WorldWideScience

Sample records for irradiation induced improvement

  1. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  2. Gamma knife irradiation of injured sciatic nerve induces histological and behavioral improvement in the rat neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Yuki Yagasaki

    Full Text Available We examined the effects of gamma knife (GK irradiation on injured nerves using a rat partial sciatic nerve ligation (PSL model. GK irradiation was performed at one week after ligation and nerve preparations were made three weeks after ligation. GK irradiation is known to induce immune responses such as glial cell activation in the central nervous system. Thus, we determined the effects of GK irradiation on macrophages using immunoblot and histochemical analyses. Expression of Iba-1 protein, a macrophage marker, was further increased in GK-treated injured nerves as compared with non-irradiated injured nerves. Immunohistochemical study of Iba-1 in GK-irradiated injured sciatic nerves demonstrated Iba-1 positive macrophage accumulation to be enhanced in areas distal to the ligation point. In the same area, myelin debris was also more efficiently removed by GK-irradiation. Myelin debris clearance by macrophages is thought to contribute to a permissive environment for axon growth. In the immunoblot study, GK irradiation significantly increased expressions of βIII-tubulin protein and myelin protein zero, which are markers of axon regeneration and re-myelination, respectively. Toluidine blue staining revealed the re-myelinated fiber diameter to be larger at proximal sites and that the re-myelinated fiber number was increased at distal sites in GK-irradiated injured nerves as compared with non-irradiated injured nerves. These results suggest that GK irradiation of injured nerves facilitates regeneration and re-myelination. In a behavior study, early alleviation of allodynia was observed with GK irradiation in PSL rats. When GK-induced alleviation of allodynia was initially detected, the expression of glial cell line-derived neurotrophic factor (GDNF, a potent analgesic factor, was significantly increased by GK irradiation. These results suggested that GK irradiation alleviates allodynia via increased GDNF. This study provides novel evidence that GK

  3. Improvement effect of gamma-irradiated complex leaf extract of date plum, persimmon and mulberry on UVB-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Cho, Byoung Ok; Che, Denis Nchang; Shin, Jae Young; Fang, Chong Zhou; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of)

    2016-11-15

    This study was conducted to evaluate the improvement effect of gamma-irradiated complex leaf extract of Date Plum, Persimmon and Mulberry (γ-DPME) on UVB induced skin damage. The samples were gamma irradiated at doses of 10 kGy. γ-DPME treatment tended to decrease UVB-induced immune cell infiltration and erthyderma index than the groups treated with non-gamma-irradiated DPME (n-DPME) and L-ascobic acid (AA). In addition, γ-DPME treatment significantly decreased skin thickness, melanin index and mast cell infiltration in UVB-irradiated skin. Moreover, γ-DPME treatment significantly decreased the compound 48/80-induced scratching behavior and immune cell infiltration than n-DPME group. These results show that gamma irradiation can be used to increase the physiological activities of DPME.

  4. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  5. Ion irradiation testing of Improved Accident Tolerant Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tesmer, Joseph R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    This report summarizes the results of ion irradiations conducted on two FeCrAl alloys (named as ORNL A&B) for improving the accident tolerance of LWR nuclear fuel cladding. After irradiation with 1.5 MeV protons to ~0.5 to ~1 dpa and 300°C nanoindentations were performed on the cross-sections along the ion range. An increase in hardness was observed in both alloys. Microstructural analysis shows radiation induced defects.

  6. Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown

    Science.gov (United States)

    Varghese, Babu; Bonito, Valentina; Jurna, Martin; Palero, Jonathan; Verhagen, Margaret Hortonand Rieko

    2015-01-01

    We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown. Furthermore, irradiance threshold gradually decreases with the increase in the absorption properties of the medium. Creating breakdown with lower irradiance threshold that is specific at the target chromophore can provide intrinsic target selectivity and improve safety and efficacy of skin treatment methods that use laser induced breakdown. PMID:25909007

  7. Gastroprotective effect of kefir on ulcer induced in irradiated rats.

    Science.gov (United States)

    Fahmy, Hanan A; Ismail, Amel F M

    2015-03-01

    The current study was designed to investigate the protective effect of kefir milk on ethanol-induced gastric ulcers in γ-irradiated rats. The results of the present study revealed that treatment with γ-irradiation and/or ethanol showed a significant increase in ulcers number, total acidity, peptic, H(+)K(+)ATPase, MMP-2 and MMP-9 activities and MDA level, which were accompanied by a significant decrease in the mucus content, the stomach GSH level, the GSH-Px activity and DNA damage. Pre-treatment with kefir milk exert significant improvement in all the tested parameters. Kefir milk exerts comparable effect to that of the antiulcer drug ranitidine. In conclusion, the present study revealed that oral administration of kefir milk prevents ethanol-induced gastric ulcer in γ-irradiated rats that could attribute to its antioxidant, anti-apoptotic and radio-protective activities.

  8. RESTORATION INDUCED BY CATALASE IN IRRADIATED MICROORGANISMS

    Science.gov (United States)

    Latarjet, Raymond; Caldas, Luis Renato

    1952-01-01

    1. E. coli, strain K-12, and B. megatherium 899, irradiated in strict but still undefined physiological conditions with certain heavy doses of ultraviolet light, are efficiently restored by catalase, which acts on or fixes itself upon the bacteria in a few minutes. This restoration (C. R.), different from photorestoration, is aided by a little visible light. 2. At 37° the restorability lasts for about 2 hours after UV irradiation; the restored cells begin to divide at the same time as the normal survivors. 3. C. R. is not produced after x-irradiation. 4. B. megatherium Mox and E. coli, strain B/r show little C. R.; E. coli strain B shows none. None of these three strains is lysogenic, whereas the two preceding catalase-restorable strains are. 5. Phage production in the system "K-12 infected with T2 phage" is restored by catalase after UV irradiation, whereas phage production in the system "infected B" is not. 6. With K-12, catalase does not prevent the growth of phage and the lysis induced by UV irradiation (Lwoff's phenomenon). 7. Hypotheses are discussed concerning: (a) the chemical nature of this action of catalase; (b) a possible relation between C. R. and lysogenicity of the sensitive bacteria; (c) the consequences of such chemical restorations on the general problem of cell radiosensitivity. PMID:14898028

  9. Antitumor Immunity Induced after α Irradiation

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Gorin

    2014-04-01

    Full Text Available Radioimmunotherapy (RIT is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue, and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells.

  10. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  11. Nanodot formation induced by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  12. Inhibition effect of ADSCs on thymomas induced by irradiation

    Institute of Scientific and Technical Information of China (English)

    Zhi Xiong; Zhi-Hua Kong; Jun Zhu; Yu-Lin Yuan; Guo-Xiang Wang; Gan-Qing Xia

    2015-01-01

    Objective:To evaluate that the effect of adipose-derived stem cells (ADSCs) on thymomas induced by irradiation.Methods: A total of 160 cleaning degree C57BL/6 mice were divided into four groups randomly: control group of 40 mice with non-irradiation; irradiation group of 40 mice with irradiation; irradiation+ADSCs group with 40 mice, thymoma model mice injected with 0.5 mL ADSCs via tail vein at one day after last irradiation; non-irradiation+ADSCs group of 40 mice with the same ADSCs injection as irradiation+ADSCs group. All mice were sacrificed on the 1st, 3rd, 7th and 14th day after last irradiation, localization of ADSCs in thymoma tissue was detected using fluorescence microscope. Four groups mice were sacrificed on the 1st, 3rd, 7th, 14th day and the 6th month after last irradiation, pathological changes of thymus gland tissue were observed by HE staining and immunohistochemistry assay.Results: The thymoma incidence of irradiation+ADSCs group was significantly lower in control group. The expression of CD31 and PCNA in irradiation group and irradiation+ADSCs group mice was significantly higher than that of control group, and the expression of PCNA in irradiation+ADSCs group mice was significantly lower than that of radiation group mice. Conclusios:ADSCs can reduce the degree of irradiation damage of thymus tissue and inhibit the growth of thymoma induced by irradiation.

  13. Local brain heavy ion irradiation induced Immunosuppression

    Science.gov (United States)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  14. Improved calculation of displacements per atom cross section in solids by gamma and electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Piñera, Ibrahin, E-mail: ipinera@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Cruz, Carlos M.; Leyva, Antonio; Abreu, Yamiel; Cabal, Ana E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Espen, Piet Van; Remortel, Nick Van [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-11-15

    Highlights: • We present a calculation procedure for dpa cross section in solids under irradiation. • Improvement about 10–90% for the gamma irradiation induced dpa cross section. • Improvement about 5–50% for the electron irradiation induced dpa cross section. • More precise results (20–70%) for thin samples irradiated with electrons. - Abstract: Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10–90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5–50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20–70%) with respect to the previous studies.

  15. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.

    Science.gov (United States)

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-02-06

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  16. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    Energy Technology Data Exchange (ETDEWEB)

    Rappaport, D.S.; Casarett, G.W.

    1979-09-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation and immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG.

  17. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions

    Institute of Scientific and Technical Information of China (English)

    LIU Bing; WANG Qin; YUAN Dong-dong; HONG Xiao-ting; TAO Liang

    2011-01-01

    Background Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC).Methods The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine.Results In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions.Conclusions These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  18. Investigation solution to improve the irradiation reliability of SOI NMOSFET

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A solution is developed to improve the irradiation reliability of SOI NMOSFET(N-type Metal Oxide Semiconductor Field Effect Transistor).This solution,including SOI(Silicon On Insulator)wafer hardening and transistor structure hardening,protects the SOI circuit from total dose irradiation effect.

  19. Ion irradiation induced effects in polyamidoimide

    Energy Technology Data Exchange (ETDEWEB)

    Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d' Electronique des Polymeres sous Faisceaux Ioniques 123, avenue Albert Thomas, 87060 Limoges Cedex (France))

    1991-09-01

    The interaction between ion beam and polyamidoimide (PAI) is studied by means of low-temperature infrared spectroscopy. 200 keV Ar{sup +} and 250 keV He{sup +} beams with fluences ranging from 10{sup 13} ions cm{sup {minus}2} to 5{times}10{sup 16} ions cm{sup {minus}2} are found to induce atomic bond breaks leading to absorption bands at 2344, 2261, and 2125 cm{sup {minus}1} corresponding respectively to CO{sub 2}, C=N=N and C=N--R vibrations. Shrinkage of the polymer along with a drastic decrease of the resistivity during Ar{sup +} and He{sup +} irradiation are observed. Speculations on the respective role of electronic processes and atomic collisions in the evolution of the polymer are made. No evidence of PAI modification through knock-on mechanism for fluences lower than 5{times}10{sup 15} ions cm{sup {minus}2} is noticed. In fact, our results would suggest a predominant role of the electronic processes for the low fluences (up to 5{times}10{sup 15} ions cm{sup {minus}2} ), whereas a degradation mechanism based on atomic collisions is more likely to take place for higher fluences. A theoretical mechanism of reactions based upon our Fourier transform infrared (FTIR) and secondary ion mass spectroscopies (SIMS) results, describing the chemical changes occurring in the PAI, is presented and briefly discussed.

  20. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  1. A case of dysphagia induced by irradiation to the neck

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroyuki [Kanagawa Rehabilitation Hospital, Atsugi (Japan); Kubota, Akira; Moriyama, Hiroshi

    1995-12-31

    This report deals with a case of dysphagia induced by the irradiation of a malignant lymphoma of the neck. The patient was a 55-year-old male with dysphagia who had undergone irradiation to the neck for a malignant lymphoma ten years previously. The dysphagia that had gradually worsened in ten years made him enable to eat and drink orally. He often contracted by pneumonia. On first examination, atrophic changes were observed in the soft palates, and the epiglottis, and the improvement of the tongue was bilaterally impaired. These findings were diagnosed as the causes of the dysphagia. A barium study showed that the movement of the tongue and the pharynx were impaired. The barium was aspirated. A plain X-ray film of the mandible showed ostitis. The impairment of the tongue movement was due to bilateral hypopharyngeal nerve palsies induced by the irradiation. Laryngeal suspension and cricopharyngeal myotomy were not suitable because they could have aggravated the radiation necrosis of the thyroid cartilage which will be expected in the future. A total laryngectomy, which sacrifies the phonation, was out of the question, because the patient`s dysarthria was not so hard to understand. He was instructed in the self-insertion of a feeding tube to get enough nutrition, the physical therapy of the lung with the aid of his wife to prevent aspiration pneumonia. The loss of phonation lowers the QOL of such patients. In the cases with dysphagia which do not recover with surgical treatments, rehabilitation should mainly stress the conservation of phonation and the prevention of pneumonia to maintain the higher QOL of patients. (author).

  2. γ irradiation induced effects on the TCO thin films

    Science.gov (United States)

    Kabacelik, Ismail; Kutaruk, Hakan; Yaltkaya, Serafettin; Sahin, Ramazan

    2017-05-01

    We report on gamma irradiation induced changes both in the optical and electrical properties of the Transparent Conductive Oxide (TCO) thin films. We used Co-60 radioisotope as a natural source of γ in our experiments. Applied total irradiation doses to the prepared samples change from 1 to 4 kGy. The dose rate is kept finely constant at 200 Gy/min. Optical transmissions in VIS-NIR region of electromagnetic spectrum and electrical conductivity (I-V) measurements on irradiated samples are conducted with respect to the total dose. Results show that regardless of the irradiation dose, there is no change in the current flow through the contacts on the TCO thin films after the irradiation. On the other hand, based on the on-line measurements, the current increases with the gamma irradiation and a threshold irradiation is detected in the optical properties of irradiated samples. Also, thin films are seen to preserve their initial amorphous structures at such a low irradiation doses according to XRD measurements. We propose that these thin films can be used in gamma sensors for both optical and electrical applications.

  3. Pregnancy complicating irradiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Bakri, Younes N.; Martan, Ahmed; Amri, Aladin (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Obstetrics and Gynecology); Amri, M. (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Cardiovascular Diseases)

    1992-01-01

    A case is reported of a 24 year-old primigravida who had severe effusive constrictive pericarditis secondary to mediastinal irradiation following chemotherapy for Hodgkins disease. Pregnancy was threatened by serious maternal cardiovascular complications and a non-viable fetus was born spontaneously and prematurely. Patient was completely asymptomatic before pregnancy. (au).

  4. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  5. Recombinant Human Prolactin Protects against Irradiation Induced Myelosuppression

    Institute of Scientific and Technical Information of China (English)

    Weici Zhang; Rui Sun; Jianhua Zhang; Jian Zhang; Zhigang Tian

    2005-01-01

    Prolactin is a multifunctional hormone that exerts many separate functions and acts as an important connection between the endocrine and immune systems. There are increasing researches implicating the role of prolactin in hematopoiesis. Enhanced erythropoiesis in pregnant women and direct erythropoietic effects in vitro of plasma either from pregnant or lactating mice have been reported. Furthermore, regression of erythroblastic leukemia has been observed in a significant number of rats after hypophysectomy. In this study, the effects of recombinant human prolactin (rhPRL) on hematopoiesis were assessed in irradiated mice. Mice were treated with rhPRL for five consecutive days after exposure to a lethal dose or a sub-dose irradiation. Prolonged survival rate and increased erythropoiesis were observed in the irradiation-induced myelosuppressive mice. It was concluded that rhPRL might act on erythropoiesis and could be a potential candidate for the treatment of irradiation-induced myelosuppresion in clinic. Cellular & Molecular Immunology.

  6. IMMUNE TOLERANCE INDUCED BY GAMMA-RAY IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    练燕; 王延江; 粟永萍; 冉新泽; 艾国平; 刘晓宏; 郭朝华; 程天民

    2003-01-01

    Objective: To detect the existence of immune tolerance induced by gamma-ray irradiation. Methods: Peritoneal cells were harvested from mice subjected to 5 Gy 60Co gamma-ray total body irradiation at 3d, 7d, 15d and 30d, then their counts, morphological changes and IL-12 gene expression were investigated. Results: After irradiation, the peritoneal cells were sharply reduced, the cell morphology shifted from round-like to polymorphic and fusiform with some processes, expression of IL-12 p35 was seriously suppressed, while that of IL-12 p40 greatly enhanced. Conclusion: Our data highly suggest that the gamma-ray irradiation could potentially induce dendritic cell (DC) commitment and immune tolerance.

  7. Androgen deprivation modulates the inflammatory response induced by irradiation

    Directory of Open Access Journals (Sweden)

    Lin Paul-Yang

    2009-03-01

    Full Text Available Abstract Background The aim of this study was to determine whether radiation (RT-induced inflammatory responses and organ damage might be modulated by androgen deprivation therapies. Methods The mRNA and tissue sections obtained from the lungs, intestines and livers of irradiated mice with or without androgen deprivation were analyzed by real-time PCR and histological analysis. Activation of NF-kappa B was examined by measuring nuclear protein levels in the intestine and lung 24 h after irradiation. We also examined the levels of cyclooxygenase-2 (COX-2, TGF-β1 and p-AKT to elucidate the related pathway responsible to irradiation (RT -induced fibrosis. Results We found androgen deprivation by castration significantly augmented RT-induced inflammation, associated with the increase NF-κB activation and COX-2 expression. However, administration of flutamide had no obvious effect on the radiation-induced inflammation response in the lung and intestine. These different responses were probably due to the increase of RT-induced NF-κB activation and COX-2 expression by castration or lupron treatment. In addition, our data suggest that TGF-β1 and the induced epithelial-mesenchymal transition (EMT via the PI3K/Akt signaling pathway may contribute to RT-induced fibrosis. Conclusion When irradiation was given to patients with total androgen deprivation, the augmenting effects on the RT-induced inflammation and fibrosis should take into consideration for complications associated with radiotherapy.

  8. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  9. Improvement of microbiological qualities of namphrik by gamma irradiation

    Science.gov (United States)

    Chahorm, K.; Neramitmansook, N.; Kongsang, N.; Ko, J.

    2017-06-01

    Twenty samples of Namphrik from commercial markets were evaluated the microbiological qualities. It was found that 15 samples did not meet Thai Community Product Standard. The total plate count (TPC) in 15 samples were higher than the maximum limits (1.60x104 - 4.4x105 CFU/g). In addition, the other pathogens were higher than the maximum limits such as B. cereus in 11 samples (2.10x103 - 6.10x104 CFU/g) S. aureus in 2 samples (15 - 40 CFU/g) Clostridium perfringens in 4 samples (1.00x102 - 8.8x103 CFU/g) and yeast&mold in 9 samples (3.00 x102 - 9.00x103 CFU/g). To reduce TPC and pathogenic bacteria, the gamma irradiation were applied at 3.28- 4.43 kGy. The results indicated that the irradiation can reduce the TPC around 1.2 - 3.9 log cycles and eliminate pathogens bacteria in the product to make all of 15 samples qualified to the standard. The sensory evaluation was conducted in Namphrik Narok by using difference from control test to determine whether the consumers can differentiate between the non-irradiated and irradiated. The result showed that the consumers can significantly differentiate the color, odor and flavor (p0.05. Both non-irradiated and irradiated were scored at 6.4 (slightly to moderately preference). Thus the gamma irradiation can be used as a tool to improve the microbiological qualities of the Namphrik Narok product without effecting the consumer preference.

  10. X Irradiation Induces Acute Cognitive Decline via Transient Synaptic Dysfunction.

    Science.gov (United States)

    Puspitasari, Anggraeini; Koganezawa, Noriko; Ishizuka, Yuta; Kojima, Nobuhiko; Tanaka, Natsume; Nakano, Takashi; Shirao, Tomoaki

    2016-04-01

    Cranial X irradiation can severely impair higher brain function, resulting in neurocognitive deficits. Radiation-induced brain injury is characterized by acute, early and late delayed changes, and morbidity is evident more than 6 months after irradiation. While the acute effects of radiation exposure on the brain are known, the underlying mechanisms remain unclear. In this study, we examined the acute effect of X radiation on synaptic function using behavioral analysis and immunohistochemistry. We found that 10 Gy whole-brain irradiation immediately after conditioning (within 30 min) impaired the formation of fear memory, whereas irradiation 24 h prior to conditioning did not. To investigate the mechanisms underlying these behavioral changes, we irradiated one hemisphere of the brain and analyzed synaptic function and adult neurogenesis immunohistochemically. We focused on drebrin, whose loss from dendritic spines is a surrogate marker of synaptopathy. The intensity of drebrin immunoreactivity started to decrease in the irradiated hemisphere 2 h after exposure. The immunostaining intensity recovered to preirradiation levels by 24 h, indicating that X radiation induced transient synaptic dysfunction. Interestingly, the number of newly generated neurons was not changed at 2 h postirradiation, whereas it was significantly decreased at 8 and 24 h postirradiation. Because irradiation 24 h prior to conditioning had no effect on fear memory, our findings suggest that radiation-induced death of newly-generated neurons does not substantially impact fear memory formation. The radiation-induced synaptic dysfunction likely caused a transient memory deficit during the critical period for fear memory formation (approximately 1-3 h after conditioning), which coincides with a change in drebrin immunostaining in the hippocampus, a structure critical for fear memory formation.

  11. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  12. Early stages of irradiation induced dislocations in urania

    Science.gov (United States)

    Chartier, A.; Onofri, C.; Van Brutzel, L.; Sabathier, C.; Dorosh, O.; Jagielski, J.

    2016-10-01

    The early stages of nucleation and growth of dislocations by irradiation in urania is clarified based on the combination of experiments and atomistic calculations. It is established that irradiation induced dislocations follow a five stage process: (i) point defects are first created by irradiation, (ii) they aggregate into clusters, (iii) from which nucleate Frank loops, (iv) which transform into unfaulted loops via Shockley that in turn grow, and (v) finally reorganize into forest dislocations. Stages (i)-(iii) participate in the lattice expansion while the onset of lattice contraction starts with stage (iv), i.e., when unfaulted loops nucleate. Irradiation induced dislocations operate in the spontaneous recombination regime, to be opposed to the thermal diffusion regime. Body of arguments collaborates to this statement, the main one is the comparison between characteristic distances estimated from the dose rate (Vat/(K0×τ ) ) 1/3 and from the diffusion coefficient (D×τ ) 1/2 . Such a comparison identifies materials under irradiation as belonging either into the recombination regime or not.

  13. DAMAGE OF SILICONE RUBBER INDUCED BY PROTON IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Li-xin Zhang; Shi-qin Yang; Shi-yu He

    2003-01-01

    In this paper, the damage to methyl silicone rubber induced by irradiation with protons of 150 keV energy was studied. The surface morphology, tensile strength, Shore hardness, cross-linking density and glass transition temperature were examined. Positron annihilation lifetime spectrum analysis (PALS) was perfomed to reveal the damage mechanisms of the rubber. The results showed that tensile strength and Shore hardness of the rubber increased first and then decreased with increasing irradiation fluence. The PALS characteristics τ3 and I3, as well as the free volume Vf, decreased with increasing irradiation fluence up to 1015 cm-2, and then increased slowly. It indicates that proton irradiation causes a decrease of free volume in the methyl silicone rubber when the fluence is less than l015 cm-2, while the free volume increases when the fluence is greater than 1015 cm-2. The results on cross-linking density indicate that the cross-linking induced by proton irradiation is dominant at smaller proton fluences, increasing the tensile strength and Shore hardness of the rubber, while the degradation of rubber dominates at greater fluence, leading to a decrease of tensile strength and Shore hardness.

  14. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y., E-mail: na.huang@materials.ox.ac.uk [Engineering Physics Department, University of Wisconsin-Madison, WI 53706 (United States); Maier, B.R. [Engineering Physics Department, University of Wisconsin-Madison, WI 53706 (United States); Allen, T.R. [Engineering Physics Department, University of Wisconsin-Madison, WI 53706 (United States); Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2014-10-01

    Highlights: • ZrC{sub x} with four different stoichiometries (x = 0.9–1.2 with 0.1 step) were studied. • Proton irradiation at 800 °C introduced large amount of dislocation loops. • No voids were found before or after irradiation. • Dislocation loops size distribution and density varied with stoichiometry. - Abstract: Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for high-temperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 °C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 °C up to doses of 3 dpa were performed on ZrC{sub x} (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  15. Rescue Effects and Underlying Mechanisms of Intragland Shh Gene Delivery on Irradiation-Induced Hyposalivation.

    Science.gov (United States)

    Hai, Bo; Zhao, Qingguo; Qin, Lizheng; Rangaraj, Dharanipathy; Gutti, Veera R; Liu, Fei

    2016-05-01

    Irreversible hypofunction of salivary glands is common in head and neck cancer survivors treated with radiotherapy and can only be temporarily relieved with current treatments. We found in an inducible sonic hedgehog (Shh) transgenic mouse model that transient activation of the Hedgehog pathway after irradiation rescued salivary gland function in males by preserving salivary stem/progenitor cells and parasympathetic innervation. To translate these findings into feasible clinical application, we evaluated the effects of Shh gene transfer to salivary glands of wild-type mice on irradiation-induced hyposalivation. Shh or control GFP gene was delivered by noninvasive retrograde ductal instillation of corresponding adenoviral vectors. In both male and female mice, Shh gene delivery efficiently activated Hedgehog/Gli signaling, and significantly improved stimulated saliva secretion and preserved saliva-producing acinar cells after irradiation. In addition to preserving parasympathetic innervation through induction of neurotrophic factors, Shh gene delivery also alleviated the irradiation damage of the microvasculature, likely via inducing angiogenic factors, but did not expand the progeny of cells responsive to Hedgehog/Gli signaling. These data indicate that transient activation of the Hedgehog pathway by gene delivery is promising to rescue salivary function after irradiation in both sexes, and the Hedgehog/Gli pathway may function mainly in cell nonautonomous manners to achieve the rescue effect.

  16. Interactions between dislocations and irradiation-induced defects in light water reactor pressure vessel steels

    Science.gov (United States)

    Jumel, Stéphanie; Van Duysen, Jean-Claude; Ruste, Jacky; Domain, Christophe

    2005-11-01

    The REVE project (REactor for Virtual Experiments) is an international effort aimed at developing tools to simulate irradiation effects in light water reactors materials. In the framework of this project, a European team developed a first tool, called RPV-1 designed for reactor pressure vessel steels. This article is the third of a series dedicated to the presentation of the codes and models used to build RPV-1. It describes the simplified approach adopted to simulate the irradiation-induced hardening. This approach relies on a characterization of the interactions between a screw dislocation and irradiation-induced defects from molecular dynamics simulations. The pinning forces exerted by the defects on the dislocation were estimated from the obtained results and some hypotheses. In RPV-1, these forces are used as input parameters of a Foreman and Makin-type code, called DUPAIR, to simulate the irradiation-induced hardening at 20 °C. The relevance of the proposed approach was validated by the comparison with experimental results. However, this work has to be considered as an initial step to facilitate the development of a first tool to simulate irradiation effects. It can be improved by many ways (e.g. by use of dislocation dynamics code).

  17. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    Energy Technology Data Exchange (ETDEWEB)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  18. Studies on safety and efficacy of gamma-irradiated ginseng -Development of irradiation techniques for quality improvement of ginseng products-

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Han Ok; Byun, Myung Woo; Cho, Sung Kee; Kand, Il Joon; Yook, Hong Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    Gamma irradiation was applied to red ginseng powder for improving microbiological and physicochemical quality. Irradiation at 5-10 kGy was effective for sterilizing all contaminated microorganisms of red ginseng powder. At the dose levels, major physicochemical properties (saponin, amino acids, sugars, proximate composition, color, pH, acidity, hydrogen donating activity, fatty acids and minerals) were not changed by gamma irradiation upto 10 kGy. Based upon the results, it is concluded that gamma irradiation can effectively improve the microbiological quality of red ginseng powders without significant unfavorable changes. Therefore, it is suggested that irradiation technology is a viable alternative method to other sanitary process containing chemical fumigant and will be useful for the improvement of the quality of red ginseng powders and their products. 5 figs, 18 tabs, 92 refs. (Author).

  19. Investigation on the radiation induced conductivity of space-applied polyimide under cyclic electron irradiation

    Science.gov (United States)

    Yue, Long; Wu, Yiyong; Sun, Chengyue; Xiao, Jingdong; Shi, Yaping; Ma, Guoliang; He, Shiyu

    2012-11-01

    Radiation induced conductivity (RIC) is an important property of dielectric materials to evaluate the charge/discharge effect in orbit-service spacecraft. RIC of space-applied polyimide film was in situ measured and studied under continuous and cyclic electron irradiation in this paper. The results indicate that, for cyclic electron irradiation, there is a similar increasing-mode of RIC to those for continuous irradiation with the electron irradiation time. However, under the cyclic electron irradiation, the RIC of polyimide shows an obvious irradiation-history characteristic, namely preliminary irradiation dose effect (PIDE). In this case, the steady RIC value presents an "overshoot" behavior in the first few irradiation cycles and then decrease to a stable one as that under continuous irradiation. Prolonging the initial irradiation duration may avoid occurrence of overshoot phenomenon. The behaviors of irradiation-induced free radicals in polyimide could be applied to explain the RIC evolution processes.

  20. Erlotinib-induced rash spares previously irradiated skin

    Energy Technology Data Exchange (ETDEWEB)

    Lips, Irene M.; Vonk, Ernest J.A. [Radiotherapeutisch Instituut Stedendriehoek en Omstreken (RISO), Deventer (Netherlands). Dept. of Radiation Oncology; Koster, Mariska E.Y. [Deventer Hospital (Netherlands). Dept. of Lung Diseases; Houwing, Ronald H. [Deventer Hospital (Netherlands). Dept. of Dermatology

    2011-08-15

    Erlotinib is an epidermal growth factor receptor inhibitor prescribed to patients with locally advanced or metastasized non-small cell lung carcinoma after failure of at least one earlier chemotherapy treatment. Approximately 75% of the patients treated with erlotinib develop acneiform skin rashes. A patient treated with erlotinib 3 months after finishing concomitant treatment with chemotherapy and radiotherapy for non-small cell lung cancer is presented. Unexpectedly, the part of the skin that had been included in his previously radiotherapy field was completely spared from the erlotinib-induced acneiform skin rash. The exact mechanism of erlotinib-induced rash sparing in previously irradiated skin is unclear. The underlying mechanism of this phenomenon needs to be explored further, because the number of patients being treated with a combination of both therapeutic modalities is increasing. The therapeutic effect of erlotinib in the area of the previously irradiated lesion should be assessed. (orig.)

  1. Molecular characterization of microbial mutations induced by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Hiroyuki [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan); Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)], E-mail: ichida@riken.jp; Matsuyama, Tomoki [Cellular Biochemistry Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Ryuto, Hiromichi [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Hayashi, Yoriko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Fukunishi, Nobuhisa [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Koba, Takato [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2008-03-01

    A positive selection system for gene disruption using a sucrose-sensitive transgenic rhizobium was established and used for the molecular characterization of mutations induced by ion beam irradiations. Single nucleotide substitutions, insertions, and deletions were found to occur in the sucrose sensitivity gene, sacB, when the reporter line was irradiated with highly accelerated carbon and iron ion beams. In all of the insertion lines, fragments of essentially the same sequence and of approximately 1188 bp in size were identified in the sacB regions. In the deletion lines, iron ions showed a tendency to induce larger deletions than carbon ions, suggesting that higher LET beams cause larger deletions. We found also that ion beams, particularly 'heavier' ion beams, can produce single gene disruptions and may present an effective alternative to transgenic approaches.

  2. Sustained improvement of intractable rheumatoid arthritis after total lymphoid irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Field, E.H.; Strober, S.; Hoppe, R.T.; Calin, A.; Engleman, E.G.; Kotzin, B.L.; Tanay, A.S.; Calin, H.J.; Terrell, C.P.; Kaplan, H.S.

    1983-08-01

    Total lymphoid irradiation (TLI) was administered to 11 patients who had intractable rheumatoid arthritis that was unresponsive to conventional medical therapy, including aspirin, multiple nonsteroidal antiinflammatory drugs, gold salts, and D-penicillamine. Total lymphoid irradiation was given as an alternative to cytotoxic drugs such as azathioprine and cyclophosphamide. After radiotherapy, 9 of the 11 patients showed a marked improvement in clinical disease activity as measured by morning stiffness, joint tenderness, joint swelling, and overall functional abilities. The mean improvement of disease activity in all patients ranged from 40-70 percent and has persisted throughout a 13-28 month followup period. This improvement permitted the mean daily steroid dose to be reduced by 54%. Complications included severe fatigue and other constitutional symptoms during radiotherapy, development of Felty's syndrome in 1 patient, and an exacerbation of rheumatoid lung disease in another. After therapy, all patients exhibited a profound T lymphocytopenia, and a reversal in their T suppressor/cytotoxic cell to helper cell ratio. The proliferative responses of peripheral blood mononuclear cells to phytohemagglutinin, concanavalin A, and allogeneic leukocytes (mixed leukocyte reaction) were markedly reduced, as was in vitro immunoglobulin synthesis after stimulation with pokeweed mitogen. Alterations in T cell numbers and function persisted during the entire followup period, except that the mixed leukocyte reaction showed a tendency to return to normal values.

  3. Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    杨剑群; 李兴冀; 刘超铭; 马国亮; 高峰

    2015-01-01

    Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli-cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra-diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 × 1015 cm−2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis-placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs

  4. Effects of mecobalamin on testicular dysfunction induced by X-ray irradiation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Oshio, Shigeru; Yazaki, Tsunetada; Umeda, Takashi (Teikyo Univ., Tokyo (Japan). Faculty of Medicine); Ozaki, Satoru; Ohkawa, Isao; Tajima, Tetsuya; Yamada, Takeshi; Mohri, Hideo

    1991-12-01

    Experimental testicular dysfunction was produced by X-ray irradiation to the testes in mice. Mecobalamin (CH{sub 3}-B{sub 12}) was orally administered at a daily dose of 0.01, 0.1 or 1 mg/kg six times a week for 8 weeks from the next day after the irradiation. The control mice received physiological saline in the same manner. On 4th- and 6th-week after the irradiation, the weights of testes and epididymides were decreased, although those of the body and accessory sex glands (seminal vesicle, coagulating gland and prostate) were nearly equal to those of non-irradiated mice. At the same time, the diameter of seminiferous tubules decreased and sperm parameters (sperm count, sperm motility and sperm abnormality) deteriorated. When CH{sub 3}-B{sub 12} (1 mg/kg) was administered, the diameter of seminiferous tubules increased and sperm parameters improved as compared to those of the control. The results indicate that CH{sub 3}-B{sub 12} improved the experimental testicular dysfunction in mice induced by the irradiation. These results suggest that CH{sub 3}-B{sub 12} might accelerate testicular function. (author).

  5. [Effects of mecobalamin on testicular dysfunction induced by X-ray irradiation in mice].

    Science.gov (United States)

    Oshio, S; Yazaki, T; Umeda, T; Ozaki, S; Ohkawa, I; Tajima, T; Yamada, T; Mohri, H

    1991-12-01

    Experimental testicular dysfunction were produced by X-ray irradiation to the testes in mice. Mecobalamin (CH3-B12) was orally administered at a daily dose of 0.01, 0.1 or 1 mg/kg six times a week for 8 weeks from the next day after the irradiation. The control mice received physiological saline in the same manner. On 4th- and 6th-week after the irradiation, the weights of testes and epididymides were decreased, although those of the body and accessory sex glands (seminal vesicle, coagulating gland and prostate) were nearly equal to those of non-irradiated mice. At the same time, the diameter of seminiferous tubules decreased and sperm parameters (sperm count, sperm motility and sperm abnormality) deteriorated. When CH3-B12 (1 mg/kg) was administered, the diameter of seminiferous tubules increased and sperm parameters improved as compared to those of the control. The results indicate that CH3-B12 improved the experimental testicular dysfunction in mice induced by the irradiation. These results suggest that CH3-B12 might accelerate testicular function.

  6. Effectiveness Of UVC Lights Irradiation To Improve Energy Saving

    Directory of Open Access Journals (Sweden)

    Sameer A. Bilal

    2015-08-01

    Full Text Available HVAC Heating Ventilation and Air conditioning is the largest consumer of energy in commercial and industrial buildings. HVAC systems account for an approximated 50 of energy use in buildings. The sources of contamination and odour comes from the growth of bacteria mold and fungus that accumulate and develop on wet surfaces of HVAC coils and drain pans causing respiratory infection cough tight chest and wheezing. Besides the effects on human health Fungal contamination that adheres to the fins of cooling coil of air handling unit AHU cause a significant increase in pressure drop across the coil and decrease in heat exchange efficiency which Leeds to loss of cooling capacity and additional energy use. To prevent the fungal and microorganism growth on the cooling coil and drain pan of HVAC systems many studies conducted but not all these solutions were sufficient to remove microbial organism from the HVAC 100 . The UV-C light options through a process known as UVGI Ultraviolet germicidal irradiation is a technology showed a significant impact to produce clean air and improve indoor air quality 16. UVGI lights produce short wavelength light kills microorganisms including viruses bacteria mold and many other fungi by disrupting their DNA. The effectiveness of UVGI installed inside HVAC systems depends on many factors and the application Methods in HVAC systems. A few studies showed whether the use of UVGI results in energy saving. The objective of this study is to find the effect of fungal growth on the cooling coil surface by using field measurements at actual operating conditions of heat transfer and air flow for a non-irradiated coil in comparison to irradiated coil .Hence evaluate if there would be an enthalpy change at the coil and document the effectiveness of UVGI coil cleaning on restoring cooling capacity and save energy.

  7. Improvement of photocatalytic activity of silver nanoparticles by radio frequency oxygen plasma irradiation

    Science.gov (United States)

    Fang, Yingcui; Zhang, Bing; Hong, Liu; Yao, Damao; Xie, Zhiqiang; Jiang, Yang

    2015-07-01

    Photocatalytic activity (PA) of silver nanoparticles (AgNPs) induced by radio frequency (RF) oxygen plasma irradiation (OPI) is investigated in this paper. An improvement in PA by 365% and 181% has been achieved when 15 nm AgNPs irradiated by oxygen plasma for 2 s were used to degrade 10-5 M Rhodamine 6 G (R6G) under ultraviolet (UV) and visible lights, respectively. The PA caused by OPI is better than that induced by the localized surface plasma resonance (LSPR) of AgNPs. The mechanism for the improvement was explored by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra. The OPI-induced formation of AgO/AgNP and Ag2O/AgNP-heterogeneous photocatalysts and electrophilic oxygen are considered to be responsible for the PA improvement. This investigation deepens our understanding of oxygen-assisted photocatalysis of AgNPs and provides a practical approach using solar light for broad spectra photocatalysis with high efficiency.

  8. Improvement of colour strength and colourfastness properties of gamma irradiated cotton using reactive black-5

    Science.gov (United States)

    Ahmad Bhatti, Ijaz; Adeel, Shahid; Nadeem, Raziya; Asghar, Toheed

    2012-03-01

    The dyeing behaviour of gamma irradiated cotton fabric using Reactive Black-5 dye powder has been investigated. The mercerized, bleached and plain weaved cotton fabric was irradiated to different absorbed doses of 100, 200, 300, 400, 500 and 600 Gy using Co-60 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature of dyeing, time of dyeing and pH of dyeing solutions were optimised. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organisation (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It is found that gamma irradiated cotton dyed with Reactive Black-5 has not only improved the colour strength but also enhanced the rating of fastness properties.

  9. Prenatal irradiation-induced brain neuropathology and cognitive impairment.

    Science.gov (United States)

    Yang, Bo; Ren, Bo Xu; Tang, Feng Ru

    2017-01-01

    Embryo/fetus is much more radiosensitive than neonatal and adult human being. The main potential effects of pre-natal radiation exposure on the human brain include growth retardation, small head/brain size, mental retardation, neocortical ectopias, callosal agenesis and brain tumor which may result in a lifetime poor quality of life. The patterns of prenatal radiation-induced effects are dependent not only on the stages of fetal development, the sensitivity of tissues and organs, but also on radiation sources, doses, dose rates. With the increased use of low dose radiation for diagnostic or radiotherapeutic purposes in recent years, combined with postnatal negative health effect after prenatal radiation exposure to fallout of Chernobyl nuclear power plant accident, the great anxiety and unnecessary termination of pregnancies after the nuclear disaster, there is a growing concern about the health effect of radiological examinations or therapies in pregnant women. In this paper, we reviewed current research progresses on pre-natal ionizing irradiation-induced abnormal brain structure changes. Subsequent postnatal neuropsychological and neurological diseases were provided. Relationship between irradiation and brain aging was briefly mentioned. The relevant molecular mechanisms were also discussed. Future research directions were proposed at the end of this paper. With limited human data available, we hoped that systematical review of animal data could relight research interests on prenatal low dose/dose rate irradiation-induced brain microanatomical changes and subsequent neurological and neuropsychological disorders. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Heavy ion irradiation induced dislocation loops in AREVA's M5 Registered-Sign alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hengstler-Eger, R.M., E-mail: Rosmarie.Hengstler-Eger@areva.com [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Baldo, P. [Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, 60439 Argonne IL (United States); Beck, L. [Maier-Leibnitz-Laboratorium (MLL), Am Coulombwall 6, 85748 Garching (Germany); Dorner, J.; Ertl, K. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Hoffmann, P.B. [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Hugenschmidt, C. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Kirk, M.A. [Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, 60439 Argonne IL (United States); Petry, W.; Pikart, P. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Rempel, A. [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2012-04-15

    Pressurized water reactor (PWR) Zr-based alloy structural materials show creep and growth under neutron irradiation as a consequence of the irradiation induced microstructural changes in the alloy. A better scientific understanding of these microstructural processes can improve simulation programs for structural component deformation and simplify the development of advanced deformation resistant alloys. As in-pile irradiation leads to high material activation and requires long irradiation times, the objective of this work was to study whether ion irradiation is an applicable method to simulate typical PWR neutron damage in Zr-based alloys, with AREVA's M5 Registered-Sign alloy as reference material. The irradiated specimens were studied by electron backscatter diffraction (EBSD), positron Doppler broadening spectroscopy (DBS) and in situ transmission electron microscopy (TEM) at different dose levels and temperatures. The irradiation induced microstructure consisted of - and -type dislocation loops with their characteristics corresponding to typical neutron damage in Zr-based alloys; it can thus be concluded that heavy ion irradiation under the chosen conditions is an excellent method to simulate PWR neutron damage.

