogenizing, recrystallization and coagulation are; developed during force high-velocity grinding along with polymorphic transformations in the zone of thermomechanical effect, that leads to changes of physical and mechanical properties of the surface

  8. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  9. Phase transformations in lithium aluminates irradiated with neutrons; Transformaciones de fase en aluminatos de litio irradiados con neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Bosch, P. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10{sup 8} Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  10. Accelerated partial breast irradiation with external beam radiotherapy. First results of the German phase 2 trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Oliver J.; Strnad, Vratislav; Stillkrieg, Wilhelm; Fietkau, Rainer [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Uter, Wolfgang [University Erlangen-Nuremberg, Dept. of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Beckmann, Matthias W. [University Hospital Erlangen, Dept. of Gynecology, Erlangen (Germany)

    2017-01-15

    To evaluate the feasibility and efficacy of external beam three-dimensional (3D) conformal accelerated partial breast irradiation (APBI) for selected patients with early breast cancer. Between 2011 and 2016, 72 patients were recruited for this prospective phase 2 trial. Patients were eligible for APBI if they had histologically confirmed breast cancer or pure ductal carcinoma in situ (DCIS), a tumor diameter ≤3 cm, clear resection margins ≥2 mm, no axillary lymph node involvement, no distant metastases, tumor bed clips, and were aged ≥50 years. Patients were excluded if mammography showed a multicentric invasive growth pattern, or if they had residual diffuse microcalcifications postoperatively, an extensive intraductal component, or vessel invasion. Patients received 3D conformal external beam APBI with a total dose of 38 Gy in 10 fractions in 1-2 weeks. The trial had been registered at the German Clinical Trials Register, DRKS-ID: DRKS00004417. Median follow-up was 25.5 months (range 1-61 months). Local control was maintained in 71 of 72 patients. The 3-year local recurrence rate was 2.1% (95% confidence interval, CI: 0-6.1%). Early toxicity (grade 1 radiodermatitis) was seen in 34.7% (25/72). Late side effects ≥ grade 3 did not occur. Cosmetic results were rated as excellent/good in 96.7% (59/61). APBI with external beam radiotherapy techniques is feasible with low toxicity and, according to the results of the present and other studies, on the way to becoming a standard treatment option for a selected subgroup of patients. (orig.) [German] Untersuchung der Vertraeglichkeit und Sicherheit der externen, 3-D-konformalen akzelerierten Teilbrustbestrahlung (APBI) fuer ausgewaehlte Patientinnen mit einem fruehen Mammakarzinom. Von 2011 bis 2016 wurden 72 Patientinnen in diese prospektive Phase-2-Studie eingebracht. Einschlusskriterien waren ein histologisch gesichertes Mammakarzinom oder DCIS, ein Tumordurchmesser ≤ 3 cm, tumorfreie Resektionsraender ≥ 2

  11. Order-disorder phase transformation in ion-irradiated rare earth sesquioxides

    International Nuclear Information System (INIS)

    Tang, M.; Valdez, J. A.; Sickafus, K. E.; Lu, P.

    2007-01-01

    An order-to-disorder (OD) transformation induced by ion irradiation in rare earth (RE) sesquioxides, Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 , was studied using grazing incidence x-ray diffraction and transmission electron microscopy. These sesquioxides are characterized by a cubic C-type RE structure known as bixbyite. They were irradiated with heavy Kr ++ ions (300 keV) and light Ne + ions (150 keV) at cryogenic temperature (∼120 K). In each oxide, following a relatively low ion irradiation dose of ∼2.5 displacements per atom, the ordered bixbyite structure was transformed to a disordered, anion-deficient fluorite structure. This OD transformation was found in all three RE sesquioxides (RE=Dy, Er, and Lu) regardless of the ion type used in the irradiation. The authors discuss the irradiation-induced OD transformation process in terms of anion disordering, i.e., destruction of the oxygen order associated with the bixbyite structure

  12. Fundamental aspects of the evolution of, and phase changes in, metals and alloys under irradiation

    International Nuclear Information System (INIS)

    Martin, Georges; Bocquet, J.-L.; Barbu, Alain; Adda, Yves.

    1977-01-01

    The quantitative prediction and the simulation of irradiation damage present a considerable interest for the technology of fast neutron and fusion reactors. However, at present time, even qualitative predictions are not always possible when the dose rate varies over a relatively large range; for example the formation of vacancy loops takes place instead of that of voids, precipitation occurs in under-saturated solid solutions etc... Therefore, in addition to a microscopic description of the phenomena, it seems important to elaborate an irradiation damage phenomenology. The results of a systematic experimental study of dose rate effects for radiation induced precipitation in Ni Si solid solution alloys are reported. The existence of dose rate thresholds for this phenomenon is clearly established. The composition dependence of this thresholds permits the definition of a solubility limit under irradiation which is both temperature and dose rate dependent. Finally, the various theoretical approaches to radiation induced precipitation are discussed

  13. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    Science.gov (United States)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  14. Microstructure and phase transformations in the ODS alloys irradiated by swift heavy ions

    International Nuclear Information System (INIS)

    Zlotski, S.V.; Anishchik, V.M; Skuratov, V.A.; O’Connell, J.; Neethling, J.H.

    2015-01-01

    Microstructure of KP4 ODS alloy irradiated with 700 MeV bismuth ions at 300 K has been studied using high resolution transmission electron microscopy. No latent tracks have been observed in Y 4 Al 2 O 9 particles in KP4 irradiated with Bi ions. Small oxides (~ 5 nm) in KP4 alloy remain crystalline at Bi ion fluence 1.5*10 13 cm -2 , while subsurface regions in large (~ 20 nm) particles faced to the beam entrance became amorphous. (authors)

  15. A study on metastable superconducting magnets

    International Nuclear Information System (INIS)

    Koyama, Kenichi

    1976-01-01

    It is important to construct superconducting magnets as cheap as possible. One of the methods to achieve such a purpose is to save the superconducting material and operate the magnets at a high current density. Therefore it is useful to investigate the requirements for the operation of metastable superconducting magnets which can work at a current higher than the recovery current. Using the theory of flux jump, we introduce a ''stable current'' below which no flux jump can occur. On a rough approximation, it is given by I sub(s) =√A P sub(i) H sub(e) T sub(o) f(x)/rho where A : cross-section of the composite conductor. P sub(i) : total perimeter of all the superconducting cores. h sub(e) : effective heat transfer coefficient to the liquid helium through the stabilizer. T sub(o) : a characteristic temperature of the superconducting cores. f(x) : a characteristic function for the relative core radius x. rho : effective resistivity of the composite. Then it is shown that superconducting magnets can operate without unexpected normal transitions in the region enclosed by the two curves of I sub(s) and I sub(c). Next, we discuss the characteristics of our saddle shaped superconducting magnet for an one-KW MHD generator. We found that, 1) the magnet does safely operate in the metastable state; 2) the characteristics of the magnet are consistent with our theoretical results. (auth.)

  16. Metastable beta limit in DIII-D

    International Nuclear Information System (INIS)

    La Haye, R.J.; Callen, J.D.; Gianakon, T.A.

    1997-06-01

    The long-pulse, slowly evolving single-null divertor (SND) discharges in DIII-D with H-mode, ELMs, and sawteeth are found to be limited significantly below (factor of 2) the predicted ideal limit β N = 4l i by the onset of tearing modes. The tearing modes are metastable in that they are explained by the neoclassical bootstrap current (high β θ ) destabilization of a seed island which occurs even if Δ' θ , there is a region of the modified Rutherford equation such that dw/dt > 0 for w larger than a threshold value; the plasma is metastable, awaiting the critical perturbation which is then amplified to the much larger saturated island. Experimental results from a large number of tokamaks indicate that the high beta operational envelope of the tokamak is well defined by ideal magnetohydrodynamic (MHD) theory. The highest beta values achieved have historically been obtained in fairly short pulse discharges, often <1-2 sawteeth periods and < 1-2 energy replacement times. The maximum operational beta in single-null divertor (SND), long-pulse discharges in DIII-D with a cross-sectional shape similar to the proposed ITER tokamak is found to be limited significantly below the threshold for ideal instabilities by the onset of resistive MHD instabilities

  17. Quantum decay of metastable current states in rf squids

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.

    1985-01-01

    Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring

  18. Increased expression of cyclin B1 mRNA coincides with diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    International Nuclear Information System (INIS)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.; Muschel, R.J.

    1994-01-01

    The irradiation of cells results in delayed progression through the G 2 phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G 2 -phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G 2 -phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G 2 -phase arrest. In HeLa cells, the G 2 -phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G 2 -phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G 2 -phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs

  19. Irradiation with X-rays phase-advances the molecular clockwork in liver, adrenal gland and pancreas.

    Science.gov (United States)

    Müller, Mareike Hildegard; Rödel, Franz; Rüb, Udo; Korf, Horst-Werner

    2015-02-01

    The circadian clock of man and mammals shows a hierarchic organization. The master clock, located in the suprachiasmatic nuclei (SCN), controls peripheral oscillators distributed throughout the body. Rhythm generation depends on molecular clockworks based on transcriptional/translational interaction of clock genes. Numerous studies have shown that the clockwork in peripheral oscillators is capable to maintain circadian rhythms for several cycles in vitro, i.e. in the absence of signals from the SCN. The aim of the present study is to analyze the effects of irradiation with X-rays on the clockwork of liver, adrenal and pancreas. To this end organotypic slice cultures of liver (OLSC) and organotypic explant cultures of adrenal glands (OAEC) and pancreas (OPEC) were prepared from transgenic mPer2(luc) mice which express luciferase under the control of the promoter of an important clock gene, Per2, and allow to study the dynamics of the molecular clockwork by bioluminometry. The preparations were cultured in a membrane-based liquid-air interface culturing system and irradiated with X-rays at doses of 10 Gy and 50 Gy or left untreated. Bioluminometric real-time recordings show a stable oscillation of all OLSC, OAEC and OPEC for up to 12 days in vitro. Oscillations persist after irradiation with X-rays. However, a dose of 50 Gy caused a phase advance in the rhythm of the OLSC by 5 h, in the OPEC by 7 h and in the OAEC by 6 h. Our study shows that X-rays affect the molecular clockwork in liver, pancreas and adrenal leading to phase advances. Our results confirm and extend previous studies showing a phase-advancing effect of X-rays at the level of the whole animal and single cells.

  20. Metastability of the (φiφi)32 model at finite temperature and density

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.

    1996-11-01

    Using concurrently the dimensional and analytic regularization methods we applied the Gross-Neveu model at finite temperature and density (chemical potential) in a D-dimensional spacetime. The renormalized effective potential is presented at the one-loop approximation. In the case of non-zero chemical potential we show that the effective potential acquires an imaginary part, which means that the system becomes metastable, indicating the possibility of a first phase transition. (author)

  1. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  2. Modified thermogravimetric apparatus to measure magnetic susceptibility on-line during annealing of metastable ferromagnetic materials

    International Nuclear Information System (INIS)

    Luciani, G.; Constantini, A.; Branda, F.; Ausanio, G.; Hison, C.; Iannotti, V.; Luponio, C.; Lanotte, L.

    2004-01-01

    The insertion of proper coils to generate a magnetic field, with controlled gradient, in a standard thermogravimetric apparatus is shown to be a valid solution to measure on-line, upon heat treatment, the magnetic susceptibility in ribbon shaped samples of a metastable ferromagnetic material. The method is very useful to individuate the annealing conditions that optimise soft or hard magnetic properties without using separate apparatuses for heat treatment, control of the structural phase transition and characterization of magnetic susceptibility

  3. Low-frequency phase diagram of irradiated graphene and a periodically driven spin-1/2 X Y chain

    Science.gov (United States)

    Mukherjee, Bhaskar; Mohan, Priyanka; Sen, Diptiman; Sengupta, K.

    2018-05-01

    We study the Floquet phase diagram of two-dimensional Dirac materials such as graphene and the one-dimensional (1D) spin-1/2 X Y model in a transverse field in the presence of periodic time-varying terms in their Hamiltonians in the low drive frequency (ω ) regime where standard 1 /ω perturbative expansions fail. For graphene, such periodic time-dependent terms are generated via the application of external radiation of amplitude A0 and time period T =2 π /ω , while for the 1D X Y model, they result from a two-rate drive protocol with a time-dependent magnetic field and nearest-neighbor couplings between the spins. Using the adiabatic-impulse method, whose predictions agree almost exactly with the corresponding numerical results in the low-frequency regime, we provide several semianalytic criteria for the occurrence of changes in the topology of the phase bands (eigenstates of the evolution operator U ) of such systems. For irradiated graphene, we point out the role of the symmetries of the instantaneous Hamiltonian H (t ) and the evolution operator U behind such topology changes. Our analysis reveals that at low frequencies, topology changes of irradiated graphene phase bands may also happen at t =T /3 and2 T /3 (apart from t =T ) showing the necessity of analyzing the phase bands of the system for obtaining its phase diagrams. We chart out the phase diagrams at t =T /3 ,2 T /3 ,and T , where such topology changes occur, as a function of A0 and T using exact numerics, and compare them with the prediction of the adiabatic-impulse method. We show that several characteristics of these phase diagrams can be analytically understood from results obtained using the adiabatic-impulse method and point out the crucial contribution of the high-symmetry points in the graphene Brillouin zone to these diagrams. We study the modes that can appear at the edges of a finite-width strip of graphene and show that the change in the number of such modes agrees with the change in the

  4. Amorphous-to-crystalline phase transformation by neutron irradiation of the alloy Fe83B17

    International Nuclear Information System (INIS)

    Weis, J.; Gabris, F.; Cerven, I.; Sitek, J.

    1984-01-01

    The purpose of the present work is to investigate the structural changes of amorphous Fe 83 B 17 alloy after irradiation with fast neutrons ( > 1 MeV) and to compare with the crystallization behaviour of the amorphous Fe 83 B 17 alloy after annealing. The structural changes were studied by Moessbauer spectroscopy and X-ray diffraction with the usual Fourier analysis. (author)

  5. Characterisation of Irradiated Thin Silicon Sensors for the CMS Phase II Pixel Upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg; bigskip; Institut fur Experimentalphysik; Luruper Chaussee; Hamburg; Deutsches Elektronen-Synchrotron Notkestra; e; Hamburg

    2016-01-01

    In this paper, the results obtained from the characterisation of 100 and 200\\,$\\mu$m thick p-bulk pad diodes and strip sensors irradiated up to fluences of $\\Phi_{eq} = 1.3 \\times 10^{16}$ cm$^{-2}$ are shown.

  6. Heavy-ion irradiation induced diamond formation in carbonaceous materials

    International Nuclear Information System (INIS)

    Daulton, T. L.

    1999-01-01

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond

  7. Self-organization in the localised failure regime: metastable attractors and their implications on force chain functionality

    Science.gov (United States)

    Pucilowski, Sebastian; Tordesillas, Antoinette; Froyland, Gary

    2017-06-01

    In transitive metastable chaotic dynamical systems, there are no invariant neighbourhoods in the phase space. The best that one can do is look for metastable or almost-invariant (AI) regions as a means to decompose the system into its basic self-organising building blocks. Here we study the metastable dynamics of a dense granular material embodying strain localization in 3D from the perspective of its conformational landscape: the state space of all observed conformations as defined by the local topology of individual grains relative to their first ring of contacting neighbors. We determine the metastable AI sets that divide this conformational landscape, such that grain rearrangements from one conformation to another conformation in the same AI set occurs with high probability: by contrast, grain rearrangements involving conformational transitions between AI sets are unlikely. The great majority of conformational transitions are identity transitions: grains rearrange and exchange contacts to preserve those topological properties with the greatest influence on cluster stability, namely, the number of contacts and 3-cycles. Force chains show a clear preference for that AI set with the most number of accessible and highly connected conformations. Here force chains continually explore the conformational landscape, wandering from one rarely inhabited conformation to another. As force chains become overloaded and buckle, the energy released enables member grains to overcome the high dynamical barriers that separate metastable regions and subsequently escape one region to enter another in the conformational landscape. Thus, compared to grains locked in stable force chains, those in buckling force chains, confined to the shear band, show a greater propensity for not only non-identity transitions within each metastable region but also inter-transitions between metastable regions.

  8. Self-organization in the localised failure regime: metastable attractors and their implications on force chain functionality

    Directory of Open Access Journals (Sweden)

    Pucilowski Sebastian

    2017-01-01

    Full Text Available In transitive metastable chaotic dynamical systems, there are no invariant neighbourhoods in the phase space. The best that one can do is look for metastable or almost-invariant (AI regions as a means to decompose the system into its basic self-organising building blocks. Here we study the metastable dynamics of a dense granular material embodying strain localization in 3D from the perspective of its conformational landscape: the state space of all observed conformations as defined by the local topology of individual grains relative to their first ring of contacting neighbors. We determine the metastable AI sets that divide this conformational landscape, such that grain rearrangements from one conformation to another conformation in the same AI set occurs with high probability: by contrast, grain rearrangements involving conformational transitions between AI sets are unlikely. The great majority of conformational transitions are identity transitions: grains rearrange and exchange contacts to preserve those topological properties with the greatest influence on cluster stability, namely, the number of contacts and 3-cycles. Force chains show a clear preference for that AI set with the most number of accessible and highly connected conformations. Here force chains continually explore the conformational landscape, wandering from one rarely inhabited conformation to another. As force chains become overloaded and buckle, the energy released enables member grains to overcome the high dynamical barriers that separate metastable regions and subsequently escape one region to enter another in the conformational landscape. Thus, compared to grains locked in stable force chains, those in buckling force chains, confined to the shear band, show a greater propensity for not only non-identity transitions within each metastable region but also inter-transitions between metastable regions.

  9. Stable and metastable equilibrium states of the Zr-O system

    International Nuclear Information System (INIS)

    Versaci, R.A.; Abriata, J.P.; Garces, J.; Comision Nacional de Energia Atomica, San Carlos de Bariloche

    1987-01-01

    The precise knowledge of the phase diagrams is of fundamental importance for the comprehension of processes like soldering and thermal treatment. The Zr-O diagram has been widely studied, mainly in the zone corresponding to ZrO 2 . A critical analysis of the existing information about this diagram is presented. Furthermore, a lot of information about the phase equilibrium, metastable phase, crystal structure, thermodynamic properties and a possible diagram for pressures higher than one atmosphere is presented. (M.E.L.) [es

  10. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas

  11. A Phase 2 Trial of Once-Weekly Hypofractionated Breast Irradiation: First Report of Acute Toxicity, Feasibility, and Patient Satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Dragun, Anthony E., E-mail: aedrag01@louisville.edu [Department of Radiation Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Quillo, Amy R. [Department of Surgical Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Riley, Elizabeth C. [Department of Medical Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Roberts, Teresa L.; Hunter, Allison M. [Department of Radiation Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Rai, Shesh N. [Department of Biostatistics and Epidemiology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Callender, Glenda G. [Department of Surgical Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Jain, Dharamvir [Department of Medical Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); McMasters, Kelly M. [Department of Surgical Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States); Spanos, William J. [Department of Radiation Oncology, University of Louisville School of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky (United States)

    2013-03-01

    Purpose: To report on early results of a single-institution phase 2 trial of a 5-fraction, once-weekly radiation therapy regimen for patients undergoing breast-conserving surgery (BCS). Methods and Materials: Patients who underwent BCS for American Joint Committee on Cancer stage 0, I, or II breast cancer with negative surgical margins were eligible to receive whole breast radiation therapy to a dose of 30 Gy in 5 weekly fractions of 6 Gy with or without an additional boost. Elective nodal irradiation was not permitted. There were no restrictions on breast size or the use of cytotoxic chemotherapy for otherwise eligible patients. Patients were assessed at baseline, treatment completion, and at first posttreatment follow-up to assess acute toxicity (Common Terminology Criteria for Adverse Events, version 3.0) and quality of life (European Organization for Research and Treatment of Cancer QLQ-BR23). Results: Between January and September 2011, 42 eligible patients underwent weekly hypofractionated breast irradiation immediately following BCS (69.0%) or at the conclusion of cytotoxic chemotherapy (31.0%). The rates of grade ≥2 radiation-induced dermatitis, pain, fatigue, and breast edema were 19.0%, 11.9%, 9.5%, and 2.4%, respectively. Only 1 grade 3 toxicity—pain requiring a course of narcotic analgesics—was observed. One patient developed a superficial cellulitis (grade 2), which resolved with the use of oral antibiotics. Patient-reported moderate-to-major breast symptoms (pain, swelling, and skin problems), all decreased from baseline through 1 month, whereas breast sensitivity remained stable over the study period. Conclusions: The tolerance of weekly hypofractionated breast irradiation compares well with recent reports of daily hypofractionated whole-breast irradiation schedules. The regimen appears feasible and cost-effective. Additional follow-up with continued accrual is needed to assess late toxicity, cosmesis, and disease-specific outcomes.

