WorldWideScience

Sample records for irradiation inhibits vascular

  1. Irradiation inhibits vascular anastomotic stenosis in a canine model

    International Nuclear Information System (INIS)

    Saito, Takeshi; Iguchi, Atsushi; Tabayashi, Koichi

    2009-01-01

    The graft patency rate after coronary artery bypass grafting (CABG) correlates with anastomotic stenosis. Intracoronary radiation therapy is effective for preventing restenosis after percutaneous coronary intervention (PCI). We postulated that intracoronary radiation therapy could prevent anastomotic stenosis and tested this hypothesis in an animal model. Femoral arteries and veins of beagle dogs were harvested, and composite arterioarterial and arteriovenous grafts were prepared. After external irradiation of the anastomotic sites, these composite grafts were transplanted into femoral arteries. Histomorphometric and immunohistological analyses of the anastomotic sites were performed. The study groups consisted of controls and animals exposed to 10 Gy, 20 Gy, and 30 Gy (n=5, in each group). In the artery graft model, the ratio of negative remodeling was significantly increased in all groups exposed to ≥10 Gy. The ratio of neointimal hyperplasia was significantly decreased in all groups exposed to ≥10 Gy. Cell density of anti-α-actin antibody-positive cells and anti-proliferating cell nuclear antigen (PCNA) antibody-positive cells was highest in the adventitial layer, and the density decreased as the dosage increased. Experimental results were almost the same in the vein graft models as in the artery graft models. With double immunohistostaining, the anti-PCNA antibody-positive cells expressed α-actin. Irradiation can inhibit anastomotic stenosis in a canine model. Adventitia is a factor in the creation of stenosis, and irradiation appears to target the adventitia. We speculate that there might be a possible role for intracoronary irradiation in the future to prevent anastomotic stenosis. (author)

  2. The mechanism of inhibitory effect of γ-ray irradiation on rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhuang Yongzhi; Wang Junjie; Zhang Zhanchun; Jia Tingzhen

    2001-01-01

    Objective: To investigate the inhibitory effect of γ-ray irradiation on rat vascular smooth muscle cells (VSMCs). Methods: Dose-survival curve of VSMCs was figured by colony formation. The effect of γ-ray irradiation on viability and proliferation of VSMCs was observed by 3 H incorporation. Flow cytometry and DNA Ladder were used to detect the apoptosis effect of γ-ray irradiation on VSMCs. Results: The values of D 0 , D q , D 37 and N for VSMCs were 1.95 Gy, 1.76 Gy, 3.71 Gy and 2.47, respectively. The inhibitory effect of γ-ray irradiation on VSMCs proliferation was dose-dependent, being stronger along with increase of dose. VSMCs did not undergo apoptosis within 48 hours after γ-ray irradiation. Conclusion: γ-ray irradiation could inhibit the proliferation of VSMCs, the main mechanism of which is the killing effect and inhibition of mitosis of VSMCs

  3. Inhibition of MAPK and PKC pathways by 60Co γ-radiation in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Jia Guanghong; Ma Yexin; Xiao Jianming

    2002-01-01

    Objective: To investigate the signal transduction pathways inhibited by 60 Co γ-radiation in cultured vascular smooth muscle cells (VSMC). Methods: The cultured VSMC were irradiated with 60 Co γ-radiation of 3.5, 7.0 and 14 Gy respectively. VSMC proliferation was measured by 3 H-TdR incorporation, while PKC, MAPK activities were determined by radioactivity assay. Results: Proliferation of VSMC was inhibited by 7.0, 14 Gy 60 Co γ-irradiation and the activities of PKC, MAPK were decreased significantly. Conclusion: Inhibitory effect of 7.0, 14 Gy 60 Co γ-irradiation on proliferation of VSMC might be resulted from decrease of the activity of PKC, MAPK

  4. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice

    International Nuclear Information System (INIS)

    Zips, Daniel; Hessel, Franziska; Krause, Mechthild; Schiefer, Yvonne; Hoinkis, Cordelia; Thames, Howard D.; Haberey, Martin; Baumann, Michael

    2005-01-01

    Purpose: Previous experiments have shown that adjuvant inhibition of the vascular endothelial growth factor receptor after fractionated irradiation prolonged tumor growth delay and may also improve local tumor control. To test the latter hypothesis, local tumor control experiments were performed. Methods and materials: Human FaDu and UT-SCC-14 squamous cell carcinomas were studied in nude mice. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 (50 mg/kg body weight b.i.d.) was administered for 75 days after irradiation with 30 fractions within 6 weeks. Tumor growth time and tumor control dose 50% (TCD 50 ) were determined and compared to controls (carrier without PTK787/ZK222584). Results: Adjuvant administration of PTK787/ZK222584 significantly prolonged tumor growth time to reach 5 times the volume at start of drug treatment by an average of 11 days (95% confidence interval 0.06;22) in FaDu tumors and 29 days (0.6;58) in UT-SCC-14 tumors. In both tumor models, TCD 50 values were not statistically significantly different between the groups treated with PTK787/ZK222584 compared to controls. Conclusions: Long-term inhibition of angiogenesis after radiotherapy significantly reduced the growth rate of local recurrences but did not improve local tumor control. This indicates that recurrences after irradiation depend on vascular endothelial growth factor-driven angiogenesis, but surviving tumor cells retain their clonogenic potential during adjuvant antiangiogenic treatment with PTK787/ZK222584

  5. Abrogation of Early Apoptosis Does Not Alter Late Inhibition of Hippocampal Neurogenesis After Irradiation

    International Nuclear Information System (INIS)

    Li Yuqing; Aubert, Isabelle; Wong, C. Shun

    2010-01-01

    Purpose: Irradiation of the adult brain results in acute apoptosis of neural progenitors and vascular endothelial cells, as well as late dysfunction of neural progenitors and inhibition of neurogenesis. We sought to determine whether the early apoptotic response has a causative role in late inhibition of neurogenesis after cranial irradiation. Methods and Materials: Using a genetic approach with p53 and smpd1 transgenic mice and a pharmacologic approach with basic fibroblast growth factor (bFGF) to abrogate the early apoptotic response, we evaluated the late inhibition of neurogenesis in the hippocampal dentate gyrus after cranial irradiation. Results: In dentate gyrus, subgranular neural progenitors underwent p53-dependent apoptosis within 24 h after irradiation. Despite a near abrogation of neural progenitor apoptosis in p53-/- mice, the reduction in newborn neurons in dentate gyrus at 9 weeks after irradiation in p53-/- mice was not different from that observed in wildtype controls. Endothelial cell apoptosis after radiation is mediated by membrane damage initiated by activation of acid sphingomyelinase (ASMase). Deletion of the smpd1 gene (which encodes ASMase) attenuated the apoptotic response of endothelial cells. At 9 weeks after irradiation, the inhibition of hippocampal neurogenesis was not rescued by ASMase deficiency. Intravenous administration of bFGF protected both endothelial cells and neural progenitors against radiation-induced apoptosis. There was no protection against inhibition of neurogenesis at 9 weeks after irradiation in bFGF-treated mice. Conclusion: Early apoptotic death of neural progenitors, endothelial cells, or both does not have a causative association with late inhibition of neurogenesis after irradiation.

  6. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. The effects of vascularized tissue transfer on re-irradiation

    International Nuclear Information System (INIS)

    Narayan, K.; Ashton, M.W.; Taylor, G.I.

    1996-01-01

    Purpose: Nowadays, radical re-irradiation of locally recurrent squamous cell carcinoma is being increasingly tried. The process usually involves some form of surgical excision and vascularized tissue transfer followed by re-irradiation. The aim of this study was to examine the extent of protection from the effects of re-irradiation provided by vascularized tissue transfer. Methods and Materials: One hundred Sprague Dawley rats had their left thighs irradiated to a total dose of 72Gy in 8 fractions, one fraction per day, 5 days per week. The rats were then divided into two groups: At 4 months, one half of the rats had 50% of their quadriceps musculature excised and replaced with a vascularized non-irradiated rectus abdominous myocutaneous flap. The other group served as the control. Six months following the initial radiotherapy all rats were then re-irradiated with either 75 or 90% of the original dose. Incidence of necrosis and the extent of necrosis was measured. Microvasculature of control, transplanted muscle and recipient site was studied by micro-corrosion cast technique and histology of cast specimen. tissues were sampled at pre-irradiation and at 2, 6 and 12 months post re-irradiation. Microvascular surface area was measured from the histology of cast specimen. Results: Necrosis in the control group was clinically evident at 6 weeks post re irradiation and by 10 months all rats developed necrosis. Forty per cent of the thigh that received 75% of the original dose on re-irradiation did not develop any necrosis by 13 months. Other groups developed necrosis to variable extents, however a rim of tissue around the graft always survived. The average thickness of surviving tissue was 9mm. (range being 4-25 mm). None of the transferred flap nor re-irradiated recipient quadriceps developed necrosis. Conclusion: 1. Transplanted rectus abdominus myocutaneous flap and undisturbed muscle have similar radiation tolerance. 2. Vascularized myocutaneous flap offers

  8. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  9. Late vascular effects in irradiated mice brain

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Phillips, T.L.

    1982-01-01

    The whole brains of mice were irradiated with 250 kVp X-ray at 120 rad min -1 (1.6 mm Cu HVL, TSD 50 cm) and a histological study was done. The dose range of X-irradiation was from 1300 to 2500 rads. i.e., 1300, 1500, 1750, 2000, and 2500 rads. In the microscopic examination, the mice were killed at the regular postirradiation intervals of between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. A histological examination was performed by a morphometric estimation of vascular lesion in which the degree of the damage to the arterial system was scored through whole serial brain sections. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectatic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large artery were observed. Incidence of the fibrinoid necrosis increased dose dependently between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 - 87 weeks and can be used to quantify the vessel injury and a fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis. (author)

  10. Effective preoperative irradiation of highly vascular cerebellopontine angle neurinomas

    International Nuclear Information System (INIS)

    Ikeda, K.; Ito, H.; Kashihara, K.; Fujisawa, H.; Yamamoto, S.

    1988-01-01

    Three cases of large cerebellopontine angle neurinoma with marked vascularity and tumor staining on the angiogram were treated with effective preoperative irradiation. The radiotherapy was given before the second operation in two cases and before the first operation in the other case. Irradiation doses administered with a linear accelerator were 2.34 to 3.0 Gy for 3 to 3.5 weeks, and radical operations were done 1.5 to 2 months after irradiation. After the irradiation, vertebral angiography showed moderate to marked decrease of the hypervascular capsular stain and disappearance of the early draining vein. Computed tomographic scan showed enlargement of the central necrotic area within the heterogeneously enhanced tumor, which was unchanged in size. Radical operations, which had been impossible because of uncontrollable massive bleeding, were successful without any intraoperative bleeding after radiotherapy. Postirradiation radiological findings corresponded well with those of histopathological examination, which showed decrease in cellularity and in vascularity and diffuse coagulation necrosis around the collapsed tumoral vessels as radiation effects. Preoperative irradiation of the hypervascular neurinoma was though to facilitate radical surgery by abolishing or diminishing the risk of intraoperative bleeding

  11. In vitro proliferative capacity of vascular cells irradiated in vivo

    International Nuclear Information System (INIS)

    Fischer-Dzoga, K.; Dimitrievich, G.S.; Griem, M.L.

    1985-01-01

    Explants were prepared from rabbit vascular aortic layers and irradiated with x-ray doses ranging from 100 cGy-5 cGy. This resulted in a 50% reduction in number of outgrowing cells with doses of 100-125 gy. Doses of 250, 500 and 750 gy resulted in a reduction of 70, 90, and 95% respectively. However, when the rabbit was irradiated in vivo to a narrow mediastinal port immediately before the explantation of vascular tissue, the number of outgrowing cells was comparable to that of the irradiated control for doses up to 250 cGy, while doses of 500 and 750 cGy reduced outgrowth by 60 and 93% respectively. To test for in situ repair, the time interval between irradiation and explantation was prolonged from 1-4 hours in one hour increments. The results were scored as average number of cells/explant and average number of cells/growing culture

  12. Recovery from inhibition of transcription in γ-irradiated Euglena cells

    International Nuclear Information System (INIS)

    Tsushimoto, G.; Kikuchi, T.; Ishida, M.R.

    1982-01-01

    Transcriptional activity was inhibited with low doses of γ-irradiation which did not cause the death of cells, but induced the delay of cell division in the unicellular alga Euglena. The incorporation of [ 14 C]uracil into cells was inhibited to about 50% of non-irradiated cells immediately after 3 krad irradiation. The suppressed transcriptional activity was gradually recovered after irradiation. At about 12 h post-irradiation, the rate of incorporation of [ 14 C]uracil recovered to that of non-irradiated cells. The synthesis of ribosomal RNA was inhibited immediately after 3 krad irradiation, but it recovered within 12 h after irradiation. The synthesis of cytosol ribosomal RNA precursor was more strongly inhibited than that of other cytosol ribosomal RNAs. The synthesis of cytoplasmic organelle ribosomal RNA was also inhibited and recovered after 3 krad irradiation. (Auth.)

  13. Vascular damage after acute local irradiation: a light and electron microscope study

    International Nuclear Information System (INIS)

    Verola, O.; Brocheriou, C.

    1986-01-01

    A pig model was used to examine histological and ultrastructural changes after high-dose local irradiation. This model was chosen to simulate accidents which have occurred in man, enabling the determination of several post-irradiation phases. After an initial phase, with superficial lesions, ischaemic necrosis occurred 3 weeks after irradiation as the result of early vascular alterations. After 2 months, expanding necrosis became obvious in the deep muscle, preceded by an initial spread of vascular lesions: these alterations were obvious from the 30th day by light microscopy but could be detected by electron microscopy from the 9th day. (author)

  14. Sprout inhibition of potatoes by electron irradiation, (2)

    International Nuclear Information System (INIS)

    Furuta, Junichiro; Hiraoka, Eiichi; Okamoto, Shinichi; Fujishiro, Masatoshi; Kanazawa, Tamotsu; Ohnishi, Tokuhiro; Tsujii, Yukio; Hori, Shiro

    1982-01-01

    Sprouting of potatoes are inhibited usually by the gamma-ray irradiation. The buds of potatoes exist in a very thin layer near surface of each tuber. So the inhibition will be performed sufficiently by surface irradiation using electron beams. To irradiate all surfaces of each potato uniformly, the authors prepare a new apparatus which is a conveyer passing under an electron beam scanner of accelerator rotating the potatoes by many rotating rollers. The sprout inhibition experiment of potatoes was performed by following three methods to obtain the performance of this apparatus, and the results were compared. 1) turn over irradiation method --- potatoes were arranged in one layer in plastic baskets and were irradiated on the conveyor. After irradiation, the potatoes were turned over and were irradiated again. 2) rotating irradiation method --- potatoes were rotated on the rotating roller apparatus set on the conveyer and were passed under the electron beam scanner. 3) rotating irradiation method with an improved rotating roller apparatus --- the rotating rollers have many protuberances on their surface to irradiate all of potato surface more uniform. 550 keV electron beams by Cockcroft-Walton type accelerator were used for the irradiation and the irradiated dose was 5 to 20 krad. 40 pieces of potates, ''Danshaku'' variety yielded in June 1981, were irradiated for each dose in the beginning of August. Prior to these irradiation experiments, the dose and dose uniformity were checked by the agar color dosimeters. After the irradiation, potatoes were stored in natural condition and their sprouting was observed. The potatoes irradiated by the improved rotating roller apparatus were almost completely sprout-inhibited by 20 krad irradiation. (author)

  15. Acute effects of gamma irradiation on vascular arterial tone

    International Nuclear Information System (INIS)

    Bourlier, V.; Diserbo, M.; Multon, E.; Verdetti, J.; Fatome, M.

    1995-01-01

    In rat aortic rings, we showed an increase in arterial tone during irradiation. This effect is acute reversible. This effect is only observed on pre-contracted rings and needs the integrity of vascular endothelium. The molecular mechanism of this effect is discussed. (author)

  16. Effects of x-irradiation on growth of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Dzoga, K.F.; Dimitrievich, G.S.; Sutton, H.G.; Griem, M.L.

    1984-01-01

    Effects of x-irradiation doses ranging from 0-2000 rads on vascular smooth muscle cells were measured. Explant cultures were from the medial layers of aortas from New Zealand rabbits. X-irradiation was delivered to narrow mediastinal port using a 250 kV Maxitron at a rate of 80 rads/min. and a S-C distance of 60 cm. Explantation was done either immediately following radiation or five days later. Two parameters were used to determine post-irradiation growth potential of these cells: number of outgrowing cells per seeded explant and size and number of cells/culture. Results were expressed as fraction of control. Irradiation immediately before explantation reduced number of cells/ explant 10% for 250 rads and over 50% for 500 rads. Doses of 1000 rads and over resulted in reductions of over 70% in number of growing explants and culture size. When five days were allowed to elapse between x-irradiation and explantation the same parameters were not significantly affected for doses of 500 rads or less. Doses of 1000 rads resulted in a reduction in number of cells of 40% and 2000 rads of over 80%. These results suggest the presence of a population of vascular repair cells five days following irradiation treatment. The nature of these cells is discussed

  17. Effect of x irradiation on the vascularization of experimental animal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Y; Ogawa, F; Nishiguchi, H; Tanaka, N; Murakami, K [Kyoto Prefectural Univ. of Medicine (Japan)

    1975-03-01

    The authors studied the effect of ionizing radiation on blood vessels and tumor growth in two animal tumor systems: a third generation isoplants of a mammary cancer and a spontaneously arising squamous cell carcinoma. Single cell suspensions were transplanted into a C3H and a C3Hf mouse respectively. They were irradiated once with 2000 rad when the tumors reached about 8 mm in diameter. Microangiography was performed at a constant temperature and pressure, and a contrast medium containing lead-oxide and gelatin was flushed the vena cava for 10 min. at 120 mmHg. Tumor shrinkage was followed by continuous regrowth. The basic vasculature of the mammary carcinoma consisted of abundant large and fine blood vessels corkscrewed or stretched from the periphery of the tumor to its center in complex reticular networks. One day after irradiation there were small scattered avascular areas which, by the third day formed a large central necrosis. Supervascularization was also observed, indicating that some hypoxic tumor cells could be reoxygenized. In 5 days vascularization was similar to that of a nonirradiated tumor. Conversely, The squamous cell carcinoma showed peripheral and central vascularization with abundant vascular and avascular areas and extravasion in the large avascular area. Two days after irradiation the vessels were dilated. At 3 days peripheral fine vessels were damaged but the central vasculature remained intact. Unlike the mammary carcinoma, supervascularization was not the typical finding. At 5 days, vascularization was similar to that of a nonirradiated tumor.

  18. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-01-01

    Full Text Available Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II- induced proliferation and migration of vascular smooth muscle cells (VSMCs. Dichlorofluorescein diacetate (DCFH-DA staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

  19. Research on sprout inhibition effect of refrigerated garlic by irradiation

    International Nuclear Information System (INIS)

    Zhang Xuan; He Jianzhong; Li Ruijun

    2005-01-01

    This paper researches the sprout inhibition effect by irradiation on refrigerated garlic. The results shows that, the garlic is still in the period of dormancy within 7 days after taken out from the refrigerated warehouse, and irradiation have a good sprout inhibition effect on it. The irradiation dose is 40-90 Gy, the same as that of the post harvest irradiation treatment on garlic. Refrigerate the Zhongmu Garlic (at -2 degree C-0 degree C) until the middle ten days of February the next year, place it at the room temperature (10 degree C-15 degree C) for 1-7 days after taking it out of the warehouse, then use 60 Co γ-ray to irradiate it until the absorbed dose reaches 40-90 Gy, the sprout inhibition effect can be realized. The test also indicates that the deposited time after taking out of the refrigerated warehouse is crucial to the sprout inhibition effect of refrigerated garlic by irradiation. (authors)

  20. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease in bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation

  1. Optimal dye concentration and irradiance for laser-assisted vascular anastomosis.

    Science.gov (United States)

    Ren, Zhen; Xie, Hua; Lagerquist, Kathryn A; Burke, Allen; Prahl, Scott; Gregory, Kenton W; Furnary, Anthony P

    2004-04-01

    This investigation was done in order to find optimal indocyanine green (ICG) concentration and energy irradiance in laser vascular welding. Many studies have shown that laser tissue welding with albumin solder/ICG may be an effective technique in surgical reconstruction. However, there are few reports regarding optimal laser settings and concentrations of ICG within the albumin solder in laser-assisted vascular anastomosis. Porcine carotid artery strips (n = 120) were welded in end-to-end by diode laser with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG at irradiance of 27.7, 56.7, and 76.9 W/cm(2), respectively. Temperature was measured by inserting thermocouples outside and inside the vessel. Tensile strength and histology were studied. Temperature and strength of the anastomosis significantly decreased (all p < 0.05) with increasing ICG concentration at 56.7 W/cm(2). Histological study showed minimal thermal injury limited to adventitia and no appreciable difference between all groups. ICG concentration within solder is the most important factor affecting both vascular temperature and tensile strength. The optimal balance between strength and minimal thermal injury may be achieved primarily at 56.7 W/cm(2) and 0.01 mM ICG.

  2. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    Science.gov (United States)

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  3. Revascularization of autogenous skin grafts placed on irradiated tissue

    International Nuclear Information System (INIS)

    Ueda, M.; Torii, S.; Kaneda, T.; Oka, T.

    1982-01-01

    Vascular changes in rat skin after irradiation were examined microangiographically. Revascularization of the skin transplanted during the chronic stage after irradiation was also studied. The results obtained through these examinations revealed higher vascular densities at the acute and the subacute stages, and low values at the chronic stages compared with those of the control. Furthermore, when the skin grafts were transplanted to the irradiated beds in the chronic stage, primary revascularization was scant, and the inhibited capillary proliferation in the recipient sites prevented new vessel penetration. This explains why grafts transplanted to previously irradiated beds fail to survive

  4. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  5. Inhibition of alloxan diabetes by low dose γ-irradiation before alloxan administration

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Takehara, Yoshiki; Yoshioka, Tamotsu; Utsumi, Kozo.

    1994-01-01

    We evaluated the inhibitory effects of whole body 60 Co-γ irradiation at a single low dose on alloxan-induced hyperglycemia in rats. (1) In rats that received alloxan, SOD activity in pancreas significantly decreased, but the decrease was inhibited by irradiation at a dose of 0.5 Gy. (2) Similarly, plasma peroxide, pancreatic peroxide, and blood glucose increased. However, the increase in pancreatic peroxide was inhibited by irradiation at a dose of 0.5 or 1.0 Gy and the increase in blood glucose by irradiation at 0.5 Gy. (3) After alloxan administration, degranulation was observed in cells, but this was inhibited by irradiation at 0.5 Gy. These results suggest that alloxan diabetes was inhibited by the increase of SOD activity in pancreas after low dose irradiation at 0.5 Gy. (author)

  6. Irradiation in the setting of collagen vascular disease: acute and late toxicity

    International Nuclear Information System (INIS)

    Morris, Monica; Powell, Simon

    1996-01-01

    Purpose: Based upon reports of greater toxicity from radiation therapy, collagen vascular diseases have been considered a contraindication to irradiation. We assessed the acute and late complication rate of radiation therapy in patients with collagen vascular disease. Methods and Materials: A retrospective chart review was undertaken to analyze acute and late toxicity in the 96 patients with documented collagen vascular disease (CVD) who were irradiated between 1960 and 1995. The majority had rheumatoid arthritis (55); 14 had systemic lupus erythematosus; 7 polymyositis or dermatomyositis; 7 ankylosing spondylitis; 4 scleroderma; 2 juvenile rheumatoid arthritis; and the remainder various mixed connective tissue disorders. Mean follow up of survivors was 6.3 years from time of irradiation. Treatment was megavoltage in all but 8 cases. Doses ranged from 6 to 70Gy, with an average of 41.7Gy. Treatment of 32 sites was combined with chemotherapy, 15 concurrent with irradiation. Surgery was involved in the treatment of 46 sites. Toxicity was scored using the RTOG acute and the RTOG/EORTC Late Effects on Normal Tissues radiation morbidity scoring scales. Results: Overall, 127 sites were evaluable in 96 patients. Significant (grade 3 or higher) acute complications were seen in 15 of 127 (11.8%) of irradiated sites. The actuarial incidence of significant late complications at 5 and 10 years was 16% and 24%, respectively. There was a single in-field sarcoma. 2 patients had treatment-related deaths, one from leukencephalopathy and the other from postoperative wound infection. Univariate analysis revealed late effects to be more severe in those receiving combined modality treatment (p=.03), and in those with significant acute reactions (p=.0001). Patients with rheumatoid arthritis had less severe late effects than those with other collagen vascular diseases (6% vs 37% at 5 years, p=.0001). We did not demonstrate a difference in late effects according to radiation dose, timing

  7. Inhibition of alloxan diabetes by low dose {gamma}-irradiation before alloxan administration

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Kiyonori [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Takehara, Yoshiki; Yoshioka, Tamotsu; Utsumi, Kozo

    1994-10-01

    We evaluated the inhibitory effects of whole body {sup 60}Co-{gamma} irradiation at a single low dose on alloxan-induced hyperglycemia in rats. (1) In rats that received alloxan, SOD activity in pancreas significantly decreased, but the decrease was inhibited by irradiation at a dose of 0.5 Gy. (2) Similarly, plasma peroxide, pancreatic peroxide, and blood glucose increased. However, the increase in pancreatic peroxide was inhibited by irradiation at a dose of 0.5 or 1.0 Gy and the increase in blood glucose by irradiation at 0.5 Gy. (3) After alloxan administration, degranulation was observed in cells, but this was inhibited by irradiation at 0.5 Gy. These results suggest that alloxan diabetes was inhibited by the increase of SOD activity in pancreas after low dose irradiation at 0.5 Gy. (author).

  8. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  9. Study of inhibition on lipid oxidation of irradiated pork

    International Nuclear Information System (INIS)

    Ha Yiming

    2006-03-01

    It was studied that the effect factors of irradiation dose, preservation temperature, oxygen content and antioxidant on lipid oxidation of irradiated pork. A mechanism was explained on lipid oxidation of irradiated pork. The results showed that irradiation might aggravate lipid oxidation of pork and that decreased preservation temperature and oxygen content of the packaging, added antioxidant also could effectively inhibit lipid oxidation of irradiated pork. (authors)

  10. Sprouting inhibition of rhizomes by gamma irradiation

    International Nuclear Information System (INIS)

    Hilmy, Nazly; Chosdu, Rahayu

    1985-01-01

    Sprouting inhibition by gamma irradiation to prolong the storage life of 4 species of rhizomes, namely curcuma domestica, kaemferia galanga, curcuma xanthoriza and curcuma aeruginosa, has been carried out. Two groups of samples were used, freshly harvested rhizomes and fresh rhizomes which have been stored for about two weeks. The samples were packed in a plastic net bag, each contained about 100 grams of rhizomes. Irradiation was carried out at room temperature at the doses of 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20 and 0.25 kGy. Post irradiation storage was done at room temperature with relative humidity ranging between 85 and 95%. The results showed that irradiation doses of 0.06 to 0.08 kGy was sufficient to inhibit sprouting of freshly harvested rhizomes and prolonged its storage life for 6 weeks, while in the other group sprouting still occured at the dose of 0.25 kGy. Irradiation dose up to 0.25 kGy did not cause significant effect on moisture and volatile oil contents, as well as volatile oil characteristics of the samples. About 50% of weight losses were found either in irradiated or unirradiated samples after being stored for 8 weeks. Odour and texture were evaluated organoleptically while mould growth and insect damage were observed visually. (author)

  11. Inhibition of coronary blood flow by a vascular waterfall mechanism.

    Science.gov (United States)

    Downey, J M; Kirk, E S

    1975-06-01

    The mechanism whereby systole inhibits coronary blood flow was examined. A branch of the left coronary artery was maximally dilated with an adenosine infusion, and the pressure-flow relationship was obtained for beating and arrested states. The pressure-flow curve for the arrested state was shifted toward higher pressures and in the range of pressures above peak ventricular pressure was linear and parallel to that for the arrested state. Below this range the curve for the beating state converged toward that for the arrested state and was convex to the pressure axis. These results were compared with a model of the coronary vasculature that consisted of numerous parallel channels, each responding to local intramyocardial pressure by forming vascular waterfalls. When intramyocardial pressure in the model was assigned values from zero at the epicardium to peak ventricular pressure at the endocardium, pressure-flow curves similar to the experimental ones resulted. Thus, we conclude that systole inhibits coronary perfusion by the formation of vascular waterfalls and that the intramyocardial pressures responsible for this inhibition do not significantly exceed peak ventricular pressure.

  12. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    Science.gov (United States)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  13. Studies on sprout inhibition of onions by gamma irradiation

    International Nuclear Information System (INIS)

    Thomas, P.; Srirangarajan, A.N.; Limaye, S.P.

    1975-01-01

    Sprout inhibition of onions by gamma irradiation was found to be influenced by the physiological state of the bulbs at the time of irradiation, radiation dose and the storage temperature after irradiation. Sprouting was minimal during storage at ambient temperature (26 to 32 0 C) while exposure to low temperature (4 to 20 0 C) or widely fluctuating diernal temperature (20 0 C min to 30 0 C max) accelerated it. Six to nine Krad inhibited sprouting during storage under the above conditions only if the bulbs were irradiated within a fortnight of harvest when they were in the dormant state. Twenty-five Krad caused a transient stimulation of sprouting regardless of the time of irradiation while 6 to 12 Krad only stimulated sprouting when the time interval between harvest and irradiation exceeded three weeks. Irradiation at all dose levels cause discoloration of the growth centre, the extent of which was minimal in bulbs exposed to low doses soon after harvest and in those stored at ambient temperature. (author)

  14. Late vascular effects of whole brain X-irradiation in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y [Tsukuba Univ., Sakma, Ibaraki (Japan). Inst. of Clinical Medicine; Phillips, T L [California Univ., San Francisco (USA). Dept. of Radiation Oncology

    1982-01-01

    The whole brains of mice were irradiated with 250kVp X-rays at 120 rads min/sup -1/ (1.6 mm Cu HVL, TSD 50 cm), and a histological study was carried out. The dose range of X-irradiation was from 1,300 to 2,500 rads, i.e., 1,300, 1,500, 1,750, 2,000, and 2,500 rads. Eighty-six mice were used for histological examination. For microscopic examination, the mice were killed at regular postirradiation intervals between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. The brains were removed immediately thereafter, fixed in Bouin's solution, and embedded in paraffin. A histological examination was performed by a morphometric estimation of vascular lesions, in which the degree of the damage to the arterial system was scored in whole serial brain section. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectactic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large arteries, were observed. Dose-dependent incidence of the fibrinoid necrosis increased between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 to 87 weeks, and can be used to quantify the vessel injury, and that fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis.

  15. Late vascular effects of whole brain X-irradiation in the mouse

    International Nuclear Information System (INIS)

    Yoshii, Y.; Phillips, T.L.

    1982-01-01

    The whole brains of mice were irradiated with 250kVp X-rays at 120 rads min -1 (1.6 mm Cu HVL, TSD 50 cm), and a histological study was carried out. The dose range of X-irradiation was from 1,300 to 2,500 rads, i.e., 1,300, 1,500, 1,750, 2,000, and 2,500 rads. Eighty-six mice were used for histological examination. For microscopic examination, the mice were killed at regular postirradiation intervals between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. The brains were removed immediately thereafter, fixed in Bouin's solution, and embedded in paraffin. A histological examination was performed by a morphometric estimation of vascular lesions, in which the degree of the damage to the arterial system was scored in whole serial brain section. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectactic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large arteries, were observed. Dose-dependent incidence of the fibrinoid necrosis increased between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 to 87 weeks, and can be used to quantify the vessel injury, and that fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis. (Author)

  16. X-irradiation affects all DNA replication intermediates when inhibiting replication initiation

    International Nuclear Information System (INIS)

    Loenn, U.; Karolinska Hospital, Stockholm

    1982-01-01

    When a human melanoma line was irradiated with 10 Gy, there was, after 30 to 60 min, a gradual reduction in the DNA replication rate. Ten to twelve hours after the irradiation, the DNA replication had returned to near normal rate. The results showed tht low dose-rate X-irradiation inhibits preferentially the formation of small DNA replication intermediates. There is no difference between the inhibition of these replication intermediates formed only in the irradiated cells and those formed also in untreated cells. (U.K.)

  17. Experimental study upon the effect of irradiation on callus formation of fracture. Observation of vascular alteration and callus formation

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, F [Nippon Dental Coll., Tokyo

    1981-02-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone.

  18. Late vascular effects in irradiated mice brain. In relation to experimental radionecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y; Maki, Y [Tsukuba Univ., Sakura, Ibaraki (Japan); Phillips, T L

    1982-03-01

    The whole brains of mice were irradiated with 250 kVp X-ray at 120 rad min/sup -1/ (1.6 mm Cu HVL, TSD 50 cm) and a histological study was done. The dose range of X-irradiation was from 1300 to 2500 rads. i.e., 1300, 1500, 1750, 2000, and 2500 rads. In the microscopic examination, the mice were killed at the regular postirradiation intervals of between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. A histological examination was performed by a morphometric estimation of vascular lesion in which the degree of the damage to the arterial system was scored through whole serial brain sections. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectatic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large artery were observed. Incidence of the fibrinoid necrosis increased dose dependently between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 - 87 weeks and can be used to quantify the vessel injury and a fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis.

  19. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    Science.gov (United States)

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  20. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo

    International Nuclear Information System (INIS)

    Kern, Johann; Steurer, Michael; Gastl, Günther; Gunsilius, Eberhard; Untergasser, Gerold

    2009-01-01

    The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on in vitro and in vivo angiogenesis. Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. In vivo effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model. Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts in vitro, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers α-smooth muscle cell actin (ASMA) and proteoglycan (NG2). Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels

  1. The inhibition of repair in UV irradiated human cells

    International Nuclear Information System (INIS)

    Collins, A.R.S.; Schor, S.L.; Johnson, R.T.

    1977-01-01

    Three different assay procedures are used to determine the effects of hydroxyurea on excision repair in UV-irradiated HeLa cells. At the cytological level, incubation of UV-irradiated metaphase cells with hydroxyurea caused chromosome decondensation. Using a modified alkaline sucrose gradient sedimentation technique involving minimal lysis before centrifugation, a marked retardation was found in the sedimentation of DNA from UV-irradiated cells incubated for a short period with hydroxyurea. The effect of hydroxyurea on the incorporation of [ 3 H]thymidine by UV-irradiated G1 cells was found to depend on the concentration of thymidine present in the medium. The results point to an inhibition of repair DNA synthesis by hydroxyurea (or deoxyadenosine), at the level of the supply of DNA precursors, i.e. in the same way that these agents inhibit semiconservative DNA synthesis. In the presence of these inhibitors, single-strand gaps accumulate in the DNA

  2. Assessment of vascularity in irradiated and nonirradiated maxillary and mandibular minipig alveolar bone using laser doppler flowmetry.

    NARCIS (Netherlands)

    Verdonck, H.W.; Meijer, G.J.; Laurin, T.; Nieman, F.H.; Stoll, C.; Riediger, D.; Stoelinga, P.J.W.; Baat, C. de

    2007-01-01

    PURPOSE: The purpose of this animal study was to confirm that laser Doppler flowmetry (LDF) is a reproducible method for the assessment of maxillary and mandibular alveolar bone vascularity and that there is less vascularity in irradiated mandibular and maxillary bone compared to nonirradiated bone.

  3. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Smith, D.P.; Regan, J.D.; Blevins, R.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect on hydroxyurea was observed at the concentration of 2mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65-70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well. (Auth.)

  4. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.A. (Oak Ridge National Lab., TN); Blevins, R.D.; Carrier, W.L.; Smith, D.P.; Regan, J.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect of hydroxyurea was observed at the concentration of 2 mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65 to 70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well.

  5. Technology of sprouting inhibition by irradiation for ginger storage

    International Nuclear Information System (INIS)

    Feng Shuangqing; Wang Shoujing; Yu Zihou; Sun Shouyi; Zou Jiwan; Lei Peng

    2003-01-01

    The study results showed that the proper irradiation dose for ginger sprouting inhibition was 0.08-0.40 kGy and the maximum tolerable irradiation dose for ginger was 0.4 kGy. Treatment with proper irradiation combined with PE film package could keep ginger fresh after 120 days of storage and the fresh ratio was above 90%. In order to obtain good storage results, keeping lower absorbed dose ununiformity was necessary. Content of V C and Ca was not affected by the irradiation with 0.08-0.25 kGy

  6. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.

    Science.gov (United States)

    Reichman, David E; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P; Taketo, Makoto M; Rosenwaks, Zev; James, Daylon

    2018-01-08

    Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. © 2018. Published by The Company of Biologists Ltd.

  7. A case with post-irradiation cerebral vascular disease accompanied by Cushing's disease

    International Nuclear Information System (INIS)

    Shinoda, Keiichi; Kuriyama, Takanobu; Kimura, Fumiharu; Kawamura, Hiroshi; Takamatsu, Junta; Mozai, Toshiji

    1986-01-01

    A 37-year-old man with Cushing's disease developed cerebral infarction 13 years after Co-60 irradiation of a total dose of 60 Gy for pituitary adenoma. Cerebral angiography showed stenosis or occlusion of the bilateral carotid arteries and basilar artery which were in the radiation fields. A basophilic adenoma was resected, and symptoms of Cushing's disease have resolved. The vascular lesions are likely to be not only radiation-induced, but also stimulated by hyperlipemia and hypertension associated with Cushing's disease. It is recommended to eliminate factors, such as hyperlipemia and hypertension, stimulatig vascular damage in the management of patients treated with radiation therapy. The relevant literature is reviewed. (Namekawa, K.)

  8. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  9. Effects of irradiation on the pulmonary hemodynamics and the pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Ohkuda, Kazuhiro; Watanabe, Shinkichi; Okada, Shinichiroh

    1982-01-01

    In 4 sheeps, base lines of hemodynamics and lymph dynamics were observed for 2 hours, and then 1,000 rad of 60 Co was irradiated to the inferior lobes of the lung. Pulmonary hemodynamics and lymph dynamics were continuously observed, and water and protein permeability of the irradiated pulmonary vessels was evaluated. In 4 control sheeps, no change in pulmonary hemodynamics and lymph dynamics was noted. In the irradiated group, there was no remarkable change in pulmonary hemodynamics for 6 to 8 hours after 60 Co irradiation. Pulmonary lymph flow began to increase 2 hours after irradiation to about 1.7 times the base line level after 4 hours. The increase in pulmonary lymph flow was accompanied by decrease in plasma protein concentration and increase in protein concentration of the lung lymph, resulting in an apparent increase in the ratio of lymph/plasma protein concentration. Water and protein leak from the pulmonary vessels increased. A photomicroscopic observation revealed dilatation of the lymphatic vessels in the lung interstice and a mild pulmonary interstitial edema. Vascular damage, especially due to increased water and protein permeability of the lung capillary vessels, occurred immediately after 60 Co irradiation. (Ueda, J.)

  10. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  11. The behavior of the vascular system in the experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yamaura, Hirotsugu; Matsuzawa, Taiju; Sato, Haruo; Ito, Yasuhiko.

    1975-01-01

    The rat ascites hepatoma AH109A transplanted and grown in the rat transparent chamber developed a tumor specific vascular system, the process of which was quantitatively studied because of the vascular length, surface area, and volume per mm 3 of tissue. The values changed characteristically in each stage of the course. The tumor was irradiated in a chamber with 3000 R of 60 Co γ-rays, and the tumor cells died leaving behind highly dense capillary networks, which gradually returned to normal level by 7 days after irradiation. The blood vessels, either preformed or newly formed, in the control tissue without tumor were not damaged by this dose. But the proliferation of capillary buds were inhibited slightly with 400 R and completely with 4000 R. (auth.)

  12. Sprout inhibition by gamma irradiation in fresh ginger (Zingiber officinale Roscoe)

    International Nuclear Information System (INIS)

    Yusof, N.

    1990-01-01

    A study on sprout inhibition by gamma irradiation in fresh ginger of a local variety was carried out. Fresh ginger was irradiated at the doses of 0, 25, 50 and 80 Grays (Gy) and stored at temperature 25-28 degrees C and relative humidity ranging from 76-96% for 4 months. The parameters observed were physiological weight loss, sprouting, external appearance, fungal infection, moisture content, water activity, crude fiber content and total sugar. The results show that irradiation at the doses studied effectively inhibited sprouting in ginger when compared to the nonirradiated samples. However, radiation was unable to extend the shelf-life as all samples started to deteriorate after 2 months storage

  13. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization

    Directory of Open Access Journals (Sweden)

    Wang Wen-Quan

    2012-11-01

    Full Text Available Abstract Background Promotion of endothelial normalization restores tumor oxygenation and obstructs tumor cells invasion, intravasation, and metastasis. We therefore investigated whether a vasoactive drug, tanshinone IIA, could inhibit metastasis by inducing vascular normalization after palliative resection (PR of hepatocellular carcinoma (HCC. Methods A liver orthotopic double-tumor xenograft model in nude mouse was established by implantation of HCCLM3 (high metastatic potential and HepG2 tumor cells. After removal of one tumor by PR, the effects of tanshinone IIA administration on metastasis, tumor vascularization, and survival were evaluated. Tube formation was examined in mouse tumor-derived endothelial cells (TECs treated with tanshinone IIA. Results PR significantly accelerated residual hepatoma metastases. Tanshinone IIA did not inhibit growth of single-xenotransplanted tumors, but it did reduce the occurrence of metastases. Moreover, it inhibited PR-enhanced metastases and, more importantly, prolonged host survival. Tanshinone IIA alleviated residual tumor hypoxia and suppressed epithelial-mesenchymal transition (EMT in vivo; however, it did not downregulate hypoxia-inducible factor 1α (HIF-1α or reverse EMT of tumor cells under hypoxic conditions in vitro. Tanshinone IIA directly strengthened tube formation of TECs, associated with vascular endothelial cell growth factor receptor 1/platelet derived growth factor receptor (VEGFR1/PDGFR upregulation. Although the microvessel density (MVD of residual tumor tissue increased after PR, the microvessel integrity (MVI was still low. While tanshinone IIA did not inhibit MVD, it did dramatically increase MVI, leading to vascular normalization. Conclusions Our results demonstrate that tanshinone IIA can inhibit the enhanced HCC metastasis associated with PR. Inhibition results from promoting VEGFR1/PDGFR-related vascular normalization. This application demonstrates the potential clinical

  14. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    Science.gov (United States)

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  15. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.; Busse, P.M.

    1977-01-01

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  16. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).