  11. Study of color centers induced by PIXE irradiation

    CERN Document Server

    Absil, J; Strivay, D; Oger, C; Weber, G

    2002-01-01

    The particle induced X-ray emission method is perfectly adapted to the study, by external beam, of art objects (like paintings) and allows non-destructive analysis of the atomic composition of the target. However, a strange phenomenon occurs during irradiation on some pigments: dark brownish stains appear, and this could be due to the formation of color centers. In fact, these darkening spots progressively fade out and disappear after a few weeks. Heat and UV light accelerate the decreasing process. The aim of this study is to understand the physical processes of the stain creation and to find a way to make stains disappear, avoiding any damage for the painting.

  12. Study of color centers induced by PIXE irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Absil, J.; Garnir, H.-P.; Strivay, D.; Oger, C.; Weber, G. E-mail: g.weber@ulg.ac.be

    2002-12-01

    The particle induced X-ray emission method is perfectly adapted to the study, by external beam, of art objects (like paintings) and allows non-destructive analysis of the atomic composition of the target. However, a strange phenomenon occurs during irradiation on some pigments: dark brownish stains appear, and this could be due to the formation of color centers. In fact, these darkening spots progressively fade out and disappear after a few weeks. Heat and UV light accelerate the decreasing process. The aim of this study is to understand the physical processes of the stain creation and to find a way to make stains disappear, avoiding any damage for the painting.

  13. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  14. Photodynamic therapy improves the ultraviolet-irradiated hairless mice skin

    Science.gov (United States)

    Jorge, Ana Elisa S.; Hamblin, Michael R.; Parizotto, Nivaldo A.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Chronic exposure to ultraviolet (UV) sunlight causes premature skin aging. In light of this fact, photodynamic therapy (PDT) is an emerging modality for treating cancer and other skin conditions, however its response on photoaged skin has not been fully illustrated by means of histopathology. For this reason, the aim of this study was analyze whether PDT can play a role on a mouse model of photoaging. Hence, SKH-1 hairless mice were randomly allocated in two groups, UV and UV/PDT. The mice were daily exposed to an UV light source (280-400 nm: peak at 350 nm) for 8 weeks followed by a single PDT session using 20% 5-aminolevulinic acid (ALA) topically. After the proper photosensitizer accumulation within the tissue, a non-coherent red (635 nm) light was performed and, after 14 days, skin samples were excised and processed for light microscopy, and their sections were stained with hematoxylin-eosin (HE) and Masson's Trichrome. As a result, we observed a substantial epidermal thickening and an improvement in dermal collagen density by deposition of new collagen fibers on UV/PDT group. These findings strongly indicate epidermal and dermal restoration, and consequently skin restoration. In conclusion, this study provides suitable evidences that PDT improves the UV-irradiated hairless mice skin, supporting this technique as an efficient treatment for photoaged skin.

  15. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    Science.gov (United States)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  16. The effect of mesenchymal stem cells on the p53 methylation in irradiation-induced thymoma in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Hai B Zheng

    2015-01-01

    Conclusion: MSCs decrease the incidence of irradiation-induced thymoma, which may be mediated by improving thymus microenvironment and changing the methylation of p53 promoter, and subsequently maintaining genome′s stability.

  17. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation

    Science.gov (United States)

    Yoon, Minchul; Choi, Jong-il; Lee, Ju-Woon; Park, Don-Hee

    2012-08-01

    Recently, many research works have reported on improvements to the saccharification process that increase bioethanol production from cellulosic materials. Gamma irradiation has been studied as an effective method for the depolymerization of complex polysaccharides. In this study, the effect of gamma irradiation on saccharification of Undaria biomass for bioethanol production was investigated. The Undaria biomass was irradiated at doses of 0, 10, 50, 100, 200 and 500 kGy and then hydrolyzed using sulfuric acid. The effects of gamma irradiation were measured through microscopic analysis to determine morphological changes and concentration of the reducing sugar of hydrolysates. Microscopic images show that gamma irradiation causes structure breakage of the Undaria cell wall. The concentration of reducing sugar of hydrolysates significantly increased as a result of gamma irradiation, with or without acid hydrolysis. These results indicate that the combined method of gamma irradiation with acid hydrolysis can significantly improve the saccharification process for bioethanol production from marine algae materials.

  18. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  19. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.C.; Li, D.H.; Lui, R.D.; Huang, H.F.; Li, J.J.; Lei, G.H.; Huang, Q.; Bao, L.M.; Yan, L., E-mail: yanlong@sinap.ac.cn; Zhou, X.T., E-mail: zhouxingtai@sinap.ac.cn; Zhu, Z.Y.

    2016-06-15

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  20. Glucidic and lipidic metabolic changes in rats induced by irradiation and the effect of adrenalectomy

    Energy Technology Data Exchange (ETDEWEB)

    Groza, P.; Ghizari, E.; Butculescu, I.; Ciontescu, L.; Ciuntu, L.

    1975-01-01

    In experiments on X-irradiated rats (1000 R) the hepatic glycogen, total lipids, phospholipids content, and plasma glucose, cholesterol and beta-lipoprotein concentration were determined in intact and adrenalectomized animals. It was confirmed that irradiation produces a hepatic glycogen and blood glucose increased concentration. The glucidic metabolic response on irradiation is diminished by adrenalectomy. The adrenalectomy-induced modifications in the lipid metabolism of irradiated rats are more inconstant, which corresponds with its relative independence from glucocorticoid hormones.

  1. Glucidic and lipidic metabolic changes in rats induced by irradiation and the effect of adrenalectomy.

    Science.gov (United States)

    Groza, P; Ghizari, E; Butculescu, I; Ciontescu, L; Ciuntu, L

    1975-01-01

    In experiments on X-irradiated rats (1000 R) the hepatic glycogen, total lipids, phospholipids content, and plasma glucose, cholesterol and beta-lipoprotein concentration were determined in intact and adrenalectomized animals. It was confirmed that irradiation produces a hepatic glycogen and blood glucose increased concentration. The glucidic metabolic response on irradiation is diminished by adrenalectomy. The adrenalectomy-induced modifications in the lipid metabolism of irradiated rats are more inconstant, which corresponds with its relative independence from glucocorticoid hormones.

  2. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    Science.gov (United States)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  3. Low dose X-irradiation mitigates diazepam induced depression in rat brain.

    Science.gov (United States)

    Kaur, Amandeep; Singla, Neha; Dhawan, D K

    2016-10-01

    Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders.

  4. Gamma irradiation inhibits wound induced browning in shredded cabbage.

    Science.gov (United States)

    Banerjee, Aparajita; Suprasanna, Penna; Variyar, Prasad S; Sharma, Arun

    2015-04-15

    Gamma-radiation induced browning inhibition in minimally processed shredded cabbage stored (10 °C) for up to 8 days was investigated. γ-irradiation (2 kGy) resulted in inhibition of browning as a result of down-regulation (1.4-fold) in phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in phenylalanine ammonia lyase (PAL) activity. Activity of polyphenol oxidase and peroxidase, total and individual phenolic content as well as o-quinone concentration were, however, unaffected. In the non-irradiated samples, PAL activity increased as a consequence of up-regulation of PAL gene expression after 24 and 48 h by 1.2 and 7.7-fold, respectively, during storage that could be linearly correlated with enhanced quinone formation and browning. Browning inhibition in radiation processed shredded cabbage as a result of inhibition of PAL activity was thus clearly demonstrated. The present work provides an insight for the first time on the mechanism of browning inhibition at both biochemical and genetic level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of irradiation on the dental pulp tissues in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Duk; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2005-03-15

    To observe the histological changes in the pulp tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups : control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, capillary dilatation was observed. However, there was no obvious morphologic alteration of the odontoblasts. In the irradiation group, generalized necrosis of the dental pulp tissues was observed. Vacuolation of the odontoblasts and dilatation of the capillaries were noted in the early experimental phases. In the diabetes-irradiation group, generalized degeneration of the dental pulp tissues was observed. Vacuolation of the dental pulp cells and the odontoblasts was noted in the late experimental phases. This experiment suggest that dilatation of the capillaries in the dental pulp tissue is induced by diabetic state, and generalized degeneration of the dental pulp tissues is induced by irradiation of the diabetic group.

  6. Irradiation-induced off-odour in chicken and its possible control.

    Science.gov (United States)

    Patterson, R L; Stevenson, M H

    1995-07-01

    1. Volatiles isolated from irradiated raw chicken were analysed by gas chromatography (GC) in conjunction with olfactory assessment of the effluent carrier gas to locate compounds with strong smells. 2. Sixteen odours of differing intensities were registered, some, but not others, coinciding with recognisable GC peaks. Identifications were made on the basis of retention data, mass spectrometric information and odour quality agreement. 3. Dimethyltrisulphide was found to be the most potent and obnoxious compound (foul gas, sulphurous), followed by cis-3- and trans-6-nonenals (soapy), oct-1-en-3-one (mushroom) and bis(methylthio-)methane (foul). With the exception of oct-1-en-3-one, none of these compounds has been reported before in irradiated raw chicken. 4. alpha-Tocopherol and ascorbic acid induce stability in tissues in vivo and post mortem. Chickens were reared on diets supplemented with high concentrations (800 mg/kg food) of each of these vitamins. Yields of irradiation volatiles from the tissues of these birds were very much reduced, compared to yields from similar tissues from birds fed unsupplemented diets. 5. Concomitantly with the reduced yield of volatiles, less odour was associated with the samples when analysed by GC-olfactory analysis. 6. The use of enhanced concentrations of the two vitamins in combination in the diet of poultry may provide a means of controlling development of off-odour in irradiated raw chicken, thus improving acceptability to the consumer.

  7. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Hon-Meng [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Bee, Soo-Tueen, E-mail: beest@utar.edu.my [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-01-15

    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  8. Ion-irradiation-induced hardening in Inconel 718

    Science.gov (United States)

    Hunn, J. D.; Lee, E. H.; Byun, T. S.; Mansur, L. K.

    2001-07-01

    Inconel 718 is a material under consideration for areas in the target region of the spallation neutron source (SNS), now under construction at Oak Ridge National Laboratory (ORNL) in the US. In these positions, displacement damage from protons and neutrons will affect the mechanical properties. In addition, significant amounts of helium and hydrogen will build up in the material due to transmutation reactions. Nanoindentation measurements of solution-annealed (SA) Inconel 718 specimens, implanted with Fe-, He-, and H-ions to simulate SNS target radiation conditions, have shown that hardening occurs due to ion-induced displacement damage as well as due to the build-up of helium bubbles in the irradiated layer. Precipitation-hardened (PH) Inconel 718 also exhibited hardening by helium build-up but showed softening as a function of displacement damage due to dissolution of the γ ' and γ″ precipitates.

  9. Commercial sunscreen formulations: UVB irradiation stability and effect on UVB irradiation-induced skin oxidative stress and inflammation.

    Science.gov (United States)

    Vilela, Fernanda M P; Oliveira, Franciane M; Vicentini, Fabiana T M C; Casagrande, Rubia; Verri, Waldiceu A; Cunha, Thiago M; Fonseca, Maria J V

    2016-10-01

    Evidence shows that sunscreens undergo degradation processes induced by UV irradiation forming free radicals, which reduces skin protection. In this regard, the biological effects of three commercial sunscreen formulations upon UVB irradiation in the skin were investigated. The three formulations had in common the presence of benzophenone-3 added with octyl methoxycinnamate or octyl salycilate or both, which are regular UV filters in sunscreens. The results show that formulations F1 and F2 presented partial degradation upon UVB irradiation. Formulations F1 and F2 presented higher skin penetration profiles than F3. None of the formulations avoided UVB irradiation-induced GSH depletion, but inhibited reduction of SOD activity, suggesting the tested formulations did not present as a major mechanism inhibiting all UVB irradiation-triggered oxidative stress pathways. The formulations avoided the increase of myeloperoxidase activity and cytokine production (IL-1β and TNF-α), but with different levels of protection in relation to the IL-1β release. Concluding, UVB irradiation can reduce the stability of sunscreens, which in turn, present the undesirable properties of reaching viable skin. Additionally, the same SPF does not mean that different sunscreens will present the same biological effects as SPF is solely based on a skin erythema response. This found opens up perspectives to consider additional studies to reach highly safe sunscreens.

  10. The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides.

    Science.gov (United States)

    Zhang, Yanwen; Aidhy, Dilpuneet S; Varga, Tamas; Moll, Sandra; Edmondson, Philip D; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N; Weber, William J

    2014-05-07

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiation-induced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.

  11. Incoherent twin boundary migration induced by ion irradiation in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Misra, A. [Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Wang, J.; Wang, Y. Q. [Materials Science and Technology Division, MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Serruys, Y. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Nastasi, M. [Nebraska Center for Energy Sciences Research, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2013-01-14

    Grain boundaries can act as sinks for radiation-induced point defects. The sink capability is dependent on the atomic structures and varies with the type of point defects. Using high-resolution transmission electron microscopy, we observed that {Sigma}3{l_brace}112{r_brace} incoherent twin boundary (ITB) in Cu films migrates under Cu{sup 3+} ion irradiation. Using atomistic modeling, we found that {Sigma}3{l_brace}112{r_brace} ITB has the preferred sites for adsorbing interstitials and the preferential diffusion channels along the Shockley partial dislocations. Coupling with the high mobility of grain boundary Shockley dislocations within {Sigma}3{l_brace}112{r_brace} ITB, we infer that {Sigma}3{l_brace}112{r_brace} ITB migrates through the collective glide of grain boundary Shockley dislocations, driven by a concurrent reduction in the density of radiation-induced defects, which is demonstrated by the distribution of nearby radiation-induced defects.

  12. Approaches to modelling irradiation-induced processes in transmission electron microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Lebedeva, Irina V; Popov, Andrey M; Bichoutskaia, Elena

    2013-08-07

    The recent progress in high-resolution transmission electron microscopy (HRTEM) has given rise to the possibility of in situ observations of nanostructure transformations and chemical reactions induced by electron irradiation. In this article we briefly summarise experimental observations and discuss in detail atomistic modelling of irradiation-induced processes in HRTEM, as well as mechanisms of such processes recognised due to modelling. Accurate molecular dynamics (MD) techniques based on first principles or tight-binding models are employed in the analysis of single irradiation-induced events, and classical MD simulations are combined with a kinetic Monte Carlo algorithm to simulate continuous irradiation of nanomaterials. It has been shown that sulphur-terminated graphene nanoribbons are formed inside carbon nanotubes as a result of an irradiation-selective chemical reaction. The process of fullerene formation in HRTEM during continuous electron irradiation of a small graphene flake has been simulated, and mechanisms driving this transformation analysed.

  13. Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density

    Science.gov (United States)

    Lee, Ju-Woon; Kim, Jae-Hun; Oh, Sang-Hee; Byun, Eui-Hong; Yook, Hong-Sun; Kim, Mee-Ree; Kim, Kwan-Soo; Byun, Myung-Woo

    2008-03-01

    Cereal porridges have low energy and nutrient density because of its viscosity. The objective of the present study was to evaluate the effect of irradiation on the reduction of viscosity and on the increasing solid content of cereal porridge. Four cereals, wheat, rice, maize (the normal starchy type) and waxy rice, were used in this study. The porridge with 3000 cP was individually prepared from cereal flour, gamma-irradiated at 20 kGy and tested. Gamma irradiation of 20 kGy was allowed that the high viscous and rigid cereal porridges turned into semi-liquid consistencies. The solid contents of all porridges could increase by irradiation, compared with non-irradiated ones. No significant differences of starch digestibility were observed in all cereal porridge samples. The results indicated that gamma irradiation might be helpful for improving energy density of cereal porridge with acceptable consistency.

  14. Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr; Kim, Jae-Hun; Oh, Sang-Hee; Byun, Eui-Hong [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yook, Hong-Sun; Kim, Mee-Ree [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Kwan-Soo [Research and Development Department, Greenpia Technology, Yeoju 469-811 (Korea, Republic of); Byun, Myung-Woo [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: mwbyun@kaeri.re.kr

    2008-03-15

    Cereal porridges have low energy and nutrient density because of its viscosity. The objective of the present study was to evaluate the effect of irradiation on the reduction of viscosity and on the increasing solid content of cereal porridge. Four cereals, wheat, rice, maize (the normal starchy type) and waxy rice, were used in this study. The porridge with 3000 cP was individually prepared from cereal flour, gamma-irradiated at 20 kGy and tested. Gamma irradiation of 20 kGy was allowed that the high viscous and rigid cereal porridges turned into semi-liquid consistencies. The solid contents of all porridges could increase by irradiation, compared with non-irradiated ones. No significant differences of starch digestibility were observed in all cereal porridge samples. The results indicated that gamma irradiation might be helpful for improving energy density of cereal porridge with acceptable consistency.

  15. Effect of melatonin and time of administration on irradiation-induced damage to rat testes

    Directory of Open Access Journals (Sweden)

    G. Take

    2009-07-01

    Full Text Available The effect of ionizing irradiation on testes and the protective effects of melatonin were investigated by immunohistochemical and electron microscopic methods. Eighty-two adult male Wistar rats were divided into 10 groups. The rats in the irradiated groups were exposed to a sublethal irradiation dose of 8 Gy, either to the total body or abdominopelvic region using a 60Co source at a focus of 80 cm away from the skin in the morning or evening together with vehicle (20% ethanol or melatonin administered 24 h before (10 mg/kg, immediately before (20 mg/kg and 24 h after irradiation (10 mg/kg, all ip. Caspace-3 immunoreactivity was increased in the irradiated group compared to control (P < 0.05. Melatonin-treated groups showed less apoptosis as indicated by a considerable decrease in caspace-3 immunoreactivity (P < 0.05. Electron microscopic examination showed that all spermatogenic cells, especially primary spermatocytes, displayed prominent degeneration in the groups submitted to total body and abdominopelvic irradiation. However, melatonin administration considerably inhibited these degenerative changes, especially in rats who received abdominopelvic irradiation. Total body and abdominopelvic irradiation induced identical apoptosis and testicular damage. Chronobiological assessment revealed that biologic rhythm does not alter the inductive effect of irradiation. These data indicate that melatonin protects against total body and abdominopelvic irradiation. Melatonin was more effective in the evening abdominopelvic irradiation and melatonin-treated group than in the total body irradiation and melatonin-treated group.

  16. Induced effect of irradiated exogenous DNA on wheat

    Institute of Scientific and Technical Information of China (English)

    李忠杰; 孙光祖; 等

    1996-01-01

    Irradiated exogenous DNA introduced into wheat can give rise to break of DNA-chain and damage of part of alkali radicals.Introducing exogenous DNA irradiated by γ rays could increase Do fructification rate and decrease seed size and lumpness.These tendencies became obvious with dose increase.In comparison with control DNA,introducing DNA irradiated could raise evidently mutagenic effect of pollen tube pathway technique.

  17. UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity.

    Science.gov (United States)

    Sun, Jing; Guo, Liang-Hong; Zhang, Hui; Zhao, Lixia

    2014-10-21

    Transformation of nanomaterials in aqueous environment has significant impact on their behavior in engineered application and natural system. In this paper, UV irradiation induced transformation of TiO2 nanoparticles in aqueous solutions was demonstrated, and its effect on the aggregation and photocatalytic reactivity of TiO2 was investigated. UV irradiation of a TiO2 nanoparticle suspension accelerated nanoparticle aggregation that was dependent on the irradiation duration. The aggregation rate increased from UV irradiation which might be responsible for the change of surface charge and aggregation rate. UV irradiation also changed the photocatalytic degradation rate of Rhodamine B by TiO2, which initially increased with irradiation time, then decreased. Based on the photoluminescence decay and photocurrent collection data, the change was attributed to the variation in interparticle charge transfer kinetics. These results highlight the importance of light irradiation on the transformation and reactivity of TiO2 nanomaterials.

  18. The application of irradiation techniques for food preservation and processing improvement

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Cho, Han Ok; Jo, Sung Ki; Yook, Hong Sun; Kwon, Oh Jin; Yang, Jae Seung; Kim, Sung; Im, Sung Il

    1997-09-01

    This project has intended to develop alternative techniques to be used in food industry for food processing and utilization by safe irradiation methods. For improvement of rheology and processing in corn starch by irradiation, the production of modified starch with low viscosity as well as with excellent viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added inorganic peroxides to starch. Also, this project was developed the improvement methods of hygienic quality and long-term storage of dried red pepper by gamma irradiation. And, in Korean medicinal plants, 10 kGy gamma irradiation was effective for improving sanitary quality and increasing extraction yield of major components. For the sanitization of health and convenience foods, gamma irradiation was more effective than ozone treatment in decontamination of microorganisms, with minimal effect on the physicochemical properties analysed. In evaluation of wholesomeness, gamma-irradiated the Korean medicinal plants could be safe on the genotoxic point of view. And, thirteen groups of irradiated foods approved for human consumption from Korea Ministry of Health and Welfare. (author). 81 refs., 74 tabs.

  19. A case of irradiation induced carcinoma of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Osamu; Arakawa, Naoko; Abe, Asushi; Yamakawa, Yoshio; Saito, Hideaki; Yamagishi, Hiroaki; Sugita, Tadashi; Sekitani, Masao (Niigata Prefectural Central Hospital, Joetsu (Japan))

    1993-08-01

    A 61-year-old heavy smoker had received irradiation therapy (cobalt 84 Gy) for a suspected metastatic seminoma in the right upper lobe. Thirteen years later, a chest X-p showed mass shadow at the right S[sup 3]b in the same irradiated field. A transbronchial biopsy revealed poorly differentiated adenocarcinoma histologically. Systemic chemotherapy, irradiation therapy (Lineac), and bronchial arterial infusion therapy were not effective. He died of carcinomatous pericarditis 7 months thereafter. It was supposed that the irradiation was on initiator, and smoking was the suspected promoter with synergistic effect in the carcinogenesis in this case. (author).

  20. Preparation and characterization of DNA films induced by UV irradiation.

    Science.gov (United States)

    Yamada, Masanori; Kato, Kozue; Nomizu, Motoyoshi; Sakairi, Nobuo; Ohkawa, Kousaku; Yamamoto, Hiroyuki; Nishi, Norio

    2002-03-15

    Large amounts of DNA-enriched materials, such as salmon milts and shellfish gonads, are discarded as industrial waste. We have been able to convert the discarded DNA to a useful material by preparing novel DNA films by UV irradiation. When DNA films were irradiated with UV light, the molecular weight of DNA was greatly increased. The reaction was inhibited by addition of the radical scavenger galvinoxyl suggesting that the DNA polymerization with UV irradiation proceeded by a radical reaction. Although this UV-irradiated DNA film was water-insoluble and resistant to hydrolysis by nuclease, the structure of the DNA film in water was similar to non-irradiated DNA and maintained B-form structure. In addition, the UV-irradiated DNA film could effectively accumulate and condense harmful DNA-intercalating compounds, such as ethidium bromide and acridine orange, from diluted aqueous solutions. The binding constant and exclusion number of ethidium bromide for UV-irradiated DNA were determined to be 6.8 +/- 0.3 x 10(4) M(-1) and 1.6 +/- 0.2, respectively; these values are consisted with reported results for non-irradiated DNA. The UV-irradiated DNA films have potential uses as a biomaterial filter for the removal of harmful DNA intercalating compounds.

  1. Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation.

    Science.gov (United States)

    Liu, Shuyu; Zhao, Yueping; Liu, Li; Ao, Xiyong; Ma, Liyan; Wu, Minghong; Ma, Fang

    2015-04-01

    Microalgae with high biomass and high lipid content are the ideal feedstock for biodiesel production. To obtain such microalgae, ultraviolet (UV) irradiation was applied to Chlorella sp. to induce mutagenesis. The growth characteristics, total nitrogen (TN), and biochemical compositions of the control and UV mutation strains were analyzed. Compared to the control strain, the biomass for the UV mutation strain was 7.6 % higher and it presented a higher growth rate. The lipid content of the UV mutation strain showed different levels of increase and reached the maximum value of 28.1 % on day 15. Furthermore, the lipid productivity of the UV mutation strain showed a desired increase. The nitrogen consumption and Acetyl-CoA carboxylase (ACC) activity contributed to the lipid production by UV. All these results indicate that UV mutagenesis is an efficient method to improve probability for using Chlorella sp. as the potential raw material for biodiesel production.

  2. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis in 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a dev

  3. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  4. The migration of human lens epithelial cells induced by UV-irradiation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jin Yao; Guoxing Yuan; Yuan Liu; Yi Shen; Qin Jiang

    2008-01-01

    Objective: Ultraviolet (UV) radiation is one of the important cataract risk factors. However, the pathogenesis is still poorly understood.The migration of human lens epithelial cells(HLECs) plays a crucial role in the remodeling of lens capsule and cataract formation. The purpose of this study is to investigate the mechanism of UV inducing cataractogenesis. Methods:The toxicity of UV-irradiation on HLECs was assessed by Methyl thiazolyl tetrazolium(MTT) assay. The activity of matrix metalloproteinase-2(MMP-2) was observed by Gelatin zymography. The migration of HLECs was examined by Cell Track Motility. Results:UV-irradiation does great harm to HLECs, and may induce apoptosis in the cells when UV higher than 15 mj/cm2. UV significantly increased MMP-2 activity in a timedependent manner. In addition, the irradiation could induce the migration of HLECs. Conclusion:UV-irradiation could induce the migration of HLECs by increasing the activity of MMP-2.

  5. Field- and irradiation-induced phenomena in memristive nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, A.N.; Gryaznov, E.G.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.; Guseinov, D.V.; Tetelbaum, D.I.; Tikhov, S.V.; Malekhonova, N.V.; Bobrov, A.I.; Pavlov, D.A.; Gerasimova, S.A.; Kazantsev, V.B.; Agudov, N.V.; Dubkov, A.A. [Lobachevsky University, Nizhny Novgorod (Russian Federation); Rosario, C.M.M.; Sobolev, N.A. [Departamento de Fisica and I3N, Universidade de Aveiro (Portugal); Spagnolo, B. [Dipartimento di Fisica e Chimica, Universita di Palermo, Group of Interdisciplinary Theoretical Physics (Italy); CNISM, Unita di Palermo (Italy)

    2016-12-15

    The breakthrough in electronics and information technology is anticipated by the development of emerging memory and logic devices, artificial neural networks and brain-inspired systems on the basis of memristive nanomaterials represented, in a particular case, by a simple 'metal-insulator-metal' (MIM) thin-film structure. The present article is focused on the comparative analysis of MIM devices based on oxides with dominating ionic (ZrO{sub x}, HfO{sub x}) and covalent (SiO{sub x}, GeO{sub x}) bonding of various composition and geometry deposited by magnetron sputtering. The studied memristive devices demonstrate reproducible change in their resistance (resistive switching - RS) originated from the formation and rupture of conductive pathways (filaments) in oxide films due to the electric-field-driven migration of oxygen vacancies and / or mobile oxygen ions. It is shown that, for both ionic and covalent oxides under study, the RS behaviour depends only weakly on the oxide film composition and thickness, device geometry (down to a device size of about 20 x 20 μm{sup 2}). The devices under study are found to be tolerant to ion irradiation that reproduces the effect of extreme fluences of high-energy protons and fast neutrons. This common behaviour of RS is explained by the localized nature of the redox processes in a nanoscale switching oxide volume. Adaptive (synaptic) change of resistive states of memristive devices is demonstrated under the action of single or repeated electrical pulses, as well as in a simple model of coupled (synchronized) neuron-like generators. It is concluded that the noise-induced phenomena cannot be neglected in the consideration of a memristive device as a nonlinear system. The dynamic response of a memristive device to periodic signals of complex waveform can be predicted and tailored from the viewpoint of stochastic resonance concept. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Protease-mediated enhancement of lymphocyte-induced angiogenesis in X-ray irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M.J.; Majewski, S.; Kaminska, G.; Bem, W.; Szmurlo, A. (Akademia Medyczna, Warsaw (Poland). Zaklad Histologii i Embriologii)

    1983-02-01

    Angiogenesis was induced in mice by intradermal injection of semi-syngeneic splenocytes, and after three days the number of newly formed blood vessels at the injection site was counted. When recipients were total-body irradiated with 700 R 2 hours before the lymphocyte injection, the angiogenesis was significantly higher than in non-irradiated mice. The angiogenesis enhancement was of a systemic (not local) character as revealed in experiments with shielding of irradiated animals. This enhancement was not due to X-ray dependent immunosuppression, as shown in experiments with non-irradiated, pharmacologically immunosuppressed mice. Decreased angiogenesis was observed in irradiated mice after treatment with cortisone acetate, aprotinin, and EACA. The results suggest that proteases might be involved in mediating the angiogenesis enhancement after X-irradiation.

  7. Improvement of foaming ability of egg white product by irradiation and its application

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Pa; Kim, Binna; Choe, Jun-Ho; Jung, Samooel [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Kyong-Su [Department of Food and Nutrition, Chosun University, Gwangju 501-759 (Korea, Republic of); Kim, Dong-Ho [Radiation Research Center for Bio-Technology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)], E-mail: cheorun@cnu.ac.kr

    2009-03-15

    To investigate the enhancement of foaming abilities of liquid egg white (LEW) and egg white powder (EWP) by irradiation and its application for bakery product, LEW and EWP were irradiated at 0, 1, 2, and 5 kGy by Co-60 gamma ray. There was no pH change found among treatments in both LEW and EWP. The viscosity of LEW decreased significantly by irradiation (P<0.05), whereas that of EWP was not affected by irradiation. The foaming ability of LEW and EWP was significantly increased by irradiation as a dose-dependent manner (P<0.05). The volume and the height of angel cake baked with irradiated LEW were significantly higher than those of unirradiated control (P<0.05). For EWP, the volume and the height of angel cake were greater at 2 kGy only than those of control. A significant decrease in hardness, chewiness, and gumminess values and an increase in Hunter L* value were observed in the angel cakes prepared from irradiated egg white products (P<0.05). Results indicated that irradiation of egg white could offer advantages in increasing foaming ability and improving quality of final bakery products.

  8. Free surface damage induced by irradiation of BCC iron

    Science.gov (United States)

    Korchuganov, Aleksandr V.

    2016-11-01

    The influence of the crystallographic orientation of bcc iron samples on the character of structural changes near the free surface irradiated with ions was studied in the framework of a molecular dynamics method. Irradiation of the (111) surface leads to the formation of craters surrounded by atoms escaped on the surface (adatoms). In the case of the (110) surface irradiation, a vacancy-type dislocation loop with the Burgers vector a or a/2 was formed. The number of adatoms and survived point defects was greater in the sample with the (110) surface than in the sample with the (111) surface for the atomic displacement cascade energies lower than 20 keV. The influence of the irradiated surface orientation on the number of generated point defects decreased with the increasing atomic displacement cascade energy.

  9. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma

    Science.gov (United States)

    Kanamoto, Ayako; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-01-01

    Esophageal carcinoma is one of the most aggressive malignancies, and is characterized by poor response to current therapy and a dismal survival rate. In this study we investigated whether irradiation induces epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) TE9 cells and whether the classic histone deacetylase (HDAC) inhibitor valproic acid (VPA) suppresses these changes. First, we showed that 2 Gy irradiation induced spindle cell-like morphologic changes, decreased expression of membranous E-cadherin, upregulated vimentin expression, and altered the localization of β-catenin from its usual membrane-bound location to cytoplasm in TE9 cells. Irradiation induced upregulation of transcription factors including Slug, Snail, and Twist, which regulate EMT. Stimulation by irradiation resulted in increased TGF-β1 and HIF-1α expression and induced Smad2 and Smad3 phosphorylation. Furthermore, irradiation enhanced CD44 expression, indicating acquisition of cancer stem-like cell properties. In addition, irradiation enhanced invasion and migration ability with upregulation of matrix metalloproteinases. These findings indicate that single-dose irradiation can induce EMT in ESCC cells. Second, we found that treatment with 1 mM VPA induced reversal of EMT caused by irradiation in TE9 cells, resulting in attenuated cell invasion and migration abilities. These results suggest that VPA might have clinical value to suppress irradiation-induced EMT. The reversal of EMT by HDAC inhibitors may be a new therapeutic strategy to improve the effectiveness of radiotherapy in ESCC by inhibiting the enhancement of invasion and metastasis.

  10. Irradiance and Temperature Dependence of Photo-Induced Orientation in Two Azobenzene-Based Polymers

    Science.gov (United States)

    1998-06-23

    and Almeria Natansohn* Department of Chemistry, Queen’s University, Kingston, Ontario, K7L 3N6 Paul Rochon Department of Physics, Royal Military...1. IRRADIANCE AND TEMPERATURE DEPENDENCE OF PHOTO-INDUCED ORIENTATION IN TWO AZOBENZENE-BASED POLYMERS Dennis Hore and Almeria Natansohn...IRRADIANCE AND TEMPERATURE DEPENDENCE OF PHOTO-INDUCED ORIENTATION IN TWO AZOBENZENE-BASED POLYMERS Dennis Hore and Almeria Natansohn Department of

  11. Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation.

    Science.gov (United States)

    Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J

    2015-09-01

    The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy.

  12. Ion irradiation induced enhancement of out-of-plane magnetic anisotropy in ultrathin Co films

    Energy Technology Data Exchange (ETDEWEB)

    Mazalski, P.; Kurant, Z.; Maziewski, A. [Faculty of Physics, University of Bialystok, Bialystok (Poland); Liedke, M. O.; Fassbender, J. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Baczewski, L. T.; Wawro, A. [Institute of Physics, Polish Academy of Science, Warszawa (Poland)

    2013-05-07

    Ga{sup +} or He{sup +} irradiated MBE grown ultrathin films of sapphire/Pt/Co(d{sub Co})/Pt(d{sub Pt}) were studied using polar Kerr effect in wide ranges of both cobalt d{sub Co} and platinum d{sub Pt} thicknesses as well as ion fluences F. Two branches of increased magnetic anisotropy and enhanced Kerr rotation angle induced by Ga{sup +} or He{sup +} irradiation are clearly visible in two-dimensional (d{sub Co}, LogF) diagrams. Only Ga{sup +} irradiation induces two branches of out-of-plane magnetization state.

  13. The green tea extract epigallocatechin-3-gallate inhibits irradiation-induced pulmonary fibrosis in adult rats

    OpenAIRE

    You, Hua; Wei, Li; Sun, Wan-Liang; Wang, Lei; YANG, ZAI-LIANG; Liu, Yuan; Zheng, Ke; Wang, Ying; Zhang, Wei-Jing

    2014-01-01

    The present study evaluated the effect of epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, on irradiation-induced pulmonary fibrosis and elucidated its mechanism of action. A rat model of irradiation-induced pulmonary fibrosis was generated using a 60Co irradiator and a dose of 22 Gy. Rats were intraperitoneally injected with EGCG (25 mg/kg) or dexamethasone (DEX; 5 mg/kg) daily for 30 days. Mortality rates and lung index values were calculated. The severity of fibr...

  14. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  15. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    Science.gov (United States)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  16. Preparation and evaluation of swelling induced-orally disintegrating tablets by microwave irradiation.

    Science.gov (United States)

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Itai, Shigeru

    2011-09-15

    A major challenge in the development of orally disintegrating tablets (ODTs) is to achieve a good balance between tablet hardness and disintegration time. In this study, an advanced method was demonstrated to improve these opposing properties in a molded tablet using a one-step procedure that exploits the swelling induced by microwave treatment. Wet molded tablets consisting of the delta form of mannitol and silicon dioxide were prepared and microwave-heated to generate water vapor inside the tablets. This induced either swelling or shrinking of tablets, in the extent of each being dependent on tablet formulation and manufacturing conditions. A two-level full factorial design method was used to evaluate the effects of several variables in formulation and manufacturing conditions on the tablet properties, hardness, disintegration time and change in shape. The variables investigated in this study were: ratio of silicon dioxide in formulation, water volume added in granulation, ratio of water absorbed by silicon dioxide prior to granulation, and microwave irradiation time. Swelling of tablet by microwave irradiation was observed in the batches with high ratio of silicon dioxide and low levels of water volume. The disintegration time was clearly shortened by induction of the swelling, while tablet hardness increased. We demonstrated that the water vapor generated by microwave irradiation promoted a change in the crystalline form of mannitol from delta to beta, and that this may have contributed to an increase in tablet hardness. Additionally, it was found that new solid bridges were formed between the granules in the tablet via the pathway from dissolution of mannitol in water vapor to congelation, resulting in an increase in tablet hardness. Thus, both tablet hardness and disintegration properties of the molded tablets were improved by the proposed one-step method and the appropriate ranges for variables are indicated. In addition, multiple regression modeling was

  17. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Science.gov (United States)

    Ng, Hon-Meng; Bee, Soo-Tueen; Ratnam, C. T.; Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting; Rahmat, A. R.

    2014-01-01

    The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3-5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25-250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  18. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  19. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  20. Swift heavy ion irradiation induced nanograin formation in CdTe thin films

    Science.gov (United States)

    Survase, Smita; Narayan, Himanshu; Sulania, I.; Thakurdesai, Madhavi

    2016-11-01

    Swift Heavy Ion (SHI) irradiation is a unique technique for nanograin formation through grain fragmentation. Contrary to the generally reported SHI irradiation induced grain growth on CdTe thin films, we report fragmentation leading to nanograin formation. Thermally evaporated polycrystalline CdTe thin films were irradiated with 100 MeV 197Au, 107Ag and 58Ni ions beams up to a fluence of 5 × 1012 ions/cm2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were carried out for surface analysis before and after irradiation. SEM micrographs indicate that the larger grains in the as-deposited films were fragmented into smaller grains due to irradiation. The extent of fragmentation was found to increase with increasing electronic energy loss (Se). AFM pictures also supported the irradiation induced fragmentation. Structural characterization was done using X-ray Diffraction (XRD) technique. The ion induced strain and dislocation density were calculated from the XRD data. Both the strain and dislocation density were found to increase with increasing Se . The observed grain fragmentation is explained on the basis of a combined effect of strain induced disintegration of grains after the Coulomb explosion, and an 'incomplete' re-crystallization of the molten thermal spikes. Moreover, the optical band gap Eg (1.5 eV for as-deposited film), determined from UV-vis spectroscopy, increased with Se, and possibly because of ion induced strain and defect annealing.

  1. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice

    Science.gov (United States)

    Xu, Guoshun; Wu, Hongying; Zhang, Junling; Li, Deguan; Wang, Yueying; Wang, Yingying; Zhang, Heng; Lu, Lu; Li, Chengcheng; Huang, Song; Xing, Yonghua; Zhou, Daohong; Meng, Aimin

    2016-01-01

    Exposure to ionizing radiation (IR) increases the production of reactive oxygen species (ROS) not only by the radiolysis of water but also through IR-induced perturbation of the cellular metabolism and disturbance of the balance of reduction/oxidation reactions. Our recent studies showed that the increased production of intracellular ROS induced by IR contributes to IR-induced late effects, particularly in the hematopoietic system, because inhibition of ROS production with an antioxidant after IR exposure can mitigate IR-induced long-term bone marrow (BM) injury. Metformin is a widely used drug for the treatment of type 2 diabetes. Metformin also has the ability to regulate cellular metabolism and ROS production by activating AMP-activated protein kinase. Therefore, we examined whether metformin can ameliorate IR-induced long-term BM injury in a total-body irradiation (TBI) mouse model. Our results showed that the administration of metformin significantly attenuated TBI-induced increases in ROS production and DNA damage and upregulation of NADPH oxidase 4 expression in BM hematopoietic stem cells (HSCs). These changes were associated with a significant increase in BM HSC frequency, a considerable improvement in in vitro and in vivo HSC function, and complete inhibition of upregulation of p16Ink4a in HSCs after TBI. These findings demonstrate that metformin can attenuate TBI-induced long-term BM injury at least in part by inhibiting the induction of chronic oxidative stress in HSCs and HSC senescence. Therefore, metformin has the potential to be used as a novel radioprotectant to ameliorate TBI-induced long-term BM injury. PMID:26086617

  2. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  3. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  4. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  5. Ordered arrangement of irradiation-induced defects of polycrystalline tungsten irradiated with low-energy hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Weiyuan; Yang, Qi; Fan, Hongyu; Liu, Lu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Berthold, Tobias; Benstetter, Günther [Faculty of Electrical Engineering and Media Technology, University of Applied Sciences Deggendorf, Deggendorf 94469 (Germany); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2015-09-15

    Low-energy (20–520 eV) hydrogen ion irradiations were performed at W surface temperature of 373–1073 K and a fluence ranging from 5.0 × 10{sup 23} to 1.0 × 10{sup 25}/m{sup 2}. Conductive atomic force microscopy (CAFM) as a nondestructive analytical technique was successfully used to detect irradiation-induced defects in polycrystalline W. The size and density of these nanometer-sized defects were strongly dependent on the fluence of hydrogen ions. Both ion energy (E) and temperature (T) play a crucial role in determining the ordering of nanometer-sized defects. Ordered arrangements were formed at relatively high E and T. This can be attributed to the stress-driven ripple effect of defect growth at crystal grains, resulting in the movement of W lattice along one certain crystal planes.