  12. A Phase 2 Trial of Once-Weekly Hypofractionated Breast Irradiation: First Report of Acute Toxicity, Feasibility, and Patient Satisfaction

    International Nuclear Information System (INIS)

    Dragun, Anthony E.; Quillo, Amy R.; Riley, Elizabeth C.; Roberts, Teresa L.; Hunter, Allison M.; Rai, Shesh N.; Callender, Glenda G.; Jain, Dharamvir; McMasters, Kelly M.; Spanos, William J.

    2013-01-01

    Purpose: To report on early results of a single-institution phase 2 trial of a 5-fraction, once-weekly radiation therapy regimen for patients undergoing breast-conserving surgery (BCS). Methods and Materials: Patients who underwent BCS for American Joint Committee on Cancer stage 0, I, or II breast cancer with negative surgical margins were eligible to receive whole breast radiation therapy to a dose of 30 Gy in 5 weekly fractions of 6 Gy with or without an additional boost. Elective nodal irradiation was not permitted. There were no restrictions on breast size or the use of cytotoxic chemotherapy for otherwise eligible patients. Patients were assessed at baseline, treatment completion, and at first posttreatment follow-up to assess acute toxicity (Common Terminology Criteria for Adverse Events, version 3.0) and quality of life (European Organization for Research and Treatment of Cancer QLQ-BR23). Results: Between January and September 2011, 42 eligible patients underwent weekly hypofractionated breast irradiation immediately following BCS (69.0%) or at the conclusion of cytotoxic chemotherapy (31.0%). The rates of grade ≥2 radiation-induced dermatitis, pain, fatigue, and breast edema were 19.0%, 11.9%, 9.5%, and 2.4%, respectively. Only 1 grade 3 toxicity—pain requiring a course of narcotic analgesics—was observed. One patient developed a superficial cellulitis (grade 2), which resolved with the use of oral antibiotics. Patient-reported moderate-to-major breast symptoms (pain, swelling, and skin problems), all decreased from baseline through 1 month, whereas breast sensitivity remained stable over the study period. Conclusions: The tolerance of weekly hypofractionated breast irradiation compares well with recent reports of daily hypofractionated whole-breast irradiation schedules. The regimen appears feasible and cost-effective. Additional follow-up with continued accrual is needed to assess late toxicity, cosmesis, and disease-specific outcomes

  13. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. E-mail: esposito@frascati.enea.it; Bertalot, L.; Maruccia, G.; Petrizzi, L.; Bignan, G.; Blandin, C.; Chauffriat, S.; Lebrun, A.; Recroix, H.; Trapp, J.P.; Kaschuck, Y

    2000-11-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties. The analysis has been carried out using the LSL-M2 code, which optimizes the neutron spectrum by means of a least-squares technique taking into account the variance and covariance files. In the second part of the activity, the possibility of extending to IFMIF the use of existing on-line in-core neutron/gamma monitors (to be located at several positions inside the IFMIF test cell for beam control, safety and diagnostic purposes) has been studied. A feasibility analysis of the modifications required to adapt sub-miniature fission chambers (recently developed by CEA-Cadarache) to the high flux test module of the test cell has been carried out. The verification of this application pertinence and a gross definition of the in-core detector characteristics are described. The option of using self-powered neutron detectors (SPNDs) is also discussed.

  14. Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin's lymphoma patients: An indication of cell cycle defects

    International Nuclear Information System (INIS)

    Hannan, Mohammed A.; Kunhi, Mohammed; Einspenner, Michael; Khan, Bashir A.; Al-Sedairy, Sultan

    1994-01-01

    In the present study, both post-irradiation DNA synthesis and G 2 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3 H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G 2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G 2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G 2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cycle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G 2 phase accumulation developed elsewhere in characterizing AT heterozygote-like cell cycle anomaly in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle

  15. Determination of radiation-induced hydrocarbons in processed food and complex lipid matrices. A new solid phase extraction (SPE) method for detection of irradiated components in food

    International Nuclear Information System (INIS)

    Hartmann, M.; Ammon, J.; Berg, H.

    1997-01-01

    Detection of irradiated components in processed food with complex lipid matrices can be affected by two problems. First, the processed food may contain only a small amount of the irradiated component, and the radiation-induced hydrocarbons may be diluted throughout the lipid matrix of the whole food. Second, in complex lipid matrices, the detection of prior irradiation is often disturbed by fat-associated compounds. In these cases, common solid phase extraction (SPE) Florisil clean-up alone is inadequate in the detection of prior irradiation. Subsequent SPE argentation chromatography of the Florisil eluate allows the measurement of small amounts of irradiated lipid-containing ingredients in processed food as well as the detection of prior irradiation in complex lipid matrices such as paprika and chilli. SPE argetation chromatography is the first method available for the selective enrichment of radiation-specific hydrocarbons from even complex lipid matrices, thus enabling the detection of irradiation does as low as 0.025 kGy. Furthermore, by using radiation-induced hydrocarbons in the detection of prior irradiation of paprika and chilli powder, a second independent method, the first being measurement of thermoluminescence, is available for the analysis of these matrices. Such analysis could be achieved by using this highly sensitive, cheap and easy to perform combined SPE Florisil/argentation chromatography method, without the need for sophisticated techniques like SFE-GC/MS or LC-GC/MS, so that highly sensitive detection of prior irradiation colud be performed in almost every laboratory

  16. Compressibility and phase contrast imaging of a irradiated polyurethane foam blocks

    International Nuclear Information System (INIS)

    Naik, Y.; Kulkarni, S.G.; Manjunath, B.S.; Patel, R.J.; Agarwal, A.K.; Kashyap, Y.; Sinha, A.

    2013-01-01

    Polyurethane foam was prepared with a view to use them as a protective enclosure for radioactive material transport package against accidental mechanical shock and fire. The foam samples were prepared by mixing the polyol premixed with additives such as water as blowing agent, melamine polyphosphate as a flame retardants (FR) and catalyst with isocynate keeping NCO/OH ratio as 1.1. It was observed that the irradiation of the foam results in cross linking leading to increased wall thickness and shrinkage of cellular structure. This leads to increased strain around the foam bubble. Increased exposure to gamma rays to higher doses results in reptures at the cellular boundary connecting the bubble structure, leading to decreased mechanical strength. This leads again to increase in deformation seen in the 15 and 20 kGy irradiated samples

  17. Accelerated Metastable Solid-liquid Interdiffusion Bonding with High Thermal Stability and Power Handling

    Science.gov (United States)

    Huang, Ting-Chia; Smet, Vanessa; Kawamoto, Satomi; Pulugurtha, Markondeya R.; Tummala, Rao R.

    2018-01-01

    Emerging high-performance systems are driving the need for advanced packaging solutions such as 3-D integrated circuits (ICs) and 2.5-D system integration with increasing performance and reliability requirements for off-chip interconnections. Solid-liquid interdiffusion (SLID) bonding resulting in all-intermetallic joints has been proposed to extend the applicability of solders, but faces fundamental and manufacturing challenges hindering its wide adoption. This paper introduces a Cu-Sn SLID interconnection technology, aiming at stabilization of the microstructure in the Cu6Sn5 metastable phase rather than the usual stable Cu3Sn phase. This enables formation of a void-free interface yielding higher mechanical strength than standard SLID bonding, as well as significantly reducing the transition time. The metastable SLID technology retains the benefits of standard SLID with superior I/O pitch scalability, thermal stability and current handling capability, while advancing assembly manufacturability. In the proposed concept, the interfacial reaction is controlled by introducing Ni(P) diffusion barrier layers, designed to effectively isolate the metastable Cu6Sn5 phase preventing any further transformation. Theoretical diffusion and kinetic models were applied to design the Ni-Cu-Sn interconnection stack to achieve the targeted joint composition. A daisy chain test vehicle was used to demonstrate this technology as a first proof of concept. Full transition to Cu6Sn5 was successfully achieved within a minute at 260°C as confirmed by scanning electron microscope (SEM) and x-ray energy dispersive spectroscopy (XEDS) analysis. The joint composition was stable through 10× reflow, with outstanding bond strength averaging 90 MPa. The metastable SLID interconnections also showed excellent electromigration performance, surviving 500 h of current stressing at 105 A/cm2 at 150°C.

  18. Induction of materials for mutation breeding of strawberry (FragariaxAnanassa) by gamma irradiation (Phase 2)

    International Nuclear Information System (INIS)

    Le Tien Thanh; Huynh Thi Trung; Pham Van Nhi; Vu Thi Trac

    2016-01-01

    In this study, New Zaeland strawberry runners was propagated in vitro to create clump of buds for Gamma irradiation. The experimental result showed that LD_5_0 was 52 Gy. Basing on the LD_5_0, we selected the 5 doses of 20, 40, 60, 80 and 100 Gy to irradiate in vitro materials for creating the potential mutants. Irradiated materials were propagated continuously in vitro to complete 300 in vitro plants per dose. On farm, ex vitro plants were planted on the spout (from the ground) by hydroponic method with the number of 200 plants per dose. Some mutant characteristics increased gradually toward the increasing of gamma doses as dwarf plants (in the dose of 60 Gy, 80 Gy and 100 Gy), plants had small fruits (in the dose of 60 Gy, 80 Gy, 100 Gy), plants had deformed fruits (in the dose of 20 Gy, 40 Gy, 60 Gy, 80 Gy and 100 Gy). In this study, we selected four mutants with 2 mutation fruits were changed to fruit heart-shape with symbol DT 1 (dose 60 Gy) and DT 2 (dose 80 Gy); 2 mutants were dwarf plants, the ungrown bud, wrinkled leaf, deformed fruits, high sweetness with symbol DN 1 (dose 60 Gy) and DN 2 (dose 80 Gy). (author)

  19. An alkali-metal ion extracted layered compound as a template for a metastable phase synthesis in a low-temperature solid-state reaction: preparation of brookite from K0.8Ti1.73Li0.27O4.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2010-03-15

    We have designed a new approach to synthesize brookite, i.e., to extract alkali-metal ions from K(0.8)Ti(1.73)Li(0.27)O(4) (KTLO) and to apply simultaneous heat treatment to the remaining lepidocrocite-type layers of TiO(6) octahedra. For the alkali-metal ion extraction and the simultaneous heat treatment, KTLO was heated at 400 degrees C with polytetrafluoroethylene (PTFE) in flowing Ar. PTFE has been found to be an effective agent to extract strongly electropositive alkali-metal ions from KTLO because of the strong electronegativity of F as its component. The product of this reaction consists of a mixture of brookite, K(2)CO(3), LiF, and PTFE derivatives, indicating the complete extraction of K(+) and Li(+) from KTLO and formation of brookite from the lepidocrocite-type layer of TiO(6) octahedra as a template. This brookite has a partial replacement of O(2-) with F(-) and/or slight oxygen deficiency; thus, its color is light-bluish gray. Fully oxidized brookite formation and complete decomposition of PTFE derivatives have been achieved by further heating in flowing air, and coproduced alkali-metal salts have been removed by washing in water. Powder X-ray diffraction, Raman spectroscopy, and chemical analysis results have confirmed that the final brookite product treated at 600 degrees C is single phase, and it is white. The method to extract alkali-metal ions from a crystalline material using PTFE is drastically different from the common methods such as soft-chemical and electrochemical reactions. It is likely that this new synthetic approach is applicable to other layered systems to prepare a diverse family of compounds, including novel metastable ones.

  20. Metastable electroweak vacuum. Implications for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Westphal, Alexander [DESY Theory Group, Hamburg (Germany)

    2012-10-15

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10{sup 8} in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  1. Transition Manifolds of Complex Metastable Systems

    Science.gov (United States)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-04-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  2. Metastable electroweak vacuum. Implications for inflation

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Westphal, Alexander

    2012-10-01

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10 8 in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  3. Effects of caffeine on X-irradiated synchronous, asynchronous and plateau phase mouse ascites cells: the importance of progression through the cell cycle for caffeine enhancement of killing

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1983-01-01

    Caffeine potentiated the killing effect of X-rays on exponentially growing cells giving rise to exponential curves (D 0 =(0.8+-0.05)Gy) at 4mM and 14 hours treatment. Irradiated plateau phase cells were less sensitive. Exponentially growing cells also became less sensitive to the effects of caffeine when they were incubated in the conditioned medium of plateau phase cells(C-medium) in which cell growth was considerably inhibited. Low caffeine concentrations(2mM) enhanced X-ray induced killing of cells irradiated in G 1 -,G 1 /S- or S-phase, but more effectively G 2 -phase cells. High caffeine concentrations (6mM) enhanced killing of cells in all phases of the cell cycle. Incubation of synchronized populations in C-medium during treatment with caffeine (2mM and 6mM) resulted in less potentiation than in cells treated in fresh medium. The expression of X-ray induced potentially lethal damage caused by 6mM caffeine in cells irradiated in various phases resulted in an exponential survival curve with a mean lethal dose of (0.8+-0.05)Gy, but the time of caffeine treatment necessary to reach this curve was different for cells irradiated in different phases. PLD repair, measured as loss of sensitivity to 6mM caffeine (4 hours treatment) was of 1-2 hours duration. (author)

  4. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  5. Magnetic Phase Transition in Ion-Irradiated Ultrathin CoN Films via Magneto-Optic Faraday Effect.

    Science.gov (United States)

    Su, Chiung-Wu; Chang, Yen-Chu; Chang, Sheng-Chi

    2013-11-15

    The magnetic properties of 1 nm thick in-plane anisotropic Co ultrathin film on ZnO(0001) were investigated through successive 500 eV nitrogen-ion sputtering. Magneto-optical Faraday effects were used to observe the evolution of the ion-irradiated sample in longitudinal and perpendicular magnetic fields. The ferromagnetic phase of the initial in-plane anisotropic fcc β-Co phase transformation to β-Co(N) phase was terminated at paramagnetic CoN x phase. In-plane anisotropy with weak out-of-plane anisotropy of the Co/ZnO sample was initially observed in the as-grown condition. In the sputtering process, the N⁺ ions induced simultaneous sputtering and doping. An abrupt spin reorientation behavior from in-plane to out-of-plane was found under prolonged sputtering condition. The existence of perpendicular anisotropy measured from the out-of-plane Faraday effect may be attributed to the co-existence of residual β-Co and Co₄N exchange bonding force by the gradual depletion of Co-N thickness.

  6. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  7. Omitting elective nodal irradiation during thoracic irradiation in limited-stage small cell lung cancer--evidence from a phase II trial.

    Science.gov (United States)

    Colaco, Rovel; Sheikh, Hamid; Lorigan, Paul; Blackhall, Fiona; Hulse, Paul; Califano, Raffaele; Ashcroft, Linda; Taylor, Paul; Thatcher, Nicholas; Faivre-Finn, Corinne

    2012-04-01

    Omitting elective nodal irradiation (ENI) in limited-stage disease small cell lung cancer (LD-SCLC) is expected to result in smaller radiation fields. We report on data from a randomised phase II trial that omitted ENI in patients receiving concurrent chemo-radiotherapy for LD-SCLC. 38 patients with LD-SCLC were randomised to receive once-daily (66 Gy in 33 fractions) or twice-daily (45 Gy in 30 fractions) radiotherapy (RT). 3D-conformal RT was given concurrently with cisplatin and etoposide starting with the second cycle of a total of four cycles. The gross tumour volume was defined as primary tumour with involved lymph nodes (nodes ≥1 cm in short axis) identifiable with CT imaging. ENI was not used. Six recurrence patterns were identified: recurrence within planning target volume (PTV) only, recurrence within PTV+regional nodal recurrence and/or distant recurrence, isolated nodal recurrence outside PTV, nodal recurrence outside PTV+distant recurrence, distant metastases only and no recurrence. At median follow-up 16.9 months, 31/38 patients were evaluable and 14/31 patients had relapsed. There were no isolated nodal recurrences. Eight patients relapsed with intra-thoracic disease: 2 within PTV only, 4 within PTV and distantly and 2 with nodal recurrence outside PTV plus distant metastases. Rates of grade 3+ acute oesophagitis and pneumonitis in the 31 evaluable patients were 23 and 3% respectively. In our study of LD-SCLC, omitting ENI based on CT imaging was not associated with a high risk of isolated nodal recurrence, although further prospective studies are needed to confirm this. Routine ENI omission will be further evaluated prospectively in the ongoing phase III CONVERT trial (NCT00433563). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV.

    Science.gov (United States)

    Halliwell, Rebecca A; Bhardwaj, Rajni M; Brown, Cameron J; Briggs, Naomi E B; Dunn, Jaclyn; Robertson, John; Nordon, Alison; Florence, Alastair J

    2017-07-01

    Carbamazepine (CBZ) is an active pharmaceutical ingredient used in the treatment of epilepsy that can form at least 5 polymorphic forms. Metastable form IV was originally discovered from crystallization with polymer additives; however, it has not been observed from subsequent solvent-only crystallization efforts. This work reports the reproducible formation of phase pure crystalline form IV by spray drying of methanolic CBZ solution. Characterization of the material was carried out using diffraction, scanning electron microscopy, and differential scanning calorimetry. In situ Raman spectroscopy was used to monitor the spray-dried product during the spray drying process. This work demonstrates that spray drying provides a robust method for the production of form IV CBZ, and the combination of high supersaturation and rapid solid isolation from solution overcomes the apparent limitation of more traditional solution crystallization approaches to produce metastable crystalline forms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Donepezil for Irradiated Brain Tumor Survivors: A Phase III Randomized Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Rapp, Stephen R; Case, L Doug; Peiffer, Ann; Naughton, Michelle M; Chan, Michael D; Stieber, Volker W; Moore, Dennis F; Falchuk, Steven C; Piephoff, James V; Edenfield, William J; Giguere, Jeffrey K; Loghin, Monica E; Shaw, Edward G

    2015-05-20

    Neurotoxic effects of brain irradiation include cognitive impairment in 50% to 90% of patients. Prior studies have suggested that donepezil, a neurotransmitter modulator, may improve cognitive function. A total of 198 adult brain tumor survivors ≥ 6 months after partial- or whole-brain irradiation were randomly assigned to receive a single daily dose (5 mg for 6 weeks, 10 mg for 18 weeks) of donepezil or placebo. A cognitive test battery assessing memory, attention, language, visuomotor, verbal fluency, and executive functions was administered before random assignment and at 12 and 24 weeks. A cognitive composite score (primary outcome) and individual cognitive domains were evaluated. Of this mostly middle-age, married, non-Hispanic white sample, 66% had primary brain tumors, 27% had brain metastases, and 8% underwent prophylactic cranial irradiation. After 24 weeks of treatment, the composite scores did not differ significantly between groups (P = .48); however, significant differences favoring donepezil were observed for memory (recognition, P = .027; discrimination, P = .007) and motor speed and dexterity (P = .016). Significant interactions between pretreatment cognitive function and treatment were found for cognitive composite (P = .01), immediate recall (P = .05), delayed recall (P = .004), attention (P = .01), visuomotor skills (P = .02), and motor speed and dexterity (P < .001), with the benefits of donepezil greater for those who were more cognitively impaired before study treatment. Treatment with donepezil did not significantly improve the overall composite score, but it did result in modest improvements in several cognitive functions, especially among patients with greater pretreatment impairments. © 2015 by American Society of Clinical Oncology.

  10. Phase change dynamics in a polymer thin film upon femtosecond and picosecond laser irradiation

    International Nuclear Information System (INIS)

    Bonse, J.; Wiggins, S.M.; Solis, J.; Lippert, T.

    2005-01-01

    The influence of the pulse duration on the laser-induced changes in a thin triazenepolymer film on a glass substrate has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 2.6 ps. Post-irradiation optical microscopy has been used to quantitatively determine the damage threshold fluence. The latter decreases from ∼800 mJ/cm 2 for a 2.6 ps laser pulse to ∼500 mJ/cm 2 for a pulse duration of 130 fs. In situ real-time reflectivity (RTR) measurements have been performed using a ps-resolution streak camera set-up to study the transformation dynamics upon excitation with single pulses of duration of 130 fs and fluences close to the damage threshold. Very different reflectivity transients have been observed above and below the damage threshold fluence. Above the damage threshold, an extremely complicated behaviour with oscillations of up to 100% in the transient reflectivity has been observed. Below the damage threshold, the transient reflectivity decreases by as much as 70% within 1 ns with a subsequent recovery to the initial level occurring on the ms timescale. No apparent damage could be detected by optical microscopy under these irradiation conditions. Furthermore, within the 395-410 mJ/cm 2 fluence range, the transient reflectivity increases by ∼10%. The analysis of these results indicates that the observed transformations are thermal in nature, in contrast to the known photochemical decomposition of this triazenepolymer under UV irradiation

  11. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  12. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  13. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  14. Effects of gamma radiation on banana 'nanica' (Musa sp., group AAA) irradiated in pre climacteric phase

    International Nuclear Information System (INIS)

    Silva, Simone Faria; Dionisio, Ana Paula; Walder, Julio Marcos Melges

    2007-01-01

    The present work verified the effect of gamma radiation on physical and chemical parameters of banana 'nanica', analyzing possible alterations on the period of conservation and the possibility of commercial irradiation aiming the exportation. The results had demonstrated that the radiations had not produced effect on pH and total acidity. However, the bananas of the 'control group' and those that had received 0,75 kGy, had presented greater maturation degree and, radiated with 0,30 kGy, had presented greater firmness. In accordance with the results of the organoleptic analysis, can be perceived that the bananas most mature, especially of the 'control group', had had greater acceptance. The bananas of treatments 0,30 and 0,60 kGy had had minors notes for presenting minor maturation stadium. Knowing that the irradiation in adequate dose and fruits of good quality brings benefits to the storage and the process of exportation, we conclude that the dose most appropriate for the control of the maturation of the 'nanica' banana is 0,30 kGy. (author)

  15. Reproductive-phase and interphase lethal cell damage after irradiation and treatment with cytostatics

    International Nuclear Information System (INIS)

    Hagemann, G.