    Science.gov (United States)

    Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P

    2014-02-01

    An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid

  17. The behavior of the vascular system in the experimental tumor radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Matsuzawa, T; Sato, H [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Ito, Yasuhiko

    1975-07-01

    The rat ascites hepatoma AH109A transplanted and grown in the rat transparent chamber developed a tumor specific vascular system, the process of which was quantitatively studied because of the vascular length, surface area, and volume per mm/sup 3/ of tissue. The values changed characteristically in each stage of the course. The tumor was irradiated in a chamber with 3000 R of /sup 60/Co ..gamma..-rays, and the tumor cells died leaving behind highly dense capillary networks, which gradually returned to normal level by 7 days after irradiation. The blood vessels, either preformed or newly formed, in the control tissue without tumor were not damaged by this dose. But the proliferation of capillary buds were inhibited slightly with 400 R and completely with 4000 R.

  18. Inability of donor total body irradiation to prolong survival of vascularized bone allografts: Experimental study in the rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    At the present time, the toxic side effects of recipient immunosuppression cannot be justified for human non-vital organ transplantation. Total body irradiation has proven effective in ablating various bone-marrow-derived and endothelial immunocompetent cellular populations, which are responsible for immune rejection against donor tissues. Irradiation at a dose of 10 Gy was given to donor rats six days prior to heterotopic transplantation of vascularized bone allografts to host animals. Another group of recipient rats also received a short-term (sixth to fourteenth day after grafting), low dose of cyclosporine. Total body irradiation was able merely to delay rejection of grafts across a strong histocompatibility barrier for one to two weeks, when compared to nonirradiated allografts. The combination of donor irradiation plus cyclosporine did not delay the immune response, and the rejection score was similar to that observed for control allografts. Consequently, allograft viability was quickly impaired, leading to irreversible bone damage. This study suggest that 10 Gy of donor total body irradiation delivered six days prior to grafting cannot circumvent the immune rejection in a vascularized allograft of bone across a strong histocompatibility barrier

  19. Significance of bacterial flora in abdominal irradiation-induced inhibition of lung metastases

    International Nuclear Information System (INIS)

    Matsumoto, T.; Ando, K.; Koike, S.

    1988-01-01

    We have previously reported that abdominal irradiation prior to i.v. injection of syngeneic tumor cells reduced metastases in lung. Our report described an investigation of the significance of intestinal organisms in the radiation effect. We found that eliminating intestinal organisms with antibiotics totally abolished the radiation effect. Monoassociation of germ-free mice revealed that the radiation effect was observable only for Enterobacter cloacae, never for Streptococcus faecium, Bifidobacterium adlesentis, or Escherichia coli. After abdominal irradiation of regular mice, E. cloacae multiplied in cecal contents, adhered to mucous membranes, invaded the cecal wall, and translocated to mesenteric lymph nodes. Intravenous administration of E. cloacae in place of abdominal irradiation inhibited metastases. E. cloacae-monoassociated mice developed fewer metastases than germ-free mice, and the reduction was further enhanced by abdominal irradiation. We concluded that abdominal irradiation caused the invasion of E. cloacae from the mucous membrane of the intestine and inhibited formation of lung metastases

  20. Selective inhibition of precursor incorporation into ribosomal RNA in gamma-irradiated Tetrahymena pyriformis

    International Nuclear Information System (INIS)

    Ernst, S.G.; Oleinick, N.L.; Rustad, R.C.; Greenblatt, R.M.

    1979-01-01

    Sublethal doses of γ radiation are known to inhibit total RNA synthesis in the ciliate protozoan Tetrahymena. To determine if the synthesis of a particular class of RNA is preferentially inhibited, pulse-labeled RNA was isolated from normal exponentially growing cells, irradiated cells, and cells in which total RNA synthesis had recovered to the pre-irradiation level. The RNAs were analyzed by SDS-polyacrylamide gel electrphoresis and oligo(dT)-cellulose column chromatography. Inhibition of RNA synthesis primarily involves ribosomal RNA. However, radiation does not cause a delay in the processing of precursor rRNA or a preferential loss of either of the mature rRNAs. Following irradiation, poly(A)-containing RNA [poly(A+)RNA] is synthesized at a rate up to three times greater than the control rate. The elevated poly(A+)RNA synthesis occurs during the period of depressed rRNA synthesis and even after rRNA synthesis has recovered to its pre-irradiation rate. While the sizes of the total cellular ribonucleoside triphosphate pools are depressed in the irradiated cells, these pools probably do not represent the actual compartments containing the precursors for RNA synthesis, and the observed changes cannot explain the modifications in macromolecular synthesis in irradiated Tetrahymena. (Auth.)

  1. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.

    Science.gov (United States)

    Liu, Chia-Chi; Karimi Galougahi, Keyvan; Weisbrod, Robert M; Hansen, Thomas; Ravaie, Ramtin; Nunez, Andrea; Liu, Yi B; Fry, Natasha; Garcia, Alvaro; Hamilton, Elisha J; Sweadner, Kathleen J; Cohen, Richard A; Figtree, Gemma A

    2013-12-01

    Glutathionylation of the Na(+)-K(+) pump's β1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na(+)-K(+) pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific β-subunit isoform expression and receptor-coupled pathways. As Na(+)-K(+) pump activity is an important determinant of vascular tone through effects on [Ca(2+)]i, we have examined the role of oxidative regulation of the Na(+)-K(+) pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. β1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na(+)-K(+)ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K(+)-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na(+)-K(+) ATPase and decrease in K(+)-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of β1-subunit. Knock-out of FXYD1 dramatically decreased K(+)-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased β1-subunit glutathionylation, and enhanced K(+)-induced vasorelaxation. Ang II inhibits the Na(+)-K(+) pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump's β1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na(+)-K(+) pump and may have an

  3. Inhibition of gluconeogenesis in the perfusing liver of irradiated rats

    International Nuclear Information System (INIS)

    Borovikova, G.V.; Dokshina, G.A.; Ermakova, G.N.; Mashkova, N.Yu.

    1981-01-01

    It was shown on the perfusing liver taken from rats on the 1st and 3d days after irradiation in a dose of 18.06x10 -2 C/kg that insulin (400 μunits/ml) and taurine (40 mg%) exerted an inhibiting action on the rate of gluconeogenesi.s and transamination, catalyzed by alanine aminoferase and aspartate aminoferase, in a soluble fraction of the irradiated rat liver. The gluconeogenic capacity and the reactivity of the isolated organ were shown to decrease on the 3d day after irradiation [ru

  4. Retrospective Study on Laser Treatment of Oral Vascular Lesions Using the "Leopard Technique": The Multiple Spot Irradiation Technique with a Single-Pulsed Wave.

    Science.gov (United States)

    Miyazaki, Hidetaka; Ohshiro, Takafumi; Romeo, Umberto; Noguchi, Tadahide; Maruoka, Yutaka; Gaimari, Gianfranco; Tomov, Georgi; Wada, Yoshitaka; Tanaka, Kae; Ohshiro, Toshio; Asamura, Shinichi

    2018-06-01

    This study aimed to retrospectively evaluate the efficacy and safety of laser treatment of oral vascular lesions using the multiple spot irradiation technique with a single-pulsed wave. In laser therapy for vascular lesions, heat accumulation induced by excessive irradiation can cause adverse events postoperatively, including ulcer formation, resultant scarring, and severe pain. To prevent heat accumulation and side effects, we have applied a multiple pulsed spot irradiation technique, the so-called "leopard technique" (LT) to oral vascular lesions. This approach was originally proposed for laser treatment of nevi. It can avoid thermal concentration at the same spot and spare the epithelium, which promotes smooth healing. The goal of the study was to evaluate this procedure and treatment outcomes. The subjects were 46 patients with 47 oral vascular lesions treated with the LT using a Nd:YAG laser (1064 nm), including 24 thick lesions treated using a combination of the LT and intralesional photocoagulation. All treatment outcomes were satisfactory without serious complications such as deep ulcer formation, scarring, bleeding, or severe swelling. Laser therapy with the LT is a promising less-invasive treatment for oral vascular lesions.

  5. Expression of bone morphogenic protein 2/4, transforming growth factor-β1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis

    International Nuclear Information System (INIS)

    Schultze-Mosgau, Stefan; Lehner, Bernhard; Roedel, Franz; Wehrhan, Falk; Amann, Kerstin; Kopp, Juergen; Thorwarth, Michael; Nkenke, Emeka; Grabenbauer, Gerhard

    2005-01-01

    the transition area was 17% in Group 1 and 48% in Group 2 (p = 0.001). Compared with the nonirradiated rats, reduced enchondral and perichondral ossification was found in the healing area after RT, with a reduction of BMP2/4 and osteocalcin expression. TGF-β 1 and collagen I expression in the transition area to the irradiated osseous graft bed was significantly increased compared with that in the nonirradiated osseous graft bed. Conclusion: After RT, osseous healing of vascular bone grafts is significantly reduced and may be a result of radiation-induced inhibition of BMP2/4 and osteocalcin expression. In addition, induction of TGF-β 1 and collagen I expression occurs. Because the effects of the TGF-β superfamily are manifold and partially unknown, additional research directions could be in the exogenous application of BMP2/4 and inhibition of TGF-β 1 by antibody treatment to search for appropriate therapeutic approaches for improving osseous healing in the irradiated graft bed

  6. Inhibition effect on lipid oxidation of irradiated pork by adding hawthorn flavonoid extract

    International Nuclear Information System (INIS)

    Wang Xiaoming; Liu Chao; Cao Lei; Li Kexi

    2011-01-01

    The antioxidant activity of hawthorn flavonoid extract and its inhibition effect on irradiated pork lipid oxidant were investigated. The results showed that hawthorn flavonoids had efficient scavenging effect on DPPH free radicals (DPPH ·), and the scavenging rate reached 56% while 2 ml of 0.035 mg/ml hawthorn flavonoid extract was added. Hawthorn flavonoid extract can inhibition the lipid oxidation of irradiated pork effectively and it showed a stronger inhibition ability while the hawthorn flavonoid extract were used together with Vc. It is concluded that can decrease the lipid oxidation of pork, hawthorn flavonoid extract is a remarkable natural antioxidant. (authors)

  7. Inhibition of microbial growth by spice extracts and their effect of irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Meixu, G.

    1994-01-01

    The antimicrobial activity of black pepper, rosemary and red pepper has been tested against 12 microorganisms. Alcoholic extracts of these spices were not exhibited strong activity against gram-negative bacteria in laboratory media. The growth of Bacillus subtilis and Clostridium botulinum type A was inhibited by 1% of black pepper, 0.5% rosemary and 0.03% red pepper. A little reduction of antimicrobial activity to B. subtilis was observed on extracts of gamma-irradiated black pepper or rosemary at 10 and 50 kGy. In the case of red pepper, irradiation of 10 or 50 kGy enhanced a little of antimicrobial activity to B. subtilis. Similar effect of irradiation was also observed on the inhibition of aflatoxin production by Aspergillus parasiticus in SL broth. (author)

  8. Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma.

    Directory of Open Access Journals (Sweden)

    Orit Itzhaki

    Full Text Available Vasculogenic mimicry (VM describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo. We tested the ability of nicotinamide, the amide form of vitamin B3 (niacin, which acts as an epigenetic gene regulator through unique cellular pathways, to modify VM. Nicotinamide effectively inhibited the formation of VM structures and destroyed already formed ones, in a dose-dependent manner. Remarkably, VM formation capacity remained suppressed even one month after the complete withdrawal of Nicotimamid. The inhibitory effect of nicotinamide on VM formation could be at least partially explained by a nicotinamide-driven downregulation of vascular endothelial cadherin (VE-Cadherin, which is known to have a central role in VM. Further major changes in the expression profile of hundreds of genes, most of them clustered in biologically-relevant clusters, were observed. In addition, nicotinamide significantly inhibited melanoma cell proliferation, but had an opposite effect on their invasion capacity. Cell cycle analysis indicated moderate changes in apoptotic indices. Therefore, nicotinamide could be further used to unravel new biological mechanisms that drive VM and tumor progression. Targeting VM, especially in combination with anti-angiogenic strategies, is expected to be synergistic and might yield substantial anti neoplastic effects in a variety of malignancies.

  9. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  10. Exogenous modulation of TGF-β1 influences TGF-βR-III-associated vascularization during wound healing in irradiated tissue

    International Nuclear Information System (INIS)

    Wehrhan, F.; Schultze-Mosgau, S.; Grabenbauer, G.G.; Roedel, F.; Amann, K.

    2004-01-01

    Background and purpose: Following preoperative radiotherapy prior to ablative surgery of squamous epithelial cell carcinomas of the head and neck region, wound-healing disorders occur. Previous experimental studies showed altered expression of transforming growth factor-(TGF-)β isoforms following surgery in irradiated graft beds. Altered levels of TGF-β 1 are reported to promote fibrosis and to suppress vascularization during wound healing, whereas expression of TGF-β receptor-III (TGF-βR-III) is associated with vascularization. The aim of the study was to analyze the influence of anti-TGF-β 1 treatment on TGF-βR-III-associated vascularization in the transition area between irradiated graft bed and graft. Material and methods: Wistar rats (male, weight 300-500 g) underwent preoperative irradiation of the head and neck region with 40 Gy (four fractions of 10 Gy each; n=16 animals). A free myocutaneous gracilis flap taken from the groin was then transplanted to the neck in all rats. The time interval between operation and transplantation was 4 weeks. Eight animals received 1 μg anti-TGF-β 1 into the graft bed by intradermal injection on days 1-7 after surgery. On days 3, 7, 14, 28, 56, and 120, skin samples were taken from the transition area between transplant and graft bed and from the graft bed itself. Immunohistochemistry was performed using the ABC-POX method to analyze the TGF-βR-III and E-selection expression. Histomorphometry was performed to analyze the percentage and the area of positively stained vessels. Results: A significantly higher expression of TGF-βR-III was seen in the irradiated and anti-TGF-β 1 -treated graft bed in comparison to the group receiving preoperative irradiation followed by transplantation alone. The percentage of TGF-βR-III positively staining capillaries from the total amount of capillaries in the anti-TGF-β 1 -treated graft bed was higher than in the group irradiated only. The total area of capillaries was also higher

  11. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  12. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  13. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chao-Feng [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (China); Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan (China); Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (China); Huang, Han-Li [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Peng, Chieh-Yu [Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan (China); School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Lee, Yu-Ching [The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan (China); Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan (China); Wang, Hui-Po [College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Teng, Che-Ming [College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Pan, Shiow-Lin, E-mail: slpan@tmu.edu.tw [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan (China)

    2016-08-15

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.

  14. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    International Nuclear Information System (INIS)

    Lin, Chao-Feng; Huang, Han-Li; Peng, Chieh-Yu; Lee, Yu-Ching; Wang, Hui-Po; Teng, Che-Ming; Pan, Shiow-Lin

    2016-01-01

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [ 3 H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.

  15. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    International Nuclear Information System (INIS)

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-01-01

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  16. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  17. Irradiation inhibits the regeneration of aneurogenic limbs

    International Nuclear Information System (INIS)

    Wallace, H.; Maden, M.

    1976-01-01

    The developing arms of axolotl larvae from the 2-digit stage onward and the aneurogenic arms of surgically denervated larvae maintained in parabiosis are able to regenerate after amputation. Such regeneration is uniformly inhibited by local irradiation of the arm, whether innervated or not. This demonstration refutes a recent hypothesis that x-rays interfere with a special activity of nerves required for regeneration, and supports the earlier concept that x-rays act directly on those cells which must proliferate to form the regenerated tissues

  18. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  19. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    Science.gov (United States)

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  20. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells.

    Science.gov (United States)

    Santacruz-Gomez, K; Silva-Campa, E; Melendrez-Amavizca, R; Teran Arce, F; Mata-Haro, V; Landon, P B; Zhang, C; Pedroza-Montero, M; Lal, R

    2016-04-07

    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.

  1. Beta irradiation inhibits neo-intimal formation in vein grafts

    International Nuclear Information System (INIS)

    Lang Xiaoou; Ji Shenquan; Zeng Ke; Li Jun; Liu Bingbing; Ma Wenfeng; Zhang Qiang

    2002-01-01

    Objective: The study was to evaluate the effect of beta irradiation on intimal proliferation response in vein grafts. Methods: An autogenous vein graft model was established in 40 rats by transplanting internal branch of jugular vein to carotid artery by end-to-end anastomosis. The vein was irradiated by 32 P before anastomosis. Four dose schedules were studied: (1) control graft (nonirradiated); (2) irradiated with 8 Gy; (3) 18 Gy; and (4) 36 Gy. The grafted veins were harvested at 2 weeks after the operation. IH (intimal hyperplasia) and SMC (smooth muscle cell) proliferation were histologically and immuno-histochemically observed and analyzed by a computer digitalising system. Results: In 18 Gy and 36 Gy-irradiated grafts compared with the control, there was a significant decrease in the average intimal thickness (P 0.05). Immunohistochemical analysis of PCNA indicated decrease of positive cells in both 18 Gy and 36 Gy groups compared with 8 Gy and the control group (P 0.05) groups, and there was also no significant difference between 8 Gy and the control group (P > 0.05). Conclusion: These preliminary results demonstrate that proper dose of beta irradiation in vein graft inhibits smooth muscle cells proliferation and neo-intimal hyperplasia in rat

  2. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  3. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-01-01

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  4. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  5. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo

    OpenAIRE

    Br?nnimann, Daniel; Bouchet, Audrey; Schneider, Christoph; Potez, Marine; Serduc, Rapha?l; Br?uer-Krisch, Elke; Graber, Werner; von Gunten, Stephan; Laissue, Jean Albert; Djonov, Valentin

    2016-01-01

    International audience; Our goal was the visualizing the vascular damage and acute inflammatory response to micro-and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25– 100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surro...

  6. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  7. 3,3'Diindolylmethane suppresses vascular smooth muscle cell phenotypic modulation and inhibits neointima formation after carotid injury.

    Directory of Open Access Journals (Sweden)

    Hongjing Guan

    Full Text Available 3,3'Diindolylmethane (DIM, a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms.DIM dose-dependently inhibited the platelet-derived growth factor (PDGF-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK 4/6 as well as an increase in p27(Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK3β, extracellular signal-regulated kinase1/2 (ERK1/2, and signal transducers and activators of transcription 3 (STAT3. Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration.These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly mediated by the inhibition of PDGF-Rβ and the

  8. Study the relationship between the multi embryo and the sprout inhibition of onion by gamma irradiation

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2006-04-01

    To determine the possible effect on sprout inhibition of onions, Indolbutyric acid (IBA) and cytokinins (5000 ppm), low doses of gamma irradiation (0, 30, 60, 90 and 120 Gy) in a 60 Co package irradiator, combined treatment of IBA and cytokinin followed by irradiation, were applied on the cultivars Baladi red and Baladi white produced in middle and south area of Syria. Treatments were done immediately and after 4, 7, 10 weeks of harvest. After treated and untreated samples were stored at room temperature. Weight loss, sprouting percentage and length of sprouting were determined after 8 months of storage. Results indicated that, there were no significant differences (P<0.05) in weight loss, sprouting percentage and length of sprouting between the treated and untreated bulbs with IBA and cytokinin. Gamma irradiation reduced the weight loss, and inhibited the sprouting when the irradiation were done after 4 weeks of harvest, and reduced it when the irradiation were done after 7 or 10 weeks of harvest. (author)

  9. Can low-dose irradiation of donor hearts before transplantation inhibit graft vasculopathy?

    International Nuclear Information System (INIS)

    Shirasawa, Bungo; Hamano, Kimikazu; Ito, Hiroshi; Gohra, Hidenori; Katho, Tomoe; Fujimura, Yoshihiko; Esato, Kensuke

    1999-01-01

    This experimental study was conducted to histopathologically determine whether the low-dose irradiation of donor hearts before transplantation can inhibit graft vasculopathy. Immediately after donor F 344 rat hearts were removed, they were treated with a single dose of radiation using 7.5 Gy, 15 Gy, or no radiation (control group). The F 344 hearts were transplanted into Lewis rats heterotopically, and cyclosporine A was injected intramuscularly for 20 days after transplantation in all groups. The hearts were harvested 90 days after transplantation, and examined for intimal thickening using elastica van Gieson staining. Severe intimal thickening was observed in both the irradiated groups, the percent intimal area of the coronary arteries was significantly increased in both these groups, to 34.3±12.9 in the 7.5 Gy group and 37.0±8.9 in the 15 Gy group, compared with 23.1±9.8 in the control group (p<0.01). In conclusion, these findings show that low-dose irradiation to donor hearts before transplantation does not inhibit graft vasculopathy. (author)

  10. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  11. Reconstruction of severe anophthalmic orbits and atresic eye sockets after enucleation and irradiation of retinoblastoma by vascular anastomosed free dorsalis pedis flaps' transplantation.

    Science.gov (United States)

    Bi, Xiaoping; Fan, Xianqun; Zhou, Huifang; Shi, Wodong; Xiao, Caiwen; Lin, Min; Li, Zhenkang

    2011-05-01

    Retinoblastoma is a common malignant intraocular tumor in childhood, and most patients require enucleation or exenteration even with irradiation. Severe anophthalmic orbits and atresic eye sockets are not rare. We conducted a retrospective study to evaluate the results of surgical management of reconstruction of severe anophthalmic orbits and atresic eye sockets with vascular anastomosed free dorsalis pedis flap transplantation. There were 5 patients (5 eyes) who underwent reconstructive surgery of severe anophthalmic orbits and atresic eye sockets after enucleation and irradiation of retinoblastoma in our hospital during the 3 years. All patients had enucleation and irradiation immediately after the retinoblastoma was diagnosed and had never worn artificial eyes because of the atresic eye sockets. Vascular anastomosed free dorsalis pedis flaps, whose dimensions were typically 6.5 × 5.5 cm(2), were transplanted to reconstruct the severe anophthalmic orbits and atresic eye sockets. The donor sites were covered by free abdominal skin flaps. All the vascular anastomosed free dorsalis pedis flaps were valid after more than 6 months of follow-up. And then all the 5 patients underwent secondary autogenous dermal fat implantation to augment the supraorbital area depression. After the 2-stage reconstruction surgery, the dimensions of the eye sockets were adequate, and all patients were able to wear their prosthesis and had a satisfactory cosmetic result. Implantation of alloplastic materials is not recommended because of insufficient blood supply of the irradiated orbital area.

  12. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells.

    Science.gov (United States)

    Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang

    2018-05-01

    Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.

  13. Pathogenesis of Cognitive Decline Following Therapeutic Irradiation for Head and Neck Tumors

    International Nuclear Information System (INIS)

    Abayomi, Olubunmi K.

    2002-01-01

    Cognitive decline is a significant but largely unrecognized sequela following irradiation for several head and neck tumors, particularly cancer of the nasopharynx and paranasal sinuses. In this article the cellular mechanisms of radiation-induced vascular damage in the temporal lobe and its effects on the medial temporal lobe memory systems are described. Recognition of the mechanisms and site of the injury should permit the use of treatment planning systems, such as 3-dimensional (3-D) conformal and intensity-modulated radiotherapy (IMRT) techniques, to spare large volumes of the temporal lobe from receiving a high dose. Furthermore, the emerging concepts of vascular irradiation damage as an inflammatory fibroproliferative response to endothelial injury may permit the application of measures directed at inhibiting the expression of proinflammatory genes and thus mitigate the inflammatory response. Moreover, comorbid factors such as hypertension, diabetes, lipidemia, obesity and smoking are known to promote atherogenesis and therefore may exacerbate radiation-induced vascular damage. Control of these factors may also reduce the incidence and severity of this sequela

  14. Migration inhibition of immune mouse spleen cells by serum from x-irradiated tumor-bearing mice

    International Nuclear Information System (INIS)

    Moroson, H.

    1978-01-01

    Tumor-specific antigens of the chemically induced MC 429 mouse fibrosarcoma were detected in a 3 M KCl extract of tumor by the inhibition of migration of specifically immune spleen cells. Using this assay with serum from tumor-bearing mice no tumor antigen was detected in serum of mice bearing small tumors, unless the tumor was exposed to local x irradiation (3000 R) 1 day prior to collection of serum. It was concluded that local x irradiation of tumor caused increased concentration of tumor antigen in the serum. When the tumor was allowed to grow extremely large, with necrosis, then host serum did cause migration inhibition of both nonimmune and immune spleen cells. This migration-inhibition effect was not associated with tumor antigen, but with a nonspecific serum factor

  15. Sprout inhibition and change in organic components of potato by gamma-irradiation

    International Nuclear Information System (INIS)

    Rahman, M.S.; Kume, Tamikazu; Ishigaki, Isao.

    1989-12-01

    Radiation technology for sprout inhibition and change in organic components of potato by irradiation were investigated. Dose distribution in the package filled with potatoes (depth 45cm, density: 0.56g/cm 3 ) was measured using Fricke dosimeter. When the package was irradiated at dose rate of 5 x 10 5 , 1 x 10 5 and 5 x 10 4 rad/hr, the dose uniformities were calculated as 1.79, 1,45 and 1.35, and the relative throughput capacities were 1.0, 0.26 and 0.14, respectively. After 7 months storage, the sprout of potatoes was not observed at 10 krad irradiation while 57% of potatoes was sprouted at 5 krad. The contents of oxalic and malic acids were slightly increased by irradiation up to 100 krad while that of citric and succinic acids were not changed. The change in contents of these organic acids during storage was almost the same in both unirradiated and irradiated samples. Sucrose content was reached maximum after 8 days in 15 krad irradiated sample while it was increased through 40 days storage in 300 krad irradiated sample. The increase in sucrose contents by irradiation was higher in cortical tissue than in medullary tissue. (author)

  16. Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-11-01

    Full Text Available The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2 inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY rats, spontaneously hypertensive rats (SHR and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries.

  17. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  18. Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

    Science.gov (United States)

    Kee, Hae Jin; Cho, Soo-Na; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kim, In Kyeom; Hong, Young Joon; Park, Hyung Wook; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Jeong, Myung Ho

    2014-11-01

    Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Inhibiting trophoblast PAR-1 overexpression suppresses sFlt-1-induced anti-angiogenesis and abnormal vascular remodeling: a possible therapeutic approach for preeclampsia.

    Science.gov (United States)

    Zhao, Yin; Zheng, YanFang; Liu, XiaoXia; Luo, QingQing; Wu, Di; Liu, XiaoPing; Zou, Li

    2018-03-01

    Is it possible to improve vascular remodeling by inhibiting the excessive expression of protease-activated receptor 1 (PAR-1) in trophoblast of abnormal placenta? Inhibition of trophoblast PAR-1 overexpression may promote placental angiogenesis and vascular remodeling, offering an alternative therapeutic approach for preeclampsia. PAR-1 is high-affinity receptor of thrombin. Thrombin increases sFlt-1 secretion in trophoblast via the activation of PAR-1. It is reported that the expression of both thrombin and PAR-1 expression are increased in placentas of preeclampsia patients compared with normal placentas. Trophoblast cells were transfected with PAR-1 short hairpin RNA (shRNA) or PAR-1 overexpression plasmids in vitro. Tube formation assays and a villus-decidua co-culture system were used to study the effect of PAR-1 inhibition on placental angiogenesis and vascular remodeling, respectively. Placentas from rats with preeclampsia were transfected with PAR-1 shRNA to confirm the effect of inhibiting PAR-1 overexpression in placenta. The trophoblast cell line HTR-8/SVneo was transfected with PAR-1 shRNA or PAR-1 overexpression plasmids. After 48 h, supernatant was collected and the level of sFlt-1 secretion was measured by ELISA. Human umbilical cord epithelial cells and a villus-decidua co-culture system were treated with conditioned media to study the effect of PAR-1 inhibition on tube formation and villi vascular remodeling. A preeclampsia rat model was established by intraperitoneal injection of L-NAME. Plasmids were injected into the placenta of the preeclampsia rats and systolic blood pressure was measured on Days 15 and 19. The effect of different treatments was evaluated by proteinuria, placental weights, fetal weights and fetal numbers in study and control groups. The level of serum sFlt-1 in rats with preeclampsia was also measured. Changes in the placenta microvessels were studied by histopathological staining. PAR-1 shRNA inhibited PAR-1 expression and

  20. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    Science.gov (United States)

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  1. Inhibition of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation

    International Nuclear Information System (INIS)

    Liu Bing; Min Fengling; Xie Yi; Zhou Qingming; Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjian; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2006-01-01

    The effect of AdCMV-p53 gene transfection induced by γ-ray irradiation on human colorectal adenocarcinoma cells was investigated. The HT-29 cells were irradiated by 0.5, 1.0, 2.0 Gy 60 Co γ-rays, then were transfected with AdCMV-GFP (a replication of deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein) or AdCMV-p53 (a replication of deficient recombinant adenoviral vector containing a CMV promoter and carrying human wild p53 gene). Cytotoxity was measured by clonogenic survival assay; apoptosis and the p53 expression were determined by flow cytometry. The results show that the pre-exposure of 0.5 Gy 60 Co γ-rays significantly enhanced the inhibition of HT-29 cells with AdCMV-53 transfection and promoted cell apoptosis. The inhibition rates for the groups of pre-exposure with 0.5 Gy and transfection with 40 and 80 MOI AdCMV-p53 were 50% and 20% higher than those for the groups of the mere transfection, and 40% more than the mere irradiation group. In the case of higher than 0.5 Gy pre-exposure, no significant difference was found between the pre-exposure with transfection group and the mere irradiation group. So 0.5 Gy pre-irradiation and AdCMV-p53 transfection obviously increases the inhibition of HT-29 cells with AdCMV-p53 transfection. The optimum condition is the lower than 1.0 Gy pre-exposure combined with the lower than 80 MOI AdCMV-p53 transfection. (authors)

  2. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  3. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation o...

  4. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Kim

    2015-01-01

    Full Text Available Thread embedding acupuncture (TEA is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P=0.001 versus UV in UVB irradiated mice and also inhibited degradation of collagen fibers (P=0.010 versus normal by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9. Western blot data showed that activation of c-Jun N-terminal kinase (JNK induced by UVB (P=0.002 versus normal group was significantly inhibited by TEA treatment (P=0.005 versus UV with subsequent alleviation of MMP-9 activation (P=0.048 versus UV. These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  5. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kang, Shin-il [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Yoo, Kyu-dong [Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju (Korea, Republic of); Lee, Mi-Yea [Department of Nursing Kyungbok University, Pocheon (Korea, Republic of); Yoo, Hwan-Soo; Hong, Jin-Tae [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Shin, Hwa-Sup [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Yun, Yeo-Pyo, E-mail: ypyun@chungbuk.ac.kr [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  6. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    International Nuclear Information System (INIS)

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway

  7. Effects of irradiation on the vascularity of lung

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K; Takegawa, Y; Nagase, M; Akiyama, H [Tokushima Univ. (Japan). School of Medicine

    1975-06-01

    Effects of irradiation on the intravascular volume of the lung were studied with respect to changes in intravascular volume over a period of time after irradiation, the effect of fractionation of the dose and the influence of the irradiation dose rate. After a single irradiation with 1000 rad or 3000 rad, applied locally to the lung, the intravascular volume decreased significantly in 1 to 3 months after irradiation. The changes in the intravascular volumes of lungs could be lessened by fractionation of the dose or by low dose rate irradiation.

  8. SRC family kinase inhibitor SU6656 enhances antiangiogenic effect of irradiation

    International Nuclear Information System (INIS)

    Cuneo, Kyle C.; Geng Ling; Tan Jiahuai; Brousal, Jeffrey; Shinohara, Eric T.; Osusky, Katherine; Fu, Allie; Shyr, Yu; Wu Huiyun; Hallahan, Dennis E.

    2006-01-01

    Purpose: Src family kinases (SFK) have been identified as molecular targets. SU6656 is a small-molecule indolinone that specifically inhibits this family of kinases. Methods and Materials: Human umbilical vein endothelial cells were used to study the effects of SFK inhibition. Western blot analysis was performed to determine the effect of SFK inhibition on the PI3K/Akt pathway and caspase cleavage. Apoptosis was studied by propidium iodide staining of nuclei. Angiogenesis was examined using capillary tubule formation in Matrigel. Tumor response was further studied in vivo using Lewis lung carcinoma cells implanted into the dorsal skin fold of mice in the window model and in the hind limb in the tumor volume model. Results: Clonogenic survival of endothelial cells was decreased after the combined therapy of SU6656 and radiation compared with radiotherapy alone. Furthermore, SFK inhibition by SU6656 attenuated radiation-induced Akt phosphorylation and increased radiation-induced apoptosis and vascular endothelium destruction. In vivo, SU6656 administered before irradiation significantly enhanced radiation-induced destruction of blood vessels within the tumor windows and enhanced tumor growth delay when administered during fractionated irradiation. Conclusions: This study demonstrates the potential use of SFK inhibition to enhance the effects of ionizing radiation during radiotherapy

  9. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    Science.gov (United States)

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  10. Inhibition of proliferative activity in tissue culture in vivo of esophagus and stomach tumour cells under preoperative irradiation

    International Nuclear Information System (INIS)

    Zinchenko, V.A.; Okulov, L.V.; Gol'dshmid, B.Ya.

    1988-01-01

    Inhibition of proliferative activity of tumor cells as a result of radiation effect. Tumor tissue taken from patiets with preoperative tumor irradiation by 30 Gy cumulative dose (5 Gy per a session) and from patients whose tumors were not subjected to irradiation (control) was used. The tumor tissue was cultivated in the diffusion chamber and then implanted to the abdominal cavity of the non-inbred male rats. On preparations in the growth area pathomorphological changes were evaluated, the share of mitotically dividing and DNA-synthesizing cells was determined. The absence of growth area around the explant, obvious reduction of mitotic activity and DNA-synthesizing function of cells in preparations of irradiated tumors in 88 % of cases testify to the inhibition of the stomach cardial section and esophagus tumor tissue repopulation after radiation effect. The investigation results confirm the advisability of preoperative irradiation of patients with tumors of the given localization

  11. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    International Nuclear Information System (INIS)

    Lamy, Sylvie; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-01-01

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  12. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  13. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells12

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation ...

  14. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Alya, G.

    1999-10-01

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10 -5 - 3.10 -5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (E m ax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With E m ax 1 Gy>E m ax 3 Gy>E m ax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10 -8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  15. Protective effect of S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721) on irradiation-induced inhibition of intestinal transport function

    International Nuclear Information System (INIS)

    Chen, T.S.; Ando, M.

    1983-01-01

    The purpose of this study was to investigate the protective effect of S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721) on whole-body irradiation-induced inhibition of intestinal transport function. The jejunal transport of fluid and sugars was studied in male Swiss-Webster mice before and 3 days after whole-body irradiation (1000 rads). The rates of glucose and water transport were decreased by 86 and 70%, respectively, in irradiated animals. However, the rate of transport of 3-O-methyl-D-glucose (3MG) was not affected. In mice receiving WR-2721 (500 mg/kg, ip) 15 to 30 min prior to whole-body irradiation, net water flux was unaffected and the rate of D-glucose transport was decreased only 8%. WR-2721 administered alone (500 mg/kg, ip) had no effect on either D-glucose transport or net water flux across the jejunal mucosa. The results suggest that WR-2721 protects against irradiation-induced inhibition of some intestinal transport functions

  16. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    Directory of Open Access Journals (Sweden)

    Wessen Maruwge

    2008-11-01

    Full Text Available Wessen Maruwge1, Pádraig D’Arcy1, Annika Folin1,2, Slavica Brnjic1, Johan Wejde1, Anthony Davis1, Fredrik Erlandsson3, Jonas Bergh1,2, Bertha Brodin11Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 2Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; 3Bayer Pharmaceutical Corporation, SwedenAbstract: The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 µM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma.Keywords: soft tissue sarcoma, kinase inhibitors, targeted therapy, vascularization

  17. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    International Nuclear Information System (INIS)

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  18. High-dose external beam irradiation inhibits neointima formation in stented pig coronary arteries

    International Nuclear Information System (INIS)

    Verheye, Stefan; Coussement, Patrick K.; Salame, Mahomed Y.; Fallahi, Payam; Cui Jianhua; Chronos, Nicolas A.F.; King, Spencer B.; Crocker, Ian R.; Robinson, Keith A.

    2001-01-01

    Purpose: To evaluate high-dose external beam irradiation (EBRT) in a pig coronary stent preparation because low and intermediate-dose EBRT failed to show inhibition of neointima formation in stented animal models. Methods and Materials: Thirty-five stents were implanted in the coronary arteries of 17 pigs. Seven pigs were exposed to a single dose of 21 Gy EBRT immediately after stenting. Ten stented, nonirradiated pigs served as controls. After 4 weeks, the study arteries and myocardium were examined by light and scanning electron microscopy. Results: Compared with controls, 21 Gy EBRT resulted in a larger lumen area (7.57±1.67 mm 2 vs. 4.00±1.63 mm 2 , p 2 vs. 3.36±2.26 mm 2 , p<0.001) and a smaller maximal intimal thickness (0.16±0.09 mm vs. 0.68±0.31 mm, p<0.001). Unresorbed intramural hemorrhages and adherent mural thrombi were present in the irradiated vessels, which also showed incomplete re-endothelialization. The irradiated hearts demonstrated diffuse interstitial and perivascular inflammation and fibrosis. Conclusions: EBRT at 21 Gy to the entire heart significantly inhibited neointima formation in stented pig coronary arteries but also resulted in incomplete re-endothelialization, myocardial inflammation, and fibrosis. Improvements in localization and delivery techniques are required to allow clinical implementation of this technique

  19. Chemoresistance to 5-FU inhibited by 635 nm LED irradiation in CD133+ KB cell line.

    Science.gov (United States)

    Kim, Donghwi; Park, Mineon; Jang, Hyunwoong; Hyun, Hoon; Lim, Wonbong

    2018-01-01

    Consistent with cancer stem cell theory, a small fraction of cancer cells, described as cancer stem cells (CSCs), may promote tumor recurrence and anti-cancer drug resistance. Therefore, much effort has been devoted to the development of CSC targeted therapy to vanquish drug resistance. In this study, we have investigated the effect of multiple light-emitting diode (LED) irradiation treatments with conventional anti-cancer drugs on CSC-like oral cancer cells that acquired stemness by ectopic over expression of CD133. To evaluate combined LED irradiation anti-cancer drug effects, we investigated the chemosensitizing effect of 635 nm irradiation on 5-fluorouracil (5FU)-treated KB CD133+ and KB Vec cells, interrogating the underlying molecular mechanisms associated with stemness and apoptosis that are responsible for chemopreventive activity. In addition, combination therapy with LED irradiation and 5-FU treatment was carried out in KB CD133+ and KB Vec cell-inoculated mouse models. LED irradiation of 635 nm inhibited CSC-like properties consistent with a decrease in OCT4 and NANOG protein expression, reducing colony-forming ability. In addition, LED irradiation enhanced 5-FU-induced cytotoxicity and improved 5-FU chemosensitivity in KB CD133+ via enhancement of apoptosis. These findings were validated in vivo, wherein LED irradiation combined with 5-FU treatment inhibited tumor growth in KB CD133+ -inoculated mice. Collectively, our results provide novel evidence for 635 nm irradiation-induced 5-FU chemosensitization of CSC in oral cancer. In addition, this research highlights that 635 nm LED irradiation may serve as an adjunct treatment to conventional chemotherapeutic drugs in patients with oral cancer.

  20. Irradiation effects for the growth inhibition of weed seeds invaded from foreign countries

    International Nuclear Information System (INIS)

    Takatani, Yasuyuki; Ito, Hitoshi

    1999-01-01

    Weeds of foreign origin have been invaded through imported maize or dried grass which using for animal feeds, and causing serious damages to agricultural crops and farm animals in Japan. These weeds are spreading mainly through animal feeds to feces. For the purpose to decrease the damage from these weeds, we investigated the gamma-irradiation effect on 7 species of the weed seed to suppress the germination or elongation of stem and root. After the irradiation of the weed seeds, all species kept the ability of germination even at 4 kGy in petri dish cultivation, whereas decreased the germination ratio in some species. However, many species of weed decreased the ability on elongation of stem or root below l kGy irradiation. Furthermore, all of species lost the ability on the development of root hair and appearance of first leaf after germination of seeds below 1 kGy irradiation. From this study, necessary dose for growth inhibition was estimated to be 1 kGy which should be able to apply with combination treatment of the animal feeds for elimination of pathogenic bacteria such as salmonellae at 3 to 5 kGy irradiation. (author)

  1. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Lu, Chieh-Han; Hsu, Yung-Yuan; Lin, Kung-Hsuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-01-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation. (paper)

  2. Stimulation and inhibition of erythropoiesis in donors and hematopoietic effect in irradiated recipient

    Energy Technology Data Exchange (ETDEWEB)

    Ninkov, V; Piletic, O; Stepanovic, D [Institut za Nuklearne Nauke Boris Kidric, Vinca (Yugoslavia); Belgrade Univ. (Yugoslavia). Inst. of Histology)

    1976-03-01

    Regeneration dynamics in bone marrow and spleen was studied in rats after irradiation of 800 R and transfusion of bone marrow cells from donors treated in different ways. Priority of the microenvironment of the recipient or of the information obtained in cell donors with respect to further hematopoietic cell differentiation was studied in irradiated recipients. Rats irradiated with 800 R were used as recipients in the experiments. The donors of marrow cells were the rats with stimulated or inhibited erythropoiesis. Stimulation of erythropoiesis was induced by bleeding and experimental polycythemia was provoked by packed erythrocytes. According to our results, it can be concluded that the processes of postirradiation hematopoiesis after transplantation of the bone marrow cells depend on the number and proliferative state of both donors and recipient stem cells, and microenvironment, not excluding the information introduced with the donor cell transplant.

  3. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    Science.gov (United States)

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Inhibiting the repair of DNA damage induced by gamma irradiation in rat thymocytes

    International Nuclear Information System (INIS)

    Smit, J.A.; Stark, J.H.

    1994-01-01

    This study assessed the ability of 11 established and potential radiosensitizing agents to retard the repair of radiation-induced DNA damage with a view to enhancing the immunosuppressive effects of in vivo lymphoid irradiation. The capability of irradiated rat thymocytes to repair DNA damage was assessed by an adaptation of the fluorimetric unwinding method. Three compounds, 3-aminobenzamide (3-AB), novobiocin and flavone-8-acetic acid (FAA), inhibited repair significantly. We also report the effect of low-dose irradiation combined with repair inhibitors on the relationship between DNA strand breaks, fragmentation, cell viability and use of nicotinamide adenine dinucleotide (NAD). DNA fragmentation was increased by 1 mM/l FAA, 1 mM/l novobiocin and 50 μM/l RS-61443 within 3 h of incubation. The latter two compounds also proved cytotoxic. All three drugs augmented the effect of ionizing radiation on the use of NAD. Of the agents investigated, FAA showed the most promise for augmenting the immunosuppressive action of irradiation at nontoxic, pharmacokinetically achievable concentrations. 33 refs., 1 fig., 2 tabs

  5. Inhibition of excision repair of DNA in u.v.-irradiated Escherichia coli by phenethyl alcohol

    International Nuclear Information System (INIS)

    Tachibana, A.; Yonei, S.