  6. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo-Jeong [Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Sung, Yong Joo [KT and G Central Research Institute, 302 Shinseong-Dong, Yuseong-Gu, Daejeon 305-805 (Korea, Republic of)], E-mail: yosung17@yahoo.co.kr

    2008-09-15

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  7. Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation

    Science.gov (United States)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-09-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  8. Improved Synthesis of Global Irradiance with One-Minute Resolution for PV System Simulations

    Directory of Open Access Journals (Sweden)

    Martin Hofmann

    2014-01-01

    Full Text Available High resolution global irradiance time series are needed for accurate simulations of photovoltaic (PV systems, since the typical volatile PV power output induced by fast irradiance changes cannot be simulated properly with commonly available hourly averages of global irradiance. We present a two-step algorithm that is capable of synthesizing one-minute global irradiance time series based on hourly averaged datasets. The algorithm is initialized by deriving characteristic transition probability matrices (TPM for different weather conditions (cloudless, broken clouds and overcast from a large number of high resolution measurements. Once initialized, the algorithm is location-independent and capable of synthesizing one-minute values based on hourly averaged global irradiance of any desired location. The one-minute time series are derived by discrete-time Markov chains based on a TPM that matches the weather condition of the input dataset. One-minute time series generated with the presented algorithm are compared with measured high resolution data and show a better agreement compared to two existing synthesizing algorithms in terms of temporal variability and characteristic frequency distributions of global irradiance and clearness index values. A comparison based on measurements performed in Lindenberg, Germany, and Carpentras, France, shows a reduction of the frequency distribution root mean square errors of more than 60% compared to the two existing synthesizing algorithms.

  9. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.

    Science.gov (United States)

    Yokoo, Masaki; Mori, Miho

    2017-05-27

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and device performance of Ge fin field-effect transistors

    Science.gov (United States)

    Mizubayashi, Wataru; Noda, Shuichi; Ishikawa, Yuki; Nishi, Takashi; Kikuchi, Akio; Ota, Hiroyuki; Su, Ping-Hsun; Li, Yiming; Samukawa, Seiji; Endo, Kazuhiko

    2017-02-01

    We investigated the impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and the device performance of Ge fin field-effect transistors (Ge FinFETs). UV light irradiation during etching affected the shape of the Ge fin and the surface roughness of the Ge fin sidewall. A vertical and smooth Ge fin could be fabricated by neutral beam etching without UV light irradiation. The performances of Ge FinFETs fabricated by neutral beam etching were markedly improved as compared to those of Ge FinFETs fabricated by inductively coupled plasma etching, in which the UV light has an impact.

  11. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    CERN Document Server

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  12. Low-oxygen atmospheric treatment improves the performance of irradiation-sterilized male cactus moths used in SIT.

    Science.gov (United States)

    As part of Sterile Insect Technique (SIT) programs, irradiation can effectively induce sterility in insects by damaging genomic DNA. However, irradiation also induces other off-target side effects that reduce the quality and performance of sterilized males. Thus, treatments that reduce off-target ef...

  13. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-06-15

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  14. Irradiation effects in polycarbonate induced by 2.1 GeV Kr ions

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui-Xian; JIN Yun-Fan; ZHU Zhi-Yong; SUN You-Mei; WANG Zhi-Guang

    2003-01-01

    Polycarbonate foil stacks were irradiated with 2.1 GeV Kr ions under vacuum at room temperature.The modifications in chemical structure induced by the irradiation were studied by means of Fourier transform infra-red (FTIR) and ultraviolet visible (UV/VIS) spectroscopies. FTIR measurements reveal that material degradationsthrough bond breaking are the main effects. Alkyne end groups are produced by the irradiation. UV/VIS measure-ments indicate a shifting of the absorption edge from ultraviolet towards visible, and a strong increase of absorbancein the ultraviolet and visible regions. The changes in absorbance induced by the irradiation at wavelengths of 380 nm,450 nm and 500 nm scale well with Sne (Se is electronic energy loss) where the value of n increases from 1.69 to 2.02with increasing of the wavelength. The results are briefly discussed.

  15. Characterization of radiation induced defects in EUROFER 97 after neutron irradiation

    Science.gov (United States)

    Klimenkov, M.; Materna-Morris, E.; Möslang, A.

    2011-10-01

    Specimens of EUROFER 97 prepared for impact tests have been irradiated to an average dose of 16.3 dpa at irradiation temperatures of 250-450 °C. TEM investigations have been performed to study radiation induced changes in the microstructure. The characterization and statistical analysis show the temperature dependant formation of small dislocation loops and He bubbles. The Burgers vector of dislocation loops was ½. A novel feature is that within statistical uncertainty the maximum in the dislocation density observed around 300 °C decreased with decreasing irradiation temperature down to 250 °C. The TEM data are correlated with tensile and instrumented Charpy test results.

  16. The Structure Evolution of Fused Silica Induced by CO2 Laser Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Ming; LV Hai-Bing; ZHENG Wan-Guo; ZU Xiao-Tao; JIANG Yong; LUO Cheng-Si; SHI Xiao-Yan; REN Wei; XIANG Xia; WANG Hai-Jun; HE Shao-Bo; YUAN Xiao-Dong

    2012-01-01

    The structure evolution of fused silica induced by CO2 laser irradiation (with a wavelength of 10.6 μm) is studied in detail.In the non-evaporation mitigation process,the irradiation time should be long enough to completely eliminate damage.However,there is a raised rim around the mitigated site.The rim height is enhanced when the irradiation time increases,and the mitigated site can lead to off-axis and on-axis downstream light intensification.Volume shrinkage occurs during the irradiation and rapid cooling processes,and this may be due to a decrease in the Si O Si bond angle.The distribution of debris overlaps with the maximum phase retardance induced by stress.The debris arouses an enhanced light absorption in the region from 220nm to 800nm.%The structure evolution of fused silica induced by CO2 laser irradiation (with a wavelength of 10.6 μm) is studied in detail. In the non-evaporation mitigation process, the irradiation time should be long enough to completely eliminate damage. However, there is a raised rim around the mitigated site. The rim height is enhanced when the irradiation time increases, and the mitigated site can lead to off-axis and on-axis downstream light intensification. Volume shrinkage occurs during the irradiation and rapid cooling processes, and this may be due to a decrease in the Si-O-Si bond angle. The distribution of debris overlaps with the maximum phase retardance induced by stress. The debris arouses an enhanced light absorption in the region from 220 nm to 800 nm.

  17. Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain.

    Science.gov (United States)

    Ismail, Amel F M; El-Sonbaty, Sawsan M

    2016-05-01

    Ionizing radiation has attracted a lot of attention due to its beneficial and possible harmful effects to the human population. The brain displays numerous biochemical and functional alterations after exposure to irradiation, which induces oxidative-stress through generation of reactive oxygen species (ROS). The present study evaluated the neuro-protective role of fermented Ginkgo biloba (FGb) leaf extract, compared to non-fermented G. biloba (Gb) leaf extract against γ-irradiation (6Gy) in the rats' brain. The changes of the Gb phytochemical constituents after fermentation, using Aspergillus niger were evaluated by Gas Chromatography-Mass Spectrometry. The results showed a significant decrease in superoxide dismutase (SOD), glutathione peroxidase (GPx) activities and elevation of the calcium level in the brain cytosolic fraction of γ-irradiated rats. Further, significant increases in the malondialdehyde (MDA), the stress hormones (catecholamines); epinephrine (EN), norepinephrine (NE) and dopamine (DA) levels and the interleukin-1-beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) gene expression relative ratio in parallel with a significant decrease in the glutathione (GSH) content and DNA fragmentation in the brain tissues of the γ-irradiated rats were observed. The pre-treatment with Gb extract significantly amended these biochemical parameters. Meanwhile, the pre-treatment with the FGb showed more improvement, compared to Gb, of these biochemical parameters in the brain of γ-irradiated rats, which could be attributed to the enhancement of its antioxidant activity after fermentation. These findings suggested that fermentation enhances the protective effect of Gb in the brain on the neuroinflammation, release of the stress hormones, apoptosis and oxidative damage induced by γ-irradiation. fermentation improved the bio-activities of Gb leaf extract and thus enhanced the in-vivo antioxidant, anti-apoptotic and anti-inflammatory activities, leading to

  18. Color improvement by irradiation of Curcuma aromatica extract for industrial application

    Science.gov (United States)

    Kim, Jae Kyung; Jo, Cheorun; Hwang, Han Joon; Park, Hyun Jin; Kim, Young Ji; Byun, Myung Woo

    2006-03-01

    Curcuma species are medicinal herbs with various pharmacological activities. They have a characteristic yellow color and contain curcuminoids which are natural antioxidants. In this study, Curcuma aromatica (CA) and Curcuma longa (CL) extracts were gamma-irradiated for improving the color, and the irradiation effects on the curcuminoids contents in CA and CL extracts were determined in order to evaluate if CA can replace CL on the market, where the price of CA is 70% lower than the price of CL. The Hunter color L*-values were increased significantly in all the samples with increasing dose, while the a*-values and b*-values decreased, which implies that the color of the CA and CL extracts changed from dark yellow to brighter yellow. Curcuminoids contents of all the samples were evaluated, and CA contains more curcuminoids than CL. These results indicated that irradiation improved the properties of CA for possible industrial use in manufacturing food and cosmetic industrial products.

  19. Color improvement by irradiation of Curcuma aromatica extract for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kyung [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Hwang, Han Joon [Graduate School of Biotechnology, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Park, Hyun Jin [Graduate School of Biotechnology, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Kim, Young Ji [Division of Food Beverage and Culinary Arts, Younganm College of Science and Technology, Daegu 705-703 (Korea, Republic of); Byun, Myung Woo [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)]. E-mail: mwbyun@kaeri.re.kr

    2006-03-15

    Curcuma species are medicinal herbs with various pharmacological activities. They have a characteristic yellow color and contain curcuminoids which are natural antioxidants. In this study, Curcuma aromatica (Canada) and Curcuma longa (CL) extracts were gamma-irradiated for improving the color, and the irradiation effects on the curcuminoids contents in CA and CL extracts were determined in order to evaluate if CA can replace CL on the market, where the price of CA is 70% lower than the price of CL. The Hunter color L*-values were increased significantly in all the samples with increasing dose, while the a*-values and b*-values decreased, which implies that the color of the CA and CL extracts changed from dark yellow to brighter yellow. Curcuminoids contents of all the samples were evaluated, and CA contains more curcuminoids than CL. These results indicated that irradiation improved the properties of CA for possible industrial use in manufacturing food and cosmetic industrial products.

  20. Radioprotective effect of Curcuma longa extract on γ-irradiation-induced oxidative stress in rats.

    Science.gov (United States)

    Nada, Ahmed S; Hawas, Asrar M; Amin, Nour El-Din; Elnashar, Magdy M; Abd Elmageed, Zakaria Y

    2012-04-01

    This study was conducted to evaluate the modulatory effect of aqueous extract of Curcuma longa (L.) against γ-irradiation (GR), which induces biochemical disorders in male rats. The sublethal dose of GR was determined in primary hepatocytes. Also, the effect of C. longa extract was examined for its activity against GR. In rats, C. longa extract was administered daily (200 mg/kg body mass) for 21 days before, and 7 days after GR exposure (6.5 Gy). The lipid profile and antioxidant status, as well as levels of transaminases, interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) were assessed. The results showed that in hepatocytes, the aqueous extract exhibited radioprotective activity against exposure to GR. Exposure of untreated rats to GR resulted in transaminase disorders, lipid abnormalities, elevation of lipid peroxidation, trace element alterations, release of IL-6 and TNF, and decrease in glutathione and protein level of superoxide dismutase-1 (SOD-1) and peroxiredoxin-1 (PRDX-1). However, treatment of rats with this extract before and after GR exposure improved antioxidant status and minimized the radiation-induced increase in inflammatory cytokines. Changes occurred in the tissue levels of trace elements, and the protein levels of SOD-1 and PRDX-1 were also modulated by C. longa extract. Overall, C. longa exerted a beneficial radioprotective effect against radiation-induced oxidative stress in male rats by alleviating pathological disorders and modulating antioxidant enzymes.

  1. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Mehlo, Luke, E-mail: LMehlo@csir.co.za [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Mbambo, Zodwa [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Bado, Souleymane [Plant Breeding and Genetics Laboratory – Joint FAO/IAEA Agriculture and Biotechnology Laboratory, International Atomic Energy Agency Laboratories, A-2444 Seibersdorf (Austria); Lin, Johnson [Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Moagi, Sydwell M.; Buthelezi, Sindisiwe; Stoychev, Stoyan; Chikwamba, Rachel [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa)

    2013-09-15

    Highlights: • We analyse kafirin protein polymorphisms induced by gamma irradiation in sorghum. • One mutant with suppressed kafirins in the endosperm accumulated them in the germ. • Kafirin polymorphisms were associated with high levels of free amino acids. • Nutritional value of sorghum can be improved significantly by induced mutations. - Abstract: Physical and biochemical analysis of protein polymorphisms in seed storage proteins of a mutant population of sorghum revealed a mutant with redirected accumulation of kafirin proteins in the germ. The change in storage proteins was accompanied by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa γ-, 24 kDa α-A1 and the 22 kDa α-A2 kafirins in the endosperm. The suppression of kafirins was counteracted by an upsurge in the synthesis and accumulation of albumins, globulins and other proteins. The data collectively suggest that sorghum has huge genetic potential for nutritional biofortification and that induced mutations can be used as an effective tool in achieving premium nutrition in staple cereals.

  2. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    Science.gov (United States)

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  3. Radiation-induced apoptosis in SCID mice spleen after low dose irradiation

    Science.gov (United States)

    Takahashi, A.; Kondo, N.; Inaba, H.; Uotani, K.; Kiyohara, Y.; Ohnishi, K.; Ohnishi, T.

    To assess the radioadaptive response of the whole body system in mice, we examined the temporal effect of low dose priming as an indicator of challenging irradiation-induced apoptosis through a p53 tumor suppressor protein- mediated signal transduction pathway. The p53 protein also plays an important role both in cell cycle control and DNA repair through cellular signal transduction. Using severe combined immunodeficiency mice defective in DNA-dependent protein kinase catalytic subunit, we examined the role of DNA-dependent protein kinase activity in radioadaptation induced by low dose irradiation. Specific pathogen free 5-week-old female severe combined immunodeficiency mice and the parental mice (CB-17 Icr +/ + were irradiated with X-ray at 3.0 C3y at 1, 2, 3 or 4 weeks after the conditioning irradiation at 0.15, 0.30, 0.45 or 0.60 Gy. The mice spleens were fixed for immunohistochemistry 12 h after the challenging irradiation. The p53-dependent apoptosis related Bax proteins on formalin-fixed paraffin-embedded sections were stained by the avidin-biotin peroxidase complex method The apoptosis incidence in the sections was measured by hematoxylin-eosin staining. The frequency of Bax- and apoptosis-positive cells increased up to 12 h after the challenging irradiation in the spleen of both mice. However, these cells were not observed after a low dose irradiation at 0.15-0.60 Gy When pre-irradiation at 0.45 Gy 2 weeks before the challenging irradiation at 3.0 Gy was performed, Bax accumulation and apoptosis induced by challenging irradiation were depressed in the spleens of CB-17 Icr +/ + mice, but not in severe combined immunodeficiency mice. These data suggest that DNA-dependent protein kinase might play a major role in radioadaptation induced by pre-irradiation with a low dose in mice spleen. We expect that the present findings will provide useful information in the health care of space crews.

  4. Dosimetry Formalism and Implementation of a Homogenous Irradiation Protocol to Improve the Accuracy of Small Animal Whole-Body Irradiation Using a 137Cs Irradiator.

    Science.gov (United States)

    Brodin, N Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A

    2016-02-01

    Shielded Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ± 5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ± 5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose.

  5. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  6. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    Science.gov (United States)

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  7. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, B., E-mail: beatrice.gagnaire@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Cavalié, I. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Pereira, S. [Neolys Diagnostics, Lyon 69373 (France); Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France)

    2015-12-15

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  8. Changes in Storage Properties of Hydrides Induced by Ion Irradiation

    Directory of Open Access Journals (Sweden)

    Jasmina GRBOVIĆ NOVAKOVIĆ

    2013-05-01

    Full Text Available The influence of structural changes caused by irradiation with different ions, their energies and fluences on sorption properties has been investigated. Results suggest that there are several mechanisms of desorption depending on defect concentration, their interaction and ordering. It has been also demonstrated that the changes in near-surface area play the crucial role in hydrogen desorption kinetics. It is confirmed that there is possibility to control the thermodynamic parameters of these systems by controlling vacancies depth profile and concentration. DOI: http://dx.doi.org/10.5755/j01.ms.19.2.1579

  9. Changes in Storage Properties of Hydrides Induced by Ion Irradiation

    Directory of Open Access Journals (Sweden)

    Jasmina GRBOVIĆ NOVAKOVIĆ

    2013-05-01

    Full Text Available The influence of structural changes caused by irradiation with different ions, their energies and fluences on sorption properties has been investigated. Results suggest that there are several mechanisms of desorption depending on defect concentration, their interaction and ordering. It has been also demonstrated that the changes in near-surface area play the crucial role in hydrogen desorption kinetics. It is confirmed that there is possibility to control the thermodynamic parameters of these systems by controlling vacancies depth profile and concentration. DOI: http://dx.doi.org/10.5755/j01.ms.19.2.1579

  10. The effects of low-intensity laser irradiation on the fatigue induced by dysfunction of mitochondria

    Science.gov (United States)

    Xu, Xiao-Yang; Liu, Timon C.; Duan, Rui; Liu, Xiao-Guang

    2003-12-01

    Exercise-induced fatigue has long been an important field in sports medicine. The electron leak of mitochondrial respiratory chain during the ATP synthesis integrated with proton leak and O-.2 can decrease the efficiency of ATP synthesis in mitochondria. And the exercise-induced fatigue occur followed by the decrease of performance. If the dysfunction of mitochondria can be avoided, the fatigue during the exercise may be delayed and the performance may be enhanced. Indeed there are some kind of materials can partially prevent the decrease of ATP synthesis efficiency in mitochondria. But the side effects and safety of these materials is still needed to be studied. Low intensity laser can improve the mitochondria function. It is reasonable to consider that low intensity laser therapy may become the new and more effective way to delay or elimination the fatigue induced by dysfunction of mitochondria. Because the effect of laser irradiation may not be controlled exactly when study in vivo, we use electrical stimulation of C2C12 muscle cells in culture to define the effect of low intensity laser on the dysfunction of mitochondria, and to define the optimal laser intensity to prevent the decrease of ATP synthesis efficiency. Our study use the C2C12 muscle cells in culture to define some of the mechanisms involved in the contractile-induced changes of mitochondrial function firstly in sports medicine and may suggest a useful study way to other researchers. We also give a new way to delay or eliminating the fatigue induced by dysfunction of mitochondria without side effect.

  11. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats.

    Science.gov (United States)

    Mohammed, Haitham S

    2016-11-01

    Transcranial low-level infrared laser is a modality of therapy based on the principle of photons delivered in a non-invasive manner through the skull for the treatment of some neurological conditions such as psychological disorders, traumatic brain injuries, and neurodegenerative diseases among others. In the present study, effects of low-level infrared laser irradiation with different radiation powers (80, 200, and 400 mW, continuous wave) were investigated on normal animals subjected to forced swimming test (FST). Results indicated that there are changes in FST parameters in animals irradiated with laser; the lowest dose provoked a significant increase in animal activity (swimming and climbing) and a significant decrease in animal's immobility, while the highest laser dose resulted in a complete inverse action by significantly increasing animal immobility and significantly decreasing animal activity with respect to control animals. The lowest dose (80 mW) of transcranial laser irradiation has then utilized on animals injected with a chronic dose of reserpine (0.2 mg/kg i.p. for 14 days) served as an animal model of depression. Laser irradiation has successfully ameliorated depression induced by reserpine as indicated by FST parameters and electrocorticography (ECoG) spectral analysis in irradiated animals. The findings of the present study emphasized the beneficial effects of low-level infrared laser irradiation on normal and healthy animals. Additionally, it indicated the potential antidepressant activity of the low dose of infrared laser irradiation.

  12. Processability improvement of polyolefins through radiation-induced branching

    Science.gov (United States)

    Cheng, Song; Phillips, Ed; Parks, Lewis

    2010-03-01

    Radiation-induced long-chain branching for the purpose of improving melt strength and hence the processability of polypropylene (PP) and polyethylene (PE) is reviewed. Long-chain branching without significant gel content can be created by low dose irradiation of PP or PE under different atmospheres, with or without multifunctional branching promoters. The creation of long-chain branching generally leads to improvement of melt strength, which in turn may be translated into processability improvement for specific applications in which melt strength plays an important role. In this paper, the changes of the melt flow rate and the melt strength of the irradiated polymer and the relationship between long-chain branching and melt strength are reviewed. The effects of the atmosphere and the branching promoter on long-chain branching vs. degradation are discussed. The benefits of improved melt strength on the processability, e.g., sag resistance and strain hardening, are illustrated. The implications on practical polymer processing applications such as foams and films are also discussed.

  13. Detection of radiation-induced hydrocarbons in baked sponged cake prepared with irradiated liquid egg

    Science.gov (United States)

    Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.

    1995-02-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.

  14. Detection of radiation-induced hydrocarbons in baked sponge cake prepared with irradiated liquid egg

    Energy Technology Data Exchange (ETDEWEB)

    Schulzki, G.; Spiegelberg, A.; Boegl, K.W.; Schreiber, G.A. [Federal Institute for Health Protection of Consumers and Veterinary Medicine, Berlin (Germany)

    1995-10-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg. (Author).

  15. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue.

    Science.gov (United States)

    Lam, Philip Y; Yan, Chung Wai; Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    Schisandrin B (Sch B) and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate, protected rat skin tissue against solar irradiation-induced oxidative injury, as evidenced by a reversal of solar irradiation-induced changes in cellular reduced glutathione and α-tocopherol levels, as well as antioxidant enzyme activities and malondialdehyde production. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production in rat skin microsomes. Taken together, Sch B or Sch C, by virtue of its pro-oxidant action and the subsequent eliciting of a glutathione antioxidant response, may prevent photo-aging of skin.

  16. Electron beam irradiation induced compatibilization of immiscible polyethylene/ethylene vinyl acetate (PE/EVA) blends: Mechanical properties and morphology stability

    Science.gov (United States)

    Entezam, Mehdi; Aghjeh, Mir Karim Razavi; Ghaffari, Mehdi

    2017-02-01

    Gel content, mechanical properties and morphology of immiscible PE/EVA blends irradiated by high energy electron beam were studied. The results of gel content measurements showed that the capability of cross-linking of the blend samples increased with an increase of the EVA composition. Also, the gel content for most compositions of the blends displayed a positive deviation from the additive rule. The results of mechanical properties showed that the tensile strength and elongation at break of the samples increased and decreased, respectively, with irradiation dose. On the other hand, the mechanical properties of the irradiated blends also depicted a positive deviation from additive rule contrary to the un-irradiated blends. A synergistic effect observed for the mechanical properties improvement of the irradiated blends and it was attributed to the probable formation of the PE-graft-EVA copolymers at the interface of the blends during the irradiation process. A theoretical analysis revealed that irradiation induced synergistic effect was more significant for EVA-rich blends with weaker interfacial interaction as compared to PE-rich blends. The morphological analysis indicated that the blend morphology was not affected obviously, whereas it was stabilized by irradiation.

  17. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mei Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Liu Xiaofei; Wang Cunxia; Wang Younian; Dong Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Pulsed electron beam was used for sealing ZrO{sub 2} thermal barrier coating prepared by electron beam-physical vapor deposition. Black-Right-Pointing-Pointer At irradiation energy densities above 8 J/cm{sup 2}, ZrO{sub 2} ceramic coating surface was fully re-melted and became smooth, dense and shiny. Black-Right-Pointing-Pointer The thermal diffusion rate of the irradiated coating was decreased. Black-Right-Pointing-Pointer Thermal insulation properties and high temperature oxidation resistance were improved. - Abstract: In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y{sub 2}O{sub 3}-stablized ZrO{sub 2} thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the 'sealing' of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 {mu}s, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm{sup 2}, and pulsed numbers 30. 1050 Degree-Sign C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm{sup 2}, ZrO{sub 2} ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the 'sealing' effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm{sup 2}, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal

  18. Raman Spectroscopy of Irradiation Effect in Three Carbon Allotropes Induced by Low Energy B Ions

    Institute of Scientific and Technical Information of China (English)

    FU Yun-Chong; JIN Yun-Fan; YAO Cun-Feng; ZHANG Chong-Hong

    2009-01-01

    Irradiation effect in three carbon allotropes C6o, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Rarnan spectroscopy technique. The differences on irradiation sensitivity and structural stability for C6o, HOPG and diamond are compared. The analysis results indicate that C6o is the most sensitive for B ions irradiation, diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections σ of C6o, diamond and HOPG deduced from the Raman spectra are 7.78 × 10-15, 6.38 × 10-15 and 1.31 × 10-15 cm-2, respectively.

  19. Improvement in properties of coal water slurry by combined use of new additive and ultrasonic irradiation.

    Science.gov (United States)

    Guo, Zhaobing; Feng, Ruo; Zheng, Youfei; Fu, Xiaoru

    2007-07-01

    Coal water slurry (CWS) was prepared with a newly developed additive from naphthalene oil. The effects of ultrasonic irradiation on coal particle size distribution (PSD), adsorption behavior of additive in coal particles and the characteristics of CWS were investigated. Results showed that ultrasonic irradiation led to a higher proportion of fine coal in CWS and increased the saturated adsorption amount of additive in coal particles. In addition, the rheological behavior and static stability of CWS irradiated by ultrasonic wave were remarkably improved. The changes on viscosity of CWS containing 1% and 2% additive are qualitatively different with the increasing sonication time studied. The reason for the different effect of sonication time on CWS viscosity is presented in this study.

  20. Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells.

    Science.gov (United States)

    Faqihi, Fahime; Neshastehriz, Ali; Soleymanifard, Shokouhozaman; Shabani, Robabeh; Eivazzadeh, Nazila

    2015-09-01

    Radiation-induced bystander effects (RIBEs) are detected in cells that are not irradiated but receive signals from treated cells. The present study explored these bystander effects in a U87MG multicellular tumour spheroid model. A medium transfer technique was employed to induce the bystander effect, and colony formation assay was used to evaluate the effect. Relative changes in expression of BAX, BCL2, JNK and ERK genes were analysed using RT-PCR to investigate the RIBE mechanism. A significant decrease in plating efficiency was observed for both bystander and irradiated cells. The survival fraction was calculated for bystander cells to be 69.48% and for irradiated cells to be 34.68%. There was no change in pro-apoptotic BAX relative expression, but anti-apoptotic BCL2 showed downregulation in both irradiated and bystander cells. Pro-apoptotic JNK in bystander samples and ERK in irradiated samples were upregulated. The clonogenic survival data suggests that there was a classic RIBE in U87MG spheroids exposed to 4 Gy of X-rays, using a medium transfer technique. Changes in the expression of pro- and anti-apoptotic genes indicate involvement of both intrinsic apoptotic and MAPK pathways in inducing these effects. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Naringenin Inhibits UVB Irradiation-Induced Inflammation and Oxidative Stress in the Skin of Hairless Mice.

    Science.gov (United States)

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Vignoli, Josiane A; Barbosa, Décio S; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2015-07-24

    Ultraviolet B (UVB) irradiation may cause inflammation- and oxidative-stress-dependent skin cancer and premature aging. Naringenin (1) has been reported to have anti-inflammatory and antioxidant properties, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress are still not known. Thus, the present study aimed to investigate the potential of naringenin to mitigate UVB irradiation-induced inflammation and oxidative damage in the skin of hairless mice. Skin edema, myeloperoxidase (neutrophil marker) and matrix metalloproteinase-9 (MMP-9) activity, and cytokine production were measured after UVB irradiation. Oxidative stress was evaluated by 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability, ferric reducing antioxidant power (FRAP), reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, and gp91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR. The intraperitoneal treatment with naringenin reduced skin inflammation by inhibiting skin edema, neutrophil recruitment, MMP-9 activity, and pro-inflammatory (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-6, IL-12, IL-13, IL-17, IL-22, and IL-23) and anti-inflammatory (TGF-β and IL-10) cytokines. Naringenin also inhibited oxidative stress by reducing superoxide anion production and the mRNA expression of gp91phox. Therefore, naringenin inhibits UVB irradiation-induced skin damage and may be a promising therapeutic approach to control skin disease.

  2. Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation.

    Science.gov (United States)

    Gao, Feng; Fish, Brian L; Moulder, John E; Jacobs, Elizabeth R; Medhora, Meetha

    2013-11-01

    Victims of a radiological attack or nuclear accident may receive high-dose, heterogeneous exposures from radiation to the chest that lead to lung damage. Our goal is to develop countermeasures to mitigate such injuries. We used WAG/RijCmcr rats receiving 13 Gy to the whole thorax to induce pulmonary fibrosis within 210 days. The angiotensin converting enzyme (ACE) inhibitor enalapril was evaluated as a mitigator of these injuries at two doses (18 and 36 mg/m(2)/day) and 8 schedules: starting at 7, 35, 70, 105 and 140 days and continuing to 210 days or starting at 7 days and stopping at 30, 60 or 90 days after whole-thorax irradiation. The earliest start date at 7 days after irradiation would provide an adequate window of time for triage and dosimetry. Survival after 35 days, as permitted by our Institutional Animal Care and Use Committee (IACUC) was also recorded as a primary end point of pneumonitis. Pulmonary fibrosis was evaluated using the Sircol biochemical assay to measure lung collagen. Our results indicated that a short course of either dose of enalapril from 7-90 days improved survival. However, pulmonary fibrosis was only mitigated by the higher dose of enalapril (36 mg/m(2)/day). The latest effective start date for the drug was 35 days after irradiation. These results indicate that ACE inhibitors can be started at least a month after irradiation for mitigation of pneumonitis and/or pulmonary fibrosis.

  3. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

    Science.gov (United States)

    Zanni, Giulia; Di Martino, Elena; Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-11-10

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer.

  4. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  5. Pulsed laser irradiation-induced microstructures in the Mn ion implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Muneyuki, E-mail: naito22@center.konan-u.ac.jp [Department of Chemistry, Konan University, Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamada, Ryo; Machida, Nobuya [Department of Chemistry, Konan University, Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501 (Japan); Koshiba, Yusuke; Sugimura, Akira; Aoki, Tamao; Umezu, Ikurou [Department of Physics, Konan University, Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501 (Japan)

    2015-12-15

    We have examined microstructures induced by pulsed-laser-melting for the Mn ion implanted Si using transmission electron microscopy. Single crystalline Si(0 0 1) wafers were irradiated with 65 keV and 120 keV Mn ions to a fluence of 1.0 × 10{sup 16}/cm{sup 2} at room temperature. The ion beam-induced amorphous layers in the as-implanted samples were melted and resolidified by pulsed YAG laser irradiation. After laser irradiation with appropriate laser fluence, the surface amorphous layers recrystallize into the single crystalline Si. The Mn concentration becomes higher in the near-surface region with increasing the number of laser shots. The migrated Mn atoms react with Si atoms and form the amorphous Mn–Si in the Si matrix.

  6. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging.

  7. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  8. New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations

    NARCIS (Netherlands)

    Dubinko, [No Value

    2005-01-01

    A new mechanism of irradiation creep is proposed, which is based on the radiation and stress induced difference in emission ( RSIDE) of vacancies from dislocations of different orientations with respect to the external stress. This phenomenon is due to the difference in vacancy formation energies, w

  9. Determination of irradiation parameters for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2013-01-01

    The spatial emergence of laser-induced periodic surface structures (LIPSS) on single-crystalline silicon, upon irradiation with linearly polarized picosecond laser pulses (wavelength λ = 1030 nm, pulse duration τ = 6.7 ps, pulse repetition frequency fp = 1 kHz) was studied theoretically and experime

  10. Hepatocyte growth factor protects endothelial cells against gamma ray irradiation-induced damage

    Institute of Scientific and Technical Information of China (English)

    Shun-ying HU; Hai-feng DUAN; Qing-fang LI; Yue-feng YANG; Jin-long CHEN; Li-sheng WANG; Hua WANG

    2009-01-01

    Aim:To investigate the effect of HGF on proliferation, apoptosis and migratory ability of human vascular endothelial cells against gamma ray irradiation.Methods: ECV304 cells derived from adult human umbilical vein endothelial cells (HUVEC) were irradiated with a single gamma ray dose of 20 Gy. Immunocytochemistry and Western blot analysis were used to detect c-Met protein expression and HGF/c-Met signal pathway. In the HGF-treated groups, ECV304 cells were incubated with HGF (20 or 40 ng/mL) 3 h prior to irradiation. At 48 h post-irradiation, the proliferation of ECV304 cells was measured by MTT assay, the apoptosis was assessed by flow cytometry, and the migratory ability of ECV304 cells was measured by transwell chamber assay.Results: c-Met protein is expressed in ECV304 cells and can be activated by HGF. Gamma ray irradiation inhibits proliferation and migration of ECV304 cells in a dose-dependent manner. HGF significantly promoted the proliferation of ECV304 cells, and flow cytom-etry revealed that HGF can inhibit apoptosis of ECV304 cells. Transwell chamber assay also showed that HGF increases migration activity of endothelial cells.Conclusion: HGF may afford protection to vascular endothelial cells against gamma ray irradiation-induced damage.

  11. Ion irradiation-induced structure damage to botanic samples using the ion transmission energy spectrum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to study the mechanism of irradiation-induced damage ofbotanic samples caused by low energy heavy ions, transmission energy spectrum mea-surement was performed. Kidney bean slice samples 100μm in thickness were irradi-ated by 50 kev N+ ions. The irradiation beam current density was about 30μA/cm2,and the irradiation ion doses were 1×1015, 1×1016, 3×1016 and 1×1017 ions@cm-2,respectively. A target set up that could greatly reduce the incident ion current densitywas designed to achieve the damage-free measurement. The 3.2 MeV H+ transmittedion energy spectrum measurement was carried out before and after the irradiation.From the transmission ion energy spectrum, it was found that the kidney bean sliceitself was structurally inhomogeneous compared with the PET films (C10HsO4). Ourresults indicated that the average mass thickness changed little when the N+ iondose was below 3×1016 ions.cm-2, but changed obviously whcn ion dose was beyond3×1016 ions.cm-2.

  12. Small-Molecule XIAP Inhibitors Enhance γ-Irradiation-Induced Apoptosis in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sri Hari Krishna Vellanki

    2009-08-01

    Full Text Available Because evasion of apoptosis can cause radioresistance of glioblastoma, there is a need to design rational strategies that counter apoptosis resistance. In the present study, we investigated the potential of targeting the antiapoptotic protein XIAP for the radiosensitization of glioblastoma. Here, we report that small-molecule XIAP inhibitors significantly enhance γ-irradiation-induced loss of viability and apoptosis and cooperate with γ-irradiation to suppress clonogenic survival of glioblastoma cells. Analysis of molecular mechanisms reveals that XIAP inhibitors act in concert with γ-irradiation to cause mitochondrial outer membrane permeabilization, caspase activation, and caspasedependent apoptosis. Importantly, XIAP inhibitors also sensitize primary cultured glioblastoma cells derived from surgical specimens as well as glioblastoma-initiating stemlike cancer stem cells for γ-irradiation. In contrast, they do not increase the toxicity of γ-irradiation on some nonmalignant cells of the central nervous system, including rat neurons or glial cells, pointing to some tumor selectivity. In conclusion, by demonstrating for the first time that smallmolecule XIAP inhibitors increase the radiosensitivity of glioblastoma cells while sparing normal cells of the central nervous system, our findings build the rationale for further (preclinical development of XIAP inhibitors in combination with γ-irradiation in glioblastoma.

  13. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  14. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    Science.gov (United States)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  15. Irradiation-induced structural changes in surveillance material of VVER 440-type weld metal

    Science.gov (United States)

    Grosse, M.; Denner, V.; Böhmert, J.; Mathon, M.-H.

    2000-01-01

    The irradiation-induced microstructural changes in surveillance materials of the VVER 440-type weld metal Sv-10KhMFT were investigated by small angle neutron scattering (SANS) and anomalous small angle X-ray scattering (SAXS). Due to the high fluence, a strong effect was found in the SANS experiment. No significant effect of the irradiation is detected by SAXS. The reason for this discrepancy is the different scattering contrast of irradiation-induced defects for neutrons and X-rays. An analysis of the SAXS shows that the scattering intensity is mainly caused by vanadium-containing (VC) precipitates and grain boundaries. Both types of scattering defects are hardly changed by irradiation. Neutron irradiation rather produces additional scattering defects of a few nanometers in size. Assuming these defects are clusters containing copper and other foreign atoms with a composition according to results of atom probe field ion microscopy (APFIM) investigations, both the high SANS and the low SAXS effect can be explained.

  16. Damage induced by proton irradiation in carbonate based natural painting pigments

    Energy Technology Data Exchange (ETDEWEB)

    Enguita, Olga E-mail: olga.enguita@uam.es; Calderon, T.; Fernandez-Jimenez, M.T.; Beneitez, P.; Millan, A.; Garcia, G

    2004-06-01

    The so called 'dark spot' phenomenon produced during proton irradiation of pigments is an important factor to determine experimental conditions of ion beam analysis of pigments in paintings, miniatures, pottery and other art objects. Recently it has been suggested that this phenomenon could be due to the formation of colour centres during irradiation, but there is scarce knowledge about the characteristics and the reversibility of the damage. In this work a representative set of natural carbonate minerals, traditionally used as pigments, were exposed to proton irradiation in an external beam set-up, in order to simulate routine external proton induced X-ray emission (PIXE) analysis conditions of an art object. During irradiation ionoluminescence (IL) combined with PIXE were employed to identify the microscopic processes involved in the proton damage. After irradiation, two well-established techniques for the study of colour centres, thermoluminescence (TL) and optical absorption were used. Particularly, TL is a very sensitive technique to detect very low concentrations of radiation induced defects.

  17. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    Science.gov (United States)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  18. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization.

    Science.gov (United States)

    Odelius, Karin; Plikk, Peter; Albertsson, Ann-Christine

    2008-01-01

    In our previous work regarding radiation sterilization of porous scaffolds we have concluded that the composition and microstructure of the polymer chain are a key factor influencing the degradation reactions occurring upon irradiation. In this work we in contrast reported on the effects of high-energy irradiation on the thermal and mechanical properties. Electron beam (EB)- and gamma-irradiation sterilization were used in order to finalize the properties of a series of porous scaffolds comprised of different aliphatic polyester copolymers. The results presented here show that, for both sterilization methods, the crystallinity increased for all copolymers of 1,5-dioxepan-2-one (DXO) and l,l-lactide (LLA) at the minimum sterilization dose. The same was true of the epsilon-caprolactone (CL)- and LLA-containing copolymers upon EB sterilization, while a reduction in crystallinity were found upon gamma-irradiation. As was anticipated, it was shown that crystallinity also is a characteristic of the copolymer influencing the effects of the irradiation-induced reactions. Both the onset temperature and the temperature corresponding to the maximum rate of weight loss increased after irradiation and hence the thermal stability was increased. This is a result of a simultaneous lengthening of the chains by cross-linking reactions and a shortening by random chain-scissions occurring throughout the molecule, which lead to the formation of new endgroups with higher thermal stability. Scaffolds of crystalline polymers retained more of their initial tensile properties after irradiation compared to amorphous materials. The result previously published, showing that the composition was a key factor influencing the degradation reactions occurring upon irradiation, was augmented here.

  19. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    Science.gov (United States)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  20. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    Science.gov (United States)

    Liu, Hanzhou; Yu, Ming; Ma, Hongjuan; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2014-01-01

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions.

  1. Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rokhsat, Eliza [Department of Physics, Central Tehran Branch, I. A. University, Tehran (Iran, Islamic Republic of); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2016-05-15

    Highlights: • ZnO nanorod-graphene oxide composite thin films were synthesized. • The photocatalytic activity of the films was improved by UV irradiation. • The photocatalytic activity of the films was comparable with that of the corresponding powders. - Abstract: Graphene oxide (GO) sheets with a low concentration (∼1 wt%) were deposited on surface of hydrothermally synthesized ZnO nanorod films. The deposited films were heat treated at 450 °C in order to achieve suitable GO/ZnO hybrid thin films for photocatalytic purposes. The photocatalytic activity of the nanocomposite films was investigated based on degradation of methylene blue (MB) dye which is a typical pollutant model. The GO/ZnO hybrid thin films could degrade higher MB (∼90%) than the bare ZnO nanorods (which showed only ∼75% degradation) after 450 min UV irradiation. A further significant improvement (resulting in a nearly complete degradation of MB) was achieved by exposing the GO/ZnO films to UV irradiation. The improvement was assigned to UV-assisted photocatalytic reduction of GO sheets and separation of photoexcited electron-hole pairs of ZnO by the UV-treated GO sheets. These results highlight application of UV treatment in improving the photocatalytic activity of GO-containing ZnO nanostructures.