    1979-01-01

    After X-ray irradiation of manual cells, two lethal fractions occur due to reproductive and interphase death under low and high radiation doses. The damage kinetics on which this fact is based is compared with hypothetical tumour frequencies and leucemia induction caused in experiments. The reproductive-lethal damage can be manifested by means of colony size spectrometry, with the median colony size class differences (MCD) serving as measure for the damage found. The simultaneous effects of the cytostatics BLEOMYCIN or ICRF 159 and X-rays on reproductive lethal and interphase-lethal damage are measured by means of MCD and survival fraction, and the additive and intensifying effect' is judged with the help of suitably defined terms. This shows that the clinically used ICRF 159 has an additive effect on interphase-lethal and a sub-additive effect on reproductive-lethal cell damage. Thus, favourable results may be expected for the electivity factor in fractionated irradiation and with regard to delayed damage in healthy tissue. (orig.) 891 MG/orig. 892 RDG [de

  16. Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Wells, Peter B.; Yamamoto, Takuya; Miller, Brandon; Milot, Tim; Cole, James; Wu, Yuan; Odette, G. Robert

    2014-01-01

    Formation of a high density of Mn–Ni–Si nanoscale precipitates in irradiated Cu-free and Cu-bearing reactor pressure vessel steels could lead to severe unexpected embrittlement. Models long ago predicted that these precipitates, which are not treated in current embrittlement prediction models, would emerge only at high fluence. However, the mechanisms and variables that control Mn–Ni–Si precipitate formation, and their detailed characteristics, have not been well understood. High flux irradiations of six steels with systematic variations in Cu and Ni contents were carried out at ∼295 °C to high and very high neutron fluences of ∼1.3 × 10 20 and ∼1.1 × 10 21 n cm −2 . Atom probe tomography shows that significant mole fractions of Mn–Ni–Si-dominated precipitates form in the Cu-bearing steels at ∼1.3 × 10 20 n cm −2 , while they are only beginning to develop in Cu-free steels. However, large mole fractions of these precipitates, far in excess of those found in previous studies, are observed at 1.1 × 10 21 n cm −2 at all Cu contents. At the highest fluence, the precipitate mole fractions primarily depend on the alloy Ni, rather than Cu, content. The Mn–Ni–Si precipitates lead to very large increases in measured hardness, corresponding to yield strength elevations of up to almost 700 MPa

  17. Planktic foraminifera form their shells via metastable carbonate phases

    OpenAIRE

    Jacob, D. E.; Wirth, R.; Agbaje, O. B. A.; Branson, O.; Eggins, S. M.

    2017-01-01

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polym...

  18. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  19. Growth of metastable fcc Mn thin film on GaAs(001) and its electronic structure studied by photoemission with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Yan; Dong Guosheng; Zhang Ming

    1995-01-01

    The epitaxial growth of metastable fcc Mn thin films on GaAs(001) surface has been achieved at a substrate temperature of 400 K. The development of the fcc Mn thin films as a function of coverage is studied by photoemission with synchrotron radiation. The electron density of states below the Fermi edge of the fcc Mn phase is measured. A significant difference of the electronic structures is observed between the metastable fcc Mn phase and the thermodynamically stable α-Mn phase. Possible mechanisms are proposed to interpret the experimental result

  20. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  1. Post-irradiation examination of Oconee 1 fuel - cycle 1 destructive test phase

    International Nuclear Information System (INIS)

    1979-07-01

    Standard B and W Mark-B (15 x 15) pressurized water reactor fuel rods were destructively examined after one cycle of irradiation in the Oconee 1 reactor. Fuel rod average burnup ranged from 10,603 to 11,270 MWd/mtU for the rods examined. Data obtained included fuel rod extraction loads, rod dimensional changes, cladding tensile properties, fuel pellet gap length, fission product distribution, fission gas and crud composition, fuel densification, chemical burnup analysis, and fuel and cladding microstructure. As expected, parametric changes were well within the design envelope. Superficial corrosion and wear were found at spacer grid contact points. However, the 19 rods examined were structurally sound and exhibited no indications of cladding defects associated with pelletcladding interactions

  2. Effect of solid phase on the selectivity of alkyl radical formation by gamma-irradiation of branched alkanes

    International Nuclear Information System (INIS)

    Koizumi, Hitoshi; Hashino, Masatoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi

    1992-01-01

    ESR and electron spin echo measurements of alkyl radicals generated by γ-irradiation of glassy and crystalline branched alkanes C 10 ∼ C 13 have been carried out to elucidate the effect of molecular structure and solid phase on the selectivity of alkyl radical formation. Alkyl radicals generated and stabilized at 77 K in the glassy alkanes are secondary penultimate radicals. Tertiary radicals and secondary radicals other than the penultimate one are not generated either by hydrogen abstraction or from ionized or excited molecules. In the crystalline alkanes, however, a small amount of secondary internal radicals are generated in addition to the predominant formation of the secondary penultimate radicals. It is concluded that the detachment of C-H hydrogen preferentially takes place at the location where the motion of carbon atoms assisting the detachment of the C-H hydrogen easily occurs. (author)

  3. Accelerated partial breast irradiation using intensity modulated radiotherapy versus whole breast irradiation: Health-related quality of life final analysis from the Florence phase 3 trial.

    Science.gov (United States)

    Meattini, Icro; Saieva, Calogero; Miccinesi, Guido; Desideri, Isacco; Francolini, Giulio; Scotti, Vieri; Marrazzo, Livia; Pallotta, Stefania; Meacci, Fiammetta; Muntoni, Cristina; Bendinelli, Benedetta; Sanchez, Luis Jose; Bernini, Marco; Orzalesi, Lorenzo; Nori, Jacopo; Bianchi, Simonetta; Livi, Lorenzo

    2017-05-01

    Accelerated partial breast irradiation (APBI) represents a valid option for selected early breast cancer (BC). We recently published the 5-year results of the APBI-IMRT-Florence phase 3 randomised trial (NCT02104895), showing a very low rate of disease failure, with acute and early-late toxicity in favour of APBI. We present the early and 2-year follow-up health-related quality of life (HRQoL) results. Eligible patients were women aged more than 40 years with early BC suitable for breast-conserving surgery. APBI consisted of 30 Gy in five fractions delivered with IMRT technique. Standard whole breast irradiation (WBI) consisted of 50 Gy in 25 fractions plus a 10 Gy in five fractions boost on tumour bed. A total of 520 patients were enrolled in the phase 3 trial. Overall, 205 patients (105 APBI and 100 WBI) fully completed all the given questionnaires and were therefore included in the present analysis. As HRQoL assessment, patients were asked to complete the European Organisation for Research and Treatment of Cancer QLQ-C30, and the BR23 questionnaires at the beginning (T0), at the end (T1) and after 2 years from radiation (T2). No significant difference between the two arms at QLQ-C30 and BR23 scores emerged at T0. Global health status (p = 0.0001), and most scores of the functional and symptom scales of QLQ-C30 at T1 showed significant differences in favour of the APBI arm. Concerning the BR23 functional and symptom scales, the body image perception, future perspective and breast and arm symptoms were significantly better in the APBI group. Similar significant results emerged at T2: significant differences in favour of APBI emerged for GHS (p = 0.0001), and most functional and symptom QLQ-C30 scales. According to QLQ-BR23 module, among the functional scales, the body image perception and the future perspective were significantly better in the APBI group (p = 0.0001), whereas among the symptom scales significant difference emerged by breast and arm

  4. Quantum mechanical metastability: When and why?

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Willey, R.; Holman, R.

    1992-01-01

    We study quantum mechanical metastability with an eye towards false vacuum decay. We point out some technical and conceptual problems with the familiar bounce treatment of this process. We illustrate with simple quantum mechanical examples that the bounce formalism fails to account for the correct boundary conditions. It is also shown, that the bounce approach overestimates the time scales for tunneling of localized packets in typical (slightly) biased double well potentials. We present a thorough WKB analysis with particular attention to semiclassical trajectories corresponding to complex saddle points. We point out that the boundary conditions determine the proper choice of saddle points and the bounce approach fails to account for semiclassical trajectories in many physically relevant cases. We recognize that these saddle points account for the matching conditions of the WKB wave functions beyond the barriers and restore unitarity and reality of eigenvalues for self-adjoint boundary conditions. We provide a novel approach to the semiclassical analysis of out of equilibrium decay in real time in quantum statistical mechanics. (orig.)

  5. Investigation of systematic errors of metastable "atomic pair" number

    CERN Document Server

    Yazkov, V

    2015-01-01

    Sources of systematic errors in analysis of data, collected in 2012, are analysed. Esti- mations of systematic errors in a number of “atomic pairs” fr om metastable π + π − atoms are presented.

  6. Cellular irradiation during phase S: a study of induced chromosomic damage and its transmission

    International Nuclear Information System (INIS)

    Antoine, J.L.

    1986-01-01

    The author examines the effects of ionizing radiation on the chromosomes during phase S (synthesis) in which DNA progressively duplicates itself. He analyses disturbances in the cellular cycle of human lymphocytes caused by the type and number of radiologically induced lesions on the chromosomes [fr

  7. Stable, metastable and unstable solutions of a spin-1 Ising system based on the free energy surfaces

    Science.gov (United States)

    Keskİin, Mustafa; Özgan, Şükrü

    1990-04-01

    Stable, metastable and unstable solutions of a spin-1 Ising model with bilinear and biquadratic interactions are found by using the free energy surfaces. The free energy expression is obtained in the lowest approximation of the cluster variation method. All these solutions are shown in the two-dimensional phase space, especially the unstable solutions which in some cases are difficult to illustrate in the two-dimensional phase space, found by Keskin et al. recently.

  8. Extension of equilibrium formation criteria to metastable microalloys

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Vianden, R.; Chelikowsky, J.R.; Phillips, J.C.

    1977-01-01

    Metastable microalloys of 25 metallic elements with beryllium have been prepared by ion implantation. The injected atoms have been found to occupy one of three sites available in the solvent lattice. A modified Laudau-Ginsburg expansion using bulk alloy variables proposed by Miedema is completely successful in predicting the observed metastable-site preferences and indicates a broader applicability of these variables than was heretofore anticipated

  9. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  10. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  11. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  12. Mitosis delay in cells of the root meristem of pea seedlings in S and G2-phases when irradiated with gamma-rays

    International Nuclear Information System (INIS)

    Gudkov, I.N.; Zezina, N.V.

    1976-01-01

    Irradiation (800 rads) of pea seedlings, synchronized by a 24-hr treatment with 0.03% hydroxyurea, at the stage of G 1 →S, induced a 12-hr delay of mitosis peak; an 8-hr delay, in the early S-phase; a 4-hr delay, in the middle of S-phase; a 10-hr delay in the late S- and a 14-16-hr delay, in G 2 -phase. The number of cells having chromosome aberrations at the mitosis peak was similar in all the phases under study

  13. Metastable enhancement of C+ and O+ capture reactions

    International Nuclear Information System (INIS)

    Thomas, E.W.

    1992-01-01

    The project is devoted to the study of charge transfer neutralization of Carbon and oxygen ions in H and H 2 gases at energies from 10 to 500 eV. A major motivation was to provide cross section data to support analysis of edge plasmas in Tokamak Fusion devices. The first objective was to measure cross sections for metastable excited singly charged ions separately from the cross sections for ground state ions. Previously published values are confusing because the beams used included unknown fractions of metastables and these metastables have cross sections greatly different from the ground states. The program was fully accomplished, metastable cross sections were found to be over an order of magnitude greater than ones for the ground state and existing discrepancies in the literature were resolved. Considerable effort was devoted to the design and operation of ion source configurations were the metastable content of the ion beam was known. Subsequently study progressed to the neutralization of multiply charged C and 0 ions in the same targets. First there has been a need to develop ion sources which can produce useful beams of multiply charged species. This has now been accomplished. The intent is to use these sources for the measurement of cross sections with again an attempt to differentiate between the behavior of ground and metastably excited species

  14. Evaluation of a new irradiation left breast method in the inhalation phase

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Gullo, Rafael G.; Ferreira, Diogo A.V.; Silva, Leonardo P. da

    2016-01-01

    Radiation therapy is the primary therapeutic approach to breast cancer and involves significant exposure of heart and lungs, especially in cases of left breast. The implementation of a methodology to reduce the dose in these sites is important to ensure better quality of life to the patient. This work aims reduced heart and lung dose when performing the radiotherapy planning considering only the inhalation phase. Three patients with breast left present were scanning with CT during free breathing and respiratory monitoring and the planning has done on both images series. The results showed a reduction in mean heart dose of 53% on average. As for lung volumes, was obtained a mean reduction of 44.6% and 51% of the left lung which received 10 Gy and 20 Gy, respectively. This study showed that the use of the respiratory gating radiotherapy in the left breast in inhalation phase can reduce heart and lung doses. (author)

  15. Characterization of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Eckstein, Doris; Eichhorn, Thomas [Deutsches Elektronen Synchrotron (DESY) (Germany)

    2016-07-01

    The high-luminosity upgrade of the Large Hadron Collider, foreseen for 2025, necessitates the replacement of the tracker of the CMS experiment. The innermost layer of the new pixel detector will be exposed to severe radiation corresponding to a 1 MeV neutron equivalent fluence up to Φ{sub eq} = 2 . 10{sup 16} cm{sup -2} and an ionizing dose of ∼ 10 MGy after an integrated luminosity of 3000 fb{sup -1}. Silicon crystals grown with different methods and sensor designs are under investigation in order to optimize the sensors for such high fluences. Thin planar silicon sensors are good candidates to achieve this goal, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Epitaxial pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 . 10{sup 16} cm{sup -2} have been characterized in laboratory measurements and beam tests at the DESY II facility. The active thickness of the strip sensors and pad diodes is 100 μm. In addition, strip sensors produced using other growth techniques with a thickness of 200 μm have been studied. In this talk, the results obtained for p-bulk sensors are shown.

  16. Solid-phase photocatalytic degradation of polyethylene-goethite composite film under UV-light irradiation

    International Nuclear Information System (INIS)

    Liu, G.L.; Zhu, D.W.; Liao, S.J.; Ren, L.Y.; Cui, J.Z.; Zhou, W.B.

    2009-01-01

    A novel photodegradable polyethylene-goethite (PE-goethite) composite film was prepared by embedding the goethite into the commercial polyethylene. The degradation of PE-goethite composite films was investigated under ultraviolet light irradiation. The photodegradation activity of the PE plastic was determined by monitoring its weight loss, scanning electron microscopic (SEM) analysis and FT-IR spectroscopy. The weight of PE-goethite (1 wt%) sample steadily decreased and led to the total 16% reduction in 300 h under UV-light intensity for 1 mW/cm 2 . Through SEM observation there were some cavities around the goethite powder in the composite films, but there were few changes except some surface chalking phenomenon in pure PE film. The degradation rate could be controlled by changing the concentration of goethite particles in PE plastic. The degradation of composite plastic initiated on PE-goethite interface and then extended into polymer matrix induced by the diffusion of the reactive oxygen species generated on goethite particle surface. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  17. Half body irradiation of patients with multiple bone metastases: A phase II trial

    DEFF Research Database (Denmark)

    Berg, Randi; Yilmaz, Mette; Høyer, Morten

    2009-01-01

    AIM OF STUDY: The primary aim of this study was to evaluate the effect of half-body irradiation (HBI) on pain and quality of life in cancer patients with multiple bone metastases. The secondary aim was to evaluate side effects of the treatment. PATIENTS AND METHODS: A total of 44 patients received...... lower (n = 37), upper (n = 5), or sequential HBI (n = 2). The dose for lower HBI was 8 Gy in one fraction and for upper HBI 7 Gy in one fraction, with reduction of the lung dose to 6 Gy in one fraction by partial shielding. The majority of patients (n = 41) were males with prostate cancers (93......%). Outcome and side effects were measured by the EORTC Quality of Life Questionnaire C30 (QLQ-C30), and by the doctors' toxicity scores in the medical record. Pain relief was defined as a reduction of more than 10 points on the QLQ-C30 scale. Evaluations were performed before and 2, 4, 8, 16, and 24 weeks...

  18. The sink effect of the second-phase particle on the cavity swelling in RAFM steel under Ar-ion irradiation at 773 K

    International Nuclear Information System (INIS)

    Shen, T.L.; Wang, Z.G.; Yao, C.F.; Sun, J.R.; Li, Y.F.; Wei, K.F.; Zhu, Y.B.; Pang, L.L.; Cui, M.H.; Wang, J.; Zhu, H.P.

    2013-01-01

    The microstructures of the Chinese RAFM steel irradiated at 773 K with 792 MeV Ar-ions to fluences of 2.3 × 10 20 and 4.6 × 10 20 ions/m 2 , respectively, were investigated by using a transmission electron microscope with the cross-sectional specimen technique. Preferential nucleation and enhanced growth of the cavities at the interface between the second-phase particles and the matrix were observed in the irradiated specimen. The observation of the cavity-particle complex at lower dose indicated that the dose threshold for a cavity formation at the interface between MC particle and matrix was lower than that in matrix. With increasing irradiation dose, it was found that the second-phase particles changing their shape by attached cavities occurred. Furthermore, the role of the particle–matrix interface on nucleation and growth of the attached cavity with an increase of the dose were discussed in this work

  19. Vortex phase diagram in Bi2Sr2CaCuO8+δ with damage tracks created by 30 MeV fullerene irradiation

    International Nuclear Information System (INIS)

    Ishikawa, N.; Beek, C.J. van der; Dunlop, A.; Jaskierowicz, G.; Li, Ming; Kes, P.H.; Della-Negra, S.

    2004-01-01

    Using 30 MeV C 60 fullerene irradiation, we have produced latent tracks of diameter 20 nm and length 200 nm, near the surface of single crystalline Bi 2 Sr 2 CaCu 2 O 8+δ . A preliminary transmission electron microscopy study shows evidence for a very high density of deposited energy, and the ejection of material from the track core in very thin specimens. The latent tracks reveal themselves to be exceptionally strong pinning centers for vortices in the superconducting mixed state. Both the critical current density and magnetic irreversibility line are significantly enhanced. The irradiated crystals present salient features of the (B, T) phase diagram of vortex matter both of pristine crystals, such as the first order vortex phase transition, and the exponential Bose-glass line characteristic of heavy ion-irradiated crystals. We show that the latter is manifestly independent of the pinning potential. (author)

  20. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  1. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  2. Clinical evaluation of the hypoxic cytotoxin tirapazamine (SR-4233): phase I experience with repeated dose administration during fractionated irradiation

    International Nuclear Information System (INIS)

    Hancock, Steven L.; Spencer, Sharon; Mariscal, Carol; Wooten, Ann; Wheeler, Richard; Brown, J. Martin; Fisher, Cheryl; Roemeling, Reinhard von

    1996-01-01

    Purpose: Regions of chronic or transient hypoxia are common in many human tumors and are thought to limit tumor cell killing and tumor control with conventional irradiation and some chemotherapeutic agents. Tirapazamine (3-amino-1,2,4-benzotriazine-1,4-di-N-oxide) forms a cytotoxic free radical during reductive metabolism in regions of hypoxia. In well oxygenated regions, the tirapazamine radical reacts with molecular oxygen to form the inactive parent drug. This results in markedly greater toxicity for hypoxic cells than for the well oxygenated cells that comprise most normal tissues. Tirapazamine increased the anti-tumor effects of single dose or fractionated irradiation or cis-platin chemotherapy in murine tumors,in vivo . This study evaluated the ability to repeat the administration of Tirapazamine during courses of fractionated irradiation in humans after an earlier phase I trial established a maximum tolerated dose of 390 mg per square meter of body surface area (mg/m 2 ) when given as a single dose with radiotherapy. Materials and Methods: Between December 1993 and August 1995 22 patients with locally advanced or metastatic tumors of varying histology, normal renal, hepatic, and hematologic functions, and Karnofsky performance status ≥ 60 received repeated doses of Tirapazamine during a planned, 6 weeks course of standardly fractionated radiotherapy. After anti-emetic treatment with ondansetron (32 mg) and dexamethasone (16 mg), Tirapazamine was administered during a 2 hour intravenous infusion that ended from 30 to 90 minutes before a radiation treatment. Patients were monitored for acute toxicity during the course of treatment and for a minimum of one month after radiotherapy. Results: The study was initiated with three, biweekly doses of Tirapazamine at 330 mg/m 2 . Four of 7 patients who initiated treatment at this dose refused the second (1 patient) or third dose of Tirapazamine (3 patients). Two of the three patients who received three doses

  3. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  4. Chemi-ionization in the metastable neon--metastable argon system

    International Nuclear Information System (INIS)

    Neynaber, R.N.; Tang, S.Y.