    1985-01-01

    Membrane-specific drugs such as procaine and chlorpromazine have been shown to inhibit excision repair of DNA in u.v.-irradiated E. coli. One possible mechanism is that, if association of DNA with the cell membrane is essential for excision repair, this process may be susceptible to drugs affecting the structure of cell membranes. We examined the effect of phenethyl alcohol, which is a membrane-specific drug and known to dissociate the DNA-membrane complex, on excision repair of DNA in u.v.-irradiated E. coli cells. The cells were irradiated with u.v. light and then held at 30 0 C in buffer (liquid-holding) in the presence or absence of phenethyl alcohol. It was found that phenethyl alcohol inhibits the liquid-holding recovery in both wild-type and recA strains, corresponding to its dissociating action on the DNA-membrane complex. Thus, the association of DNA with cell membrane is an important factor for excision repair in E. coli. Procaine did not show the dissociating effect, suggesting that at least two different mechanisms are responsible for the involvement of cell membrane in excision repair of DNA in E. coli. (author)

  6. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  7. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    Science.gov (United States)

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Chemical inhibition of cell recovery after irradiation with sparsely and densely ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evastratova, Ekaterina S.; Petin, Vladislav [A. Tsyb Medical Radiological Research Centre-branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk (Russian Federation); Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute (ARTI), Jeongeup (Korea, Republic of); Lim, Youg Khi [Dept. of Radiological Science, Gachon University, Incheon (Korea, Republic of)

    2017-02-15

    The dependence of cell survival on exposure dose and the duration of the liquid holding recovery (LHR) was obtained for diploid yeast cells irradiated with ionizing radiation of different linear energy transfer (LET) and recovering from radiation damage without and with various concentrations of cisplatin - the most widely used anticancer drug. The ability of yeast cells to recover from radiation damage was less effective after cell exposure to high-LET radiation, when cells were irradiated without drug. The increase in cisplatin concentration resulted in the disappearance of this difference whereas the fraction of irreversible damage was permanently enlarged independently of radiation quality. The probability of cell recovery was shown to be constant for various conditions of irradiation and recovery. A new mechanism of cisplatin action was suggested according with which the inhibition of cell recovery after exposure to ionizing radiations was completely explained by the production of irreversible damage.

  9. Chemical inhibition of cell recovery after irradiation with sparsely and densely ionizing radiation

    International Nuclear Information System (INIS)

    Evastratova, Ekaterina S.; Petin, Vladislav; Kim, Jin Hong; Kim, Jin Kyu; Lim, Youg Khi

    2017-01-01

    The dependence of cell survival on exposure dose and the duration of the liquid holding recovery (LHR) was obtained for diploid yeast cells irradiated with ionizing radiation of different linear energy transfer (LET) and recovering from radiation damage without and with various concentrations of cisplatin - the most widely used anticancer drug. The ability of yeast cells to recover from radiation damage was less effective after cell exposure to high-LET radiation, when cells were irradiated without drug. The increase in cisplatin concentration resulted in the disappearance of this difference whereas the fraction of irreversible damage was permanently enlarged independently of radiation quality. The probability of cell recovery was shown to be constant for various conditions of irradiation and recovery. A new mechanism of cisplatin action was suggested according with which the inhibition of cell recovery after exposure to ionizing radiations was completely explained by the production of irreversible damage

  10. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    Science.gov (United States)

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  11. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    Science.gov (United States)

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  12. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  13. Sprout inhibition of onions by irradiation

    International Nuclear Information System (INIS)

    Siddiqui, A.K.; Hossain, M.A.; Choudhury, M.S.U.; Matin, M.A.; Amin, M.R.; Hossain, M.M.

    1979-01-01

    Onions of a set grown local variety were gamma irradiated in the dose range of 2-8 Krad. The irradiated onions were then stored in 10 lb. bags and in single layer at an average ambient temperature of 83 0 F and 79% relative humidity. Radiation doses of 4 Krad and above were completely inhibitory to sprouting of onions. Weight loss and rot incidence were markedly reduced in irradiated samples up to 10 months in both jute bag and single layer storage. An analysis of the cost benefit revealed that commercial irradiation of onions is economically feasible in Bangladesh if post-irradiation of storage extends for a period of over 6 months. (author)

  14. Radiation-induced vascular lesions of the skin: an overview

    NARCIS (Netherlands)

    Flucke, U.E.; Requena, L.; Mentzel, T.

    2013-01-01

    Radiation-induced cutaneous vascular neoplasms occur infrequently and comprise benign, so-called atypical vascular lesions (AVL) and angiosarcomas (AS), often being high-grade malignant tumors. Both arise most frequently within previously irradiated skin in breast-conserving-treated mammary cancer

  15. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  16. Post-irradiation brain-necrosis resulting in apoplexia and death after 33 years of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, A [Foevarosi Laszlo Korhaz, Budapest (Hungary). Korbonctani es Korszoevettani Oszt.

    1980-04-01

    A case of post-irradiation brain-necrosis resulting in apoplexia of the cerebellum after 33 years of irradiation (19984 r.) of a presumptive cerebellar tumour is reported. The pathohistologic study revealed symptoms of the ''late'' damage and the vascular changes appeared to be the most prominent. The thickening of the vessel walls, hyperplasia of collagen fibres and deposition of calcium in the media, were the most characteristic lesions revealed. In some of the small vessels isolated calcification of the media was observed. It seems most probable that in the development of apoplexia vascular alterations could play an important role. In the available literature no report has been found on a similarly long interval elapsing between the irradiation and death.

  17. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    Science.gov (United States)

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  18. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    Science.gov (United States)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  19. Edge restenosis: impact of low dose irradiation on cell proliferation and ICAM-1 expression

    Directory of Open Access Journals (Sweden)

    Hannekum Andreas

    2006-07-01

    Full Text Available Abstract Background Low dose irradiation (LDI of uninjured segments is the consequence of the suggestion of many authors to extend the irradiation area in vascular brachytherapy to minimize the edge effect. Atherosclerosis is a general disease and the uninjured segment close to the intervention area is often atherosclerotic as well, consisting of neointimal smooth muscle cells (SMC and quiescent monocytes (MC. The current study imitates this complex situation in vitro and investigates the effect of LDI on proliferation of SMC and expression of intercellular adhesion molecule-1 (ICAM-1 in MC. Methods Plaque tissue from advanced primary stenosing lesions of human coronary arteries (9 patients, age: 61 ± 7 years was extracted by local or extensive thrombendarterectomy. SMC were isolated and identified by positive reaction with smooth muscle α-actin. MC were isolated from buffy coat leukocytes using the MACS cell isolation kit. For identification of MC flow-cytometry analysis of FITC-conjugated CD68 and CD14 (FACScan was applied. SMC and MC were irradiated using megavoltage photon irradiation (CLINAC2300 C/D, VARIAN, USA of 6 mV at a focus-surface distance of 100 cm and a dose rate of 6 Gy min-1 with single doses of 1 Gy, 4 Gy, and 10 Gy. The effect on proliferation of SMC was analysed at day 10, 15, and 20. Secondly, total RNA of MC was isolated 1 h, 2 h, 3 h, and 4 h after irradiation and 5 μg of RNA was used in standard Northern blot analysis with ICAM-1 cDNA-probes. Results Both inhibitory and stimulatory effects were detected after irradiation of SMC with a dose of 1 Gy. At day 10 and 15 a significant antiproliferative effect was found; at day 20 after irradiation cell proliferation was significantly stimulated. Irradiation with 4 Gy and 10 Gy caused dose dependent inhibitory effects at day 10, 15, and 20. Expression of ICAM-1 in human MC was neihter inhibited nor stimulated by LDI. Conclusion Thus, the stimulatory effect of LDI on SMC

  20. The effect of ionizing radiation on the filamentous actin of vascular endothelial cell

    International Nuclear Information System (INIS)

    Yao Xiaowu; Chen Shisheng; Yang Lihe; Lin Juelong; Yang Haiwei

    2006-01-01

    Objective: To observe the ionizing radiation effect on filamentous actin of vascular endothelial cell and explore its mechanism. Methods: The vascular endothelial cells were irradiated with 0, 2, 4, 6, 8, 10 and 12 Gy 60 Co γ-rays. The cytoskeleton was observed with CLSM at 6 hs after the irradiation and the cytoskeleton protein F-actin detected with flow cytometry after 12 and 24 hs. Results: The damage to cytoskeletons increased with the radiation dose. The cytoskeleton protein F-actin was significantly decreased at 12 hs after the irradiation, and then recovered after 24 hs. Conclusion: Ionizing radiation caused vascular endothelial cell injury by damaging the cytoskeleton and depolymerizating the F-actin. (authors)

  1. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Tg Ahbrizal Farizal Tg Ahmad; Norimah Yusof; Kamarudin Bahari; Kamaruddin Hashim

    2006-01-01

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  2. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    International Nuclear Information System (INIS)

    Guo Yanhong; Chen Kuanghueih; Gao Wei; Li Qian; Chen Li; Wang Guisong; Tang Jian

    2007-01-01

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE -/- mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% and 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury

  3. Effects of gamma irradiation on the plasma membrane of suspension-cultured apple cells. Rapid irreversible inhibition of H+-ATPase activity

    International Nuclear Information System (INIS)

    Dong, C.-Z.; Montillet, J.-L.; Triantaphylides, C.

    1994-01-01

    The effects of ionizing radiation, used in post-harvest treatment of fruit and vegetables. were investigated on cultured apple cells (Pyrus malus L. cv. Royal Red) on a short-term period. Irradiation (2 kGy) induced an increase of passive ion effluxes from cells and a decrease of cell capacity to regulate external pH. These alterations are likely due to effects on plasma membrane structure and function and were further investigated by studying the effects of irradiation on plasma membrane H + -ATPase activity. Plasma membrane-enriched vesicles were prepared and the H + -ATPase activity was characterized. Irradiation of the vesicles induced a dose dependent inhibition of H + -ATPase activity. The loss of enzyme activity was immediate, even at low doses (0.5 kGy), and was not reversed by the addition of 2mM dithiothreitol. This inhibition may be the result of an irreversible oxidation of enzyme sulfhydryl moieties and/or the result of changes induced within the lipid bilayer affecting the membrane-enzyme interactions. Further analysis of the H + -ATPase activity was carried out on vesicles obtained from irradiated cells confirming the previous results. In vivo recovery of activity was not observed within 5 h following the treatment, thus explaining the decrease of cell capacity to regulate external pH. This rapid irreversible inhibition of the plasma membrane H + -ATPase must be considered as one of the most important primary biochemical events occurring in irradiated plant material. (author)

  4. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids.

    Science.gov (United States)

    Hasebe, Yuki; Egawa, Kiyoshi; Yamazaki, Yoko; Kunimoto, Setsuko; Hirai, Yasuaki; Ida, Yoshiteru; Nose, Kiyoshi

    2003-10-01

    Screening using a reporter under the control of the hypoxia-response element (HRE) identified several flavonoids and homoisoflavonoids that inhibit the activation of HRE under hypoxic conditions. Among various compounds, isorhamnetin, luteolin, quercetin, and methyl ophiopogonanone B (MOB) were effective at 3 to 9 microg/ml in inhibiting the reporter activity. The expression of vascular endothelial growth factor (VEGF) mRNA during hypoxia was also inhibited by MOB in HepG2 cells, but the effective doses were 10 to 20 microg/ml. MOB caused destabilization of hypoxia-inducible factor (HIF)-1alpha, as revealed by Western blotting, that was dependent on proteasome activity and the tumor suppressor, p53. The tubular formation and migration of human umbilical vein endothelial cells was also inhibited by MOB. MOB is expected to act as an inhibitor of angiogenesis.

  5. Effect of inhibition of DNA synthesis on recovery of X-irradiated L5178Y-S cells. I

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Lange, C.S.

    1989-01-01

    Irradiated L5178Y-S cells (LY-S) were characterized by an exponential survival curve and the potentiation effect of split -dose irradiation. Previously it was found that in LY-S cells the reduction of DNA replicative synthesis rate affected the balance between the fixation and repair of sublethal damage (SLD) and of potentially lethal damage (PLD) in favor of repair. It was found now that a block of DNA synthesis by aphidicolin (APC), an inhibitor of DNA polymerase alpha, was sufficient to protect LY-S cells from fixation of PLD and SLD induced by X-rays. Treatment with APC 0.5 μg/ml for 2 h, efficiently inhibited DNA replication (95%) with minimal effect on survival. Inhibition of DNA synthesis by combined irradiation and APC was not significantly different from APC treatment alone. The level of protection by APC was dependent on the length of time between irradiation and APC application. An opposite effect was observed when the drug treatment had preceded irradiation: The killing effect of X-ray increased. The effect of aphidicolin treatment remained even after removal of APC and was dependent on the drug concentration and time between drug removal and irradiaton. These results are interpreted as indicating that X-ray damage was fixed in LY-S cells, because of their lack of ability to maintain the nucleotide pool balance, and that fixation took place during progression through the cell cycle. (author). 6 figs., 22 refs

  6. Post-irradiation brain-necrosis resulting in apoplexia and death after 33 years of irradiation

    International Nuclear Information System (INIS)

    Froehlich, A.

    1980-01-01

    A case of post-irradiation brain-necrosis resulting in apoplexia of the cerebellum after 33 years of irradiation (19984 r.) of a presumptive cerebellar tumour is reported. The pathohistologic study revealed symptoms of the ''late'' damage and the vascular changes appeared to be the most prominent. The thickening of the vessel walls, hyperplasia of collagen fibres and deposition of calcium in the media, were the most characteristic lesions revealed. In some of the small vessels isolated calcification of the media was observed. It seems most probable that in the development of apoplexia vascular alterations could play an important role. In the available literature no report has been found on a similarly long interval elapsing between the irradiation and death. (author)

  7. Radioisotope treatment for benign strictures of non-vascular luminal organs

    International Nuclear Information System (INIS)

    Shin, Ji Hoon

    2006-01-01

    Tissue hyperplasia in one of the most frequently encountered complications when self-expanding stents are placed in benign non-vascular luminal organ strictures, thus causing of the lumen. The investigators postulated that ionizing irradiation could be applied to prevent restenosis caused by tissue hyperplasia in non-vascular luminal organs as it reduced coronary or peripheral arterial narrowing successfully. The authors combined β-irradiation using 188 Re-MAG 3 solution with balloon for animal and clinical studies because this new treatment approach had the advantages such as low penetration depth of β-ray, self-centering irradiation, and mechanical effect of balloon dilation over using γ-irradiation with afterloading devices. In this article, the concept and mechanism of radioisotope balloon dilation, and animal and clinical studies using radioisotope balloon dilation are reviewed

  8. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  9. Simultaneous PLK1 inhibition improves local tumour control after fractionated irradiation

    International Nuclear Information System (INIS)

    Krause, Mechthild; Kummer, Berit; Deparade, Andre; Eicheler, Wolfgang; Pfitzmann, Dorothee; Yaromina, Ala; Kunz-Schughart, Leoni A.

    2013-01-01

    Purpose: Polo-like kinase 1 (PLK1) plays an important role in mitotic progression, is frequently overexpressed and associated with a poor prognosis of cancer patients, thus providing a promising target in anticancer treatment. Aim of the current project was to evaluate the effect of the novel PLK1 inhibitor BI 6727 in combination with irradiation. Material and methods: In vitro proliferation and radiation cell survival assays as well as in vivo local tumour control assays after single treatment and combined radiation and drug application were carried out using the squamous cell carcinoma models A431 and FaDu. In addition, cell cycle phases were monitored in vitro and in vivo. Results: BI 6727 showed a dose-dependent antiproliferative effect and an increase in the mitotic fraction. BI 6727 alone reduced clonogenic cell survival, while radiosensitivity in vitro (SF2) and in vivo (single-dose TCD 50 under clamped hypoxia) was not affected. In contrast, local tumour control was significantly improved after application of BI 6727 simultaneously to fractionated irradiation (A431: TCD 50 = 60.5 Gy [95% C.I. 57; 63] after IR alone and <30 Gy after combined treatment; FaDu: 49.5 Gy [43; 56 Gy] versus 32.9 Gy [26; 40]). Conclusions: Despite the lack of direct cellular radiosensitisation, PLK1 inhibition with BI 6727 during fractionated irradiation significantly improves local tumour control when compared to irradiation alone. This result is likely explained by a considerable effect on cell cycle and an independent cytotoxic potential of BI 6727

  10. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-01-01

    Highlights: ► PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. ► Metformin suppressed TNF-α-induced COX-2 and iNOS mRNA expression. ► Compound C and bpv (pic) increased iNOS and COX-2 protein expression. ► NF-κB activation was restored by inhibiting AMPK and PTEN. ► AMPK and PTEN regulated TNF-α-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK–PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the

  11. Preliminary study of the irradiation-induced modification of skin permeability

    International Nuclear Information System (INIS)

    Coelho, R.; Istin, M.

    1978-01-01

    Irradiation of the skin of an animal leads immediately to a strong increase in vascular permeability. If a dye is at once injected intraveinously it diffuses very rapidly in the irradiated zone, this becomes highly coloured and the colour intensity measurement gives a clue to the severity of the lesions produced. This phenomenon has been used in the past as a pharmacological test to study vascular permeability and is employed in this work to observe the effect of diosmine-titrated flavonoids on vascular permeability in inflammatory diseases. The capillary permeability increase due to local γ irradiation of rabbit skin has been accurately determined by measurement of the colouration observed after injection of Geigy Blue. Diosmine, injected intraperitoneally, protects the vascular system against increased permeability due to ionising radiations [fr

  12. Sprout inhibition in garlic (Allium sativum) and onion (Allium cepa L.) by gamma irradiation. Part of a coordinated programme on pre-commercial scale radiation treatment of food

    International Nuclear Information System (INIS)

    Curzio, O.A.

    1982-04-01

    With the aim of verifying the possibilities and circumstances of sprout inhibition and storage life extension of onion and garlic by gamma irradiation, onion bulbs of variety Valenciana Sintetica 14 and garlic bulbs of a coloured locally grown variety were subjected to irradiation with 3 Krad of 60 Co gamma rays. The dose rate was 2440 rad/min; the irradiation conditions warranted a Dsub(max)/Dsub(min) ratio of 1.25. The irradiated bulbs and control samples of non-irradiated bulbs were investigated for a period of 270 to 330 days. Weight loss, external and internal sprouting, signs of decay, and the percentage of commercial bulbs were observed with the following results. Weight loss was found to be less in irradiated bulbs than in controls - 22% against 40% for onion and 33% against 65% for garlic. The dose of gamma radiation employed was proved to be sufficient for sprout inhibition in both species and for partial inhibition of decay and softening. The aroma of garlic was not impaired by irradiation. For both products, gamma irradiation was found to prolong the period of commercial utilizability

  13. The effect of chronic nitric oxide inhibition on vascular reactivity and blood pressure in pregnant rats

    Directory of Open Access Journals (Sweden)

    Nilton Hideto Takiuti

    1999-09-01

    Full Text Available CONTEXT: The exact mechanism involved in changes in blood pressure and peripheral vascular resistance during pregnancy is unknown. OBJECTIVE:To evaluate the importance of endothelium-derivated relaxing factor (EDRF and its main component, nitric oxide, in blood pressure and vascular reactivity in pregnant rats. DESIGN: Clinical trial in experimentation animals. SETTING: University laboratory of Pharmacology. SAMPLE: Female Wistar rats with normal blood pressure, weight (152 to 227 grams and age (90 to 116 days. INTERVENTION: The rats were divided in to four groups: pregnant rats treated with L-NAME (13 rats; pregnant control rats (8 rats; virgin rats treated with L-NAME (10 rats; virgin control rats (12 rats. The vascular preparations and caudal blood pressure were obtained at the end of pregnancy, or after the administration of L-NAME in virgin rats. MAIN MEASUREMENTS: The caudal blood pressure and the vascular response to acetylcholine in pre-contracted aortic rings, both with and without endothelium, and the effect of nitric oxide inhibition, Nw-L-nitro-arginine methyl-ester (L-NAME, in pregnant and virgin rats. The L-NAME was administered in the drinking water over a 10-day period. RESULTS: The blood pressure decreased in pregnancy. Aortic rings of pregnant rats were more sensitive to acetylcholine than those of virgin rats. After L-NAME treatment, the blood pressure increased and relaxation was blocked in both groups. The fetal-placental unit weight of the L-NAME group was lower than that of the control group. CONCLUSION: Acetylcholine-induced vasorelaxation sensitivity was greater in pregnant rats and that blood pressure increased after L-NAME administration while the acetylcholine-induced vasorelaxation response was blocked.

  14. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role...

  15. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  16. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  17. Inhibition and recovery of the rate of DNA synthesis in V79 Chinese hamster cells following ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Ventura, A.M.; Meneghini, R.

    1984-01-01

    Chinese hamster fibroblasts (V79 cell line) exhibit the phenomenon of recovery of DNA synthesis from the initial inhibition observed after ultraviolet light irradiation, in the absence of significant excision of pyrimidine dimers. In an attempt to determine whether the initial inhibition and subsequent recovery can be accounted for by parallel variations in the rate of movement of the replication fork, the cells were pulse-labeled with radioactive bromodeoxyuridine at different times following irradiation and their DNA centrifuged in neutral CsCl density gradients. When DNA synthesis inhibition was at a maximum, an accumulation of DNA, of density intermediate between hybrid and nonsubstituted DNA, was noticed in the density-distribution profiles. The density distribution of DNA along the gradient can provide an estimate of the rate of movement of the replication fork, and the results indicate that most of the variation in the overall rate of DNA synthesis can be accounted for by a parallel variation in the rate of fork movement. (Auth.)

  18. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway.

    Science.gov (United States)

    Qiu, Cuiting; Zheng, Haijun; Tao, Huiren; Yu, Wenjun; Jiang, Xiaoyu; Li, Aiqin; Jin, Hui; Lv, Anlin; Li, Huan

    2017-09-01

    Vascular calcification is associated with cardiovascular disease as a complication of hypertension, hyperlipidemia, diabetes mellitus, and chronic kidney disease. Vitamin K2 (VK2) delays vascular calcification by an unclear mechanism. Moreover, apoptosis modulates vascular smooth muscle cell (VSMC) calcification. This paper aimed to study VK2-modified VSMC calcification and survival cell signaling mediated by growth arrest-specific gene 6 (Gas6) and its tyrosine kinase receptor Axl. Primary-cultured VSMCs were dose-dependently treated with VK2 in the presence of calcification medium for 8 days, or pre-treated for 1 h with/without the Axl inhibitor R428 (2 μmol/L) or the caspase inhibitor Z-VAD-fmk (20 μmol/L) followed by treatment with VK2 (10 μmol/L) or rmGas6 (200 nmol/L) in calcification medium for 8 days. Calcium deposition was determined by the o-cresolphthalein complexone assay and Alizarin Red S staining. Apoptosis was determined by TUNEL and flow cytometry using Annexin V-FITC and propidium iodide staining. Western blotting detected the expressions of Axl, Gas6, p-Akt, Akt, and Bcl2. VK2 significantly inhibited CaCl 2 - and β-sodium glycerophosphate (β-GP)-induced VSMC calcification and apoptosis, which was dependent on restored Gas6 expression and activated downstream signaling by Axl, p-Akt, and Bcl2. Z-VAD-fmk significantly inhibited CaCl 2 - and β-GP-induced VSMC calcification and apoptosis. Augmented recombinant mouse Gas6 protein (rmGas6) expression significantly reduced VSMC calcification and apoptosis. Furthermore, the Gas6/Axl interaction was inhibited by R428, which abolished the preventive effect of VK2 on CaCl 2 - and β-GP-induced apoptosis and calcification. These results suggest that Gas6 is critical in VK2-mediated functions that attenuate CaCl 2 - and β-GP-induced VSMC calcification by blocking apoptosis.

  19. Studies on sprout inhibition of onions by irradiation in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Gruenewald, T.

    1978-01-01

    The Federal Republic of Germany imports about 97% of the onions for human consumption, especially from the Netherlands and from 7 other countries. The onions are distributed for sale immediately without long storage in storehouses. Therefore the objective of this study was not primarily to clear the irradiation and storage processing but to obtain better information about the quality of imported irradiated onions and about the parameters influencing the quality. Seven varieties cultivated in Germany with different physical and sensory properties were irradiated with 10MeV electrons at doses of 5 or 10krad and stored at temperatures of +4, +9, +10 or +20 0 C. The time between harvest and irradiation and the storage conditions for this time were also varied. In all periods physical, chemical and sensory properties of fresh and cooked bulbs were tested and statistically analysed during the storage periods of 8 to 10 months after harvest. It could be demonstrated that a dose of 5krad of 10MeV electrons was high enough to inhibit sprouting in all varieties, independent of the storage conditions, if the irradiation was applied within 4 weeks after harvest. If more time elapsed between harvest and irradiation, reduced sprout suppression was obtained. The sensory quality of the onion bulbs, irradiated and stored for 8 months, was evaluated as only 1 or 2 points lower than at the beginning of storage, when tested as cooked vegetables. The influence of the variety and storage conditions on the properties was more evident than the influence of irradiation, apart from sprouting. However, the browning in the growth centre of the irradiated onion bulbs could not be ignored. Varying the time between harvest and irradiation had no effect, and different storage conditions demonstrated only that lower storage temperatures delayed the browning but did not prevent it. This will probably not influence the marketability of the onions and would be compensated by lower prices for the

  20. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  1. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  2. Immediate effect of irradiation on microvasculature

    International Nuclear Information System (INIS)

    Krishnan, L.; Krishnan, E.C.; Jewell, W.R.

    1988-01-01

    The immediate effects of irradiation on microvasculature in muscle in an animal model are described in this paper. By using triple isotopes of 125 I, 131 I, and 22 Na, the transcapillary transfer of albumin from the vascular bed to the extravascular space is determined in terms of mg/g of tissue, after single doses of 2 to 14 Gy. These results reveal an increase in the extravascular albumin immediately after irradiation and suggest an instantaneous compromise in vascular permeability even after 2 Gy. This effect was apparently dose related

  3. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Park, Young Hyun, E-mail: pyh012@sch.ac.kr [Department of Food Science and Nutrition, College of Natural Sciences, Soonchunhyang University, Asan (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  4. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  5. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-kappaB activation.

    Science.gov (United States)

    Tan, Hong-wei; Xing, Shan-shan; Bi, Xiu-ping; Li, Li; Gong, Hui-ping; Zhong, Ming; Zhang, Yun; Zhang, Wei

    2008-09-01

    Metabolic syndrome is associated with an increased incidence of atherosclerosis. Clinical studies have shown that calcium channel blockers (CCB) inhibit the progression of atherosclerosis. However, the underlying mechanism is unclear. We investigated the inhibitory effect of felodipine on adhesion molecular expression and macrophage infiltration in the aorta of high fructose-fed rats (FFR). Male Wistar rats were given 10% fructose in drinking water. After 32 weeks of high fructose feeding, they were treated with felodipine (5 mg x kg(-1) x d(-1)) for 6 weeks. The control rats were given a normal diet and water. The aortic expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the infiltration of macrophages were measured by real-time RT-PCR and/or immunohistochemistry. NF-kappaB activity was measured by electrophoretic mobility shift assay (EMSA). After 32 weeks of high fructose feeding, FFR displayed increased body weight, systolic blood pressure (SBP), serum insulin, and triglycerides when compared with the control rats. The aortic expressions of ICAM-1 and VCAM-1 were significantly increased in FFR than in the control rats and accompanied by the increased activity of NF-kappaB. FFR also showed significantly increased CD68- positive macrophages in the aortic wall. After treatment with felodipine, SBP, serum insulin, and the homeostasis model assessment decreased significantly. In addition to reducing ICAM-1 and VCAM-1, felodipine decreased macrophages in the aortic wall. EMSA revealed that felodipine inhibited NF-kappaB activation in FFR. Felodipine inhibited vessel wall inflammation. The inhibition of NF-kappaB may be involved in the modulation of vascular inflammatory response by CCB in metabolic syndrome.

  6. Tumour regrowth after irradiation. An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1979-03-01

    Structural changes in irradiated tumours and their regrowth were studied in a rat hepatoma, AH109A, using histological and transparent-chamber techniques. The development of the tumour was examined by means of vascular morphometry as observed in the chamber. Schematically, the tumour tissue was divided into four isocentric layers according to vascular morphology and measurements of vessel volume, surface area, and length per mm/sup 3/ of tissue. The vascularity was greatest in the outermost region, decreased towards the inner parts and reached an absence of vascularity at the central necrosis. The tumours were gamma- or X-irradiated with various doses. The inside hypoxic region was destroyed completely after 300 rad, and regrowths started exclusively from the outermost area of the tumour where enhancement of the effect of radiation by oxygen was thought to be greatest. Possible mechanisms of tumour regrowth are discussed.

  7. Localization of the experimental tumor regrowth after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer

    1978-08-01

    The process of the structural changes in the irradiated AH109A tumor and its regrowth was studied, using histologic and transparent-chamber techniques. The tumor tissue was divided into four successive layers, according to vascular morphology and measures. The vascularity was the greatest in the outermost region and decreased towards the inner part of the tumor until necrosis. The tumor was irradiated with various doses of x and gamma-rays. The inside hypoxic region was destroyed completely after 3,000 rad and regrowths started from the outermost area of the tumor where oxygen enhancing effect to irradiation was supposed to be the greatest.

  8. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling; Lin, Chwan-Fwu; Wu, Wen-Bin

    2011-01-01

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratory effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: → Several resveratrol oligomers from grape plants are examined on VSMC behaviors. → Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. → It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. → The anti-migratory effect results from anti

  9. Pioglitazone Attenuates Vascular Fibrosis in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Dengfeng Gao

    2012-01-01

    Full Text Available Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males were randomly divided into 3 groups (n=8 each for treatment: pioglitazone (10 mg/kg/day, hydralazine (25 mg/kg/day, or saline. Normal male Wistar Kyoto (WKY rats (n=8 served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson’s trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF and transforming growth factor-β (TGF-β expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson’s trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism.

  10. Inhibition of proliferation of x-irradiated L5178Y-S cells by methylglyoxal-bis (guanylhydrazone) and its reversal by spermidine

    International Nuclear Information System (INIS)

    Rosiek, O.; Wronowski, T.; Lerczak, K.; Kopec, M.

    1981-01-01

    The effect of 10 -5 M methylglyoxal-bis-(guanylhydrazone) (MGBG), an inhibitor of spermidine and spermine synthesis, on multiplication of murine lymphoblasts L5178Y-S irradiated with a dose of 100 rads was assessed. MGBG-induced inhibition of cell proifleration could be prevented by concurrent administration of 10 -4 M spermidine. The results suggest a close relationship between polyamines and the cell proliferation process after irradiation. (author)

  11. Inhibition of proliferation of x-irradiated L5178Y-S cells by methylglyoxal-bis (guanylhydrazone) and its reversal by spermidine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, O.; Wronowski, T.; Lerczak, K.; Kopec, M. (Institute of Nuclear Research, Warsaw (Poland))

    1981-01-01

    The effect of 10/sup -5/ M methylglyoxal-bis-(guanylhydrazone) (MGBG), an inhibitor of spermidine and spermine synthesis, on multiplication of murine lymphoblasts L5178Y-S irradiated with a dose of 100 rads was assessed. MGBG-induced inhibition of cell proifleration could be prevented by concurrent administration of 10/sup -4/ M spermidine. The results suggest a close relationship between polyamines and the cell proliferation process after irradiation.

  12. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  13. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    Full Text Available Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects.Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%-0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr, and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect.Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.

  14. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods

    Science.gov (United States)

    Mao, Xiao W.; Archambeau, John O.; Kubinova, Lucie; Boyle, Soames; Petersen, Georgia; Grove, Roger; Nelson, G. A. (Principal Investigator)

    2003-01-01

    This study quantified architectural and population changes in the rat retinal vasculature after proton irradiation using stereology. A 100 MeV conformal proton beam delivered 8, 14, 20 and 28 Gy as single and split doses to the whole eye. The vascular networks were prepared from retinal digests. Stereological methods were used to obtain the area of the retina and unbiased estimates of microvessel/artery/vein endothelial, pericyte and smooth muscle population, and vessel length. The retinal area increased progressively in the unirradiated, age-matched controls and in the retinas irradiated with 8 and 14 Gy, indicating uniform progressive retinal growth. No growth occurred after 20 and 28 Gy. Regression analysis of total endothelial cell number in all vessels (arteries, veins and capillaries) after irradiation documented a progressive time- and dose-dependent cell loss occurring over 15 to 24 months. The difference from controls was significant (Ppopulations after split doses. At 10 Gy, the rate of endothelial cell loss, a dose parameter used to characterize the time- and dose-dependent loss of the endothelial population, was doubled.

  15. Morphometric changes of pulmonary tissues after 20 Gy external irradiation of rat chest

    International Nuclear Information System (INIS)

    Cao Zhenshan; Ye Changqing; Yuan Lizhen

    1996-01-01

    The changes in the main parameters of the lungs at different periods of early stage after local 20 Gy external irradiation of the lungs were measured with morphometric method. The results indicated that the walls of pulmonary arterioles and venules thickened and the vascular permeability index (area of vascular lumen/total area of blood vessel) decreased 7 days after irradiation (P 2 , r = -0.919), indicating that narrowing of the vascular lumen was the result of thickening of the vascular wall. Fifteen days after irradiation, the pulmonary alveolar wall thickened, the area of alveolar cavity decreased and the area of pulmonary interstitial space increased (P<0.01). Electron microscopic examination demonstrated profuse exudation surrounding the microvessels, obvious evacuation of pulmonary type-II cells and increase in cellular types and quantity of pulmonary tissues

  16. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    Science.gov (United States)

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin's lymphoma patients: An indication of cell cycle defects

    International Nuclear Information System (INIS)

    Hannan, Mohammed A.; Kunhi, Mohammed; Einspenner, Michael; Khan, Bashir A.; Al-Sedairy, Sultan

    1994-01-01

    In the present study, both post-irradiation DNA synthesis and G 2 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3 H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G 2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G 2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G 2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cycle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G 2 phase accumulation developed elsewhere in characterizing AT heterozygote-like cell cycle anomaly in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle

  18. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation.

    Science.gov (United States)

    Kim, Tack-Joong; Lee, Ju-Hyun; Lee, Jung-Jin; Yu, Ji-Yeon; Hwang, Bang-Yeon; Ye, Sang-Kyu; Shujuan, Li; Gao, Li; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2008-11-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by injury to the intima of arteries is an important etiologic factor in vascular proliferative disorders such as atherosclerosis and restenosis. Uncaria rhynchophylla is traditional Chinese herb that has been applied to the treatment of convulsive disorders, such as epilepsy, in China. In the present study, we examined whether corynoxeine exerts inhibitory effects on platelet-derived growth factor (PDGF)-BB-induced rat aortic VSMC proliferation and the possible mechanism of such effects. Pre-treatment of VSMCs with corynoxeine (5-50 microM) for 24 h resulted in significant decreases in cell number without any cytotoxicity; the inhibition percentages were 25.0+/-12.5, 63.0+/-27.5 and 88.0+/-12.5% at 5, 20 and 50 microM, respectively. Also, corynoxeine significantly inhibited the 50 ng/ml PDGF-BB-induced DNA synthesis of VSMCs in a concentration-dependent manner without any cytotoxicity; the inhibitions were 32.8+/-11.0, 51.8+/-8.0 and 76.9+/-7.4% at concentrations of 5, 20 and 50 microM, respectively. Pre-incubation of VSMCs with corynoxeine significantly inhibited PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, whereas corynoxeine had no effects on mitogen-activated protein kinase (MAPK/ERK)-activating kinase 1 and 2 (MEK1/2), Akt, or phospholipase C (PLC)gamma1 activation or on PDGF receptor beta (PDGF-Rbeta) phosphorylation. These results suggest that corynoxeine is a potent ERK1/2 inhibitor of key PDGF-BB-induced VSMC proliferation and may be useful in the prevention and treatment of vascular diseases and restenosis after angioplasty.

  19. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  20. Effects of irradiation of skin flaps

    International Nuclear Information System (INIS)

    Sumi, Y.; Ueda, M.; Oka, T.; Torii, S.

    1984-01-01

    The reaction of skin flaps to irradiation and the optimum postoperative time for irradiation was studied in the rat. Flaps showed different reactions depending on the time of irradiation. There was a correlation between the radiosensitivity and the vascularity of the flap. Those flaps in the marginal hypovascular stage of revascularization showed reactions similar to normal skin. However, severe adverse reactions were observed in the marginal hypervascular stage

  1. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  2. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L.)

    International Nuclear Information System (INIS)

    Croci, C.A.; Curvetto, N.R.; Orioli, G.A.; Arguello, J.A.

    1991-01-01

    The effects of an acute dose of γ-rays (10 Gy) to post-dormant garlic cloves on inner sprout growth and changes in peroxidases and soluble proteins were evaluated up to 100 days of storage in darkness at 19±1 0 C and 42±2% relative humidity. Radiation-induced inhibition of sprout growth became evident after 25 days of treatment and was synchronous with a marked increase in peroxidase activity. Thin-layer isoelectric focusing revealed that radiation induced an increase in the number of anodic peroxidase isoenzymes at 100 days, suggesting modifications in the vascularization process. Neither the soluble protein content nor the protein pattern were affected by irradiation. These results are discussed in terms of a possible mediating effect of peroxidase on radiation-induced sprout inhibition in garlic. (author)

  3. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Croci, C.A.; Curvetto, N.R.; Orioli, G.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina)); Arguello, J.A. (Universidad Nacional de Cordoba (Argentina). Dept. de Biologia Aplicada)

    1991-02-01

    The effects of an acute dose of {gamma}-rays (10 Gy) to post-dormant garlic cloves on inner sprout growth and changes in peroxidases and soluble proteins were evaluated up to 100 days of storage in darkness at 19+-1{sup 0}C and 42+-2% relative humidity. Radiation-induced inhibition of sprout growth became evident after 25 days of treatment and was synchronous with a marked increase in peroxidase activity. Thin-layer isoelectric focusing revealed that radiation induced an increase in the number of anodic peroxidase isoenzymes at 100 days, suggesting modifications in the vascularization process. Neither the soluble protein content nor the protein pattern were affected by irradiation. These results are discussed in terms of a possible mediating effect of peroxidase on radiation-induced sprout inhibition in garlic. (author).

  4. Experimental study upon the effect of irradiation on callus formation of fracture

    International Nuclear Information System (INIS)

    Saigusa, Fujio

    1981-01-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone. (Ueda, J.)

  5. Potentiation of the vascular response to kinins by inhibition of myocardial kininases.

    Science.gov (United States)

    Dendorfer, A; Wolfrum, S; Schäfer, U; Stewart, J M; Inamura, N; Dominiak, P

    2000-01-01

    Inhibitors of angiotensin I-converting enzyme (ACE) are very efficacious in the potentiation of the actions of bradykinin (BK) and are able to provoke a B(2) receptor-mediated vasodilation even after desensitization of this receptor. Because this activity cannot be easily explained only by an inhibition of kinin degradation, direct interactions of ACE inhibitors with the B(2) receptor or its signal transduction have been hypothesized. To clarify the significance of degradation-independent potentiation, we studied the vasodilatory effects of BK and 2 degradation-resistant B(2) receptor agonists in the isolated rat heart, a model in which ACE and aminopeptidase P (APP) contribute equally to the degradation of BK. Coronary vasodilation to BK and to a peptidic (B6014) and a nonpeptidic (FR190997) degradation-resistant B(2) agonist was assessed in the presence or absence of the ACE inhibitor ramiprilat, the APP inhibitor mercaptoethanol, or both. Ramiprilat or mercaptoethanol induced leftward shifts in the BK dose-response curve (EC(50)=3.4 nmol/L) by a factor of 4.6 or 4.9, respectively. Combined inhibition of ACE and APP reduced the EC(50) of BK to 0.18 nmol/L (ie, by a factor of 19) but potentiated the activity of B6014 (EC(50)=1.9 nmol/L) only weakly without altering that of FR190997 (EC(50)=0.34 nmol/L). Desensitization of B(2) receptors was induced by the administration of BK (0.2 micromol/L) or FR190997 (0.1 micromol/L) for 30 minutes; the vascular reactivity to ramiprilat or increasing doses of BK was tested thereafter. After desensitization with BK, but not FR190997, an additional application of ramiprilat provoked a B(2) receptor-mediated vasodilation. High BK concentrations were still effective at the desensitized receptor. The process of desensitization was not altered by ramiprilat. These results show that in this model, all potentiating actions of ACE inhibitors on kinin-induced vasodilation are exclusively related to the reduction in BK breakdown and are

  6. Effects of gamma rays on rat vascular smooth muscle fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ghassan, A [Radio-Biology and Health Dept. Syrian Atomic Energy Commission, (Syrian Arab Republic)

    1995-10-01

    Modifications of the Vasomotoricity induced by gamma rays have been investigated. Vascular smooth muscle fibres (VSMF) of rat portal vein have been used in this study. Irradiation procedures using a {sup 60} Co source have been carried out as follows: - Whole body irradiation. - Irradiation of isolated portal vein and isolated VSMF. Our results show that : 1-irradiation reduces the functional competition between Mg{sup 2+} and Ca{sup 2+}, thus hyper magnetic Krebs solutions have a negligible effect on irradiated VSMF. 2- irradiation activates Ca{sup 2+} influx into the VSMF. Thus the effect of hypocalcemic solutions on irradiated VSMF is minor compared with control. 3- Hyperpotassic solutions provoke titanic contractions with high amplitude on the irradiated VSMF compared with control. 5 figs.

  7. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Directory of Open Access Journals (Sweden)

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  8. Effects of heavy-ion radiation on the brain vascular system

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Tobias, C.A.

    1985-01-01

    In the laboratory, the authors have been studying the effects of heavy-ion radiation on the vascular system, using neonatal rats as a model system. They investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrhages developed in the cerebral cortex within a few hours after irradiation, reached a maximum after about 13 to 24 hours, and then decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Heavy ions induce more hemorrhages than x rays for a given dose, and the RBE for 670-MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses

  9. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    International Nuclear Information System (INIS)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-01-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways

  10. Inhibition of calcification of bovine pericardium after treatment with biopolymers, E-beam irradiation and in vitro endothelization

    International Nuclear Information System (INIS)

    Polak, Roberta; Rodas, Andrea C.D.; Chicoma, Dennis L.; Giudici, Reinaldo; Beppu, Marisa M.; Higa, Olga Z.; Pitombo, Ronaldo N.M.