  2. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  3. Improving anti-corrosion property of thermal barrier coatings by intense pulsed ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S., E-mail: syan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Shang, Y.J., E-mail: shangyijun@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Xu, X.F., E-mail: reandy123@126.com [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Yi, X., E-mail: xyle@buaa.edu.com [Department of Applied Physics, School of Science, Beihang University, Beijing 100083 (China); Le, X.Y., E-mail: xyle@buaa.edu.cn [Department of Applied Physics, School of Science, Beihang University, Beijing 100083 (China)

    2012-02-01

    Anticorrosion behavior is an important factor for the reliability and durability of thermal barrier coatings (TBCs). Intense pulsed ion beam (ion species: 70% H{sup +} + 30% C{sup +}; current density: 150 A/cm{sup 2} and 250 A/cm{sup 2}; accelerate voltage: 300 kV; pulse duration: 65 ns) irradiation were used to improve the anticorrosion behavior of the Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} (YSZ) /NiCoCrAlY thermal barrier coating. The anticorrosion property of the TBCs was evaluated with polarization curves method. A quite good result was obtained. Further analysis show that IPIB irradiation can seal the pores in YSZ layer, and block the penetration channels of corrosive fluid, therefore, improves the anticorrosion behavior.

  4. Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Golosov, E.V.; Kolobov, Y.R. [Belgorod State University, Belgorod (Russian Federation); Ionin, A.A.; Kudryashov, S.I.; Novoselov, Y.N.; Seleznev, L.V.; Sinitsyn, D.V. [Russian Academy of Sciences, P.N. Lebedev Physical Institute, Moscow (Russian Federation); Ligachev, A.E. [A.M. Prokhorov General Physics Institute, Moscow (Russian Federation); Makarov, S.V. [Russian Academy of Sciences, P.N. Lebedev Physical Institute, Moscow (Russian Federation); National Research Nuclear University, MEPHI, Moscow (Russian Federation)

    2011-08-15

    Gradual evolution of self-induced silicon surface topology from one-dimensional ridge-like to two-dimensional spike-like nanogratings and then to isotropic sets of micro-columns was observed by evenly increasing IR and UV femtosecond laser irradiation dose. This topological evolution exhibits clear indications of consequent melting and vaporization processes being set up during the prolonged laser irradiation. Monotonously decreasing cumulative IR and UV femtosecond laser-nanostructuring thresholds may indicate an increase of optical absorbance of the laser-nanostructured silicon surfaces versus the increasing laser dose, consistent with the consequent onset of the abovementioned thermal modification processes. (orig.)

  5. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L. by Ultraviolet-B Irradiation

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2016-09-01

    Full Text Available Sweet basil (Ocimum basilicum Linnaeus is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m2 and durations (4, 6, 8, and 10-h was applied at the post-harvest stage. Total flavonoid content (TFC and total phenolic content (TPC were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7 were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH assays and MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays, respectively. UV-B irradiation at an intensity of 3.60 W/m2 increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold, catechin (0.85-fold, kaempferol (0.65-fold rutin (0.68-fold and luteolin (1.00-fold content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid was observed in the 3.60 W/m2 of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m2 of UV-B irradiation. UV

  6. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation.

    Science.gov (United States)

    Ghasemzadeh, Ali; Ashkani, Sadegh; Baghdadi, Ali; Pazoki, Alireza; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-09-09

    Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV

  7. An Improved Synthesis of 1,2-Diarylethanols under Conventional Heating and Ultrasound Irradiation

    Directory of Open Access Journals (Sweden)

    Liang-Zhu Huang

    2012-09-01

    Full Text Available A simple and efficient synthesis of 1,2-diarylethanols has been developed. The procedure involved the reaction between a variety of toluene derivatives and aryl aldehydes under conventional heating and ultrasound irradiation. This procedure possesses several advantages such as operational simplicity, high yield, safety and environment benignancy. Ultrasound was proved to be very helpful to the reaction, markedly improving the yield and the reaction rate.

  8. An Improved Synthesis of 1,2-Diarylethanols under Conventional Heating and Ultrasound Irradiation

    OpenAIRE

    2012-01-01

    A simple and efficient synthesis of 1,2-diarylethanols has been developed. The procedure involved the reaction between a variety of toluene derivatives and aryl aldehydes under conventional heating and ultrasound irradiation. This procedure possesses several advantages such as operational simplicity, high yield, safety and environment benignancy. Ultrasound was proved to be very helpful to the reaction, markedly improving the yield and the reaction rate.

  9. An improved synthesis of 1,2-diarylethanols under conventional heating and ultrasound irradiation.

    Science.gov (United States)

    Gao, Dong-Mei; Ma, Wei-Li; Li, Tian-Rui; Huang, Liang-Zhu; Du, Zhen-Ting

    2012-09-07

    A simple and efficient synthesis of 1,2-diarylethanols has been developed. The procedure involved the reaction between a variety of toluene derivatives and aryl aldehydes under conventional heating and ultrasound irradiation. This procedure possesses several advantages such as operational simplicity, high yield, safety and environment benignancy. Ultrasound was proved to be very helpful to the reaction, markedly improving the yield and the reaction rate.

  10. Evaluation of induced radioactivity in 10 MeV electron-irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Katayama, Tadashi; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1993-10-01

    In order to make clear appreciation to induced radioactivity in the irradiated foods, photonuclear reactions which could produce radioactivity at energies up to 10 MeV were listed up from elemental compositions of black pepper, white pepper, red pepper, ginger and turmeric. The samples were irradiated with 10 MeV electron from a linear accelerator to a dose of 100 kGy and radioactivity was measured. Induced radioactivity could not be detected significantly by gamma-ray spectrometry and beta-ray counting in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (J.P.N.).

  11. Improved broadband solar irradiance from the multi-filter rotating shadowband radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.J.; Augustine, J.A. [National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305 (United States); Kiedron, P.W. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, 325 Broadway, Boulder, CO 80305 (United States)

    2009-12-15

    Approximations to total and diffuse horizontal and direct normal, broadband solar irradiance (280-4000 nm) can be obtained from the multi-filter rotating shadowband radiometer (MFRSR) using the unfiltered silicon channel of this seven-channel instrument. However, the unfiltered silicon channel only responds to wavelengths between 300 and 1100 nm and does not have a uniform spectral response. In contrast, the best, more expensive, first-class, thermopile-based radiometers respond fairly uniformly to all solar wavelengths. While the total horizontal and direct normal solar irradiance measurements made with the MFRSR unfiltered silicon channel are reasonable if carefully calibrated with a thermopile radiometer, the diffuse horizontal irradiance calibrated in this way has a large bias. These issues are common to all inexpensive, silicon-cell, solar pyranometers. In this paper we use a multivariate, linear regression technique for approximating the thermopile-measured total, diffuse, and direct broadband solar irradiances using the six, narrowband filters and the open-channel of an MFRSR. The calibration of the MFRSR for broadband solar by comparing various combinations of MFRSR channels to first-class thermopile instruments is illustrated, and methods to track the instrument response during field deployments are investigated. We also suggest an approach to calibrate the open-channel for all three components that could improve measurements that are made using typical, commercial, silicon-cell pyranometers. (author)

  12. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  13. Process induced morphology of irradiated HD-PE

    Science.gov (United States)

    Boldt, Regine; Gohs, Uwe; Stamm, Manfred; Heinrich, Gert

    2016-03-01

    The preparation of cross-linked polyethylene with high energy electrons is a well-known and used method to change material properties [1-6]. A new developed technique called "Electron induced reactive processing" simultaneously combines polymer modification with high energy electrons and melt mixing processes [7-13]. In the case of polyethylene, this novel technique leads to exceptional mechanical properties. Definitely, these properties depend on the molecular architecture as well as the morphological characteristics of polyethylene after the electron treatment. In this work we concentrate on the morphological changes of high density polyethylene generated by using state of the art high energy electron treatment in the solid state compared with high density polyethylene modified with the electron induced reactive processing.

  14. Process induced morphology of irradiated HD-PE

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Regine, E-mail: boldt@ipfdd.de; Gohs, Uwe [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-1069 Dresden (Germany); Stamm, Manfred [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-1069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymer Materials D-01062 Dresden (Germany); Heinrich, Gert [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-1069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaften D-01062 Dresden (Germany)

    2016-03-09

    The preparation of cross-linked polyethylene with high energy electrons is a well-known and used method to change material properties [1-6]. A new developed technique called “Electron induced reactive processing” simultaneously combines polymer modification with high energy electrons and melt mixing processes [7-13]. In the case of polyethylene, this novel technique leads to exceptional mechanical properties. Definitely, these properties depend on the molecular architecture as well as the morphological characteristics of polyethylene after the electron treatment. In this work we concentrate on the morphological changes of high density polyethylene generated by using state of the art high energy electron treatment in the solid state compared with high density polyethylene modified with the electron induced reactive processing.

  15. Utilization of induced mutation techniques in rice improvement in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Asencion, A.B.; Santos, I.S.; Barrida, A.C.; Medina, F.I.S. III [Philippine Nuclear Research Institute, Atomic Research Center (Philippines)

    2001-03-01

    Rice is one of the most important food crops in the Philippines, as such, efforts have been made consistently to improve the varieties released to the farmers for planting. Both conventional and induced mutation techniques were utilized to solve some of the problems. Varieties with improved qualities, resistance to pests and diseases, reduced height, early maturity and non-photoperiod sensitive were developed using either physical or chemical mutagen. Other methods were also tried to enhance variability like combination of gamma irradiation and biotechnology. Irradiation of F1 seeds was also initiated including the use of mutants in crosses to transfer their improved mutated characters. Promising selections were already tested and six lines from the F1 irradiation out-yielded both C4-63G and IR 1561-288-3, their parents. (author)

  16. Radiation-Induced Centers in Lead Silicate Glasses Irradiated by Stationary and Pulsed Electron Beams

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Konev, S. F.; Cholakh, S. O.

    2015-08-01

    Radiation-induced centers formed in heavy flint glasses irradiated by electron beams are investigated by the methods of optical and EPR spectroscopy. It is revealed that stable and short-living optical absorption centers of close natures are formed under irradiation by fast electrons. A correlation is established between the stable optical absorption bands and the EPR signals interpreted as signals of the (Pb2+)/h+ hole centers. The shortliving color centers are formed due to short-term distortion of the O-Pb bonds, and the stable centers are formed due to the spatial separation, thermalization, and subsequent stabilization of excited electrons and holes in tails of the localized states. Irradiation by electron beams leads to a change in the spectral characteristics of the fundamental absorption edge and, in particular, of the Urbach energy that determines the degree of structural disorder.

  17. Parathyroid hormone and calcitonin interactions in bone: Irradiation-induced inhibition of escape in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, N.S.; Tashjian, A.H. Jr.; Feldman, R.S.

    1982-01-01

    Calcitonin (CT) inhibits hormonally stimulated bone resorption only transiently in vitro. This phenomenon has been termed ''escape,'' but the mechanism for the effect is not understood. One possible explanation is that bone cell differentiation and recruitment of specific precursor cells, in response to stimulators of resorption, lead to the appearance of osteoclasts that are unresponsive to CT. To test this hypothesis, cell proliferation in neonatal mouse calvaria in organ culture was inhibited by irradiation from a cobalt-60 source. At a dose of 6000 R, (/sup 3/H)thymidine incorporation into intact calvaria was inhibited approximately 90%. Irradiation had no effect on the resorptive response to 0.1 U/ml parathyroid hormone (PTH). However, irradiation induced a dose-dependent inhibition of the escape response which was maximal at 6000 R. A dose of 6000 R did not affect the binding of /sup 125/I-salmon CT to calvaria and decreased PTH stimulation of cyclic AMP release from bone without affecting the cyclic AMP response to CT. Although irradiation caused a dose-dependent inhibition of DNA synthesis, the dose-response curves for that effect and inhibition of escape were not superimposable. A morphologic study of hormonally treated calvaria demonstrated that irradiation prevented the early increase in number of osteoclasts in PTH-treated calvaria that had been observed previously in unirradiated bones. Autoradiography showed that irradiation also prevented the PTH-stimulated recruitment of newly divided mononuclear cell precursors into osteoclasts. This may be correlated with the effect of irradiation to prevent the loss of responsiveness to CT in the presence of PTH.

  18. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  19. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong [University of South China, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, Hengyang, Hunan Province (China)

    2016-11-15

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  20. Determination of irradiation parameters for laser-induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Eichstaedt, J., E-mail: j.eichstadt@utwente.nl [University of Twente, Faculty of Engineering Technology, Chair of Applied Laser Technology, P.O. Box 217, Enschede, 7500 AE (Netherlands); Roemer, G.R.B.E. [University of Twente, Faculty of Engineering Technology, Chair of Applied Laser Technology, P.O. Box 217, Enschede, 7500 AE (Netherlands); Huis in ' t Veld, A.J. [University of Twente, Faculty of Engineering Technology, Chair of Applied Laser Technology, P.O. Box 217, Enschede, 7500 AE (Netherlands); TNO Technical Sciences, Mechatronics, Mechanics and Materials, De Rondom 1, Eindhoven, 5600 HE (Netherlands)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We present an approach for the determination of irradiation parameters for laser-induced periodic surface structures. Black-Right-Pointing-Pointer The approach is based on accumulated fluence and consists of two steps. Black-Right-Pointing-Pointer (1) Determination of fluence domain boundaries and (2) approximation of irradiation parameters. Black-Right-Pointing-Pointer The approach is required to apply LIPSS for surface functionalization. Black-Right-Pointing-Pointer We provide experimental evidence that the accumulated fluence has a decisive role in the spatial emergence of LIPSS. - Abstract: The spatial emergence of laser-induced periodic surface structures (LIPSS) on single-crystalline silicon, upon irradiation with linearly polarized picosecond laser pulses (wavelength {lambda} = 1030 nm, pulse duration {tau} = 6.7 ps, pulse repetition frequency f{sub p} = 1 kHz) was studied theoretically and experimentally, under lateral displacement conditions. An experimental approach is presented for the determination of irradiation parameters of extended surface areas homogenously covered with LIPSS. The approach is based on accumulated fluence and consists of two steps, first the empirical determination of accumulated fluence domain boundaries and second the approximation of irradiation parameters. Such an approach is required for the application of LIPSS in the field of surface functionalization. The approach was successfully applied for structuring extended surface areas, which were homogenously covered with LIPSS. The areas, obtained by different irradiation parameter combinations, satisfying accumulated fluence boundary conditions, show the same type of LIPSS. This observation provides evidence, that the accumulated fluence has a decisive role in the spatial emergence of LIPSS. In the future, further experiments are required to verify the validity and boundaries of the approximations applied.

  1. Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation

    Science.gov (United States)

    Dreyer, T. R.; Siqueira, A. F. P.; Magrini, T. D.; Fiorito, P. A.; Assumpção, M. E. O. A.; Nichi, M.; Martinho, H. S.; Milazzotto, M. P.

    2011-07-01

    Low-level laser irradiation (LLLI) increases ATP production and energy supply to the cell which could increase sperm motility, acrossomal reaction and consequently the fertilizing potential. The aim of this study was to characterize the biochemical and topological changes induced by low power laser irradiation on bull sperm cells. Post-thawing sperm were irradiated with a 633nm laser with fluence rates of 30, 150 and 300mJ.cm-2 (power of 5mW for 1, 5 and 10minutes, respectively); 45, 230, and 450mJ.cm-2 (7.5mW for 1, 5 and 10 minutes); and 60, 300 and 600mJ.cm-2 (10mW for 1, 5 and 10 minutes). Biochemical and metabolical changes were analyzed by FTIR and flow cytometry; oxygen reactive species production was assessed by TBARS and the morphological changes were evaluated by AFM. Motility had no difference among times or powers of irradiation. Increasing in ROS generation was observed with power of 5mW compared to 7.5 and 10mW, and with 10min of irradiation in comparison with 5 and 1min of irradiation. This higher ROS generation was related to an increase in acrossomal and plasma membrane damage. FTIR results showed that the amount of lipids was inversely proportional to the quantity of ROS generated. AFM images showed morphological differences in plasma/acrossomal membrane, mainly on the equatorial region. We conclude that LLLI is an effective method to induce changes on sperm cell metabolism but more studies are necessary to establish an optimal dose to increase the fertility potential of these cells.

  2. Proton irradiation induced defects in GaN: Rutherford backscattering and thermally stimulated current studies

    Science.gov (United States)

    Nakamura, T.; Nishikata, N.; Kamioka, K.; Kuriyama, K.; Kushida, K.

    2016-03-01

    The proton irradiation induced defects in GaN are studied by combining elastic recoil detection analysis (ERDA), thermally stimulated current (TSC), and Rutherford backscattering spectroscopy (RBS) measurements. The proton irradiation (peak concentration: 1.0 × 1015 cm-2) into GaN films with a thickness of 3 μm is performed using a 500 keV implanter. The proton concentration by a TRIM simulation is maximum at 3600 nm in depth, which means that the proton beam almost passes through the GaN film. The carrier concentration decreases three orders of magnitude to 1015 cm-3 by the proton irradiation, suggesting the existence of the proton irradiation-induced defects. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration at ∼220 nm is ∼8.3 × 1013 cm-2 and ∼1.0 × 1014 cm-2 for un-irradiated and as-irradiated samples, respectively, suggesting that electrical properties are almost not affected by hydrogen. TSC measurements show a broad spectrum at around 110 K which can be divided into three traps, P1 (ionization energy 173 meV), P2 (251 meV), and P3 (330 meV). The peak intensity of P1 is much larger than that of P2 and P3. These traps are related to the N vacancy and/or complex involving N vacancy (P1), neutral Ga vacancy (VGa) (P2), and complex involving VGa (P3). The Ga displacement concentration evaluated by RBS measurements is 1.75 × 1019 cm-3 corresponding to 1/1000 of the Ga concentration in GaN. The observed Ga displacement may be origins of P2 and P3 traps.

  3. Light-induced fading of the PSL signal from irradiated herbs and spices

    Science.gov (United States)

    Alberti, A.; Corda, U.; Fuochi, P.; Bortolin, E.; Calicchia, A.; Onori, S.

    2007-08-01

    Reliability of the photo-stimulated luminescence (PSL) technique, as screening method for irradiated food identification, has been tested with three kinds of herbs and spices (oregano, red pepper and fennel), prepared in two different ways (granular: i.e. seeds and flakes, or powdered), over a long period of storage with different light exposures. The irradiated samples kept in the dark gave always a positive response (the sample is correctly classified as "irradiated") for the overall examination period. The samples kept under ambient light conditions, in typical commercial glass containers, exhibited a reduction of the PSL signal, more or less pronounced depending on the type of food and packaging. The different PSL response of the irradiated samples is to be related to the quantity and quality of the mineral debris present in the individual food. It was also found that, for the same type of food, the light-induced fading was much stronger for the flaked and seed samples than for the corresponding powder samples, the penetrating capability of light being much more inhibited in powdered than in whole seeds or flaked form samples. The observed light bleaching of the PSL signal in irradiated herbs and spices is of practical relevance since it may lead to false negative classifications.

  4. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Xue, E-mail: fanx@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-10-30

    Graphical abstract: Low-energy electron irradiation was proposed to nanocrystallize the top-surface of the as-deposited amorphous carbon film, and sp{sup 2} nanocrystallites formed in the film top-surface within 4 nm thickness. Display Omitted - Abstract: We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp{sup 2} nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp{sup 2} nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp{sup 2} nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  5. Cation disordering in magnesium aluminate spinel crystals induced by electron or ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Takeshi E-mail: soeda@regroup5.nucl.kyushu-u.ac.jp; Matsumura, Syo; Kinoshita, Chiken; Zaluzec, Nestor J

    2000-12-01

    Structural changes in magnesium aluminate spinel (MgO {center_dot} nAl{sub 2}O{sub 3}) single crystals, which were irradiated with 900 keV electrons or 1 MeV Ne{sup +} ions at 873 K, were examined by electron channeling enhanced X-ray microanalysis. Unirradiated MgO {center_dot} Al{sub 2}O{sub 3} has a tendency to form the normal spinel configuration, where Mg{sup 2+} ions and Al{sup 3+} ions occupy mainly the tetrahedral and the octahedral sites, respectively. Electron irradiation induces simple cation disordering between the tetrahedral sites and the octahedral sites in MgO {center_dot} Al{sub 2}O{sub 3}. In addition to cation disordering, slight evacuation of cations from the tetrahedral sites to the octahedral sites occurs in a peak-damaged area in MgO {center_dot} Al{sub 2}O{sub 3} irradiated with Ne{sup +} ions. In contrast, cation disordering is suppressed in MgO {center_dot} 2.4Al{sub 2}O{sub 3} irradiated with electrons. The structural vacancies, present in the non-stoichiometric compound, appear to be effective in promoting irradiation damage recovery through interstitial-vacancy recombination.

  6. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  7. Atomistic Analysis Of Radiation-Induced Segregation In Ion-Irradiated Stainless Steel 316

    Directory of Open Access Journals (Sweden)

    Lee G.-G.

    2015-06-01

    Full Text Available Stainless steel (SS is a well-known material for the internal parts of nuclear power plants. It is known that these alloys exhibit radiation-induced segregation (RIS at point defect sinks at moderate temperature, while in service. The RIS behavior of SS can be a potential problem by increasing the susceptibility to irradiation-assisted stress corrosion cracking. In this work, the RIS behavior of solute atoms at sinks in SS 316 irradiated with Fe4+ ions were characterized by atom probe tomography (APT. There were torus-shaped defects along with a depletion of Cr and enrichment of Ni and Si. These clusters are believed to be dislocation loops resulting from irradiation. The segregation of solutes was also observed for various defect shapes. These observations are consistent with other APT results from the literature. The composition of the clusters was analyzed quantitatively almost at the atomic scale. Despite the limitations of the experiments, the APT analysis was well suited for discovering the structure of irradiation defects and performing a quantitative analysis of RIS in irradiated specimens.

  8. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  9. Hesperidin methyl chalcone inhibits oxidative stress and inflammation in a mouse model of ultraviolet B irradiation-induced skin damage.

    Science.gov (United States)

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2015-07-01

    Hesperidin methyl chalcone (HMC) is a safe flavonoid used to treat chronic venous diseases, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress have never been described in vivo. Thus, the purpose of this study was to evaluate the effects of systemic administration of HMC in skin oxidative stress and inflammation induced by UVB irradiation. To induce skin damage, hairless mice were exposed to an acute UVB irradiation dose of 4.14 J/cm(2), and the dorsal skin samples were collected to evaluate oxidative stress and inflammatory response. The intraperitoneal treatment with HMC at the dose of 300 mg/kg inhibited UVB irradiation-induced skin edema, neutrophil recruitment, and matrix metalloproteinase-9 activity. HMC also protected the skin from UVB irradiation-induced oxidative stress by maintaining ferric reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability and antioxidant levels (reduced glutathione and catalase). Corroborating, HMC inhibited UVB irradiation-induced superoxide anion generation and gp91phox (NADPH oxidase subunit) mRNA expression. Furthermore, the antioxidant effect of HMC resulted in lower production of inflammatory mediators, including lipid hydroperoxides and a wide range of cytokines. Taken together, these results unveil a novel applicability of HMC in the treatment of UVB irradiation-induced skin inflammation and oxidative stress.

  10. Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai, E-mail: jai.gupta1983@gmail.com [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Chemical Physics of Materials, Université Libre de Bruxelles, Campus de la Plaine, CP 243, B-1050 Bruxelles (Belgium); Tripathi, A. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India); Gautam, Sanjeev; Chae, K.H.; Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Rigato, V. [INFN Laboratori Nazionali di Legnaro, Via Romea. 4, 35020 Legnaro, Padova (Italy); Tripathi, Jalaj [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India)

    2014-10-15

    The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 10{sup 16} ions/cm{sup 2} become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate. - Highlights: • Phenomenological interpretation of dewetting and embedding of metal NPs in thin film. • Exploring fundamental thermodynamic principles under influence of ion irradiation. • Ion induced surface/interface microstructural changes using SEM/X-TEM. • Ion induced sputtering, thermal spike induced local melting. • Thermodynamic driving forces relate to surface and interfacial energies.

  11. Effect of irradiation on the expression of caspase-3 in the submandibular gland of streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Ki; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2005-09-15

    To observe the histopathological changes and caspace-3 expression in the submandibular gland in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250gm were divided into four groups; control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control and irradiation groups were injected with citrate buffer only. After 5 days, rats in irradiation, and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy to the head and neck region. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histopathological and immunohistochemical methods. In the irradiation group, the condensed nucleus, karyolysis, and degeneration of the acinar cells and atrophy of the duct cells were observed in the early experimental phase. However, the acinar cells were found to be normal at 28 days after irradiation. In the diabetes group, the condensed nucleus, karyolysis, atrophy, and degeneration of the acinar cells were observed in the early experimental phase. However, the acinar cells were found to be normal at 21 days, after diabetic state induction. In the diabetes-irradiation group, the ductal epithelial cells were predominant in their glandular tissues at 28 days after irradiation. In all of the experimental groups, the most prominent change of the acinar cells and ductal cells were observed at 14 days after diabetic state induction and irradiation. The expression of caspase-3 in the acinar cells and ductal cells of the submandibular gland was weak after irradiation, but that in the acinar cells, ductal cells, and fibrous cells of the submandibular gland was prominent after diabetic state induction.

  12. Basic research of the relationship between irradiation dose and volume in radiation-induced pulmonary injury

    Institute of Scientific and Technical Information of China (English)

    PANG Qing-song; WANG Ping; WANG Jing; WANG Wei; WANG Jun; YUAN Zhi-yong

    2009-01-01

    Background Irradiation dose and volume are the major physical factors of radiation-induced lung injury.The study investigated the relationships between the irradiation dose and volume in radiation-induced lung injury by setting up a model of graded volume irradiation of the rat lung.Methods Animals were randomly assigned to three groups.The ELEKTA precise 2.03 treatment plan system was applied to calculate the irradiation dose and volume.The treatment plan for the three groups was:group 1 received a "high dose to a small volume" (25% volume group) with the mean irradiation volume being 1.748 cm3 (25% lung volume);the total dose and mean lung dose (MLD) were 4610 cGy and 2006 cGy,respectively (bilateral AP-PA fields,source to axis distance (SAD)=100 cm,6MVX,single irradiation);Group 2 received a "low dose to a large volume" (100% volume group) with the mean irradiation volume being 6.99 cm3 (100% lung volume);the total dose was 1153 cGy.MLD was 2006 cGy,which was the same as that of group 1 (bilateral AP-PA fields,SAD = 100 cm,6MVX,single irradiation);Group 3 was a control group.With the exception of receiving no irradiation,group 3 had rest steps that were the same as those of the experimental groups.After irradiation,functional,histopathological,and CT changes were compared every two weeks till the 16th week.Results Functionally,after irradiation breath rate (BR) increases were observed in both group 1 and group 2,especially during the period of 6th-8th weeks.The changes of BR in the 100% volume group were earlier and faster.For the 25% volume group,although pathology was more severe,hardly any obvious increase in BR was observed.Radiographic changes were observed during the early period (the 4th week) and the most obvious changes manifested during the mediated period (the 8th week).The extensiveness of high density and the decreased lung permeability were presented in the 100% volume group,and ground glass opacity and patchy consolidation were presented in the 25

  13. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  14. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Directory of Open Access Journals (Sweden)

    Yong Li

    Full Text Available Exposure of human skin to solar ultraviolet (UV irradiation induces matrix metalloproteinase-1 (MMP-1 activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis. Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  15. Use of electron beam irradiation to improve the microbiological safety of Hippophae rhamnoides

    Energy Technology Data Exchange (ETDEWEB)

    Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Department, 409 Atomistilor St., Bucharest-Magurele 077125 (Romania); Nemtanu, M.R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Department, 409 Atomistilor St., Bucharest-Magurele 077125 (Romania)], E-mail: monica.nemtanu@inflpr.ro; Manea, S.; Mazilu, E. [S.C. Hofigal Export-Import S.A., 2A Intrarea Serelor St., 75669, Bucharest 4 (Romania)

    2007-09-21

    Sea buckthorn (Hippophae rhamnoides) is increasingly used in food supplements due to its dietary and medicinal compounds with a beneficial role in human diet and health. As many other medicinal plants, sea buckthorn can be contaminated with microorganisms which exerts an important impact on the overall quality of the products. Irradiation is an effective method for food preservation because it is able to destroy pathogenic microorganisms keeping the organoleptic and nutritional characteristics of the foods. The objective of the present study was to investigate the application of electron beam irradiation in order to improve the microbiological safety of sea buckthorn. The experimental results indicated that the electron beam treatment might be a good method to remove undesirable microorganisms from sea buckthorn without significant changes in its active principles.

  16. Use of electron beam irradiation to improve the microbiological safety of Hippophae rhamnoides

    Science.gov (United States)

    Minea, R.; Nemţanu, M. R.; Manea, S.; Mazilu, E.

    2007-09-01

    Sea buckthorn ( Hippophae rhamnoides) is increasingly used in food supplements due to its dietary and medicinal compounds with a beneficial role in human diet and health. As many other medicinal plants, sea buckthorn can be contaminated with microorganisms which exerts an important impact on the overall quality of the products. Irradiation is an effective method for food preservation because it is able to destroy pathogenic microorganisms keeping the organoleptic and nutritional characteristics of the foods. The objective of the present study was to investigate the application of electron beam irradiation in order to improve the microbiological safety of sea buckthorn. The experimental results indicated that the electron beam treatment might be a good method to remove undesirable microorganisms from sea buckthorn without significant changes in its active principles.

  17. Report on fundamental modeling of irradiation-induced swelling and creep in FeCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dasgupta, Dwaipayan [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-23

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, the material response must be demonstrated to provide suitable radiation stability, in order to ensure that there will not be significant dimensional changes (e.g., swelling), as well as quantifying the radiation hardening and radiation creep behavior. In this report, we describe the use of cluster dynamics modeling to evaluate the defect physics and damage accumulation behavior of FeCrAl alloys subjected to neutron irradiation, with a particular focus on irradiation-induced swelling and defect fluxes to dislocations that are required to model irradiation creep behavior.

  18. Studies on application of radiation and radioisotopes -The application of irradiation techniques for food preservation and process improvement-

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Cho, Han Ok; Cho, Sung Kee; Kang, Il Joon; Yang, Jae Seung; Yook, Heung Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The project was designed to solve the infra structural problem required for commercialization of food irradiation. In improvement of physical properties of corn starch, gamma irradiation was effective for increasing glucose productivity and for substituting traditional modified starches (acid modified starch, oxidized starch). In immobilization of microorganisms, the mass production method of natural red pigment was developed by using immobilized mold pellets. In Korean medicinal plants, 10 kGy gamma irradiation was effective for improving sanitary quality and increasing extraction yield. In evaluation of wholesomeness, gamma irradiated red ginseng could be safe on the genotoxic point of view. And also, six items of irradiated foods approved for human consumption from Korea ministry of health and welfare in May 19, 1995. 30 figs, 20 tabs, 54 refs. (Author).

  19. Mechanisms of induced conductivity in polyvinylidene fluoride irradiated by X-rays

    Science.gov (United States)

    Faria, R. M.

    1992-10-01

    Prompt and delayed components of conductivity of polyvinylidene fluoride (PVDF) samples induced by continuous irradiation of X-rays were measured under vacuum. The prompt component was composed of two distinct parts, classified as instantaneous radiation-induced conductivity (RIC) and time-dependent evolution of the RIC. With the help of thermally stimulated current measurements carried out with both virgin and irradiated samples, which indicated the existence of deep-trap levels in the material, we developed a model of kinetics of the carriers to explain the time-evolution of the RIC. Hot electrons generated by irradiation ware considered as responsible for the instantaneous part of the RIC. We also showed that the electrodes had a nonblocking behaviour during the electrical current measurements under irradiation, while the external electric field caused the generated carriers to drift out of the sample. Nous avons mesuré sous vide la conductivité induite due à la radiation des rayons X sur des échantillons de poly(fluorure de vinylidène), pendant et après irradiation (composante retardée). Pendant l'irradiation la conductivité induite est formée de deux différentes parties : l'une est la conductivité instantanée, et l'autre est une fonction croissante avec le temps. Grâce à la méthode du courant stimulé par la température, exécutée sur des échantillons vierges d'une part, et irradiés d'autre part, nous avons conclu à l'existence de niveaux de pièges profonds dans le matériau. Nous avons par la suite développé un modèle de cinétique des porteurs qui explique l'évolution avec le temps de la conductivité induite. Les électrons chauds créés par la radiation ont été considérés comme responsables de la conductivité induite instantanée. Nous montrons aussi que les électrodes sont non-bloquées pendant les mesures de courant électrique sous irradiation, alors que le champ électrique appliqué rejette les porteurs hors de l'échantillon.

  20. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  1. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  2. Study of the degradation process of polyimide induced by high energetic ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Daniel

    2008-09-19

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10{sup 10}-5 x 10{sup 12} ions/cm{sup 2}). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10{sup 10} ions/cm{sup 2}). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO{sub 2}, and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a

  3. The Effects of Low Dose {gamma}-Irradiation on MIA Induced Joint Inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Seok Chan; Lee, Ko Eun; Kim, Eun-hea; Lee, Tae Woong; Lee, Won Ho; Kim, June Sun [Korea University, College of Health Science, Seoul (Korea, Republic of)

    2010-10-15

    Inflammation of the synovial membrane is associated with the progression of cartilage degeneration and unexpected pain in osteoarthritis (OA). Inflammation produces painful sensations which are largely divided into spontaneous (non-evoked) pain and evoked pain depending on the presence of external stimuli and are characterized by hyperalgesia and allodynia Nitric oxide (NO) is related to the pathogenesis of OA as inflammatory mediator. Inducible nitric oxide synthase (iNOS) is marker of enhanced NO production in arthritic pain. In previously, low dose irradiation can suppress pro-inflammatory cytokines. But, ray therapeutic effect is unclear. Thus, present study examined the preemptive effect of low dose irradiation on the development of inflammatory pain in MIA induced OA animal model

  4. Ion-Irradiation-Induced Ferromagnetism in Undoped ZnO Thin Films

    Science.gov (United States)

    2013-01-01

    Ion-irradiation-induced ferromagnetism in undoped ZnO thin filmsq Siddhartha Mal a,⇑, Sudhakar Nori a, J. Narayan a, J.T. Prater b, D.K. Avasthi c...S, Narayan J, Nori S, Prater JT, Kumar D. Solid State Commun 2010;150:1660. [8] Mal S, Nori S, Jin C, Narayan J, Nellutla S, Smirnov AI, et al. J

  5. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi' an 710024 (China); Bai, Xiaoyan; Chen, Wei; Yang, Shanchao; Liu, Yan; Jin, Xiaoming [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi' an 710024 (China); Ding, Lili [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi' an 710024 (China); Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy)

    2015-10-01

    With semiconductor device simulation software TCAD, numerical simulations of ionizing/displacement synergistic effects on 6 kinds of lateral PNP bipolar transistors induced by the mixed irradiation of neutron and gamma are carried out by means of changing the minority carrier lifetimes, adding charged traps to the oxide layer and increasing the surface recombination velocity in Si/SiO{sub 2} interface. The results indicate that ionizing/displacement synergistic effects on the lateral PNP bipolar transistors are not a simple sum of total ionizing dose effects and displacement effects, and total ionizing dose effects can enhance neutron displacement damages, leading to greater gain degradation. The physical mechanisms of ionizing/displacement synergistic effects are analyzed based on the results. The positive charge in the oxide layer and Si/SiO{sub 2} interface traps induced by gamma irradiation can enhance the recombination processes of carriers in the bulk defects induced by neutron irradiation, and this is the main cause of ionizing/displacement synergistic effects on the lateral PNP bipolar transistors. - Highlights: • Numerical simulation methods of ionizing/displacement synergistic effects induced by the mixed irradiation of neutron and gamma are established with semiconductor device simulation software TCAD. • Ionizing/displacement synergistic effects between the lateral PNP bipolar transistors with different neutral base widths and base doping concentrations are compared. • The difference between ionizing/displacement synergistic effects and the simple sum of total ionizing dose effects and displacement effects is analyzed. • The physical mechanisms of ionizing/displacement synergistic effects are explained.

  6. Detection of some irradiated spices on the basis of radiation induced damage of starch

    Science.gov (United States)

    Farkas, J.; Sharif, M. M.; Koncz, Á.

    Untreated and irradiated samples of spices were suspended in water, alkalized, and after heat-gelatinization, the apparent viscosity was determined by a rotational viscometer. Several spices, i.e. white pepper, black pepper, nutmeg and ginger showed considerable loss of viscosity as a function of γ-radiation dose in the dose range required for microbial decontamination of natural spices. Less promising results were obtained with spices such as allspice, garlic powder, and onion powder forming low-viscosity heat-treated suspensions even when unirradiated viscometric studies were also performed with a number of pepper samples of various origin to estimate the "natural" variation of rheological properties. Irradiation and storage studies were performed with ground black pepper samples of moisture contents in equilibrium with air of 25%, 50% and 75% R.H., respectively, either untreated or irradiated with 4, 8, 16 or 32 kGy, to study the effect of equilibrium relative humidity and storage time on detectability of radiation treatment. During the entire storage period of 100 days, statistically significant differences of the apparent viscosities of heat-gelatinized suspensions remained detectable between untreated samples and those irradiated with 8 kGy or higher doses. The apparent viscosity of high-moisture (75% E.R.H.) untreated samples was decreasing during long-term storage. Differences between viscosities of untreated and irradiated samples were enlarged when measured at elevated temperatures such as 50°C in the rotational viscometer, or in the boiling-water bath of a falling number apparatus. Other analytical indices such as onset and peak temperatures of gelatinization endotherms by DSC (damaged starch content), by colorimetry, reducing sugar content, alcohol-induced turbidity of hot water extracts of pepper samples, have been changed less dramatically by irradiation than the apparent viscosity of the gelatinized suspensions

  7. Radiation-Induced Topological Disorder in Irradiated Network Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Linn W.

    2002-12-21

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  8. Transfection of p27 kip1 enhances radiosensitivity induced by 60Coγ-irradiation in hepatocellular carcinoma HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xiang Guan; Long-Bang Chen; Gui-Xia Ding; Wei De; Ai-Hua Zhang

    2004-01-01

    AIM: To study the cell cycle alterations of human hepatoma cell line HepG2 in vitro after 60Co γ-irradiation and further to examine the mechanisms underlying the enhancement of radiosensitivity to γ-irradiation in HepG2 transiently transfected with wild type p27kip1.METHODS: The proliferation of HepG2 cells was evaluated with MTT assay, and the cell cycle profile and apoptosis were assessed by cell morphology, DNA fragmentation analysis and flow cytometry. HepG2 cells were transfected with p27kip1 wild type by using Lipofectamine (LF2000), and the expression and subcellular localization of p27kip1 in HepG2were detected by immunocytochemistry.RESULTS: 60Co γ-irradiation inhibited the growth of HepG2cells in a dose-dependent manner. Apoptosis of HepG2 cells was induced 48 h after γ ray exposure. Furthermore research was carried out to induce exogenous expression of p27kip1in HepG2. The expression of p27kip1 induced G0/G1 phase arrest in HepG2 cells. The overexpression of p27kip1 enhanced 60Co γ-irradiation-induced radiosensitivity in HepG2 cells.CONCLUSION: Overexpression of p27kip1 is a rational approach to improve conventional radiotherapy outcomes, which may be a possible strategy for human hepatoma therapy.

  9. Signalling pathways induced in cells exposed to medium from irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, F.M.; Maguire, P. (Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland)); McClean, B.; Seymour, C.; Mothersill, C. (St Luke' s Hospital, Dublin (Ireland))

    2008-12-15

    In recent years, radiation induced bystander effects have been reported in cells which were not themselves irradiated but were either in the vicinity of irradiated cells or exposed to medium from irradiated cells. The effects have been clearly shown to occur both in vivo and in vitro. This work has led to a paradigm shift in radiobiology over the last 5 - 10 years. The target theory of radiation induced effects is now being challenged because of an increasing number of studies which demonstrate non(DNA)-targeted effects. These effects appear to be particularly important at low doses. Considerable evidence now exists relating to radiation-induced bystander effects but the mechanisms involved in the transduction of the signal are still unclear. Cell - cell communication through gap junctions and / or secretion of a cytotoxic factor into the medium are thought to be involved in the transduction of the bystander signal. Oxidative metabolism has been shown to be important in both mechanisms. Signalling pathways leading to apoptosis, such as calcium, MAP kinase, mitochondrial and reactive oxygen species (ROS) signalling are discussed. The importance of oxidative metabolism and calcium signalling in bystander responses are demonstrated. Further investigations of these signalling pathways may aid in the identification of novel therapeutic targets. (orig.)

  10. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    Science.gov (United States)

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  11. Post Irradiation Examination of a Thermo-Mechanically Improved Version of EUROFER ODS

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Leenaers, A.; Vandermeulen, W.

    2006-08-15

    EUROFER is a 9Cr-1W-0.2V-0.1Ta reduced activation ferritic/martensitic (RAFM) steel, presently considered within the European Union as the primary candidate structural material in a fusion power plant. Its mechanical strength properties currently prevent its use at temperatures higher than 500-550 degrees Celsius. In an effort to extend the range of operating temperatures to 600-650 degrees Celsius and therefore enhance the efficiency of the machine, a different production route, Oxide Dispersion Strengthening (ODS), is being investigated. The characteristics of different versions of EUROFER ODS have been assessed in recent years, leading to the improvement of the material by a combination of optimized production process and post-thermal treatment. Until recently, the mechanical properties of EUROFER ODS had only been investigated in the unirradiated condition, and no information was available for the irradiation response of the material. However, mechanical samples have been irradiated during 2004-2005 at 300 degrees Celsius in the Belgian Reactor 2 (BR2) in Mol to an accumulated dose of 1.73 dpa; tensile, Charpy impact and fracture toughness tests have been performed in the hot cell laboratories of the Belgian Nuclear Centre (SCK-CEN). Metallographic and microstructural investigations were also performed on the investigated material in both the unirradiated and irradiated condition.