    1980-01-01

    Studies were made by a merging-beams technique of the associative ionization (AI) reaction (1) Ne/sup asterisk/+Ar/sup asterisk/→NeAr + +e and the Penning ionization (PI) reactions (2) Ne/sup asterisk/+Ar/sup asterisk/→Ne+Ar + +e and (3) Ne/sup asterisk/+Ar/sup asterisk/→Ne + +Ar+e. The relative kinetic energy of the reactants was varied from 0.01 to 10 eV. The Ne/sup asterisk/ and Ar/sup asterisk/ each represents a composite of the metastable 0 P/sub 2,0/ states. There is a complication in the present investigation which arises because AI and PI occur in collisions of Ne/sup asterisk/ with ground-state Ar. Since the reactant beams consist of metastable as well as ground-state species, the measurements are composites of chemi-ionization in both the Ne/sup asterisk/--Ar/sup asterisk/ and Ne/sup asterisk/--Ar systems. Information on AI and PI for the Ne/sup asterisk/--Ar/sup asterisk/ system is obtained by subtracting from these composite measurements known contributions of the Ne/sup asterisk/--Ar system. From such information it appears that the molecular states of the reactants are different for reactions (2) and

  5. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  6. Selective tumor irradiation by infusional brachytherapy in nonresectable pancreatic cancer: a phase I study

    International Nuclear Information System (INIS)

    Order, Stanley E.; Siegel, Jeffry A.; Principato, Robert; Zeiger, Louis E.; Johnson, Elizabeth; Lang, Patricia; Lustig, Robert; Wallner, Paul E.

    1996-01-01

    Purpose: Selective high-dose radiation of solid tumors has been a goal of radiation oncology. The physiological barriers of solid tumors (high interstitial tumor pressure, reduced tumor vascularity, and poor perfusion) have been major barriers in achieving significant tumor dose of systemically infused radioconjugates. Direct tumor infusional brachytherapy overcomes these barriers and leads to selective high tumor doses. Methods and Materials: The development of interstitial tumor infusion of macroaggregated albumin (MAA) followed by colloidal chromic phosphate 32 P has overcome solid tumor obstacles in 47 patients with nonresectable pancreatic cancer in a Phase I dose escalation study. The colloidal 32 P infusion was followed by external radiation and five fluorouracil. Results: Of the 28 patients with cancer limited to the pancreas, 15 of 16 patients retained 86-100% (mean 96%) of the infused colloidal 32 P isotope. While the other 12 patients had partial shunting to the liver, shunting to the liver was due to high interstitial resistance with tumor dose deposition of 17-88% (mean 52%). Of the 19 patients with metastatic pancreas cancer, colloidal 32 P tumor deposition ranged from 22 to 100% of the infused dose (mean 79%). The less than optimal tumor deposition led to our increasing the MAA from 600,000 to 1.5-2.5 million particles. Interstitial dexamethasone 2 mg and later 4 mg was infused first and prevented liver shunting by somehow reducing tumor resistance. The median survival in 28 Phase I patients with nonresectable pancreas cancer without metastasis, was 12 months. No significant toxicity occurred when treatment was limited to two infusions with as much as 30 mCi each. The maximum tumor dose was 17,000 Gy (1.700,000 cGy). In 19 non-resectable pancreatic cancer patients with metastasis, a 6.9 months median survival was observed. Conclusions: Infusional brachytherapy is an outpatient procedure that delivers high-dose radiation selectively to pancreatic

  7. 500 keV Ar2+ ion irradiation induced anatase to brookite phase transformation and ferromagnetism at room temperature in TiO2 thin films

    Science.gov (United States)

    Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana

    2018-01-01

    In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.

  8. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  9. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  10. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  11. Phase field modelling of dynamic thermal fracture in the context of irradiation damage

    CERN Document Server

    Schlüter, Alexander; Müller, Ralf; Tomut, Marilena; Trautmann , Christina; Weick, Helmut; Plate, Carolin

    2015-01-01

    This work presents a continuum mechanics approach to model fracturing processes in brittle materials that are subjected to rapidly applied high-temperature gradients. Such a type of loading typically occurs when a solid is exposed to an intense high-energy particle beam that deposits a large amount of energy into a small sample volume. Given the rapid energy deposition leading to a fast temperature increase, dynamic effects have to be considered. Our existing phase field model for dynamic fracture is thus extended in a way that allows modelling of thermally induced fracture. A finite element scheme is employed to solve the governing partial differential equations numerically. Finally, the functionality of our model is illustrated by two examples.

  12. Effect of heavy ion irradiation and α+β phase heat treatment on oxide of Zr-2.5Nb pressure tube material

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Gargi, E-mail: gargi@barc.gov.in [Quality Assurance Division, BARC, Mumbai, 400085 (India); Mukherjee, P.; Gayathri, N. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Kain, V.; Kiran Kumar, M.; Srivastava, D. [Material Science Division, BARC, Mumbai, 400085 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 400085 (India); Mukherjee, D. [Quality Assurance Division, BARC, Mumbai, 400085 (India); Dey, G.K. [Material Science Division, BARC, Mumbai, 400085 (India)

    2017-06-15

    Effect of heavy-ion irradiation on the crystalline phase transformation of oxide of Zr-2.5Nb alloys has been studied. The steam-autoclaved oxide of pressure tube is irradiated with 306 KeV Ar{sup +9} ions at a dose of 3 × 10{sup 19} Ar{sup +9}/m{sup 2}. The damage profile has been estimated using “Stopping and Range of Ions in Matter” computer program. The variation of the crystal structure along the depth of the irradiated oxide have been characterized non-destructively by Grazing Incidence X-ray Diffraction technique and compared with unirradiated-oxide. The effect of different base metal microstructures on the characteristic of oxide has also been studied. Base metal microstructure as well as the cross-sectional oxide have been characterized using transmission electron microscope. Heavy ion irradiation can significantly alter the distribution of phases in the oxide of the alloy. The difference in chemical state of alloying element has also been found between unirradiated-oxide with that of irradiated-oxide using X-ray photo electron spectroscopy. Chemical state of Nb in steam autoclaved oxide is also altered when the base metal is α + β heat treated.

  13. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  14. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is reviewed under the headings: introduction; occurrence and some systematics of omega phase; crystallography; physical properties; kinetics of formation, synthesis and metastability of omega phase; electronic structure of omega phase; electronic basis for omega phase stability; omega phase formation under combined thermal and pressure treatment in alloys; transformation mechanisms and models for diffuse omega phase; conclusion. The following elements of nuclear interest (or their alloys) are included: Zr, Hf, Nb, V, Mo. (U.K.)

  15. Metastable light induced defects in pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, R.; Aprano, S.; Rubino, A. [Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2014-02-21

    In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

  16. Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)

    International Nuclear Information System (INIS)

    Tang, M.; Lu, P.; Valdez, J.A.; Sickafus, K.E.

    2006-01-01

    Polycrystalline pellets of cubic C-type rare earth structure (Ia3) Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 were irradiated at cryogenic temperature (120 K) with 300 keV Kr ++ ions to a maximum fluence of 1x10 20 Kr/m 2 . Irradiated specimens were examined using grazing incidence x-ray diffraction and transmission electron microscopy. Ion irradiation leads to different radiation effects in these three materials. First, Dy 2 O 3 begins to transform to a monoclinic B-type rare earth structure (C2/m) at a peak dose of ∼5 displacements per atom (dpa) (corresponding to a fluence of 2x10 19 Kr/m 2 ). This transformation is nearly complete at a peak dose of 25 dpa (a fluence of 1x10 20 Kr/m 2 ). Er 2 O 3 also transforms to the B-type structure, but the transformation starts at a higher irradiation dose of about 15-20 dpa [a fluence of about (6-8)x10 19 Kr/m 2 ]. Lu 2 O 3 was found to maintain the C-type structure even at the highest irradiation dose of 25 dpa (a fluence of 1x10 20 Kr/m 2 ). No C-to-B transformation was observed in Lu 2 O 3 . The irradiation dose dependence of the C-to-B phase transformation observed in Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 is closely related to the temperature dependence of the C-to-B phase transformation found in phase diagrams for these three materials

  17. Effects of irradiation disorder on the insulating phases of (TMTSF) (DMTCNQ) and (TMTSF)2PF6: the stabililization of the metallic state by a weak disorder

    International Nuclear Information System (INIS)

    Ferro, L.

    1983-03-01

    The ordering of charge density waves (CDW) drives the organic conductor (TMTSF) (DMTCNQ) to an insulating state below 49 K while the magnetic ordering of spin density waves (SDW) produces the same effect around 20 K in (TMTSF) 2 PF 6 . X-ray irradiation has been used to introduce defects in low concentration of the order of 10 -3 mole fraction. The mosaicity induced by these defects in the CDW or SDW phases has important consequences on the transport and magnetic properties of the two compounds. Measurements of conductivity, Hall effect, magnetoresistance, thermopower, electron spin resonance (EPR) linewidth, g-factor and susceptibility are presented and discussed. A X-ray diffuse scattering study of the disordered CDW in (TMTSF) (DMTCNQ) provides an accurate determination of the longitudinal and transverse coherence lengths of the CDW's. It shows that each defect fixes the phase rigidly in a volume containing 3 chain segments of 10 molecules. In (TMTSF) 2 PF 6 , the EPR linewidth is used to follow the magnetic ordering under irradiation. In both compounds, the coherence loss of the low temperature condensed phases produces a large increase of the number of free carriers in irradiated samples. Even at low doses, the mobility of these carriers decreases quickly under irradiation in (TMTSF) 2 PF 6 , while it changes much more slowly in (TMTSF) (DMTCNQ) [fr

  18. Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation

    International Nuclear Information System (INIS)

    Ahn, T.-H.; Oh, C.-S.; Kim, D.H.; Oh, K.H.; Bei, H.; George, E.P.; Han, H.N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  19. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.-H. [Seoul National University; Oh, C.-S. [Korean Institute of Materials Science; Kim, D. H. [Seoul National University; Oh, K. H. [Seoul National University; Bei, Hongbin [ORNL; George, Easo P [ORNL; Han, H. N. [Seoul National University

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  20. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  1. Metastable nanocrystalline carbides in chemically synthesized W-Co-C ternary alloys

    International Nuclear Information System (INIS)

    McCandlish, L.E.; Kear, B.H.; Kim, B.K.; Wu, L.W.

    1989-01-01

    Nanophase materials can be prepared either by physical methods or chemical methods. Physical methods include thermal evaporation, sputtering and melt quenching, whereas chemical methods include glow-discharge decomposition, chemical vapor deposition, sol-gel dehydration and gas-solid reaction. Recently, the authors have used controlled activity gas-solid reactions to prepare nanophase WC-Co cermet powders at different WC loadings. In the process they have discovered some new metastable phases in the W-Co-C ternary system at temperatures below 1000 degrees C

  2. The effect of metastability in the process of fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J.

    1977-01-01

    The influence of martensitic phase transformation on the process of pulsating tensile stress is studied in a metastable type AISI 316 stainless steel in the temperature range from 25 to -196 0 C. Annealed as well as previously deformed specimens are tested for the typical microstructural characteristics. It is concluded that the fatigue limit as well as the crack mechanisms depend upon the nature of the slip of crystalographic planes. The martensitic transformation previously induced by plastic deformation shows an undesirable fatigue character, in the annealed state and tested at 25 0 C, the type 316 steel will need a plastic deformation equal to or slightly above 9% for pulsating tension fracture [pt

  3. Weekly bi-fractionated 40 Gy three-dimensional conformational accelerated partial irradiation of breast: results of a phase II French pilot study

    International Nuclear Information System (INIS)

    Bourgier, C.; Pichenot, C.; Verstraet, R.; Heymann, S.; Biron, B.; Delaloge, S.; Garbay, J.R.; Marsiglia, H.; Bourhis, J.; Taghian, A.; Marsiglia, H.

    2010-01-01

    The authors report the first French experience of three-dimensional conformational and accelerated partial irradiation of breast. Twenty five patients have been concerned by this phase II trial. The prescribed total dose was 40 Gy, was delivered over 5 days in two daily fractions. Irradiation was performed with two 6 MV tangential mini-beams and a 6-22 MeV front electron beams. The planning target volume coverage was very good. Toxicity has been assessed. Healthy tissues (heart, lungs) are considerably protected. The acute and late toxicity is correct. Short communication

  4. Prospective phase II trial of regional hyperthermia and whole liver irradiation for numerous chemorefratory liver metastases from colerectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jeong Il; Park, Hee Chul; Choi, Doo Ho [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); and others

    2016-03-15

    A prospective phase II trial was conducted to evaluate the effectiveness and toxicity of regional hyperthermia and whole liver irradiation (WLI) for numerous chemorefractory liver metastases from colorectal cancer. Enrolled patients had numerous chemorefractory hepatic metastases from colorectal cancer. Five sessions of hyperthermia and seven fractions of 3-gray WLI were planned. Health-related quality of life (HRQoL) was determined using the Korean version of the European Organization for Research and Treatment of Cancer quality of life questionnaire C-30 and the Functional Assessment of Cancer Therapy-Hepatobiliary version 4.0. Objective and pain response was evaluated. A total of 12 patients consented to the study and the 10 who received WLI and hyperthermia were analyzed. WLI was completed as planned in nine patients and hyperthermia in eight. Pain response was partial in four patients and stable in four. Partial objective response was achieved in three patients (30.0%) and stable disease was seen in four patients at the 1-month follow-up. One patient died 1 month after treatment because of respiratory failure related to pleural metastasis progression. Other grade III or higher toxicities were detected in three patients; however, all severe toxicities were related to disease progression rather than treatment. No significant difference in HRQoL was noted at the time of assessment for patients who were available for questionnaires. Combined WLI and hyperthermia were well tolerated without severe treatment-related toxicity with a promising response from numerous chemorefractory hepatic metastases from colorectal cancer.

  5. Phase II trial of 3D-conformal accelerated partial breast irradiation: Lessons learned from patients and physicians’ evaluation

    International Nuclear Information System (INIS)

    Azoury, Fares; Heymann, Steve; Acevedo, Catalina; Spielmann, Marc; Vielh, Philippe; Garbay, Jean-Rémi; Taghian, Alphonse G.; Marsiglia, Hugo; Bourgier, Céline

    2012-01-01

    Introduction: The present study prospectively reported both physicians’ and patients’ assessment for toxicities, cosmetic assessment and patients’ satisfaction after 3D-conformal accelerated partial breast irradiation (APBI). Materials and Methods: From October 2007 to September 2009, 30 early breast cancer patients were enrolled in a 3D-conformal APBI Phase II trial (40 Gy/10 fractions/5 days). Treatment related toxicities and cosmetic results were assessed by both patients and physicians at each visit (at 1, 2, 6 months, and then every 6 months). Patient satisfaction was also scored. Results: After a median follow-up of 27.7 months, all patients were satisfied with APBI treatment, regardless of cosmetic results or late adverse events. Good/excellent cosmetic results were noticed by 80% of patients versus 92% of cases by radiation oncologists. Breast pain was systematically underestimated by physicians (8–20% vs. 16.6–26.2%; Kappa coefficient KC = 0.16–0.44). Grade 1 and 2 fibrosis and/or breast retraction occurred in 7–12% of patients and were overestimated by patients (KC = 0.14–0.27). Conclusions: Present results have shown discrepancies between patient and physician assessments. In addition to the assessment of efficacy and toxicity after 3D-conformal APBI, patients’ cosmetic results consideration and satisfaction should be also evaluated.

  6. Classification of knotted tori in 2-metastable dimension

    KAUST Repository

    Cencelj, Matija

    2012-11-30

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.

  7. Classification of knotted tori in 2-metastable dimension

    KAUST Repository

    Cencelj, Matija; Repovš, Dušan; Skopenkov, Mikhail

    2012-01-01

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.

  8. Metastable enhancement of C+ and O+ capture reactions

    International Nuclear Information System (INIS)

    Thomas, E.W.; Moran, T.F.

    1990-09-01

    Single electron capture by 10- to 500-eV singly charged C and O ions traversing targets of H 2 and H was studied with emphasis on comparing cross sections for metastable species with those for the ground state. For an H 2 target cross sections are of the order 10 Angstrom and 20 to 30 times larger than for ground state species. Electron impact ion sources typically produce 5 to 30% of their output in the metastable state. Previous published work has largely ignored (or failed to detect) the presence of metastables and is incorrect by as much as an order of magnitude. Discrepancies between data sets have been resolved, and a reliable data set is provided for energies from 10 to 10 5 eV. Similar experiments for an atomic H target are underway. It is proposed to extend the program to similar studies with multiply charged projectile species

  9. Dynamical SUSY breaking in meta-stable vacua

    International Nuclear Information System (INIS)

    Intriligator, Kenneth; Seiberg, Nathan; Shih, David

    2006-01-01

    Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua

  10. Sequences by Metastable Attractors: Interweaving Dynamical Systems and Experimental Data

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    2017-05-01

    Full Text Available Metastable attractors and heteroclinic orbits are present in the dynamics of various complex systems. Although their occurrence is well-known, their identification and modeling is a challenging task. The present work reviews briefly the literature and proposes a novel combination of their identification in experimental data and their modeling by dynamical systems. This combination applies recurrence structure analysis permitting the derivation of an optimal symbolic representation of metastable states and their dynamical transitions. To derive heteroclinic sequences of metastable attractors in various experimental conditions, the work introduces a Hausdorff clustering algorithm for symbolic dynamics. The application to brain signals (event-related potentials utilizing neural field models illustrates the methodology.

  11. Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process

    International Nuclear Information System (INIS)

    Koyanagi, T.; Hinoki, T.; Shimoda, K.; Ozawa, K.; Katoh, Y.

    2014-01-01

    Unidirectional silicon carbide (SiC)-fiber-reinforced SiC matrix (SiC/SiC) composites fabricated by a nano-infiltration and transient eutectic-phase (NITE) process were irradiated with neutrons at 830°C to 5.9 dpa, and at 1270°C to 5.8 dpa. The in-plane and trans-thickness tensile and the inter-laminar shear properties were evaluated at ambient temperature. The mechanical characteristics, including the quasi-ductile behavior, the proportional limit stress, and the ultimate tensile strength, were retained subsequent to irradiation. Analysis of the stress–strain hysteresis loop indicated the increased fiber/matrix interface friction and the decreased residual stresses. The inter-laminar shear strength exhibited a significant decrease following irradiation. (author)

  12. Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity.

    Science.gov (United States)

    Sun, Geng; Sautet, Philippe

    2018-02-28

    Reactivity studies on catalytic transition metal clusters are usually performed on a single global minimum structure. With the example of a Pt 13 cluster under a pressure of hydrogen, we show from first-principle calculations that low energy metastable structures of the cluster can play a major role for catalytic reactivity and that hence consideration of the global minimum structure alone can severely underestimate the activity. The catalyst is fluxional with an ensemble of metastable structures energetically accessible at reaction conditions. A modified genetic algorithm is proposed to comprehensively search for the low energy metastable ensemble (LEME) structures instead of merely the global minimum structure. In order to reduce the computational cost of density functional calculations, a high dimensional neural network potential is employed to accelerate the exploration. The presence and influence of LEME structures during catalysis is discussed by the example of H covered Pt 13 clusters for two reactions of major importance: hydrogen evolution reaction and methane activation. The results demonstrate that although the number of accessible metastable structures is reduced under reaction condition for Pt 13 clusters, these metastable structures can exhibit high activity and dominate the observed activity due to their unique electronic or structural properties. This underlines the necessity of thoroughly exploring the LEME structures in catalysis simulations. The approach enables one to systematically address the impact of isomers in catalysis studies, taking into account the high adsorbate coverage induced by reaction conditions.

  13. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  14. Effect of fast neutron irradiation upon the omega transformation process in zirconium--niobium alloys

    International Nuclear Information System (INIS)

    Bremer, B.W.