    2013-01-01

    This work has investigated the in vitro calcification of bovine pericardium (BP) treated with chitosan (C), silk fibroin (SF) and electron beam irradiation after its endothelization in vitro. For this purpose, freeze-dried BP membranes treated with mixtures of C and SF (1:3, 1:1 and 3:1) and then irradiated by electron beam irradiation were seeded with human umbilical vein endothelial cells (HUVEC) in vitro. After 3 weeks of cultivation these membranes were submitted to in vitro calcification tests using simulated body fluid as the calcifying agent. Control membranes were also studied (without endothelial cells exposure). The results have shown that the membrane compatibility with HUVECs in vitro prevent such biomaterial from calcifying, showing a potential application in biomaterial area, such as cardiac valves and repair patches. - Highlights: ► Bovine pericardium tissue treated with biopolymers followed by electron beam irradiation could be endothelized in vitro ► Calcification was inhibited after endothelization, demonstrating a new anti calcifying treatment for BP membranes ► This membranes could be used as cardiac valves and repair patches.

  11. Inhibition of calcification of bovine pericardium after treatment with biopolymers, E-beam irradiation and in vitro endothelization

    Energy Technology Data Exchange (ETDEWEB)

    Polak, Roberta [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, USP, Sao Paulo, SP (Brazil); Rodas, Andrea C.D. [Biotechnology Center, Energy and Nuclear Research Institute, IPEN-CNEN/SP, Sao Paulo, SP (Brazil); Chicoma, Dennis L.; Giudici, Reinaldo [Department of Chemical Engineering of Polytechnic School, University of Sao Paulo, SP (Brazil); Beppu, Marisa M. [School of Chemical Engineering, University of Campinas, UNICAMP, Campinas, SP (Brazil); Higa, Olga Z. [Biotechnology Center, Energy and Nuclear Research Institute, IPEN-CNEN/SP, Sao Paulo, SP (Brazil); Pitombo, Ronaldo N.M., E-mail: pitombo@usp.br [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, USP, Sao Paulo, SP (Brazil)

    2013-01-01

    This work has investigated the in vitro calcification of bovine pericardium (BP) treated with chitosan (C), silk fibroin (SF) and electron beam irradiation after its endothelization in vitro. For this purpose, freeze-dried BP membranes treated with mixtures of C and SF (1:3, 1:1 and 3:1) and then irradiated by electron beam irradiation were seeded with human umbilical vein endothelial cells (HUVEC) in vitro. After 3 weeks of cultivation these membranes were submitted to in vitro calcification tests using simulated body fluid as the calcifying agent. Control membranes were also studied (without endothelial cells exposure). The results have shown that the membrane compatibility with HUVECs in vitro prevent such biomaterial from calcifying, showing a potential application in biomaterial area, such as cardiac valves and repair patches. - Highlights: Black-Right-Pointing-Pointer Bovine pericardium tissue treated with biopolymers followed by electron beam irradiation could be endothelized in vitro Black-Right-Pointing-Pointer Calcification was inhibited after endothelization, demonstrating a new anti calcifying treatment for BP membranes Black-Right-Pointing-Pointer This membranes could be used as cardiac valves and repair patches.

  12. The irradiation dose for the inhibition of the sprouting of Baraka variety potatoes

    International Nuclear Information System (INIS)

    Perez Rivero, B.; Salcines, R.; Prieto, E.

    1990-01-01

    Baraka variety potatoes graded in the packing house, were irradiated with doses of 0.08; 0.10; 0.15 and 0.20 kGy after a two weeks curing period. The potatoes were stored for five months at 12 0 +- 2 0 C and relative humidity of 85 to 95%, and to determine the percentages of sprouting, rotting and loss in weight. It was concluded that doses of 0.08 kGy or more inhibited definitively the sprouting process. Less total losses and better commercial quality were obtained with a dose of 0.08 kGy the last of the store. 13 refs

  13. Effects of ionizing radiation on the hypocotyl-root axis of three species of gossypium

    International Nuclear Information System (INIS)

    Reed, J.P.

    1977-01-01

    The hypocotyl-root axis of cotton seedlings grown from irradiated and non-irradiated seeds was investigated using light microscopy and histological techniques. Special emphasis was placed on the pattern of vascular transition. Two patterns of vascular transition in non-irradiated seedlings were found. In Gossypium hirsutum and G. barbadense there are prominent metaxylem bands between the vascular bundles in the hypocotyl. In G. gossypioides there are no bands. The presence or absence of the bands was easily detected using polarized light. The most outstanding effects of radiation were inhibition of lateral root development and alteration of the pattern of vascular transition in seedlings grown from irradiated seeds. The findings suggest that the root apical meristem determines the vascular pattern

  14. Effect of Co60 irradiation on capillary changes in the rat periosteum

    International Nuclear Information System (INIS)

    Hachiya, Hiroshi

    1992-01-01

    There exist considerable literatures on the vascular changes by tolerance dose or over tolerance dose irradiation, but little work has been done to study the effect of under tolerance dose irradiation on capillary changes. The purpose of this study was to observe capillary changes in the periosteum of rats after Co 60 irradiation. The vascularity of the periosteum was observed with vascular resin casts and scanning electron microscope at 3 days to 30 weeks after the heads were exposed to 10 Gy or 20 Gy of Co 60 γ ray. The results were as follows: In rats irradiated with 10 Gy, leakage of resin from the fine blood vessels was observed at 3 weeks. Decrease in the diameter of small blood vessels and decrease of capillary networks were observed at 5 weeks. These changes improved at 7 weeks. In rats irradiated with 20 Gy, leakage of resin and decrease in the diameter of the small blood vessels were observed at 2 weeks. The number of small blood vessels was decreased at 4 weeks. These changes improved at 7 weeks. (author) 60 refs

  15. Recovery from inhibition by UV-irradiation of ornithine decarboxylase induction in human cells: implication of excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Hur, E.; Prager, A. (Nuclear Research Centre-Negev, Beer-Sheva (Israel)); Buonaguro, F. (Argonne National Lab., IL (USA))

    1982-05-01

    Exposure of stationary-phase human breast carcinoma (T-47D) cells to far-UV light (254nm) inhibited the appearance of induced ornithine decarboxylase (ODC) activity. The fluence response curve had a shoulder (Dsub(q)=2Jm/sup -2/) followed by an exponential decline (D/sub 0/=4.2Jm/sup -2/). The cells could recover from this inhibition when the stimulus of induction of ODC was delayed for 20-24h after irradiation. Hydroxyurea (HU) when present at 3mM during the recovery period eliminated completely the ability of the cells to recover. This effect of HU on ODC induction was partially reversed by 50..mu..M of the four deoxyribonucleosides required for DNA synthesis. Neither HU nor the deoxyribonucleosides by themselves affected ODC induction in unirradiated cells. Since HU inhibited the recovery from potentially lethal UV damage and is a known inhibitor of excision repair, it is suggested that recovery from UV-induced inhibition of ODC induction depends on excision-repair of DNA damage. This interpretation is strongly supported by the finding that specific photolysis of 5-bromodeoxyuridine, incorporated into DNA during the recovery period, inhibited recovery of ODC induction from inhibition by UV light.

  16. The effect of γ-ray irradiation on growth and flowering of narcissus plant

    International Nuclear Information System (INIS)

    Qin Hua

    2005-01-01

    The effect of 60 Co γ-ray on growth and flowering of water-planted narcissus bulb was investigated in this paper. The results showed that 20-60 Gy irradiation could obviously reduce the increment of weight of narcissus plant and inhibited the elongation growth of narcissus's roots and leaves, harmed the vascular bundle cells in leaves. But, the roots' diameter, leaves' breadth and thickness were very little influenced. The life-span of single flower was prolonged, first bloom time was delayed and the chlorophyll content in leaves was increased by 20 and 40 Gy treatment, which could fit the commodity treatment of narcissus bulb. (authors)

  17. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  18. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  19. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  20. Effect of 103Pd on proliferation and apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo Quanyong; Zhu Jun; Lu Hankui; Zhu Ruisen

    2003-01-01

    This study aimed at the effect of γ-emitting radionuclide 103 Pd on the proliferation and apoptosis of vascular SMCs (smooth muscle cells) in vitro. The cavy aortic SMCs were cultured with culture medium M-199. The experiments were carried out in two groups, one for proliferation test and the other for apoptosis test. In each group, 103 Pd solutions with various radioactivities were respectively added to the culture solution to irradiate SMCs for 72 h, while non-radioactive palladium solution was added to the control. 3 H-thymidine incorporation test and liquid scintillator were used to detect the effect of 103 Pd on the proliferation of SMCs. Flow cytometer was used to detect the apoptotic SMCs. The inhibition rate of SMCs proliferation by 1.85 MBq 103 Pd solution was 2.3%, which was not significant, while the inhibition rate increased from 41.6% to 91.3% as the 103 Pd activity increased from 7.40 MBq to 37 MBq. The apoptosis rate of SMCs was extremely low (less than 4.0%) by 103 Pd with activity from 1.85 MBq to 37 MBq. The results suggest that the proliferation of SMCs can be repressed effectively in a dose-dependent fashion by 103 Pd in vitro. The mechanism of its inhibiting over neointima proliferation is likely to inhibit SMCs proliferation rather than to induce its apoptosis by 103 Pd. 103 Pd can be used as a γ-emitting intravascular brachytherapy radionuclide to inhibit SMCs proliferation

  1. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  2. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  3. Application of gamma irradiation for inhibition of food allergy

    International Nuclear Information System (INIS)

    Byun, M.-W.; Lee, J.-W.; Yook, H.-S.; Jo, Cheorun; Kim, H.-Y.

    2002-01-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods

  4. Application of gamma irradiation for inhibition of food allergy

    Energy Technology Data Exchange (ETDEWEB)

    Byun, M.-W. E-mail: mwbyun@kaeri.re.kr; Lee, J.-W.; Yook, H.-S.; Jo, Cheorun; Kim, H.-Y

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk {beta}-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  5. Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation

    Directory of Open Access Journals (Sweden)

    Hak Sung Lee

    2014-08-01

    Full Text Available Epigalloccatechin-3-gallate (EGCG is the main polyphenol component of green tea (leaves of Camellia sinensis. EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs and vascular endothelial growth factor (VEGF play a key role in the processes of extracellular matrix (ECM remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA and tumor necrosis factor alpha (TNF-α in human retinal pigment epithelial cells (HRPECs. EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2 by inhibiting generation of reactive oxygen species (ROS. EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs. Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31 on corneal neovascularization (CNV induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  6. Prunella vulgaris Suppresses HG-Induced Vascular Inflammation via Nrf2/HO-1/eNOS Activation

    Directory of Open Access Journals (Sweden)

    Ho Sub Lee

    2012-01-01

    Full Text Available Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV on high glucose (HG-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS. HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1, eNOS, and nuclear factor E2-related factor 2 (Nrf2, which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  7. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    International Nuclear Information System (INIS)

    Schuuring, Janneke; Bussink, Johan; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-01-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone

  8. Selective cyclooxygenase-1 inhibition improves collateral vascular reactivity in biliary cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Ching-Chih Chang

    2013-10-01

    Conclusion: There was no significant hemodynamic change and renal toxicity after acute administration of COX inhibitor in the FBDL-induced cirrhotic rats. Preincubation of selective COX-1, but not COX-2, inhibitor could enhance collateral vascular response to AVP, indicating that COX-1 plays a major role in the collateral vascular reactivity.

  9. Modification of bamboo surface by irradiation of ion beams

    International Nuclear Information System (INIS)

    Wada, M.; Nishigaito, S.; Flauta, R.; Kasuya, T.

    2003-01-01

    When beams of hydrogen ions, He + and Ar + were irradiated onto bamboo surface, gas release of hydrogen, water, carbon monoxide and carbon dioxide were enhanced. Time evolution of the gas emission showed two peaks corresponding to release of adsorbed gas from the surface by sputtering, and thermal desorption caused by the beam heating. The difference in etched depths between parenchyma lignin and vascular bundles was measured by bombarding bamboo surface with the ion beams in the direction parallel to the vascular bundles. For He + and Ar + , parenchyma lignin was etched more rapidly than vascular bundles, but the difference in etched depth decreased at a larger dose. In the case of hydrogen ion bombardment, vascular bundles were etched faster than parenchyma lignin and the difference in etched depth increased almost in proportion to the dose. The wettability of outer surface of bamboo was improved most effectively by irradiation of a hydrogen ion beam

  10. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yoo, Young-Choon [Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, International University of Korea, Jinju 660-759 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-{alpha} and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  11. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    International Nuclear Information System (INIS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-01-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  12. Experimental study of the effect of 103Pd on the proliferation and apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo Quanyong; Zhu Jun; Chen Libo; Lu Hankui; Zhu Ruisen

    2002-01-01

    Objective: To investigate the ability of γ emitting radionuclide 103 Pd to inhibit the vascular smooth muscle cell (SMC) proliferation and to induce its apoptosis in vitro. Methods: 103 Pd solution was added to the culture medium to irradiate SMCs for 72 h and non-radioactive Pd solution was added as control. 3 H-TdR incorporation test was used to detect the effect of 103 Pd on the proliferation of SMCs. Flow cytometer was used to detect the apoptotic SMCs. Results: The results showed that inhibition of SMC proliferation was evident and the effects were dose-dependant. Inhibition rate of SMC proliferation by 1.85 MBq 103 Pd was 2.3% , which was not significant. The inhibition rate increased from 41.6% to 91.2% as the dose of 103 Pd increased from 7.4 to 37.0 MBq, and the proliferation of SMCs was repressed significantly then. The apoptosis rate was extremely low (less than 4.0% ) with the 103 pd dose escalating from 1.85 to 37.0 MBq. Conclusions: This study suggests that proliferation of SMCs can be repressed effectively in vitro by 103 pd. 103 Pd can be used to inhibit the neointimal proliferation. 103 Pd radioactive stent implantation can be employed as a possible novel means to prevent restenosis

  13. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    Science.gov (United States)

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  14. Influences of Pinpoint Plantar Long-Wavelength Infrared Light Irradiation (Stress-Free Therapy on Chorioretinal Hemodynamics, Atherosclerosis Factors, and Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Keisou Ishimaru

    2018-03-01

    -wavelength infrared light irradiation, PP-LILI (stress-free therapy, Chorioretinal hemodynamics blood flow of retinal artery and vein, Vascular endothelial growth factor, VEGF, Laser speckle flowgraphy

  15. Gamma Irradiation for the Inhibition of Shrimp (Penaeus aztecus) Allergy

    International Nuclear Information System (INIS)

    Kim Jae-Hun; Lee Ju-Woon

    2000-01-01

    Food irradiation technology was conducted to reduce shrimp allergy. The experiment was designated in 3 portions as follows; A, the irradiation of raw shrimp; B the irradiation of shrimp and then cooking; and C, cooking the shrimp and then irradiation. Gamma irradiation was done with doses of 1, 3, 5, 7, 10 kGy. A shrimp sarcoplasmic protein solution (SSPS) and a myofibrillar protein solution (SMPS) were prepared from A portion. Cooked shrimp protein solutions were also prepared from B and C portions. The binding abilities of the shrimp allergic patients' IgE and mouse monoclonal Ab 4.9.5 (mAb 4.9.5), produced to the shrimp heat-stable protein, to each sample solution were determined by ELISA. Binding abilities of patients' IgE and mAb 4.9.5 to irradiated shrimp fractions were dose-dependently reduced. The cooking treatment after irradiation was more effective than the irradiation treatment after cooking in the reduction of the binding abilities of IgE and IgG. SDS-PAGE was performed to compare irradiated shrimp proteins with non-irradiated shrimp proteins. SDS-PAGE showed that no bands were changed by gamma irradiation. The results indicated that food irradiation with an adequate dose can be reduce allergenicity of shrimp

  16. Vascular retraction driven by matrix softening

    Science.gov (United States)

    Valentine, Megan

    We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).

  17. Effects of ouabain on vascular reactivity

    Directory of Open Access Journals (Sweden)

    Vassallo D.V.

    1997-04-01

    Full Text Available Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension

  18. Application of electron beam irradiation for inhibition of Fusarium oxysporum f. sp. dianthi activity

    International Nuclear Information System (INIS)

    Gryczka, U.; Migdal, W.; Ptaszek, M.; Orlikowski, L.B.

    2010-01-01

    Electron beam irradiation was tested against Fusarium oxysporum f. sp. dianthi (Fod) a pathogen causing Fusarium wilt of carnation. Efficiency of the different radiation doses on in vitro survival and development of Fod culture on potato-dextrose agar (PDA) medium was tested. A dose of 6 kGy completely inhibited the pathogen growth. Application of radiation for microbiological decontamination of four substrates used for carnation production demonstrated that, depending on the type of substrate, doses of 10 or 25 kGy were effective in Fod elimination. All carnation plants cultivated on radiation decontaminated substrates were healthy. (authors)

  19. Experimental study of selective irradiation to the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, I; Tsuda, N; Moriyama, N; Miyagawa, N; Fuzikawa, K [Nagasaki Univ. (Japan). School of Medicine

    1976-03-01

    In order to examine the effects of a massive irradiation on the kidney, 4,000 R of x-ray was irradiated to both kidneys of rats. Renal atrophy was observed 1, 2 and 3 weeks after the irradiation, and this alteration was severe especially in the left kidney. Light microscopic examination revealed dilatation of the renal tubules, swelling of the tubular epithelial cells, granular degeneration and cylindrialization 1 and 2 weeks after the irradiation. However, there was no remarkable alteration in the glomeruli. Lobulation of the glomeruli appeared in addition to alteration in the renal tubules 3 weeks after the irradiation. Hyalinosis of the glomeruli, degerenation of the renal tubules, cylindrialization, thickening of the vascular wall, fibroid necrosis, and proliferation of the interstitial cells appeared 25 weeks after the irradiation. Electron microscopic examination revealed reduction of the nuclei in the tubular epithelial cells, differentiation and thickening of dense bodies and the basement membrane, dilatation of capillaries and swelling of the endothelial cells 1 week after the irradiation. Obliteration of capillaries of the glomeruli, thickening of the basement membrane, deposit of collagen and swelling of the epithelial cells were observed 25 weeks after the irradiation. Cellular infiltration was observed in the interstitial tissue. The increase of blood pressure, vascular lesion and hyalinosis of the glomeruli, which appeased 25 weeks after the irradiation, are considered to be caused secondarily by an increase of the interstitial cells.

  20. Inhibition of DNA and protein synthesis in UV-irradiated mouse skin by 2-difluoromethylornithine, methylglyoxal bis(guanylhydrazone), and their combination

    Energy Technology Data Exchange (ETDEWEB)

    Kaepyaho, K.; Lauharanta, J.; Jaenne, J.

    1983-08-01

    Exposure of mouse skin to UVB irradiation greatly enhanced the biosynthesis and accumulation of putrescine and spermidine before or concomitantly with stimulation of epidermal macromolecular (DNA and protein) synthesis. Topical treatment of UV-exposed skin with 2 inhibitors of polyamine biosynthesis, 2-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) (MGBG) prevented the enhanced epidermal accumulation of polyamines, especially spermidine, and also inhibited the incorporation of radioactive precursors into DNA and protein. When applied in combination, these 2 antimetabolites of polyamines produced an inhibition of macromolecular synthesis that was at least additive: (/sup 3/H)thymidine incorporation decreased by 80% and (/sup 14/C)leucine incorporation by 44% as compared with the UVB-irradiated control mice. A slight decrease in the ratio of (/sup 3/H)histidine/(/sup 14/C)leucine incorporation indicated that protein synthesis of the differentiating cell layers was also affected by the inhibitors. The effects of the combined DFMO and MGBG treatment were partially reversed by concomitant topical application of spermidine.

  1. Inhibition of DNA and protein synthesis in UV-irradiated mouse skin by 2-difluoromethylornithine, methylglyoxal bis(guanylhydrazone), and their combination

    International Nuclear Information System (INIS)

    Kaepyaho, K.; Lauharanta, J.; Jaenne, J.

    1983-01-01

    Exposure of mouse skin to UVB irradiation greatly enhanced the biosynthesis and accumulation of putrescine and spermidine before or concomitantly with stimulation of epidermal macromolecular (DNA and protein) synthesis. Topical treatment of UV-exposed skin with 2 inhibitors of polyamine biosynthesis, 2-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) (MGBG) prevented the enhanced epidermal accumulation of polyamines, especially spermidine, and also inhibited the incorporation of radioactive precursors into DNA and protein. When applied in combination, these 2 antimetabolites of polyamines produced an inhibition of macromolecular synthesis that was at least additive: [ 3 H]thymidine incorporation decreased by 80% and [ 14 C]leucine incorporation by 44% as compared with the UVB-irradiated control mice. A slight decrease in the ratio of [ 3 H]histidine/[ 14 C]leucine incorporation indicated that protein synthesis of the differentiating cell layers was also affected by the inhibitors. The effects of the combined DFMO and MGBG treatment were partially reversed by concomitant topical application of spermidine

  2. PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner.

    Science.gov (United States)

    Lehrke, Michael; Kahles, Florian; Makowska, Anna; Tilstam, Pathricia V; Diebold, Sebastian; Marx, Judith; Stöhr, Robert; Hess, Katharina; Endorf, Elizabeth B; Bruemmer, Dennis; Marx, Nikolaus; Findeisen, Hannes M

    2015-04-01

    Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development of detection methods for irradiated foods; development of immunological identification of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Ae; Lee, Yoon Jin; Choi, Yoon Jung; Han, Su Kyong [Soonchunhyang University, Asan (Korea)

    2002-04-01

    Enzyme-linked Immunosorbent assay systems for the identification of irradiated egg, pork and chicken was developed. Eggs were irradiated in their shells to 0.5{approx}7kGy. Pork was irradiated to 0.5{approx}3kGy and chicken irradiated to 0.5kGy{approx}5kGy. The most sensitive proteins to irradiation were screened by SDS-PAGE and purified. Ovalbumin from egg, salt soluble protein(p) from pork, and salt soluble protein(c) from chicken showed the most sensitivity to irradiation. To investigate for a practical use in identifying of irradiated egg, pork and chicken, competitive ELISA was performed. The binding activity of ovalbumin to anti-ovalbumin IgG was reduced in a dose-dependent manner by irradiating up to 7kGy, and considerably lowered after irradiating at 7kGy. The concentration of 50% inhibition of ovalbumin to IgG was increased to 1.5(0.5kGy){approx}3.7(7kGy) times in an dose-dependent relationship. The binding activity of salt soluble protein(p) to anti-salt soluble protein IgG (anti-SSPp IgG)was also reduced in a dose-dependent manner by irradiating up to 3kGy, and considerably lowered after irradiating at 3kGy. The concentration of 50% inhibition of salt soluble protein to IgG was increased to 1.1(0.5kGy){approx}5.2(3kGy) times in a dose-dependent relationship. On the other hand, the binding activity of salt soluble protein(c) to anti-salt soluble protein IgG(anti-SSPc IgG) was reduced in a dose-dependent manner by irradiating up to 5kGy, too, and considerably lowered after irradiating at 5kGy. The concentration of 50% inhibition of salt soluble protein to IgG was increased to 1.1{approx}2.3 times in a dose-dependent relationship. SDS-PAGE of the irradiation sensitive proteins showed the partial breakdown of it was induced by irradiation. So, the lowering of binding activity was probably due to the partial breakdown of ovalbumin by irradiation. 25 refs., 12 figs., 5 tabs. (Author)

  4. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  5. Postoperative irradiation of glaucoma filtering surgery

    International Nuclear Information System (INIS)

    Mano, Tomiya; Manabe, Reizo; Masaki, Norie; Ohashi, Yuichi; Umemoto, Masayo; Kinoshita, Shigeru; Yamamoto, Ryo; Hirose, Naomi.

    1986-01-01

    To inhibit the subcojunctival scarring after glaucoma filtering surgery, Sr-90 beta-irradiation of 10 Gy in 1 fraction or 20 Gy in 2 fractions has been tried in 12 eyes. Usual trabeculectomy followed by beta-irradiation was performed on 6 eyes. Of these, 3/6 eyes were meintained in normal range of IOP after irradiation. Furthermore, combined surgery of trabeculectomy, tenectomy and episcleral resection followed by beta-irradiation were performed on 6 eyes. Of these, 5/6 eyes were maintained in normal range of IOP. No complications was observed during 3 to 8 months of followup periods after treatment. Filtering surgery combined with postoperative beta-irradiation seems to inhibit the proliferation of subcon-junctival fibroblast and to control IOP. (1 Gy = 100 rad). (author)

  6. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    International Nuclear Information System (INIS)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P 2 =0.53) and dextran accumulation (R 2 =0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment

  7. Anti-TNF-α activity of Portulaca oleracea in vascular endothelial cells.

    Science.gov (United States)

    Lee, An Sook; Kim, Jin Sook; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation plays a key role in the pathogenesis and progression of atherosclerosis, a main complication of diabetes. The present study investigated whether an aqueous extract of Portulaca oleracea (AP) prevents the TNF-α-induced vascular inflammatory process in the human umbilical vein endothelial cell (HUVEC). The stimulation of TNF-α induced overexpression of adhesion molecules affects vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1 and E-selectin for example. However, AP significantly suppressed TNF-α-induced over-expression of these adhesion molecules in a dose-dependent manner. In addition, pretreatment with AP dose-dependently reduced an increase of the adhesion of HL-60 cells to TNF-α-induced HUVEC. Furthermore, we observed that stimulation of TNF-α significantly increased intracellular reactive oxygen species (ROS) production. However, pretreatment with AP markedly blocked TNF-α-induced ROS production in a dose-dependent manner. The western blot and immunofluorescence analysis showed that AP inhibited the translocation of p65 NF-κB to the nucleus. In addition, AP suppressed the TNF-α-induced degradation of IκB-α and attenuated the TNF-α-induced NF-κB binding. AP also effectively reduced TNF-α-induced mRNA expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-8 in a dose-dependent manner. Taken together, AP prevents the vascular inflammatory process through the inhibition of intracellular ROS production and NF-κB activation as well as the reduction of adhesion molecule expression in TNF-α-induced HUVEC. These results suggested that AP might have a potential therapeutic effect by inhibiting the vascular inflammation process in vascular diseases such as atherosclerosis.

  8. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  9. External beam irradiation inhibits neointimal hyperplasia after injury-induced arterial smooth muscle cell proliferation

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Dorszewski, A.; Breithardt, G.; Willich, N.

    1996-01-01

    Purpose/Objective: Restenosis after catheter-based revascularization has been demonstrated to be primarily caused by smooth muscle cell proliferation. This study examines the effects of external beam irradiation on neointimal proliferation after external injury to the central artery of the rabbit ear. Materials and Methods: 30 male New Zealand White rabbits were used in this study. Crush lesions were performed on each ear under general anesthesia and bilateral auricular nerve blockade. A single dose of 12 Gy (n=10), 16 Gy (n=10), or 20 Gy (n=10) gamma radiation was delivered to the left or right central artery of the ear 24 hours after injury; the contralateral central artery served as control. All rabbits were sacrificed after twenty-one days and the central arteries of the ear were fixed for morphometric measurements. Results: Mean (± SD) neointimal area was 0.062 ± 0.005 mm 2 (12 Gy), 0.022 ± 0.005 mm 2 (16 Gy) and 0.028 ± 0.006 mm 2 in irradiated arteries compared with 0.081 ± 0.009 mm 2 in the control group. Mean (± SD) luminal area was 0.049 ± 0.004 mm 2 (12 Gy), 0.059 ± 0.002 mm 2 (16 Gy) and 0.072 ± 0.006 mm 2 (24 Gy) in irradiated arteries compared with 0.043 ± 0.008 mm 2 in the control group. The difference in neointimal and luminal area between control and irradiated arteries was significant (p<0.05) only for the 16 and 20 Gy group compared to control. Conclusion: We conclude that in this model, external beam X-ray irradiation was successful in reducing neointimal proliferation after injury of the central artery of the rabbit ear. Marked reductions in neointimal proliferation were demonstrated in vessels subjected to 16 and 20 Gy radiation, a less prominent effect was noted for 12 Gy. Whether this approach can be used successfully to inhibit restenosis in the clinical setting requires further investigation

  10. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  11. Effects of gamma irradiation on antioxidants of medicinal plants

    International Nuclear Information System (INIS)

    Jetawattana, Suwimol; Chaichantipyuth, Chaiyo

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  12. Effects of gamma irradiation on antioxidants of medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Jetawattana, Suwimol [The irradiation research for agriculture program, Office of Atoms for Peace, BK (Thailand); Chaichantipyuth, Chaiyo [Faculty of Pharmacy, Chulalongkorn University, BK (Thailand)

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased.

  13. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Yinghong Ji

    2016-11-01

    Full Text Available Background/Aims: Ultraviolet B (UVB irradiation can easily induce apoptosis in human lens epithelial cells (HLECs and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1 gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm was increased in HLECs. Further studies indicated that superoxide dismutase (SOD activity and total antioxidative (T-AOC level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA and lactate dehydrogenase (LDH were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were significantly decreased, but the concentration of interleukin-10 (IL-10 was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38, Jun amino-terminal kinases (JNK1/2, phospho-JNK1/2 (p-JNK1/2, calcium-sensing receptor (CasR, and Ca2+/calmodulin-dependent protein kinase II (CaMKII indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. Conclusion: These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment.

  14. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways.

    Science.gov (United States)

    Ji, Yinghong; Rong, Xianfang; Li, Dan; Cai, Lei; Rao, Jun; Lu, Yi

    2016-01-01

    Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS) production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm) was increased in HLECs. Further studies indicated that superoxide dismutase (SOD) activity and total antioxidative (T-AOC) level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly decreased, but the concentration of interleukin-10 (IL-10) was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38), Jun amino-terminal kinases (JNK1/2), phospho-JNK1/2 (p-JNK1/2), calcium-sensing receptor (CasR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Irradiation of potatoes for long-term storage

    International Nuclear Information System (INIS)

    Srapenjanz, R.

    1976-01-01

    In the USSR gamma irradiation of potatoes is used for extending the storage life. The properties of potatoes are not changed, and the irradiation procedure is lower in cost than chemical treatments for sprout inhibition. Finally, a brief outline is given of investigations on sprout inhibition of potatoes in other socialist countries

  16. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish

    Directory of Open Access Journals (Sweden)

    Changwen Zhang

    2016-11-01

    Full Text Available Alcoholic liver disease (ALD results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the

  17. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-01-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED 99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED 99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED 99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F 1 egg hatching was only 66 Gy. ED 99 value for inhibition of hatching of F 1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae. - Highlights: • X-ray irradiation induced abnormal development of Helicoverpa armigera. • ED 99 value for inhibition of pupation and adult emergence of irradiated egg was estimated at 210 and 154 Gy, respectively. • ED 99 value for inhibition of pupation and adult emergence of irradiated larva was estimated at 221 and 167 Gy, respectively

  18. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    Science.gov (United States)

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  19. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    International Nuclear Information System (INIS)

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  20. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons

    Directory of Open Access Journals (Sweden)

    Vitor Fortuna

    2015-06-01

    Full Text Available The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs develop in close proximity to the dorsal aorta (DA and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA differentiation of SN precursors temporally coincides with vascular mural cell (VMC recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  1. Defibrotide modulates prostaglandin production in the rat mesenteric vascular bed.

    Science.gov (United States)

    Peredo, H A

    2002-10-01

    Defibrotide 1 microM, a polydeoxyribonucleotide extracted from mammalian organs, reduced the contractile responses to noradrenaline (NA) in the rat isolated and perfused mesenteric vascular bed, in intact as well as in de-endothelialized preparations. Defibrotide was without effect on the acetylcholine-induced relaxations of U-46619-precontracted mesenteric vascular beds. Moreover, defibrotide increased 6-keto prostaglandin (PG) F(2alpha) (stable metabolite of prostacyclin) release sixfold in the presence, but not in the absence of the endothelium, with no modification on the release of other prostanoids. Defibrotide also inhibited the NA-induced increase in PGF(2alpha) release, in both intact and de-endothelialized mesenteric vascular beds. In conclusion, the present results show that defibrotide modulates PG production in the mesenteric bed and that the observed inhibition of the contractile responses should be due to the impairment of the NA-induced increase in PGF(2alpha) release.

  2. Application of food irradiation processes to developing countries

    NARCIS (Netherlands)

    Langerak, D.Is.; Wolters, Th.C.; Cramwinckel, A.B.; Stegeman, H.

    1987-01-01

    The losses in potato tubers during storage are mainly due to sprouting and rotting. Gamma irradiation effectively inhibits sprouting and extends the storage life of potatoes. Rotting can not be controlled within the sprout inhibition close range, but irradiation increases, however, the rot by

  3. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  4. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  5. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-01-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H 2 AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H 2 AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G 2 /M arrest and increased γ-H 2 AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H 2 AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation

  6. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    Science.gov (United States)

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  7. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  8. Structural changes in the regenerating rat thymus after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Tetsuo; Wang, Yu-Hsueh; Hashimoto, Noriko; Tokuda, Nobuko; Sawada, Tomoo [Yamaguchi Univ., Ube (Japan). School of Medicine

    1999-11-01

    The structural changes of the rat thymus after irradiation were examined. Thymocytes regenerate rapidly after irradiation and the mechanism responsible for this rapid regeneration was examined analyzing vascular and immunohistochemical changes in the thymus. Following results were obtained: Vascular fine mesh works in the cortex were destroyed on day 3 after 6 Gy irradiation, while on day 5 these changes appeared to be restored to almost normal. Massive macrophage accumulations were observed in the cortex on day 3-5 after irradiation. This may be due to clean up the damaged thymocytes, although other possibility, as production of cytokines which may contribute to the rapid proliferation must be intensively examined. Immunohistochemical staining with anti MHC class II molecule showed relatively strong staining in the medulla compared to the cortex in the normal thymus, while this finding was reversed and cortex stained heavily compared to the medulla on day 5-7 after irradiation suggesting the importance of the cortical MHC class II positive thymic epithelial cells in regeneration of thymocytes. Anti FTS antibody stained relatively strongly in the irradiated and recovering thymus compared to the normal. These results may partly explain the abrupt proliferation of thymocytes after irradiation and further studies on cytokine message changes and thymic epithelial characterization responsible to produce the cytokines for the effective thymocyte proliteration are on the way of analysis. (author)

  9. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  10. Effects of gamma irradiation used to inhibit potato sprouting on potato tuber moth eggs, larvae and pupae Phthorimaea Operculella zeller (Lep., Gelechiidae)

    International Nuclear Information System (INIS)

    Saour, G.; Makee, H.

    2002-12-01

    Different age groups of potato tuber moth, Phthorimaea Operculella zeller, eggs were exposed to gamma irradiation at incremental doses up to 150 Gy (the upper dose limit allowed for potato sprout inhibition). Young eggs were more sensitive to gamma irradiation than older eggs and the sensitivity level declined with eggs age. The exposure of 3 - 3.5 d-old eggs to 150 Gy resulted in an 26% increase in egg incubation period compared with unirradiated eggs. The minimum dose required to 75 Gy, 9.7% of larvae survived to the adult stage but emerged as deformed moths. At 100 and 125 Gy, 10.2 and 9.6% of larvae pupated, respectively; however no adult eclosion was recorded. Whereas at 150 Gy, the larvae remained in mid-instar stage and eventually died. Young larvae and pupae were more susceptible to irradiation injuries than older ones. When larvae and of different ages were exposed to doses equal or higher than 100 Gy, only 13 to 35% pupated, but no adult emergence was obtained . The exposure of 1 - 1.5 or 3 - 3.5 day old pupae to 150 Gy induced high level of sterility and remarkable reduction in female mating ability and fecundity whereas, the reduction was less noticeable for 5 - 5.5 day-old pupae. Gamma irradiation doses applied to inhibit potato sprouting could used as an efficient control approach against potato tuber moth eggs, larval and pupal infestations (authors)

  11. Effects of gamma irradiation used to inhibit potato sprouting on potato tuber moth eggs, larvae and pupae Phthorimaea Operculella zeller (Lep., Gelechiidae)

    International Nuclear Information System (INIS)

    Saour, G.; Makee, H.

    2003-01-01

    Different age groups of potato tuber moth, Phthorimaea Operculella zeller, eggs were exposed to gamma irradiation at incremental doses up to 150 Gy (the upper dose limit allowed for potato sprout inhibition). Young eggs were more sensitive to gamma irradiation than older eggs and the sensitivity level declined with eggs age. The exposure of 3 - 3.5 d-old eggs to 150 Gy resulted in an 26% increase in egg incubation period compared with unirradiated eggs. The minimum dose required to 75 Gy, 9.7% of larvae survived to the adult stage but emerged as deformed moths. At 100 and 125 Gy, 10.2 and 9.6% of larvae pupated, respectively. However no adult eclosion was recorded. Whereas at 150 Gy, the larvae remained in mid-in star stage and eventually died. Young larvae and pupae were more susceptible to irradiation injuries than older ones. When larvae and of different ages were exposed to doses equal or higher than 100 Gy, only 13 to 35% pupated, but no adult emergence was obtained . The exposure of 1 - 1.5 or 3 - 3.5 day old pupae to 150 Gy induced high level of sterility and remarkable reduction in female mating ability and fecundity whereas, the reduction was less noticeable for 5 - 5.5 day-old pupae. Gamma irradiation doses applied to inhibit potato sprouting could used as an efficient control approach against potato tuber moth eggs, larval and pupal infestations (authors)

  12. Radiolesão vascular como efeito deletério da braquiterapia intra-arterial com dose elevada de Samário-153 em coelhos hipercolesterolêmicos Vascular radiolesion as a deleterious effect of high-dose-rate intraarterial brachytherapy with Samarium-153 in hypercholesterolemic rabbits

    Directory of Open Access Journals (Sweden)

    Dalton Bertolim Précoma

    2006-10-01

    among groups concerning other tissue analyses. CONCLUSION: The high-dose irradiation of 60 Gy resulted in intense cell proliferation considered vascular radiolesion, unlike the 15-Gy dose, which was associated with an excellent inhibition of neointimal proliferation.

  13. Onion irradiation - a case study

    International Nuclear Information System (INIS)

    Huebner, G.

    1988-01-01

    The irradiation of onions (Allium cepa L.) serves to prevent sprouting associated with long-term storage or transport and storage of onions in climatic conditions which stimulate sprouting. JECFI the Joint Expert Committee for Food Irradiation of FAO/IAEA/WHO, recommended the application of an irradiation dose of up to 150 Gy for sprout inhibition with onions. (author)

  14. Inhibition of host cell protein synthesis by UV-inactivated poliovirus

    International Nuclear Information System (INIS)

    Helentjaris, T.; Ehrenfeld, E.

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm 2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell

  15. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Specific features of the hemorrhagic syndrome manifestation under chronic, prolonged and acute irradiation

    International Nuclear Information System (INIS)

    Arlashchenko, N.I.; Gorlov, V.G.; Maksimova, E.N.

    1978-01-01

    To make the hemorrhagic syndrome manifest itself, two phenomena are necessary to coincide in time, they are: a fall in the elasticity of the vascular wall and reduction in the amount of thrombocytes in blood. Depending upon the radiation dose, the vascular wall and the thrombocytic function may be either simultaneously impaired after acute exposure) or dissociated (following prolonged irradiation). Chronic irradiation at small (subliminal) dose rates fails to induce hemorrhagic disorders and death of rats caused by pathologic hemophilia

  17. The Effect of Irradiation on the Structure of Vasculature Experimentally Induced Rat Salivary Gland Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyo Shick [Dept. of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1990-02-15

    The aim of this study is to evaluate the microvascular alterations in salivary gland carcinoma after irradiations. Salivary gland carcinoma was induced in rats by inoculation of several amount of 7,12-dimethylbenzan thracene powder 2.5 mg, 5.0 mg and 7.5 mg respectively into rat submandibular gland. Microangiography was performed by taking soft x-ray with barium infusions, and by indian ink perfusion technique. The tumors were given a single dose of 20 Gy (to obtain comparatively low grade irradiation dose for isoeffect of dry desquamation of skin to enable the observation of the vascular changes of the tumor 39) using LINAC 4 MeV Mitsubishi unit with field size of 3 X 3 cm at 80 SSD. The dose rate was 2.5 Gy per minute. The microangiography was performed prior to irradiation and at one, two, and weeks after irradiation. The results are as follows: 1. The carcinoma was produced in all rats (100%) between 7 to 11 weeks, the amount of carcinogen was not always in proportion to the development of carcinogenesis, and the most appropriate group for the experiment was 5.0 mg inoculated one. 2. The course of the experimental carcinogensis was initiated by ductal proliferation and squamous metaplasia of ductal epithelium which was later transformed into keratocyst, and finally turned into squamous cell carcinoma. 3. Before irradiation, the basic vasculature consisted of peripheral vascular pattern with central penetrating vessels. The peripheral vascular pattern was always richer than that of the center. Irregular and tortuous vessels stretched from the periphery into the center of the tumor mass. 4. In an early stage following irradiation, an increase in the number of smaller, tortuous vessels and decreased intervascular distances were observed in the central portions of tumor nest mass. 5. Later changes of microvasculature after irradiation are increase in tortuousity, irregularity, narrowing, abrupt tapering, fragmentation, and extravasation. These findings progressed

  18. The Effect of Irradiation on the Structure of Vasculature Experimentally Induced Rat Salivary Gland Carcinoma

    International Nuclear Information System (INIS)

    Kang, Hyo Shick

    1990-01-01

    The aim of this study is to evaluate the microvascular alterations in salivary gland carcinoma after irradiations. Salivary gland carcinoma was induced in rats by inoculation of several amount of 7,12-dimethylbenzan thracene powder 2.5 mg, 5.0 mg and 7.5 mg respectively into rat submandibular gland. Microangiography was performed by taking soft x-ray with barium infusions, and by indian ink perfusion technique. The tumors were given a single dose of 20 Gy (to obtain comparatively low grade irradiation dose for isoeffect of dry desquamation of skin to enable the observation of the vascular changes of the tumor 39) using LINAC 4 MeV Mitsubishi unit with field size of 3 X 3 cm at 80 SSD. The dose rate was 2.5 Gy per minute. The microangiography was performed prior to irradiation and at one, two, and weeks after irradiation. The results are as follows: 1. The carcinoma was produced in all rats (100%) between 7 to 11 weeks, the amount of carcinogen was not always in proportion to the development of carcinogenesis, and the most appropriate group for the experiment was 5.0 mg inoculated one. 2. The course of the experimental carcinogensis was initiated by ductal proliferation and squamous metaplasia of ductal epithelium which was later transformed into keratocyst, and finally turned into squamous cell carcinoma. 3. Before irradiation, the basic vasculature consisted of peripheral vascular pattern with central penetrating vessels. The peripheral vascular pattern was always richer than that of the center. Irregular and tortuous vessels stretched from the periphery into the center of the tumor mass. 4. In an early stage following irradiation, an increase in the number of smaller, tortuous vessels and decreased intervascular distances were observed in the central portions of tumor nest mass. 5. Later changes of microvasculature after irradiation are increase in tortuousity, irregularity, narrowing, abrupt tapering, fragmentation, and extravasation. These findings progressed

  19. Effect of gamma rays on electrically evoked contractions of non-vascular smooth muscles (rat vas deferens)

    International Nuclear Information System (INIS)

    Azroony, R.; Ksies, F.; Alya, G.