  12. Effects of mixing-induced irradiance fluctuations on nitrogen uptake in size-fractionated coastal phytoplankton communities

    Science.gov (United States)

    Maguer, Jean-François; L'Helguen, Stéphane; Waeles, Matthieu

    2015-03-01

    In coastal waters subjected to strong tidal forcing, phytoplankton populations are exposed to highly variable light regimes. To grow under such fluctuating light environments, phytoplankton adjust their physiological properties. Here, we investigated nitrogen (N) uptake patterns in the western English Channel to determine whether phytoplankton modify their physiological processes involved in N uptake in response to changing irradiance conditions induced by spring-neap tidal cycles. Nitrate (NO3-) and ammonium (NH4+) uptake kinetics as a function of irradiance (VN-E curves) were assessed using 15N tracer techniques on two size fractions (10 μm) of phytoplankton collected at 50% and 1% of surface irradiance during two spring-neap tidal cycles. Overall, the results showed that both small and large phytoplankton, whatever their vertical position in the water column, increased their maximum uptake capacity and their light utilization efficiency for the two N substrates following the decrease in vertical mixing intensity. Moreover, the improvement of irradiance conditions at neap tides was of greater benefit for the larger cells than for the smaller ones and was more favorable for NO3- uptake than for NH4+ uptake. These findings show that the light regime fluctuation resulting from the relaxation of tidal mixing during spring-neap tidal cycle leads to profound physiological adjustments of N uptake processes in phytoplankton communities. They suggest that the changes in NO3- uptake by large phytoplankton associated with the fortnightly spring-neap tidal cycle can account for most of the deviation in background productivity in the western English Channel which is based on NH4+ and is dominated by small cells. The dynamic light regime inherent to macrotidal coastal ecosystems could therefore determine, to a large extent, the importance of new vs. regenerated production as well as the size structure of the phytoplankton community.

  13. Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability.

    Science.gov (United States)

    Shayan, Mahdis; Jung, Youngsoo; Huang, Po-Shun; Moradi, Marzyeh; Plakseychuk, Anton Y; Lee, Jung-Kun; Shankar, Ravi; Chun, Youngjae

    2014-12-01

    Osteoblast response was evaluated with polymethylmethacrylate (PMMA)/titanium dioxide (TiO2) nanocomposite thin films that exhibit the controllable wettability with ultraviolet (UV) treatment. In this study, three samples of PMMA/TiO2 were fabricated with three different compositional volume ratios (i.e., 25/75, 50/50, and 75/25) followed by UV treatment for 0, 4, and 8 h. All samples showed the increased hydrophilicity after UV irradiation. The films fabricated with the greater amount of TiO2 and treated with the longer UV irradiation time increased the hydrophilicity more. The partial elimination of PMMA on the surface after UV irradiation created a durable hydrophilic surface by (1) exposing higher amount of TiO2 on the surface, (2) increasing the hydroxyl groups on the TiO2 surface, and (3) producing a mesoporous structure that helps to hold the water molecules on the surface longer. The partial elimination of PMMA on the surface was confirmed by Fourier transform infrared spectroscopy. Surface profiler and atomic force microscopy demonstrated the increased surface roughness after UV irradiation. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that particles containing calcium and phosphate elements appeared on the 8 h UV-treated surface of PMMA/TiO2 25/75 samples after 4 days soaking in Dulbecco's Modified Eagle Medium. UV treatment showed the osteoblast adhesion improved on all the surfaces. While all UV-treated hydrophilic samples demonstrated the improvement of osteoblast cell adhesion, the PMMA/TiO2 25/75 sample after 8 h UV irradiation (n = 5, P value = 0.000) represented the best cellular response as compared to other samples. UV-treated PMMA/TiO2 nanocomposite thin films with controllable surface properties represent a high potential for the biomaterials used in both orthopedic and dental applications.

  14. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    Science.gov (United States)

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering.

  15. Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation

    Science.gov (United States)

    Rokhsat, Eliza; Akhavan, Omid

    2016-05-01

    Graphene oxide (GO) sheets with a low concentration (∼1 wt%) were deposited on surface of hydrothermally synthesized ZnO nanorod films. The deposited films were heat treated at 450 °C in order to achieve suitable GO/ZnO hybrid thin films for photocatalytic purposes. The photocatalytic activity of the nanocomposite films was investigated based on degradation of methylene blue (MB) dye which is a typical pollutant model. The GO/ZnO hybrid thin films could degrade higher MB (∼90%) than the bare ZnO nanorods (which showed only ∼75% degradation) after 450 min UV irradiation. A further significant improvement (resulting in a nearly complete degradation of MB) was achieved by exposing the GO/ZnO films to UV irradiation. The improvement was assigned to UV-assisted photocatalytic reduction of GO sheets and separation of photoexcited electron-hole pairs of ZnO by the UV-treated GO sheets. These results highlight application of UV treatment in improving the photocatalytic activity of GO-containing ZnO nanostructures.

  16. The Role of DNA Methylation Changes in Radiation-Induced Bystander Effects in cranial irradiated Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Xue, Bei; Wang, Xinwen; Wang, Jiawen

    2016-07-01

    Heavy-ion radiation could lead to bystander effect in neighboring non-hit cells by signals released from directly-irradiated cells. The exact mechanisms of radiation-induced bystander effect in distant organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in bystander effect. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were cranial exposed to 40, 200, 2000mGy dose of carbon heavy-ion radiation, while the rest of the animal body was shielded. The γH2AX foci as the DNA damage biomarker in directly irradiation organ ear and the distant organ liver were detected on 0, 1, 2, 6, 12 and 24h after radiation, respectively. Methylation-sensitive amplifcation polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that cranial irradiated mice could induce the γH2AX foci and genomic DNA methylation changes significantly in both the directly irradiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate were highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation in ear. The global DNA methylation changes tended to occur in the CG sites. We also found that the numbers of γH2AX foci and the genomic methylation changes of heavy-ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo. Keywords: Heavy-ion radiation; Bystander effect; DNA methylation; γH2

  17. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    Science.gov (United States)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-08-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  18. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Gil-Hah, E-mail: khkim@chungbuk.ac.kr [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-01-15

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: > Electron beam irradiation inhibited normal development of the leaf miner. > Electron beam irradiation inhibited normal reproduction of the leaf miner. > Electron beam irradiation increased levels of DNA damage. > Electron beam irradiation induced p53 stability.

  19. Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats.

    Science.gov (United States)

    Wiegman, Erwin M; van Gameren, Mieke M; Kampinga, Harm H; Szabó, Ben G; Coppes, Rob P

    2004-07-01

    The purpose of this study was to investigate whether application of post-irradiation vitamin E, an anti-oxidant, could prevent the development of radiation induced lung damage. Wistar rats were given vitamin E enriched or vitamin E deprived food starting from 4 weeks after 18Gy single dose irradiation of the right thorax. Neither breathing frequencies nor CT density measurements revealed differences between the groups. It is concluded that post-irradiation vitamin E does not influence radiation-induced fibrosis to the lung.

  20. Analysis of irradiation induced defects on carbon nanostructures and their influences on nanomechanical and morphological properties using molecular dynamics simulation

    Science.gov (United States)

    Pregler, Sharon Kay

    areas between the fiber and matrix to improve compatibility in polymer composites. Inducing crosslinks between shells of the MWNT by irradiation drastically decreased the sword in sheath deformation, where inner shells slip out with respect to outer shells, that was computationally demonstrated. A similar procedure was also carried out on carbon nanotube - polystyrene composites. Argon irradiation was simulated for three different types of nanotubes: double-walled, single-walled, and a bundle of four single-walled nanotubes, in a polystyrene matrix. The polymer emission, depth of particle penetration, and nanotube pullouts were observed, it was shown that the presence of carbon nanotubes limited these processes. Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) images in conjunction with AIREBO molecular dynamics simulation trajectories of C60 and pentacene films of various ratios gave theoretical and experimental insight on the molecular evolution of donor and acceptor aggregation for optimizing the design of effective organic semiconductors. Atomic-scale simulations are thus shown to be a powerful computational tool to better understand the properties of carbon nanostructures and hydrocarbons. This dissertation illustrates how effective they are for providing insight on chemical modification, nanomechanical deformation, and equilibration mechanisms on the atomic scale.

  1. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Directory of Open Access Journals (Sweden)

    Christoph Lahtz

    Full Text Available Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137Cs radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  2. Irradiation induced injury reduces energy metabolism in small intestine of Tibet minipigs.

    Directory of Open Access Journals (Sweden)

    Yu-Jue Wang

    Full Text Available BACKGROUND: The radiation-induced energy metabolism dysfunction related to injury and radiation doses is largely elusive. The purpose of this study is to investigate the early response of energy metabolism in small intestinal tissue and its correlation with pathologic lesion after total body X-ray irradiation (TBI in Tibet minipigs. METHODS AND RESULTS: 30 Tibet minipigs were assigned into 6 groups including 5 experimental groups and one control group with 6 animals each group. The minipigs in these experimental groups were subjected to a TBI of 2, 5, 8, 11, and 14 Gy, respectively. Small intestine tissues were collected at 24 h following X-ray exposure and analyzed by histology and high performance liquid chromatography (HPLC. DNA contents in this tissue were also examined. Irradiation causes pathologic lesions and mitochondrial abnormalities. The Deoxyribonucleic acid (DNA content-corrected and uncorrected adenosine-triphosphate (ATP and total adenine nucleotides (TAN were significantly reduced in a dose-dependent manner by 2-8 Gy exposure, and no further reduction was observed over 8 Gy. CONCLUSION: TBI induced injury is highly dependent on the irradiation dosage in small intestine and inversely correlates with the energy metabolism, with its reduction potentially indicating the severity of injury.

  3. Anethole Isomerization and Dimerization Induced by Acid Sites or UV Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Stashenko

    2010-07-01

    Full Text Available The formation of cis-anethole and various dimers as a result of the exposure of trans-anethole to microporous solid acids (dealuminated HY zeolites, or UV-Vis irradiation was established by means of high resolution gas chromatography coupled to mass spectrometry. 3,4-bis-(4-Methoxyphenyl-(E-hex-2-ene was the most abundant compound among eight different methoxyphenyl-disubstituted hexenes produced by electrophilic addition and elimination reactions induced by HY zeolites. (1a,2a,3b,4b-1,2-bis(4-Methoxyphenyl-3,4-dimethylcyclobutane was the principal component in the mixture of 5 methoxyphenyl-disubstituted cyclobutanes found, together with cis-anethole, after UV-Vis irradiation of a trans-anethole solution in toluene.

  4. The Effect of Eectronic Energy Loss on Irradiation-Induced Grain Growth in Nanocrystalline Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen; Aidhy, Dilpuneet S.; Varga, Tamas; Moll, Sandra; Edmondson, P. D.; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N.; Weber, William J.

    2014-01-01

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, contributions from both displacement damage and ionization to the grain growth are identified. Our atomistic simulations have revealed fast grain boundary (GB) movements due to the high density of disorder near GBs. Our experimental results have shown that irradiation-induced grain growth is a function of total energy deposited, where the excitation of target electrons and displacement of lattice atoms both contribute to the overall disorder and both play important roles in grain growth. The coupling of energy deposition to the electronic and lattice structures should both be taken into consideration when engineering nanostructural materials.

  5. Study on Plasmid and Damage Induced by Low-energy Neon Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    MaQiufeng; WangXiao; JinGenming; LiWenjian; DangBingrong; XieHongmei; ZhouLibin; MaoShuhong

    2003-01-01

    DNA is considered to be the most important and sensitive target in biological systems. Beside base damage, DNA strand breaks are the major lesion in the genome due to exposure to ionizing radiation. Mutation can be introduced to DNA as a result of enzymatic processing of DNA lesions or post-irradiation replication. However, the mechanisms of radiation-induced mutations are not well clarified at the molecular level. A good way to approach the mechanism is to irradiate the plasmid DNA of heavy ion, then transfect the DNA to host cells to determine the mutation spectra. So to study the effect of heavy ions on the simple plasmid DNA is even predominant or more feasible.

  6. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  7. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan [School of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Li, Guo-Hua, E-mail: nanozjut@zjut.edu.cn [School of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Research Center of Nanoscience and Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Chen, Xiao-Ping, E-mail: chxp@zjut.edu.cn [School of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Zheng, Jian-Hui [School of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014 (China)

    2013-08-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe.

  8. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  9. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  10. Evaluation of induced radioactivity in 10 MeV-electron irradiated spices, (1); [gamma]-ray measurement

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Shibata, Setsuko; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1994-02-01

    Black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electrons from a linear accelerator to a dose of 100 kGy and radioactivity was measured in order to estimate induced radioactivity in the irradiated foods. Induced radioactivity could not be detected significantly by [gamma]-ray spectrometry in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list of photonuclear reactions which could produce radioactivity below 10 MeV. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (author).

  11. Amorphization of silicon via electronic processes induced by irradiation with fullerenes; Amorphisation du silicium par processus electroniques induits par irradiation avec des fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Canut, B.; Bonardi, N.; Ramos, S.M.M. [Universite Claude Bernard, Dept. de Physique des Materiaux, UMR CNRS, 69 - Lyon (France); Della Negra, S. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France)

    1999-07-01

    For the first time it is shown that single crystalline silicon is sensitive to collective electronic excitations. Irradiations with C{sub 60} clusters accelerated in the 10 MeV range induce the formation of amorphous latent tracks in this material. This result has never been observed with high energy heavy ions, it means that what may matter is the very high electronic energy density deposited in the silicon by the incident cluster. TEM (transmission electronic microscopy) analysis of irradiated samples have enable us to measure surface damage cross-sections: 55 nm{sup 2} and 87 nm{sup 2} for irradiations with C{sub 60}{sup 2+} beams and C{sub 60}{sup 3+} beams accelerated respectively to 30 and 40 MeV. (A.C.)

  12. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Gibson, L.T. [Oak Ridge National Laboratory, TN (United States); Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  13. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  14. Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-γ, IL-12/IL-4, IL-5 balance.

    Science.gov (United States)

    Xiong, Shanshan; Guo, Renfeng; Yang, Zhihua; Xu, Long; Du, Li; Li, Ruoxi; Xiao, Fengjun; Wang, Qianjun; Zhu, Maoxiang; Pan, Xiujie

    2015-11-01

    Irradiation-induced pulmonary fibrosis results from thoracic radiotherapy and severely limits radiotherapy approaches. CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) are involved in experimentally induced murine lung fibrosis. However, the precise contribution of Tregs to irradiation-induced pulmonary fibrosis still remains unclear. We have previously established the mouse model of irradiation-induced pulmonary fibrosis and observed an increased frequency of Tregs during the process. This study aimed to investigate the effects of Treg depletion on irradiation-induced pulmonary fibrosis and on fibrocyte, Th17 cell response and production of multiple cytokines in mice. Treg-depleted mice were generated by intraperitoneal injection with anti-CD25 mAb 2h after 20 Gy (60)CO γ-ray thoracic irradiation and every 7 days thereafter. Pulmonary fibrosis was semi-quantitatively assessed using Masson's trichrome staining. The proportions of Tregs, fibrocyte and Th17 cells were detected by flow cytometry. Th1/Th2 cytokines were assessed by Luminex assays. We found that Treg depletion decelerated the process of irradiation-induced pulmonary fibrosis and hindered fibrocyte recruitment to the lung. In response to Treg depletion, the number of CD4(+) T lymphocytes and Th17 cells increased. Moreover, Th1/Th2 cytokine balance was disturbed into Th1 dominance upon Treg depletion. Our study demonstrates that Tregs are involved in irradiation-induced pulmonary fibrosis by promoting fibrocyte accumulation, attenuating Th17 response and regulating Th1/Th2 cytokine balance in the lung tissues, which suggests that Tregs may be therapeutically manipulated to decelerate the progression of irradiation-induced pulmonary fibrosis.

  15. Radiation induced segregation and precipitation behavior in self-ion irradiated Ferritic/Martensitic HT9 steel

    Science.gov (United States)

    Zheng, Ce; Auger, Maria A.; Moody, Michael P.; Kaoumi, Djamel

    2017-08-01

    In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470 °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α‧ phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.

  16. Topical Administration of Manuka Oil Prevents UV-B Irradiation-Induced Cutaneous Photoaging in Mice

    Directory of Open Access Journals (Sweden)

    Oh Sook Kwon

    2013-01-01

    Full Text Available Manuka tree is indigenous to New Zealand, and its essential oil has been used as a traditional medicine to treat wounds, fever, and pain. Although there is a growing interest in the use of manuka oil for antiaging skin care products, little is known about its bioactivity. Solar ultraviolet (UV radiation is the primary environmental factor causing skin damage and consequently premature aging. Therefore, we evaluated manuka oil for its effects against photoaging in UV-B-irradiated hairless mice. Topical application of manuka oil suppressed the UV-B-induced increase in skin thickness and wrinkle grading in a dose-dependent manner. Application of 10% manuka oil reduced the average length, depth, and % area of wrinkles significantly, and this was correlated with inhibition of loss of collagen fiber content and epidermal hyperplasia. Furthermore, we observed that manuka oil could suppress UV-B-induced skin inflammation by inhibiting the production of inflammatory cytokines. Taken together, this study provides evidence that manuka oil indeed possesses antiphotoaging activity, and this is associated with its inhibitory activity against skin inflammation induced by UV irradiation.

  17. Reducing the pollution risk of pesticide using nano networks induced by irradiation and hydrothermal treatment.

    Science.gov (United States)

    Sun, Xiao; Liu, Zuojun; Zhang, Guilong; Qiu, Guannan; Zhong, Naiqin; Wu, Lifang; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Traditional pesticides (TP) often do not adhere tightly to crop foliage. They can easily enter the surrounding environment through precipitation and volatilization. This can result in the pollution of the surrounding soil, water, and air. To reduce pesticide pollution, we developed a loss-control pesticide (LCP) by adding attapulgite with a nano networks structure fabricated using high energy electron beam (HEEB) irradiation and hydrothermal treatment to TP. HEEB irradiation effectively dispersed originally aggregated attapulgite through modified thermal, charge, and physical effects. Hydrothermal treatment further enhanced the dispersion of attapulgite to form nano porous networks via thermal and wet expansion effects, which are beneficial for pesticide binding. An LCP has improved retention on crop leaf surfaces. It has a higher adhesion capacity, reduced leaching and volatilization, and extended residual activity compared with the TP formulation. The treatment increases the residual activity of pesticides on crop foliage and decreases environmental pollution.

  18. Microstructural analysis of ion-irradiation-induced hardening in inconel 718

    Science.gov (United States)

    Hashimoto, N.; Hunn, J. D.; Byun, T. S.; Mansur, L. K.

    2003-05-01

    As an assessment for a possible accelerator beam line window material for the US Spallation Neutron Source (SNS) target, performance, radiation-induced hardening and microstructural evolution in Inconel 718 were investigated in both solution annealed (SA) and precipitation hardened (PH) conditions. Irradiations were carried out using 3.5 MeV Fe +, 370 keV He + and 180 keV H + either singly or simultaneously at 200 °C to simulate the damage and He/H production in the SNS target vessel wall. This resulted in systematic hardening in SA Inconel and gradual net softening in the PH material. TEM microstructural analysis showed the hardening was associated with the formation of small loop and faulted loop structures. Helium-irradiated specimens included more loops and cavities than Fe + ion-irradiated specimens. Softening of the PH material was due to dissolution of the γ '/γ ″ precipitates. High doses of helium were implanted in order to study the effect of high retention of gaseous transmutation products. Simultaneous with the hardening and/or softening due to the displacement damage cascade, helium filled cavities produced additional hardening at high concentrations.

  19. Investigation of reactor neutron irradiation induced dark signals increase in COTS array CCDs

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-09-01

    Full Text Available The experiments of reactor neutron irradiation which induce dark signal increase in COTS array CCDs are presented. The flux of the reactor neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed to 1MeV neutron-equivalent fluences of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal non-uniformity (DSNU, and dark signal spikes (hot pixels versus neutron fluence are investigated. The degradation mechanisms of the dark signal in CCDs are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from the CCDs irradiated by neutrons are presented to investigate the generation of dark signal spike. The 1D and 2D figures which show the output signal voltage of pixels in dark images irradiated by different neutron beam fluences, are presented to compare the degradation of KD, DSNU, and dark signal spike.

  20. Modification of magnetic anisotropy induced by swift heavy ion irradiation in cobalt ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nongjai, Razia [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Khan, Shakeel, E-mail: skhanapad@gmail.com [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Ahmed, Hilal; Khan, Imran [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Annapoorni, S. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gautam, Sanjeev [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Lin, Hong-Ji; Chang, Fan-Hsiu [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Hwa Chae, Keun [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Asokan, K. [Material Science Division, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-11-15

    The present study demonstrates the modification of magnetic anisotropy in cobalt ferrite (CoFe{sub 2}O{sub 4}) thin films induced by swift heavy ion irradiations of 200 MeV Ag-ion beams. The study reveals that both magnetizations and coercive field are sensitive to Ag-ions irradiation and to the fluences. The magnetic anisotropy enhanced at low fluence of Ag-ions due to domain wall pinning at defect sites created by ion bombardment and at high fluence, this magnetic anisotropy ceases and changes to isotropic behavior which is explained based on the significant structural and morphological changes. An X-ray absorption and x-ray magnetic circular dichroism studies confirms the inverse spinel structure of these compounds. - Highlights: • CoFe{sub 2}O{sub 4} thin films have been deposited on Silicon substrate by pulsed laser deposition technique. • Swift heavy ion irradiation of thin films at three different fluences. • Studied the structural and magnetic properties of the samples. • XRD and Raman studies indicate strain in the films. • Observed perpendicular magnetic anisotropy.

  1. A model of calcium signaling and degranulation dynamics induced by laser irradiation in mast cells

    Institute of Scientific and Technical Information of China (English)

    SHI XiaoMin; ZHENG YuFan; LIU ZengRong; YANG WenZhong

    2008-01-01

    Recent experiments show that calcium signaling and degranulation dynamics induced by low power laser irradiation in mast cells must rely on extracellular Ca2+ influx. An analytical expression of Ca2+ flux through TRPV4 cation channel in response to interaction of laser photon energy and extracellular Ca2+ is deduced, and a model characterizing dynamics of calcium signaling and degranulation activated by laser irradiation in mast cells is established. The model indicates that the characteristics of calcium signaling and degranulation dynamics are determined by interaction between laser photon energy and Ca2+ influx. Extracellular Ca2+ concentration is so high that even small photon energy can activate mast cells, thus avoiding the possible injury caused by laser irradiation with shorter wavelengths. The model predicts that there exists a narrow parameter domain of photon energy and extracellular Ca2+ concentration of which results in cytosolic Ca2+ limit cycle oscillations, and shows that PKC activity is in direct proportion to the frequency of Ca2+ oscillations. With the model it is found that sustained and stable maximum plateau of cytosolic Ca2+ concentration can get optimal degranulation rate. Furthermore, the idea of introducing the realistic physical energy into model is applicable to modeling other physical signal transduction systems.

  2. Irradiation-induced precipitation and mechanical properties of vanadium alloys at <430 C

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Gazda, J.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-09-01

    Recent attention to V-base alloys has focused on the effect of low-temperature (<430 C) irradiation on tensile and impact properties of V-4Cr-4Ti. In previous studies, dislocation channeling, which causes flow localization and severe loss of work-hardening capability, has been attributed to dense, irradiation-induced precipitation of very fine particles. However, efforts to identify the precipitates were unsuccessful until now. In this study, analysis by transmission electron microscopy (TEM) was conducted on unalloyed V, V-5Ti, V-3Ti-1Si, and V-4Cr-4Ti specimens that were irradiated at <430 C in conventional and dynamic helium charging experiments. By means of dark-field imaging and selected-area-diffraction analysis, the characteristic precipitates were identified to be (V,Ti{sub 1{minus}x})(C,O,N). In V-3Ti-1Si, precipitation of (V,Ti{sub 1{minus}x})(C,O,N) was negligible at <430 C, and as a result, dislocation channeling did not occur and work-hardening capability was high.

  3. Effect of proton and electron-irradiation intensity on radiation-induced damages in silicon bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, Yu.A.; Gorin, B.M.; Kozhevnikov, V.P.; Mikhnovich, V.V.; Gusev, L.I.

    1981-11-01

    The increase of radiation-induced damages of bipolar n-p-n transistors 8-12 times with the irradiation intensity decrease by protons from 4.07x1010 to 2.5x107 cm-2 x c-1 has been found experimentally. Damages of p-n-p transistors vary in the opposite way - they are decreased 2-3 times with the irradiation intensity decrease within the same limits. The dependence of damages on intensity of proton irradiation occurs at the dose rate by three orders less than it has been observed for electron irradiation. The results obtained are explained by the dependence of radiation defect formation reactions on charge state of defects with account for the role of formation of disordering regions upon proton irradiation.

  4. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    Science.gov (United States)

    Liu, Hanzhou; Yu, Ming; Deng, Bo; Li, Linfan; Jiang, Haiqing; Li, Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA).

  5. Thermal Stress-Induced Birefringence in Borate Glass Irradiated by Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    DAI Ye; YU Bing-Kun; LU Bo; QIU Jian-Rong; YAN Xiao-Na; JIANG Xiong-Wei; ZHU Cong-Shan

    2005-01-01

    @@ Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.

  6. In Situ Studies on the Irradiation-Induced Twin Boundary-Defect Interactions in Cu

    Science.gov (United States)

    Fan, C.; Li, Jin; Fan, Zhe; Wang, H.; Zhang, X.

    2017-08-01

    Polycrystalline Cu films with nanoscale annealing twins are subjected to in situ Kr++ ion irradiation at room temperature inside a transmission electron microscope up to a dose of 1 displacement-per-atom. Radiation induces prominent migration of incoherent twin boundaries. Depending on twin thickness, three types of twin boundary evolutions are observed, including rapid detwinning, gradual detwinning, and self-healing. The mechanism of twin thickness-dependent evolution of microstructures is discussed. This study provides further evidence on twin boundary-defect interactions and may assist the design of radiation-tolerant twinned metallic materials.

  7. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-09-30

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ∼50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  8. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    Science.gov (United States)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2013-09-01

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ˜50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  9. Soft-mold-induced self-construction of polymer patterns under microwave irradiation

    Science.gov (United States)

    Ko, Fu-Hsiang; Wu, Chia-Tien; Chen, Mei-Fen; Chen, Jem-Kun; Chu, Tieh-Chi

    2007-05-01

    In this study, the authors used a soft-mold-induced self-construction method to fabricate three-dimensional patterns under microwave irradiation for 1min. The authors estimated the actual pattern growth temperature using a fluorescence probe technique. The temperature at which pattern growth originated was, by necessity, higher than the glass transition temperature of the novolak resist. Electrostatic forces and surface tension effects under the electromagnetic field contributed significantly to the pattern growth, and the use of an antisticking agent allowed easy demolding.

  10. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  11. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line

    Institute of Scientific and Technical Information of China (English)

    CHEN ShengWei; CHEN PeiDu; WANG XiuE

    2008-01-01

    Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an Important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum - H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H, villosa 6VS/6AL trsnslocation line were irradiated by 60Co-γ ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2-3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translocation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by bsckcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome structural changes, especially for interstitial translocations.

  12. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum – H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H. villosa 6VS/6AL translocation line were irradiated by 60CO-γ ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2-3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translo-cation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by backcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome struc-tural changes, especially for interstitial translocations.

  13. Improvement of switching speed of a 600-V nonpunch through insulated gate bipolar transistor using fast neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ha Ni; Sun, Gwang Min; Kim, Ji Suck; Hoang, Sy Minh Tuan; Jin, Mi Eun; Ahn, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    Fast neutron irradiation was used to improve the switching speed of a 600-V nonpunch-through insulated gate bipolar transistor. Fast neutron irradiation was carried out at 30-MeV energy in doses of 1 × 10{sup 8} n/cm{sup 2}, 1 × 10{sup 9} n/cm{sup 2}, 1 × 10{sup 10} n/cm{sup 2}, and 1 × 10{sup 11} n/cm{sup 2}. Electrical characteristics such as current–voltage, forward on-state voltage drop, and switching speed of the device were analyzed and compared with those prior to irradiation. The on-state voltage drop of the initial devices prior to irradiation was 2.08 V, which increased to 2.10 V, 2.20 V, 2.3 V, and 2.4 V, respectively, depending on the irradiation dose. This effect arises because of the lattice defects generated by the fast neutrons. In particular, the turnoff delay time was reduced to 92 nanoseconds, 45% of that prior to irradiation, which means there is a substantial improvement in the switching speed of the device.

  14. Evaluation of induced radioactivity in 10 MeV-Electron irradiated spices, (2); [beta]-ray counting

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tadashi; Furuta, Masakazu; Shibata, Setsuko; Matsunami, Tadao; Ito, Norio; Mizohata, Akira; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1994-02-01

    In order to check radioactivity of beta-emmitters produced by ([gamma], n) reactions which could occur at energies up to 10 MeV, black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electron from a linear accelerator to a dose of 100 kGy. Beta-rays were counted using a 2[pi] gas flow counter and a liquid scintillation counter. Any induced radioactivity could not be detected in irradiated samples. When inorganic compounds containing the nuclides in the list were artificially added in the samples and were irradiated, the [beta]-activities were detected. From the amount of observed radioactivities of [beta]-emmitters produced in the compounds as photonuclear products, it is concluded that the induced radioactivity in natural samples by 10 MeV-electron irradiation were far smaller than natural radioactivity from [sup 40]K contained in the samples and, hence, its biological effects should be negligible. (author).

  15. Total lymphoid irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  16. Electron-irradiation induced changes in structural and magnetic properties of Fe and Co based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.N., E-mail: kane_sn@yahoo.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Satalkar, M., E-mail: satalkar.manvi@gmail.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Ghosh, A.; Shah, M. [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Ghodke, N. [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001 (India); Pramod, R.; Sinha, A.K.; Singh, M.N.; Dwivedi, J. [Raja Ramanna Centre for Advanced Technology, P.O. CAT, Indore 452013 (India); Coisson, M.; Celegato, F.; Vinai, F.; Tiberto, P. [INRIM, Electromagnetism Division, Strada Delle Cacce 91, I-10135 TO (Italy); Varga, L.K. [RISSPO, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary)

    2014-12-05

    Highlights: • Enhancement of Ms by low electron irradiation dose in Fe-based alloy. • Variation of magnetic properties by electron irradiation induced ordered phase. • Electron irradiation alters TM-TM distance and, magnetic properties. - Abstract: Electron-irradiation induced changes in structural and, magnetic properties of Co{sub 57.6}Fe{sub 14.4}Si{sub 4.8}B{sub 19.2}Nb{sub 4}, Fe{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4} and, Co{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4} metallic glasses were studied using magnetic hysteresis and, synchrotron X-ray diffraction measurements. Results reveal composition dependent changes of magnetic properties in electron irradiated metallic glasses. A low electron irradiation dose (15 kGy) enhances saturation magnetization (up to 62%) in Fe-based alloy (Fe{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4}). Synchrotron XRD measurements reveal that electron irradiation transforms the amorphous matrix to a more ordered phase, accountable for changes in magnetic properties.

  17. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality.

    Science.gov (United States)

    Iaffaldano, N; Paventi, G; Pizzuto, R; Di Iorio, M; Bailey, J L; Manchisi, A; Passarella, S

    2016-08-01

    This study examines whether and how helium-neon laser irradiation (at fluences of 3.96-9 J/cm(2)) of cryopreserved ram sperm helps improve semen quality. Pools (n = 7) of cryopreserved ram sperm were divided into four aliquots and subjected to the treatments: no irradiation (control) or irradiation with three different energy doses. After treatment, the thawed sperm samples were compared in terms of viability, mass and progressive sperm motility, osmotic resistance, as well as DNA and acrosome integrity. In response to irradiation at 6.12 J/cm(2), mass sperm motility, progressive motility and viability increased (P < 0.05), with no significant changes observed in the other investigated properties. In parallel, an increase (P < 0.05) in ATP content was detected in the 6.12 J/cm(2)-irradiated semen samples. Because mitochondria are the main cell photoreceptors with a major role played by cytochrome c oxidase (COX), the COX reaction was monitored using cytochrome c as a substrate in both control and irradiated samples. Laser treatment resulted in a general increase in COX affinity for its substrate as well as an increase in COX activity (Vmax values), the highest activity obtained for sperm samples irradiated at 6.12 J/cm(2) (P < 0.05). Interestingly, in these irradiated sperm samples, COX activity and ATP contents were positively correlated, and, more importantly, they also showed positive correlation with motility, suggesting that the improved sperm quality observed was related to mitochondria-laser light interactions.

  18. Radiation-induced effects on murine kidney tumor cells: role in the interaction of local irradiation and immunotherapy.

    Science.gov (United States)

    Younes, E; Haas, G P; Dezso, B; Ali, E; Maughan, R L; Montecillo, E; Pontes, J E; Hillman, G G

    1995-06-01

    Local tumor irradiation enhances the effect of interleukin-2 (IL-2) therapy in the Renca murine renal adenocarcinoma model. To investigate the mechanism(s) of this interaction, we studied the in vitro and in vivo effects of irradiation on the tumor cells. Tumor cells from in situ irradiated renal tumors had diminished proliferation in vitro. A similar growth inhibition was noted following injection of irradiated Renca cells into naive mice, but this effect could be overcome by injecting more cells. Histologic evaluation of tumors derived from irradiated cells revealed a decrease in mitosis and an increase in multinucleated giant cells, apoptosis and micronecrosis. The presence of irradiated tumor reduced the growth of nonirradiated tumor cells when both were injected into separate flanks of the same animal, suggesting that irradiated tumor cells may trigger a systemic antitumor response. Interleukin-2 therapy given after injection of irradiated tumor cells caused a significant increase in leukocytic infiltrates and micronecrosis. Our findings indicate that radiation directly affects tumor growth and induces a systemic mechanism which could be enhanced by IL-2.

  19. Jeju ground water containing vanadium induced immune activation on splenocytes of low dose γ-rays-irradiated mice.

    Science.gov (United States)

    Ha, Danbee; Joo, Haejin; Ahn, Ginnae; Kim, Min Ju; Bing, So Jin; An, Subin; Kim, Hyunki; Kang, Kyung-goo; Lim, Yoon-Kyu; Jee, Youngheun

    2012-06-01

    Vanadium, an essential micronutrient, has been implicated in controlling diabetes and carcinogenesis and in impeding reactive oxygen species (ROS) generation. γ-ray irradiation triggers DNA damage by inducing ROS production and causes diminution in radiosensitive immunocytes. In this study, we elucidate the immune activation capacities of Jeju water containing vanadium on immunosuppression caused by γ-ray irradiation, and identify its mechanism using various low doses of NaVO(3). We examined the intracellular ROS generation, DNA damage, cell proliferation, population of splenocytes, and cytokine/antibody profiles in irradiated mice drinking Jeju water for 180 days and in non-irradiated and in irradiated splenocytes both of which were treated with NaVO(3). Both Jeju water and 0.245 μM NaVO(3) attenuated the intracellular ROS generation and DNA damage in splenocytes against γ-ray irradiation. Splenocytes were significantly proliferated by the long-term intake of Jeju water and by 0.245 μM NaVO(3) treatment, and the expansion of B cells accounted for the increased number of splenocytes. Also, 0.245 μM NaVO(3) treatment showed the potency to amplify the production of IFN-γ and total IgG in irradiated splenocytes, which correlated with the expansion of B cells. Collectively, Jeju water containing vanadium possesses the immune activation property against damages caused by γ-irradiation.

  20. An anti-apoptotic peptide improves survival in lethal total body irradiation.

    Science.gov (United States)

    McDunn, Jonathan E; Muenzer, Jared T; Dunne, Benjamin; Zhou, Anthony; Yuan, Kevin; Hoekzema, Andrew; Hilliard, Carolyn; Chang, Katherine C; Davis, Christopher G; McDonough, Jacquelyn; Hunt, Clayton; Grigsby, Perry; Piwnica-Worms, David; Hotchkiss, Richard S

    2009-05-15

    Cell penetrating peptides (CPPs) have been used to deliver the anti-apoptotic Bcl-xL-derived BH4 peptide to prevent injury-induced apoptosis both in vitro and in vivo. Here we demonstrate that the nuclear localization sequence (NLS) from the SV40 large T antigen has favorable properties for BH4 domain delivery to lymphocytes compared to sequences based on the HIV-1 TAT sequence. While both TAT-BH4 and NLS-BH4 protected primary human mononuclear cells from radiation-induced apoptotic cell death, TAT-BH4 caused persistent membrane damage and even cell death at the highest concentrations tested (5-10 microM) and correlated with in vivo toxicity as intravenous administration of TAT-BH4 caused rapid death. The NLS-BH4 peptide has significantly attenuated toxicity compared to TAT-BH4 and we established a dosing regimen of NLS-BH4 that conferred a significant survival advantage in a post-exposure treatment model of LD90 total body irradiation.

  1. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  2. Dynamin-related protein Drp1 is required for Bax translocation to mitochondria in response to irradiation-induced apoptosis.

    Science.gov (United States)

    Wang, Ping; Wang, Peiguo; Liu, Becky; Zhao, Jing; Pang, Qingsong; Agrawal, Samir G; Jia, Li; Liu, Feng-Ting

    2015-09-08

    Translocation of the pro-apoptotic protein Bax from the cytosol to the mitochondria is a crucial step in DNA damage-mediated apoptosis, and is also found to be involved in mitochondrial fragmentation. Irradiation-induced cytochrome c release and apoptosis was associated with Bax activation, but not mitochondrial fragmentation. Both Bax and Drp1 translocated from the cytosol to the mitochondria in response to irradiation. However, Drp1 mitochondrial translocation and oligomerization did not require Bax, and failed to induce apoptosis in Bax deficient diffuse large B-cell lymphoma (DLBCL) cells. Using fluorescent microscopy and the intensity correlation analysis, we demonstrated that Bax and Drp1 were colocalized and the levels of colocalization were increased by UV irradiation. Using co-immuno-precipitation, we confirmed that Bax and Drp1 were binding partners. Irradiation induced a time-associated increase in the interaction between active Bax and Drp1. Knocking down Drp1 using siRNA blocked UV irradiation-mediated Bax mitochondrial translocation. In conclusion, our findings demonstrate for the first time, that Drp1 is required for Bax mitochondrial translocation, but Drp1-induced mitochondrial fragmentation alone is not sufficient to induce apoptosis in DLBCL cells.

  3. Radiation induced changes in electrical conductivity of chemical vapor deposited silicon carbides under fast neutron and gamma-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Bun, E-mail: btsuchiya@meijo-u.ac.jp [Department of General Education, Faculty of Science and Technology, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502 (Japan); Shikama, Tatsuo; Nagata, Shinji; Saito, Kesami [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamamoto, Syunya [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohnishi, Seiki [Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Nozawa, Takashi [Aomori Research and Development Center, Japan Atomic Energy Agency, 2-166, Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2011-10-15

    The radiation-induced changes in the volume electrical conductivities of chemical vapor deposited silicon carbides (CVD-SiCs) were in-site investigated by performing irradiation using 1.17 and 1.33-MeV gamma-ray and 14-MeV fast neutron beams in air and vacuum. Under gamma-ray irradiation at ionization dose rates of 3.6 and 5.9 Gy/s and irradiation temperature of approximately 300 K, the initial rapid increase in electrical conductivity; this is indicative of radiation-induced conductivity (RIC), occurred due to electronic excitation, and a more gradual increase followed up to a dose of approximately 10-50 kGy corresponding to the results in base conductivity without radiation; this is indicative of radiation-induced electrical degradation (RIED). However, the radiation-induced phenomena were not observed at irradiation temperatures above 373 K. Under neutron irradiation at a further low dose rate below approximately 2.1 Gy/s, a fast neutron flux of 9.2 x 10{sup 14} n/m{sup 2} s, and 300 K, the RIED-like behavior according to radiation-induced modification of the electrical property occurred with essentially no displacement damage, but ionizing effects (radiolysis).

  4. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes; a food irradiation study on radiation induced stress in vegetable products

    NARCIS (Netherlands)

    Bergers, W.W.A.

    1980-01-01

    Irradiation is a recent preservation method. With the aid of ionizing radiation microorganisms in food can be killed or specific physiological processes in vegetable products can be influenced.

    In order to study the effects of metabolic radiation stress on quantitative chemical changes in

  5. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes (a food irradiation study on radiation-induced stress in vegetable products)

    NARCIS (Netherlands)

    Bergers, W.W.A.