    1974-01-01

    The effect of fast neutrons (E greater than 1 MeV) upon the beta-omega transformation was investigated. Irradiation-produced vacancies promoted the omega transformation by migrating to the regions of high compressive stress associated with the one-dimensional omega embryos, thereby allowing rearrangement of the strain fields. This rearrangement allows the omega embryos to attain large sizes. Growth of these embryos is diffusion controlled. However, irradiation produced no increase in growth rate. It is concluded the vacancies are effectively trapped by these strain fields even at the aging temperature, 400 0 C. The omega hardening mechanism is shown to be related solely to lattice misfit, independent of irradiation, and to saturate when the magnitude of the strain causes a breakdown of the coherent interface, thereby creating one or two interfacial dislocations. Aging at 400 0 C results in alpha growth into the interomega beta phase, producing an additional hardness increase additive to that resulting from the omega phase. At higher aging temperatures 500 0 C, the omega is rapidly replaced by alpha. The alpha microstructure consists of ultra-fine grains, 1000 A, each composed of one 12 interrelated crystallographic variants. Fast neutron irradiation has no effect upon the omega metastable equilibrium phase diagram

  15. Phase stability, swelling, microstructure and strength of Ti{sub 3}SiC{sub 2}-TiC ceramics after low dose neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen, E-mail: angck@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Zinkle, Steven [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Shih, Chunghao; Silva, Chinthaka; Cetiner, Nesrin; Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2017-01-15

    M{sub n+1}AX{sub n} (MAX) phase Ti{sub 3}SiC{sub 2} materials were neutron irradiated at ∼400, ∼630, and 700 °C to a fluence of ∼2 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). After irradiation at ∼400 °C, anisotropic c-axis dilation of ∼1.5% was observed. Room temperature strength was reduced from 445 ± 29 MPa to 315 ± 33 MPa and the fracture surfaces showed flat facets and transgranular cracks instead of typical kink-band deformation and bridging ligaments. XRD phase analysis indicated an increase of 10–15 wt% TiC. After irradiation at ∼700 °C there were no lattice parameter changes, ∼5 wt% decomposition to TiC occurred, and strength was 391 ± 71 MPa and 378 ± 31 MPa. The fracture surfaces indicated kink-band based deformation but with lesser extent of delamination than as-received samples. Ti{sub 3}SiC{sub 2} appears to be radiation tolerant at ∼400 °C, and increasingly radiation resistant at ∼630–700 °C, but a higher temperature may be necessary for full recovery. - Highlights: • Ti{sub 3}SiC{sub 2} candidate nuclear material for intrinsic toughness. • Neutron irradiation to 2 dpa complete (∼equivalent to a few months in LWR core). • First reported fracture strengths of Ti{sub 3}SiC{sub 2} after irradiation. • All toughening mechanisms in Ti{sub 3}SiC{sub 2} observed to be operational during irradiation at 700 °C. • Swelling recovery dominated by threshold migration in TiC (or TiC{sub 6}).

  16. Decay of atomic metastable states in a plasma

    International Nuclear Information System (INIS)

    Kleiman, E.B.

    1985-01-01

    This paper discusses the influence of polarization plasma effects on the lifetime of metastable atomic levels. It is shown that plasma effects can also be important in the case when the distance between the metastable level and the closest emitting level exceeds the Langmuir frequency. The lifetime of the 2S level of a hydrogen atom in a rarefied plasma connected with the action of a longitudinal fluctuation field on the atom is estimated. It is found that this mechanism can determine the lifetime of the 2S level in a rarefied cosmic plasma

  17. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    Science.gov (United States)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    Many efforts have been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic use. The containerless processing is an attractive synthesis tech-nique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable and glassy materials. We have fabricated a new ferroelectric materiel BaTi2 O5 [1] as bulk glass from melt by us-ing containerless processing and studied the phase relationship between microstructure and ferroelectric properties of BaTi2 O5 [2]. The structures of glassy and metastable crystalline BaTi2 O5 fabricated by the containerless pro-cessing were comprehensively investigated by combined X-ray and neutron diffractions, XANES analyses and computer simulations [3]. The 3-dimensional atomic structure of glassy BaTi2 O5 (g-BaTi2 O5 ), simulated by Reverse Monte Carlo (RMC) modelling on diffraction data, shows that extremely distorted TiO5 polyhedra interconnected with both corner-and edge-shared oxy-gen, formed a higher packing density structure than that of conventional silicate glass linked with only corner-sharing of SiO4 polyhedra. In addition, XANES measurement reveales that five-coordinated TiO5 polyhedra were formable in the crystallized metastable a-and b-BaTi2 O5 phases. The structure of metastable b-BaTi2 O5 was solved by ab initio calculation, and refined by Rietveld refinement as group Pnma with unit lattices a = 10.23784 ˚, b = 3.92715 ˚, c A A = 10.92757 A ˚. Our results show that the glass-forming ability enhanced by containerless pro-cessing, not by `strong glass former', fabricated new bulk oxide glasses with peculiar structures and properties. The intermediate-range structure of g-BaTi2 O5 and the crystalline structure of

  18. A phase II study of VP-16-ifosfamide-cisplatin combination chemotherapy plus early concurrent thoracic irradiation for previously untreated limited small cell lung cancer

    International Nuclear Information System (INIS)

    Woo, In Sook; Park, Young Suk; Kwon, Sung Hee

    2000-01-01

    At present the addition of thoracic irradiation to combination chemotherapy is a standard treatment for limited staged small cell ling cancer. However, there is still controversy about the optimum timing of chest irradiation. We conducted a phase II study of etoposide (VP-16)-ifosfamide-cisplatin (VIP) combination chemotherapy plus early concurrent thoracic irradiation for the patients with previously untreated limited small cell lung cancer in order to assess if the treatment modality could improve the response rate and the toxicity. Forty-four patients with limited small cell lung cancer were treated with etoposide-ifosfamide-cisplatin and concurrent thoracic irradiation. Combination chemotherapy consisted of etoposide 100 mg/m 2 (on day 1-3), ifosfamide 1000 mg/m 2 (on days 1 and 2) and cisplatin 100 mg/m 2 (on day 1). Concurrent thoracic irradiation consisted of a total of 4000 cGy over 4 weeks starting on the first day of the first chemotherapy. All patients who showed a complete response were given prophylactic cranial irradiation for 2.5 weeks. Forty-four of the 49 patients who entered the study from May 1994 to August 1998 were evaluable. The median age was 59 years and 40 patients had a performance status of 0 or 1. The median survival time was 22.5 months. Twenty-eight patients (62%) showed a complete response and 16 (38%) a partial response. Twenty-four patients (54%) developed grade 3 or 4 neutropenia; there was a 9% RTOG score 3 or 4 esophagitis. VIP combination chemotherapy and early concurrent thoracic irradiation for patients with limited stage small cell lung cancer revealed excellent antitumor response with tolerable toxicity. (author)

  19. A Study on Recovery from Potentially Lethal Damage induced by γ-Irradiation in Plateau-phase Vero Cells in vitro

    International Nuclear Information System (INIS)

    Kim, Il Han; Choi, Eun Kyung; Ha, Sung Whan; Park, Charn Il; Cha, Chang Yong

    1988-01-01

    Recovery from potentially lethal damage (PLDR) after irradiation was studied in plateau-phase culture of Vero cells in vitro. Unfed plateau-phase cells were irradiated with dose of 1 to 9 Gy using Cs-137 irradiator. Cells then were incubated again and left in situ for 0, 1, 2, 3, 4, 5, 6 and 24 hours and then were trypsinized, explanted, and subcultured in fresh RPMI-1640 media containing 0.33% agar. Cell survival was measured by colony forming ability. An adequate number of heavily irradiated Vero cells were added as feeder cells to make the total cell number constant in every culture dish. As the postirradiation in situ incubation time increased, surviving fraction increased saturation level at 2 to 4 hours after in situ incubation. As the radiation dose increased, the rate of PLDR also increased. In analysis of cell survival curve fitted to the linear-quadratic model, the linear inactivation coefficient (a) decreased largely and reached nearly to zero but the quadratic inactivation coefficient (b) increased minimally by increment of postirradiation in situ incubation time. So PLDR mainly affected the damage expressed as a. In the multitarget model, significant change was not obtained in D0 but in Dq. Therefore, shoulder region in cell survival curve was mainly affected by PLDR and terminal slope was not influenced at all. And dose-modifying factor by PLDR was relatively higher in shoulder region, that is, in low dose area below 3 Gy

  20. Late division kinetics in relation to modification of protein synthesis in mouse eggs blocked in the G2 phase after X-irradiation; and comment

    International Nuclear Information System (INIS)

    Grinfeld, S.; Gilles, J.; Jacquet, P.; Baugnet-Mahieu, L.; Rowley, R.

    1987-01-01

    Mouse zygotes (BALB/c blocked in the G 2 phase of the first cell cycle after X-irradiation were allowed to develop in culture medium. Delayed cleavage occurred at the same time in embryos exposed to 1 or 2 Gy and late division coincided with the second division in controls. Two dimensional electrophoresis showed that blocked irradiated embryos underwent the same modifications in protein synthesis as control embryos of the same age, except during first mitosis, for three polypeptide sets of 30, 35 and 45 kilodaltons molecular weight. The most remarkable difference between them was the appearance in cleaving controls of three spots at 35 kilodaltons that were absent in blocked irradiated embryos. It is assumed that blocked embryos 'missed' some signal necessary for cell division, but remained ready to cleave when a second signal occurred. Eggs from the BALB/c strain were particularly susceptible to this effect of X-irradiation but it was also found in eggs from other strains, irradiated with much higher doses. The accompanying comment by Rowley discusses the point of interruption of the control mechanism and the nature of the lesions involved. (author)

  1. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  2. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    Science.gov (United States)

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  3. Phase transformations in nickel-aluminum alloys during ion beam mixing

    International Nuclear Information System (INIS)

    Eridon, J.; Rehn, L.; Was, G.

    1986-01-01

    The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 0 K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 14 cm -2 and continue to develop as the irradiation progresses up to 2 x 10 16 cm -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers

  4. Metastable defect response in CZTSSe from admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se)4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the device measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.

  5. Metastable Behavior in Uniaxial Ferroelectrics TGS and TGSe near TC

    NARCIS (Netherlands)

    Fernández del Castillo, J.R.; Przeslawski, J.; Iglesias, T.; Noheda, B.; Gonzalo, J.A.

    1998-01-01

    High resolution hysteresis loops measurements in triglycine sulfate (ordinary critical point) and in triglycine selenate (tricritical point) allow the approximate characterization of the behavior in the metastable region (E < 0, P > 0, or vice versa) at T ≤ TC. The coercive field may be assumed to

  6. Metastability of Reversible Random Walks in Potential Fields

    Science.gov (United States)

    Landim, C.; Misturini, R.; Tsunoda, K.

    2015-09-01

    Let be an open and bounded subset of , and let be a twice continuously differentiable function. Denote by the discretization of , , and denote by the continuous-time, nearest-neighbor, random walk on which jumps from to at rate . We examine in this article the metastable behavior of among the wells of the potential F.

  7. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  8. Tumor ocular metastásico Metastatic ocular tumor

    Directory of Open Access Journals (Sweden)

    Martha G Domínguez Expósito

    2004-06-01

    Full Text Available El carcinoma metastásico del ojo es considerado la neoplasia maligna que más frecuente se encuentra de forma intraocular. Solo cerca del 10 % de las personas que tienen una o más lesiones metastásicas intraoculares son detectadas clínicamente antes de la muerte. A menudo, el carcinoma metastásico ocular es diagnosticado por el oftalmólogo ante la presencia de síntomas oculares. Las lesiones están localizadas con preferencia en coroides. Nos motivo a realizar la presentación de este caso la presencia de lesiones intraoculares múltiples tumorales metastásicos en un paciente cuyo síntoma de presentación fue la disminución de la agudeza visualThe eye metastatic carcinoma is considered the most frequently found intraocular malignant neoplasia. Only 10 % of the persons with one or more metastatic intraocular injuries are clinically detected before death. The metastatic ocular carcinoma is often diagnosed by the ophthalmologist in the presence of ocular symptoms. The injuries are preferably located in the choroid. The appearance of multiple metastatic intraaocular tumoral injuries in a patient whose chief complaint was the reduction of visual acuity motivated us to presente this case

  9. Colour chemistry - a study of metastable multiquark molecules

    International Nuclear Information System (INIS)

    Chan, H.-M.; Fukugita, M.; Hansson, T.H.; Hoffman, H.J.; Konishi, K.; Hoegaasen, H.; Tsou, S.T.

    1978-03-01

    A framework is proposed for treating metastable multiquark states in general, borrowing some of the chemist's concepts and terminology. Lists of 'ions' and 'bonds' are are compiled which allow one in principle to construct models of complex 'molecules' and to predict their masses and decays. (author)

  10. 235U isotope enrichment in the metastable levels of UI

    International Nuclear Information System (INIS)

    Gagne, J.M.; Demers, Y.; Dreze, C.; Pianarosa, P.

    1983-01-01

    We have used optical pumping to produce a substantial 235 U enrichment in the metastable levels of UI in the discharge afterglow of a hollow-cathode vapor generator. The measured isotope-enrichment factor for the level at 3800 cm -1 is approximately 20

  11. Magneto-optical trap for metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-01-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 S-3(1)-->3 P-3(2) line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta=-41 MHz) typically contains few times 10(7) atoms at a relatively high (similar

  12. Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fey, Anne

    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the

  13. Populations and lifetimes in the $v=n-l-1=2$ and 3 metastable cascades of $\\overline{p} He^{+}$ measured by pulsed and continuous antiproton beams

    CERN Document Server

    Hori, Masaki; Widmann, E; Yamazaki, T; Hayano, R S; Ishikawa, T; Torie, H A; Von Egidy, T; Hartmann, F; Ketzer, B; Maierl, C; Pohl, R; Kumakura, M; Morita, N; Horváth, D; Sugai, I

    2004-01-01

    Using the laser spectroscopy, the time evolution of the state population in the v equivalent n-l=2 and 3 metastable cascades of antiprotonic helium atoms were studied. The effects of the collision between antiprotonic helium and the ordinary helium atoms on the atomic cascade were also analyzed. The measurements were done using the pulsed and continuous types of antiproton beams supplied by the Low Energy Antiproton Ring. The studies revealed five phases in the life history of the metastable antiprotonic helium. (Edited abstract) 71 Refs.

  14. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Povoden-Karadeniz, Erwin [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, A-1040 Vienna (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, A-1040 Vienna (Austria); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-07-15

    Highlights: • We model the precipitation kinetics in irradiated 316 austenitic stainless steels. • Radiation-induced phases are predicted to form at over 10 dpa segregation conditions. • The Si content is the most critical for the formation of radiation-induced phases. - Abstract: The long-term evolution of precipitates in type 316 austenitic stainless steels at 400 °C has been simulated using a numerical model based on classical nucleation theory and the thermodynamic extremum principle. Particular attention has been paid to the precipitation of radiation-induced phases such as γ′ and G phases. In addition to the original compositions, the compositions for radiation-induced segregation at a dose level of 5, 10 or 20 dpa have been used in the simulation. In a 316 austenitic stainless steel, γ′ appears as the main precipitate with a small amount of G phase forming at 10 and 20 dpa. On the other hand, G phase becomes relatively dominant over γ′ at the same dose levels in a Ti-stabilized 316 austenitic stainless steel, which tends to suppress the formation of γ′. Among the segregated alloying elements, the concentration of Si seems to be the most critical for the formation of radiation-induced phases. An increase in dislocation density as well as increased diffusivity of Mn and Si significantly enhances the precipitation kinetics of the radiation-induced phases within this model.

  15. Characterization of phase change Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films by laser-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: alveema@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Zulfequar, M. [Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Effect of laser-irradiation on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by X-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Laser-irradiation causes a decrease in optical band gap in Ga{sub 15}Se{sub 77}Ag{sub 8} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non-direct transitions predominate. - Abstract: Phase change Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films were prepared by thermal evaporation technique. Thin films were then irradiated by Transverse Electrical Excitation at Atmospheric Pressure (TEA) nitrogen laser for different time intervals. The X-ray structural characterization revealed the amorphous nature of as-prepared films while the laser irradiated films show the polycrystalline nature. Field Emission Scanning Electron Microscope (FESEM) has been used to study the structural changes. The results are discussed in terms of the structural aspects and amorphous to crystalline phase change in Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films. The observed changes are associated with the interaction of the incident photon and the lone-pairs electrons which affects the band gap of the Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films. The optical constants of these thin films are measured by using the absorption spectra measurements as a function of photon energy in the wavelength region 400-1100 nm. It is found that the optical band gap decreases while the absorption coefficient and extinction coefficient increases with increasing the laser-irradiation time. The decrease in the optical band gap has been explained on the basis of change in nature of films, from amorphous to polycrystalline state. The dc

  16. Investigation of metastable immiscibility in nuclear-waste-glasses. I-III

    International Nuclear Information System (INIS)

    Egnell, J.; Larsen, J.G.; Moeller, L.; Roed, G.

    1981-12-01

    Metastable liquid-liquid separation in glasses can often cause significant changes in physical and chemical properties of the original homogeneous glass. In some technical borosilicate glasses this phenomenon is used to change the chemical durability of the glass. For potential nuclear-waste-glasses the slow cooling through the temperature range 550 0 C - 700 0 C may lead to such a liquid-liquid phase separation. In order to investigate the susceptibility of phase separation of nuclear-waste-glasses, two KBS model glasses, ABS-39 and ABS-41, were investigated. Two of the subsequent reports are concerned with this problem. The third report also takes into consideration the effects of MoO 3 on the immiscibility gap. The maximum amount of MoO 3 that can be dissolved in ABS-39 and ABS 41 is also determined. (Auth.)

  17. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  18. Ion irradiation induced order-to-disorder transformations in δ-phase Sc4-xZr3+xO12+x/2

    International Nuclear Information System (INIS)

    Zhang, J.; Wang, Y.Q.; Tang, M.; Valdez, J.A.; Sickafus, K.E.

    2010-01-01

    The purpose of this study is to investigate the role of stoichiometry on crystal structure transformations in derivative fluorite compounds known as delta (δ) phase. In this study, polycrystalline δ-phase ceramic pellets were prepared with stoichiometries given by Sc 4-x Zr 3+x O 12+x/2 (x = 0, 0.77 and 1.20) . The pressed and polished pellets were then irradiated under cryogenic conditions with 200 keV Ne + ions to fluences ranging from 1-5 x 10 14 Ne/cm 2 . An order-to-disorder (O-D) transformation was observed for all compositions, as determined using grazing incidence X-ray diffraction (GIXRD). However, the transformation threshold dose was found to systematically decrease with increasing ZrO 2 content: ∼0.2, ∼0.16, and ∼0.08 dpa for Sc 4-x Zr 3+x O 12+x/2 with x = 0, 0.77, and 1.20, respectively. These irradiation-induced phase transformation results are discussed in terms of the crystal structure of the δ-phase.

  19. In situ tritium from Li2O and Li2ZrO3 irradiated in a fast neutron flux: BEATRIX-II, Phase 1 and 2

    International Nuclear Information System (INIS)

    Slagle, O.D.; Hollenberg, G.W.; Kurasawa, T.; Verrall, R.A.

    1994-06-01

    BEATRIX-II was an in situ tritium recovery experiment. This in situ tritium recovery experiment provided data on the performance of Li 2 O and Li 2 ZrO 3 under irradiation conditions covering a range of sweep gas compositions and temperatures. The experiment consisted of two separate irradiation cycles which in turn included two vented tritium recovery canisters each. Phase 1 operated for 300 Effective Full Power Days (EFPD) while Phase 2 operated for 203 EFPD of irradiation. The tritium recovery behavior of Li 2 O and Li 2 ZrO 3 was characterized using temperature transients, sweep gas composition changes and reactor power changes to effect changes in the tritium inventory. The high neutron flux level in FFTF resulted in high tritium generation rates which combined with a responsive tritium measurement system allowed detailed observations on the tritium recovery behavior of Li 2 O and Li 2 ZrO 3 . During the course of the experiment a number of observations were made which did not appear consistent with a simplified view of the tritium recovery behavior of these materials. These observations included small negative tritium recovery peaks preceding the typical primary positive peaks; and, for specific temperature ranges, changes in tritium inventory which where opposite to the characteristic expected changes

  20. A multi-scale study based on phase field to predict the microstructure of irradiated materials: application to silver-copper alloy

    International Nuclear Information System (INIS)

    Demange, Gilles

    2015-01-01

    It is of dramatic matter for industry to be able to predict the evolution of material microstructure under working conditions. This requires a clear understanding of the underlying mechanisms, which act on numerous space and time scales. Because it intrinsically performs a scale jump, we chose to use a phase field approach, which is widely used amidst the condensed matter community to study the aging of materials. The first challenge of this work was to extend this formalism beyond its thermodynamic scope and embrace the case of far from equilibrium systems when subjected to irradiation. For that purpose, we adopted the model of ion mixing, developed by Gras Marti to account for ballistic exchanges within a displacements cascade. Based on a numerical scheme and analytical method, we were able to describe the generic microstructure signature for materials under irradiation.We then applied this formalism to the particular case of the immiscible binary alloy AgCu.With the joined use of the phase field approach and atomistic methods, we managed to predict how the temperature and the irradiation flux tailor the main microstructure features such as the size, the concentration and the distribution of copper precipitates. This eventually allowed us to simulate a diffraction pattern in grazing incidence, which is directly comparable to experimental ones. (author) [fr

  1. Characterisation and behaviour under irradiation of rare-earth doped powellite phases - Application to the long term behaviour of nuclear waste matrices

    International Nuclear Information System (INIS)

    Mendoza, C.