    2002-10-01

    We have tried, in this experiment, to study the modifications of non-vascular smooth muscles contraction induced via gamma rays. Smooth muscular fibers were isolated from the vas deferens of an adult rat and contractions were electrically evoked. Our results show that irradiation activates the VOC (Voltage Operated Channel) type of ionic channels which causes an increasing in the inward flux of Ca 2+ and then causes an increasing in the inner calcium concentration [Ca 2] i, the matter which means an increasing in the force of muscular contraction. Concerning to the response of vas deferens smooth muscles to the activation of membrane receptors, we have tried to study the effects of gamma rays on activating adrenergic and cholinergic receptors, also, we have tried to show the effects of different doses of gamma rays (1, 3, 5, 7 Gy) on regulating the contractile response of this type of smooth muscles. And results show that: - Irradiation increases contraction force, mediated by adrenergic and cholinergic receptors, in a dose dependent manner, with E m ax 1 Gy m axc 3 Gy m ax 5 Gy m ax 7 Gy. There is an important shift on irradiated rats (3, 5, 7 Gy) where the maximum effect of Acetylcholine (E m ax) can be obtained in lower concentrations of Acetylcholine. These results mean that irradiation activates the inward flux of Ca 2+ through the ROC (Receptors Operated Channels) type of ionic channels, which rely, in their activation, on activating the membrane receptors. By comparing these results with the effects of gamma rays on activating vascular adrenergic and cholinergic receptors, we concluded that: Non-vascular smooth muscles (vas deferens) are less sensitive to irradiation in comparing with vascular smooth muscles (venae portal hepatica), and irradiation increases the sensitivity of cholinergic receptors to acetylcholine in the smooth muscular fibers of vas deferens while; if decreases this sensitivity in the smooth muscular fibers of venae portal hepatica

  20. Suppressions of Serotonin-Induced Increased Vascular Permeability and Leukocyte Infiltration by Bixa orellana Leaf Extract

    Directory of Open Access Journals (Sweden)

    Yoke Keong Yong

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO, indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg−1 prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats’ paws were observed with AEBO at the dose of 150 mg kg−1. Pharmacological screening of the extract showed significant (P<0.05 anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.

  1. Arachidonic metabolism and radiation toxicity in cultures of vascular endothelial cells

    International Nuclear Information System (INIS)

    Eldor, A.; Vlodavsky, I.; Fuks, Z.; Matzner, Y.; Rubin, D.B.

    1989-01-01

    The authors conclude that the observed changes in eicosanoid production by vascular endothelial cells exposed to ionizing irradiation may be relevant to the pathogenesis of post-radiation injury in small and large blood vessels. Anomalies of PGI 2 production may lead to thrombosis and accelerated arteriosclerosis which are observed in irradiated vessels. The generation of potent cells may greatly facilitate inflammation in irradiated vessels. The model of irradiated cultured endothelial cells may also be useful for the study of various methods and agents aimed at reducing the radiation induced damage to blood vessels. Evaluation of the capacity of cultured endothelial cells to produce eicosanoids may serve as an appropriate index for the metabolic damage induced by radiation. (author)

  2. Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption

    Science.gov (United States)

    2009-12-01

    diabetic retinopathy . Therefore, se- lectively targeting existing blood vessels (vascular- disrupting therapy) and/or inhibiting the forma- tion of new...adhesion led to the formation of thrombi that can occlude blood vessels, causing vascular shutdown. However, viable tumor cells were often detected at...tumor sections (Fig. 4). However, viable tumor cells were commonly detected at tumor periphery. Because of the existence of viable peripheral tumor cells

  3. Antagonism of CD11b with neutrophil inhibitory factor (NIF inhibits vascular lesions in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Alexander A Veenstra

    Full Text Available Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1, a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF, a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2 by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  4. Foodstuff irradiation

    International Nuclear Information System (INIS)

    1982-01-01

    Report written on behalf of the Danish Food Institute summarizes national and international rules and developments within food irradiation technology, chemical changes in irradiated foodstuffs, microbiological and health-related aspects of irradiation and finally technological prospects of this conservation form. Food irradiatin has not been hitherto applied in Denmark. Radiation sources and secondary radiation doses in processed food are characterized. Chemical changes due to irradiation are compared to those due to p.ex. food heating. Toxicological and microbiological tests and their results give no unequivocal answer to the problem whether a foodstuff has been irradiated. The most likely application fields in Denmark are for low radiation dosis inhibition of germination, riping delay and insecticide. Medium dosis (1-10 kGy) can reduce bacteria number while high dosis (10-50 kGy) will enable total elimination of microorganisms and viruses. Food irradiation can be acceptable as technological possibility with reservation, that further studies follow. (EG)

  5. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    Science.gov (United States)

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Economic feasibility study of potato preservation by irradiation in saudi arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kinsara, A A; Abulfaraj, W H; Mamoon, A M; Kamal, S E [Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    1997-12-31

    Comprehensive studies were carried out to investigate the economic feasibility of the preservation of potato crop by cobalt-60 gamma irradiation sprout inhibition by potato irradiation was approved by international organization and concerned authorities in many countries. The dose level range authorized for potato sprout inhibition extends from about 80-150 Gy depending on potato variety, time of irradiation after harvest, and post irradiation storage temperature. Sprout inhibition is most effective by irradiation after harvest, and after healing of any inflicted injuries, that when the potatoes are dormant. Irradiation at the recommended doses minimizes storage losses of potatoes that are refrigerated or stored on shelves. Despite the limited data available, an attempt was made to quantify the monetary value of preserving potato by irradiation. With economy scale taken in consideration, potato preservation by irradiation is economically feasible since at the local consumption rates there will be lot of potatoes that ned storage for off season use. 5 tabs.

  7. The present situation of irradiation services

    International Nuclear Information System (INIS)

    Hironiwa, Takayuki

    2014-01-01

    The present state of food irradiation in Japan is presented from a point of view of a trustee for irradiation business. Radiation sprout inhibition of potatoes, only approved by Government, and spice treatment, now being applied for, are explained. Existing establishments capable of entrusting irradiation services as business in Japan are outlined including Co-60 gamma ray and X-ray irradiation and electron beam irradiation. Principles of irradiation-induced physical and chemical effects in irradiated materials specifically organic polymers and brief explanation of facilities together with safety devices are also explained. (S. Ohno)

  8. Therapeutic Interference With Vascular Calcification—Lessons From Klotho-Hypomorphic Mice and Beyond

    Directory of Open Access Journals (Sweden)

    Florian Lang

    2018-05-01

    Full Text Available Medial vascular calcification, a major pathophysiological process associated with cardiovascular disease and mortality, involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs. In chronic kidney disease (CKD, osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification is mainly driven by hyperphosphatemia, resulting from impaired elimination of phosphate by the diseased kidneys. Hyperphosphatemia with subsequent vascular calcification is a hallmark of klotho-hypomorphic mice, which are characterized by rapid development of multiple age-related disorders and early death. In those animals, hyperphosphatemia results from unrestrained formation of 1,25(OH2D3 with subsequent retention of calcium and phosphate. Analysis of klotho-hypomorphic mice and mice with vitamin D3 overload uncovered several pathophysiological mechanisms participating in the orchestration of vascular calcification and several therapeutic opportunities to delay or even halt vascular calcification. The present brief review addresses the beneficial effects of bicarbonate, carbonic anhydrase inhibition, magnesium supplementation, mineralocorticoid receptor (MR blockage, and ammonium salts. The case is made that bicarbonate is mainly effective by decreasing intestinal phosphate absorption, and that carbonic anhydrase inhibition leads to metabolic acidosis, which counteracts calcium-phosphate precipitation and VSMC transdifferentiation. Magnesium supplementation, MR blockage and ammonium salts are mainly effective by interference with osteo-/chondrogenic signaling in VSMCs. It should be pointed out that the, by far, most efficient substances are ammonium salts, which may virtually prevent vascular calcification. Future research will probably uncover further therapeutic options and, most importantly, reveal whether these observations in mice can be translated into treatment of patients suffering from vascular calcification, such

  9. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation

    International Nuclear Information System (INIS)

    Nanao-Hamai, Michiko; Son, Bo-Kyung; Hashizume, Tsuyoshi; Ogawa, Sumito; Akishita, Masahiro

    2016-01-01

    Vascular calcification is one of the major complications of cardiovascular disease and is an independent risk factor for myocardial infarction and cardiac death. Postmenopausal women have a higher prevalence of vascular calcification compared with premenopausal women, suggesting protective effects of estrogen (E2). However, the underlying mechanisms of its beneficial effects remain unclear. In the present study, we examined the inhibitory effects of E2 on vascular smooth muscle cell (VSMC) calcification, and found that growth arrest-specific gene 6 (Gas6), a crucial molecule in vascular calcification, is transactivated by estrogen receptor α (ERα) in response to E2. In human aortic smooth muscle cells, physiological levels of E2 inhibited inorganic phosphate (Pi)-induced calcification in a concentration-dependent manner. This inhibitory effect was significantly abolished by MPP, an ERα-selective antagonist, and ERα siRNA, but not by PHTPP, an ERβ-selective antagonist, and ERβ siRNA, implicating an ERα-dependent action. Apoptosis, an essential process for Pi-induced VSMC calcification, was inhibited by E2 in a concentration-dependent manner and further, MPP abolished this inhibition. Mechanistically, E2 restored the inhibited expression of Gas6 and phospho-Akt in Pi-induced apoptosis through ERα. Furthermore, E2 significantly activated Gas6 transcription, and MPP abrogated this E2-dependent Gas6 transactivation. E2-BSA failed to activate Gas6 transcription and to inhibit Ca deposition in VSMC, suggesting beneficial actions of genomic signaling by E2/nuclear ERα. Taken together, these results indicate that E2 exerts inhibitory effects on VSMC apoptosis and calcification through ERα-mediated Gas6 transactivation. These findings indicate a potential therapeutic strategy for the prevention of vascular calcification, especially in postmenopausal women. - Highlights: • E2 inhibits Pi-induced calcification in vascular smooth muscles cells. • E2 inhibits Pi

  10. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: cristian.badea@duke.edu [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  11. Investigation of the effects of head irradiation with gamma rays and protons on startle and pre-pulse inhibition behavior in mice.

    Science.gov (United States)

    Haerich, Paul; Eggers, Cara; Pecaut, Michael J

    2012-05-01

    With the increased international emphasis on manned space exploration, there is a growing need to understand the impact of the spaceflight environment on health and behavior. One particularly important aspect of this environment is low-dose radiation. In the present studies, we first characterized the γ- and proton-irradiation dose effect on acoustic startle and pre-pulse inhibition behaviors in mice exposed to 0-5 Gy brain-localized irradiation, and assessed these effects 2 days later. Subsequently, we used 2 Gy to assess the time course of γ- and proton-radiation effects on startle reactivity 0-8 days after exposure. Exposures targeted the brain to minimize the impact of peripheral inflammation-induced sickness behavior. The effects of radiation on startle were subtle and acute. Radiation reduced the startle response at 2 and 5 Gy. Following a 2-Gy exposure, the response reached a minimum at the 2-day point. Proton and γ-ray exposures did not differ in their impact on startle. We found there were no effects of radiation on pre-pulse inhibition of the startle response.

  12. Distraction osteogenesis after irradiation in a rabbit model

    International Nuclear Information System (INIS)

    Tsuchiya, Hiroyuki; Uehara, Kenji; Sakurakichi, Keisuke; Watanabe, Koji; Matsubara, Hidenori; Tomita, Katsuro

    2005-01-01

    The present study was performed to investigate the effects of preoperative irradiation on distraction osteogenesis, as little is known about how preoperative irradiation delays distraction osteogenesis. A single dose of irradiation was applied to the right rear legs of rabbits. This was followed by tibial lengthening at a rate of 0.5 mm/day, which was continued for 4 weeks. Bone regeneration was examined radiographically and histologically. In the irradiation group, the radiographs showed little regeneration during the elongation phase. During the maturation phase, the callus appeared slowly, and its formation was spotty. Furthermore, regeneration was not completed until the fourth week of the maturation period. Histological examination at the end of distraction showed a gap in the distraction consisting of loose connective tissue, with part of the fibrous tissue oriented longitudinally. Four weeks after completion of distraction, the major part of the radiolucent region consisted of cartilage. The spotty osteogenesis was identified as enchondral ossification. Immunohistochemical examination of the regeneration area revealed that the blood vessels were extremely localized, and that the level of expression of vascular endothelial growth factor (VEGF) in the osteoblasts was high. Microangiography showed that vascularization at the distracted sites was poor. Distraction osteogenesis was decreased markedly by preoperative irradiation in terms of both rate and process. The results suggested that most of the osteoprogenitor cells were damaged immediately after irradiation. The high level of VEGF in the osteoblasts and the enchondral ossification also suggested a hypoxic state in the distracted region. Preoperative irradiation interferes with distraction osteogenesis by inducing a state of poor angiogenesis. (author)

  13. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    International Nuclear Information System (INIS)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.; Wolfgang, John A.; Saksena, Mansi; Weissleder, Ralph

    2005-01-01

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to a common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities

  14. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  15. Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region.

    Science.gov (United States)

    Möbius, Patrick; Preidl, Raimund H M; Weber, Manuel; Amann, Kerstin; Neukam, Friedrich W; Wehrhan, Falk

    2017-11-01

    Surgical treatment of head and neck malignancies frequently includes microvascular free tissue transfer. Preoperative radiotherapy increases postoperative fibrosis-related complications up to transplant loss. Fibrogenesis is associated with re-expression of embryonic preserved tissue developmental mediators: osteopontin (OPN), regulated by sex-determining region Y‑box 9 (Sox9), and homeobox A9 (HoxA9) play important roles in pathologic tissue remodeling and are upregulated in atherosclerotic vascular lesions; dickkopf-1 (DKK1) inhibits pro-fibrotic and atherogenic Wnt signaling. We evaluated the influence of irradiation on expression of these mediators in arteries of the head and neck region. DKK1, HoxA9, OPN, and Sox9 expression was examined immunohistochemically in 24 irradiated and 24 nonirradiated arteries of the lower head and neck region. The ratio of positive cells to total cell number (labeling index) in the investigated vessel walls was assessed semiquantitatively. DKK1 expression was significantly decreased, whereas HoxA9, OPN, and Sox9 expression were significantly increased in irradiated compared to nonirradiated arterial vessels. Preoperative radiotherapy induces re-expression of embryonic preserved mediators in arterial vessels and may thus contribute to enhanced activation of pro-fibrotic downstream signaling leading to media hypertrophy and intima degeneration comparable to fibrotic development steps in atherosclerosis. These histopathological changes may be promoted by HoxA9-, OPN-, and Sox9-related inflammation and vascular remodeling, supported by downregulation of anti-fibrotic DKK1. Future pharmaceutical strategies targeting these vessel alterations, e. g., bisphosphonates, might reduce postoperative complications in free tissue transfer.

  16. Inhibition of Vascular Smooth Muscle Growth via Signaling Crosstalk between AMP-Activated Protein Kinase and cAMP-Dependent Protein Kinase

    Directory of Open Access Journals (Sweden)

    Joshua Daniel Stone

    2012-10-01

    Full Text Available Abnormal vascular smooth muscle (VSM growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK and cAMP-dependent protein kinase (PKA. Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remains unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells, the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSM cell migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashions. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.

  17. Graph analysis of cell clusters forming vascular networks

    Science.gov (United States)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  18. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    International Nuclear Information System (INIS)

    PosthumaDeBoer, Jantine; Würdinger, Thomas; Graat, Harm CA; Beusechem, Victor W van; Helder, Marco N; Royen, Barend J van; Kaspers, Gertjan JL

    2011-01-01

    The use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G 2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G 2 arrest and could sensitize OS cells to irradiation induced cell death. WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G 2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G 2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS

  19. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    Science.gov (United States)

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  20. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  1. Progress in food irradiation: Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M

    1982-11-01

    The Bangladesh contribution deals with fish preservation by irradiation and, in this context, with the radiosensitivity of mesophilic and psychophilic microorganisms. Sprouting inhibition is studied with potatoes and onions. A further part deals with irradiation of spices. Mutagenicity tests were carried on rats and mice fed with irradiated fish. The tests were performed at the Institute for Food and Radiation Biology, near Dacca in December 1981.

  2. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition.

    Science.gov (United States)

    Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O

    2017-02-28

    Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.

  3. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  4. Transcriptional up-regulation of antioxidant genes by PPARδ inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-01-01

    Research highlights: → Activation of PPARδ by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. → Agonist-activated PPARδ suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. → GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. → Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.

  5. Gamma-irradiation of wet corn. Microbiological aspects

    International Nuclear Information System (INIS)

    Poisson, Jeanne; Cahagnier, B.

    1973-01-01

    In the course of a survey of several years work on microbiological decontamination and control of wet corn by gamma-irradiation the following factors are studied: inhibiting and selective effect of gamma-irradiation (100 to 500krads) on the microflora of grains; evolution of residual microflora of irradiated wet grains (moisture content about 35%), during storage experiments under ventilated or airtight conditions. Two important points emerge from those studies. The microflora which develops on irradiated sample is much less varied than that of the control sample. The microbial population of an irradiated sample rises up in a few days on a level with the initial one of the control, then goes on increasing while remaining, as a rule, slightly inferior to that of the control placed under the same conditions. This greatly lowers the practical interest of irradiation, which can only be used together with another treatment able to inhibit the quick growth of the residual microflora [fr

  6. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization

    Science.gov (United States)

    Chang, Che-Yi; Wang, Ming-Chen; Miyagawa, Takuya; Chen, Zhi-Yu; Lin, Feng-Huei; Chen, Ko-Hua; Liu, Guei-Sheung; Tseng, Ching-Li

    2017-01-01

    Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine–glycine–aspartic acid (RGD) peptide–hyaluronic acid (HA)-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs) was synthesized for targeting the αvβ3 integrin on human umbilical vein endothelial cells (HUVECs) in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by 1H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV), with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 μg/mL) when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV

  7. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli

    International Nuclear Information System (INIS)

    Moreau, P.L.

    1988-01-01

    Overproduction of single-stranded DNA (ssDNA)-binding protein (SSB) in uvr Escherichia coli mutants results in a wide range of altered phenotypes. (i) Cell survival after UV irradiation is decreased; (ii) expression of the recA-lexA regulon is slightly reduced after UV irradiation, whereas it is increased without irradiation; and (iii) recombination of UV-damaged lambda DNA is inhibited, whereas recombination of nonirradiated DNA is unaffected. These results are consistent with the idea that in UV-damaged bacteria, SSB is first required to allow the formation of short complexes of RecA protein and ssDNA that mediate cleavage of the LexA protein. However, in a second stage, SSB should be displaced from ssDNA to permit the production of longer RecA-ssDNA nucleoprotein filaments that are required for strand pairing and, hence, recombinational repair. Since bacteria overproducing SSB appear identical in physiological respects to recF mutant bacteria, it is suggested that the RecF protein (alone or with other proteins of the RecF pathway) may help RecA protein to release SSB from ssDNA

  8. Technology of irradiation processing for checking garlic sprouting

    International Nuclear Information System (INIS)

    Chen Yuntang

    1999-01-01

    Study on technology of irradiation processing for checking garlic sprouting was carried out. The results are as follows. 1. the suitable irradiation time of garlic could be prolonged when the garlic was preserved at low temperature (-2 +- 1 degree C). When the garlic was stored till the end of the year and then irradiated, the sprouting could be checked effectively. When the garlic was stored till the next March, the effect of sprouting inhibition decreased; 2. When garlic was irradiated at suitable time and then subsequently stored at low temperature, the effect of sprouting inhibition was the same as that with cold storage before irradiation. However, if the cold storage period was rather long, the effect was not as good as that with cold storage after irradiation; 3. Browning of irradiated garlic did not occur when the garlic was preserved at low temperature (-2 +- 1 degree C), indicating that the browning of sprout and bud was caused by higher storage temperature

  9. Ultraviolet irradiated water containing humic substances inhibits bacterial metabolism

    International Nuclear Information System (INIS)

    Lund, V.; Hongve, D.

    1994-01-01

    Disinfection of drinking water by u.v. irradiation has been observed to reduce the biofilm formation in the pipes in a pilot plant. An apparently inhibitory effect that persists in the water after the u.v. treatment has been studied in the laboratory. Reduced numbers of viable bacteria and reduced bacterial metabolism were observed when irradiated waters were inoculated with fresh bacteria. Approximately 60% of the heterotrophic bacteria in the water samples were inactivated within a 1 h contact time with freshly u.v. disinfected water. The uptake rates of labelled tracer substances were significantly reduced when the bacteria were exposed to irradiated water. The inhibitory effect seems to last for at least 1 week. High concentrations of organic matter seem to counteract the inhibitory effect. No relationship was found between u.v. dose and effect within the dose range tested. The observed effects may be explained by the action of oxidizing reagents such as hydroxyl radicals, produced in photochemical reactions between u.v. irradiation and humic substances in the water. (author)

  10. Pathogenesis of irradiation-induced cognitive dysfunction

    International Nuclear Information System (INIS)

    Abayomi, O.K.

    1996-01-01

    Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in young children. The underlying mechanisms of this disorder have not been described. The present review describes the role of the hippocampus and the anatomically related cortex in memory function and its marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development of techniques to minimize the risks. (orig.)

  11. Pathogenesis of irradiation-induced cognitive dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Abayomi, O.K. [Howard Univ. Hospital, Washington, DC (United States). Dept. of Radiation Oncology

    1996-12-31

    Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in young children. The underlying mechanisms of this disorder have not been described. The present review describes the role of the hippocampus and the anatomically related cortex in memory function and its marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development of techniques to minimize the risks. (orig.).

  12. Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chenlong ZHAO

    2018-05-01

    Full Text Available Background and objective Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells. Methods EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991. Results PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells. Conclusion PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.

  13. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    International Nuclear Information System (INIS)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis

  14. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  15. Fluvastatin inhibits AGE-induced cell proliferation and migration via an ERK5-dependent Nrf2 pathway in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Ae-Rang Hwang

    Full Text Available Advanced glycation endproduct (AGE-induced vascular smooth muscle cell (VSMC proliferation and reactive oxygen species (ROS production are emerging as important mechanisms of diabetic vasculopathy, but little is known about the molecular mechanism responsible for the antioxidative effects of statins on AGEs. It has been reported that statins exert pleiotropic effects on the cardiovascular system due to decreases in AGE-induced cell proliferation, migration, and vascular inflammation. Thus, in the present study, the authors investigated the molecular mechanism by which statins decrease AGE-induced cell proliferation and VSMC migration. In cultured VSMCs, statins upregulated Nrf2-related antioxidant gene, NQO1 and HO-1, via an ERK5-dependent Nrf2 pathway. Inhibition of ERK5 by siRNA or BIX02189 (a specific ERK5 inhibitor reduced the statin-induced upregulations of Nrf2, NQO1, and HO-1. Furthermore, fluvastatin was found to significantly increase ARE promoter activity through ERK5 signaling, and to inhibit AGE-induced VSMC proliferation and migration as determined by MTT assay, cell counting, FACS analysis, a wound scratch assay, and a migration chamber assay. In addition, AGE-induced proliferation was diminished in the presence of Ad-CA-MEK5α encoding a constitutively active mutant form of MEK5α (an upstream kinase of ERK5, whereas depletion of Nrf2 restored statin-mediated reduction of AGE-induced cell proliferation. Moreover, fluvastatin suppressed the protein expressions of cyclin D1 and Cdk4, but induced p27, and blocked VSMC proliferation by regulating cell cycle. These results suggest statin-induced activation of an ERK5-dependent Nrf2 pathway reduces VSMC proliferation and migration induced by AGEs, and that the ERK5-Nrf2 signal module be viewed as a potential therapeutic target of vasculopathy in patients with diabetes and complications of the disease.

  16. How about food irradiation? Its history and usefulness. (3) Irradiation effects on food and decrease in fungi

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    Inhibiting germination of vegetables and grade control of maturity of fruits, destroy of insect pest and parasite, disinfection of meats and fishes, bactericidal action of dry foods such as spices, and taste and color change of irradiated foods and perfect bactericidal action are stated. Application of food irradiation contains inhibiting germination, insecticidal action, sterilization of insect pest, grade control of maturity, inhibition of food poisoning, decrease in fungi, improvement of properties, and perfect bactericidal action. Each treatment of foods is described by the effects of three exposure doses such as the low exposure dose until 1 kGy, middle exposure dose from 1 to 10 kGy and high from 10 to 75 kGy. (S.Y.)

  17. How x rays inhibit amphibian limb regeneration

    International Nuclear Information System (INIS)

    Maden, M.; Wallace, H.

    1976-01-01

    The effects of an inhibiting dose of 2,000 rad of x-rays on the regenerating limbs of axolotl larvae have been examined in a histological and cytological study. Particular attention was paid to the mitotic indices of normal and irradiated epidermal and blastemal cells. Both the characteristic pattern of epidermal mitotic stimulation which normally follows amputation and the later increase in blastemal mitoses are suppressed by irradiation. In most cells the effects are permanent, but in a small proportion a mitotic delay is induced and upon subsequent division chromosome damage in the form of micronuclei is revealed. Thus irradiated cells which do divide almost certainly die. These results are discussed in relation to other theories of x-ray inhibition of regeneration with particular reference to the view that irradiated cells can be reactivated

  18. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats.

    Science.gov (United States)

    Bank, N; Aynedjian, H S; Khan, G A

    1994-09-01

    Either acute or chronic inhibition of nitric oxide synthesis by L-arginine analogues results in increases in mean arterial pressure and reductions in renal blood flow. The role of endogenous vasoconstrictors in mediating these effects is not entirely clear. In the present study, nitric oxide was inhibited in male Sprague-Dawley rats by oral administration of nitro-L-arginine for 3 weeks. At the end of this time, mean arterial pressure was 30 to 40 mm Hg higher than in normal controls, renal blood flow and glomerular filtration rate were 25% to 30% lower, and renal vascular resistance was markedly increased. Intravenous infusion of receptor antagonists for angiotensin II, thromboxane, epinephrine, and endothelin-1 had no significant effect on the hypertension. Inhibition of prostaglandin synthesis and furosemide-induced diuresis in the presence of angiotensin blockade also had no effect on blood pressure. Renal vascular resistance was also unaffected by these interventions, except that saralasin did reduce renal resistance in both control and nitric oxide-inhibited groups. However, the absolute level of renal vascular resistance remained higher in the latter group. Calcium channel blockade partially corrected blood pressure and renal resistance, but the levels remained significantly higher than in control animals. The findings are consistent with the view that the increase in vascular smooth muscle tone caused by inhibition of nitric oxide synthesis cannot be accounted for by overexpression of common endogenous vasoconstrictors. Rather, the generalized increase in vascular smooth muscle tone appears to be due to a direct effect of reduced nitric oxide availability, which may lead to an increase in intracellular calcium concentration or sensitivity.

  19. Irradiation of packaged food

    International Nuclear Information System (INIS)

    Kilcast, D.

    1990-01-01

    Food irradiation is used to improve the safety of food by killing insects and microorganisms, to inhibit sprouting in crops such as onions and potatoes and to control ripening in agricultural produce. In order to prevent re-infestation and re-contamination it is essential that the food is suitably packed. Consequently, the packaging material is irradiated whilst in contact with the food, and it is important that the material is resistant to radiation-induced changes. In this paper the nature of the irradiation process is reviewed briefly, together with the known effects of irradiation on packaging materials and their implications for the effective application of food irradiation. Recent research carried out at the Leatherhead Food RA on the possibility of taint transfer into food is described. (author)

  20. Reproductive function of monkeys subjected to chronic irradiation

    International Nuclear Information System (INIS)

    Artem'eva, N.S.; Kosichenko, L.P.; Andreeva, A.V.; Zvereva, G.A.

    1976-01-01

    Marked functional disorders have been detected in reproductive glands of eight female monkeys (as compared to twelve control animals) subjected to protracted (up to eight years) irradiation (cumulative doses 826-3282 R). Irradiated monkeys exhibited a drastically decreased reproductive capacity, early menopause and sterility. Irradiation of preadolescent animals inhibited, in most cases, the puberty processes and disturbed sex cycles. Structural disorders in sex glands, inhibition of the processes of maturation and ovulation of folloculi, death of the mass of germ cells, atypical vegetations of the integmentary epithelium, sclerosing and cystic degeneration of the glandular tissue have been revealed

  1. UV or X-irradiation increases the cytoplasmic accumulation of rhodamine 123 in various cancer cell lines

    International Nuclear Information System (INIS)

    Dumitriu, I.E.; Beyer, T.D.; Gaipl, U.S.; Kalden, J.R.; Herrmann, M.; Roedel, F.

    2003-01-01

    Purpose: Previous studies indicated that ATP-binding cassette (ABC) membrane transporters protect against UV-induced apoptosis. We investigated the effect of UVB and X-ray irradiation on the export function of these ABC transporters in primary lymphocytes and various cancer cell lines. Material and Methods: We used rhodamine accumulation assays in various human malignant cell lines and peripheral blood lymphocytes (PBL). Cells were irradiated with up to 960 mJ/cm 2 and up to 50 Gy of UVB and X-ray, respectively. Results: We demonstrated that UVB as well as X-ray irradiation inhibit the export function of the ABC transporters in a dose-dependent fashion. For PBL, this effect did not correlate with an apoptotic phenotype. In the case of the tumor cell lines, even though the irradiation-induced inhibition of membrane transporters was accompanied by phosphatidylserine exposure, only a minority of cells had lost their mitochondrial membrane potential during the observation period. Furthermore, we demonstrated that the inhibition of membrane transporters is not a general feature of apoptosis. Conclusion: Irradiation inhibits the export function of ABC transporters. Although some of the irradiated cells undergo apoptosis following irradiation, the inhibition is an unique feature accompanying irradiation and not a general hallmark of apoptotic cell death. The inhibition of drug export by irradiation may offer new potential for reverting multidrug resistance of cancer cells. (orig.)

  2. UV or X-irradiation increases the cytoplasmic accumulation of rhodamine 123 in various cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, I.E.; Beyer, T.D.; Gaipl, U.S.; Kalden, J.R.; Herrmann, M. [Inst. for Clinical Immunology, Dept. of Medicine III, Friedrich Alexander Univ. of Erlangen-Nuremberg, Erlangen (Germany); Roedel, F. [Dept. of Radiooncology, Univ. of Erlangen-Nuremberg, Erlangen (Germany)

    2003-08-01

    Purpose: Previous studies indicated that ATP-binding cassette (ABC) membrane transporters protect against UV-induced apoptosis. We investigated the effect of UVB and X-ray irradiation on the export function of these ABC transporters in primary lymphocytes and various cancer cell lines. Material and Methods: We used rhodamine accumulation assays in various human malignant cell lines and peripheral blood lymphocytes (PBL). Cells were irradiated with up to 960 mJ/cm{sup 2} and up to 50 Gy of UVB and X-ray, respectively. Results: We demonstrated that UVB as well as X-ray irradiation inhibit the export function of the ABC transporters in a dose-dependent fashion. For PBL, this effect did not correlate with an apoptotic phenotype. In the case of the tumor cell lines, even though the irradiation-induced inhibition of membrane transporters was accompanied by phosphatidylserine exposure, only a minority of cells had lost their mitochondrial membrane potential during the observation period. Furthermore, we demonstrated that the inhibition of membrane transporters is not a general feature of apoptosis. Conclusion: Irradiation inhibits the export function of ABC transporters. Although some of the irradiated cells undergo apoptosis following irradiation, the inhibition is an unique feature accompanying irradiation and not a general hallmark of apoptotic cell death. The inhibition of drug export by irradiation may offer new potential for reverting multidrug resistance of cancer cells. (orig.)

  3. The effects of X-irradiation on the chondrogensis of mesenchymal cells

    International Nuclear Information System (INIS)

    Ha, Jong Ryeol

    2002-01-01

    It is well known that X-irradiation affects on maturing process of differentiated chondrocytes. Nevertheless, It has been remained elusively whether X-irradiation affects the process of differentiation of mesenchymal cells which differentiate into chondrocyte, fibroblast, or muscle cells. In this study, we examined the effect of X-irradiation (with 1 to 10 Gy) on chondrogenesis using mesenchymal cells of chick limb bud. Our results show that X-irradiation dose-dependently inhibited chondrogenesis. This result suggests that immature chondroblast-like mesenchymal cells are sensitive to X-irradiation, Moreover, X-irradiation affects not only maturing process of chondrocytes, but also inhibits the chondrogenesis. Taken together, we demonstrate that the whole process of differentiation of mature chondrocytes from mesenchymal cells is affected by X-irradiation and undifferentiated cells were more affected by X-irradiation than mature cells

  4. Irradiation for sprouting inhibition of Kponan yams in Cote d'Ivoire

    International Nuclear Information System (INIS)

    Kodia, A.A.

    2002-01-01

    Yams of the Kponan variety were transported from Abidjan, Cote d'Ivoire, to Accra, Ghana, irradiated at the facility operated by the Ghana Atomic Energy Commission and brought back to Abidjan, Cote d'Ivoire. The law no 98-593 on radiation protection and nuclear safety was promulgated on 10 November 1998. In its article 8 it is said that food and industrial products irradiation facilities shall comply with the requirements of the International Code of Practice. The regulations on food irradiation based on this main law are now being considered for promulgation. The lack of regulations makes it difficult to legally conduct test marketing of irradiated yams. The economic feasibility of irradiating yams in Ghana and selling them in Cote d'Ivoire has been investigated. (author)

  5. Food package irradiator-a landmark of operational safety and food irradiation research

    International Nuclear Information System (INIS)

    Jain, M.P.; Sanyal, Bhaskar; Ghosh, Sunil K.

    2017-01-01

    Food irradiation in India has been undertaken for preservation of food for safe consumption, security of food for round the year and export of the food commodities to earn foreign exchange. Therefore, an irradiation plant known as Food Package Irradiator (FPI) was set-up in the year 1967 in BARC. This plant utilizes gamma radiation from "6"0Co source that has a maximum allowable activity of 100 kCi. It is a multipurpose facility where a wide range of products like onion for sprout inhibition to spices for microbial decontamination can be carried out. In short, the design of irradiator has been considered based on obtaining variable throughputs and variable dose rates

  6. Na,K-pump modulates intercellular communication in vascular wall

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Nilsson, Holger; Aalkjær, Christian

      Ouabain, a specific inhibitor of the Na,K-pump, has previously been shown to interfere with intercellular communication. Here we test the hypothesis that the communication between vascular smooth muscle cells (SMCs) is regulated through an interaction between the Na,K-pump and the Na...... were used as a model for electrical coupling of SMCs by measuring membrane capacitance (Cm). SMCs were uncoupled (evaluated by inhibition of vasomotion and desynchronization of calcium transients in vascular wall, or by reduction to half of Cm measured in paired A7r5 cells) when the Na,K-pump...... was inhibited either by a low concentration of ouabain or by ATP depletion. Uncoupling with ouabain was associated with a localized increase of intracellular calcium in discrete sites near the plasma membrane. Reduction of Na,K-pump activity by removal of extracellular potassium also uncoupled cells, but only...

  7. Studies on cannabis. III. Young plants from the seed irradiated with /sup 60/Co gamma rays for inhibiting their development after seeding

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, H; Kuriyama, E; Tomizawa, A [Tokyo Coll. of Pharmacy (Japan)

    1976-01-01

    The seedlings from Cannabis sativa L. seeds irradiated with different doses of ..gamma..-rays were examined, in order to determine the dose sufficient to kill the young plants naturally, before their hallucinnogenic component increases. The seeds of ''Minamioshihara No. 1'', which were harvested in 1972 in Tochigi Prefecture, were irradiated with eight different doses of /sup 60/Co ..gamma..-rays in January 17, 1973, and the seedlings were examined several times during the subsequent 9 months, from March to November 1973, and their morphological and histological effects were examined, and the results are summarized as follows: Samples irradiated with 1500 and 1000 krads developed radicles about 3 mm in length. Samples irradiated with 500, 200, and 50 krads grew into young plants with the first set of leaves, without lateral roots. Samples irradiated with 30 krads grew to about 10 cm high with a few lateral roots, and the epicotyls about 1 cm in length. These young plants from the irradiated seeds stayed in the same condition and then died. Samples irradiated with 15 and 5 krads grew in the same way as the controls until the stage of flowering. Samples irradiated with 500, 200, 50, and 30 krads showerd the cell membranes of endodermis and pericycle to be partially lignified and suberized. The degree of change was related to the dose of ..gamma..-rays. Samples irradiated with 30 krads showed withered cells near the end of the lateral nerves on the first and second set of leaves. The economical dose of /sup 60/Co ..gamma..-rays for inhibiting young plants from developing into adult ones was a minimum of 30 krads which made the young plants die. Irradiation with 50 krads of ..gamma..-rays will be required to kill the young plants completely before they develop the hallucinogenic component.

  8. The osmotic fragility of human erythrocytes is inhibited by laser irradiation

    International Nuclear Information System (INIS)

    Habodaszova, D.; Sikurova, L.; Waczulikova, I.

    2004-01-01

    In this study we investigated the influence of green laser irradiation (532 nm, 30 mW, 31,7 J/cm 2 ) on the membrane integrity of human erythrocytes and compared the results with the effect of infrared laser irradiation (810 nm, 50 mW, 31,3 J/cm 2 ). To evaluate the membrane integrity of erythrocytes, one clinical parameter, the osmotic fragility, was investigated. We observed a decrease in osmotic fragility of the erythrocytes after irradiation by the green laser light as well as by the infrared laser compared to non-irradiated controls (Authors)

  9. The inhibition of DNA repair by aphidicolin or cytosine arabinoside in X-irradiated normal and xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Waters, R.; Crocombe, K.; Mirzayans, R.

    1981-01-01

    Normal and excision-deficient xeroderma pigmentosum fibroblasts were X-irradiated and the influence on DNA repair of either the repair inhibitor cytosine arabinoside or the specific inhibitor of DNA polymerase α, aphidicolin, investigated. The data indicated that the repair of a certain fraction of X-ray-induced lesions can be inhibited in both cell lines by both compounds. Thus, as aphidicolin blocks the operation of polymerase α, this enzyme must be involved in an excision repair pathway operating in both normal and excision-deficient xeroderma pigmentosum cells. (orig.)

  10. The effect of irradiation on preservation of termitomyces

    International Nuclear Information System (INIS)

    Qiang Jiye; Zhu Haiping; Zhou Zhenchun; Wu Qiwang

    2005-01-01

    The termitomyces were irradiated by 60 Co γ-ray at different doses and stored at 18 degree C. The results showed that the irradiation treatment inhibited peroxidation of membrane lipid, reduced the membrane leakage, extended shelflife of fresh termitomyces. The suitable irradiation dose is 0.5 kGy. (authors)

  11. A comparison study on of tumor cell-killing effects between low-dose-rate β-irradiation of 32P and γ-irradiation of 60Co

    International Nuclear Information System (INIS)

    Feng Huiru; Tian Jiahe; Ding Weimin; Zhang Jinming; Chen Yingmao

    2004-01-01

    The paper is to elucidate radiobiological characteristics and radiobiological mechanism in killing tumor cells with low dose rate β-rays and high dose rate γ-rays. HeLa cells were exposed to low-rate β-irradiation of 32 P or high-dose-rate γ-irradiation of 60 Co. Cell response-patterns were compared between two the types of radiations in terms of their inhibition of cell proliferation and cell cycle blockage, evaluated by trypanblue excluded method and flow cytometry, respectively. Results show that there is a different way in growth inhibition effect on HeLa cells between low-dose-rate irradiation of 32 P and high-dose-rate irradiation of 60 Co γ. In exposure to 32 P, the inhibition of cell proliferation in HeLa cell was a prolong course, whereas and the effect was in a more serious and quick way in 60 Co irradiation. Cell cycle arrest in G 2 phase induced by 32 P was lower and more prolong than that induced by 60 Co. The inhibition effect on tumor cells between the two types of radiations is different. Impaired DNA repair system by continuous low-dose-rate radiation might contribute to the final radiation effect of 32 P

  12. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Chang CY

    2016-12-01

    spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 µg/mL when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV mice. Keywords: RGD peptide, epigallocatechin gallate (EGCG, hyaluronic acid (HA, vascular endothelial cells, antiangiogenesis, corneal neovascularization

  13. Effects of whole body γ irradiation on skin wound cells and the repaired-promoting action of W11-a12

    International Nuclear Information System (INIS)

    Shu Chongxiang; Cheng Tianmin; Yan Guohe; Ran Xinze

    2002-01-01

    Objective: To study the effects of 6 Gy whole body γ irradiation on components of wound cells and the repair-promoting action of W 11 -a 12 , an extract from Periplaneta americana. Methods: After mice were received 6 Gy gamma ray irradiation, the area of healing range in wound cross section, the cellular infiltration of wound and the content of basic fibroblast growth factor (bFGF) in wound epithelial cells were observed and the healing-promoting effect of W 11 -a 12 on the radiation-impaired wound was investigated. Results: The area of healing range in cross section was decreased, various infiltrated cells were all inhibited by radiation, but the range of inhibition was more or less different, and the descending order of severity was as follows: macrophages, vascular endothelial cells, fibroblasts and epithelial cells. The content of bFGF in epithelial cells was decreased. W 11 -a 12 had beneficial heal-promoting effect on radiation-impaired wound: it increased cellular infiltration and promoted synthesis and secretion of bFGF in epithelial cells. Conclusion: The depletion of wound cells is mainly responsible for the healing deficits of radiation-impaired skin wound and W 11 -a 12 enhances cell migration and proliferation and promotes synthesis and secretion of bFGF in epithelial cells

  14. Experimental study on effect of arsenic trioxide on vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Niu Huanzhang; Teng Gaojun; Wang Zihao; Zhang Dongsheng; Fang Juanjuan

    2007-01-01

    Objective: To investigate the effect of arsenic trioxide (As 2 O 3 ) nanoparticles on rabbit vascular smooth muscle cells in vitro in comparison with normal form As 2 O 3 . Methods: The rabbit vascular smooth muscle cells were cultured in vitro. Nano and normal forms of As 2 O 3 with drug concentrations of 3 μmol/L were added into the cells. Cell proliferation curve was drawn according to the light absorption values of MTT test. Flow cytometry was applied to observe the apoptosis. DNA was extracted and underwent electrophoresis. Results: Cell proliferation treated with the 3 μmol/L concentration of As 2 O 3 was inhibited. Cell growth was inhibited markedly with increased treatment time, and the inhibition effect of nano drug form seemed stronger than that of normal form. MTT light absorption values of cells treated at 24, 48 and 72 h showed statistically significant difference (H=10.934, 15.039, 15.539, P 2 O 3 , normal drug form of As 2 O 3 and control group of cells without As 2 O 3 were 44.97%, 58.54%, 74.02% respectively. The early apoptosis rates were 16.89%, 11.27%, 11.20%, late apoptosis rates were 26.56%, 23.60%, 12.46%, and necrosis rates were 11.58%, 6.59%, 2.32% respectively. Agarose gel electrophoresis showed 'ladder' strand of DNA, with more strands and obscurity for nano drug form treated cells. Conclusion: Arsenic trioxide may inhibit the growth of rabbit vascular smooth muscle cells. The nano drug form showed stronger inhibition effect than that of the normal drug form. (authors)

  15. Studies of early effects of ultraviolet B irradiation on hairless mouse epidermis

    International Nuclear Information System (INIS)

    Olsen, W.M.