    1980-01-01

    Irradiation is a recent preservation method. With the aid of ionizing radiation microorganisms in food can be killed or specific physiological processes in vegetable products can be influenced.In order to study the effects of metabolic radiation stress on quantitative chemical changes in vegetable p

  6. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Kim

    2015-01-01

    Full Text Available Thread embedding acupuncture (TEA is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P=0.001 versus UV in UVB irradiated mice and also inhibited degradation of collagen fibers (P=0.010 versus normal by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9. Western blot data showed that activation of c-Jun N-terminal kinase (JNK induced by UVB (P=0.002 versus normal group was significantly inhibited by TEA treatment (P=0.005 versus UV with subsequent alleviation of MMP-9 activation (P=0.048 versus UV. These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  7. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  8. Influence of irradiation-induced disorder on the Peierls transition in TTF-TCNQ microdomains

    Science.gov (United States)

    Solovyeva, Vita; Cmyrev, Anastasia; Sachser, Roland; Reith, Heiko; Huth, Michael

    2011-09-01

    The combined influence of electron irradiation-induced defects, substrate-induced strain and finite size effects on the electronic transport properties of individual micron-sized thin film growth domains of the organic charge transfer compound tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) have been studied. The TTF-TCNQ domains have been isolated and electrically contacted by focused ion beam etching and focused ion and electron-beam-induced deposition, respectively. This allowed us to measure the temperature-dependent resistivity and the current-voltage characteristics of individual domains. The dependence of the resistivity on temperature follows a variable-range hopping behaviour which shows a crossover of the exponents as the Peierls transition is approached. The low temperature behaviour is analysed within the segmented rod model of Fogler, Teber and Shklovskii which was developed for charge-ordered quasi one-dimensional electron crystals (Fogler et al 2004 Phys. Rev. B 69 035413). The effect of substrate-induced biaxial strain on the Peierls transition temperature is discussed with regard to its interplay with the defect-induced changes.

  9. Influence of irradiation-induced disorder on the Peierls transition in TTF-TCNQ microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Vita; Cmyrev, Anastasia; Sachser, Roland; Huth, Michael [Physikalisches Institut, Goethe Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Reith, Heiko, E-mail: levitan@physik.uni-frankfurt.de [Institute for Microtechnologies (IMtech) RheinMain University of Applied Sciences, Am Brueckweg 26, 65428 Ruesselsheim (Germany)

    2011-09-28

    The combined influence of electron irradiation-induced defects, substrate-induced strain and finite size effects on the electronic transport properties of individual micron-sized thin film growth domains of the organic charge transfer compound tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) have been studied. The TTF-TCNQ domains have been isolated and electrically contacted by focused ion beam etching and focused ion and electron-beam-induced deposition, respectively. This allowed us to measure the temperature-dependent resistivity and the current-voltage characteristics of individual domains. The dependence of the resistivity on temperature follows a variable-range hopping behaviour which shows a crossover of the exponents as the Peierls transition is approached. The low temperature behaviour is analysed within the segmented rod model of Fogler, Teber and Shklovskii which was developed for charge-ordered quasi one-dimensional electron crystals (Fogler et al 2004 Phys. Rev. B 69 035413). The effect of substrate-induced biaxial strain on the Peierls transition temperature is discussed with regard to its interplay with the defect-induced changes.

  10. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin.

    Science.gov (United States)

    Werth, Benjamin Boegel; Bashir, Muhammad; Chang, Laura; Werth, Victoria P

    2011-01-01

    Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

  11. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin Boegel Werth

    Full Text Available Ultraviolet (UV light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS, but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S and 6-sulfated (C6S isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

  12. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    Energy Technology Data Exchange (ETDEWEB)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  13. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  14. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction

    Science.gov (United States)

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  15. Unusual progression and subsequent improvement in cystic lung disease in a child with radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael S. [Monroe Carell Jr. Children' s Hospital at Vanderbilt, Department of Pediatrics, Nashville, TN (United States); Chadha, Ashley D. [Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Department of Pediatrics, Nashville, TN (United States); Carroll, Clinton M.; Borinstein, Scott C. [Vanderbilt University School of Medicine, Division of Hematology and Oncology, Department of Pediatrics, Nashville, TN (United States); Young, Lisa R. [Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Department of Pediatrics, Nashville, TN (United States); Vanderbilt University School of Medicine, Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Nashville, TN (United States); Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Nashville, TN (United States)

    2015-07-15

    Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. (orig.)

  16. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats.

    Science.gov (United States)

    Li, Jianzhong; Xu, Jing; Lu, Yiming; Qiu, Lei; Xu, Weiheng; Lu, Bin; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2016-05-17

    Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  17. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2016-05-01

    Full Text Available Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  18. Co-catalyst free Titanate Nanorods for improved Hydrogen production under solar light irradiation

    Indian Academy of Sciences (India)

    N Lakshmana Reddy; D Praveen Kumar; M V Shankar

    2016-04-01

    Harnessing solar energy for water splitting into hydrogen (H2) and oxygen (O2) gases in the presence of semiconductor catalyst is one of the most promising and cleaner methods of chemical fuel (H2) production. Herein, we report a simplified method for the preparation of photo-active titanate nanorods catalyst and explore the key role of calcination temperature and time period in improving catalytic properties. Both as-synthesized and calcined material showed rod-like shape and trititanate structure as evidenced from crystal structure and morphology analysis. Notably, calcination process affected both length and diameter of the nanorods into shorter and smaller size respectively. In turn, they significantly influenced the band gap reduction, resulting in visible light absorption at optimized calcination conditions. The calcined nanorods showed shift in optical absorption band edge towards longer wave length than pristine nanorods. The rate of hydrogen generation using different photocatalysts was measured by suspending trititanate nanorods (in the absence of co-catalyst) in glycerol-water mixture under solar light irradiation. Among the catalysts, nanorods calcined at 250°C for 2 hours recorded high rate of H2 production and stability confirmed for five cycles. Photocatalytic properties and plausible pathway responsible for improved H2 production are discussed in detail.

  19. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L. (Simon Fraser University, Burnaby, BC (Canada). Department of Biological Sciences, Institute of Molecular Biology)

    1991-07-01

    In this study the utility of 254-nm ultraviolet light (UV) as a magnetic tool in C.elegans is determined. It is demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m{sup 2}. This rate resembles that for 1500 R {gamma}-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals (mapping to Linkage Group (LG)III or LGV) or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in micro-organisms, a large fraction of the C.elegans UV-induced mutations were found to be not simple intragenic lesions, but deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C.elegans chromosomes, and that C.elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. (author). 46 refs.; 5 figs.; 4 tabs.

  20. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Kobayashi, Alisa [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Maeda, Takeshi [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Fu, Qibin [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Oikawa, Masakazu [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yang, Gen, E-mail: gen.yang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Konishi, Teruaki, E-mail: tkonishi@nirs.go.jp [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Uchihori, Yukio [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); and others

    2015-03-15

    Highlights: • Existence of radiation induced bystander effects (RIBE) between cancer stem-like cells (CSCs) and non stem-like cancer cells (NSCCs) in human fibrosarcoma HT1080 cells. • Existence of significant difference in generation and response of bystander signals between CSCs and NSCCs. • CSCs are significantly less sensitive to NO scavenger than that of NSCCs in terms of DNA double strand breaks induced by RIBE. - Abstract: Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  1. Stimulation of hematopoietic stem cells by interferon inducer in nonhuman primates receiving fractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lvovsky, E.A. (George Washington Univ. Medical Center, Washington, DC); Levine, P.H.; Bengali, Z.; Leiseca, S.A.; Cicmanec, J.L.; Robinson, J.E.; Bautro, N.; Levy, H.B.; Scott, R.M.

    1982-10-01

    Interferon response and hematopoietic stem cells (spleen colony forming units--CFU-S) were studied in rhesus monkeys subjected to fractionated total body irradiation (FTBI). An interferon inducer, a nuclease resistant complex of polyinosinic-polycytidylic acid with poly-L-lysine and carboxmethylcellulose(-poly(ICLC)) was used. Poly(ICLC) at 3.75 mg/m/sup 2/ was given I.V. to 7 monkeys, 5 of which, starting 24 hours later, received 50 rad of 4 MV X rays twice a week at 2.5 weeks (total of 250 rad). Another group of 4 monkeys received FTBI only. Although the initial interferon response was similar in both groups treated wih poly(ICLC)--800 international units (IU), the animals that receiving FTBI showed reduced interferon levels after 100 rad. These animals, however, did not develop the hyporesponsiveness to subsequent poly(ICLC) injections that was observed in non-irradiated monkeys. Stabile interferon response (30-100 IU) in the FTBI group paralleled the prolonged persistence of the drug in their serum. Bone marrow (BM) aspirates from animals receiving FTBI and poly(ICLC) contained more CFU-S per 10/sup 6/ nucleated cells than those treated with poly(ICLC) along or FTBI with and without poly(ICLC) lead to thrombocytopenia and leukopenia. Lower white blood cell (WBC) count was found in irradiated animals treated with poly(ICLC). Partial alopecia was observed in animals receiving poly(ICLC). Two animals--one in the poly(ICLC) and FTBI group and the other receiving FTBI along, died with thrombocytopenia and leukopenia.

  2. Chondrosarcoma arising within a radiation-induced osteochondroma several years following childhood total body irradiation: Case report

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Shuji [Kurume University Hospital, Department of Radiology, Fukuoka (Japan); Shen, Robert K. [Mayo Clinic, Department of Surgery, Rochester, MN (United States); Laack, Nadia N. [Mayo Clinic, Department of Radiation Oncology, Rochester, MN (United States); Inwards, Carrie Y. [Mayo Clinic, Department of Pathology, Rochester, MN (United States); Wenger, Doris E.; Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2013-08-15

    Malignant degeneration arising in radiation-induced osteochondromas is extremely rare. We report a case of a 34-year-old man with a chondrosarcoma arising from an osteochondroma of the left posterior eighth rib that developed following total body irradiation received as part of the conditioning regimen prior to bone marrow transplantation at age 8. To our knowledge, this is only the fourth reported case of a chondrosarcoma arising within a radiation-induced osteochondroma and the first case occurring following childhood total body irradiation. (orig.)

  3. The Possible Improving Effects of γ-Irradiated and/or Extruded Soy Flour on Hypercholesterolemic Rats

    Directory of Open Access Journals (Sweden)

    Refaat G. HAMZA

    2013-12-01

    Full Text Available Hypercholesterolemia is serious conditions that can cause fatal complications without careful management. Among the dietary supplementation with functional food, soybeans possess variety of antioxidant compounds that may lower incidence of hypercholesterolemia and degenerative cardiovascular disease. Thus, the purpose of this study is to determine the effect of gammairradiated and/or extruded soy flour on hypercholesterolemic rats. Processing of soy flour by γ-irradiation and/or extrusion reduced the amount of antinutritional factors such as tannin and trypsin inhibitor and resulted in different changes in the total amino acids and fatty acid contents. The animals maintained on the HCD showed remarkable decrease in the level of HDL-C associated with significant increase in the values of serum total lipid, total cholesterol, triglyceride, LDL-C, vLDL-C and the risk ratio in addition to serum concentration of urea, creatinine and uric acid in comparison with those of the control group. However, dietary supplementation of raw and treated soy flour resulted in reduction in the bad changes induced by HCD in the above mentioned parameters. In conclusion, treated soy flour supplementation in diet of rats pointed out to its hypocholesterolemic effect and its ability to improve lipid profile and kidney function of hypercholesterolemic rats.

  4. Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors

    Science.gov (United States)

    Frey, Benjamin; Rückert, Michael; Weber, Julia; Mayr, Xaver; Derer, Anja; Lotter, Michael; Bert, Christoph; Rödel, Franz; Fietkau, Rainer; Gaipl, Udo S.

    2017-01-01

    In addition to locally controlling the tumor, hypofractionated radiotherapy (RT) particularly aims to activate immune cells in the RT-modified microenvironment. Therefore, we examined whether hypofractionated RT can activate dendritic cells (DCs), induce immune cell infiltration in tumors, and how the chronology of immune cell migration into tumors occurs to gain knowledge for future definition of radiation breaks and inclusion of immunotherapy. Colorectal cancer treatments offer only limited survival benefit, and immunobiological principles for additional therapies need to be explored with preclinical models. The impact of hypofractionated RT on CT26 colon cancer tumor cell death, migration of DCs toward supernatants (SN) of tumor cells, and activation of DCs by SN were analyzed. The subcutaneous tumor of a BALB/c-CT26 mouse model was locally irradiated with 2 × 5 Gy, the tumor volume was monitored, and the infiltration of immune cells in the tumor was determined by flow cytometry daily. Hypofractionated RT induced a mixture of apoptotic and necrotic CT26 cells, which is known to be in particular immunogenic. DCs that migrated toward SN of CT26 cells particularly upregulated the activation markers CD80 and CD86 when in contact with SN of irradiated tumor cells. After hypofractionated RT, the tumor outgrowth was significantly retarded and in the irradiated tumors an increased infiltration of macrophages (CD11bhigh/F4-80+) and DCs (MHC-II+), but only between day 5 and 10 after the first irradiation, takes place. While CD4+ T cells migrated into non-irradiated and irradiated tumors, CD8+ T cells were only found in tumors that had been irradiated and they were highly increased at day 8 after the first irradiation. Myeloid-derived suppressor cells and regulatory T cells show regular turnover in irradiated and non-irradiated tumors. Tumor cell-specific anti-IgM antibodies were enhanced in the serum of animals with irradiated tumors. We conclude that

  5. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain.

    Science.gov (United States)

    Baulch, Janet E; Acharya, Munjal M; Allen, Barrett D; Ru, Ning; Chmielewski, Nicole N; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L; Benke, Sarah N; Parihar, Vipan K; Limoli, Charles L

    2016-04-26

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.

  6. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  7. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  8. Laser irradiation induced spectral evolution of the Laser irradiation induced spectral evolution of the surface-enhanced Raman scattering(SERS)of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly

    Institute of Scientific and Technical Information of China (English)

    TONG LianMing; ZHU Tao; LIU ZhongFan

    2007-01-01

    The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan(4-tBBM)on gold nanopanlcles assembly under laser irradiation is reported.The reIative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time.Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance(SPR)induced heat in the gold nanoparticles assembly is the origin of the spectraI evolution.During the process of self-assembly,4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group.The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.

  9. A Simple model for ice compaction data induced by low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A.L.F. de; Almeida, L.F., E-mail: abarros@pq.cnpq.br [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil). Departamento de Fisica; Mejía, C.; Morgado, W.A.M.; Silveira, E.F. da [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Departamento de Fisica

    2015-10-01

    A connection between the compaction of amorphous solid water (ASW) during energetic ion irradiation and the disappearing of water dangling bonds (OH-db) has been analyzed particularly by the Palumbo et al. and by Baragiola et al. In this work, a further discussion of the process for inducing the compaction is presented. Simple models for OH-db evolution for irradiated water ice are discussed. Literature results on the OH-db disappearance in ices bombarded by 100–200 keV H{sup +} ions and on the comparison of porosity and OH-db results for 200 keV Ar{sup +} ions are revisited. It is observed that for both, porosity decrease (compaction) and OH-db absorption signal decrease, experimental data can be well fitted by the sum of two decreasing exponentials with similar sets of parameters. Although a clear explanation for this correlation cannot be extracted, it suggests strongly that compaction and OH-db destruction are both triggered by two different processes. (author)

  10. Oxygen Attachment on Alkanethiolate SAMs Induced by Low-Energy Electron Irradiation

    Science.gov (United States)

    Massey, Sylvain; Bass, Andrew D.; Steffenhagen, Marie; Sanche, Léon

    2013-01-01

    Reactions of 18O2 with self-assembled monolayer (SAM) films of 1-dodecanethiol, 1-octadecanethiol, 1-butanethiol, and benzyl mercaptan chemisorbed on gold, were studied by the electron stimulated desorption (ESD) of anionic fragments over the incident electron energy range 2–20 eV. Dosing the SAMs with 18O2 at 50 K, results in the ESD of 18O− and 18OH−. Electron irradiation of samples prior to 18O2 deposition demonstrates that intensity of subsequent 18O− and 18OH− desorption signals increase with electron fluence and that absent electron pre-irradiation, no 18O− and 18OH− ESD signals are observed, since oxygen is unable to bind to the SAMs. A minimum incident electron energy of 6–7 eV is required to initiate the binding of 18O2 to the SAMs. O2 binding is proposed to proceed by the formation of CHx−1• radicals via resonant dissociative electron attachment and non-resonant C–H dissociation processes. The weaker signals of 18O− and 18OH− from short-chain SAMs are related to the latter’s resistance to electron induced damage, due to the charge-image dipole quenching and electron delocalization. Comparison between the present results and those for DNA oligonucleotides self-assembled on Au [Mirsaleh-Kohan, N. et al. J. Chem. Phys. 2012, 136, 235104] indicates that the oxygen binding mechanism is common to both systems. PMID:23537075

  11. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-07-01

    Full Text Available The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal spike, dark signal non-uniformity (DSNU, noise (VN, saturation output signal voltage (VS, and dynamic range (DR versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  12. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells.

    Science.gov (United States)

    Liu, Yu; Kobayashi, Alisa; Maeda, Takeshi; Fu, Qibin; Oikawa, Masakazu; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-03-01

    Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.

    Science.gov (United States)

    Luo, C W; Lee, C C; Li, C H; Shih, H C; Chen, Y-J; Hsieh, C C; Su, C H; Tzeng, W Y; Wu, K H; Juang, J Y; Uen, T M; Chen, S P; Lin, J-Y; Kobayashi, T

    2008-12-08

    We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained.

  14. Radiation damage to the normal monkey brain: experimental study induced by interstitial irradiation.

    Directory of Open Access Journals (Sweden)

    Mishima N

    2003-06-01

    Full Text Available Radiation damage to normal brain tissue induced by interstitial irradiation with iridium-192 seeds was sequentially evaluated by computed tomography (CT, magnetic resonance imaging (MRI, and histological examination. This study was carried out in 14 mature Japanese monkeys. The experimental area received more than 200-260 Gy of irradiation developed coagulative necrosis. Infiltration of macrophages to the periphery of the necrotic area was seen. In addition, neovascularization, hyalinization of vascular walls, and gliosis were found in the periphery of the area invaded by the macrophages. All sites at which the vascular walls were found to have acute stage fibrinoid necrosis eventually developed coagulative necrosis. The focus of necrosis was detected by MRI starting 1 week after the end of radiation treatment, and the size of the necrotic area did not change for 6 months. The peripheral areas showed clear ring enhancement with contrast material. Edema surrounding the lesions was the most significant 1 week after radiation and was reduced to a minimum level 1 month later. However, the edema then expanded once again and was sustained for as long as 6 months. CT did not provide as clear of a presentation as MRI, but it did reveal similar findings for the most part, and depicted calcification in the necrotic area. This experimental model is considered useful for conducting basic research on brachytherapy, as well as for achieving a better understanding of delayed radiation necrosis.

  15. Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel

    Science.gov (United States)

    Kuljanin-Jakovljević, Jadranka Ž.; Radosavljević, Aleksandra N.; Spasojević, Jelena P.; Carević, Milica V.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.

    2017-01-01

    In this study, the nanocomposites based on semiconductor lead sulfide (PbS) nanoparticles and poly(vinyl alcohol) (PVA) were investigated. The gamma irradiation induced in situ incorporation of PbS nanoparticles in crosslinked polymer network i.e. PVA hydrogel was performed. PVA hydrogel was previously obtained also under the influence of gamma irradiation. UV-Vis absorption and X-ray diffraction measurements were employed to investigate optical and structural properties of PbS nanoparticles, respectively, and obtained results indicates the presence of nanoparticles with approximately 6 nm in diameter and face centered cubic rock-salt crystal structure. The porous morphology was confirmed by scanning electron microscopy. Swelling data revealed that investigated hydrogels (PVA and PbS-PVA nanocomposite) shows non-Fickian diffusion, indicating that both diffusion and polymer relaxation processes controlled the fluid transport. The values of diffusion coefficients have an order of magnitude 10-9 cm2/s (typical values for water diffusion in polymers) and the best fit with the experimental results showed the Etters approximation. Comparing the thermal properties of PbS-PVA xerogel nanocomposite with PVA xerogel it was observed that incorporation of PbS nanoparticles in crosslinked PVA matrix just slightly enhanced the thermal stability of nanocomposite.

  16. Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo

    Directory of Open Access Journals (Sweden)

    Runhong Lei

    2015-11-01

    Full Text Available Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3+CD4−CD8+ T-cells in the thymus and the proportion of CD3+CD4+CD8− T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation.

  17. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    Science.gov (United States)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Noemi

    2016-12-19

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through

  19. Gamma irradiated antigen extracts improves the immune response and protection in experimental toxoplasmosis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Andrea da; Galisteo Junior, Andres Jimenez; Andrade Junior, Heitor Franco de, E-mail: andreacosta@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Medicina Tropical; Zorgi, Nahiara Estevez [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Ciencias Biomedicas; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    We aimed to use ionizing radiation on soluble extracts of T. gondii tachyzoites (AgTg) and tested the ability of these extracts to induce immunity in BALB/c mice against a challenge. T. gondii RH strain AgTg was irradiated with Co-60 at 0.25 to 4 kGy and were affected after 1 kGy, as evidenced by a progressive high molecular weight protein aggregates and no loss in antigenicity, as detected by immunoblotting, except after 4kGy. BALB/c mice were immunized with biweekly doses of 03 s.c. native or irradiated AgTg without adjuvants; the anti-T.gondii IgG production was detected by ELISA, and higher levels and avidity were detected in mice immunized with 1.5 kGy AgTg compared to controls (p<0.05). Mice immunized with native AgTg exhibited spleen CD19{sup +} B, CD3{sup +}CD4{sup +} or CD3{sup +}CD8{sup +} T cell proliferation levels of 5%, while 1.5 kGy-immunized mice exhibited spleen cell proliferation levels of 12.2%, primarily for CD19{sup +} or CD3{sup +}CD8{sup +} lymphocytes and less evidently for CD3{sup +}CD4{sup +} (8.8%) helper T lymphocytes. All cells from control mice showed little to no proliferation when stimulated with AgTg. These cells secreted more IFN-γ in the 1.5 kGy AgTg-immunized group (p<0.05). BALB/c mice immunized with 1.5 kGy and challenged with different strains of T. gondii were partially protected, as evidenced by survival after RH virulent strain challenge (p<0.0001) but also after ME-49 strain challenge: the brain cyst numbers (p<0.05) and the levels of T. gondii DNA measured by real-time PCR (p<0.05) decreased compared to non-immunized controls. (author)

  20. Effects of /sup 60/Co-. gamma. irradiation on the cell proliferation kinetics of DMBA-induced tongue carcinoma in hamster

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Toshio

    1987-10-01

    In the vocation of the radiation therapy, it is very important to analize the cell kinetics of the normal and tumor tissues, and the radiation effects. Thus, this study analizes the effects of /sup 60/Co-..gamma.. irradiation to DMBA-induced hamster tongue carcinoma (hereafter ''the tumor'') and normal tongue epithelium (hereafter ''the normal'') by using /sup 3/H-TdR puls labeling technics and percentage labeled mitoses (PLM) method. Result : 1) Cell cycle time (Tc) of the Normal was 42.0 hours, and that of the tumor was 18.1 hours. After irradiation, Tc of the tumor was prolonged, but that of the normal was shortened by about 11 hours. 2) Initial labeling index (L.I.) of the tumor was decreased immidiately after irradiation, but on 7 and 10 days L.I. gained back to the pre-irradiation rate. 3) tumor doubling time (Td) was 6.4 +- 1.6 days, and potential doubling time (Tp) was 18.9 hours. 4) Time of pre-DNA synthetic stage (Tg/sub 1/) of the normal was 31.0 hours and that of the tumor was 8.7 hours. After irradiation, Tg/sub 1/ of the normal was shortened by about 10 hours and that of the tumor was prolonged. 5) After irradiation, time of synthetic stage (Ts) of both the normal and the tumor was slightly prolonged. 6) After irradiation, mitotic stage (Tm) of both the normal and the tumor was not changed. 7) Growth fraction (GF) of the normal was 64.5%, and that of the tumor was 79.8%. After irradiation, it was decreased, while it of the tumor was increased temporarily after irradiation. 8) The rate of cell loss facter of the tumor was 0.88.

  1. Improvement of shelf stability and processing properties of meat products by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, M.-W. E-mail: mwbyun@kaeri.re.kr; Lee, J.-W.; Yook, H.-S.; Lee, K.-H.; Kim, H.-Y

    2002-03-01

    To evaluate the effects of gamma irradiation on the processing properties of meat products, emulsion-type sausage, beef patties and pork loin ham were manufactured. Most contaminated bacteria were killed by 3 kGy-irradiation to raw ground beef, and sausage can be manufactured with desirable flavor, a reduction of NaCl and phosphate, and extension of shelf life using gamma irradiation on the raw meat. The beef patties were manufactured with the addition of antioxidants (200 ppm), BHA, ascorbyl palmitate, {alpha}-tocopherol, or {beta}-carotene, and gamma-irradiation. Retardation of lipid oxidation appeared at the patties with an antioxidant. A dose of 5 kGy was observed to be as effective as the use of 200 ppm NaNO{sub 2} to provide and maintain the desired color of the product during storage. After curing, irradiation, heating and smoking could extensively prolong the shelf life of the hams.

  2. Effects of heavy particle irradiation and diet on amphetamine- and lithium chloride-induced taste avoidance learning in rats

    Science.gov (United States)

    Rabin, Bernard M.; Shukitt-Hale, Barbara; Szprengiel, Aleksandra; Joseph, James A.

    2002-01-01

    Rats were maintained on diets containing either 2% blueberry or strawberry extract or a control diet for 8 weeks prior to being exposed to 1.5 Gy of 56Fe particles in the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Three days following irradiation, the rats were tested for the effects of irradiation on the acquisition of an amphetamine- or lithium chloride-induced (LiCl) conditioned taste avoidance (CTA). The rats maintained on the control diet failed to show the acquisition of a CTA following injection of amphetamine. In contrast, the rats maintained on antioxidant diets (strawberry or blueberry extract) continued to show the development of an amphetamine-induced CTA following exposure to 56Fe particles. Neither irradiation nor diet had an effect on the acquisition of a LiCl-induced CTA. The results are interpreted as indicating that oxidative stress following exposure to 56Fe particles may be responsible for the disruption of the dopamine-mediated amphetamine-induced CTA in rats fed control diets; and that a reduction in oxidative stress produced by the antioxidant diets functions to reinstate the dopamine-mediated CTA. The failure of either irradiation or diet to influence LiCl-induced responding suggests that oxidative stress may not be involved in CTA learning following injection of LiCl.

  3. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts.

    Science.gov (United States)

    Mao, G-X; Xing, W-M; Wen, X-L; Jia, B-B; Yang, Z-X; Wang, Y-Z; Jin, X-Q; Wang, G-F; Yan, J

    2015-06-01

    Salidroside, the predominant component of a Chinese herbal medicine, Rhodiola rosea L., becomes an attractive bio-agent due to its multifunction. Although it is well proposed that this herbal medicine may have photoprotective effect according to the folk hearsay, the direct supportive experimental evidences linking the drug with skin ageing have rarely been reported so far. The study was conducted to investigate the photoprotective role of salidrosdie and its related mechanisms in vitro. First, a premature senescence model induced by UVB irradiation (250 mJ cm(-2)) in human dermal fibroblasts (HDFs) was established, and senescent phenotypes were evaluated by cell morphology, cell proliferation, senescence-associated beta-galactosidase (SA-β-gal) activity and cell cycle distribution. Then the photoprotective effect of salidroside was investigated. Cells were pre-treated with various doses of salidroside (1, 5 and 10 μM) followed by the sublethal dosage of UVB exposure and then were harvested for various detections, including senescence-associated phenotypes and molecules, alteration of oxidative stress, matrix metalloproteinase-1 (MMP-1) secretion and inflammatory response. Pre-treatment of salidroside dose dependently reversed the senescent state of HDFs induced by UVB as evidenced by elevated cell viability, decreased SA-β-gal activity and relieving of G1/G0 cell cycle arrest. UVB-induced increased protein expression of cyclin-dependent kinase (CDK) inhibitors p21(WAF) (1) and p16(INK) (4) was also repressed by salidrosdie treatment in a dose-dependent manner. Meanwhile, the increment of malondialdehyde (MDA) level in UVB-irradiated HDFs was inhibited upon salidroside treatment. Additionally, salidroside significantly attenuated UVB-induced synthesis of MMP-1 as well as the production of IL-6 and TNF-α in HDFs. Our data provided the evidences for the protective role of salidroside against UVB-induced premature senescence in HDFs probably via its anti

  4. Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses

    Science.gov (United States)

    Valotto, Gabrio; Quaranta, Alberto; Cattaruzza, Elti; Gonella, Francesco; Rampazzo, Giancarlo

    A multivariate analysis is used for the identification of the spectral features in Ion Beam Induced Luminescence (IBIL) spectra of soda-lime silicate glasses doped with silver by Ag+-Na+ ion exchange. Both Principal Component Analysis and multivariate analysis were used to characterize time-evolving IBIL spectra of Ag-doped glasses, by means of the identification of the number and of the wavelength positions of the main luminescent features and the study of their evolution during irradiation. This method helps to identify the spectral features of the samples spectra, even when partially overlapped or less intense. This analysis procedure does not require additional input such as the number of peaks.

  5. Fractal parameterization analysis of ferroelectric domain structure evolution induced by electron beam irradiation

    Science.gov (United States)

    Maslovskaya, A. G.; Barabash, T. K.

    2017-01-01

    The article presents some results of fractal analysis of ferroelectric domain structure images visualized with scanning electron microscope (SEM) techniques. The fractal and multifractal characteristics were estimated to demonstrate self-similar organization of ferroelectric domain structure registered with static and dynamic contrast modes of SEM. Fractal methods as sensitive analytical tools were used to indicate degree of domain structure and domain boundary imperfections. The electron irradiation-induced erosion effect of ferroelectric domain boundaries in electron beam-stimulated polarization current mode of SEM is characterized by considerable raising of fractal dimension. For dynamic contrast mode of SEM there was revealed that complication of domain structure during its dynamics is specified by increase in fractal dimension of images and slight raising of boundary fractal dimension.

  6. Observation of changes in ion beam induced luminescence spectra from organics during focused microbeam irradiation

    Science.gov (United States)

    Kada, Wataru; Kawabata, Shunsuke; Satoh, Takahiro; Sakai, Makoto; Parajuli, Raj Kumar; Yamada, Naoto; Koka, Masashi; Miura, Kenta; Hanaizumi, Osamu; Kamiya, Tomihiro

    2017-08-01

    Continuous measurement of ion beam induced luminescence (IBIL) spectra was demonstrated with organic targets of nicotinamide adenine dinucleotide (NADH), tryptophan, riboflavin, and a polycyclic aromatic hydrocarbon (PAH), which are typically used as markers of biological contaminants in airborne particles. A 3 MeV external proton microbeam from a single-ended accelerator at QST/Takasaki was used to probe for changes in the IBIL spectrum using micro-optics sharing a focal point with the microprobe. We find that the decay of IBIL spectra from NADH and riboflavin varied by target organic species. Moreover, new peaks in the IBIL spectrum were recorded by continuous IBIL spectroscopy from the PAH target after destruction of a peak originally obtained in the initial measurement. These results suggest that IBIL monitoring can detect changes in the chemical composition of organics under focused beam irradiation.

  7. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.;

    2008-01-01

    and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types...... is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion......Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes...

  8. Antioxidant and Anti-Inflammatory Effects of Shungite against Ultraviolet B Irradiation-Induced Skin Damage in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Ma. Easter Joy Sajo

    2017-01-01

    Full Text Available As fullerene-based compound applications have been rapidly increasing in the health industry, the need of biomedical research is urgently in demand. While shungite is regarded as a natural source of fullerene, it remains poorly documented. Here, we explored the in vivo effects of shungite against ultraviolet B- (UVB- induced skin damage by investigating the physiological skin parameters, immune-redox profiling, and oxidative stress molecular signaling. Toward this, mice were UVB-irradiated with 0.75 mW/cm2 for two consecutive days. Consecutively, shungite was topically applied on the dorsal side of the mice for 7 days. First, we found significant improvements in the skin parameters of the shungite-treated groups revealed by the reduction in roughness, pigmentation, and wrinkle measurement. Second, the immunokine profiling in mouse serum and skin lysates showed a reduction in the proinflammatory response in the shungite-treated groups. Accordingly, the redox profile of shungite-treated groups showed counterbalance of ROS/RNS and superoxide levels in serum and skin lysates. Last, we have confirmed the involvement of Nrf2- and MAPK-mediated oxidative stress pathways in the antioxidant mechanism of shungite. Collectively, the results clearly show that shungite has an antioxidant and anti-inflammatory action against UVB-induced skin damage in hairless mice.

  9. Ovarian carcinoma: improved survival following abdominopelvic irradiation in patients with a completed pelvic operation. [Complications of the various therapy regimens

    Energy Technology Data Exchange (ETDEWEB)

    Dembo, A.J.; Bush, R.S.; Beale, F.A.; Bean, H.A.; Pringle, J.F.; Sturgeon, J.; Reid, J.G.

    1979-08-01

    A prospective, stratified, randomized study of 190 postoperative ovarian carcinoma patients with Stages IB, II, and III (asymptomatic) presentations is reported. The median time of follow-up was 52 months. Patients in whom bilateral salpingo-oophorectomy and hysterectomy (BSOH) could not be completed because of extensive pelvic tumor had a poor prognosis which did not differ for any of the therapies tested. When BSOH was completed, pelvic plus abdominopelvic irradiation (P + AB) with no diaphragmatic shielding significantly improved patient survival rate and long-term control of occult upper abdominal disease in approximately 25% more patients than pelvic irradiation alone or followed by adjuvant daily chlorambucil therapy. The effectiveness of P + AB in BSOH-completed patients was independent of stage or tumor grade and was most clearly appreciated in patients with all gross tumor removed. Chlorambucil added to pelvic irradiation delayed the time to treatment failure without reducing the number of treatment failures.

  10. Observation and analysis on skin cancer induced by UVB irradiation using optical coherence tomography

    Science.gov (United States)

    Wang, Yunxia; Wu, Shulian; Li, Hui; Zheng, Xiaoxiao

    2014-09-01

    Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the prevalent skin cancers, which have a quite high incidence in the white race. In recent years, however, their incidences have been increasing in the yellow race, resulting in a great threat to the public health. According to researches, chronics UVB irradiation (280nm~320nm) is the major culprit of skin cancer in humans. In our study, the model of UVB induced skin cancer was established firstly. Optical coherence tomography (OCT) combined with the histopathology was exploited to monitor the morphologic and histological changes of the process of UVB induced skin cancer. Meanwhile, this canceration process was systematically studied and analyzed from the perspective of tissue optics. The attenuation coefficient (μt) has a rising trend in the epidermis, but which shows a downward trend in the dermis. The results are conducive to understand the process of UVB-induced skin cancer and further be able to provide a reference for medical researchers.

  11. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    Science.gov (United States)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  12. Topologically trivial and nontrivial edge bands in graphene induced by irradiation

    Science.gov (United States)

    Yang, Mou; Cai, Zhi-Jun; Wang, Rui-Qiang; Bai, Yan-Kui

    2016-08-01

    We proposed a minimal model to describe the Floquet band structure of two-dimensional materials with light-induced resonant inter-band transition. We applied it to graphene to study the band features caused by the light irradiation. Linearly polarized light induces pseudo gaps (gaps are functions of wavevector), and circularly polarized light causes real gaps on the quasi-energy spectrum. If the polarization of light is linear and along the longitudinal direction of zigzag ribbons, flat edge bands appear in the pseudo gaps, and if it is in the lateral direction of armchair ribbons, curved edge bands can be found. For the circularly polarized cases, edge bands arise and intersect in the gaps of both types of ribbons. The edge bands induced by the circularly polarized light are helical and those by linearly polarized light are topologically trivial ones. The Chern number of the Floquet band, which reflects the number of pairs of helical edge bands in graphene ribbons, can be reduced into the winding number at resonance.

  13. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce ( Lactuca sativa, L.)

    Science.gov (United States)

    Goularte, L.; Martins, C. G.; Morales-Aizpurúa, I. C.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B. W.; Landgraf, M.

    2004-09-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce ( Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D10-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  14. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce (Lactuca sativa, L.)

    Energy Technology Data Exchange (ETDEWEB)

    Goularte, L.; Martins, C.G.; Morales-Aizpurua, I.C.; Destro, M.T.; Franco, B.D.G.M.; Vizeu, D.M.; Hutzler, B.W.; Landgraf, M. E-mail: landgraf@usp.br

    2004-10-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce (Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D{sub 10}-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  15. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Yao Rui; Bernard, Damian; Turian, Julius; Abrams, Ross A.; Sensakovic, William; Fung, Henry C.; Chu, James C. H. [Department of Radiation Oncology, Rush University Medical Center, 500 South Paulina Street, Chicago, Illinois 60612 (United States); Sections of Hematology and Stem Cell Transplantation, Division of Hematology/Oncology, Rush University Medical Center, 500 South Paulina Street, Chicago, Illinois 60612 (United States); Department of Radiation Oncology, Rush University Medical Center, 500 South Paulina Street, Chicago, Illinois 60612 (United States)

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lung dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.

  16. Whole Body Irradiation Induces Cutaneous Dendritic Cells Depletion via NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Yanyong Yang

    2013-07-01

    Full Text Available Background: Effect of ionizing radiation on cutaneous dendritic cells (cDC is critical to its influence on immune status of the skin, which plays an important role in the progression and recovery of radiation skin sickness. This study was to study the influence of whole body irradiation (WBI on the cDC. Methods: Density of epidermal and dermal DC was determined with a fluorescent microscopy and the DC numbers in lymph node were measured by flow cytometry. A FITC induced migration assay was also used to study the migration of DC. The expressions of cytokines and chemokines were evaluated by Realtime PCR, and the protein level of was measured by Western blot. Results: WBI caused depletion of cDC in epidermal as well as dermal and augmented FITC-induced migration of DC to the draining lymph node (LN. The number of DC migrated from ear explants to the CCL19-containing medium also increased after exposure to WBI. It was also found that WBI increased mRNA level of CCL19/CCL21 as well as CCR7 in LN and skin tissue. The expressions of TNFa, IL-1a, IL-1ß, and IL-6 in skin tissues were also greatly induced by WBI in a dose dependent manner. Finally, we found that WBI induced translocation of nuclear factor κB (NF-κB and that the radiation-induced migration of DC was blocked by NF-κB inhibitor or TLR4 knockout. Conclusion: WBI caused cDC depletion through induction of DC migration to the draining LN, which might result from the activation of NF-κB and the induction of inflammatory microenvironment within the skin.

  17. Morphological change of skin fibroblasts induced by UV Irradiation is involved in photoaging.

    Science.gov (United States)

    Yamaba, Hiroyuki; Haba, Manami; Kunita, Mayumi; Sakaida, Tsutomu; Tanaka, Hiroshi; Yashiro, Youichi; Nakata, Satoru

    2016-08-01

    Human dermal fibroblasts (HDFs) are typically flattened or extensible shaped and play a critical role in the metabolism of extracellular matrix components. As the properties of fibroblasts in the dermis are considered to be influenced by their morphology, we investigated the morphological changes induced in fibroblasts by ultraviolet (UV) irradiation as well as the relationship between these changes and collagen metabolism. In this study, we showed that UVA exposure induced morphological changes and reduced collagen contents in HDFs. These morphological changes were accompanied a reduction in actin filaments and upregulation of the actin filament polymerization inhibitor, capping protein muscle Z-line ɑ1 (CAPZA1). External actin filament growth inhibitors also affected the shape of HDFs and reduced collagen levels. These results suggest that UVA exposure may inhibit the polymerization of actin filaments and induce morphological changes in skin fibroblasts. These morphological changes in fibroblasts may accelerate reductions in collagen synthesis. This mechanism may be one of the processes responsible for collagen reductions observed in photoaged skin. When natural materials that suppress these morphological changes in HDFs were evaluated, we found that an extract of Lilium 'Casa Blanca' (LCB) suppressed UVA-induced alterations in the shape of HDFs, which are typically followed by inhibition of collagen reduction. An analysis of the active compounds in LCB extract led to the identification of regaloside I, which had a structure of phenylpropanoid glycerol glucoside, as the active compound inhibiting the upregulation of CAPZA1. Therefore, inhibition of UVA-induced morphological changes in HDFs is considered to be promising way for the suppression of collagen reduction in photoaging.

  18. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro

    Science.gov (United States)

    XIE, DONG; SUN, YAN; WANG, LINGZHEN; LI, XIAOLING; ZANG, CHUANNONG; ZHI, YUNLAI; SUN, LIRONG

    2016-01-01

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light-emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL-60 human leukemia cells, and to explore the underlying mechanisms. HL-60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B-cell lymphoma 2 (Bcl-2) were detected using cell counting kit-8, multicaspase assays, propidium iodide staining and reverse transcription-quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8–60 J/m2) inhibited the proliferation of HL-60 cells in a dose-dependent manner. UV LED at 8–30 J/m2 induced dose-dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl-2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL-60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl-2 mRNA expression were shown to be involved in UV LED-induced apoptosis. PMID:26820261

  19. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation.

    Science.gov (United States)

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by gamma-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  20. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses.

    Science.gov (United States)

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-11-23

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy.