    2010-09-01

    This work deals with the behaviour under irradiation of a glass-ceramic made after heat treatment of a molybdenum rich R7/T7 type glass. Rare earth elements (Eu 3+ and Nd 3+ ) are used as surrogates of minor actinides and fission products as well as structural luminescent probes. We will focus on the behaviour of the crystalline phase which is a powellite type calcium molybdate that incorporated other elements including rare earth elements. In order to determine the crystalline-chemical properties of the powellite structure, Raman spectroscopy and photoluminescence analyses are led on natural powellite samples and synthetic ceramics with compositions from pure CaMoO 4 to Ca 0.76 Sr 0.1 Na 0.07 Eu 0.01 La 0.02 Nd 0.02 Pr 0.02 MoO 4 , a model composition of the crystalline phase of the glass-ceramic. The analyses of synthetic samples irradiated with He, Ar and Pb ions compared to the behaviour of a natural powellite sample that contains uranium indicate that powellite resist strongly to irradiation and never reach the amorphous state. (author)

  2. Heavy and light ion irradiation damage effects in δ-phase Sc{sub 4}Hf{sub 3}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Y.H., E-mail: liyuhong@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Tang, M.; Valdez, J.A.; Wang, Y.Q. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Patel, M.K.; Sickafus, K.E. [Department of Materials Science & Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-12-15

    Polycrystalline δ-phase Sc{sub 4}Hf{sub 3}O{sub 12} was irradiated with light and heavy ions to study the radiation stability of this compound. In order to explore the ion species spectrum effect, the irradiations were performed with 400 keV Ne{sup 2+} ions to fluences ranging from 1 × 10{sup 14} to 1 × 10{sup 15} ions/cm{sup 2}, 600 keV Kr{sup 3+} ions to fluences ranging from 5 × 10{sup 14} to 5 × 10{sup 15} ions/cm{sup 2}, and 6 MeV Xe{sup 26+} ions to fluences ranging from 2 × 10{sup 13} to 1 × 10{sup 15} ions/cm{sup 2}. Irradiated samples were characterized by various techniques including grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). A complete phase transformation from ordered rhombohedral to disordered fluorite was observed by a fluence of 1 × 10{sup 15} ions/cm{sup 2} with 400 keV Ne{sup 2+} ions, equivalent to a peak ballistic damage dose of ∼0.33 displacements per atom (dpa). Meanwhile, the same transformation was also observed by 600 keV Kr{sup 3+} ions at the same fluence of 1 × 10{sup 15} ions/cm{sup 2}, which however corresponds to a peak ballistic damage dose of ∼2.2 dpa. Only a partial O-D transformation was observed for 6 MeV Xe{sup 26+} ions in the fluence range used. Experimental results indicated that the O-D transformation is observed under both electronic and nuclear stopping dominant irradiation regimes. It was also observed that light ions are more efficient than heavy ions in producing the retained defects that are presumably responsible for the O-D phase transformation. The O-D transformation mechanism is discussed in the context of anion oxygen Frenkel defects and cation antisite defects. We concluded that the irradiation induced O-D transformation is easier to occur in δ-phase compounds with partial order of cations than in that with fully disordered cation structures.

  3. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhandayuthapani, T. [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Girish, M. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600025 (India)

    2015-10-30

    Graphical abstract: - Highlights: • MnS films with diverse morphological features were prepared without any complexing agent. • The change in morphology of MnS films may be due to the “oriented aggregation”. • The dual role (as sulfur source and structure directing agent) of thiourea was observed. • Sulfur source concentration induced enhancement in the crystallization of films. - Abstract: In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M–H plot.

  4. Carbon in palladium catalysts: A metastable carbide

    International Nuclear Information System (INIS)

    Seriani, Nicola; Mittendorfer, Florian; Kresse, Georg

    2010-01-01

    The catalytic activity of palladium towards selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively towards partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd 6 C with a hexagonal 6-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation. (author)

  5. Recent observations on the evolution of secondary-phase particles in zircaloy-2 under irradiation in a BWR to high burn-up

    International Nuclear Information System (INIS)

    Abolhassani, S.; Graber, T.; Gavillet, D.; Groeschel, F.

    2000-01-01

    The influence of radiation on the corrosion of the fuel claddings in a Light Water Reactor (LWR) has been the subject of many investigations, and different aspects of the overall phenomena have been studied by different techniques. Analysis of the evolution of Secondary-Phase Particles (SPPs) for different periods of immersion of the cladding in the reactor enables the rate of corrosion to the structure of the material to be correlated. In the case of Zircaloy-2 in a Boiling Water Reactor (BWR), SPPs are dissolved under irradiation, and their dissolution affects the rate of oxidation and other correlated phenomena. In recent studies, the Zircaloy-2 in claddings loaded in the Leibstadt BWR are analysed after one, three and five cycles. Results are presented, and give an account of the changes which occurred in the materials under irradiation. (authors)

  6. Recent observations on the evolution of secondary-phase particles in zircaloy-2 under irradiation in a BWR to high burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Abolhassani, S.; Graber, T.; Gavillet, D.; Groeschel, F

    2000-07-01

    The influence of radiation on the corrosion of the fuel claddings in a Light Water Reactor (LWR) has been the subject of many investigations, and different aspects of the overall phenomena have been studied by different techniques. Analysis of the evolution of Secondary-Phase Particles (SPPs) for different periods of immersion of the cladding in the reactor enables the rate of corrosion to the structure of the material to be correlated. In the case of Zircaloy-2 in a Boiling Water Reactor (BWR), SPPs are dissolved under irradiation, and their dissolution affects the rate of oxidation and other correlated phenomena. In recent studies, the Zircaloy-2 in claddings loaded in the Leibstadt BWR are analysed after one, three and five cycles. Results are presented, and give an account of the changes which occurred in the materials under irradiation. (authors)

  7. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R.A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K.

    2015-09-01

    Ion irradiation induced modifications of the thermomagnetic properties of equiatomic FeRh thin films have been investigated. The application of 20 keV Ne{sup +} ions at different fluencies leads to broadening of the antiferromagnetic to ferromagnetic phase transition as well as a shift of the transition temperature towards lower temperatures with increasing ion fluence. Moreover, the ferromagnetic background at low temperatures generated by the ion irradiation leads to pronounced saturation magnetisation at 5 K. Complete erasure of the transition, i.e. ferromagnetic ordering through the whole temperature regime was achieved at a Ne{sup +} fluence of 3 × 10{sup 14} ions/cm{sup 2}. It does not coincide with the complete randomization of the chemical ordering of the crystal lattice.

  8. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Mohiju, Zaahidah ' Atiqah; Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Kannan, V. [Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  9. Stabilizing effect of driving and dissipation on quantum metastable states

    Science.gov (United States)

    Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo

    2018-04-01

    We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment, the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon is observed in the investigated system.

  10. Dependence of stability of metastable superconductors on copper fraction

    International Nuclear Information System (INIS)

    Elrod, S.A.; Lue, J.W.; Miller, J.R.; Dresner, L.

    1980-12-01

    The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime

  11. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial.

    Science.gov (United States)

    Livi, Lorenzo; Meattini, Icro; Marrazzo, Livia; Simontacchi, Gabriele; Pallotta, Stefania; Saieva, Calogero; Paiar, Fabiola; Scotti, Vieri; De Luca Cardillo, Carla; Bastiani, Paolo; Orzalesi, Lorenzo; Casella, Donato; Sanchez, Luis; Nori, Jacopo; Fambrini, Massimiliano; Bianchi, Simonetta

    2015-03-01

    Accelerated partial breast irradiation (APBI) has been introduced as an alternative treatment method for selected patients with early stage breast cancer (BC). Intensity-modulated radiotherapy (IMRT) has the theoretical advantage of a further increase in dose conformity compared with three-dimensional techniques, with more normal tissue sparing. The aim of this randomised trial is to compare the local recurrence and survival of APBI using the IMRT technique after breast-conserving surgery to conventional whole-breast irradiation (WBI) in early stage BC. This study was performed at the University of Florence (Florence, Italy). Women aged more than 40years affected by early BC, with a maximum pathological tumour size of 25mm, were randomly assigned in a 1:1 ratio to receive either WBI or APBI using IMRT. Patients in the APBI arm received a total dose of 30 Gy to the tumour bed in five daily fractions. The WBI arm received 50Gy in 25 fractions, followed by a boost on the tumour bed of 10Gy in five fractions. The primary end-point was occurrence of ipsilateral breast tumour recurrences (IBTRs); the main analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT02104895. A total of 520 patients were randomised (260 to external WBI and 260 to APBI with IMRT) between March 2005 and June 2013. At a median follow-up of 5.0 years (Interquartile Range (IQR) 3.4-7.0), the IBTR rate was 1.5% (three cases) in the APBI group (95% confidence interval (CI) 0.1-3.0) and in the WBI group (three cases; 95% CI 0.0-2.8). No significant difference emerged between the two groups (log rank test p=0.86). We identified seven deaths in the WBI group and only one in the APBI group (p=0.057). The 5-year overall survival was 96.6% for the WBI group and 99.4% for the APBI group. The APBI group presented significantly better results considering acute (p=0.0001), late (p=0.004), and cosmetic outcome (p=0.045). To our knowledge, this is the first randomised

  12. flu, a metastable gene controlling surface properties of Escherichia coli.

    OpenAIRE

    Diderichsen, B

    1980-01-01

    flu, a gene of Escherichia coli K-12, was discovered and mapped between his and shiA. It is shown that flu is a metastable gene that changes frequently between the flu+ and flu states. flu+ variants give stable homogeneous suspensions, are piliated, and form glossy colonies. flu variants aggregate, fluff and sediment from suspensions, are nonpiliated, and form frizzy colonies. flu+ and flu variants can be isolated from most strains. Implications of these observations are discussed, and it is ...

  13. Automatic acquisition and shape analysis of metastable peaks

    International Nuclear Information System (INIS)

    Maendli, H.; Robbiani, R.; Kuster, Th.; Seibl, J.

    1979-01-01

    A method for automatic acquisition and evaluation of metastable peaks due to transitions in the first field-free region of a double focussing mass spectrometer is presented. The data are acquired by computer-controlled repetitive scanning of the accelerating voltage and concomitant accumulation, the evaluation made by a mathematical derivatization of the resulting curve. Examples for application of the method are given. (Auth.)

  14. Stark--Zeeman effect of metastable hydrogen molecules

    International Nuclear Information System (INIS)

    Kagann, R.H.

    1975-01-01

    The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions

  15. Advances in estimation technology of thermal conductivity of irradiated fuels (1). Application of a thermal microscope to measure the thermal conductivity of the second phases in irradiated pellets

    International Nuclear Information System (INIS)

    Uno, Masayoshi; Murakami, Yukihiro

    2011-01-01

    CeO 2 sample as a surrogate for fuel and BaCeO 3 and BaMoO 4 samples as surrogates for the second phases, which have a lower thermal conductivity than the fuel matrix, were made. The thermal conductivity of these samples was measured by a thermal microscope. In this method, the thermal conductivity of a small region (e.g. 20 μm x 20 μm) of the sample can be measured. The valid thermal conductivity values for all the samples were obtained and the conditions of sample surface preparation and the thermal microscope measurement were found out. The thermal conductivity of a CeO 2 composite pellet which had the BaCeO 3 or BaMoO 4 second phase layer was also estimated. (author)

  16. Increased expression of cyclin B1 mRNA coincides with diminished G{sub 2}-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.; Muschel, R.J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-12-01

    The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLa cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.

  17. Physical nature of structural and phase transformations in Cu-Al α solid solutions upon low-temperature irradiation and subsequent annealing

    Science.gov (United States)

    Petrenko, P. V.; Kulish, N. P.; Mel'nikova, N. A.; Grabovskii, Yu. E.

    2013-12-01

    Methods of X-ray diffraction analysis and measurements of residual resistivity have been used to study effects of electron irradiation in the temperature range of 250-330 K on the structural and phase state of the Cu-15 at % Al solid solution. The results obtained are explained by the presence in the Cu-Al alloys of an inhomogeneous short-range order of two types, i.e., low-temperature, α2 type; and high-temperature, γ2 type.

  18. KSb(OH) samples previously treated with Co y - rays irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1969-01-01

    When Ksb (OH) samples previously treated with Co y - rays or crushed are irradiated with neutrons, the yield of Sb and the annealing mechanism are apparently modified by the pretreatment. In addition it is shown that metastable species of Sb are formed under irradiation.

  19. Synthesis and characterization of metastable, 20 nm-sized Pna21-LiCoPO4 nanospheres

    International Nuclear Information System (INIS)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.; Nilges, Tom

    2017-01-01

    The majority of research activities on LiCoPO 4 are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna2 1 modification. Herein, we present a comprehensive study on the structure–property relationships of 15–20 nm Pna2 1 -LiCoPO 4 nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L 2,3 -edge X-ray absorption spectroscopic data confirm the local tetrahedral symmetry of Co 2+ . Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO 4 at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated. - Graphical abstract: Blue nano-sized Pna2 1 -LiCoPO 4, featuring tetrahedrally-coordinated Co 2+ , was synthesized in a rapid one-step microwave-assisted solvothermal process. The phase relation between this metastable and the stable polymorph was analyzed and electrochemical properties are discussed. - Highlights: • Preparation of uniform 15–20 nm nanospheres of metastable Pna2 1 -LiCoPO 4 polymorph. • Structure redetermination shows cation-mixing (Co blocking Li sites). • In situ investigation of phase transformation to olivine Pnma-LiCoPO 4 at 527 °C. • Pna2 1 -LiCoPO 4 reemerges as a stable high-temperature phase above 800 °C. • X-ray absorption spectroscopy confirms local tetrahedral symmetry (T d Co 2+ ).

  20. Cross sections of electron excitation out of metastable helium levels with a fast metastable target product produced via charge exchange

    International Nuclear Information System (INIS)

    Lagus, M.E.; Boffard, J.B.; Anderson, L.W.; Lin, C.C.

    1996-01-01

    Absolute direct cross sections for electron excitation out of the 2 3 S level and into the 3 3 D, 4 3 D, and 3 3 S levels of the helium atom from threshold to 500 eV and into the 3 3 P level over a more limited energy range have been measured using a fast metastable atomic beam target. We produce the metastable atoms via near-resonant charge exchange between a 1.6-keV He + ion beam and Cs vapor. Because this reaction is highly nonresonant with the ground state of helium, the charge-transfer process yields a primarily metastable beam. We use a thermal detector which we calibrate with ions to measure absolutely the neutral beam flux. The atomic beam is crossed by an electron beam, and we collect the resulting fluorescence at right angles to both the electron and atomic beams. We obtain the cross sections for excitation out of the 2 3 S level into the various excited levels by monitoring the emission out of the excited level of interest. copyright 1996 The American Physical Society

  1. Patterns of cell loss and repopulation in irradiated cultures of plateau phase C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Zeman, E.M.; Bedford, J.S.

    1985-01-01

    Patterns of cell loss and repopulation were studied in plateau phase cultures of slowly-cycling, contact-inhibited C3H 10T1/2 mouse fibroblasts following large single, and multiple small doses 137 Cs-gamma rays. A progressive, dose-independent cell loss was apparent within after irradiation with large single doses, and similar patterns of loss were observed following the start of multifraction irradiations. This progressive cell loss culminated in the loss of integrity of the monolayer of cells, a loss of contact-inhibition, and therefore, an increased rate of cell division. Repopulation did not start immediately after the start of irradiation, but needed a triggering event, in this case, a decrease to a critical level in the cell density. Once initiated, repopulation was able to decrease or even eliminate the effectiveness of subsequent doses in reducing the number of viable cells per culture. To the extent that the responses of slowly-cycling, contact-inhibited cells in vitro can be applied to interpret the radiation responses of cell populations in vivo, these results further support the notion that it may be necessary, in some cases, to account for an increasing contribution from repopulation with increasing overall treatment time in dose fractionation isoeffect formulae used for predicting tissue tolerances or tumor control. (Auth.)

  2. Re-irradiation combined with capecitabine in locally recurrent squamous cell carcinoma of the head and neck. A prospective phase II trial

    Energy Technology Data Exchange (ETDEWEB)

    Vormittag, L.; Kornek, G. [Medical Univ. Vienna (Austria). Div. of Clinical Oncology; Lemaire, C.; Radonjic, D.; Selzer, E. [Medical Univ. Vienna (Austria). Dept. for Radiotherapy and Radiobiology

    2012-03-15

    We performed a prospective phase II trial to investigate the safety and efficacy of radiotherapy combined with capecitabine in patients suffering from a recurrence of a squamous cell carcinoma of the head and neck (SCCHN) within a previously irradiated field. A total of 31 evaluable patients with recurrent SCCHN received re-irradiation with a total dose of 50 Gy (25 fractions over 5 weeks) up to a maximum of 60 Gy combined with 900 mg/m{sup 2}/day capecitabine given on the days of radiotherapy. The median time to relapse after the first course of radiotherapy was 15 months. The overall response rate in our study was 68% including 6 patients with a complete response. The median overall survival was 8.4 months. Grade 3 or 4 mucositis occurred in 4 patients and 1 patient, respectively. No grade 4 hematological toxicities were observed; 1 patient had grade 3 anemia. The cumulative median lifetime dose was 116 Gy. Capecitabine combined with re-irradiation is a well-tolerated treatment in patients with recurrent SCCHN. In light of its good tolerability, it appears to be a potential option for patients with a reduced performance status and may also serve as a basis for novel treatment concepts, such as in combination with targeted therapies.

  3. Phase II clinical trial of whole-brain irradiation plus three-dimensional conformal boost with concurrent topotecan for brain metastases from lung cancer

    International Nuclear Information System (INIS)

    Ge, Xiao-hui; Liu, Miao-ling; Lin, Qiang; Ren, Xiao-cang; Liu, Yue-e; Chen, Xue-ji; Wang, Dong-ying; Wang, Yong-qiang; Cao, Bin; Li, Zhi-gang

    2013-01-01

    Patients with brain metastases from lung cancer have poor prognoses and short survival time, and they are often excluded from clinical trials. Whole-cranial irradiation is considered to be the standard treatment, but its efficacy is not satisfactory. The purpose of this phase II clinical trial was to evaluate the preliminary efficacy and safety of the treatment of whole-brain irradiation plus three-dimensional conformal boost combined with concurrent topotecan for the patients with brain metastases from lung cancer. Patients with brain metastasis from lung cancer received concurrent chemotherapy and radiotherapy: conventional fractionated whole-brain irradiation, 2 fields/time, 1 fraction/day, 2 Gy/fraction, 5 times/week, and DT 40 Gy/20 fractions; for the patients with ≤ 3 lesions with diameter ≥ 2 cm, a three-dimensional (3-D) conformal localised boost was given to increase the dosage to 56–60 Gy; and during radiotherapy, concurrent chemotherapy with topotecan was given (the chemoradiotherapy group, CRT). The patients with brain metastasis from lung cancer during the same period who received radiotherapy only were selected as the controls (the radiotherapy-alone group, RT). From March 2009 to March 2012, both 38 patients were enrolled into two groups. The median progression-free survival(PFS) time , the 1- and 2-year PFS rates of CRT group and RT group were 6 months, 42.8%, 21.6% and 3 months, 11.6%, 8.7% (χ 2 = 6.02, p = 0.014), respectively. The 1- and 2-year intracranial lesion control rates of CRT and RT were 75.9% , 65.2% and 41.6% , 31.2% (χ 2 = 3.892, p = 0.049), respectively. The 1- and 2-year overall survival rates (OS) of CRT and RT were 50.8% , 37.9% and 40.4% , 16.5% (χ 2 = 1.811, p = 0.178), respectively. The major side effects were myelosuppression and digestive toxicities, but no differences were observed between the two groups. Compared with radiotherapy alone, whole-brain irradiation plus 3-D conformal boost irradiation and concurrent

  4. NATO Advanced Research Workshop on Metastable Systems under Pressure: Platform for New Technologies and Environmental Applications

    CERN Document Server

    Rzoska, Sylwester; Mazur, Victor

    2010-01-01

    The fundamental insight and the technological & environmental relevance of metastable systems have given a strong impetus from the last decade development of extreme pressures experimental techniques, from the GPa region to the challenging negative pressures domain. The ultimate verification of theoretical models and reliable equations for portraying basic properties for such systems seems to be possible only when including temperature and pressure paths. This volume presents a set of papers related to novel findings on the glass transition phenomenon, phase transitions in liquid crystals, critical mixtures, bioliquids, geophysical system which can reveal surprising "secret" features only when using extreme pressures. This can be illustrated by the link between colloidal and molecular glassformers, the universal onset of the non-trivial dynamics in glasses, demistification of the secondary relaxation or novel findings associated with liquid - liquid near critical transitions in critical mixture, liquid cr...

  5. Experimental study of the spin density of metastable fcc ferromagnetic Fe-Cu alloys

    International Nuclear Information System (INIS)

    Bove, L. E.; Petrillo, C.; Sacchetti, F.; Mazzone, G.