    1990-01-01

    The present study describes various early biochemical and cell kinetic aspects of the acute response of hairless epidermis with irradiation of narrow-banded wavelengths in the ultraviolet B region of the spectrum (280-320 nm), and their possible relationship to ultraviolet carcinogenicity. In vivo exposure of hairless mouse skin to a single dose of various narrow-banded wavelengths of ultraviolet B light demonstrated that 280, 290, 297 and 302 nm had a carcinogenic potency according to the tetrazolium test. No induction of DT-diaphorase was observed, which may signify that the actions of ultraviolet B light and chemical skin carcinogens differ at the cellular level, even though the nuclear effect on DNA may in principle be the same, e.g. mutation events, activation or amplication of oncogens, inhibition of anti-oncogens, etc. The early epidermal cell kinetic after a biologically relevant dose of ultraviolet B irradiation at a wavelength of 297 nm could be divided into two periods: the initial inhibition in the uptake of tritiated thymidine and the mitotic rate were followed by a long-lasting depression in the DNA synthesis rate combined with rapid cell proliferation. This shows that the acute vascular response (erythema and edema) to ultraviolet B lights is also associated with epidermal perturbations similar to the carcinogen-associated delay in cell cycle passage seen after chemical skin carcinogens like 7,12-dimethylbenz(α)anthracene and methylnitrosourea, as well as to the regenerative proliferation observed after chemical skin irritants like cantharidin. 93 refs., 6 figs

  16. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  17. Hypertrophy of cultured bovine aortic endothelium following irradiation

    International Nuclear Information System (INIS)

    Rosen, E.M.; Vinter, D.W.; Goldberg, I.D.

    1989-01-01

    The vascular endothelium is a vital multifunctional tissue which covers the entire luminal surface of the circulatory system. Loss of continuity of the endothelial lining normally results in cell migration and proliferation to make up for cell loss and to ensure that exposure of the thrombogenic subendothelium to platelets and clotting factors is minimized. We showed that ionizing radiation (400-3000 cGy) causes dose-dependent cell loss from confluent monolayer cultures of bovine aortic endothelium, which cannot immediately be compensated by cell proliferation. Within 24 h, the remaining attached cells undergo substantial somatic hypertrophy (evidenced by increased protein content, cell volume, and attachment area) but remain diploid. If cell loss is not excessive, monolayer continuity is restored within several days. Although reduced protein degradation may contribute, most of the protein accumulation is due to synthesis of new protein. Unlike endothelium, irradiation of smooth muscle cultures causes neither cell loss nor increased protein synthesis. Hypertrophy of irradiated endothelial cells appears to be a consequence of a proliferative stimulus (cell loss) in a population of cells which is unable to divide. It can be modulated by replating irradiated cells at different densities. We suggest that endothelial hypertrophy is an early vascular homeostatic response before clonal proliferation of surviving cells or repopulation by cells from outside of the irradiated field can compensate for cell loss

  18. Enhancement of Antibacterial activity of Chitosan by gamma irradiation

    International Nuclear Information System (INIS)

    Bashandy, A.S.; Ibrahim, H.M.M.

    2006-01-01

    The antibacterial activity of irradiated and non-irradiated chitosan against E.coli, S.aureus, Salmonella, Strep. fecalis,Closteridium and P. aerugenosa was studied. Up to 1.25 mg/l, chitosan hardly suppressed the growth of all the strains while 3 mg/l of chitosan clearly inhibited the growth of all the studied strains. Therefore, the concentration of 3 mg/l of chitosan in the medium was adopted in this study. Irradiation at 100 KGy under dry conditions was effective in increasing the activity of chitosan and the growth of bacterial strains which was completely inhibited. It was also found that the addition of chitosan to dressing membranes present good barrier properties against microbes especially that irradiated at 100 KGy

  19. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis

    OpenAIRE

    Nagai, Toshihiro; Sato, Masato; Kobayashi, Miyuki; Yokoyama, Munetaka; Tani, Yoshiki; Mochida, Joji

    2014-01-01

    Introduction Angiogenesis is an important factor in the development of osteoarthritis (OA). We investigated the efficacy of bevacizumab, an antibody against vascular endothelial growth factor and an inhibitor of angiogenesis, in the treatment of OA using a rabbit model of anterior cruciate ligament transection. Methods First, we evaluated the response of gene expression and histology of the normal joint to bevacizumab treatment. Next, in a rabbit model of OA induced by anterior cruciate ligam...

  20. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    Science.gov (United States)

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  1. Inhibitory Effect of Gamma-Irradiated Chitosan on the Growth of Denitrifiers

    Directory of Open Access Journals (Sweden)

    Javier Vilcáez

    2009-01-01

    Full Text Available In order to find an environmentally benign substitute to hazardous inhibitory agents, the inhibitory effect of -irradiated chitosans against a mixed culture of denitrifying bacteria was experimentally evaluated. Unlike other studies using pure aerobic cultures, the observed effect was not a complete inhibition but a transient inhibition reflected by prolonged lag phases and reduced growth rates. Raw chitosan under acid conditions (pH 6.3 exerted the strongest inhibition followed by the 100 kGy and 500 kGy irradiated chitosans, respectively. Therefore, because the molecular weight of chitosan decreases with the degree of -irradiation, the inhibitory properties of chitosan due to its high molecular weight were more relevant than the inhibitory properties gained due to the modification of the surface charge and/or chemical structure by -irradiation. High dosage of -irradiated appeared to increase the growth of mixed denitrifying bacteria in acid pH media. However, in neutral pH media, high dosage of -irradiation appeared to enhance the inhibitory effect of chitosan.

  2. Combination of EGFR/HER2 tyrosine kinase inhibition by BIBW 2992 and BIBW 2669 with irradiation in FaDu human squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Schuetze, C.; Doerfler, A.; Zips, D.; Krause, M. [Univ. of Technology, Dresden (Germany). Dept. of Radiation Oncology; Eicheler, W.; Baumann, M. [Univ. of Technology, Dresden (Germany). Dept. of Radiation Oncology; Univ. of Technology, Dresden (Germany). Experimental Center; Hering, S. [Univ. of Technology, Dresden (Germany). Inst. of Legal Medicine; Solca, F. [Boehringer Ingelheim Austria, Vienna (Austria)

    2007-05-15

    Purpose: To investigate the effect of the dual EGFR/HER2 (ErbB2) tyrosine kinase inhibitors BIBW 2992 and BIBW 2669 on proliferation and clonogenic cell survival of FaDu human squamous cell carcinoma in vitro, and on tumor growth after single-dose irradiation in nude mice. Material and Methods: Cell proliferation, cell-cycle distribution and clonogenic cell survival after irradiation were assayed with and without BIBW 2992 or BIBW 2669 (3, 30, and 300 nM) in vitro. Tumor volume and tumor growth delay (GD{sub V2}) were determined in tumors growing in NMRI (nu/nu) nude mice, treated with (a) BIBW 2992 (20 mg kg{sup -1} body weight orally), BIBW 2669 (3-4 mg kg{sup -1} body weight orally) or carrier until a final tumor diameter of 15 mm, or, (b) 3 days before a 20-Gy single-dose irradiation or, (c) after a 20-Gy single-dose irradiation until reaching the final tumor diameter. Results: BIBW 2992 and BIBW 2669 significantly increased the doubling time of FaDu cells in vitro. A marked dose-dependent antiproliferative effect with blockade of the cells in G0/G1-phase of the cell cycle was found. Incubation with BIBW 2669 or BIBW 2992 for 3 days marginally increased radiosensitivity of FaDu cells in vitro. For BIBW 2992, this effect was statistically significant (p = 0.006). Daily oral application of BIBW 2669 or BIBW 2992 in mice bearing unirradiated FaDu tumors showed a marked antiproliferative effect with a significant prolongation of tumor growth delay (p < 0.0001). After drug application for 3 days, followed by 20-Gy single-dose irradiation, a slight effect of both drugs on tumor growth delay was seen. For BIBW 2669, this effect was statistically significant (p = 0.007). However, this effect disappeared when tumor volumes were normalized to the time point of irradiation suggesting that both drugs showed no or only a slight radiosensitizing effect in vivo. Daily application of BIBW 2669 or BIBW 2992 after a single-dose irradiation showed a clear inhibition of tumor

  3. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia

    Directory of Open Access Journals (Sweden)

    Kandiah N

    2017-04-01

    AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations. Keywords: acetylcholinesterase, BuChE genotype, butyrylcholinesterase, Parkinson’s disease dementia, rivastigmine, subcortical vascular dementia

  4. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation.

    NARCIS (Netherlands)

    Braake, A.D. ter; Tinnemans, P.T.; Shanahan, C.M.; Hoenderop, J.G.J.; Baaij, J.H.F. de

    2018-01-01

    Magnesium has been shown to effectively prevent vascular calcification associated with chronic kidney disease. Magnesium has been hypothesized to prevent the upregulation of osteoblastic genes that potentially drives calcification. However, extracellular effects of magnesium on hydroxyapatite

  5. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  6. Autotaxin inhibition with PF8380 enhances the radiosensitivity of human and murine glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Sandeep R Bhave

    2013-09-01

    Full Text Available Purpose: Glioblastoma multiforme (GBM is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo and radiotherapy. Autotaxin (ATX is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM.Methods and Materials: Mouse GL-261 and Human U87MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin-fold model in Gl-261. Heterotopic mouse GL-261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer.Results: Pretreatment of GL-261 and U87-MG cells with 1µM PF-8380 followed by 4Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL-261;P = 0.002 and 17.9% in U87; P = 0.012 decreased invasion (35.6% in GL-261; P = 0.0037 and 31.8% in U87; P = 0.002, and attenuated radiation induced Akt phosphorylation. In the tumor window model inhibition of ATX abrogated radiation-induced tumor neovascularization (65%; P=0.011. In a heterotopic mouse GL-261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm3 , however combination of PF-8380 (10mg/kg with irradiation (5 fractions of 2Gy took more than 32 days to reach a tumor volume of 7000 mm3 .Conclusion: Inhibition of ATX by PF8380 led to decreased invasion and enhanced radiosensitization of glioma cells. Radiation induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate glioblastoma response to radiotherapy.

  7. Relative Expression of Apoptotic and Vascular Epithelial Growth Factor Receptor Genes in Gamma-Irradiated Rat Kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyang; Chun, Ki Jung; Kim, Jin Kyu [Korea Atomic research Institute, Deajeon (Korea, Republic of); Yoon, Yong Dal [Hanyang Univ., Seoul (Korea, Republic of)

    2005-07-01

    Biological process of wound healing, which occurs in three phases of revascularization (inflammatory, proliferative, and maturation) is an important essential step in regulating this process. Blood vessels serve as carriers for various cells, cytokines, and growth factors that are needed for tissue repair. The formation of new blood vessels is a necessary event during embryogenesis, but it occurs rarely in the adult with few exceptions, such as in the female reproductive system and wound healing. Angiogenesis is controlled by a variety of mitogenic, chemotactic, and inhibitory peptide and lipid factors that act on invading endothelial and smooth muscle cells. One of the most important angiogenic factors is the vascular endothelial growth factor (VEGF), a glycosylated protein of 46-48 kD composed of two disulphide linked subunits. The VEGF family consists of six members, five splicing forms of VEGF and the placenta-derived growth factor (PDGF). In normal, VEGF is expressed during embryogenesis and in a limited number of sites in adults. In disease states, VEGF can be detected in various tumor cells, the synovial pannus in rheumatoid arthritis, and in keratinocytes during wound healing. Five different VEGF isoforms, with 121, 145, 165, 189, and 106 amino acids, can be generated as a result of an alternative splicing from the single VEGF gene. The VEGF molecules bind to receptors known as VEFGR- 1 (FLT-1, fms-like tyrosine kinase 1), VEGFR-2 (KDR, kinase domain region/FLK-1, fetal liver kinase 1), VEGFR-2 (FLT-4), neurophilin-1, neurophilin-2, and heparan sulfate proteoglycans. Ionizing radiation can affect the angiogenesis and neovascularization on normal tissues in radiotherapy or by background radiation surrounding living beings. Kidney belongs to the urinary system and classified to the radio-resistant organ according to the previous studies. Therefore, the present study tested the effect of gamma irradiation and mercury chloride (MgCl{sub 2}) to the renal region

  8. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  9. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  10. WR-1065 and radioprotection of vascular endothelial cells. I. Cell proliferation, DNA synthesis and damage

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Kang, H.J.; Baumann, F.E.; Blazek, E.R.

    1996-01-01

    Normal tissue toxicity limits radiation therapy and could depend on the extent of damage to the vascular endothelium. Aminothiols such as WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] provide radioprotection for normal tissues, but little is known about how the aminothiols specifically affect the endothelium. Bovine aortic endothelial cells in culture were exposed to WR-1065 for 2 h before irradiation ( 137 Cs γ rays, 1 Gy/min). Alone, WR-1065 demonstrated an antiproliferative effect that was related to dose (0.5-4 mM) and was evident by lowered counts of adherent cells 48 h after exposure. WR-1065 was clearly radioprotective when assessed by colony formation and incorporation of [ 3 H]thymidine. However, when the number of adherent cells was evaluated, radioprotection appeared to be slight and evident only in logarithmically growing cells. WR-1065 at 2 mM suppressed single-strand DNA breaks after 3 Gy by 22% and double-strand breaks after 9 Gy by 47%. Also in the irradiated cells, WR-1065 more than doubled the rate of progression of cells from G 1 to S phase. WR-1065 pretreatment elevated cellular glutathione (GSH) content more than twofold. Although pretreatment with buthionine sulfoximine inhibited the elevation of GSH, the radioprotective impact of WR-1065 on total DNA strand breaks and colony formation was unaffected. These results suggest that WR-1065 may enable tissue recovery from irradiation by promoting the replication of endothelial cells, possibly by mechanisms independent of GSH. 46 refs., 6 figs., 2 tabs

  11. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  12. Gamma irradiation of onions and garlic

    International Nuclear Information System (INIS)

    Baraldi, D.

    1975-01-01

    Technological and economic feasibility of gamma irradiation of onions and garlic on an industrial scale are studied. Statistical data on production, consumption, exportation and losses during storage are analyzed. Traditional methods of food preservation are reviewed and gamma irradiation techniques are presented as an alternative to sprout inhibition. Requirements for the irradiation of onions and garlic on a commercial scale including a cost benefit analysis are discussed. Some conclusions are formulated on licensing and prospects

  13. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Zhang, Yu; Wang, Tao; He, Jianyu; He, Huaizhen; He, Langchong, E-mail: helc@mail.xjtu.edu.cn

    2015-04-15

    Chronic hypertension induces vascular remodeling. The most important factor for hypertension treatment is reducing the risk of cardiovascular disease. OW1 is a novel imperatorin derivative that exhibits vasodilative activity and antihypertensive effects in two-kidney one-clip (2K1C) renovascular hypertensive rats. It also inhibited vascular remodeling of the thoracic aorta in a previous study. Here, the inhibitory effects and mechanisms of OW1 on arterial vascular remodeling were investigated in vitro and in 2K1C hypertensive rats in vivo. OW1 (20 μM, 10 μM, 5 μM) inhibited Ang II-induced vascular smooth muscle cells (VSMCs) proliferation and ROS generation in vitro. OW1 also reversed the Ang II-mediated inhibition of α-SMA levels and stimulation of OPN levels. Histology results showed that treatment of 2K1C hypertensive rats with OW1 (20, 40, and 80 mg/kg per day, respectively for 5 weeks) in vivo significantly decreased the number of VSMCs, the aortic cross-sectional area (CSA), the media to lumen (M/L) ratio, and the content of collagen I and III in the mesenteric artery. Western blot results also revealed that OW1 stimulated the expression of α-SMA and inhibited the expression of collagen I and III on the thoracic aorta of 2K1C hypertensive rats. In mechanistic studies, OW1 acted as an ACE inhibitor and affected calcium channels. The suppression of MMP expression and the MAPK pathway may account for the effects of OW1 on vascular remodeling. OW1 attenuated vascular remodeling in vitro and in vivo. It could be a novel candidate for hypertension intervention. - Highlights: • OW1, an imperatorin derivative, attenuates vascular remodeling caused by hypertension. • OW1 inhibits VSMC proliferation and media layer hypertrophy. • OW1 acts as an ACE inhibitor and affects calcium channels. • Suppression of MMPs expression and MAPK pathway may account for the effects of OW1 on vascular remodeling.

  14. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    International Nuclear Information System (INIS)

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-01-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  15. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Gang-Feng [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Shi, Wei-Wen [Zhejiang Medical Science and Education Development Center, Hangzhou 310006 (China); Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You [Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013 (China); Wang, Lu-Chen [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Yu, Bing, E-mail: Jellycook2002@163.com [Zhejiang Chinese Medical University, Hangzhou 310053 (China)

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  16. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  17. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    Science.gov (United States)

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  18. Effects of sodium arsenite on the survival of UV-irradiated Escherichia coli: inhibition of a recA-dependent function

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, T; Meyn, M S; Troll, W [New York Univ., N.Y. (USA). Dept. of Environmental Medicine

    1975-11-01

    Epidemiological studies and clinical observations suggesting potential hazards of arsenic compounds in increasing the incidence of cancer have been in complete contradiction with experimental findings in animals. Because of the predominance of skin cancers in the epidemiological reports, it was decided to investigate the possibility that arsenic compounds might interfere with DNA repair. Using Escherichia coli as a test system, it is shown that this is indeed the case. Sodium arsenite, at concentrations of 0.1mM and higher, decreases the survival of ultraviolet-irradiated E.coli WP2, a strain which possesses the full complement of repair genes. The effect of the arsenite increases with increasing ultraviolet dose. Similar results were obtained with the excision repair deficient strains WWP2 (uvrA) and WP6(polA). Sodium arsenite had no effect on the survival of recA mutant, WP10. Survival of ultraviolet-irradiated WP5(exrA) was enhanced by sodium arsenite, the effect being greatest at low ultraviolet doses. It is postulated that arsenite inhibits a recA-dependent step in DNA repair. To account for the increased survival of the exrA mutant, it is suggested that in the absence of the exr/sup +/ gene, the arsenite-sensitive recA-dependent function is deleterious. The ability of arsenite to inhibit DNA repair may account for the clinical and epidemiological reports linking arsenicals with an increased incidence of cancer.

  19. Evidence that novobiocin and nalidixic acid do not inhibit excision repair in u.v.-irradiated human skin fibroblasts at a pre-incision

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1985-01-01

    The effects of novobiocin and nalidixic acid on the specific toxicity of aphidicolin towards u.v. irradiated arrested human skin fibroblasts have been determined. Contrary to the result expected if either drug were causing inhibition of excision repair at a pre-incision step the sector of toxicity due to a combined treatment of 300 μg ml -1 nalidixic acid and 1.0 μg ml -1 aphidicolin is unchanged when compared with that due to treatment with 1.0 μg ml -1 aphidicolin alone, while that for 150 μg ml -1 novobiocin + 1.0 μg ml -1 aphidicolin was slightly increased. In parallel measurements of the inhibition of u.v.-induced DNA repair synthesis in arrested fibroblasts by these drugs, 150 μg ml -1 novobiocin inhibited repair synthesis by approx.60% over the fluence range employed. Nalidixic acid (300 μg ml -1 ) caused no detectable inhibition of repair synthesis. It was concluded that the mode of action of novobiocin in the inhibition of DNA excision repair is not via the inhibition of a pre-incision step and the data do not support the hypothesis that a type II topoisomerase mediated change in DNA supercoiling is an essential early step in excision repair of u.v.-induced damage. (author)

  20. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    Science.gov (United States)

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  1. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  2. Vaginal and bladder angiosarcoma after therapeutic irradiation

    International Nuclear Information System (INIS)

    Morgan, M.A.; Moutos, D.M.; Pippitt, C.H. Jr.; Suda, R.R.; Smith, J.J.; Thurnau, G.R.

    1989-01-01

    Angiosarcoma involving the female genitourinary tract is a rare soft tissue malignancy of vascular origin. We have described probably the first reported case of postirradiation angiosarcoma involving the vagina and bladder, and have reviewed the existing literature on the subject of angiosarcoma resulting from previous therapeutic irradiation for gynecologic malignancy.10 references

  3. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis

    International Nuclear Information System (INIS)

    Frame, Fiona M.; Savoie, Huguette; Bryden, Francesca; Giuntini, Francesca; Mann, Vincent M.; Simms, Matthew S.; Boyle, Ross W.; Maitland, Norman J.

    2015-01-01

    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

  4. Acute effects of pulsed-laser irradiation on the arterial wall

    Science.gov (United States)

    Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise

    1992-08-01

    Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p vascular injury.

  5. Preservation of potatoes by gamma irradiation

    International Nuclear Information System (INIS)

    Nouani, A.; Boussaha, A.

    1987-01-01

    In Algeria, potatoes are a major food item in nutrition habits. Because of lack of cold storage facilities, losses can reach up to 40% of the total output of summer harvest. This paper describes the first experiments on the application of gamma irradiation for the preservation of local varieties of potatoes. Losses are strongly reduced by inhibition sprouting effect of irradiation and reduction of sugars content has no significant influence on the acceptability of irradiated potatoes

  6. Irradiation as Quarantine Treatment of Rambutan

    International Nuclear Information System (INIS)

    Pransopon, Prapon; Kongratarpon, Titima; Vongchili, Satit; Segsarnviriya, Suchada; Limohpasmanee, Wanith; Eamsiri, Jarurat; Sajjabut, Surasak

    2006-01-01

    Eggs and larvae of Bactrocera dorsalis and Bactrocera correcta were investigated for their tolerant dose of irradiation. Artificially in feasted rambutans were irradiated at target doses of 0, 10, 20, 30, 40, 50 and 60 Gy. The results showed that the lowest dose that could inhibit adult emergence was 102.89 Gy for B. dorsalis and 97.61 Gy for B. correcta (P=0.999968, Probit 9). Larvae of B. dorsalis were irradiated at the dose

  7. Effect of Artocarpus communis Extract on UVB Irradiation-Induced Oxidative Stress and Inflammation in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    2013-02-01

    Full Text Available Administration of antioxidants and anti-inflammatory agents is an effective strategy for preventing ultraviolet (UV irradiation-induced skin damage. Artocarpus communis possesses several pharmacological activities, such as antioxidant, anticancer and anti-inflammation. However, the photoprotective activity of methanol extract of A. communis heartwood (ACM in ultraviolet irradiation-induced skin damage has not yet been investigated. The present study was performed using ultraviolet absorption, histopathological observation, antioxidant and anti-inflammation assays to elucidate the mechanism of the photoprotective activity of ACM. Our results indicated that ACM displayed a UVA and UVB absorption effect and then effectively decreased scaly skin, epidermis thickness and sunburn cells during ultraviolet irradiation in hairless mice. ACM not only decreased ultraviolet irradiation-mediated oxidative stress, including lowering the overproduction of reactive oxygen species and lipid peroxidation (p < 0.05, but also reduced the levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α and interleukin 1β. Additionally, ACM can decrease the synthesis of cytosolic phospholipase A2, cyclooxygenase, inducible nitric oxide synthase and vascular cell adhesion molecular-1 via inhibiting TNF-α-independent pathways (p < 0.05 in UVB-mediated inflammation and formation of sunburn cells. Consequently, we concluded that ACM extract has a photoprotective effect against UVB-induced oxidative stress and inflammation due to its sunscreen property, and its topical formulations may be developed as therapeutic and/or cosmetic products in further studies.

  8. Studies on preservation of agricultural products by irradiation

    International Nuclear Information System (INIS)

    Chung, K.H.; Kwon, S.H.; Lee, Y.I.; Chae, J.C.; Shin, I.C.

    1981-01-01

    This study was attempted to develop and establish the preservation techniques of agricultural products by irradiation through ascertainment of the optimum irradiation doses for sprout inhibition of white potato and chestnut, and for disinfestation of rice insects during storage

  9. Time course of development of metastasis in irradiated Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Ohizumi, Yukio; Maezawa, Hiroshi; Mori, Tomoyuki

    1988-01-01

    The influence of local irradiation on the development of metastases and primary tumor volume was studied in Lewis lung carcinoma growing intramuscularly in the hind leg of C57BL/6 mice. The time course of development of metastases was determined from the size of the lung colonies at autopsy by determining the growth rate of the colonies. Irradiation within five days after tumor cell injection inhibited the incidence of metastases in accordance with irradiation dose. For irradiation more than seven days after the injection, promotion of metastases was observed around the time of the experiment as a function of irradiation dose and tumor volume. After the irradiation phase, the development of metastases was inhibited in accordance with radiation dose. When delay in metastasis was defined as additional days needed to develop two or ten colonies compared with controls, the relationship between delay and dose was linear. At the regrowth phase of the primary tumor, the incidence of metastases from the irradiated tumor was reduced in comparison with that from unirradiated tumors of the same size. Inhibition of metastases was observed only at 5 Gy and showed slight dose-dependency. Mechanisms in the development of metastases as they related to these findings are also discussed. (autho)

  10. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwoo [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 (Korea, Republic of); Lee, Suyeon [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2016-06-10

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  11. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    International Nuclear Information System (INIS)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon; Bae, Jong-Sup

    2016-01-01

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  12. Irradiation of fruit and vegetables

    International Nuclear Information System (INIS)

    O'Beirne, David

    1987-01-01

    There is likely to be less economic incentive to irradiate fruits and vegetables compared with applications which increase the safety of foods such as elimination of Salmonella or decontamination of food ingredients. Of the fruit and vegetable applications, irradiation of mushrooms may offer the clearest economic benefits in North-Western Europe. The least likely application appears to be sprout inhibition in potatoes and onions, because of the greater efficiency and flexibility of chemical sprout inhibitors. In the longer-term, combinations between irradiation/MAP/other technologies will probably be important. Research in this area is at an early stage. Consumer attitudes to food irradiation remain uncertain. This will be a crucial factor in the commercial application of the technology and in the determining the balance between utilisation of irradiation and of technologies which compete with irradiation. (author)

  13. Food Irradiation In Vietnam And Japan

    International Nuclear Information System (INIS)

    Tamikazy Kume

    2011-01-01

    In 2008, Japan Atomic Energy Commission of Cabinet Office performed the study of current status of food irradiation in the world. The results showed that the total quantity of irradiated foods in 2005 was 405,000 tons. Seven main countries for food irradiation were China, USA, Ukraine, Brazil, South Africa, Vietnam and Japan. In Japan, only the potato irradiation for sprout inhibition is continued more than 35 years since 1974 but the quantity is decreasing. On the other hand, the food irradiation of Vietnam has been developed rapidly in a short time to export the frozen seafood and fruit. This paper shows the status of food irradiation in Vietnam and Japan, and the progress in both countries after 2005. (author)

  14. Combined effects of x-irradiation and bleomycin on the proliferation of isoproterenol-stimulated mouse parotid glands

    International Nuclear Information System (INIS)

    Shoju, Masumi

    1977-01-01

    Effects of x-irradiation and bleomycin (BLM) on DNA synthesis in isoproterenol (IPR)-stimulated mouse parotid glands were investigated. The incorporation of thymidine- 3 H into DNA in parotid glands increased remarkably in 16 hours with a peak at 22 hours after the injection of IPR. When x-irradiation (250 rads) was given at 1 hour after IPR (early G 1 phase), the stimulation of DNA synthesis was inhibited by about 50%, and the beginning of DNA synthesis was delayed nearly 6 hours. BLM injected in the early G 1 phase was also effective in inhibiting DNA synthesis. However, the injection of BLM in the late G 1 or S phase did not interfere with DNA synthesis. Combined x-irradiation and BLM inhibited DNA synthesis and delayed the beginning of the S phase far more strikingly than did x-irradiation alone. When BLM was injected at various intervals before and after x-irradiation, the greatest inhibition was found just after irradiation. Therefore, a longer interval between x-irradiation and BLM injection had a tendency to decrease the rate of inhibiting DNA synthesis. These findings were confirmed by measuring the labeling index and the mitotic index in the acinar cells of the mouse parotid gland. These results suggest that simultaneous application of x-irradiation and BLM has the greatest effect. (Evans, J.)

  15. Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Tokino, Takashi; Watanabe, Naoki

    2001-01-01

    We investigated the effect of p53 status on involvement of caspase-3 activation in cell death induced by X-irradiation, using rat embryonic fibroblasts (REFs) transduced with a temperature-sensitive mutant (mt) p53 gene. Cells with wild-type (wt) p53 showed greater resistance to X-irradiation than cells with mt p53. In cells with wt p53, X-irradiation-induced apoptosis was not inhibited by the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspartyl-aldehyde (Ac-DMQD-CHO) and caspase-3 activity was not elevated following X-irradiation, although induction of p53 and p21/WAF-1 protein was observed. In contrast, irradiated cells with mt p53 showed 89% inhibition of cell death with Ac-DMQD-CHO and 98% inhibition with the antioxidant N-acetyl-L-cysteine (NAC). In cells with mt p53, caspase-3 activity was increased approximately 5 times beyond baseline activity at 24 h after irradiation. This increase was almost completely inhibited by NAC. However, inhibition of caspase-3 by Ac-DMQD-CHO failed to decrease production of reactive oxygen species by cells with mt p53. Differential involvement of caspase-3 is a reason for differences in sensitivity to X-irradiation in cells with different p53 status. Caspase-3 activation appears to occur downstream from generation of reactive oxygen species occurring independently of wt p53 during X-irradiation-induced cell death. (author)

  16. Inhibition of the iNOS pathway in inflammatory macrophages by low-dose X-irradiation in vitro. Is there a time dependence?

    International Nuclear Information System (INIS)

    Hildebrandt, G.; Loppnow, G.; Jahns, J.; Hindemith, M.; Kamprad, F.; Anderegg, U.; Saalbach, A.

    2003-01-01

    Background: Low radiation doses (≤ 1.25 Gy), if applied 6 h before or after stimulation, are known to inhibit the inducible nitric oxide synthase (iNOS) pathway in inflammatory macrophages in vitro. We therefore investigated the time dependence and the underlying molecular mechanism of this effect, since it may be involved in the clinically observed anti-inflammatory and analgesic efficacy of low-dose radiotherapy. Material and Methods: Metabolic activity, nitric oxide (NO) production, iNOS- and hemoxygenase 1-(HO-1-)protein and -mRNA expression by macrophages in vitro after stimulation with LPS/IFN-γ (0.1 μg ml -1 /100 U ml -1 ) were investigated. Irradiation was performed at 6, 4, 2 h before and 0, 2, 4, 6 h after stimulation with doses ranging from 0.3 to 10 Gy. For each group, three independent experiments were performed over a period of 30 h with sampling intervals of 3 h. Results: In stimulated macrophages, metabolic activity was not affected by radiation doses up to 10 Gy. A dose-dependent modulation of the cumulative NO production was observed with significant inhibition by low radiation doses (≤ 1.25 Gy) and return to control level and even higher concentrations by higher doses (≥ 5 Gy). The degree of inhibition did not show any significant time dependence within the experimental time window used. The iNOS-mRNA expression 3-18 h following stimulation and subsequent irradiation was not affected by doses ≤ 1.25 Gy. The iNOS-protein expression 6-24 h following stimulation and subsequent irradiation was reduced by doses ≤ 1.25 Gy. By contrast, neither HO-1-protein nor HO-1-mRNA expression at the same time points was influenced by these low doses. Conclusion: The inhibitory interference of low radiation doses with the iNOS pathway in inflammatory macrophages appears to be based on radiation effects on the translational and posttranslational control mechanisms of iNOS activity. However, contrary to our working hypothesis this is not related to

  17. Changes in teeth and mandibular vasculature following irradiation

    International Nuclear Information System (INIS)

    Ishida, Motohisa

    1979-01-01

    The author studied the effects of radiotherapy on teeth and mandibular vascularization in 60 adult dogs. Cobalt irradiation of the lower right mandible was followed by intravascular injection of chloropercha to delineate the three-dimensional morphology of the changes. The histopathology, X-ray and macroscopic characteristics were also studied. The results were: (1) With 600 rad, fine capillaries around the roots of teeth increased. With 900 - 1,500 rad, the course of blood vessels became irregular. With 1,200 rad, there was a marked increase in capillary vessels which extended meanderingly. With 4,500 rad, the number of blood vessels was markedly decreased. Some vessels were irregular and unclear. (2) Vessels in the dental pulp showed mild meandering with 900 rad. They increased markedly with 1,200 rad and showed meandering. With 4,500 rad, the number of blood vessels decreased. (3) The histopathology showed that, with comparatively small amounts of irradiation, marked vascular disturbance accompanied by vascular dilation and edema had occurred. As the amount of irradiation increased, increased fibrosis of interstitial tissue, decreased numbers of blood vessels, and aseptic necrosis occurred, resulting finally in bone absorption and bone necrosis. (4) X-ray examination showed that mild constriction of the pulp cavity occurred with 3,000 rad. This became marked with 4,500 rad and showed absorption. (5) Macroscopically, 900 rad caused mild edema in the cheek skin. With 3,000 rad, the oral cavity showed some ulceration. With 4,500 rad, necrosis of the gingiva occurred. (6) A certain correlation in the changes of blood vessels, X-ray findings, macroscopical, and pathohistological findings was evident. (author)

  18. Changes in teeth and mandibular vasculature following irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M [Okayama Univ. (Japan). School of Medicine

    1979-12-01

    The author studied the effects of radiotherapy on teeth and mandibular vascularization in 60 adult dogs. Cobalt irradiation of the lower right mandible was followed by intravascular injection of chloropercha to delineate the three-dimensional morphology of the changes. The histopathology, X-ray and macroscopic characteristics were also studied. The results were: (1) With 600 rad, fine capillaries around the roots of teeth increased. With 900 - 1,500 rad, the course of blood vessels became irregular. With 1,200 rad, there was a marked increase in capillary vessels which extended meanderingly. With 4,500 rad, the number of blood vessels was markedly decreased. Some vessels were irregular and unclear. (2) Vessels in the dental pulp showed mild meandering with 900 rad. They increased markedly with 1,200 rad and showed meandering. With 4,500 rad, the number of blood vessels decreased. (3) The histopathology showed that, with comparatively small amounts of irradiation, marked vascular disturbance accompanied by vascular dilation and edema had occurred. As the amount of irradiation increased, increased fibrosis of interstitial tissue, decreased numbers of blood vessels, and aseptic necrosis occurred, resulting finally in bone absorption and bone necrosis. (4) X-ray examination showed that mild constriction of the pulp cavity occurred with 3,000 rad. This became marked with 4,500 rad and showed absorption. (5) Macroscopically, 900 rad caused mild edema in the cheek skin. With 3,000 rad, the oral cavity showed some ulceration. With 4,500 rad, necrosis of the gingiva occurred. (6) A certain correlation in the changes of blood vessels, X-ray findings, macroscopical, and pathohistological findings was evident.

  19. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  20. A Study on the Pre-and Post-irradiation Effect of Blood Vessels in the Experimentally Induced Tongue Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Tae; Park, Tae Won [Dept. of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1990-02-15

    The author observed the changes of vasculature of pre-and post-irradiation on DMBA induced rat tongue cancer. The study was performed by using vascular corrosion resin casting, and scanning electron microscopy. The results were as follows. 1. The capillaries runned parallely and formed bundles and, sometimes, plexus. The endothelial cells were arranged regularly and small pores were observed. 2. In irradiated normal tongue the capillaries were curved slightly and formed plexus on initial day of post-irradiation. On third day the capillaries and capillary pores were dilated and the endothelial cell arrangement was irregular. The effects of irradiation were gradually increased from initial to the 3rd day, though it was decreased after 7th day. 3. The vasculature of DMBA induced tongue cancer group were very irregular, and large avascular lesions were formed according to the cancer necrosis or tumor cell nest and the vasculature was narrowed and paralleled around the avascular lesion by compression of cancer cell nest. The vascular wall was roughened and dilated, forming club shaped or varix. 4. The vessels were curved and formed reticular network in irradiated DMBA induced tongue carinoma group. The free end of newly formed capillaries had regular width, and also irregular club shaped or aneurysmal dilation were observed. The vascular structures were destroyed and vessels were fused in tumor necrosis lesion. The radiation effects were marked on the first and third day of irradiation and the effects were decreased after seventh day and showed capillary regeneration.

  1. Cross-immunity between syngeneic tumors in mice immunized with gamma-irradiated ascites tumors

    International Nuclear Information System (INIS)

    Kudo, Hajime; Waga, Takashi; Sato, Tatsusuke; Ogasawara, Masamichi; Ito, Izumi

    1980-01-01

    C3H/He mice immunized repeatedly with irradiated (13,000 rads 60 Co) MM46 or MM48, both transplantable ascites mammary carcinomas of the same strain, were subcutaneously challenged with the identical or the different tumor. In mice immunized with irradiated MM46, the growth of challenges of not only MM46 but also MM48 was inhibited. On the other hand, in mice immunized with irradiated MM48, the growth of challenges of MM48 was inhibited, but the inhibition of the growth of MM46 was not observed. Cross-immunity, therefore, was shown by immunization with MM46 but not with MM48. These findings were considered to indicate that MM46 expressed cross-immunity against MM48 because of its high resistance to the irradiation, and that MM48 did not show cross-immunity to MM46 because of its low resistance to the irradiation. (author)

  2. Photoacoustic discrimination of vascular and pigmented lesions using classical and Bayesian methods

    Science.gov (United States)

    Swearingen, Jennifer A.; Holan, Scott H.; Feldman, Mary M.; Viator, John A.

    2010-01-01

    Discrimination of pigmented and vascular lesions in skin can be difficult due to factors such as size, subungual location, and the nature of lesions containing both melanin and vascularity. Misdiagnosis may lead to precancerous or cancerous lesions not receiving proper medical care. To aid in the rapid and accurate diagnosis of such pathologies, we develop a photoacoustic system to determine the nature of skin lesions in vivo. By irradiating skin with two laser wavelengths, 422 and 530 nm, we induce photoacoustic responses, and the relative response at these two wavelengths indicates whether the lesion is pigmented or vascular. This response is due to the distinct absorption spectrum of melanin and hemoglobin. In particular, pigmented lesions have ratios of photoacoustic amplitudes of approximately 1.4 to 1 at the two wavelengths, while vascular lesions have ratios of about 4.0 to 1. Furthermore, we consider two statistical methods for conducting classification of lesions: standard multivariate analysis classification techniques and a Bayesian-model-based approach. We study 15 human subjects with eight vascular and seven pigmented lesions. Using the classical method, we achieve a perfect classification rate, while the Bayesian approach has an error rate of 20%.

  3. Adiponectin attenuates angiotensin II-induced vascular smooth muscle cell remodeling through nitric oxide and the RhoA/ROCK pathway.

    Directory of Open Access Journals (Sweden)

    Wared eNour-Eldine

    2016-04-01

    Full Text Available INTRODUCTION: Adiponectin (APN, an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II.METHODS AND RESULTS: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO, the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor (SNAP, or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 hr Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. CONCLUSIONS: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.

  4. Commercial storage and marketing trials of irradiated Onions

    International Nuclear Information System (INIS)

    Nouchpramool, K.; Charoen, S.; Prachasitthisak, Y.

    1997-06-01

    Pilot scale storage tests were carried out in co-operation with commercial onions traders in the years 1986 and 1987 to evaluate the efficacy of irradiation for sprout inhibition of onions under actual commercial stored in commercial cold storage at 1-10 degrees C and 70-90% relative humidity. The results show that irradiation reduce sprouting in onions by 11 and 40 per cent and weight loss by 3 and 5 per cent after 5 and 6 months of storage, respectively. Storage losses are minimum when radiation is applied within two weeks of harvest. A maximum storage life of six months as against five months for controls is attained. Post cold storage life at ambient temperature for irradiated onions after withdrawal from cold storage is one week longer than that of non-irradiated controls. The radio inhibition process is technically feasible and economically justified as a profit can be made during the extended storage period. Marketing trials of irradiated onions conducted during and after termination of storage revealed no adverse comments from consumers and retailers/wholesalers. Wholesalers.retailers and consumers preferred irradiated onions because of their better physical quality and longer marketable life

  5. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang

    International Nuclear Information System (INIS)

    Byun, M.-W.; Son, J.-H.; Yook, H.-S.; Jo, Cheorun; Kim, D.-H.

    2002-01-01

    Effects of gamma irradiation on the physiological activity of Korean soybean fermented foods were investigated. Chungkookjang, the whole cooked soybean product and Doenjang, soybean paste were purchased and irradiated at 5, 10 and 20 kGy of absorbed doses. The physiological activity was evaluated by angiotensin converting enzyme inhibition, xanthine oxidase inhibition, tyrosinase inhibition and radical scavenging ability and results indicated that at 10 kGy or below did not show any significant change on physiological activities by irradiation

  6. Cerebral radiation necrosis: vascular and glial features

    Energy Technology Data Exchange (ETDEWEB)

    Husain, M M; Garcia, J H

    1976-12-21

    Glial and vascular abnormalities in brain, simulating intracranial neoplasia, are described in a patient who received radiation to the pituitary region for treatment of an adenoma, 13 months before death. In addition to the expected changes of cerebral radionecrosis, four interesting features are cited: (1) diffuse hyperplasia of capillaries in the cerebral cortex with marked endothelial hypertrophy; (2) abundant, large multipolar bizarre cells in the perivascular connective tissues; (3) focal astrocytic proliferation with many cells resembling either Alzheimer type I astrocytes or neoplastic cells, and (4) radiation changes in the non-irradiated brain.