  1. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    Science.gov (United States)

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  2. A Model for Precise and Uniform Pelvic- and Limb-Sparing Abdominal Irradiation to Study the Radiation-Induced Gastrointestinal Syndrome in Mice Using Small Animal Irradiation Systems

    Science.gov (United States)

    Brodin, N. Patrik; Velcich, Anna; Guha, Chandan

    2017-01-01

    Background and Purpose: Currently, no readily available mitigators exist for acute abdominal radiation injury. Here, we present an animal model for precise and homogenous limb-sparing abdominal irradiation (LSAIR) to study the radiation-induced gastrointestinal syndrome (RIGS). Materials and Methods: The LSAIR technique was developed using the small animal radiation research platform (SARRP) with image guidance capabilities. We delivered LSAIR at doses between 14 and 18 Gy on 8- to 10-week-old male C57BL/6 mice. Histological analysis was performed to confirm that the observed mortality was due to acute abdominal radiation injury. Results: A steep dose–response relationship was found for survival, with no deaths seen at doses below 16 Gy and 100% mortality at above 17 Gy. All deaths occurred between 6 and 10 days after irradiation, consistent with the onset of RIGS. This was further confirmed by histological analysis showing clear differences in the number of regenerative intestinal crypts between animals receiving sublethal (14 Gy) and 100% lethal (18 Gy) radiation. Conclusion: The developed LSAIR technique provides uniform dose delivery with a clear dose response, consistent with acute abdominal radiation injury on histological examination. This model can provide a useful tool for researchers investigating the development of mitigators for accidental or clinical high-dose abdominal irradiation. PMID:28203121

  3. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    Science.gov (United States)

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs.

  4. Laser Irradiated Impact Experiments Show that Nanophase Iron Particles Formed by Shock-Induced Melting Rather than Vapor Deposition

    Science.gov (United States)

    Li, Y.; Li, S. J.; Xie, Z. D.; Li, X. Y.

    2016-08-01

    As the laser irradiated results of chondrite, Impact melting fractionation of ferromagnesian silicates induced by meteorites may be the major origin of np-Fe0, rather than vapour deposition origin only, especially for np-Fe0 in agglutinatic glasses.

  5. Radiation damage induced by gamma irradiation on Ce sup 3 sup + doped phosphate and silicate scintillating glasses

    CERN Document Server

    Baccaro, S; Mihoková, E; Nikl, M; Nitsch, K; Polato, P; Zanella, G; Zannoni, R

    2002-01-01

    The effect of gamma irradiation on the optical properties of Ce sup 3 sup + -doped phosphate and silicate glasses is studied in the 1-250 Gy dose range. Results are discussed by taking into account the possible dependence of radiation-induced effects on the composition of the glass matrix.

  6. Efficacy of a synthetic polymer saliva substitute in reducing oral complaints of patients suffering from irradiation-induced xerostomia

    NARCIS (Netherlands)

    Regelink, G; Vissink, A; Reintsema, H; Nauta, JM

    1998-01-01

    Objective: A saliva substitute based on polyglycerylmethacrylate, lactoperoxidase, and glucose oxidase (Oral Balance) has been developed. The aim of this study was to evaluate the effect of Oral Balance on the dryness-related oral complaints in patients suffering from irradiation-induced xerostomia.

  7. Surface and structure modification induced by high energy and highly charged uranium ion irradiation in monocrystal spinel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yitao, E-mail: yangyt@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Meng, Yancheng; Zhang, Hengqing [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Yizhun [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-05-01

    Due to its high temperature properties and relatively good behavior under irradiation, magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) is considered as a possible material to be used as inert matrix for the minor actinides burning. In this case, irradiation damage is an unavoidable problem. In this study, high energy and highly charged uranium ions (290 MeV U{sup 32+}) were used to irradiate monocrystal spinel to the fluence of 1.0 × 10{sup 13} ions/cm{sup 2} to study the modification of surface and structure. Highly charged ions carry large potential energy, when they interact with a surface, the release of potential energy results in the modification of surface. Atomic force microscopy (AFM) results showed the occurrence of etching on surface after uranium ion irradiation. The etching depth reached 540 nm. The surprising efficiency of etching is considered to be induced by the deposition of potential energy with high density. The X-ray diffraction results showed that the (4 4 0) diffraction peak obviously broadened after irradiation, which indicated that the distortion of lattice has occurred. After multi-peak Gaussian fitting, four Gaussian peaks were separated, which implied that a structure with different damage layers could be formed after irradiation.

  8. Effects of a turmeric extract (Curcuma longa) on chronic ultraviolet B irradiation-induced skin damage in melanin-possessing hairless mice.

    Science.gov (United States)

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2009-12-01

    Turmeric (the rhizomes of Curcuma longa L., Zingiberacease) is widely used as a dietary pigment and spice, and has been traditionally used for the treatment of inflammation, skin wounds and hepatic disorders in Ayurvedic, Unani and Chinese medicine. Although the topical application or oral administration of turmeric is used to improve skin trouble, there is no evidence to support this effect. The aim of this study was to clarify whether turmeric prevents chronic ultraviolet B (UVB)-irradiated skin damage. We examined the effects of a turmeric extract on skin damage including changes in skin thickness and elasticity, pigmentation and wrinkling caused by long-term, low-dose ultraviolet B irradiation in melanin-possessing hairless mice. The extract (at 300 or 1000 mg/kg, twice daily) prevented an increase in skin thickness and a reduction in skin elasticity induced by chronic UVB exposure. It also prevented the formation of wrinkles and melanin (at 1000 mg/kg, twice daily) as well as increases in the diameter and length of skin blood vessels and in the expression of matrix metalloproteinase-2 (MMP-2). Prevention of UVB-induced skin aging by turmeric may be due to the inhibition of increases in MMP-2 expression caused by chronic irradiation.

  9. Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice.

    Directory of Open Access Journals (Sweden)

    Johannes Fuss

    Full Text Available Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.

  10. Radiation induced deuterium absorption for RB-SiC, HP-SiC, silicon and graphite loaded during electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, T.; Moroño, A., E-mail: morono@ciemat.es; Hodgson, E.R.; Malo, M.; Verdú, M.; Sánchez, F.J.

    2014-11-15

    Highlights: • Radiation enhanced deuterium absorption occurs for RB-SiC. • This type of radiation enhanced absorption is related to Si rather than to C. • Most of the radiation induced absorbed deuterium is released at about the foreseen blanket operation temperature. - Abstract: Absorption, diffusion, and desorption of hydrogen isotopes are expected to occur during operation in future fusion reactors and these processes will strongly depend on the irradiation conditions, neutron flux and purely ionizing radiation. The main aim of the work is to address the electron irradiation induced absorption of hydrogen isotopes in RB-SiC. Deuterium loading was carried out with both the sample and the surrounding deuterium gas exposed to 1.8 MeV electron irradiation in order to evaluate the radiation enhanced deuterium absorption. Thermo stimulated desorption (TSD) measurements were carried out for both electron irradiated and unirradiated samples in order to evaluate the possible radiation enhanced retention of the previously loaded deuterium. The materials subjected to the deuterium loading process were also studied by SIMS. Noticeable radiation enhanced deuterium absorption was observed. Most of the deuterium absorbed during irradiation was thermally released at about 600 °C.

  11. Organ-specific responses of total body irradiated doxycycline-inducible manganese superoxide dismutase Tet/Tet mice.

    Science.gov (United States)

    Rhieu, Byung Han; Shinde, Ashwin; Epperly, Michael W; Dixon, Tracy; Wang, Hong; Chaillet, Richard; Greenberger, Joel S

    2014-01-01

    We evaluated doxycycline-inducible manganese superoxide dismutase (MnSOD(tet/tet)) mice after 9.25 Gy total-body irradiation (TBI) or 20 Gy thoracic irradiation. Six-week-old MnSOD(tet/tet) or control C57BL/6NHsd mice on or off doxycycline (doxy) in food received 9.25 Gy TBI, were sacrificed at day 19 and bone marrow, brain, esophagus, heart, intestine, kidney, liver, lung, spleen and tongue harvested, total RNAs extracted and transcripts for irradiation response genes quantitated by real time-polymerase chain reaction (RT-PCR). MnSOD(tet/tet) mice only survived with daily injections of doxy beginning 5 days after birth until weaning, at which time they were placed on food containing doxy. Manganese superoxide dismutase (MnSOD) transcript levels were reduced in all tissues except the lung. Adult mice survived with low MnSOD levels, but induced by doxy or TBI. Thoracic-irradiated MnSOD(tet/tet) mice survived past day 120. MnSOD(tet/tet) mice should be valuable for elucidating the role of MnSOD in growth and irradiation response. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. The Effect Of Electronic Energy Loss On Irradiation-induced Grain Growth In Nanocrystalline Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen; Aidhy, Dilpuneet S.; Varga, Tamas; Moll, Sandra; Edmondson, Philip D.; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N.; Weber, William J.

    2014-03-03

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiationinduced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.

  13. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2014-01-01

    Full Text Available Exposure to ionizing radiation alone (radiation injury, RI or combined with traumatic tissue injury (radiation combined injury, CI is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.

  14. Irradiation influence on Mylar and Makrofol induced by argon ions in a plasma immersion ion implantation system

    Science.gov (United States)

    Hassan, A.; El-Saftawy, A. A.; Aal, S. A. Abd El; Ghazaly, M. El

    2015-08-01

    Mylar and Makrofol polycarbonate polymers were irradiated by Ar ions in a plasma immersion ion implantation (PIII) system. The surface wettability of both polymers was investigated by employing the contact angle method. The measured contact angles were found to depend on the surface layer properties. Good wetting surfaces were found to depend not only on surface roughness but also on its chemistry that analyzed by Fourier transform infrared (FTIR) spectroscopy. Surfaces topography and roughness was investigated and correlated to their surface energy which studied with the aid of acid-base model for evaluating the improvement of surface wettability after irradiation. PIII improves polymers surface properties efficiently in a controllable way.

  15. Induced Mutation on Jatropha (Jatropha Curcas L. for Improvement of Agronomic Characters Variability

    Directory of Open Access Journals (Sweden)

    Ita Dwimahyani

    2004-07-01

    Full Text Available Induced mutation can be used for improving quality in term of seed production, oil content in seed and early maturity of Jatropha with the aim for bio_diesel in Indonesia. The doses of 10, 15,20, and 25 Gy of gamma applied to cuttings was able to increase genetic variability in vegetatively propagated plants of Jatropha at M1V1 (mutant-vegetative-1 generation. Selection for desirable trait will be done at M1 V2 (mutant-1 and vegetative-2 generation untill homogenous plants obtained. Gamma rays at dose of 20 to 25 Gy damaged several genes controlling growth and development on Jatropha which was shown by dwarf and poor plant growth compared to control (plant without irradiation. Irradiation with the dose of 10 Gy raised genetic variability on plant development which was identified with early maturity, 100 seeds weight was 30% over control, and the number of branch growth was good

  16. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  17. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry....... Clustering of Fas was from skin biopsied. Soluble FasL in suction blister fluid was quantified by ELISA. Flow cytometric analysis demonstrated increased expression intensity of Fas after irradiation, with 1.6-,2.2- and 2.7-fold increased median expression at 24, 48 and 72 h after irradiation, respectively (n...... of soluble FasL in suction blister fluid from UVB-irradiated skin did not differ from those in unirradiated skin (n=5). Confocal laser scanning microscopy showed a rapid clustering of Fas within 30 min after irradiation. A simultaneous clustering of the adapter signalling protein FADD suggested that Fas...

  18. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    Science.gov (United States)

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  19. NANOSECOND INTERFEROMETRIC STUDIES OF SURFACE DEFORMATIONS OF DIELECTRICS INDUCED BY LASER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    S. GREENFIELD; ET AL

    2000-05-01

    Transient surface deformations in dielectric materials induced by laser irradiation were investigated with time-resolved interferometry. Deformation images were acquired at various delay times after exposure to single pulses (100 ps at 1.064 {micro}m) on fresh sample regions. Above the ablation threshold, we observe prompt ejection of material and the formation of a single unipolar compressional surface acoustic wave propagating away from the ablation crater. For calcite, no deformation--either transient or permanent--is discernable at laser fluences below the threshold for material ejection. Above and below-threshold behavior was investigated using a phosphate glass sample with substantial near infrared absorption (Schott filter KG3). Below threshold, KG3 exhibits the formation of a small bulge roughly the size of the laser spot that reaches its maximum amplitude by {approx}5 ns. By tens of nanoseconds, the deformations become quite complex and very sensitive to laser fluence. The above-threshold behavior of KG3 combines the ablation-induced surface acoustic wave seen in calcite with the bulge seen below threshold in KG3. A velocity of 2.97 {+-} 0.03 km/s is measured for the KG3 surface acoustic wave, very close to the Rayleigh wave velocity calculated from material elastic parameters. Details of the transient interferometry system will also be given.

  20. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  1. Structural and kinetic modification of aqueous hydroxypropylmethylcellulose (HPMC) induced by electron beam irradiation

    Science.gov (United States)

    Furusawa, Kazuya; Dobashi, Toshiaki; Morishita, Satoshi; Oyama, Mikio; Hashimoto, Tadashi; Shinyashiki, Naoki; Yagihara, Shin; Nagasawa, Naotsugu

    2005-08-01

    Aqueous solutions of 10 and 20 wt% hydroxypropylmethylcellulose (HPMC) were irradiated with different doses to make gel films. The gel fraction of the film increased sharply above a critical dose upon increase of the dose and then decreased gradually after passing a maximum. The scission/cross-linking ratio and the critical dose were determined with the aid of Charlesby-Rosiak equation as 0.52 and 9 kGy for the 10 wt% gel and 0.43 and 14 kGy for the 20 wt% gel, respectively. The gel fraction for the 20 wt% HPMC film was lower at low dose and higher at high dose than that for the 10 wt% film. The behavior of the swelling ratio of the gel film was just opposite to that of the gel fraction. The cross-linking density of the gel estimated from the Flory theory increased linearly with the irradiation dose at low dose, passed through a maximum around 100 and 160 kGy for 10% and 20% films, respectively, and decreased at high dose. These results suggest a competition of scission and cross-linking induced by the indirect effect of irradiation. Dielectric-relaxation measurements by time-domain reflectometry and RF impedance/material analyzer revealed two characteristic relaxations of chain motions around 100 MHz and of orientation of free water around 20 GHz. From the dose dependence of the dielectric-relaxation parameters determined by fitting to a combined equation of the Cole-Cole type and of the KWW type, a coupling of motions of HPMC molecules and water molecules was strongly suggested. The critical dose for gelation was coincident with the dose for the maximum of τ and the minimum of Δε together with the minimum of τ and the maximum of Δε, where τ and Δε denote the relaxation time and the relaxation strength for water molecular motion and τ and Δε the corresponding ones for HPMC molecular motion. The characteristic behavior is discussed in terms of an increase of the affinity between HPMC and water and the constrained molecular motion in the gel network.

  2. High-dose neutron induced radiation swelling simulated by heavy ion irradiation and its microscopic study with positron annihilation technique

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    70 MeV-carbon-ion irradiation is used to simulate the radiation swelling induced by neutron irradiation of 3.2×1022 n·cm-2 in domestically-made 316 austenitic stainless steels modified by a 20%-cold-working and Ti-adding from room temperature to 802°C. The created swelling is microscopically examined by the positron annihilation lifetime technique. A radiation swelling peak is observed at 580°C and the corresponding void has an average diameter of 0.7nm which is hardly probed by macroscopic methods.

  3. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tomonari; Kazama, Yusuke [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko, E-mail: tomoabe@riken.jp [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-07-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101-124 keV {mu}m{sup -1}. In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV {mu}m{sup -1}. We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M{sub 2} pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3-5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV {mu}m{sup -1} radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5-30.0 keV {mu}m{sup -1} and 27% for 101-124 keV {mu}m{sup -1}). Therefore, the 290 keV {mu}m{sup -1} heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  4. White-light emission from solid carbon in aqueous solution during hydrogen generation induced by nanosecond laser pulse irradiation

    Science.gov (United States)

    Akimoto, Ikuko; Yamamoto, Shota; Maeda, Kosuke

    2016-07-01

    We previously discovered a novel method of hydrogen generation from high-grade charcoal in an aqueous solution using nanosecond laser pulse irradiation. In this paper, white-light emission during this reaction is reported: A broad spectrum over the visible range is observed above a threshold excitation energy density. The white-light emission is a simultaneous product of the hydrogen generation reaction and is attributed to blackbody radiation in accordance with Planck's Law at a temperature above 3800 K. Consequently, we propose that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at high pressure and high temperature.

  5. Irradiation induced surface segregation in concentrated alloys: a contribution; Contribution a l`etude de la segregation de surface induite par irradiation dans les alliages concentres

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, Y.

    1996-12-31

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe{sub 50}Ni{sub 50} and Fe{sub 49}Ni{sub 50}Hf{sub 1} alloys. (author). 190 refs.

  6. Electrochemical biosensing for dsDNA damage induced by PbSe quantum dots under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chuan

    2010-01-01

    An electrochemical sensor for the detection of the natural double-stranded DNA (dsDNA) damage induced by PbSe quantum dots (QDs) under UV irradiation was developed. The biosensing membranes were prepared by successively assembling 3-mercaptopropionic acid, polycationic poly (diallyldimethyl ammonium) and dsDNA on the surface of the gold electrode. Damage of dsDNA was fulfilled by immersing the sensing membrane electrode in PbSe QDs suspension and illuminating it with an UV lamp. Cyclic voltammetry was utilized to detect dsDNA damage with Co(phen)3+3 as the electroactive probe. The UV irradiation, Pb2+ ions liberated from the PbSe QDs under the UV irradiation and the reactive oxygen species (ROS) generated in the presence of the PbSe QDs also under the UV irradiation were the three factors of inducing the dsDNA damage. The synergistic effect of the three factors might dramatically enhance the damage of dsDNA. This electrochemical sensor provided a simple method for detecting DNA damage, and may be used for investigating the DNA damage induced by other QDs.

  7. Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical

    Directory of Open Access Journals (Sweden)

    Junling Zhang

    2017-01-01

    Full Text Available We examined whether consumption of hydrogen-rich water (HW could ameliorate hematopoietic stem cell (HSC injury in mice with total body irradiation (TBI. The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (OH∙ levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21, cell apoptosis (BCL-XL and BAK, and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1 proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.

  8. Radio-resistance induced by nitric oxide to heavy ion irradiation in A172 human glioma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qingming; ZHANG Hong; ZHANG Xingxia

    2007-01-01

    To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172,A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA172), were irradiated by 12C6+ ions to 0, 1 or 2Gy. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G2/M stage arrest induced by the 12C6+ ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection.The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.

  9. Improving microbiological safety and maintaining sensory and nutritional quality of pre-cut tomato and carrot by gamma irradiation

    Science.gov (United States)

    Mohácsi-Farkas, Cs.; Nyirő-Fekete, B.; Daood, H.; Dalmadi, I.; Kiskó, G.

    2014-06-01

    Pre-cut tomato and carrot were irradiated with doses of 1.0, 1.5 and 2 kGy. Unirradiated control and irradiated samples were compared organoleptically by a sensory panel. Microbiological analyses were performed directly after irradiation and during post-irradiation storage for 8 days at 5 °C. Ascorbic acid contents, composition of carotenoids and tocopherols were determined. Statistically significant differences of sensory scores between unirradiated and irradiated samples were observed only in the texture of sliced carrots. Total aerobic viable cell counts have been reduced by about two log cycles with 1.5 kGy dose. Total coliforms and moulds were below the detection limit of 15 CFU/g in the irradiated samples during the refrigerated storage. Yeasts were relatively resistant part of the microbiota of pre-cut tomatoes, but 2 kGy dose reduced them below the detection limit. In pre-cut tomatoes, alpha-tocopherol and some carotenoids seemed to be the most radio-sensitive losing approximately one-third of their original concentrations at the dose of 2 kGy. At this dose tocopherols and the level of ascorbic acid decreased also one-third of the initial level in sliced carrots. Additional experiments were conducted to study the effect of irradiation and storage on the population of Listeria monocytogenes and Listeria innocua artificially inoculated on cut tomato and carrot. Cell numbers of both test organisms decreased by at least two log-cycles as an effect of 1 kGy dose. Our studies confirmed earlier findings on a temporary antilisterial effect of freshly cut carrot tissue. No re-growth of Listeria was observed during the studied storage period. The results of these studies suggest that irradiation with 1 kGy gamma rays could improve sufficiently the microbiological safety of the investigated pre-cut produce to satisfy the requirement of low microbial raw diets with acceptable nutritional quality and without diminishing significantly the organoleptic parameters of the

  10. PROTECTIVE EFFECTS OF PROPOLIS ON GAMMA- IRRADIATED NIGELLA SATIVA EXTRACT INDUCED BLOOD AND IMMUNE CHANGES IN WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Osama Moseilhy Saleh

    2013-01-01

    Full Text Available The present study conducted to test the effect of Nigella Sativa (NS, 5 mg kg-1 of body weight, or γ-irradiated Nigella Sativa (GRNS on the changes of blood component profiles, liver, kidney functions and immune cytokines secretion in male Wistar rats. Moreover, the possible protection by propolis (200 mg kg-1 B. W. on the changes induced by NS and GRNS was examined. Results revealed that both NS and GRNS administration for two weeks induced changes in blood, GPT, GOT and urea levels and co-administration with propolis significantly ameliorated such changes. Also, liver histology showed numerous vacuolar degeneration and fatty changes in γ-irradiated groups which disappeared in presence of propolis. Kidney histology of NS administered rats showed less lymphocytic infiltration, while GRNS groups showed desquamation in the cytoplasm of the renal tubules, hemorrhage in the renal corpuscle and lymphocytic infiltration which disappeared when propolis given together with GRNS. Finally propolis induced protective effect on the changes induced in TNF-α and IL-10 secretion by either NS or GRNS in Wistar rats. In conclusion, the findings of present study clarified the protective effect of propolis on changes induced by γ-irradiated NS on blood, liver, kidney and cytokines changes in Wistar rats.

  11. Bystander effects, adaptive response and genomic instability induced by prenatal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian [Institute for Science and Ethics, University Duisburg-Essen, Auf dem Sutan 12, D-45239 Essen (Germany)]. E-mail: streffer.essen@t-online.de

    2004-12-02

    The developing human embryo and fetus undergo very radiosensitive stages during the prenatal development. It is likely that the induction of low dose related effects such as bystander effects, the adaptive response, and genomic instability would have profound effects on embryonic and fetal development. In this paper, I review what has been reported on the induction of these three phenomena in exposed embryos and fetuses. All three phenomena have been shown to occur in murine embryonic or fetal cells and structures, although the induction of an adaptive response (and also likely the induction of bystander effects) are limited in terms of when during development they can be induced and the dose or dose-rate used to treat animals in utero. In contrast, genomic instability can be induced throughout development, and the effects of radiation exposure on genome instability can be observed for long times after irradiation including through pre- and postnatal development and into the next generation of mice. There are clearly strain-specific differences in the induction of these phenomena and all three can lead to long-term detrimental effects. This is true for the adaptive response as well. While induction of an adaptive response can make fetuses more resistant to some gross developmental defects induced by a subsequent high dose challenge with ionizing radiation, the long-term effects of this low dose exposure are detrimental. The negative effects of all three phenomena reflect the complexity of fetal development, a process where even small changes in the timing of gene expression or suppression can have dramatic effects on the pattern of biological events and the subsequent development of the mammalian organism.

  12. Ginsenoside rich fraction of Panax ginseng C.A. Meyer improve feeding behavior following radiation-induced pica in rats.

    Science.gov (United States)

    Balaji Raghavendran, Hanumantha Rao; Rekha, Sathyanath; Cho, Hyeong-Keug Kim Jung-Hyo; Jang, Seong-Soon; Son, Chang-Gue

    2012-09-01

    Panax ginseng is an indigenous medicinal herb and has traditionally been used among Asian population for relief of many human ailments. We investigated the prophylactic role of Korean P. ginseng extract (KG) against X-ray irradiation-induced emesis in an acute rat pica model. Rats were treated with KG (12.5, 25, 50 mg/kg orally at -48, -24 and 0 h) prior to X-ray irradiation (6 Gy), and intake of kaolin and normal food and body weight changes examined as an index of the acute emetic stimulus. Levels of serotonin in small intestine tissue were assessed and histopathology of gastric tissue, small intestine and colon examined specific staining. Pre-treatment with KG (12.5 and 25 mg/kg) reduced X-ray irradiation-induced kaolin intake at 24h. Normal food intake was improved in rats treated with 25 mg/kg KG. The anti-emetic effect of KG was further confirmed on the basis of serotonin release, histopathological findings. Our findings collectively indicate that KG protects against X-ray irradiation-induced acute pica to a moderate extent, leading to improved feeding behavior in rats.

  13. A Novel Concentrator Photovoltaic (CPV System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-09-01

    Full Text Available This paper proposes a novel concentrator photovoltaic (CPV system with improved irradiation uniformity and system efficiency. CPV technology is very promising its for highly efficient solar energy conversion. A conventional CPV system usually uses only one optical component, such as a refractive Fresnel lens or a reflective parabolic dish, to collect and concentrate solar radiation on the solar cell surface. Such a system creates strongly non-uniform irradiation distribution on the solar cell, which tends to cause hot spots, current mismatch, and degrades the overall efficiency of the system. Additionally, a high-concentration CPV system is unable to collect diffuse solar radiation. In this paper, we propose a novel CPV system with improved irradiation uniformity and collection of diffuse solar radiation. The proposed system uses a Fresnel lens as a primary optical element (POE to concentrate and focus the sunlight and a plano-concave lens as a secondary optical element (SOE to uniformly distribute the sunlight over the surface of multi-junction (MJ solar cells. By using the SOE, the irradiance uniformity is significantly improved in the system. Additionally, the proposed system also captures diffuse solar radiation by using an additional low-cost solar cell surrounding MJ cells. In our system, incident direct solar radiation is captured by MJ solar cells, whereas incident diffuse solar radiation is captured by the low-cost solar cell. Simulation models were developed using a commercial optical simulation tool (LightTools™. The irradiance uniformity and efficiency of the proposed CPV system were analyzed, evaluated, and compared with those of conventional CPV systems. The analyzed and simulated results show that the CPV system significantly improves the irradiance uniformity as well as the system efficiency compared to the conventional CPV systems. Numerically, for our simulation models, the designed CPV with the SOE and low-cost cell provided

  14. Manufacture of ice cream with improved microbiological safety by using gamma irradiation

    Science.gov (United States)

    Lee, Ju-Woon; Kim, Hyun-Joo; Yoon, Yohan; Kim, Jae-Hun; Ham, Jun-Sang; Byun, Myung-Woo; Baek, Min; Jo, Cheorun; Shin, Myung-Gon

    2009-07-01

    Children suffered from leukemia want to eat delicious dishes, such as cake and ice cream. However, it is very difficult to serve these foods to immune-compromised patients without application of any adequate sanitary measures. This study was conducted to evaluate application of irradiation to frozen ready-to-eat food, ice cream. Three ice creams with flavors of vanilla, chocolate and strawberry were manufactured and gamma irradiated at the absorbed doses of 1, 3, and 5 kGy at -70 °C. Total microflora and coliform bacteria were determined, and Listeria spp., Escherichia coli and Salmonella spp. were also tested by the use of API 20E Kit. Aerobic bacteria, yeast/mold and coliforms were contaminated in the levels of 2.3 to 3.3, 2.3 to 2.7 and 1.7 to 2.4 log CFU/g, respectively. In samples irradiated at 5 kGy, the growth of any microorganisms could not be observed. Listeria spp. and E. coli were detected at non-irradiated samples, but S. spp. was not existed. D10 values of L. ivanovii and E. coli were 0.75 and 0.31 kGy, respectively, in ice cream. From these results, irradiation technology can reduce the risk by the food-borne pathogens of ice cream.

  15. TiO2 films photocatalytic activity improvements by swift heavy ions irradiation

    Science.gov (United States)

    Rafik, Hazem; Mahmoud, Izerrouken; Mohamed, Trari; Abdenacer, Benyagoub

    2014-08-01

    TiO2 thin films synthesized by sol-gel on glass substrates are irradiated by 90 MeV Xe ions at various fluences and room temperature under normal incidence. The structural, electrical, optical and surface topography properties before and after Xe ions irradiation are investigated. X-ray diffraction (XRD) reveals that the crystallinity is gradually destroyed, and the films become amorphous above 5×1012 ions/cm2. The band gap is not affected by Xe ions irradiation as evidenced from the optical measurements. By contrast, the conductivity increases with raising Xe fluence. The energy band diagram established from the electrochemical characterization shows the feasibility of TiO2 films for the photo-electrochemical chromate reduction. Xe ion irradiation results in enhanced photocatalytic activity in aquatic medium, evaluated by the reduction of Cr(VI) into trivalent state. TiO2 films irradiated at 1013 Xe/cm2 exhibit the highest photoactivity; 69% of chromate (10 ppm) is reduced at pH 3 after 4 h of exposure to sunlight (1120 mW cm-2) with a quantum yield of 0.06%.

  16. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices.

  17. Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury.

    Directory of Open Access Journals (Sweden)

    Yan Sun

    Full Text Available Demyelination contributes to the functional impairment of irradiation injured spinal cord. One potential therapeutic strategy involves replacing the myelin-forming cells. Here, we asked whether transplantation of Olig2(+-GFP(+-oligodendrocyte precursor cells (OPCs, which are derived from Olig2-GFP-mouse embryonic stem cells (mESCs, could enhance remyelination and functional recovery after spinal cord irradiation injury. We differentiated Olig2-GFP-mESCs into purified Olig2(+-GFP(+-OPCs and transplanted them into the rats' cervical 4-5 dorsal spinal cord level at 4 months after irradiation injury. Eight weeks after transplantation, the Olig2(+-GFP(+-OPCs survived and integrated into the injured spinal cord. Immunofluorescence analysis showed that the grafted Olig2(+-GFP(+-OPCs primarily differentiated into adenomatous polyposis coli (APC(+ oligodendrocytes (54.6±10.5%. The staining with luxol fast blue, hematoxylin & eosin (LFB/H&E and electron microscopy demonstrated that the engrafted Olig2(+-GFP(+-OPCs attenuated the demyelination resulted from the irradiation. More importantly, the recovery of forelimb locomotor function was enhanced in animals receiving grafts of Olig2(+-GFP(+-OPCs. We concluded that OPC transplantation is a feasible therapy to repair the irradiated lesions in the central nervous system (CNS.

  18. Manufacture of ice cream with improved microbiological safety by using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr; Kim, Hyun-Joo; Yoon, Yohan; Kim, Jae-Hun [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Ham, Jun-Sang [Animal Products Processing Division, National Livestock Research Institute, Rural Development Administration, Suwon 441-706 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Science and Technology, Seoul 110-760 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Shin, Myung-Gon [Department of Food Science and Biotechnology, Woosong University, Daejeon, 300-718 (Korea, Republic of)

    2009-07-15

    Children suffered from leukemia want to eat delicious dishes, such as cake and ice cream. However, it is very difficult to serve these foods to immune-compromised patients without application of any adequate sanitary measures. This study was conducted to evaluate application of irradiation to frozen ready-to-eat food, ice cream. Three ice creams with flavors of vanilla, chocolate and strawberry were manufactured and gamma irradiated at the absorbed doses of 1, 3, and 5 kGy at -70 deg. C. Total microflora and coliform bacteria were determined, and Listeria spp., Escherichia coli and Salmonella spp. were also tested by the use of API 20E Kit. Aerobic bacteria, yeast/mold and coliforms were contaminated in the levels of 2.3 to 3.3, 2.3 to 2.7 and 1.7 to 2.4 log CFU/g, respectively. In samples irradiated at 5 kGy, the growth of any microorganisms could not be observed. Listeria spp. and E. coli were detected at non-irradiated samples, but S. spp. was not existed. D{sub 10} values of L. ivanovii and E. coli were 0.75 and 0.31 kGy, respectively, in ice cream. From these results, irradiation technology can reduce the risk by the food-borne pathogens of ice cream.

  19. Atom redistribution and multilayer structure in NiTi shape memory alloy induced by high energy proton irradiation

    Science.gov (United States)

    Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong

    2017-10-01

    The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.

  20. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants.

    Science.gov (United States)

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-08-10

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady-state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax-fleck) and the steady-state A under low light (Amin-fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax-fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax-fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance.

  1. Thermal conductivity of graphene with defects induced by electron beam irradiation

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  2. Structural damage in InGaN induced by MeV heavy ion irradiation

    Science.gov (United States)

    Zhang, L. M.; Fadanelli, R. C.; Hu, P.; Zhao, J. T.; Wang, T. S.; Zhang, C. H.

    2015-08-01

    In0.18Ga0.82N films were irradiated with 4 MeV 84Kr and 8.9 MeV 209Bi ions to various fluences at room temperature. The irradiated films were analyzed by means of Rutherford backscattering/channeling (RBS/C) and high resolution X-ray diffraction (HRXRD). The RBS/C measurements show that under the irradiation conditions, the relative lattice disorder in the films, obtained from the normalized backscattering yield, exhibits a rapid increase in the range from ∼2% to 68%. There is also an increasing lattice expansion of the films with increasing ion fluence, as determined by the HRXRD measurements. At a comparable level of lattice disorder, the Kr irradiation leads to a more pronounced lattice expansion than the Bi irradiation. This may be attributed to a larger portion of the single interstitials in the films produced by the lighter Kr ion irradiation.

  3. Correlation between irradiation-induced changes of microstructural parameters and mechanical properties of RPV steels

    Science.gov (United States)

    Böhmert, J.; Viehrig, H.-W.; Ulbricht, A.

    2004-08-01

    Radiation hardening, displayed by the yield stress increase, and irradiation embrittlement, described by the Charpy transition temperature shift, were experimentally determined for a broad variety of irradiation specimens machined from different reactor pressure vessel base and weld materials and irradiated in several VVER-type reactors. Additionally, the same specimens were investigated by small angle neutron scattering. The analysis of the neutron scattering data suggests the presence of nano-scaled irradiation defects. The volume fraction of these defects depends on the neutron fluence and the material. Both irradiation hardening and irradiation embrittlement correlate linearly with the square root of the defect volume fraction. However, a generally valid proportionality is only a rough approximation. In detail, chemical composition and technological pretreatment clearly affect the correlation.

  4. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway.

    Directory of Open Access Journals (Sweden)

    Dorothee Gramatzki

    Full Text Available BACKGROUND/AIMS: Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. METHODS: Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. RESULTS: Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. CONCLUSION: Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS

  5. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi 990-9585 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-08-15

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  6. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    Science.gov (United States)

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    Science.gov (United States)

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  8. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  9. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2015-08-01

    Full Text Available Hong Shan Capsule (HSC, a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI. Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage.

  10. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats.

    Science.gov (United States)

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-08-12

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage.

  11. Effects of electronic and nuclear stopping power on disorder induced in GaN under swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moisy, F., E-mail: moisy@ganil.fr [CIMAP, Normandie Universite ENSICAEN/CEA/CNRS, 6 Bd Maréchal Juin, 14050 Caen (France); Sall, M.; Grygiel, C.; Balanzat, E.; Boisserie, M.; Lacroix, B. [CIMAP, Normandie Universite ENSICAEN/CEA/CNRS, 6 Bd Maréchal Juin, 14050 Caen (France); Simon, P. [CNRS, UPR 3079 CEMHTI, CS 90055, 45071 Orléans Cedex 2 (France); Monnet, I. [CIMAP, Normandie Universite ENSICAEN/CEA/CNRS, 6 Bd Maréchal Juin, 14050 Caen (France)

    2016-08-15

    Wurtzite GaN epilayers, grown on the c-plane of sapphire substrate, have been irradiated with swift heavy ions at different energies and fluences, and thereafter studied by Raman scattering spectroscopy, UV–visible spectroscopy and transmission electron microscopy. Raman spectra show strong structural modifications in the GaN layer. Indeed, in addition to the broadening of the allowed modes, a large continuum and three new modes at approximately 200 cm{sup −1}, 300 cm{sup −1} and 670 cm{sup −1} appear after irradiation attributed to disorder-activated Raman scattering. In this case, spectra are driven by the phonon density of states of the material due to the loss of translation symmetry of the lattice induced by defects. It was shown qualitatively that both electronic excitations and elastic collisions play an important role in the disorder induced by irradiation. UV–visible spectra reveal an absorption band at 2.8 eV which is linked to the new mode at 300 cm{sup −1} observed in irradiated Raman spectra and comes from Ga-vacancies. These color centers are produced by elastic collisions (without any visible effect of electronic excitations).

  12. Effects of electronic and nuclear stopping power on disorder induced in GaN under swift heavy ion irradiation

    Science.gov (United States)

    Moisy, F.; Sall, M.; Grygiel, C.; Balanzat, E.; Boisserie, M.; Lacroix, B.; Simon, P.; Monnet, I.

    2016-08-01

    Wurtzite GaN epilayers, grown on the c-plane of sapphire substrate, have been irradiated with swift heavy ions at different energies and fluences, and thereafter studied by Raman scattering spectroscopy, UV-visible spectroscopy and transmission electron microscopy. Raman spectra show strong structural modifications in the GaN layer. Indeed, in addition to the broadening of the allowed modes, a large continuum and three new modes at approximately 200 cm-1, 300 cm-1 and 670 cm-1 appear after irradiation attributed to disorder-activated Raman scattering. In this case, spectra are driven by the phonon density of states of the material due to the loss of translation symmetry of the lattice induced by defects. It was shown qualitatively that both electronic excitations and elastic collisions play an important role in the disorder induced by irradiation. UV-visible spectra reveal an absorption band at 2.8 eV which is linked to the new mode at 300 cm-1 observed in irradiated Raman spectra and comes from Ga-vacancies. These color centers are produced by elastic collisions (without any visible effect of electronic excitations).

  13. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    Science.gov (United States)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  14. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    Science.gov (United States)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-05-01

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  15. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 and Tecnun, University of Navarra, Manuel Lardizábal 15, 20018 San Sebastián (Spain); Rodriguez, A. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  16. Low-power laser irradiation inhibits arecoline-induced fibrosis: an in vitro study

    Science.gov (United States)

    Yeh, Mei-Chun; Chen, Ker-Kong; Chiang, Min-Hsuan; Chen, Chia-Hsin; Chen, Ping-Ho; Lee, Huey-Er; Wang, Yan-Hsiung

    2017-01-01

    Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline-stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and α-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway. PMID:28233766

  17. Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma

    Science.gov (United States)

    Zhang, Hongfang; Luo, Honglei; Jiang, Zhenzhen; Yue, Jing; Hou, Qiang; Xie, Ruifei; Wu, Shixiu

    2016-01-01

    The efficacy of radiotherapy, one major treatment modality for esophageal squamous cell carcinoma (ESCC) is severely attenuated by radioresistance. Epithelial-to-mesenchymal transition (EMT) is a cellular process that determines therapy response and tumor progression. However, whether EMT is induced by ionizing radiation and involved in tumor radioresistance has been less studied in ESCC. Using multiple fractionated irradiation, the radioresistant esophageal squamous cancer cell line KYSE-150R had been established from its parental cell line KYSE-150. We found KYSE-150R displayed a significant EMT phenotype with an elongated spindle shape and down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker N-cadherin in comparison with KYSE-150. Furthermore, KYSE-150R also possessed some stemness-like properties characterized by density-dependent growth promotion and strong capability for sphere formation and tumorigenesis in NOD-SCID mice. Mechanical studies have revealed that WISP1, a secreted matricellular protein, is highly expressed in KYSE-150R and mediates EMT-associated radioresistance both in ESCC cells and in xenograft tumor models. Moreover, WISP1 has been demonstrated to be closely associated with the EMT phenotype observed in ESCC patients and to be an independent prognosis factor of ESCC patients treated with radiotherapy. Our study highlighted WISP1 as an attractive target to reverse EMT-associated radioresistance in ESCC and can be used as an independent prognostic factor of patients treated with radiotherapy. PMID:27125498

  18. Study on proton irradiation induced defects in GaN thick film*%GaN厚膜中的质子辐照诱生缺陷研究*

    Institute of Scientific and Technical Information of China (English)

    张明兰†; 杨瑞霞; 李卓昕; 曹兴忠; 王宝义; 王晓晖

    2013-01-01

      本文采用正电子湮没谱研究质子辐照诱生缺陷,实验发现:能量为5 MeV的质子辐照在GaN厚膜中主要产生的是Ga单空位,没有双空位或者空位团形成;在10 K测试的低温光致发光谱中,带边峰出现了“蓝移”,辐照后黄光带的发光强度减弱,说明黄光带的起源与Ga空位(VGa)之间不存在必然的联系,各激子发光峰位置没有改变,仅强度随质子注量发生变化;样品(0002)面双晶XRD扫描曲线的半峰宽在辐照后明显增大,说明质子辐照对晶格的周期性产生了影响,薄膜晶体质量下降。%Proton-irradiation-induced defects threaten seriously the stable performance of GaN-based devices in harsh environments, such as outer space. It is therefore urgent to understand the behaviors of proton-irradiation-induced defects for improving the radiation tolerance of GaN-based devices. Positron annihilation spectroscopy (PAS) has been used to study proton-induced defects in GaN grown by HVPE. The result shows that VGa is the main defects and no (VGaVN) or (VGaVN)2 is formed in 5 MeV proton-irradiated GaN. Photoluminescence (PL) spectrum is carried out at 10K. After irradiation, the band edge shows a blue-shift, but the donor-acceptor pair (DAP) emission band and its LO-phonon replicas is kept at the original position. The intensity of yellow luminescence (YL) band is decreased, which means that the origin of YL band has no relation with VGa. The increased FWHM of GaN (0002) peak in proton-irradiated GaN indicates a degradation of crystal quality.