    2000-01-01

    Magnetization density measurements on metastable Fe x Cu 1-x alloys at four compositions (x=20, 40, 50, and 60 at. %) and at 5 K temperature were carried out by means of polarized neutron diffraction. The samples were produced by high-energy ball milling and characterized by x-ray diffraction and fluorescence measurements. Additional bulk magnetization measurements were carried out on the two samples at high Fe concentration. Over the present concentration region, the Fe-Cu system is ferromagnetic and the four samples were found to be in the fcc phase. Fe-Cu is therefore a very suitable system to investigate the magnetic state of Fe in an fcc environment. Other than confirming that the Fe-Cu system is not a simple dilution alloy, the present results were compatible with a two-state model for fcc Fe--that is, two different coexisting electronic states associated with different magnetic moments and form factors

  6. Amorphous-to-crystalline phase transformation by neutron irradiation of the alloy Fe/sub 83/B/sub 17/

    Energy Technology Data Exchange (ETDEWEB)

    Weis, J.; Gabris, F.; Cerven, I.; Sitek, J. (Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia))

    1984-03-01

    The purpose of the present work is to investigate the structural changes of amorphous Fe/sub 83/B/sub 17/ alloy after irradiation with fast neutrons ( > 1 MeV) and to compare with the crystallization behaviour of the amorphous Fe/sub 83/B/sub 17/ alloy after annealing. The structural changes were studied by Moessbauer spectroscopy and X-ray diffraction with the usual Fourier analysis.

  7. Radiation-stimulated phase in titanium dihydride TiH1.95

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.; Baktibaev, K.O.; Getmanskiy, V.V.

    2001-01-01

    In titanium dihydride TiH 1.95 γ-irradiation has been shown by X-ray and neutron-diffraction methods to stimulate the phase transition FCC→VCT at doses ≥3·10 10 R and irradiation temperature ≅100 d eg C. The space group of the formed phase is D 4h 17 -14/mmm, its lattice parameters a m =0.3161 nm, c m =0.4418 nm are related to parameters of the initial (FCC) phase by relations a m ≅a k /2 1/2 , c m ≅a k . It was established that the phase obtained is metastable, it relaxes at the temperatures ≥37 d eg C and transforms into the stable FCC phase that corresponds to the equilibrium phase diagram of Ti-H system. The temperature of the phase transition increases by influence of γ-quanta, the radiation-stimulated phase differs from thermostimulated one by a larger unit cell and a smaller degree of tetragonal distortion. (author)

  8. ENDOR-investigations in the environment of the ferroelectric phase transition temperature of γ-irradiated TSCC

    International Nuclear Information System (INIS)

    Welter, M.

    1983-01-01

    The structure of the CH 3 NHCH 2 COOH radical in the paraelectric phase and during the transition into the ferroelectric phase has been determined by means of ENDOR measurements. The carboxyl group of the radical is a sensitive probe for the study of crystal field changes. Structural differences of the radical between the paraelectric and the ferroelectric phase were attributed to structural changes within the nearest environment

  9. Anomalous evolution of Ar metastable density with electron density in high density Ar discharge

    International Nuclear Information System (INIS)

    Park, Min; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung; Shin, Yong-Hyeon

    2011-01-01

    Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

  10. A comparison between the irradiation damage response of spinel and zirconia due to Xe ion bombardment

    International Nuclear Information System (INIS)

    Sickafus, K.E.; Wetteland, C.J.; Baker, N.P.; Yu Ning; Devanathan, R.; Nastasi, M.; Bordes, N.

    1998-01-01

    The mechanical properties of Xe-implanted spinel and cubic zirconia surfaces, as determined by nano-indentation measurements, are distinct and the differences can be related to their microstructures. Upon Xe 2+ ion irradiation to high dose at cryogenic temperature (120 K), the Young's modulus of irradiated spinel falls dramatically until the modulus is only about 3/4 the un-irradiated value. The maximum modulus occurs concurrent with the formation of a metastable crystalline phase of spinel. The subsequent elastic softening at higher Xe 2+ doses is an indication of the onset of amorphization of the spinel. Xe-implanted zirconia surfaces behave differently, in all cases showing almost no change in elastic modulus with increasing Xe 2+ ion dose. This is consistent with microstructural observations of Xe-implanted zirconia crystals which, unlike spinel, show no change in crystal structure with increasing ion dose. The hardness of both spinel and zirconia increases slightly for low Xe 2+ ion doses. At higher doses, zirconia shows little change in hardness, while the hardness of the implanted spinel falls by more than a factor of two. The initial increase in hardness of both spinel and zirconia is consistent with point defect accumulation and the precipitation of small interstitial clusters, while the drop in hardness of spinel at high Xe 2+ ion doses is due to the formation of an amorphous phase. (orig.)

  11. Combined transmission electron microscope and ion channeling study of metastable metal alloys formed by ion implantation

    International Nuclear Information System (INIS)

    Cullis, A.G.; Borders, J.A.; Hirvonen, J.K.; Poate, J.M.

    1977-01-01

    Recently, ion implantation has been used to produce metastable alloy layers with a range of structures from crystalline substitutional solid solutions to amorphous. The technique offers the possibility of producing metastable metal layers with unique physical properties. Its application in the formation of alloys exhibiting different although complementary types of metastability is described. The metal combinations chosen (Ag-Cu and Ta-Cu) show little mutual solubility under equilibrium conditions

  12. Metastable Features of Economic Networks and Responses to Exogenous Shocks.

    Directory of Open Access Journals (Sweden)

    Ali Hosseiny

    Full Text Available It is well known that a network structure plays an important role in addressing a collective behavior. In this paper we study a network of firms and corporations for addressing metastable features in an Ising based model. In our model we observe that if in a recession the government imposes a demand shock to stimulate the network, metastable features shape its response. Actually we find that there exists a minimum bound where any demand shock with a size below it is unable to trigger the market out of recession. We then investigate the impact of network characteristics on this minimum bound. We surprisingly observe that in a Watts-Strogatz network, although the minimum bound depends on the average of the degrees, when translated into the language of economics, such a bound is independent of the average degrees. This bound is about 0.44ΔGDP, where ΔGDP is the gap of GDP between recession and expansion. We examine our suggestions for the cases of the United States and the European Union in the recent recession, and compare them with the imposed stimulations. While the stimulation in the US has been above our threshold, in the EU it has been far below our threshold. Beside providing a minimum bound for a successful stimulation, our study on the metastable features suggests that in the time of crisis there is a "golden time passage" in which the minimum bound for successful stimulation can be much lower. Hence, our study strongly suggests stimulations to arise within this time passage.

  13. A statistical physics of stationary and metastable states

    International Nuclear Information System (INIS)

    Cabo, A; González, A; Curilef, S; Cabo-Bizet, N G; Vera, C A

    2011-01-01

    We present a generalization of Gibbs statistical mechanics designed to describe a general class of stationary and metastable equilibrium states. It is assumed that the physical system maximizes the entropy functional S subject to the standard conditions plus an extra conserved constraint function F, imposed to force the system to remain in the metastable configuration. After requiring additivity for two quasi-independent subsystems, and the commutation of the new constraint with the density matrix ρ, it is argued that F should be a homogeneous function of ρ, at least for systems in which the spectrum is sufficiently dense to be considered as continuous. Therefore, surprisingly, the analytic form of F turns out to be of the kind F(p i ) = p i q , where the p i are the eigenvalues of the density matrix and q is a real number to be determined. Thus, the discussion identifies the physical relevance of Lagrange multiplier constraints of the Tsallis kind and their q parameter, as enforced by the additivity of the constraint F which fixes the metastable state. An approximate analytic solution for the probability density is found for q close to unity. The procedure is applied to describe the results from the plasma experiment of Huang and Driscoll. For small and medium values of the radial distance, the measured density is predicted with a precision similar to that achieved by minimal enstrophy and Tsallis procedures. Also, the particle density is predicted at all the radial positions. Thus, the discussion gives a solution to the conceptual difficulties of the two above mentioned approaches as applied to this problem, which both predict a non-analytic abrupt vanishing of the density above a critical radial distance

  14. Resonances in the potential scattering and decay of metastable states

    International Nuclear Information System (INIS)

    Batsch, J.

    1975-04-01

    The analytic properties of the S-matrix in the complex energy plane are reviewed for potential scattering with particular attention to resonance scattering and decay of metastable states. For a one dimensional model potential with a potential barrier and a repulsive core exact formulas are derived for the energy and width of a resonance in terms of the scattering amplitudes of the barrier and the repulsive core alone. For narrow resonances simple and intuitive results are obtained, which are applied to semiclassical cases where the WKB approximation is valid. (orig.) [de

  15. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  16. Simple model for the dynamics towards metastable states

    International Nuclear Information System (INIS)

    Meijer, P.H.E.; Keskin, M.; Bodegom, E.

    1986-01-01

    Circumstances under which a quenched system will freeze in a metastable state are studied in simple systems with long-range order. The model used is the time-dependent pair approximation, based on the most probable path (MPP) method. The time dependence of the solution is shown by means of flow diagrams. The fixed points and other features of the differential equations in time are independent of the choice of the rate constants. It is explained qualitatively how the system behaves under varying descending temperatures: the role of the initial conditions, the dependence on the quenching rate, and the response to precooling

  17. Spin dynamics in tunneling decay of a metastable state

    OpenAIRE

    Ban, Yue; Sherman, E. Ya.

    2012-01-01

    We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...

  18. Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity

    International Nuclear Information System (INIS)

    Maru, Nobuhito

    2010-01-01

    We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.

  19. Enhanced atom mobility on the surface of a metastable film.

    Science.gov (United States)

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  20. Interdiffusion processes at irradiated Cr/Si interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Luneville, L., E-mail: laurence.luneville@cea.fr [DEN/DANS/DM2S/SERMA/LLPR/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette (France); Largeau, L. [LPN-UPR20/CNRS, Route de Nozay, 91460 Marcoussis (France); Deranlot, C. [Unite Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau (France); Ribis, J. [DEN/DANS/DMN/SRMA/LA2M/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette (France); Ott, F. [DSM/IRAMIS/LLB/CEA/CNRS, CEA Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [IPNL/CNRS, Domaine scientifique de la Doua, 69622 Villeurbanne (France); Baldinozzi, G. [CNRS-SPMS/UMR 8580/LRC CARMEN Ecole Centrale Paris, 92295 Chatenay-Malabry (France); Simeone, D. [DEN/DANS/DMN/SRMA/LA2M/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2015-03-25

    Highlights: • Interdiffusion at Cr/Si interfaces induced by ion beam mixing at room temperature. • Creation of Cr/Si alloy metastable phases. • Reconstruction of Cr/Si interdiffusion profile by X-ray reflectometry. • Quantitative correlation between Cr and Si profiles extracted from XRR and measured by EDX–TEM. - Abstract: Chromium silicon CrSi alloys are foreseen as possible materials for spintronic devices. Ion beam mixing could be an efficient technique to produce thin films of such alloys at room temperature while avoiding thermal diffusion. In order to assess this point, we have irradiated 20 nm Cr layer on a (1 0 0) Si wafer with 70 keV Kr ions. The X-ray reflectometry technique combined with Transmission Electron Microscopy and Energy Dispersive X-ray analysis was applied to analyze, at the nanometric scale, the formation of Cr/Si blurred interfaces induced by ion beam mixing. From the analysis of reflectivity curves, it appears that nanometric Cr{sub 5}Si{sub 3} and CrSi{sub 2} phases are produced at the early stage of the process. The existence of these two paramagnetic phases gives some clues to explain the reason why the experimentally observed ferrimagnetism was weaker than predicted.

  1. Alpha self-irradiation effects in ternary oxides of actinides elements: The zircon-like phases AmIIIVO4 and AIINpIV(VO4)2 (A=Sr, Pb)

    International Nuclear Information System (INIS)

    Goubard, F.; Griesmar, P.; Tabuteau, A.

    2005-01-01

    We report the experimental studies of irradiation damage from alpha decay in neptunium and americium vanadates versus cumulative dose. The isotopes used were the transuranium α-emitter 237 Np and the α,γ-emitter 241 Am. Neptunium and americium vanadates self-irradiation was studied by X-ray diffraction method (XRD). The comparison of the powder diffraction patterns reveal that the irradiation has no apparent effect on the neptunium phases while the americium vanadate swells and becomes metamict as a function of cumulative dose

  2. Lattice stability of metastable AlN and wurtzite-to-rock-salt structural transformation by CALPHAD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanhui, E-mail: yanhui.z@hotmail.com [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Franke, Peter; Li, Dajian; Seifert, Hans Jürgen [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-01

    Reliable lattice stability of cubic AlN with rock-salt structure (rs-AlN) is the prerequisite of accurate thermodynamic modeling of cubic (M, Al)N solid solutions (M = Ti, Zr, Cr etc.). In order to derive the Gibbs energy of metastable rs-AlN, and then its lattice stability, we did the pressure-temperature (P-T) assessment of AlN phases by equations-of-state modeling. Meanwhile, the molar volumes and the heat capacities of wurtzite and rock-salt AlN, as well as the wurtzite-to-rock-salt structural transition at high P&T were successfully incorporated in CALPHAD-type database by integrating thermodynamic data from experiments and ab-initio calculations. These results promise subsequent investigations on phase stabilities and transitions of solid solutions with AlN component and the development of novel multicomponent coatings. - Highlights: • Phase stability investigation for novel multi-component metastable coatings. • Structural transition at high temperature and high pressure. • Integrating thermodynamic data from ab-initio calculations and experiments. • Thermal expansion, isothermal compressibility and heat capacity of w-AlN and rs-AlN.

  3. Negative pion trapping by metastable state in liquid helium

    International Nuclear Information System (INIS)

    Nakamura, S.N.; Iwasaki, M.; Outa, H.

    1991-11-01

    We found long-lived metastable states of stopped π - 's in liquid helium by measuring time spectra of two different delayed products: 1) protons emitted after π - absorption by 4 He nuclei and 2) 70-MeV electrons originating from free π - → e - (ν e )-bar decay. The lifetime and fraction of delayed π - absorption obtained by emitted protons are 7.26±0.12 nsec and 1.66±0.05%, respectively. The free-decay fraction was calculated to be 0.64±0.03% from this result, which is consistent with the observed free-decay fraction of π e2 decay. These results imply that 2.30±0.07% of stopped π - are trapped in metastable states which have an overall lifetime of 10.1±0.2 nsec. The same experiment and analysis were performed for stopped π - in liquid neon. No evidence for trapping was found in liquid neon. (author)

  4. Fluxes, hierarchies, and metastable vacua in supersymmetric field theories

    International Nuclear Information System (INIS)

    Bruemmer, F.

    2008-01-01

    This thesis concerns topics both in low-energy effective field theories from type IIB superstring flux compactifications and in four-dimensional, rigidly supersymmetric gauge theories. We introduce flux compactifications with so-called ''warped throat'' regions, which lead to large hierarchies of scales in the effective four-dimensional theory. The correspondence between a particular such throat and a five-dimensional Randall-Sundrum-like model is established. We shown how certain string-theoretic features of the compactification, such as moduli stabilization by fluxes or the presence of an unstabilized Kaehler modulus, are incorporated in the five-dimensional picture. The KKLT construction for metastable de Sitter vacua is reviewed, as well as some possible modifications involving spontaneous F-term supersymmetry breaking. For KKLT-like models with their hidden sector localized inside a throat, the mediation of supersymmetry breaking to the visible sector is investigated. We review the mechanism of mixed modulus-anomaly mediation, and show that there can be additional equally important gravity-mediated contributions. We finally turn to the ISS model of metastable dynamical supersymmetry breaking in four dimensions, and present a renormalizable extension which generates a large hierarchy naturally. We also recapitulate how the ISS model may be obtained from a type IIB superstring model. (orig.)

  5. Fluxes, hierarchies, and metastable vacua in supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F.

    2008-02-06

    This thesis concerns topics both in low-energy effective field theories from type IIB superstring flux compactifications and in four-dimensional, rigidly supersymmetric gauge theories. We introduce flux compactifications with so-called ''warped throat'' regions, which lead to large hierarchies of scales in the effective four-dimensional theory. The correspondence between a particular such throat and a five-dimensional Randall-Sundrum-like model is established. We shown how certain string-theoretic features of the compactification, such as moduli stabilization by fluxes or the presence of an unstabilized Kaehler modulus, are incorporated in the five-dimensional picture. The KKLT construction for metastable de Sitter vacua is reviewed, as well as some possible modifications involving spontaneous F-term supersymmetry breaking. For KKLT-like models with their hidden sector localized inside a throat, the mediation of supersymmetry breaking to the visible sector is investigated. We review the mechanism of mixed modulus-anomaly mediation, and show that there can be additional equally important gravity-mediated contributions. We finally turn to the ISS model of metastable dynamical supersymmetry breaking in four dimensions, and present a renormalizable extension which generates a large hierarchy naturally. We also recapitulate how the ISS model may be obtained from a type IIB superstring model. (orig.)

  6. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  7. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)

  8. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  9. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  10. Theoretical and experimental study of carburisation and decarburisation of a meta-stable austenitic steel

    Directory of Open Access Journals (Sweden)

    Charles West

    2005-12-01

    Full Text Available Metastable austenitic stainless steels are known to undergo a partial transformation of austenite to martensite as a consequence of plastic deformation. In the case of cyclic loading, a certain level of plastic strain must be exceeded, and phase formation takes place after an incubation period, during which the necessary amount of plastic deformation is accumulated. The susceptibility of the austenitic phase to deformation-induced martensite formation is strongly affected by the temperature of loading and the stability of austenite, which itself depends on the chemical composition. A key element in this regard is carbon which stabilizes the austenitic phase. It is shown in this study that the carbon concentration can be analysed systematically and reproducible by means of annealing treatments, if the parameters of these treatments are carefully defined on the basis of advanced theoretical thermodynamic and kinetic considerations. First results on the effect of carbon concentration and temperature of fatigue testing on the austenite/martensite transformation are presented, in order to illustrate the significance of these parameters on the martensite formation rate.

  11. Toxicity and efficacy of re-irradiation of high-grade glioma in a phase I dose- and volume escalation trial

    DEFF Research Database (Denmark)

    Møller, Søren; Munck Af Rosenschöld, Per; Costa, Junia

    2017-01-01

    .1-3.5) and the median overall survival was 7.0 months (95%CI: 3.5-10.5). Early side effects were mild and included headache and fatigue. Seven patients were progression-free beyond 10 weeks and were evaluable for late toxicity. Among these patients, three (43%) suffered late adverse events which included radionecrosis......INTRODUCTION: The purpose of this study was to evaluate the safety and efficacy of PET and MRI guided re-irradiation of recurrent high-grade glioma (HGG) and to assess the impact of radiotherapy dose, fractionation and irradiated volume. MATERIAL AND METHODS: Patients with localized, recurrent HGG...... (grades III-IV) and no other treatment options were eligible for a prospective phase I trial. Gross tumor volumes for radiotherapy were defined using T1-contrast enhanced MRI and (18)F-fluoro-ethyl tyrosine PET. Radiotherapy was delivered using volumetric modulated arc therapy with a 2-mm margin. The dose...

  12. Effects of carbonation, irradiation and temperature onto strontium immobilization into a cementitious matrix

    International Nuclear Information System (INIS)

    Bar-Nes, G.; Arbel-Haddad, M.; Chomat, L.; Poyet, S.; Mace, N.; Hossepied, C.

    2015-01-01

    In the present study, the decoupled effects of carbonation, irradiation and temperature on strontium immobilization in a CEM-I cement matrix are described. After 6 months of treatment, mineralogical characterization (X-ray diffraction - XRD and thermogravimetric analysis - TGA), leaching tests (according to ANSI.ANS-16.1 standard method) and sorption experiments were carried out. The mineralogical evolution was shown to be similar for samples submitted to irradiation at atmospheric conditions or carbonation at a controlled temperature of 40 C. degrees. The main mineralogical change during these two treatments is the formation of calcium carbonate; calcite is detected at the sample surface and the two carbonate metastable phases (aragonite and vaterite) in the depth of the sample. Although it was not possible to identify, by the techniques used, the association of Sr with any specific cementitious phase present in the investigated samples, the leaching results showed that the fraction of Sr leached from samples exposed to carbonation during their degradation process, was approximately 6 times lower compared to the corresponding samples degraded under inert conditions. The sorption experiments onto the hydrated cement paste show a small but significant retention of Sr in these matrices without allowing a possible identification of the phase responsible for the retention. Post leaching mineralogical characterization is to be performed in order to study the effect of the leaching process on the sample mineralogy and to locate the binding sites of the Sr ions within the cementitious paste. (authors)

  13. Future proton and mixed-field irradiation facilities with slow extraction for LHC operation phase and for LHC upgrades

    CERN Document Server

    Assmann, Ralph Wolfgang; Brugger, Markus; Efthymiopoulos, Ilias; Feldbaumer, Eduard; Garrido, Mar Capeans; Glaser, Maurice; Kramer, Daniel; Linssen, Lucie; Losito, Roberto; Moll, Michael; Rembser, Christoph; Silari, Marco; Thurel, Yves; Tsesmelis, Emmanuel; Vincke, Helmut; CERN. Geneva. The LHC experiments Committee; LHCC

    2010-01-01

    In the present proposal we present the need for improved proton and mixed-field irradiation facilities with slow beam extraction at CERN. Strong needs are expressed by both the detector and accelerator communities and concern the LHC operation era as well as the upgrades of machine and experiments. The current facilities and test areas have a number of limitations and drawbacks. Preliminary studies indicate that there are possibilities for a coherent and cost-effective approach towards improved facilities for the future. The aim of this document is to inform the LHCC and seek its recognition for the need of such facilities. In addition we would appreciate the support of the LHCC for pursuing further implementation studies at a PS East Hall location.