  7. Evidence that novobiocin and nalidixic acid do not inhibit excision repair in u.v.-irradiated human skin fibroblasts at a pre-incision step

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1985-01-01

    The effects of novobiocin and nalidixic acid on the specific toxicity of aphidicolin towards u.v. irradiated arrested (nondividing) human skin fibroblasts have been determined. Contrary to the result expected if either drug were causing inhibition of excision repair at a pre-incision step the sector of toxicity due to a combined treatment of 300 micrograms ml -1 nalidixic acid and 1.0 micrograms ml -1 aphidicolin is unchanged when compared with that due to treatment with 1.0 micrograms ml -1 aphidicolin alone, while that for 150 micrograms ml -1 novobiocin + 1.0 micrograms ml -1 aphidicolin was slightly increased. In parallel measurements of the inhibition of u.v.-induced DNA repair synthesis in arrested fibroblasts by these drugs, 150 micrograms ml -1 novobiocin inhibited repair synthesis by approximately 60% over the fluence range employed. Nalidixic acid at a concentration of 300 micrograms ml -1 caused no detectable inhibition of repair synthesis. The authors conclude that the mode of action of novobiocin in the inhibition of DNA excision repair is not via the inhibition of a pre-incision step and the data do not support the hypothesis that a type II topoisomerase mediated change in DNA supercoiling is an essential early step in excision repair of u.v.-induced damage

  8. Effect of hyperthermia, radiation and adriamycin combinations on tumor vascular function

    International Nuclear Information System (INIS)

    Eddy, H.A.; Chmielewski, G.

    1982-01-01

    Pathophysiologic studies of tumor vascular responses to hyperthermia, radiation or adriamycin given alone or in specific combinations have been made in the cervical carcinoma grown in the transparent cheek pouch chamber of the Syrian hamster. A specially designed chamber containing a compartment for flowing water enabled controlled heating of the tumor and pouch to within 0.2 0 C; the desired temperatures were achieved within one minute. Heating at 42 0 C for 30 minutes was followed, at 1, 5 or 24 hours, by a second heating for 30 minutes at 42 0 C. In addition, the same period of heating was preceded or followed, at 1, 5 or 24 hour intervals, by a single exposure to 2000R or a single intravenous injectionof adriamycin given at a rate of 0.45 mg/100 gm body weight. Of the three modalities, heat appeared to have the greatest acute effect on the tumor vascular system. A single dose of heat produced a rapid but transient constriction followed by a prominent dilation of vessels. Two heating periods given at a 1 hour interval caused persistent stasis in the tumor which progressed to coagulation necrosis. Although heating prior to irradiation or adriamycin, in general, increased the vascular responses to these agents, this sequence gave no tumor control. Radiation or adriamycin given prior to heating had relatively little effect on the vascular response to heating and produced no tumor control except when heat was applied shortly after irradiation. These studies indicate that changes in the microvasculature and perfusion in tumors, in response to hyperthermia alone or combined in specific sequences with radiation, can alter the internal environment of the tumor to produce a greater degree of tumor control than can be attributed to direct cell killing by these agents

  9. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  10. Osteoprotegerin and biomarkers of vascular inflammation in type 2 diabetes.

    LENUS (Irish Health Repository)

    O'Sullivan, Eoin P

    2010-09-01

    Osteoprotegerin (OPG), receptor activator for nuclear factor kappa beta ligand (RANKL) and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) are newly discovered members of the tumour necrosis factor-alpha receptor superfamily. While their role in bone metabolism is well described, their function within the vasculature is poorly understood. OPG inhibits vascular calcification in vitro and high serum levels have been demonstrated in type 2 diabetes, but serum RANKL and TRAIL and their potential correlation with well-established biomarkers of subclinical vascular inflammation such as high-sensitivity C-reactive protein (hsCRP) and interleukin-6 (IL-6) have not been described.

  11. Case of radiation necrosis with vascular changes on main cerebral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Y; Okada, H; Mineura, K; Kodama, N [Tohoku Univ., Sendai (Japan). School of Medicine

    1982-03-01

    A 64-year-old woman had received radiotherapy, following surgery of a chromophobe pituitary adenoma. Six years after irradiation she began to complain of headache and dementia. Right vertebrogram demonstrated a right temporal mass lesion, stenosis and dilatation of middle cerebral artery and posterior communicating artery in the field of irradiation. CT scan showed the irregular low density area at the right temporal region, and the irregular enhancement after an intravenous injection of contrast medium was seen at the small part of affected area. From these findings, radiation necrosis at the right temporal lobe was diagnosed. Reports of vascular changes of the main cerebral arteries due to radiation are rare.

  12. Investigation of food irradiation technology for application to plant quarantine. Working group report of food irradiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Sunaga, Hiromi; Ito, Hitoshi; Takatani, Yasuyuki; Takizawa, Haruki; Yotsumoto, Keiichi; Tanaka, Ryuichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hirano, Tsuyoshi; Tokunaga, Okihiro

    1999-06-01

    The commercialization of food irradiation in Japan was started in 1973 for the sprout inhibition of potatoes as the first successful food irradiation facility in the world. Since approval of potato irradiation, no items has been commercialized in Japan. However, international agreement for phase out of methyl bromide after 2005 and increasing incidences of foodborn diseases such as by Escherichia coli O157:H7 are forcing to have interesting to food irradiation. Takasaki Radiation Chemistry Research Establishment has long experiences on research of irradiation effect and engineering of food irradiation in Japan. From these back ground, working group of food irradiation was organized at August 1997 by some members of Department of Radiation Research for Environment and Resources and Advanced Technology Center for supporting technically on commercialization of food irradiation. This report presents the result of discussion in working group on generalization up to date researches of food irradiation, application fields and items, technical problems and future prospects of this technology in Japan. (author)

  13. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking.

    Directory of Open Access Journals (Sweden)

    Anna E Daniel

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1, a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.

  14. Studies on the storage of irradiated potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Sharabash, M; Orabi, I O [National Center for research and radiation Technology, Nasr City, Cairo (Egypt); Eloksh, I I; Abd-Alia, M A [Faculty of Agric. Ain Shams University, Cairo (Egypt)

    1995-10-01

    Tubers of alpha and king edward potato cultivars were exposed to O, 10 or 50 krad and stored under room temperature and good ventilation in perforated standard carton boxes. 10 Krad was the promising dosage for sprouting inhibition for both the two cultivars. Total losses in weight were partially dependent on the volume of the dosage, the time elapsed after irradiation and cultivar used. Ascorbic acid slightly decreased, whilst sugar fractions were increased during storage in irradiated tubers. Sugar fractions were sharply decreased in boiled or fried potatoes. Also, chlorogenic acid was increased by prolonging the storage time and/or increasing the exposure dose. After-cooking discoloration (darkening) was reduced by gamma irradiation and/or extending the storage period. Using 0.5% citric acid or 0.5% sodium citrate solution inhibited the after-cooking discoloration. 8 tabs.

  15. Studies on the storage of irradiated potatoes

    International Nuclear Information System (INIS)

    Sharabash, M.; Orabi, I.O.; Eloksh, I.I.; Abd-Alia, M.A.

    1995-01-01

    Tubers of alpha and king edward potato cultivars were exposed to O, 10 or 50 krad and stored under room temperature and good ventilation in perforated standard carton boxes. 10 Krad was the promising dosage for sprouting inhibition for both the two cultivars. Total losses in weight were partially dependent on the volume of the dosage, the time elapsed after irradiation and cultivar used. Ascorbic acid slightly decreased, whilst sugar fractions were increased during storage in irradiated tubers. Sugar fractions were sharply decreased in boiled or fried potatoes. Also, chlorogenic acid was increased by prolonging the storage time and/or increasing the exposure dose. After-cooking discoloration (darkening) was reduced by gamma irradiation and/or extending the storage period. Using 0.5% citric acid or 0.5% sodium citrate solution inhibited the after-cooking discoloration. 8 tabs

  16. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    Science.gov (United States)

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  17. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  18. Antimicrobial Activity of Cell Free Supernatant of Irradiated Lactic Acid Bacteria Isolates

    International Nuclear Information System (INIS)

    Abdelaleem, M.A.; AL-Hagar, O.E.Aa.

    2015-01-01

    Attempts were made to isolate bio preservatives using food wastes with no value and low cost. Whey is the raw material achieved that value. Whey and many other food wastes are used in our study to isolate Lactic acid bacteria (LAB). Cell free supernatants (CFS) of isolates are used to evaluate their antimicrobial activity against indicator pathogenic bacterial strains. CFS-9 isolate from whey has the highest inhibitory activity compared to all other isolates. The inhibitory activity of CFS-9, Nisin (400 IU / ml) and the standard Lactococcus Lactis Subsp. Lactis ATCC 11454 (Lacto) were determined. Furthermore, isolate-9 and Lacto strains were exposed to irradiation at different doses. The inhibition zones of; control isolate-9 (non-irradiated) showed the highest values against all indicator strains, CFS of irradiated Lacto at dose 250 Gy was the highest value against Bacillus cereus and Escherichia coli compared to other irradiation treatments, CFS of irradiated Lacto at dose 100 Gy was the highest value against Staph aureus, while the inhibition zone was in the highest value in CFS of irradiated Lacto at dose 500 Gy against Salmonella typhimurium. Nisin (400 IU / ml) was significantly higher than all CFS of irradiated isolate-9 while, the inhibition zones of all CFS-Lacto (irradiated and nonirradiated) are better and higher than nisin-400

  19. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho

    2007-01-01

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-α. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-α-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-α-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-α. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-κB and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis

  20. Investigations of X-ray irradiation of marine fish aboard

    International Nuclear Information System (INIS)

    Karnop, G.; Reinacher, E.; Antonacopoulos, N.; Meyer, V.

    1976-01-01

    Studies on X-ray irradiation of ocean perch, cod and coley (at doses of 50-150 krad) are described. The results show that irradiation within this dose range has no significant effect on the shelf-life of fish stored in ice. Although irradiation positively influenced bacteriological and chemical characteristics (e.g. reduction of total aerobic count, and inhibition of decomposition of N-containing compounds), the organoleptically-limited shelf-life of irradiated specimens was similar to that of non-irradiated specimens. Organoleptic changes in irradiated and in non-irradiated samples differed; this is attributed to the abnormal spoilage flora (mainly radiation-resistant Moraxella spp.) in the irradiated samples. (orig./HP) [de

  1. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation.

    Science.gov (United States)

    Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong

    2017-06-30

    Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).

  2. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin

    International Nuclear Information System (INIS)

    Noguchi, Miho; Yu, Dong; Hirayama, Ryoichi; Ninomiya, Yasuharu; Sekine, Emiko; Kubota, Nobuo; Ando, Koichi; Okayasu, Ryuichi

    2006-01-01

    In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing

  3. Food preservation by irradiation

    International Nuclear Information System (INIS)

    Barrachina, M.

    1985-01-01

    The aim of food irradiation is to extend shelf-life of food commodities by delaying fruit ripening, inhibition of vegetable sprouting, desinfestation of grains and seeds, and in general by controlling microbial or parasitic food-transmitted infections. It was stated by the 1980 Joint FAO/IAEA/WHO Expert Committee that food irradiated up to 10 kGy does not pose any human health or nutritional problems. Following this recommendation, irradiation programmes are being developed at a good pace in several countries. It is hoped that commercial drawbacks now existing, such as psychological apprehension of consumers to radiation-treated products and innovative inertia to changes of the food chain, will be removed through appropriate information schemes and legislative advancement. (author)

  4. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  5. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Lan, K.N.; Lam, N.D.; Kume, Tamikazu

    2000-01-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  6. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer

    Science.gov (United States)

    Ader, Isabelle; Golzio, Muriel; Andrieu, Guillaume; Zalvidea, Santiago; Richard, Sylvain; Sabbadini, Roger A.; Malavaud, Bernard; Cuvillier, Olivier

    2015-01-01

    Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy. PMID:25915662

  7. Pathology of breast cancer in women irradiated for acute postpartum mastitis

    International Nuclear Information System (INIS)

    Dvoretsky, P.M.; Woodard, E.; Bonfiglio, T.A.; Hempelmann, L.H.; Morse, I.P.

    1980-01-01

    The gross and microscopic pathology of breast cancers in women irradiated for acute postpartum mastitis was compared to the breast cancers found in the sisters of the irradiated women. In considering the lesions in the two populations, the size, location, histologic type, histologic grade, inflammatory response, lymphatic and blood vascular invasion, nipple involvement, axillary lymph node metastases, and menopausal status at the time of diagnosis were statistically indistinguishable. The only parameter that was different in the two populations was the desmoplastic response to the malignant lesion. The control population had more marked fibrosis within the cancers compared with the irradiated women

  8. The role of vitamin K in vascular calcification of patients with chronic kidney disease.

    Science.gov (United States)

    Wuyts, Julie; Dhondt, Annemieke

    2016-12-01

    Patients with chronic kidney disease (CKD) are prone to vascular calcification. Pathogenetic mechanisms of vascular calcifications have been broadly studied and discussed such as the role of hyperphosphatemia, hypercalcemia, parathormone, and vitamin D. In recent years, new insights have been gained pointing to vitamin K as a main actor. It has been discovered that vitamin K is an essential cofactor for the activation of matrix Gla protein (MGP), a calcification inhibitor in the vessel wall. Patients with CKD often suffer from vitamin K deficiency, resulting in low active MGP and eventually a lack of inhibition of vascular calcification. Vitamin K supplementation and switching warfarin to new oral anticoagulants are potential treatments. In addition, MGP may have a role as a non-invasive biomarker for vascular calcification.

  9. Biological effects of 60Co γ-irradiation on Laiwu ginger VM1 growth

    International Nuclear Information System (INIS)

    Zhou Ming; Huang Jinli; Wei Yuxia; Guan Qiuzhu; Zhang Zhenxian

    2008-01-01

    Rhizome of Laiwu ginger were treated with γ-irradiation at the doses of 0, 20, 40 and 60 Gy. The results showed that 60 Co γ-irradiation inhibited the rhizome burgeoning, and decreased the survival rate of the seedlings, rate of leaf- expansion and the growth of plants (VM 1 ). The inhibition effects became stronger with the increase of the irradiation dose. Different bands were found through the analysis of POD, EST isozymes and RAPD of VM 1 plants, which showed that variation on molecular level occurred in VM 1 plants. LD 30-40 was appropriate for the irradiation of rhizomes of Laiwu ginger and the optimal irradiation dose was about 20- 30 Gy. (authors)

  10. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  11. Effect of UV irradiation on the early development of silkworm embryos, (2). Development of irradiated eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y. (Hokkaido Univ., Sapporo (Japan). Faculty of Agriculture)

    1981-02-01

    The development of silkworm eggs irradiated with UV was compared with that of normal eggs. When the eggs were irradiated with UV from the lateral side immediately after oviposition, development was decelerated, but the germ band was produced. The side of the germ band that was irradiated with UV was abnormal with holes, but the opposite side was hole-free and normal. The normal half of the germ band splits longitudinally, but developed along with the abnormal half to form various malformations. When the eggs were irradiated from the ventral side, the ventral part of the germ band was abnormal at the early stage, the germ band did not concentrate to one place, and produced the half-embryos longitudinally divided by the median line. The UV irradiation at the beginning of the blastoderm stage produced similar results. In the areas irradiated by UV, cleavage nuclei invaded into the surrounding protoplasm, and mitotic figures were observed, but the cell number did not increase even with the advance of development unlike normal cells, whereas the sizes of the cells, their nuclei and nucleoli were enlarged, and intercellular space widened so that the cells were no longer in close contact. The germ band cells produced in the non-irradiated area were normal. The above results suggest that when either the protoplasm or the nucleus of a silkworm egg is damaged by UV, the effect first appears as the inhibition of cell division in the germ band, and as the enlargement of the cell, nucleus and nucleoli. It is presumed that this induces the subsequent inhibition of cell differentiation or abnormalities.

  12. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.

    Science.gov (United States)

    Itani, Hana A; Dikalova, Anna E; McMaster, William G; Nazarewicz, Rafal R; Bikineyeva, Alfiya T; Harrison, David G; Dikalov, Sergey I

    2016-06-01

    Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension. © 2016 American Heart Association, Inc.

  13. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  14. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    Directory of Open Access Journals (Sweden)

    Stephanie Smith-Berdan

    2015-02-01

    Full Text Available Despite the use of hematopoietic stem cells (HSCs in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies.

  15. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia.

    Science.gov (United States)

    Zhao, Lan; Oliver, Eduardo; Maratou, Klio; Atanur, Santosh S; Dubois, Olivier D; Cotroneo, Emanuele; Chen, Chien-Nien; Wang, Lei; Arce, Cristina; Chabosseau, Pauline L; Ponsa-Cobas, Joan; Frid, Maria G; Moyon, Benjamin; Webster, Zoe; Aldashev, Almaz; Ferrer, Jorge; Rutter, Guy A; Stenmark, Kurt R; Aitman, Timothy J; Wilkins, Martin R

    2015-08-20

    The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.

  16. Irradiation: Technology whose time has come?

    International Nuclear Information System (INIS)

    Schechter, M.

    1985-01-01

    The characteristics and application of food irradiation are briefly discussed, noting FDA's recent approval of the use of this technology to kill trichnella spirals in pork. Despite public concerns, food irradiation sources (gamma rays from Co-60 and Cs-137) are reported to leave no radioactivity in irradiated foods when used under FDA-approved guidelines. Food irradiation was legally ruled to be a 'food additive' by Congress in 1958 with FDA having regulatory authority; however, while low-level dosing has received FDA approval for sprout inhibition in root crops and as an insect control, concerns about cost-effectiveness, safety, and consumer acceptability have continued to limit high dose food irradiation (i.e., exposure to over 1000krad). The future acceptance of food irradiation still, primarily rests in the hands of food service professionals and their consumers

  17. Mechanisms of blood pressure changes following renal irradiation of intact, adrenalectomized, and adrenal regenerating rats

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1977-01-01

    This study was conducted to determine the differences in changes in systolic arterial blood pressure following renal x irradiation (1100 R) in adrenal-intact, adrenalectomized, and adrenal-regenerating rats and to elucidate the involvement or roles of the kidneys and of the adrenal glands in the blood pressure changes. The parameters studied included the following: systolic blood pressure; body weight; food and fluid consumption; urine output; plasma and urine electrolytes; sodium balance; plasma renin activity; plasma corticosterone; renal vascular volume; renal vascular permeability (using 125 I-polyvinylpyrrolidone extravasation rate as an indicator); renal blood flow (using 42 K extraction); kidney weight; hematocrit; and total vascular, plasma, and red cell volumes. Renal x irradiation of intact rats caused polydipsia, polyuria, and reduced urine concentrations of sodium and potassium without significantly affecting blood pressure during the period of study (80 days); plasma renin activity was significantly lowered and had a positive correlation with blood volume; an abnormal blood volume-plasma renin activity relationship is suggested. Adrenalectomy caused prolonged hypotension in saline-maintained rats even though their sodium balance was more positive than that in adrenal-intact or adrenal-regenerating rats with normal or elevated blood pressure. The blood pressure of renally irrradiated, adrenalectomized rats was greater than non-irradiated adrenalectomized rats, but with only borderline significance; it is concluded that the absence of the adrenal glands does not affect the degree or duration of the effects of renal irradiation on blood pressure

  18. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    Science.gov (United States)

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Measurement of volatile evolution from polyurethane induced by accelerated ion beam irradiation

    International Nuclear Information System (INIS)

    Murphy, J.J.

    2003-01-01

    Irradiation of polymer samples using an accelerated beam of He 2+ ions passed through a 10μm thick window of havar foil has been performed. Such irradiation simulates the effects of large α radiation doses, on a vastly reduced time-scale. Analysis of volatiles evolved during irradiation is performed by a residual gas analyser (RGA), which is located close to the sample chamber. Presented in this paper are the results obtained during a radiation study on polyester/MDI based polyurethane materials. During high dose rate irradiation a number of high mass species were observed. A comparison between two similar polyurethanes formulated with slightly different polyesters indicated some differences. They were, however, too minor to link to specific degradation mechanisms. The dominant degradation products evident to the RGA at low dose rates were H 2 , CO and CO 2 . A series of polyurethane samples previously conditioned by γ irradiation at doses between 0 and 5MGy were irradiated in the ion beam. Identification of differences in trends in the rates of volatile evolution between these samples indicated the precise vacuum conditions at the time of irradiation had a major influence. There was also an indication that the surface of the sample had a small effect on rates of volatile evolution. Comparative plots of CO and CO 2 evolution for a series of 1MGy irradiations indicated variations in behaviour between samples with different γ doses. Evolution during the first 1MGy was inhibited for the unirradiated sample, the extent of inhibition diminished with increasing γ dose and was no longer evident in a sample with 1.5MGy γ dose. H 2 does not show an equivalent inhibition. Evidence for a low dose crosslinking reaction is put forward as a reason for the inhibition. Chemical reaction mechanisms are postulated and used to explain differences in the behaviour observed

  20. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Science.gov (United States)

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jianghong, E-mail: jianghonghou@163.com [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China); Xue, Xiaolin [Department of Cardiovascular, The First Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710061 (China); Li, Junnong [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China)

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.

  2. Dynamics of changes in trypsin-inhibiting activity (TIA) in cervical mucus blood and histomorphological structure of uterus in sheep following X-irradiation

    International Nuclear Information System (INIS)

    Molnarova, M.; Arendarcik, J.; Tokos, M.

    1983-01-01

    The effect of ionizing radiation on the reproductive organs of sheep was studied after a single local irradiation of ovaries with different X-ray doses. 22 sheep of the Slovak Merino breed, two years old, weighing an average of 30 kg, divided into four groups were irradiated as follows: group I n=6, 4.78 Gy (500 R), group II n=6, 9.67 Gy (1000 R), group III n=6, 19.14 Gy (2000 R). The sheep in the fourth (control) group were not irradiated but underwent laparotomy. Trypsin inhibition activity of the blood plasma and of the cervical mucus was determined from the decreased rate of hydrolysis of the low-molecular substrate (TAPA); the thickness of the epithelium of the cervix and body of the uterus was measured microscopically following fixation and colouring. The dynamics of TIA changes in the cervical mucus differed in the individual groups in the course of days 10, 30 and 100. The dynamics of changes in the thickness of the epithelium of the endometrium, the cervix and the uterus horns had a different character. On day 100 after irradiation the values differed only very little. The dynamics of TIA of the blood plasma (total and low-molecular fraction) differed between the groups and on day 100 of the experiment the values were significantly lower than on day 1. A comparison of the values in irradiated and control sheep showed that the values of TIA of the cervical mucus increased between days 10 and 30 while the values of low-molecular TIA of the plasma decreased. (author)

  3. Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit.

    Science.gov (United States)

    Hussain, P R; Rather, S A; Suradkar, P; Parveen, S; Mir, M A; Shafi, F

    2016-07-01

    Carboxymethyl cellulose (CMC) coatings alone and in combination with gamma irradiation was tested for maintaining the storage quality, inhibiting fungal incidence and extending shelf-life of cherry fruit. Two commercial cherry varieties viz. Misri and Double after harvest at commercial maturity were coated with CMC at levels 0.5-1.0 % w/v and gamma irradiated at 1.2 kGy. The treated fruit including control was stored under ambient (temperature 25 ± 2 °C, RH 70 %) and refrigerated (temperature 3 ± 1 °C, RH 80 %) conditions for evaluation of various physico-chemical parameters. Fruits were evaluated after every 3 and 7 days under ambient and refrigerated conditions. CMC coating alone at levels 0.5 and 0.75 % w/v was not found effective with respect to mold growth inhibition under either of the two conditions. Individual treatment of CMC coating at 1.0 % w/v and 1.2 kGy irradiation proved helpful in delaying the onset of mold growth up to 5 and 8 days of ambient storage. During post-refrigerated storage at 25 ± 2 °C, RH 70 %, irradiation alone at 1.2 kGy gave further 4 days extension in shelf-life of cherry varieties following 28 days of refrigeration. All combinatory treatments of CMC coating and irradiation proved beneficial in maintaining the storage quality as well as delaying the decaying of cherry fruit during post-refrigerated storage at 25 ± 2 °C, RH 70 % but, combination of CMC at 1.0 % w/v and 1.2 kGy irradiation was found significantly ( p  ≤ 0.05) superior to all other treatments in maintaining the storage quality and delaying the decaying of cherry fruit. The above combinatory treatment besides maintaining storage quality resulted in extension of 6 days in shelf life of cherry varieties during post-refrigerated storage at 25 ± 2 °C, RH 80 % following 28 days of refrigeration. Above Combination treatment gave a maximum of 2.3 and 1.5 log reduction in yeast and mold count of cherry fruits after 9 and 28

  4. Effect of X-irradiation on soluble nucleohistone of Pinus pinea

    International Nuclear Information System (INIS)

    Berkofsky, J.; Roy, R.M.

    1977-01-01

    Exposure of isolated nuclei from Pinus pinea cotyledons to 5 kR of 260 kVp X-rays resulted in no significant alteration of viscosity, thermal denaturation or spectral characteristics of soluble nucleohistone nor was the relative amount of DNA, RNA, histone and acidic protein affected. Pine histones, resolved into 8 sub-fractions by polyacrylamide gel electrophoresis, appeared to be unaffected with respect to mobility or relative abundance following irradiation of cotyledons, isolated nuclei, soluble nucleohistone or histones. However, phosphorylation of histones at AT 32 P following irradiation of isolated nuclei with 5 kR was significantly inhibited. Although histone F 1 phosphorylation was inhibited to the greatest extent as previously reported for mammalian tissues, significant inhibition of phosphorylation of histone F 2 a2 and F 2 b was observed. Exposure of cotyledons at the 14th day of germination to 1.0 kR resulted in an apparent G 2 mitotic block within 1 hr post irradiation. The normal increase in histone content of soluble nucleohistone associated with the termination of cell division and onset of cell elongation in the cotyledon at this time was inhibited. Mitotic activity remained arrested for approximately 2 days. Recovery of mitotic activity in the irradiated cotyledons was correlated with resumption of deposition of histone into chromatin preceding the onset of cell elongation. (author)

  5. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo.

    Science.gov (United States)

    Wannenes, Francesca; Ciafré, Silvia Anna; Niola, Francesco; Frajese, Gaetano; Farace, Maria Giulia

    2005-12-01

    RNA interference technology is emerging as a very potent tool to obtain a cellular knockdown of a desired gene. In this work we used vector-based RNA interference to inhibit vascular endothelial growth factor (VEGF) expression in prostate cancer in vitro and in vivo. We demonstrated that transduction with a plasmid carrying a small interfering RNA targeting all isoforms of VEGF, dramatically impairs the expression of this growth factor in the human prostate cancer cell line PC3. As a consequence, PC3 cells loose their ability to induce one of the fundamental steps of angiogenesis, namely the formation of a tube-like network in vitro. Most importantly, our "therapeutic" vector is able to impair tumor growth rate and vascularization in vivo. We show that a single injection of naked plasmid in developing neoplastic mass significantly decreases microvessel density in an androgen-refractory prostate xenograft and is able to sustain a long-term slowing down of tumor growth. In conclusion, our results confirm the basic role of VEGF in the angiogenic development of prostate carcinoma, and suggest that the use of our vector-based RNA interference approach to inhibit angiogenesis could be an effective tool in view of future gene therapy applications for prostate cancer.

  6. Herpes virus and viral DNA synthesis in ultraviolet light-irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Coppey, J; Nocentini, S [Institut du Radium, 75 - Paris (France). Lab. Curie

    1976-07-01

    The rate of virus DNA synthesis and the production of infectious virus are impaired in stationary monkey kidney CV-I cells irradiated with u.v. before infection with herpes simplex virus (HSV). The inhibition of HSV multiplication is due to u.v.-induced damage in cell DNA. CV-I cells recover their capacity to support HSV growth during the 40 to 48 h after irradiation, and the final virus yield is enhanced by factor of 10. The time course of the recovery is similar to that of the excision repair process occurring in u.v.-irradiated mammalian cells. Caffeine, hydroxyurea and cycloheximide inhibit the recovery. Fluorodeoxyuridine is without effect. A small but significant amount of labelled dThd coming from irradiated cell DNA is incorporated into virus DNA. HSV specified thymidine kinase seems to be more effective for virus DNA synthesis in irradiated than in control cells.

  7. Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model.

    Science.gov (United States)

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C

    2012-11-07

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.

  8. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    National Research Council Canada - National Science Library

    Folkman, Judah; Puder, Mark; Bischoff, Joyce

    2006-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and (iii) to isolate endothelial progenitor cells from blood capable of being expanded in vitro and applied to vascular grafts...

  9. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    National Research Council Canada - National Science Library

    Folkman, Judah; Puder, Mark; Bischoff, Joyce

    2007-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and, (iii) to isolate endothelial progenitor cells from blood, capable of being expanded in vitro and applied to vascular grafts...

  10. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-abdominal Adhesions, and Arterial Injuries

    National Research Council Canada - National Science Library

    Folkman, Judah

    2008-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and, (iii) to isolate endothelial progenitor cells from blood, capable of being expanded in vitro and applied to vascular grafts...

  11. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    Science.gov (United States)

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  12. Inactivation of HTB63 human melanoma cells by irradiation with protons and gamma rays.

    Science.gov (United States)

    Ristic-Fira, Aleksandra; Petrovic, Ivan; Todorovic, Danijela; Koricanac, Lela; Vujèic, Miroslava; Demajo, Miroslav; Sabini, Gabriella; Cirrone, Pablo; Cuttone, Giacomo

    2004-12-01

    The effects of single irradiation with gamma rays and protons on HTB63 human melanoma cell growth were compared. The exponentially growing cells were irradiated with gamma rays or protons using doses ranging from 2-20 Gy. At 48 h of post-irradiation incubation under standard conditions, cell survival and induction of apoptotic cell death were examined. The best effect of the single irradiation with gamma rays was the reduction of cell growth by up to 26% (p=0.048, irradiation vs. control), obtained using the dose of 16 Gy. The same doses of proton irradiation, having energy at the target of 22.6 MeV, significantly inhibited melanoma cell growth. Doses of 12 and 16 Gy of protons provoked growth inhibition of 48.9% (p=0.003, irradiation vs. control) and 51.2% (p=0.012, irradiation vs. control) respectively. Irradiation with 12 and 16 Gy protons, compared to the effects of the same doses of gamma rays, significantly reduced melanoma cell growth (p=0.015 and p=0.028, protons vs. gamma rays, respectively). Estimated RBEs for growth inhibition of HTB63 cells ranged from 1.02 to 1.45. The electrophoretical analyses of DNA samples and flow cytometric evaluation have shown a low percentage of apoptotic cells after both types of irradiation. The better inhibitory effect achieved by protons in contrast to gamma rays, can be explained considering specific physical properties of protons, especially taking into account the highly localized energy deposition (high LET).

  13. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    Science.gov (United States)

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  14. Anti-Inflammatory effect of Buddleja officinalis on vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Moon, Mi Kyoung; Hwang, Sun Mi; Yoon, Jung Joo; Lee, So Min; Seo, Kwan Soo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-01-01

    Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1-10 microg/ml) for 18 hours dose-dependently inhibited TNF-alpha-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-alpha-induced ROS formation. Nuclear factor-kappa B (NF-kappaB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-kappaB to the nucleus. ABO inhibited the TNF-alpha-induced degradation of IkappaB-alpha, an inhibitor of NF-kappaB, by inhibiting the phosphorylation of IkappaB-alpha in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-kappaB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.

  15. Glucose metabolism in gamma-irradiated rice seeds

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1980-01-01

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C 6 /C 1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14 C in carbon dioxide from glucose -1- 14 C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  16. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  17. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  18. Radiation effect on the proliferating capillaries in rat transparent chambers

    International Nuclear Information System (INIS)

    Yamaura, H.; Yamada, K.; Matsuzawa, T.

    1976-01-01

    The revascularization of the devascularized area in rat transparent chambers by the proliferating blood vessels was studied quantitatively on the changes of vascularity. On the vascularizing border, a hypervascular zone about 0.5 mm wide was formed. The border advanced constantly at 0.020 cm a day. Vascular density was fixed in the repaired area. The vascular length and repaired area increased in parabolic curves. The chambers were irradiated with single doses of 50, 100, 200, 400, 1000, 2000, and 4000 rad of 60 Co γ-rays, and the effects on the advance of the border were examined. With 200 rad and more, significant inhibition, greater with bigger doses, was seen in the advance of the borders. Regression of the borders also occurred. Irradiation with over 1000 rad destroyed the hypervascular zones. (author)

  19. Radiation effect on the proliferating capillaries in rat transparent chambers

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Yamada, K; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1976-08-01

    The revascularization of the devascularized area in rat transparent chambers by the proliferating blood vessels was studied quantitatively on the changes of vascularity. On the vascularizing border, a hypervascular zone about 0.5 mm wide was formed. The border advanced constantly at 0.020 cm a day. Vascular density was fixed in the repaired area. The vascular length and repaired area increased in parabolic curves. The chambers were irradiated with single doses of 50, 100, 200, 400, 1000, 2000, and 4000 rad of /sup 60/Co ..gamma..-rays, and the effects on the advance of the border were examined. With 200 rad and more, significant inhibition, greater with bigger doses, was seen in the advance of the borders. Regression of the borders also occurred. Irradiation with over 1000 rad destroyed the hypervascular zones.

  20. Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Soyoung [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Han, Min-Su [Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Fatima Hospital, Daegu 701-600 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-11-15

    Inhibition of high mobility group box 1 (HMGB1) protein and restoration of endothelial integrity is emerging as an attractive therapeutic strategy in the management of sepsis. Here, three structurally related polyphenols found in the Chinese herb Huang Qui, baicalin (BCL), baicalein (BCN), and wogonin (WGN), were examined for their effects on lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. According to our data, BCL, BCN, and WGN inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. BCL, BCN, and WGN also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with BCL, BCN, and WGN reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that BCL, BCN, and WGN could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway. - Highlights: • HMGB1 is an inflammatory mediator for vascular inflammation. • Baicalin, baicalein and wogonin inhibited HMGB1-induced hyperpermeability in vitro and in vivo. • Baicalin, baicalein and wogonin inhibited HMGB1-mediated inflammatory responses. • Baicalin, baicalein and wogonin suppressed the activation of NF-κB and ERK1/2 and production of TNF-α and IL-6. • Baicalin, baicalein and wogonin prevent CLP-induced septic mortality.

  1. Augmentation of radiation response with the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Hoang Tien; Huang Shyhmin; Armstrong, Eric; Eickhoff, Jens C.; Harari, Paul M.

    2006-01-01

    Purpose: To examine the antivascular and antitumor activity of the vascular targeting agent ZD6126 in combination with radiation in lung and head-and-neck (H and N) cancer models. The overall hypothesis was that simultaneous targeting of tumor cells (radiation) and tumor vasculature (ZD6126) might enhance tumor cell killing. Methods and Materials: A series of in vitro studies using human umbilical vein endothelial cells (HUVEC) and in vivo studies in athymic mice bearing human lung (H226) and H and N (squamous cell carcinoma [SCC]1, SCC6) tumor xenografts treated with ZD6126 and/or radiation were performed. Results: ZD6126 inhibited the capillary-like network formation in HUVEC. Treatment of HUVEC with ZD6126 resulted in cell cycle arrest in G2/M, with decrease of cells in S phase and proliferation inhibition in a dose-dependent manner. ZD6126 augmented the cell-killing effect of radiation and radiation-induced apoptosis in HUVEC. The combination of ZD6126 and radiation further decreased tumor vascularization in an in vivo Matrigel angiogenesis assay. In tumor xenografts, ZD6126 enhanced the antitumor activity of radiation, resulting in tumor growth delay. Conclusions: These preclinical studies suggest that ZD6126 can augment the radiation response of proliferating endothelial H and N and lung cancer cells. These results complement recent reports suggesting the potential value of combining radiation with vascular targeting/antiangiogenic agents

  2. Studies of vascular acting photosensitizer Tookad for the photodynamic therapy of prostate cancer

    Science.gov (United States)

    Huang, Zheng; Chen, Qun; Blanc, Dominique; Hetzel, Fred W.

    2005-01-01

    In this pre-clinical study, photodynamic therapy (PDT) mediated with a vascular acting photosensitizer Tookad (palladium-bacteriopheophorbide) is investigated as an alternative treatment modality for the ablation of prostate cancer. Canine prostate was used as the animal model. PDT was performed by interstitially irradiating the surgically exposed prostates with a diode laser (763 nm) to activate the IV infused photosensitizer. The effects of drug dose, drug-light interval, and light fluence rate on PDT efficacy were evaluated. The prostates and adjacent tissues were harvested at one-week post PDT and subjected to histopathological examination. The dogs recovered well with little or no urethral complications. Urinalysis showed trace blood. Histological examination showed minimal damage to the prostatic urethra. These indicated that the urethra was well preserved. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis with a clear demarcation. Maximum lesion volume of ~3 cm3 could be achieved with a single 1-cm diffuser fiber at a dose level of 1 mg/kg and 200 J/cm, suggesting the therapy is very effective in ablating prostatic tissue. PDT induced lesion could reach the capsule layers but adjacent tissues were well preserved. The novel photosensitizer is a vascular drug and cleared rapidly from the circulation. Light irradiation can be performed during drug infusion thereby eliminating waiting time. The novel vascular acting photosensitizer Tookad-mediated PDT could provide an effective alternative to treat prostate cancer.

  3. Identification methods for irradiated wheat

    International Nuclear Information System (INIS)

    Zhu Shengtao; Kume, Tamikazu; Ishigaki, Isao.

    1992-02-01

    The effect of irradiation on wheat seeds was examined using various kinds of analytical methods for the identification of irradiated seeds. In germination test, the growth of sprouts was markedly inhibited at 500Gy, which was not affected by storage. The decrease in germination percentage was detected at 3300Gy. The results of enzymatic activity change in the germ measured by Vita-Scope germinator showed that the seeds irradiated at 10kGy could be identified. The content of amino acids in ungerminated and germinated seeds were analyzed. Irradiation at 10kGy caused the decrease of lysine content but the change was small which need very careful operation to detect it. The chemiluminescence intensity increased with radiation dose and decreased during storage. The wheat irradiated at 10kGy could be identified even after 3 months storage. In the electron spin resonance (ESR) spectrum analysis, the signal intensity with the g value f 2.0055 of skinned wheat seeds increased with radiation dose. Among these methods, germination test was the most sensitive and effective for identification of irradiated wheat. (author)

  4. Neuropathological changes following experimental stereotactic irradiation. Progressive injuries of oligodendrocytes

    International Nuclear Information System (INIS)

    Ohtsuka, Takashi; Seiki, Yoshikatsu; Nakano, Jiro; Shibata, Iekado; Terao, Hideo

    1997-01-01

    This report describes the results of neuropathological examinations in 14 rabbit brains after 100 Gy of linear stereotactic irradiation. The tissue around the area of radiation necrosis was subjected to special examination. Fourteen rabbits were given a single dose of 100 Gy by a linear accelerator with a use of the 10 mm collimator. Animals were sacrificed serially after irradiation. Brains were removed and formalin treated paraffin sections were made. All sections were stained by H and E, GFAP and TUNEL (TdT-mediated dUTP-biotin nick end labeling method) stain. Pathological changes of vessels and neural tissue around the area of necrosis were examined. Three months after irradiation, TUNEL-positive oligodendrocytes were seen scattered in the white matter or the radiated field, and after 6 months, these changes extended around the radiating field, but vessels and neurons appeared to be intact. Two years after irradiation, massive necrosis had occurred in the radiated area. Thickness and fibrinoid degeneration of the vessel walls were evident in the area around the necrosis. These vessel changes were recognized in the zone of the 40 Gy radiated region. TUNEL-positive oligodendrocytes were also observed around the necrosis, and were scattered in the white matter and corpus callosum over the region of vascular changes. These findings suggested the following: In the later period after irradiation, oligodendrocytes in the peripheral zone of necrosis are damaged by ischemia and edema, which are caused by vascular changes. TUNEL-positive oligodendrocytes which exsisted in the white matter and corpus callosum distal to the radiated area may exhibit development of serial damage of oligodendrocytes in those regions. (author)

  5. Inhibition of DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  6. Effect of protracted whole-body gamma irradiation with 6.7 Gy and 4.8 Gy (700 and 500 R) on trypsin inhibition activity of blood, cervical mucus and on morphological structure of cervix in ewes

    International Nuclear Information System (INIS)

    Molnarova, M.; Arendarcik, J.; Molnar, P.

    1984-01-01

    The pattern of changes in the trypsin inhibition activities (TIA) of blood plasma, cervical mucus and the morphological structure of the cervix was studied in ewes exposed to 60 Co radiation for seven and five days, the radiation doses being 6.7 Gy and 4.8 Gy, respectively. During exposure, the group of ewes irradaited with 4.8 Gy was given the Roboran vitamin addition and following irradiation ampicillin (5250 mg). TIA was determined from retardation of the hydrolysis of the synthetic substrate N-alpha-tosyl-p-nitroanilide by bovine trypsin; the TIA was expressed as the percentage of inhibited trypsin. Almost all the studied TIA values of blood plasma and cervical mucus were increased in the irradiated animals, the range being from 103.1 to 155.0% of the levels for non-irradiated ewes. A reduction was recorded only in the total TIA of blood plasma in the group irradiated with a dose of 6.7 Gy (83.1% of the values for non-irradiated animals). In the group of animals irradiated with 4.8 Gy and non Roboran administered, the TIA of cervical mucus was observed to decrease to 92.4%. It was found during the study of changes in the proportion of glands in the stroma and changes in epithelium thickness in the mucous membrane of the cervix uteri that the irradiated ewes had the epithelium thickness reduced to 95.3% to 65.5% and that their stromal gland number decreased to 75.4% to 79.7% of that recorded in non-irradiated animals. It was only in the group given the Roboran supplement that an increase to 123.7% of the gland number for untreated ewes was recorded on the tenth day after termination of the irradiation

  7. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  8. Genipin inhibits TNF-α-induced vascular smooth muscle cell proliferation and migration via induction of HO-1.

    Directory of Open Access Journals (Sweden)

    Fengrong Jiang

    Full Text Available Vascular smooth muscle cell (VSMC proliferation and migration triggered by inflammatory stimuli contributes importantly to the pathogenesis of atherosclerosis and restenosis. On the other hand, genipin, an aglycon of geniposide, exhibits diverse pharmacological functions such as antitumor and anti-inflammatory effects. The protective effects of genipin on the cardiovascular system have also been reported. However, the molecular mechanism involved remains unknown. This study aimed to elucidate the precise function of genipin in VSMCs, focusing particularly on the role of heme oxygenase-1 (HO-1, a potent anti-inflammatory enzyme. We found that pretreatment of genipin induced HO-1 mRNA and protein levels, as well as its activity in VSMCs. Genipin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. At the molecular level, genipin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Genipin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 siRNA partially abolished the beneficial effects of genipin on VSMCs. These results suggest that genipin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.

  9. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    International Nuclear Information System (INIS)

    Wang, Yuwen; Wang, Xiyao; Liang, Xiaohui; Wu, Jichao; Dong, Shiyun; Li, Hongzhu; Jin, Meili; Sun, Dianjun; Zhang, Weihua; Zhong, Xin

    2016-01-01

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H 2 S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H 2 S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H 2 S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H 2 S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca 2+ ] i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H 2 S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21 Cip/WAK−1 and Calponin decreased. The CaSR agonist or exogenous H 2 S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H 2 S is related to the PLC-IP 3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H 2 S in high homocysteine VSMCs. • CaSR modulated the CSE/H 2 S are related to the PLC-IP 3 R and Ca 2+ -CaM signal pathways. • Inhibition of H 2 S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.

  10. Identification of gamma irradiated apples by the half-embryo test

    International Nuclear Information System (INIS)

    Miranda, Gabriel C.; Bujan, Alfonso; Leiva, Carlos H.; Yusef, Maria V.

    2003-01-01

    The half-embryo test was applied to irradiated apples (var. Red delicious).The irradiation of apples caused obvious changes in the growth of the half-embryo. A dose of 100 Gy or more, inhibits the epicotyl development and with 50 Gy dose is possible to observe a great contrast with the non-irradiated apples. If the epicotyl development is less than 4 cm., the apples are identified as irradiated. The assessment can be made after 7 days. (author)

  11. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    Science.gov (United States)

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  12. Mortality of the earthworms, Eisenia foetida, after gamma-irradiation at different stages of their life history

    International Nuclear Information System (INIS)

    Suzuki, Jun; Egami, Nobuo

    1983-01-01

    Effects of ionizing radiation on the earthworm, Eisenia foetida, were investigated by means of mortality, growth inhibition and hatchability of the eggs. Adult earthworms were resistant to 137 Cs γ-irradiation, LD 50 (30 days) value being about 65 kR. Young earthworms were less resistant than adult ones. Their growth was completely inhibited by 10 kR of γ-irradiation, but 2 kR did not affect them at all. Embryos at early developmental stages showed high mortality by γ-irradiation and as development proceeded their resistance to irradiation increased. Mature earthworms were irradiated and the hatchability of the cocoons laid by them after irradiation was examined. Hatchability of the cocoons laid within 5 days after irradiation with 2 kR was scarcely affected. Then the hatchability decreased with the interval between irradiation and laying, and reached lowest level 20 days after irradiation. From 20 days after irradiation, it started to recover and reached the control level 30 days after irradiation. (author)

  13. Effect of irradiation on vitamins

    International Nuclear Information System (INIS)

    Kilcast, D.

    1994-01-01

    Food irradiation is a physical process involving treatment of food with ionising radiation. Its main uses are reduction in spoilage and pathogenic organisms, inhibition of ripening and sprouting processes, and insect disinfestation. Chemical changes in the treated foods are small, and expert committees have concluded that they carry no special nutritional problems. Some vitamins are sensitive to irradiative degradation, however, and opponents of the process have claimed that extensive destruction will occur. Irradiation doses will, however, be limited by organoleptic changes, and maximum levels are being introduced into legislation for specific foods. Examination of the published literature shows that vitamins C and B 1 are the most sensitive water-soluble vitamins, and that E and A are the most sensitive fat-soluble vitamins. Vitamin losses on irradiation of permitted foods in western countries will not be of nutritional importance. (Author)

  14. Protective value of piroxicam on the enhanced inflammatory response after whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    el-Ghazaly, M.; Saleh, S.; Kenawy, S.; Roushdy, H.M.; Khayyal, M.T.

    1986-06-01

    The anti-inflammatory activity of piroxicam was assessed after whole body irradiation in rats. Two models of inflammation, the carrageenan-induced edema and the adjuvant-induced arthritis in rats have been utilised. Piroxicam at doses of 1, 5 and 10 mg kg-1 i.p. was effective in inhibiting the paw edema produced in both models of inflammation. The inflammatory response in irradiated was significantly higher than that produced in normal animals and was dependent on the radiation dose level used (0.5-2 Gy). The effect of piroxicam on the late inflammatory response produced by exposure to 2 Gy was studied by measuring the carrageenan-induced edema 4 h after irradiation and on the third and seventh day thereafter. The increase in paw volume was significantly suppressed in animals receiving the drug. Administration of piroxicam (5 mg kg-1) one hour before irradiation of animals at 0.5 Gy, produced inhibition to the exaggerated inflammatory response in irradiated animals. This suggests that piroxicam possibly owes its protective value to prevention of the increase in cellular permeability induced by radiation. Alternatively, the drug may exert this effect by inhibiting PG synthesis, thereby reducing their potentiating influence on the other mediators of inflammation. Furthermore, the inhibition of lysosomal enzyme release possibly induced by the drug may contribute to the probable reduction in the release of inflammatory mediators.

  15. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  16. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  17. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro

    International Nuclear Information System (INIS)

    Ran Xinze; Zong Zhaowen; Liu Dengqun; Su Yongping; Zheng Huaien; Ran Xi; Xiang Guiming

    2010-01-01

    Vascular endothelial cells are very sensitive to ionizing radiation, and it is important to develop effective prevent agents and measures in radiation exposure protection. In the present study, the protective effects of atorvastatin on irradiated human umbilical vein endothelial cells (HUVEC) and the possible mechanisms were explored. Cultured HUVEC were treated by atorvastatin at a final concentration of 10 μmol/ml for 10 minutes, and then irradiated at a dose of 2 Gy or 25 Gy. Twenty-four hours after irradiation, apoptosis of HUVEC was monitored by flow cytometry, and the expression of thrombomodulin (TM) and protein C activation in HUVEC was respectively assessed by flow cytometry and spectrophotometry. After treatment with atorvastatin for 24 h, the rate of cell apoptosis decreased by 6% and 16% in cells irradiated with 2 Gy and 25 Gy, respectively. TM expression increased by 77%, 59%, and 61% in untreated cells, 2 Gy irradiation-treated cells, and 25 Gy irradiation-treated cells, respectively. The protein C levels in 2 Gy and 25 Gy irradiation-treated cells were reduced by 23% and 34% when compared with untreated cells, but up-regulated by 79% and 76% when compared with cells which were irradiated and treated with atorvastatin. In conclusion, these data indicate that atorvastatin exerts protective effects on irradiated HUVEC by reducing apoptosis by up-regulating TM expression and enhancing protein C activation in irradiated HUVEC. (author)

  18. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xinze, Ran; Zhaowen, Zong; Dengqun, Liu; Yongping, Su; Huaien, Zheng [College of Preventive Medicine, Third Military Medical Univ., Chongqing (China); Xi, Ran; Guiming, Xiang [Xinqiao Hospital, Third Military Medical Univ., Chongqing (China)

    2010-09-15

    Vascular endothelial cells are very sensitive to ionizing radiation, and it is important to develop effective prevent agents and measures in radiation exposure protection. In the present study, the protective effects of atorvastatin on irradiated human umbilical vein endothelial cells (HUVEC) and the possible mechanisms were explored. Cultured HUVEC were treated by atorvastatin at a final concentration of 10 {mu}mol/ml for 10 minutes, and then irradiated at a dose of 2 Gy or 25 Gy. Twenty-four hours after irradiation, apoptosis of HUVEC was monitored by flow cytometry, and the expression of thrombomodulin (TM) and protein C activation in HUVEC was respectively assessed by flow cytometry and spectrophotometry. After treatment with atorvastatin for 24 h, the rate of cell apoptosis decreased by 6% and 16% in cells irradiated with 2 Gy and 25 Gy, respectively. TM expression increased by 77%, 59%, and 61% in untreated cells, 2 Gy irradiation-treated cells, and 25 Gy irradiation-treated cells, respectively. The protein C levels in 2 Gy and 25 Gy irradiation-treated cells were reduced by 23% and 34% when compared with untreated cells, but up-regulated by 79% and 76% when compared with cells which were irradiated and treated with atorvastatin. In conclusion, these data indicate that atorvastatin exerts protective effects on irradiated HUVEC by reducing apoptosis by up-regulating TM expression and enhancing protein C activation in irradiated HUVEC. (author)

  19. Studies on combination effects of peplomycin and x-ray irradiation

    International Nuclear Information System (INIS)

    Munenaga, Yasuichi

    1984-01-01

    In order to study effects and methods of combination of peplomycin (PEP) and x-ray irradiation, inhibitory effects on DNA synthesis were investigated with synchronized cells from the parotid gland of mice treated with isoproterenol (IPR) and inhibitory effects on cell proliferation were investigated with Ehrlich solid tumor cells. PEP had dose-dependent effects on the inhibition of DNA synthesis and on the prolongation of cell cycles in the IPR-treated mouse cells. When 3.0 and 5.0 mg/kg of PEP were combined with 200 rad of x-ray irradiation at the early phase of G 1 , synergistic effects on the inhibition of DNA synthesis were seen. This was most noted in the group with PEP 30 minutes before irradiation. PEP had also dose-dependent inhibitory effects on the proliferation of Ehrlich solid tumor cells. This was increased when x-ray irradiation was combined with PEP. Inhibitory effects on the proliferation of tumor cells were greater when PEP was given before x-ray irradiation than after x-ray irradiation, regardless of the amount. The greatest effect was seen in the group with PEP 30 minutes before irradiation, as well as in the experiment with IPR-treated mouse cells. (Namekawa, K.)

  20. Relaxin as a natural agent for vascular health

    Directory of Open Access Journals (Sweden)

    Daniele Bani

    2008-06-01

    Full Text Available Daniele BaniDepartment of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence, ItalyAbstract: Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD, the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX, which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.Keywords: relaxin, blood vessels, endothelial cells, vascular smooth muscle, nitric oxide

  1. Quantitative histologic study on confusion of the cerebellar cortex architecture in perinatally irradiated mice

    International Nuclear Information System (INIS)

    Sasaki, S.

    1986-01-01

    This study was designed to know dose-response relationship and age-dependence for two types of confusion of the cerebellar cortex architecture. The first is inhibition of the laminar-pattern development, and the second is persistent remaining of granule cells in the molecular and Purkinje layer which implies disturbance of cell migration. Male B6C3F 1 mice were used. Animals were irradiated at day 0 to 6 of the postnatal age or day 17 of the prenatal age with doses ranging from 50 to 700 rad of γ-rays, and killed at 60 days of age. Confusion of architecture was analysed using microscopic photographs. Development of the laminar-pattern was inhibited by irradiation with 100 rad or higher doses at day 0 to 3. There was a distinct regional difference in inhibition of the laminar-pattern development. Remaining of granule cells was detected after irradiation with 50 or higher doses at day 0 or 2. Irradiation at day 1 to 4 was most effective to disturb cell migration, though ectopic granule cells were detected in all irradiated groups. (orig.)

  2. A case of radiation necrosis with vascular changes on main cerebral arteries

    International Nuclear Information System (INIS)

    Ishibashi, Yasuhiko; Okada, Hitoshi; Mineura, Katsuyoshi; Kodama, Namio

    1982-01-01

    A 64-year-old woman had received radiotherapy, following surgery of a chromophobe putuitary adenoma. Six years after irradiation she began to complain of headache and dementia. Right vertebrogram demonstrated a right temporal mass lesion, stenosis and dilatation of middle cerebral artery and posterior communicating artery in the field of irradiation. CT scan showed the irregular low density area at the right temporal region, and the irregular enhancement after an intravenous injection of contrast medium was seen at the small part of affected area. From these findings, radiation necrosis at the right temporal lobe was diagnosed. As vascular changes of the main cerebral arteries due to radiation are rare, we discussed on them from ever reported literature. (author)

  3. Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition.

    Science.gov (United States)

    Neto-Neves, Evandro M; Brown, Mary B; Zaretskaia, Maria V; Rezania, Samin; Goodwill, Adam G; McCarthy, Brian P; Persohn, Scott A; Territo, Paul R; Kline, Jeffrey A

    2017-04-01

    Our understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hee [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Schmitt, Christopher E.; Woolls, Melissa J. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Holland, Melinda B. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kim, Jun-Dae [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Jin, Suk-Won, E-mail: suk-won.jin@yale.edu [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States)

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  5. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    International Nuclear Information System (INIS)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-01

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process

  6. Radiation effects on vasoproliferation

    International Nuclear Information System (INIS)

    Yamaura, Hirotsugu; Matsuzawa, Taiju

    1975-01-01

    The authors quantitatively examined radiation effects on vascular proliferarion, using the rat transparent chamber technique to observe the living microcirculation. We studied the process of vasoproliferation and revascularization from the surrounding pre-existing vessels into the surgically avascularized area in the chamber, by measuring the vascular lenght photographically. A hyper-vascularized zone, about 0.5 mm in with, was formed on the vascularizing frontier, the significance of which is so far not known. When the chambers were irradiated with various doses of 60 Co γ-rays, a dose dependent inhibition of vasoproliferation was observed. (auth.)

  7. Radiation effects on vasoproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-06-01

    The authors quantitatively examined radiation effects on vascular proliferarion, using the rat transparent chamber technique to observe the living microcirculation. We studied the process of vasoproliferation and revascularization from the surrounding pre-existing vessels into the surgically avascularized area in the chamber, by measuring the vascular lenght photographically. A hyper-vascularized zone, about 0.5 mm in with, was formed on the vascularizing frontier, the significance of which is so far not known. When the chambers were irradiated with various doses of /sup 60/Co ..gamma..-rays, a dose dependent inhibition of vasoproliferation was observed.

  8. Effect of γ-irradiated DNA on the activity of DNA polymerase

    International Nuclear Information System (INIS)

    Leadon, S.A.; Ward, J.F.

    1981-01-01

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  9. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    Science.gov (United States)

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  10. Extracellular acidosis and very low [Na+ ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells.

    Science.gov (United States)

    Bonde, L; Boedtkjer, E

    2017-10-01

    The electroneutral Na + , HCO3- cotransporter NBCn1 and Na + /H + exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na + ]. We examined effects of low [Na + ] o and pH o on NBCn1 and NHE1 activity in VSMCs of small arteries. We measured pH i by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. NBCn1 activity - defined as Na + -dependent, amiloride-insensitive net base uptake with CO 2 /HCO3- present - was inhibited equally when pH o decreased from 7.4 (22 mm HCO3-/5% CO 2 ) by metabolic (pH o 7.1/11 mm HCO3-: 22 ± 8%; pH o 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pH o 7.1/10% CO 2 : 35 ± 11%; pH o 6.8/20% CO 2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na + -dependent net acid extrusion without CO 2 /HCO3- present - at both pH o 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pH o , lowering [Na + ] o from 140 to 70 mm reduced NBCn1 and NHE1 activity respiratory (ΔpH i /ΔpH o  = 71 ± 4%) than metabolic (ΔpH i /ΔpH o  = 30 ± 7%) acidosis. Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO 2 is raised or [HCO3-] o decreased. Lowering [Na + ] o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na + -dependent net acid extrusion at low pH o protects against cellular Na + overload at the cost of intracellular acidification. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Irradiation and heating effects in topaz crystals from Minas Cerais, Brazil

    International Nuclear Information System (INIS)

    Albuquerque, A.R.P.L.; Isotani, S.

    1988-01-01

    The origin of the blue color induced by gamma irradiation in topaz crystals from the region around Governador Valadares, Minas Gerais, was examined through chemical analyses and heat treatments before irradiation. No correlation between impurities and the induced blue color was found. Heat treatments above 300 0 C before irradiation inhibit the formation of color. The conclusion is drawn that irradiation induced color is probably due to the presence of lattice defects. (author)

  12. Effect of wound healing period and temperature, irradiation and post-irradiation storage temperature on the rot incidence of potatoes, after infection with Fasurium sulfurium

    NARCIS (Netherlands)

    Langerak, D.I.; Wolters, T.C.; Quan, V.H.; Oularbi, S.; Tayeb, Y.; Vroomen, L.H.M.

    1988-01-01

    Losses during star age in potatoes are mainly due to sprouting and rotting. It has indicated that irradiation by low dose (50 to 100 Gy) during the dormancy period is most e ffective for sprout inhibition. Some investigators, however , stated an increase of storage rot after an irradiation

  13. RNA synthesis during germination of UV-irradiated Dictyostelium discoideum spores

    International Nuclear Information System (INIS)

    Okaichi, Kumio

    1987-01-01

    UV irradiation to the spores of Dictyostelium discoideum NC4 resulted in a more prolonged delay of amoeba-emergence from swollen spores with increasing UV fluence. During the germination, an inhibition of total RNA synthesis and a shift of stage of maximum RNA synthesis to the later period were observed. The maximum poly(A) + RNA synthetic activity was found on an early stage of amoeba-emergence prior about 1 h to the beginning of rRNA synthesis in unirradiated spore germination; but, in UV-irradiated spore germination, the stage of maximum poly(A) + RNA synthesis shifted to the later stage of germination with increasing UV fluence. A decreased synthesis of poly(A) + RNA and a severe inhibition of rRNA synthesis were observed on UV-irradiated and germinated spores, but no significant inhibition of 4 - 5 S RNA synthesis was detected. Actinomycin D suppressed almost completely the rRNA synthesis of emerged amoebae but the drug apparently did not affect the emergence of amoebae at any stage of germination. It was postulated that the delay of amoeba-emergence in UV-irradiated spore must be mainly due to the shift of the stage of maximum synthesis of poly(A) + RNA to the later stage of germination. (author)

  14. Food irradiation with ionizing radiation

    International Nuclear Information System (INIS)

    Hrudkova, A.; Pohlova, M.; Sedlackova, J.

    1974-01-01

    Application possibilities are discussed of ionizing radiation in inhibiting plant germination, in radiopasteurization and radiosterilization of food. Also methods of combining radiation with thermal food sterilization are discussed. The problems of radiation doses and of hygienic purity of irradiated foodstuffs are dealt with. (B.S.)

  15. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    Science.gov (United States)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  16. Effects of low dose γ-rays irradiation on yield of tumor-infiltrating lymphocytes in mice

    International Nuclear Information System (INIS)

    Zou Huawei; Su Liaoyuan; Tian Hailin

    1998-01-01

    It is confirmed that low dose irradiation can inhibit tumor growth. In order to know tumor growth inhibiting mechanism, the changes of tumor-infiltrating lymphocytes (TIL) were investigated after exposing to tumor-bring mice. The mice were exposed to different doses, then , EAC cells were transplanted at the 3,6,9 and 24h hour. Ten days later TILs increased obviously caused by of 5-10 cGy γ-rays irradiation. The most obvious increasing occurred in the group in which cells was exposed irradiation for 6 hours at 10 cGy dose. A low dose radiation can make the yield of TILs increased. I might be correlated to the mechanism of tumor growth inhibiting

  17. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    International Nuclear Information System (INIS)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R.

    2015-01-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L -1 and for LEO was 3.1 ± 1.4 mg L -1 . In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L -1 and 2.4 ± 0.3 mg L -1 respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  18. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R., E-mail: sorogero@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L{sup -1} and for LEO was 3.1 ± 1.4 mg L{sup -1}. In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L{sup -1} and 2.4 ± 0.3 mg L{sup -1} respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  19. Study of irradiation effect on curcuma polyphenols

    International Nuclear Information System (INIS)

    Rejeb, Imen

    2008-01-01

    The present study was carried out to evaluate the effect of gamma irradiation on curcumin (Curcuma Longa rhizome) component, particularly the polyphenolic fraction. Powdered rhizome was irradiated at 0, 5, 10 and 15 KGy (dose rate of 6 KGy / H). Polyphenolics were extracted and total polyphenols conent (TPC) was quantified using the Folin-Ciocalteau method. The irradiation effect was also evaluated by the HPLC technique. The chromatographic analysis showed that the irradiated and non-irradiated curcumin spectrum gave similar data. The antioxidant and antibacterial activities of the phenolic extracts were also assessed. the anti oxidative potential of the sample was evaluated using two radical scavenging methods with DPPH and ABTS. The antimicrobial analysis showed that the phenolic extracts of curcumin inhibited the growth of the studied microorganisms. Our results showed that irradiated samples were not affected in terms of polyphenols content and characteristics. (Author)

  20. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens

    OpenAIRE

    Smith, TK; Choi, B; Ramirez-San-Juan, JC; Nelson, JS; Osann, K; Kelly, KM

    2006-01-01

    Background and Objectives: Previous in vitro studies demonstrated the potential utility of benzoporphyrin derivative monoacid ring A (BPD) photodynamic therapy (PDT) for vascular destruction. Moreover, the effects of PDT were enhanced when this intervention was followed immediately by pulsed dye laser (PDL) irradiation (PDT/ PDL). We further evaluate vascular effects of PDT alone, PDL alone and PDT/PDL in an in vivo rodent dorsal skinfold model. Study Design/Materials and Methods: A dorsal sk...

  1. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sayo Koike

    2016-09-01

    Full Text Available Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD. To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs stimulated calcium deposition in vascular smooth muscle cells (VSMCs through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5 was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA. Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(PH oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(PH oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.

  2. On the Correlation between EPR and Positron Annihilation Measurements on gamma-Irradiated Acetyl Methionine

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Lund-Thomsen, E.; Mogensen, O. E.

    1972-01-01

    The dose dependence of the relative EPR signal intensity and positron lifetime spectrum was measured for γ‐irradiated acetyl methionine in the dose range from 0 to 30 Mrad. Angular correlation measurements were performed for the doses 0 and 30 Mrad. The result of the irradiation was the creation...... of EPR centers and inhibition of positronium formation. For one sample, irradiated with a dose of 30 Mrad, EPR and positron lifetime spectra were followed over a period of 50 days after the irradiation. The inhibiting effect and the EPR signal intensity decreased with time. No simple correlation could...... be established between the number of EPR centers and the positron annihilation data, but other possible explanations are discussed....

  3. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  4. Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

    Directory of Open Access Journals (Sweden)

    Carolina M. Medeiros Da Cunha

    2017-11-01

    Full Text Available Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1 or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.

  5. Stereotactic gamma irradiation of basilar artery in cat. Preliminary experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A; Wennerstrand, J; Leksell, D; Backlund, E O [Uppsala Univ. (Sweden)

    1978-01-01

    Irradiation of the basilar artery of cats by stereotactic technique was performed with doses varying from 100 to 300 Gy in a gamma unit. Histologically, vascular lesions such as vacuolization, degeneration and desquamation of the endothelium and hyalinization and necrosis of the muscular coat predominated, whereas reparatory reactions were relatively sparse. Thrombosis was completely absent.

  6. Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells

    Science.gov (United States)

    Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer

    2018-01-01

    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096

  7. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    Science.gov (United States)

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  8. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation.

    Science.gov (United States)

    Aloni, Roni

    2013-11-01

    The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.

  9. The early effects in the brain after irradiation with carbon ions using mice

    International Nuclear Information System (INIS)

    Takai, Nobuhiko; Nakamura, Saori; Ohba, Yoshihito; Uzawa, Akiko; Furusawa, Yoshiya; Koike, Sachiko; Matsumoto, Yoshitaka; Hirayama, Ryoichi

    2011-01-01

    This study investigated both early and late effects in the brain after irradiation with carbon ions using mice. The irradiation dose was set at level known to produce vascular change followed by necrosis, which appeared the late period after irradiation with 30 Gy. The whole of brain was irradiated, excluding eyes and brain stem. The mice irradiated with single dose of 30 Gy showed deficit in short-term working memory assessed at 36 hr after irradiation, whereas mice receiving carbon irradiation showed no deficit in long-term reference memory. At 16 weeks after irradiation, the irradiated mice showed marked learning impairment compared with age-matched controls and the irradiated mice showed substantial impairment of working memory. Histopathological observation revealed no abnormal finding in the irradiated brain at 36 hr after irradiation, although irradiated mice showed marked neuronal degeneration at the hippocampus within CA1 to CA3 layers at 16 weeks after irradiation. In the irradiated group, neuronal cells in the hippocampal CA1-3 areas were reduced by 30-49%. These results suggest that although irradiation-induced hippocampal degeneration is associated with learning disability, cognitive deficits may also be detected on the early stage, not associated with hippocampal degeneration. (author)

  10. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of (/sup 14/C)adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with /sup 60/Co ..gamma..-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of ..gamma..-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m/sup -2/) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as ..gamma..-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  11. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    International Nuclear Information System (INIS)

    Chatterjee, A.; Bhattacharya, A.K.

    1988-01-01

    The incorporation of [ 14 C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60 Co γ-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of γ-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m -2 ) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as γ-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells. (author)

  12. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    Science.gov (United States)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  13. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  14. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-01-01

    Highlights: ► Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. ► Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. ► CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBβ proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to

  15. Shihoro irradiation plant for potato

    International Nuclear Information System (INIS)

    Kameyama, Kenji

    1985-01-01

    There have been rapid moves toward the commercialization of food irradiation around the world since November, 1980, when a joint FAO/IAEA/WHO expert committee made a recommendation on the wholesomeness of irradiated foods. The bold US move toward the commercialization has had a great impact. Ahead of these move around the world, Japan built a commercial irradiation plant in 1974, which has been operated for inhibiting the sprouting of potatoes. This plant was built in Shihoro, Hokkaido, and two thirds of the 400 million yen construction cost was provided by the Government and Hokkaido authorities for five agricultural cooperative associations of four local townships. Since then, the plant has been under the joint management of these cooperatives. The aim and circumstance of the plant construction are described. The mechanism of the plant with conveyors, a turntable and a Co-60 source of 300,000 Ci is shown. The plant processes 15 tons of potatoes per hour with the dose from 60 to 150 Gy. Potato bruise and irradiation effect, irradiation time and effect, and post-irradiation storage temperature and potato quality are reported. (Kako, I.)

  16. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  17. 14CO2 labeling. A reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants

    International Nuclear Information System (INIS)

    Bhupinder Singh; Sumedha Ahuja; Renu Pandey; Singhal, R.K.

    2014-01-01

    Root release of organic compounds and rate of the vascular sap flow are important for understanding the nutrient and the source-sink dynamics in plants, however, their determination is procedurally cumbersome and time consuming. We report here a simple method involving 14 C labeling for rapid and reliable measurement of root exudates and vascular sap flow rate in a variable groundnut population developed through seed gamma irradiation using a cobalt source ( 60 Co). An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  18. Effects of whole-body and partial-body x irradiation upon epidermal mitotic activity during wound healing in mouse skin

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1977-01-01

    Mitotic activity of normal (unwounded) and wounded skin was measured in the control (nonirradiated) and whole-body or partial-body x-irradiated mouse. Higher mitotic activity in the anterior than in the posterior region of the body was found in both the normal and the wounded skin of the control mouse. Whole-body irradiation (500 R) depressed completely the mitotic activity of normal skin 2 to 4 days after irradiation. In spite of this depression in mitotic activity, a surgical incision made 1 to 3 days after irradiation could induce a burst of proliferation after an inhibition of an initial mitosis increase. When the animals were partially irradiated with 500 R 3 days before wounding, it was shown that mitosis at 24 hr after wounding was inhibited markedly by the local effect of irradiation and that mitosis also could be inhibited diversely by the abscopal effect of irradiation. Because of a close similarity of sequential mitotic patterns between whole-body-irradiated and flapped-skin-only-irradiated groups (direct irradiation), the effect of irradiation upon mitosis was considered to be primarily local. Some discussions were made concerning the possible reasons which made a difference in mitotic patterns between the head-only-irradiated group, the irradiated group including the head and other parts of the body except for the skin flap

  19. Thiopurines and inhibition of Rac1 in vascular disease

    OpenAIRE

    Marinković, G.

    2015-01-01

    The mechanism of immunosuppressive drug azathioprine is not clear, while azathioprine has been used for 60 years in clinical practice in patients undergoing transplantation surgery or to combat autoimmune disease. Part of the function of azathioprine became evident in specific immune cells, namely T cells, demonstrating that small GTPase Rac1 was inhibited by azathioprine and thereby reduced their inflammatory response. We show that 6-mercaptopurine and thiopurines 6-thio-GDP and 6-thio-GTP, ...

  20. Identification of irradiated foods prospects for post-irradiation estimate of irradiation dose in irradiated dry egg products

    International Nuclear Information System (INIS)

    Katusin-Raxem, B.; Mihaljievic, B.; Razem, D.

    2002-01-01

    Radiation-induced chemical changes in foods are generally very small at the usual processing doses. Some exception is radiation degradation of lipids, which are the components most susceptible to oxidation. A possible use of lipid hydroperoxides (LOOH) as indicators of irradiation is described for whole egg and egg yolk powders. A sensitive and reproducible spectrophotometric method for LOOH measurement based on feric thiocyanate, as modified in our laboratory, was applied. This method enabled the determination of LOOH, including oleic acid hydroperoxides, which is usually not possible with some other frequently used methods. The lowest limit of 0.05 mmol LOOH/kg lipid could be measured. The measurements were performed in various batches of whole egg and egg yolk powders by the same producer, as well as in samples supplied by various producers. Baseline level in unirradiated egg powder 0.110 ± 0.067 mmol LOOH /kgL was established. The formation of LOOH with dose, as well as the influence of age, irradiation conditions, storage time and storage conditions on LOOH were investigated. The irradiation of whole egg and egg yolk powders in the presence of air revealed an initially slow increase of LOOH, caused by an inherent antioxidative capacity, followed by a fast linear increase after the inhibition dose (D o ). In all investigated samples D o of 2 kGy was determined. Hydroperoxides produced in irradiated materials decay with time. In whole egg and egg yolk powders, after an initially fast decay, the level of LOOH continued to decrease by the first-order decay. Nevertheless, after a six months storage it was still possible to unambiguously identify samples which had been irradiated with 2 kGy in the presence of air. Reirradiation of these samples revealed a significant reduction of D o to 1 kGy. In samples irradiated with 4 kGy and kept under the same conditions, the shortening of D o to 0.5 kGy was determined by reirradiation. This offers a possibility for the

  1. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  2. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    International Nuclear Information System (INIS)

    Gualde, N.; Goodwin, J.S.

    1984-01-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [ 3 H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [ 3 H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset

  3. Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Raja Kumar Vadivelu

    2012-01-01

    Full Text Available Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P<0.05. Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.

  4. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    Science.gov (United States)

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  5. Changes in the vascular tissue of fresh Hass avocados treated with cobalt

    International Nuclear Information System (INIS)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-01-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy

  6. Changes in the vascular tissue of fresh Hass avocados treated with cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-03-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy.

  7. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  8. A multipurpose irradiation plant for simultaneous treatment of different foods

    International Nuclear Information System (INIS)

    Carassiti, F.; Tata, A.

    1982-01-01

    An industrial multipurpose irradiation plant with a particularly high effectiveness of radiation utilization is presented. The originality of this conceptual design consists of the simultaneous treatment of two products, which are separately irradiated to either high or low absorbed doses. A pneumatical transport system into appropriate channels with air mixing during irradiation has been proposed for the radappertization of granular animal feed, meanwhile a conventional truck-conveyor system has been suggested for the sprout inhibition treatment of potatoes. Moreover, potatoes pass through the irradiation cell twice at high and low level respectively. (author)

  9. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  10. Societal benefits of food irradiation

    International Nuclear Information System (INIS)

    Prakash, Anuradha

    2013-01-01

    Food irradiation has a direct impact on society by reducing the occurrence of food-borne illness, decreasing food spoilage and waste, and facilitating global trade. Food irradiation is approved in 40 countries around the world to decontaminate food of disease and spoilage causing microorganisms, sterilize insect pests, and inhibit sprouting. A recent estimate suggests that 500,000 metric of food is currently irradiated worldwide, primarily to decontaminate spices. Since its first use in the 1960s the use of irradiation for food has grown slowly, but it remains the major technology of choice for certain applications. The largest growth sector in recent years has been phytosanitary irradiation of fruit to disinfest fruit intended for international shipment. For many countries which have established strict quarantine standards, irradiation offers as an effective alternative to chemical fumigants some of which are being phased out due to their effects on the ozone layer. Insects can be sterilized at very low dose levels, thus quality of fruit can be maintained. Irradiation is also highly effective in destroying microbial pathogens such as Salmonella spp., E. coli, and Listeria, hence its application for treatment of spices, herbs, dried vegetables, frozen seafood, poultry, and meat and its contribution to reducing foodborne illnesses. Unfortunately the use of irradiation for improving food safety has been under-exploited. This presentation will provide details on the use, benefits, opportunities, and challenges of food irradiation. (author)

  11. New developments in food irradiation

    International Nuclear Information System (INIS)

    Molins, R.

    1996-01-01

    Food irradiation technology is rapidly gaining worldwide acceptance as a promising tool to help alleviate some important food security and safety concerns, and to facilitate the international trade in food. Because of the different priorities that these issues receive in various countries, food irradiation is being considered by developing countries as the technology of choice over chemical fumigants in applications related to the reduction of food losses such as the insect disinfestation of stored staple and export commodities and the inhibition of sprouting of bulb and tuber crops. In contrast, the use of irradiation as a 'cold pasteurization' method to improve the hygienic quality and safety of foods is emerging as the primary field of application in developed countries. Moreover, the use of irradiation as an alternative, non-chemical quarantine treatment for fresh fruits, vegetables and other agricultural commodities entering international trade will no doubt benefit exporting as well as importing countries. 4 figs

  12. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

    Science.gov (United States)

    Zhang, Fan; Tang, Zhongshu; Hou, Xu; Lennartsson, Johan; Li, Yang; Koch, Alexander W.; Scotney, Pierre; Lee, Chunsik; Arjunan, Pachiappan; Dong, Lijin; Kumar, Anil; Rissanen, Tuomas T.; Wang, Bin; Nagai, Nobuo; Fons, Pierre; Fariss, Robert; Zhang, Yongqing; Wawrousek, Eric; Tansey, Ginger; Raber, James; Fong, Guo-Hua; Ding, Hao; Greenberg, David A.; Becker, Kevin G.; Herbert, Jean-Marc; Nash, Andrew; Yla-Herttuala, Seppo; Cao, Yihai; Watts, Ryan J.; Li, Xuri

    2009-01-01

    VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases. PMID:19369214

  13. Influence of irradiation upon neonative tolerance state induced in rabbit

    International Nuclear Information System (INIS)

    Servant, P.; Marquer, C.

    An attempt was made to determine the effect of whole-body irradiation on the establishment of a state of tolerance in new-born rabbits by the intraperitoneal injection of 1mg of human serum albumin. Simultaneous irradiation (doses of 200, 150, 100 rads) and antigen injections inhibited the establishment of this tolerance [fr

  14. Food preservation by irradiation

    International Nuclear Information System (INIS)

    Kooij, J. van

    1981-01-01

    Twenty-five years of development work on the preservation of food by irradiation have shown that this technology has the potential to reduce post-harvest losses and to produce safe foods. The technological feasibility has been established but general acceptance of food irradiation by national regulatory bodies and consumers requires attention. The positive aspects of food preservation by irradiation include: the food keeps its freshness and its physical state, agents which cause spoilage (bacteria, etc.) are eliminated, recontamination does not take place, provided packaging materials are impermeable to bacteria and insects. It inhibits sprouting of root crops, kills insects and parasites, inactivates bacteria, spores and moulds, delays ripening of fruit, improves the technological properties of food. It makes foods biologically safe, allows the production of shelf-stable foods and is excellent for quarantine treatment, and generally improves food hygiene. The dose ranges needed for effective treatment are given

  15. Radiation response of the rat cervical spinal cord after irradiation at different ages: Tolerance, latency and pathology

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; Van Der Kogel, A.J.; Stephens, L.C.

    1994-01-01

    Investigation of the age dependent single-dose radiation tolerance, latency to radiation myelopathy, and the histopathological changes after irradiation of the rat cervical spinal cord is presented. Rats were irradiated with graded single doses of 4 MV photons to the cervical spinal cord. When the rats showed definite signs of paresis of the forelegs, they were killed and processed for histological examination. The radiation dose resulting in paresis due to white matter damage in 50% of the animals (ED 50 ) after single dose irradiation was about 21.5 Gy at all ages ≥ 2 weeks. Only the Ed 50 at 1 week was significantly lower. The latency to the development of paresis clearly changed with the age at irradiation, from about 2 weeks after irradiation at 1 week to 6-8 months after irradiation at age ≥ 8 weeks. The white matter damage was similar in all symptomatic animals studied. The most prominent were areas with diffuse demyelination and swollen axons, often with focal necrosis, accompanied by glial reaction. This was observed in all symptomatic animals, irrespective of the age at irradiation. Expression of vascular damage appeared to depend on the age at irradiation. Although the latency to myelopathy is clearly age dependent, single dose tolerance is not age dependent at age ≥ 2 weeks in the rat cervical spinal cord. The white matter damage is similar in all symptomatic animals studied, but the vasculopathies appear to be influenced by the age at irradiation. It is concluded that white matter damage and vascular damage are separate phenomena contributing to the development of radiation myelopathy, expression of which may depend on the radiation dose applied and the age at irradiation. 28 refs., 5 figs., 3 tabs

  16. Comet assay in the detection of irradiated garlic

    International Nuclear Information System (INIS)

    Villavicencio, Anna Lucia C.H.; Marin-Huachaca, Nelida Simona; Romanelli, Maria Fernanda; Delincee, Henry

    2002-01-01

    The increased claim for fresh produce has forced a consensus between nations to pay more attention to the phytosanitary regulations. Inhibition of sprouting of bulbs and tubers by applying ionising radiation is authorised by the National Food Codes in Brazil. The availability of methods for detection of irradiated food will contribute to increase consumers' confidence. A quick and simple screening test to indicate whether a food product has been irradiated or not was utilised in this study. The DNA comet assay was applied to verify whether garlic imported from China had been irradiated or not. This test has already been adopted as a European Standard (EN 13784), for detection of irradiated food. Non-irradiated control samples of garlic and garlic treated with maleic hydrazide were compared with garlic samples irradiated in our department. The unirradiated samples exhibited only limited DNA migration. If samples were irradiated, an increased DNA fragmentation was observed which permitted the discrimination between non-irradiated and irradiated samples. Since the garlic samples from China showed only very limited DNA fragmentation, they were deemed non-irradiated. Thus, this simple screening test was shown to be successful for identification of an irradiation treatment. (author)

  17. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    International Nuclear Information System (INIS)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao

    2010-01-01

    Research highlights: → TNF-α or IL-1β induces EC proliferation with reduction of CD26 expression. → CD26 siRNA or DPP-4 inhibition enhances TNF-α or IL-1β-induced EC proliferation. → Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-α or IL-1β. → Capillary formation induced by TNF-α or IL-1β is enahced in the CD26 -/- mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  18. Effect of Previous Irradiation on Vascular Thrombosis of Microsurgical Anastomosis: A Preclinical Study in Rats

    Science.gov (United States)

    Gallardo-Calero, Irene; López-Fernández, Alba; Romagosa, Cleofe; Vergés, Ramona; Aguirre-Canyadell, Marius; Soldado, Francisco; Velez, Roberto

    2016-01-01

    Background: The objective of the present investigation was to compare the effect of neoadjuvant irradiation on the microvascular anastomosis in cervical bundle using an experimental model in rats. Methods: One hundred forty male Sprague–Dawley rats were allocated into 4 groups: group I, control, arterial microanastomosis; group II, control, venous microanastomosis; group III, arterial microanastomosis with previous irradiation (20 Gy); and group IV, venous microanastomosis with previous irradiation (20 Gy). Clinical parameters, technical values of anastomosis, patency, and histopathological parameters were evaluated. Results: Irradiated groups (III and IV) and vein anastomosis groups (II and IV) showed significantly increased technical difficulties. Group IV showed significantly reduced patency rates (7/35) when compared with the control group (0/35). Radiotherapy significantly decreased the patency rates of the vein (7/35) when compared with the artery (1/35). Groups III and IV showed significantly reduced number of endothelial cells and also showed the presence of intimal thickening and adventitial fibrosis as compared with the control group. Conclusion: Neoadjuvant radiotherapy reduces the viability of the venous anastomosis in a preclinical rat model with a significant increase in the incidence of vein thrombosis. PMID:27975009

  19. Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway.

    Science.gov (United States)

    Guo, Youming; Li, Pengfei; Gao, Lin; Zhang, Jingmei; Yang, Zhirong; Bledsoe, Grant; Chang, Eugene; Chao, Lee; Chao, Julie

    2017-08-01

    Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)-induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF-α-induced cellular senescence in EPCs, as indicated by reduced senescence-associated β-galactosidase activity and plasminogen activator inhibitor-1 expression, and elevated telomerase activity. Kallistatin blocked TNF-α-induced superoxide levels, NADPH oxidase activity, and microRNA-21 (miR-21) and p16 INK 4a synthesis. Kallistatin prevented TNF-α-mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR-34a synthesis, whereas miR-34a overexpression abolished kallistatin-induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR-34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ-induced aortic senescence, oxidative stress, and miR-34a and miR-21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild-type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR-34 or sir-2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR-34, but stimulated sir-2.1 and sod-3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR-34a-SIRT1

  20. Effect of IL-2 on recovery of proliferation ability of irradiated T lymphocytes

    International Nuclear Information System (INIS)

    Wang Ninghai; Zhang Lansheng

    1989-01-01

    3 H-thymidine incorporation assay was used to evaluated the proliferation ability of normal human peripheral blood T lymphocytes irradiated with or without exogenous IL-2 by 60 Co γ-ray at various doses after exposure to 1, 2.5, 5, 10, 20 and 40 Gy γ-ray, the DNA synthesis is blocked. It indicated IL-2 has damage effect on the proliferation ability of T cells. 3 H-thymidine incorporation rate in cells decreases with increasing dose of irradiation. Incorporation of 3 H-Tdk in irradiated groups in the dose range of 1 to 40 Gy was compared with that in the control group. The incorporation rate 3 H-TdR in these irradiated groups is 27 to 82 % of that in control group. The inhibition of lymphocyte proliferation was partially enhanced by adding IL-2, but the inhibiting effect on proliferation of human peripheral blood lymphocytes exposed to irradiation at more than 10 Gy is not reversible