  14. Accelerated partial breast irradiation using intensity-modulated radiotherapy technique compared to whole breast irradiation for patients aged 70 years or older: subgroup analysis from a randomized phase 3 trial.

    Science.gov (United States)

    Meattini, Icro; Saieva, Calogero; Marrazzo, Livia; Di Brina, Lucia; Pallotta, Stefania; Mangoni, Monica; Meacci, Fiammetta; Bendinelli, Benedetta; Francolini, Giulio; Desideri, Isacco; De Luca Cardillo, Carla; Scotti, Vieri; Furfaro, Ilaria Francesca; Rossi, Francesca; Greto, Daniela; Bonomo, Pierluigi; Casella, Donato; Bernini, Marco; Sanchez, Luis; Orzalesi, Lorenzo; Simoncini, Roberta; Nori, Jacopo; Bianchi, Simonetta; Livi, Lorenzo

    2015-10-01

    The purpose of this study was to report the efficacy and the safety profile on the subset of selected early breast cancer (BC) patients aged 70 years or older from a single-center phase 3 trial comparing whole breast irradiation (WBI) to accelerated partial breast irradiation (APBI) using intensity-modulated radiation therapy technique. Between 2005 and 2013, 520 patients aged more than 40 years old were enrolled and randomly assigned to receive either WBI or APBI in a 1:1 ratio. Eligible patients were women with early BC (maximum diameter 2.5 cm) suitable for breast conserving surgery. This study is registered with ClinicalTrials.gov, NCT02104895. A total of 117 patients aged 70 years or more were analyzed (58 in the WBI arm, 59 in the APBI arm). At a median follow-up of 5-years (range 3.4-7.0), the ipsilateral breast tumor recurrence (IBTR) rate was 1.9 % in both groups. No significant difference between the two groups was identified (log-rank test p = 0.96). The 5-year disease-free survival (DFS) rates in the WBI group and APBI group were 6.1 and 1.9 %, respectively (p = 0.33). The APBI group presented significantly better results in terms of acute skin toxicity, considering both any grade (p = 0.0001) and grade 2 or higher (p = 0.0001). Our subgroup analyses showed a very low rate and no significant difference in terms of IBTR, using both WBI and APBI. A significant impact on patients compliance in terms of acute and early late toxicity was shown, which could translate in a consistent improvement of overall quality of life.

  15. Evolution of secondary-phase precipitates during annealing of the 12Kh18N9T steel irradiated with neutrons to a dose of 5 DPA

    Science.gov (United States)

    Tsai, K. V.; Maksimkin, O. P.; Turubarova, L. G.

    2007-03-01

    The formation and evolution of thermally-induced secondary precipitates in an austenitic stainless steel 12Kh18N9T irradiated in the core of a laboratory reactor VVR-K to a dose of 5 dpa and subjected to post-radiation isochronous annealings for 1 h in a temperature range from 450 to 1050°C have been studied using transmission electron microscopy (TEM) and microhardness measurements. It has been shown that the formation of stitch (secondary) titanium carbides and M 23C6 carbides at grain and twin boundaries after annealing at 1050°C is preceded by a complex evolution of fineparticles of secondary phases (titanium carbides and nitrides) precipitated at dislocation loops and dislocations during annealing at temperatures above 750°C.

  16. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    Science.gov (United States)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  17. Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Field, K.G.; Busby, J.T.

    2014-03-15

    Surface relief due to localized deformation in a 4.4-dpa neutron-irradiated AISI 304 stainless steel was investigated using scanning electron microscopy coupled with electron backscattering diffraction and scanning transmission electron microscopy. It was found a body-centered-cubic (BCC) phase (deformation-induced martensite) had formed at the surface of the deformed specimen along the steps generated from dislocation channels. Martensitic hill-like formations with widths of ∼1 μm and depths of several microns were observed at channels with heights greater than ∼150 nm above the original surface. Martensite at dislocation channels was observed in grains along the [0 0 1]–[1 1 1] orientation but not in those along the [1 0 1] orientation.

  18. Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain

    International Nuclear Information System (INIS)

    Gussev, M.N.; Field, K.G.; Busby, J.T.

    2014-01-01

    Surface relief due to localized deformation in a 4.4-dpa neutron-irradiated AISI 304 stainless steel was investigated using scanning electron microscopy coupled with electron backscattering diffraction and scanning transmission electron microscopy. It was found a body-centered-cubic (BCC) phase (deformation-induced martensite) had formed at the surface of the deformed specimen along the steps generated from dislocation channels. Martensitic hill-like formations with widths of ∼1 μm and depths of several microns were observed at channels with heights greater than ∼150 nm above the original surface. Martensite at dislocation channels was observed in grains along the [0 0 1]–[1 1 1] orientation but not in those along the [1 0 1] orientation

  19. Persistence of Smectic-A Oily Streaks into the Nematic Phase by UV Irradiation of Reactive Mesogens

    Directory of Open Access Journals (Sweden)

    Ines Gharbi

    2017-12-01

    Full Text Available Thin smectic liquid crystal films with competing boundary conditions (planar and homeotropic at opposing surfaces form well-known striated structures known as “oily streaks”, which are a series of hemicylindrical caps that run perpendicular to the easy axis of the planar substrate. The streaks vanish on heating into the nematic phase, where the film becomes uniform and exhibits hybrid alignment. On adding sufficient reactive mesogen and polymerizing, the oily streak texture is maintained on heating through the entire nematic phase until reaching the bulk isotropic phase, above which the texture vanishes. Depending on the liquid crystal thickness, the oily streak structure may be retrieved after cooling, which demonstrates the strong impact of the polymer backbone on the liquid crystal texture. Polarizing optical, atomic force, and scanning electron microscopy data are presented.

  20. Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations.

    Science.gov (United States)

    Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C

    2018-05-29

    We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.

  1. Structure-phase composition and nano hardness of chrome-fullerite-chrome films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2015-01-01

    By methods of atomic force microscopy, X-ray diffraction and nano indentation the research of change of structure phase composition and nano hardness of the chrome - fullerite - chrome films, subjected to implantation by B + ions (E = 80 keV, F = 5*10 17 ions/cm 2 ) are submitted. It is established, that as a result of Boron ion implantation of the chrome - fullerite - chrome films, chrome and fullerite inter fusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with increased nano hardness. (authors)

  2. Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process

    Science.gov (United States)

    Afsar, M. F.; Rafiq, M. A.; Siddique, Fizza; Saira, F.; Chaudhary, M. M.; Hasan, M. M.; Tok, A. I. Y.

    2018-05-01

    Molybdenum disulphide (MoS2) nanoflakes were prepared through liquid-solid phase reaction technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) analysis revealed the formation of pure, polycrystalline, hexagonal phase of MoS2 nanoflakes. The texture coefficient (T{c}hkl) analysis showed that (100) plane was preferentially oriented. The specific surface area of the nanoflakes was 21 m2 g‑1 as determined using Brunaure-Emmett-Teller (BET) technique. A band gap of ∼2.05 eV for MoS2 nanoflakes was estimated from UV-visible spectrum. Regenerative photocatalytic activity of MoS2 nanoflakes was assessed by degrading methylene blue (MB) and safranin-o (SO) dyes under UV-visible light irradiation. Under light irradiation, degradation efficiency for MB was ∼99.58% in 100 min while for SO it was ∼99.89% in 70 min. The MoS2 nanoflakes exhibited excellent photocatalytic performance and good stability in a wide pH range (3–11). MoS2 nanoflakes showed a high reaction rate constant (k app ) for SO ∼ 0.104 49 min‑1 and MB ∼ 0.092 18 min‑1 as compared to other MoS2 nanostructures. The obtained exceptional photocatalytic performance of MoS2 nanoflakes offers potential applications for the treatment of polluted water as well as in other correlated fields.

  3. On the fermion pair production in the process of metastable vacuum decay

    International Nuclear Information System (INIS)

    Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.

    1985-01-01

    Production of fermion pairs during the tunneling process leading to the decay of metastable vacuum is considered. The technique based on non-unitary Bogolyubov transformations is developed and formulae for fermionic spectrum are obtained. As an example, the spectrum of fermionic pairs produced during the homogeneous decay of metastable vacuum is evaluated

  4. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    Kroon, J.P.C.

    1985-01-01

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 2 1 S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 2 1 S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  5. Gas–liquid nucleation at large metastability: unusual features and a new formalism

    International Nuclear Information System (INIS)

    Santra, Mantu; Singh, Rakesh S; Bagchi, Biman

    2011-01-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  6. Gas-liquid nucleation at large metastability: unusual features and a new formalism

    Science.gov (United States)

    Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman

    2011-03-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  7. The induction of chromosomal aberrations by X irradiation during S-phase in cultured diploid Syrian hamster fibroblasts

    International Nuclear Information System (INIS)

    Savage, J.R.K.; Bhunya, S.P.

    1980-01-01

    The induction of chromosomal aberrations by 4.0 Gy of 250 kV X-rays in cell throughout S-phase has been investigated in untransformed diploid Syrian hamster fibroblasts. Using a method of subdividing S into catologically defined stages (on the basis of replication band patterns displayed after brome-deoxyuridine incorporation) it is shown that: (1) This dose does not perturb, measurable, the intracellular programme of synthesis at the chromosome band level, so that the cell classification criteria remain valid after radiation. (2) Mitotic delay and perturbation appears to be less for cells in very early S, but there is no evidence of a massive cell mixing of S cells. (3) S-phase is, in general, much less sensitive to aberration induction at all sub-phases than G 2 . (4) Both chromosome and chromatid-type aberrations are found in pre- S and S cells, but chromatid-types predominate in the latter at all sub-phases. (5) The frequency of chromatid-types, especially interchanges falls in eraly. (orig.)

  8. Chemotherapy followed by a combination of daily irradiation and carboplatine (CBDCA) in stage IIIB non small cell lung cancer (NSCLC) : first interim analysis of a phase II trial

    International Nuclear Information System (INIS)

    Bardet, E.; Douillard, J.Y.; Riviere, A.; Quoix, E.; Spaeth, D.; Ducolone, A.; Coudert, B.; Lagrange, J.L.; Chomy, P.; Tuchais, C.; Pellae-Cosset, B.; Henry-Amar, M.

    1996-01-01

    Purpose/Objective: To demonstrate feasibility and efficacy of induction chemotherapy followed by concomitant daily irradiation and carboplatine in the treatment of stage IIIB NSCLC patients. Materials and Methods : Were eligible previously untreated patients with histological y proven stage IIIB NSCLC, aged ≤ 75 years, WHO performance status (PS) ≤ 2, neutrophil count ≥ 2000 and platelets ≥ 150,000, and with no renal or hepatic insufficiency. Patients with large tumor volume which could not be irradiated, were excluded from this phase II study. Induction chemotherapy (CT) consisted of navelbine (NVB) and cisplatin (CDDP) administered over a 8 week period. NVB 30 mg/m 2 was given on weeks 1, 2, 4, 5, 6, 8 and 9; NVB 15 mg/m 2 on weeks 3 and 7; CDDP 120 mg/m 2 was given on weeks 1, 5 and 9. Patients free of distant progression after induction CT received megavoltage radiation (66 Gy, 2 Gy/fraction) along with daily CBDCA (15 mg/m 2 ) given 2 to 4 hours before irradiation. Adjuvant NVB-CDDP chemotherapy (2 cycles) was administered in patients still progression-free. Evaluation was performed at the end of induction CT (week 10) and 3 months after the end of irradiation. The Kaplan-Meier method was used to estimate survival rate with time at risk starting the first day of induction CT. Results : From February 1994 to January 1996, 111 patients were enrolled in 8 centers of whom 76 were eligible for analysis at March 1, 1996. Initial characteristics were : male/female ratio (68(8)), mean age 59 (39 to 76), PS 0 : 40%, PS 1 : 49%, PS 2 : 11%, squamous carcinoma 67%. Observed to theoretical dose ratios of NVB and CDDP as induction CT were 83% and 86%, respectively. Hematological grade 3-4 toxicity was observed in 79% of patients; other grade 3-4 toxicities were nausea in 21%, diarrhea in 3%, alopecia in 2% and sepsis in 5% of patients. Seven (9%) patients died before first evaluation. After induction CT, 3 patients were in complete remission (CR), 35 in partial

  9. Chemotherapy followed by a combination of daily irradiation and carboplatine (CBDCA) in stage IIIB non small cell lung cancer (NSCLC) : first interim analysis of a phase II trial

    Energy Technology Data Exchange (ETDEWEB)

    Bardet, E; Douillard, J Y; Riviere, A; Quoix, E; Spaeth, D; Ducolone, A; Coudert, B; Lagrange, J L; Chomy, P; Tuchais, C; Pellae-Cosset, B; Henry-Amar, M

    1996-09-01

    Purpose/Objective: To demonstrate feasibility and efficacy of induction chemotherapy followed by concomitant daily irradiation and carboplatine in the treatment of stage IIIB NSCLC patients. Materials and Methods : Were eligible previously untreated patients with histological y proven stage IIIB NSCLC, aged {<=} 75 years, WHO performance status (PS) {<=} 2, neutrophil count {>=} 2000 and platelets {>=} 150,000, and with no renal or hepatic insufficiency. Patients with large tumor volume which could not be irradiated, were excluded from this phase II study. Induction chemotherapy (CT) consisted of navelbine (NVB) and cisplatin (CDDP) administered over a 8 week period. NVB 30 mg/m{sup 2} was given on weeks 1, 2, 4, 5, 6, 8 and 9; NVB 15 mg/m{sup 2} on weeks 3 and 7; CDDP 120 mg/m{sup 2} was given on weeks 1, 5 and 9. Patients free of distant progression after induction CT received megavoltage radiation (66 Gy, 2 Gy/fraction) along with daily CBDCA (15 mg/m{sup 2}) given 2 to 4 hours before irradiation. Adjuvant NVB-CDDP chemotherapy (2 cycles) was administered in patients still progression-free. Evaluation was performed at the end of induction CT (week 10) and 3 months after the end of irradiation. The Kaplan-Meier method was used to estimate survival rate with time at risk starting the first day of induction CT. Results : From February 1994 to January 1996, 111 patients were enrolled in 8 centers of whom 76 were eligible for analysis at March 1, 1996. Initial characteristics were : male/female ratio (68(8)), mean age 59 (39 to 76), PS 0 : 40%, PS 1 : 49%, PS 2 : 11%, squamous carcinoma 67%. Observed to theoretical dose ratios of NVB and CDDP as induction CT were 83% and 86%, respectively. Hematological grade 3-4 toxicity was observed in 79% of patients; other grade 3-4 toxicities were nausea in 21%, diarrhea in 3%, alopecia in 2% and sepsis in 5% of patients. Seven (9%) patients died before first evaluation. After induction CT, 3 patients were in complete remission

  10. Nonequilibrium phase formation in oxides prepared at low temperature: Fergusonite-related phases

    International Nuclear Information System (INIS)

    Mather, S.A.; Davies, P.K.

    1995-01-01

    Sol-gel methods have been developed to prepare YNbO 4 , YTaO 4 , and other rare-earth niobates and tantalates with fergusonite-related crystal structures. At low temperatures, all of the fergusonites, with the exception of SmTaO 4 , crystallize in a metastable tetragonal (T') structure similar to that of tetragonal zirconia. Although all of the equilibrium forms of these oxides adopt a crystal structure containing an ordered distribution of the trivalent and pentavalent cations, a random cation distribution is obtained in the metastable T' phase. Metastable phase formation is often ascribed solely to kinetically limited topotactic crystallization. However, the changes in the grain size and unit-cell volumes that accompany the metastable-to-equilibrium fergusonite conversions imply that other physical phenomena induced by small-particle synthesis, namely the Gibbs-Thompson pressure effect and the increased contribution of surface energy, cannot be ignored

  11. Phase formation in contact of dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Savvin, V S; Kazachkova, Yu A; Povzner, A A [Ural State Technical University-UPI, Mira st., 19, A-203, Yekaterinburg 620002 (Russian Federation)], E-mail: savvin-vs@yandex.ru

    2008-02-15

    Formation and growth of intermediate phases in contact of the crystalline samples forming a two-component eutectic system is considered. It is shown that during the competition to a growing liquid phase the intermediate solid phases cannot grow by diffusion. The alternative is formation of metastable areas of a liquid phase. Measurements of liquid layers extent in Pb-Bi and In-Bi systems have allowed to define the composition of liquid on interface where formation of metastable liquid is possible. The results show that the concentration interval of a liquid layer corresponds to a stable constitution diagram. In order to explain the experimental results the hypothesis according to which the intermediate solid phases are formed as a result of precipitation from metastable melt is considered. The experimental confirmation of formation and crystallization of a metastable liquid is the fact that intergrowth of the samples forming system with an intermetallic phase at temperatures below the temperature of fusion of the most low-melting eutectic is observed. The possibility of the processes concerned with the occurrence of metastable areas of a liquid is showed by means of computer imitation.

  12. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation

    Science.gov (United States)

    Wu, Z.; Zheng, Y.; Wang, K. W.

    2018-02-01

    We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.

  13. Excitation into 3p55p levels from the metastable levels of Ar

    International Nuclear Information System (INIS)

    Jung, R. O.; Boffard, John B.; Anderson, L. W.; Lin, Chun C.

    2007-01-01

    Measurements of cross sections for electron-impact excitation out of the J=0 and J=2 3p 5 4s metastable levels of argon into nine of the ten levels of the 3p 5 5p manifold are presented in the energy range from threshold to 10 eV. A mixed target of atoms in both metastable levels was created by a hollow cathode discharge. Laser quenching was used to depopulate either one of the metastable levels, allowing separate measurements of the cross sections from each of the two metastable levels. Unlike the metastable excitation cross sections into 3p 5 4p levels, the cross sections into the 3p 5 5p levels are not found to be proportional to optical oscillator strengths

  14. Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2.

    Science.gov (United States)

    Wang, Yi; Zhang, Dun; Wang, Jin

    2017-12-01

    Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion were synthesized by direct coprecipitation at room temperature. They are shown to be viable peroxidase mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 . Kinetic analysis indicated typical Michaelis-Menten catalytic behavior. The findings were used to design a colorimetric assay for H 2 O 2 , best measured at 652 nm. The method has a linear response in the 60 to 200 μM H 2 O 2 concentration range, with a 2 μM detection limit. Benefitting from the chemical stability of the microrods, the method is well reproducible. It also is easily performed and highly specific. Graphic abstract Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion can efficiently catalyze the oxidation reaction of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue color change.

  15. Determination of nuclear moments and nuclear radii changes of the metastable silverisotopes sup(108m)Ag and sup(110m)Ag from the hyperfine structure of silver-I-resonance lines

    International Nuclear Information System (INIS)

    Meier, T.

    1973-01-01

    The hyperfine structure of the resonance lines of the metastable silver isotopes sup(108m), sup(110m)Ag were investigated by means of optical interference spectroscopy. Both radioactive silver isotopes were obtained by irradiating isotope-pure 107 Ag or 109 Ag with neutrons in the reactor. In spite of the slight enrichment of the isotopes to be investigated compared to the stable isotopes ( [de

  16. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α - iron under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lv, G. C. [Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing, 100083 (China); Corrosion and Protection Center, Key Laboratory of Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing, 100083 (China); Zhang, H. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada, T6G2V4 (Canada); He, X. F.; Yang, W. [China Institute of Atomic Energy, Beijing, 102413 (China); Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory of Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-04-15

    In this paper, we employed both molecular statics and molecular dynamics simulation methods to investigate the role of vacancies in the formation and phase transition of Cu-rich precipitates in α-iron. The results indicated that vacancies promoted the diffusion of Cu atoms to form Cu-rich precipitates. After Cu-rich precipitates formed, they further trapped vacancies. The supersaturated vacancy concentration in the Cu-rich precipitate induced a shear strain, which triggered the phase transition from bcc to fcc structure by transforming the initial bcc (110) plane into fcc (111) plane. In addition, the formation of the fcc-twin structure and the stacking fault structure in the Cu-rich precipitates was observed in dynamics simulations.

  17. Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation

    International Nuclear Information System (INIS)

    Cole, S.K.; Liu, K.; Riley, S.J.

    1986-01-01

    The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab

  18. Fundamentals of metastability exchange optical pumping in helium

    International Nuclear Information System (INIS)

    Batz, M; Nacher, P-J; Tastevin, G

    2011-01-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  19. Fundamentals of metastability exchange optical pumping in helium

    Science.gov (United States)

    Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  20. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.