  19. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  20. Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by the γ-Ray Irradiation Technique

    Directory of Open Access Journals (Sweden)

    Young-Pil Yun

    2015-01-01

    Full Text Available The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL fibers modified using the γ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc was grafted onto the PCL fibers by the γ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL. PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM, X-ray photoelectron spectroscopy (XPS, and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells.

  1. Controlling laser beam irradiation area using an optical duplicate system to improve satellite-ground laser communications

    Science.gov (United States)

    Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Kodate, Kashiko

    2016-08-01

    To improve the quality of ground to satellite laser communications, we propose an optical duplicate system of the optical ground station. Our proposed approach can be used to control the beam irradiation area for a satellite position without changing the total power of the output beam and the mechanical drive unit; this is performed by controlling the input pattern of a liquid crystal filter inserted in the input plane of the optical duplicate system. Most of the power of the diffracted laser beam emitted from the ground is focused on the optical axis. By distributing the power to side lobes, it is possible to extend the coverage area for a satellite position. This system allows the laser beam irradiation area to be controlled by a sufficient degree by adjusting the threshold of the satellite reception level. We verify the efficacy of the system using wave optics numerical calculations.

  2. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  3. Significance of bacterial flora in abdominal irradiation-induced inhibition of lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T.; Ando, K.; Koike, S.

    1988-06-01

    We have previously reported that abdominal irradiation prior to i.v. injection of syngeneic tumor cells reduced metastases in lung. Our report described an investigation of the significance of intestinal organisms in the radiation effect. We found that eliminating intestinal organisms with antibiotics totally abolished the radiation effect. Monoassociation of germ-free mice revealed that the radiation effect was observable only for Enterobacter cloacae, never for Streptococcus faecium, Bifidobacterium adlesentis, or Escherichia coli. After abdominal irradiation of regular mice, E. cloacae multiplied in cecal contents, adhered to mucous membranes, invaded the cecal wall, and translocated to mesenteric lymph nodes. Intravenous administration of E. cloacae in place of abdominal irradiation inhibited metastases. E. cloacae-monoassociated mice developed fewer metastases than germ-free mice, and the reduction was further enhanced by abdominal irradiation. We concluded that abdominal irradiation caused the invasion of E. cloacae from the mucous membrane of the intestine and inhibited formation of lung metastases.

  4. Characterization and formation mechanism of water-insoluble DNA-matrix induced by UV irradiation.

    Science.gov (United States)

    Yamada, M; Satoh, S; Nomizu, M; Ohkawa, K; Yamamoto, H; Nishi, N

    2001-01-01

    We have prepared water-insoluble and nuclease resistant DNA-matrixes by UV irradiation. The UV-irradiated DNA-matrix could effectively accumulate and condense harmful DNA-intercalating compounds, such as acridine orange (AO) and ethidium bromide (EB), from diluted aqueous solutions. The binding constant of AO and EB for UV-irradiated DNA were determined to be 1.0 (+/- 0.2) x 10(5) M-1 and 6.8 (+/- 0.3) x 10(4) M-1, respectively; values consisted with reported results for non-irradiated DNA. In addition, the agarose gel electrophoresis and AFM measurements indicate that DNA matrix forms an intermolecular cross-linking structure with the radical reaction. The UV-irradiated DNA-matrixes have potential uses as a biomaterial filter for the removal of harmful DNA intercalating compounds.

  5. Tumour cell death induced by the bulk photovoltaic effect of LiNbO3:Fe under visible light irradiation.

    Science.gov (United States)

    Blázquez-Castro, Alfonso; Stockert, Juan C; López-Arias, Begoña; Juarranz, Angeles; Agulló-López, Fernando; García-Cabañes, Angel; Carrascosa, Mercedes

    2011-06-01

    This work reports a pioneer application of the bulk photovoltaic effect in the biomedical field. Massive necrotic cell death was induced in human tumour cell cultures grown on a bulk photovoltaic material (iron-doped lithium niobate, LiNbO(3):Fe) after irradiation with visible light. Lethal doses (≈100% cell death) were obtained with low-intensity visible light sources (10-100 mW cm(-2) irradiances) and short exposure times of the order of minutes. The wavelength dependence to induce the lethal effect observed is consistent with that corresponding to the bulk photovoltaic effect generation in LiNbO(3):Fe. Necrosis also occurred when cultured tumour cells were exposed to LiNbO(3):Fe microparticles and visible light.

  6. Extended free-volume defects in chalcogenide glassy semiconductors induced by high-energy {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, Valentina [Lviv Institute of Materials of SRC (Ukraine); State University of Vital Activity Safety, Lviv 79007 (Ukraine); Filipecki, Jacek; Shpotyuk, Oleh [Institute of Physics, Jan Dlugosz University, Czestochowa (Poland)

    2009-08-15

    It was shown that under-coordinated topological defects induced by high-energy {gamma}-irradiation can be a reason for significant changes in positron annihilation lifetime spectra of multicomponent chalcogenide glassy semiconductors within ternary Ge-As(Sb)-S systems. In the case of negatively-charged sulphur and arsenic atoms, the excess of free volume is quite enough to produce additional input in the second defect-related channel of positron trapping, while under-coordinated germanium atoms are practically non-detectable with this technique because of low associated free volume. Despite radiation-induced densification, the average positron lifetime demonstrate both growing and decaying tendencies after {gamma}-irradiation depending on glass composition. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, Ernest D. [Modeling and Computing Services, LLC; Odette, George Robert [UCSB; Nanstad, Randy K [ORNL; Yamamoto, Takuya [ORNL

    2007-11-01

    The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the broader database now available and current understanding of embrittlement mechanisms. The USE database and models have not been updated since the publication of NUREG/CR-6551 and, therefore, are not discussed in this report. The revised embrittlement shift model is calibrated and validated on a substantially larger, better-balanced database compared to prior models, including over five times the amount of data used to develop RG1.99/2. It also contains about 27% more data than the most recent update to the surveillance shift database, in 2000. The key areas expanded in the current database relative to the database available in 2000 are low-flux, low-copper, and long-time, high-fluence exposures, all areas that were previously relatively sparse. All old and new surveillance data were reviewed for completeness, duplicates, and discrepancies in cooperation with the American Society for Testing and Materials (ASTM) Subcommittee E10.02 on Radiation Effects in Structural Materials. In the present modeling effort, a 10% random sample of data was reserved from the fitting process, and most aspects of the model were validated with that sample as well as other data not used in calibration. The model is a hybrid, incorporating both physically motivated features and empirical calibration to the U.S. power reactor surveillance

  8. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Science.gov (United States)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  9. Annealing of radiation-induced damage in tungsten under and after irradiation with 20 MeV self-ions

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V., E-mail: olga.ogorodnikova@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Gasparyan, Yu.; Efimov, V. [National Research Nuclear University “MEPHI”, Moscow (Russian Federation); Ciupiński, Ł.; Grzonka, J. [Warsaw University of Technology, ul. Woloska 141, PL-02507 Warsaw (Poland)

    2014-08-01

    Accumulation and recovery of radiation defects under/after self-ion irradiation in tungsten (W) have been investigated via decoration with deuterium (D) and scanning transmission electron microscopy (STEM). The deuterium was incorporated in damaged material by low-energy D plasma. The D concentration at radiation-induced defects in each sample was subsequently measured by nuclear reaction analysis allowing determination of the D concentration at depths up to 6 μm. The total D retention was measured by thermal desorption spectroscopy. It was shown that pre-irradiation with self-ions led to rather high D concentration (⩾ 0.1 at.%) in W even at high temperatures (⩾ 700 K) due to formation of defects with high de-trapping energy for deuterium. The annealing of defects with low trapping energy for D occurs intensively in the temperature range between 300 and 700 K. The radiation-induced defects with high de-trapping energy for D are thermally stable at least up to 1100 K. The rearrangement and partial healing of dislocations as well as coalescence of small clusters in a big ones accompanied by a reduction of the total density of defects was observed by STEM after annealing of radiation-induced defects in recrystallized tungsten at 1000 K. The D retention monotonically decreases in recrystallized W with increasing of annealing temperature up to 1100 K that is in agreement with the reduction of radiation defect density observed by STEM. However, an increase of the D retention in ‘as received’ W pre-irradiated with self-ions at annealing temperature of around 1000 K was found. The increase of the D retention at annealing temperature of ∼1000 K was not observed in the case of recrystallized W pre-irradiated with self-ions. The mechanism of recovery of radiation-induced defects in dependence on the initial intrinsic defects (grain size, impurities, etc.) in W is discussed.

  10. Defect-initiated atomic emissions from semiconductor surfaces induced by laser irradiation: Electronic cleaning of defects on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kanasaki, Jun' ichi; Okano, Akiko; Nakai, Yasuo; Itoh, Noriaki (Dept. of Physics, Nagoya Univ., Furo-cho, Chikusa, Nagoya (Japan))

    1994-05-15

    We compare the emission of Si atoms from Si (100) surfaces and of Ga atoms from GaAs (110) and GaP (110) surfaces induced by irradiation with low-fluence laser pulses, each of which emits atoms of about 10[sup -6] monolayers, and found a strong correlation between the laser fluence that can cause emission and the strength of the bond by which the emitted atoms are bound

  11. Mechanistic effects of long-term ultraviolet B irradiation induce epidermal and dermal changes in human skin xenografts.

    Science.gov (United States)

    Hachiya, Akira; Sriwiriyanont, Penkanok; Fujimura, Tsutomu; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori; Kitzmiller, William J; Visscher, Marty O; Tsuboi, Ryoji; Boissy, Raymond E

    2009-02-01

    UVB irradiation has been reported to induce photoaging and suppress systemic immune function that could lead to photocarcinogenesis. However, because of the paucity of an UVB-induced photodamaged skin model, precise and temporal mechanism(s) underlying the deleterious effects of long-term UVB exposure on human skin have yet to be delineated. In this study, we established a model using human skin xenografted onto severe combined immunodeficient mice, which were subsequently challenged by repeated UVB irradiation for 6 weeks. Three-dimensional optical image analysis of skin replicas and noninvasive biophysical measurements illustrated a significant increase in skin surface roughness, similar to premature photoaging, and a significant loss of skin elasticity after long-term UVB exposure. Resembling authentically aged skin, UVB-exposed samples exhibited significant increases in epithelial keratins (K6, K16, K17), elastins, and matrix metalloproteinases (MMP-1, MMP-9, MMP-12) as well as degradation of collagens (I, IV, VII). The UVB-induced deterioration of fibrous keratin intermediate filaments was also observed in the stratum corneum. Additionally, similarities in gene expression patterns between our model and chronologically aged skin substantiated the plausible relationship between photodamage and chronological age. Furthermore, severe skin photodamage was observed when neutralizing antibodies against TIMP-1, an endogenous inhibitor of MMPs, were administered during the UVB exposure regimen. Taken together, these findings suggest that our skin xenograft model recapitulates premature photoaged skin and provides a comprehensive tool with which to assess the deleterious effects of UVB irradiation.

  12. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Science.gov (United States)

    Gautam, Subodh K.; Chettah, Abdelhak; Singh, R. G.; Ojha, Sunil; Singh, Fouran

    2016-07-01

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO2 composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb2O5) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb2O5 phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO2 and Nb2O5 phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO2 phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  13. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    Science.gov (United States)

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  14. Structural and electronic transitions in G e2S b2T e5 induced by ion irradiation damage

    Science.gov (United States)

    Privitera, S. M. S.; Mio, A. M.; Smecca, E.; Alberti, A.; Zhang, W.; Mazzarello, R.; Benke, J.; Persch, C.; La Via, F.; Rimini, E.

    2016-09-01

    G e2S b2T e5 polycrystalline films either in the trigonal stable phase or in the metastable rock-salt structure have been irradiated with 150 keV Ar+ ions. The effects of disorder are studied by electrical, optical, and structural measurements and density functional theory (DFT) simulations. In the metastable structure, the main effect of ion irradiation is a progressive amorphization, with an optical threshold at a fluence of 3 ×1013c m-2 . For the trigonal structure, a metal-insulator transition and a crystalline transition to rock-salt structure occur prior to amorphization, which requires a fluence of 8 ×1013c m-2 . The bonds of Te atoms close to the van der Waals gaps, present in the trigonal phase and identified by Raman spectroscopy, change as a function of the disorder induced by the irradiation. Comparison with DFT simulations shows that ion irradiation leads to the gradual filling of the van der Waals gaps with displaced Ge and Sb lattice atoms, giving rise first to a metal-insulator transition (9 % of displaced atoms) correlated to the modification of the Te bonds and then induces a structural transition to the metastable rock-salt phase (15 % of displaced atoms). The data presented here not only show the possibility to tune the degree of order, and therefore the electrical properties and the structure of phase change materials by ion irradiation, but also underline the importance of the van der Waals gaps in determining the transport mechanisms and the stability of the crystalline structure.

  15. 放射性鼻窦炎的手术治疗%Effect of surgery on irradiation-induced rhinosinusitis in patients with nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    方小勇; 吴平; 赵素萍

    2012-01-01

    Objective To investigate the effect of endoscopic sinus surgery combined with other adjunctive therapy on irradiation - induced rhinosinusitis in patients with riasopharyngeal carcinoma ( NPC). Methods 37 NPC patients with irradiation - induced sinusitis hospitalized from September 2005 to September 2008 were enrolled in the study. All patients were treated with endoscopie surgery combined with oilier adjundive therapy and followed up for 12 to 36 months. The surgery was performed 10 months to 8 years after the irradiation therapy. Results 15 cases (40.5%) were completely cured, 20cases (54. 1%) were improved and 2 cases were ineffective. The total effective rate ( including the cured and improved cases ) was 94. 6% . No recurrence was observed. Conclusion Endoscopic sinus surgery is an effective method in the treatment of irradiation-induced rhinosinusitis in patients with nssopbaryngeal carcinoma. The key points to enhance the curative effect include the reservatiun of the useful mucoss and appropriate postoperative therapy.%目的 探讨鼻内镜下手术治疗鼻咽癌( NPC)放射治疗后放射性鼻窦炎的疗效.方法 笔者对2005年9月~2008年9月收治的经保守治疗无效的37例放射性鼻窦炎患者(放疗后10个月至8年)行鼻内镜手术治疗,术后随访12 ~36个月,观察其疗效.结果 37例NPc放射治疗后鼻窦炎患者治愈15例(40.5%),有效20例(54.1%),无效2例,总有效率为94.6%.结论 对保守治疗无效的放射性鼻窦炎患者行鼻内镜手术是一种行之有效的治疗方式.

  16. Improvement of plant parameters of the ROBO gamma irradiation facility due to design modification

    Science.gov (United States)

    Kovacs, A.; Moussa, A.; Othman, I.; Del Valle Odar, C.; Seminario, A.; Linares, M.; Huamanlazo, P.; Aymar, J.; Chu, R.

    1998-06-01

    Two industrial scale, "ROBO" type 60Co gamma irradiation facilities have recently been put into operation in Syria and Peru, and the dosimetry commissioning of both plants have been carried out to determine dose distribution within products and to calculate plant parameters such as efficiency, dose uniformity ratio and throughput. There are some design modifications between the two plants in connection with the location of the carriers with respect to the source plaque and also to each other. The effect of these construction modifications on the plant parameters is discussed in the analysis of the dose distribution data measured in the carriers with depth and height among the four irradiation rows on both sides of the source plaque. The plant parameters were also calculated for different product densities using the technical data of the facilities, and the calculated and measured results were compared to each other.

  17. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films

    Science.gov (United States)

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.

    2017-01-01

    Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. PMID:28071696

  18. Chlorogenic acid was specifically induced among phenolic compounds in centipedegrass by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    An, Byung Chul; Barampuram, Shyamkumar; Lee, Seung Sik; Lee, Eun Mi; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    Centipedegrass is a warm season turfgrass in the world. Chlorogenic acid (CA) is one of the important compounds present in the leaf of centipedegrass and already known as an antioxidant, CA has become a key resistance against insect pests and bacteria pathogens of agricultural and horticultural plants during seedlling stage. Furthermore, CA is accumulated by abiotic stress such as an UV irradiation. In present study, we investigated enhancement of the level of CA upon gamma irradiation in centipedegrass. The high performance liquid chromatography (HPLC) data analysis showed an approximately increasing of the CA levels from among the irradiated samples. However, plants irradiated at 50 Gy showed a constant increase in the CA level (0.0066 to 0.114 mg ml{sup -1} and 0.0258 to 0.2211 mg ml{sup -1}, respectively) from 3{sup rd} to 15{sup th} day among one and three month irradiated plants compared to control. The present study, indicates an increase in the CA level upon gamma irradiation, suggests strategy for conferment of strong resistance on seedling stage plants by gamma irradiation as simplicity and cheaply method.

  19. Irradiation-induced disorder in high- Tc cuprates: electronic band structure study

    Science.gov (United States)

    Vobornik, I.; Quitmann, C.; Zacchigna, M.; Zwick, F.; Grioni, M.; Karkin, A.; Kelley, R. J.; Onellion, M.; Margaritondo, G.

    1998-05-01

    We used thermal neutron irradiation to produce disorder in Bi-2212 single crystals ( TC=85 K), at a constant carrier density. The irradiated samples were insulators. High-temperature superconductivity with a lower TC than prior to irradiation could be restored by a low-temperature annealing. We performed angle-resolved photoemission investigation on both unannealed (insulating) and annealed (superconducting) samples in order to study the corresponding changes in electronic structure. We observed a strong suppression of the spectral weight near the Fermi energy with increasing disorder. Our results demonstrate that effects related to disorder cannot be neglected in the interpretation of the spectral properties of cuprates.

  20. Modifications induced in the polycarbonate Makrofol KG polymer by Li (50 MeV) ion irradiation

    Indian Academy of Sciences (India)

    Jaskiran Kaur; S K Chakarvarti; D Kanjilal; Surinder Singh

    2009-04-01

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in modifications due to irradiation were studied using FTIR and XRD characterizations. Considerable changes have been observed in the polymer while varying the fluence from 1E11 ion/cm2 to 1E13 ion/cm2 Li ions. AFM images of the surface modifications caused by ion irradiation on the polymer are also presented.

  1. Total Body Irradiation in the "Hematopoietic" Dose Range Induces Substantial Intestinal Injury in Non-Human Primates.

    Science.gov (United States)

    Wang, Junru; Shao, Lijian; Hendrickson, Howard P; Liu, Liya; Chang, Jianhui; Luo, Yi; Seng, John; Pouliot, Mylene; Authier, Simon; Zhou, Daohong; Allaben, William; Hauer-Jensen, Martin

    2015-11-01

    The non-human primate has been a useful model for studies of human acute radiation syndrome (ARS). However, to date structural changes in various parts of the intestine after total body irradiation (TBI) have not been systematically studied in this model. Here we report on our current study of TBI-induced intestinal structural injury in the non-human primate after doses typically associated with hematopoietic ARS. Twenty-four non-human primates were divided into three groups: sham-irradiated control group; and total body cobalt-60 (60Co) 6.7 Gy gamma-irradiated group; and total body 60Co 7.4 Gy gamma-irradiated group. After animals were euthanized at day 4, 7 and 12 postirradiation, sections of small intestine (duodenum, proximal jejunum, distal jejunum and ileum) were collected and fixed in 10% formalin. The intestinal mucosal surface length, villus height and crypt depths were assessed by computer-assisted image analysis. Plasma citrulline levels were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Total bone marrow cells were counted and hematopoietic stem/progenitor cells in bone marrow were analyzed by flow cytometer. Histopathologically, all segments exhibited conspicuous disappearance of plicae circulares and prominent atrophy of crypts and villi. Intestinal mucosal surface length was significantly decreased in all intestinal segments on day 4, 7 and 12 after irradiation (P 0.05). Crypt depth was also significantly reduced in all segments on day 4, 7 and 12 after irradiation (P irradiation, consistent with intestinal mucosal injury. Both 6.7 and 7.4 Gy TBI reduced total number of bone marrow cells. And further analysis showed that the number and function of CD45(+)CD34(+) hematopoietic stem/progenitors in bone marrow decreased significantly. In summary, TBI in the hematopoietic ARS dose range induces substantial intestinal injury in all segments of the small bowel. These findings underscore the importance of maintaining the

  2. The effects of pre-emptive low-dose X-ray irradiation on MIA induced inflammatory pain in rats

    Science.gov (United States)

    Hahm, Suk-Chan; Lee, Go-Eun; Kim, Eun-Hye; Kim, Junesun; Lee, Taewoong; Lee, Wonho

    2013-07-01

    This study was performed to determine the effect of pre-emptive low-dose irradiation on the development of inflammatory pain and to characterize the potential mechanisms underlying this effect in osteoarthritis (OA) animal model. Whole-body X-irradiations with 0.1, 0.5, 1 Gy or sham irradiations were performed for 3 days before the induction of ostearthritis with monosodium iodoacetate (MIA) (40 µl, in saline) into the right knee joint in male Sprague Dawley rats. Behavioral tests for arthritic pain including evoked and non-evoked pain were conducted before and after MIA injection and inducible nitric-oxide synthase (iNOS) expression level was measured by western blot. Low-dose radiation significantly prevented the development of mechanical allodynia and thermal hyperalgesia and reduction in weight bearing that is regarded as a behavioral signs of non-evoked pain following MIA injection. Low-dose radiation significantly inhibited the increase in iNOS expression after MIA injection in spinal L3-5 segments in rat. These data suggest that low-dose X-irradiation is able to prevent the development of arthritic pain through modulation of iNOS expression in the spinal cord dorsal horn. Thus, low-dose radiotherapy could be substituted in part for treatment with drugs for patients with chronic inflammatory disease in clinical setting.

  3. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  4. Ion beam damage assessment and waveguide formation induced by energetic Si-ion irradiation in lanthanum aluminate crystal

    Science.gov (United States)

    Liu, Y.; Huang, Q.; Crespillo, M. L.; Qiao, M.; Liu, P.; Wang, X. L.

    2017-02-01

    Lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and its physical, electronic and optical properties strongly depend on the crystal structure, which can be easily altered in an irradiation environment and therefore affect the performance of LaAlO3-based devices. On the other hand, the preparation of LaAlO3 waveguide is also a scientific challenge for its potential application prospects in optoelectronics field. In this work, the damage evolution behavior of LaAlO3 crystal under Si-ion irradiation has been discussed in detail utilizing complementary characterization techniques, and then, single-mode waveguide of LaAlO3 crystal in the visible band can be obtained based on ion-irradiation-induced lattice damage behavior. Waveguide optical-coupling techniques are used to show its competitive features. Thus, novel optical waveguides with optimized features in LaAlO3 crystals can be tailored by a proper selection of ion mass, energy and fluence using the modification of the target material during ion irradiation process.

  5. Mixing of Cr and Si atoms induced by noble gas ions irradiation of Cr/Si bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tobbeche, S., E-mail: said_tobbeche@yahoo.com [Faculte des Sciences, Universite El-Hadj Lakhdar, Batna 05000 (Algeria); Boukhari, A. [Faculte des Sciences, Universite El-Hadj Lakhdar, Batna 05000 (Algeria); Khalfaoui, R. [Faculte des Sciences, Universite M. Bougara, Boumerdes 35000 (Algeria); Amokrane, A. [Faculte de Physique, USTHB, B.P. 32 El-Alia, Bab-Ezzouar 16111 (Algeria); Ecole Nationale Preparatoire aux Etudes d' Ingeniorat, Route Nationale, Rouiba (Algeria); Benazzouz, C.; Guittoum, A. [Centre de Recherche Nucleaire d' Alger, 02, Boulevard Frantz Fanon, B.P. 399 Alger-Gare (Algeria)

    2011-12-15

    Cr/Si bilayers were irradiated at room temperature with 120 keV Ar, 140 keV Kr and 350 keV Xe ions to fluences ranging from 10{sup 15} to 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. The thickness of Cr layer evaporated on Si substrate was about 400 A. Rutherford backscattering spectrometry (RBS) was used to investigate the atomic mixing induced at the Cr-Si interface as function of the incident ion mass and fluence. We observed that for the samples irradiated with Ar ions, RBS yields from both Cr layer and Si substrate are the same as before the irradiation. There is no mixing of Cr and Si atoms, even at the fluence of 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. For the samples irradiated with Kr ions, a slight broadening of the Cr and Si interfacial edges was produced from the fluence of 5 Multiplication-Sign 10{sup 15} ions/cm{sup 2}. The broadening of the Cr and Si interfacial edges is more pronounced with Xe ions particularly to the fluence of 10{sup 16} ions/cm{sup 2}. The interface broadening was found to depend linearly on the ion fluence and suggests that the mixing is like a diffusion controlled process. The experimental mixing rates were determined and compared with values predicted by ballistic and thermal spike models. Our experimental data were well reproduced by the thermal spikes model.

  6. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation.

    Science.gov (United States)

    He, Yuanzhen; Cheng, Hefa

    2016-05-01

    Removal of N-nitrosodimethylamine (NDMA) in drinking water treatment poses a significant technical challenge due to its small molecular size, high polarity and water solubility, and poor biodegradability. Degradation of NDMA and its precursor, dimethylamine (DMA), was investigated by adsorbing them from aqueous solution using porous mineral sorbents, followed by destruction under microwave irradiation. Among the mineral sorbents evaluated, dealuminated ZSM-5 exhibited the highest sorption capacities for NDMA and DMA, which decreased with the density of surface cations present in the micropores. In contrast, the degradation rate of the sorbed NDMA increased with the density of surface cations under microwave irradiation. Evolutions of the degradation products and C/N ratio indicate that the sorbed NDMA and DMA could be eventually mineralized under continuous microwave irradiation. The degradation rate was strongly correlated with the bulk temperature of ZSM-5 and microwave power, which is consistent with the mechanism of pyrolysis caused by formation of micro-scale "hot spots" within the mineral micropores under microwave irradiation. Compared to existing treatment options for NDMA removal, microporous mineral sorption coupled with microwave-induced degradation has the unique advantages of being able to simultaneously remove NDMA and DMA and cause their full mineralization, and thus could serve as a promising alternative method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Tortech, B.; Ouerdane, Y.; Boukenter, A.; Meunier, J. P. [Univ St Etienne, Lab Hubert Curien, CNRS, UMR 5516, F-42000 St Etienne (France); Girard, S. [CEA Bruyeres le Chatel, DIF, 91 (France); Van Uffelen, M.; Berghmans, F. [CEN SCK, B-2400 Mol (Belgium); Regnier, E. [Draka Comteq France, Data Ctr 4, F-91460 Marcoussis (France); Berghmans, F.; Thienpont, H. [Vrije Univ Brussels, B-1050 Brussels, (Belgium)

    2009-07-15

    Near UV-visible absorption coefficients of an erbium-doped optical fiber were investigated through an original technique based on a transverse cw UV-laser irradiation operating at 244 nm. Such irradiation leads to the generation of a quite intense guided luminescence signal in near UV spectral range. This photoluminescence probe source combined with a longitudinal translation of the fiber sample (at a constant velocity) along the UV-laser irradiation, presents several major advantages: (i) we bypass and avoid the procedures classically used to study the radiation induced attenuation which are not adapted to our case mainly because the samples present a very strong absorption with significant difficulties due to the injection of adequate UV-light levels in a small fiber diameter: (ii) the influence of the laser irradiation on the host matrix of the optical fiber is directly correlated to the evolution of the generated photoluminescence signal and (iii) in our experimental conditions, short fiber sample lengths (typically 20-30 cm) suffice to determine the associated absorption coefficients over the entire studied spectral domain. The generated photoluminescence signal is also used to characterize the absorption of the erbium ions in the same wavelength range with no cut-back method needed. (authors)

  8. Protective effects of Nasturtium officinale against gamma-irradiation-induced hepatotoxicity in C57 mice

    Directory of Open Access Journals (Sweden)

    M. Karami

    2015-04-01

    Full Text Available Background and objectives: Nasturtium officinale W.T.Aiton (Brassicaceae is used as an edible vegetable in various parts of Iran. The aim of the present study was to investigate the protective activity of the methanolic extract of Nasturtium officinale against gamma-radiation-induced hepatotoxicity in terms of histopathological changes. Methods: Male C57 mice were divided into 10 groups. Groups 1 and 2 received saline solution intra-peritoneally (IP for 15 days (subacute and 2 h (acute before whole body γ-irradiation (6 Gy. Groups 3 to 5 (subacute and 6 to 8 (acute received the extract at doses of 20 mg/kg, 50 mg/kg and 100 mg/kg body weight IP, respectively. Group 9 served as radiation group. Group 10 received nothing. Finally, sections of the liver tissue were evaluated for any histopathologic changes. Total phenolic and flavonoid contents were determined using Folin Ciocalteu andaluminium chloride methods. Results: Pre-treatment with 100 mg/kg body weight per day for 15 days and 2 h before γ-radiation significantly lowered incidence of inflammation (portal and periportal inflammation. Furthermore, liver cells necrosis, edema and congestion were slightly reduced. The total phenolic and total flavonoid contents of the extract were 11.3 ± 0.4 mg gallic acid equivalents and 9.4 ± 0.7 mg quercetin equivalents per gram of dried extract. Conclusion: This protection can be attributed to the presence of phenols and isothiocyanates in the extract of N. officinale which act as antioxidants and anti-inflammatory agents.

  9. Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Hongfang; Luo, Honglei; Jiang, Zhenzhen; Yue, Jing; Hou, Qiang; Xie, Ruifei; Wu, Shixiu

    2016-07-01

    The efficacy of radiotherapy, one major treatment modality for esophageal squamous cell carcinoma (ESCC) is severely attenuated by radioresistance. Epithelial-to-mesenchymal transition (EMT) is a cellular process that determines therapy response and tumor progression. However, whether EMT is induced by ionizing radiation and involved in tumor radioresistance has been less studied in ESCC. Using multiple fractionated irradiation, the radioresistant esophageal squamous cancer cell line KYSE-150R had been established from its parental cell line KYSE-150. We found KYSE-150R displayed a significant EMT phenotype with an elongated spindle shape and down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker N-cadherin in comparison with KYSE-150. Furthermore, KYSE-150R also possessed some stemness-like properties characterized by density-dependent growth promotion and strong capability for sphere formation and tumorigenesis in NOD-SCID mice. Mechanical studies have revealed that WISP1, a secreted matricellular protein, is highly expressed in KYSE-150R and mediates EMT-associated radioresistance both in ESCC cells and in xenograft tumor models. Moreover, WISP1 has been demonstrated to be closely associated with the EMT phenotype observed in ESCC patients and to be an independent prognosis factor of ESCC patients treated with radiotherapy. Our study highlighted WISP1 as an attractive target to reverse EMT-associated radioresistance in ESCC and can be used as an independent prognostic factor of patients treated with radiotherapy. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Swift-heavy ion irradiation-induced latent tracks in few- and mono-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hang; Zhang, Shengxia [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Sun, Youmei; Zhai, Pengfei; Yao, Huijun; Zeng, Jian; Duan, Jinglai; Hou, Mingdong; Liu, Jie [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); Khan, Maaz [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); PINSTECH, Nanomaterials Research Group, Physics Division, Nilore, Islamabad (Pakistan)

    2016-04-15

    The latent tracks in mono- and few-layer molybdenum disulfide (MoS{sub 2}) induced by {sup 209}Bi ions with energies of 0.45-1.23 GeV were characterized by atomic force microscopy (AFM). The hillock-like latent tracks were observed on the surface of irradiated monolayer MoS{sub 2}. The diameter of the hillock after deconvolution procedure is 15.8± 1.7 nm and the height is 1.0±0.3 nm. Hillock-like tracks are induced by energy transfer from energetic {sup 209}Bi ions to electron system of MoS{sub 2}, resulting in the ionization and excitation and then the displacement of target atoms. Since Raman spectroscopy is sensitive to damages induced by swift-heavy ion irradiation, the in-plane E{sub 2g}{sup 1} mode (∝385 cm{sup -1}) and the out-of-plane A{sub 1g} mode (∝408 cm{sup -1}) of MoS{sub 2} were investigated. With increasing ion fluence, the A{sub 1g} peak shifts to higher frequencies, and the intensity ratio between A{sub 1g} and E{sub 2g}{sup 1} peak increases. Besides, the A{sub 1g} peak narrows. The evolution of the structural and vibrational properties of MoS{sub 2} with fluence is discussed. It can be concluded that the blue shift and narrowing of A{sub 1g} peak in irradiated MoS{sub 2} is due to the adsorption of oxygen molecules at latent tracks. With decreasing thickness of MoS{sub 2}, the irradiation resistance decreases. (orig.)

  11. Biogrout, ground improvement by microbial induced carbonate precipitation

    NARCIS (Netherlands)

    Van Paassen, L.A.

    2009-01-01

    Biogrout is a new ground improvement method based on microbially induced precipitation of calcium carbonate (MICP). When supplied with suitable substrates, micro-organisms can catalyze biochemical conversions in the subsurface resulting in precipitation of inorganic minerals, which change the

  12. Numerical optimization of sequential cryogen spray cooling and laser irradiation for improved therapy of port wine stain.

    Science.gov (United States)

    Milanič, Matija; Jia, Wangcun; Nelson, J Stuart; Majaron, Boris

    2011-02-01

    Despite application of cryogen spray (CS) precooling, customary treatment of port wine stain (PWS) birthmarks with a single laser pulse does not result in complete lesion blanching for a majority of patients. One obvious reason is nonselective absorption by epidermal melanin, which limits the maximal safe radiant exposure. Another possible reason for treatment failure is screening of laser light within large PWS vessels, which prevents uniform heating of the entire vessel lumen. Our aim is to identify the parameters of sequential CS cooling and laser irradiation that will allow optimal photocoagulation of various PWS blood vessels with minimal risk of epidermal thermal damage. Light and heat transport in laser treatment of PWS are simulated using a custom 3D Monte Carlo model and 2D finite element method, respectively. Protein denaturation in blood and skin are calculated using the Arrhenius kinetic model with tissue-specific coefficients. Simulated PWS vessels with diameters of 30-150 µm are located at depths of 200-600 µm, and shading by nearby vessels is accounted for according to PWS histology data from the literature. For moderately pigmented and dark skin phototypes, PWS blood vessel coagulation and epidermal thermal damage are assessed for various parameters of sequential CS cooling and 532-nm laser irradiation, i.e. the number of pulses in a sequence (1-5), repetition rate (7-30 Hz), and radiant exposure. Simulations of PWS treatment in darker skin phototypes indicate specific cooling/irradiation sequences that provide significantly higher efficacy and safety as compared to the customary single-pulse approach across a wide range of PWS blood vessel diameters and depths. The optimal sequences involve three to five laser pulses at repetition rates of 10-15 Hz. Application of the identified cooling/irradiation sequences may offer improved therapeutic outcome for patients with resistant PWS, especially in darker skin phototypes. Copyright © 2011

  13. Ultraviolet A eye irradiation ameliorates colon carcinoma induced by azoxymethane and dextran sodium sulfate through β-endorphin and methionine-enkephalin.

    Science.gov (United States)

    Hiramoto, Keiichi; Yokoyama, Satoshi; Yamate, Yurika

    2017-03-01

    We previously reported that ultraviolet (UV) A eye irradiation reduces the ulcerative colitis induced by dextran sodium sulfate (DSS). This study examined the effects of UVA on colon carcinoma induced by azoxymethane (AOM) and DSS. We irradiated the eyes of ICR mice with UVA at a dose of 110 kJ/m(2) using an FL20SBLB-A lamp for the experimental period. In mice treated with these drugs, the symptom of colon carcinoma was reduced by UVA eye irradiation. The levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the blood were increased in AOM + DSS-treated mice; however, those levels were reduced by UVA eye irradiation. The expression of β-endorphin, methionine-enkephalin (OGF), μ-opioid receptor, and opioid growth factor receptor (OGFR) of the colon was increased in the AOM + DSS-treated mice, and these levels were increased further following UVA eye irradiation. When β-endorphin inhibitor was administered, the ameliorative effect of UVA eye irradiation was reduced, and the effect of eye irradiation disappeared entirely following the administration of naltrexone (inhibitor of both opioid receptor and OGFR). These results suggested that UVA eye irradiation exerts major effects on AOM + DSS-induced colon carcinoma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Polymerization of sodium methacrylate induced by irradiation; Polimerizacion del metacrilato de sodio inducida por la irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Galvan S, A. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Basicas, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    This work has two objectives, first: it is pretended to localize the lines of carbon links in its IR spectra, and second: following the polymerization of sodium methacrylate according to that it is irradiated with gamma rays. (Author)

  15. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  16. Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, I.; Xumetra, A.; Santamaria, J. (Neuropatologia, Depto. Anatomia Patologica, C.S. ' Principes de Espana' , Hospitalet de Llobregat, Barcelona (Spain))

    1984-01-01

    Brain malformations are produced after X-irradiation at different post-conceptional ages in the rat. Malformed cortical patterns result from abnormal organisation and capricious orientation of the neurons, while a radical migratory pattern of neuroblasts outwards to the cerebral cortex is preserved in animals irradiated on the fourteenth, sixteenth or eighteenth days of gestation. Migratory disturbances are restricted to the large subcortical ectopic masses found in rats irradiated on the fourteenth gestational day and to pyramidal ectopic nodules in the hippocampus in rats irradiated on the sixteenth gestational day. Subcortical ectopic masses develop from ectopic germinal rosettes and are formed by several types of cortical neuron distributed in a stereotyped pattern. The presence of large numbers of intrinsic, afferent and efferent connections are indicative of integrative functions of the subcortical masses.

  17. Local nanostructuring of gold thin films through dewetting induced by Ga{sup +} irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lo Savio, R., E-mail: roberto.lo.savio@edu.unige.it [Physics Department and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Repetto, L. [Physics Department and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Šetina Batič, B. [Inštitut Za Kovinske Materiale in Tehnologije, Lepi pot 11, 1000 Ljubljana (Slovenia); Firpo, G.; Valbusa, U. [Physics Department and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-07-01

    Dewetting of ion-irradiated metal films is a consequence of the local melting occurring during the irradiation. In this study we present the dewetting evolution of Au thin films bombarded with Ga{sup +} ions in a focused ion beam system, pointing out the different surface patterns observed in films having different starting thickness and morphology. In fact, in ion-irradiated films thicker than 2 nm the typical features of dewetted liquids appear, i.e. enlarging dry holes surrounded by metal interconnections. On the other side, a different behavior is observed in thinner discontinuous films, where a dense distribution of circular nanoparticles is formed upon irradiation. We studied the dependence of Au nanoparticles distribution obtained for different ion energies and fluences, determining that a maximum fluence of ∼2 × 10{sup 14} Ga/cm{sup 2} can be used to achieve a monomodal distribution of nanoparticles with regular shape, before detrimental effects of sputtering occur.

  18. Organic Solar Cells Performances Improvement Induced by Interface Buffer Layers

    OpenAIRE

    Bernède, J.C.; Godoy, A.; Cattin, L.; Diaz, F. R.; Morsli, M; Valle, M. A. del

    2010-01-01

    In the last 22 years that have elapsed since the pioneering work of Tang [Tang, Appl. Phys. Lett., 1986], significant improvement in the fundamental understanding and cells construction have led to efficiencies higher than 6%. The new concept of polymer:fullerene BHJ solar cells has allowed dramatic improvements in devices efficiency. It has induced a healthy competition with the multi-heterojunction devices base on small organic molecules, which induces significant progress in both cells fam...

  19. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Science.gov (United States)

    Haušild, Petr; Materna, Aleš; Kytka, Miloš

    2015-04-01

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  20. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehran [Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan (Iran, Islamic Republic of); Mihandoost, Ehsan, E-mail: mihandoost.e@gmail.com [Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shirazi, Alireza [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bazzaz, Javad Tavakkoly [Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghazi-khansari, Mahmoud [Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-10-15

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT{sup 2}qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  1. DFT studies on cobalt-catalyzed cyclotrimerization reactions: the mechanism and origin of reaction improvement under microwave irradiation.

    Science.gov (United States)

    Rodriguez, Antonio M; Cebrián, Cristina; Prieto, Pilar; García, José Ignacio; de la Hoz, Antonio; Díaz-Ortiz, Ángel

    2012-05-14

    A DFT computational mechanistic study of the [2+2+2] cyclotrimerization of a diyne with benzonitrile, catalyzed by a cobalt complex, has been carried out. Three alternative catalytic cycles have been examined together with the precatalytic step (responsible for the induction period). The favored mechanism takes place by means of an intramolecular metal-assisted [4+2] cycloaddition. The beneficial role of microwave activation has been studied. It is concluded that microwave irradiation can decrease the catalytic induction period through thermal effects and can also increase the triplet lifetime and promote the reaction, thus improving the final yield.

  2. Improvement of the Microbiological Safety of Two Chilled Semi-Prepared Meals by Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    Éva Andrássy

    2005-01-01

    Full Text Available Experimental batches of a stuffed pasta product, tortellini, and slightly pre-fried breaded reconstituted turkey steaks with cheese and ham filling, Cordon Bleu, were prepared according to commercial recipes, then inoculated with 104 CFU/g of Staphylococcus aureus (in case of tortellini and with 106 CFU/g of Listeria monocytogenes (in case of Cordon Bleu prior to packing in plastic bags under a gas atmosphere of 20 % CO2 and 80 % N2. The inoculated packages were irradiated at 3 kGy (tortellini and 2 kGy (Cordon Bleu with a 60Co radiation source. The applied radiation doses were sensorially acceptable for these products. The experimental batches of tortellini were stored at 15 °C, while the Cordon Bleu samples were stored at 5 and 9 °C. Unirradiated samples were kept together with the respective irradiated ones. Storage was continued for 4 weeks and microbiological tests were performed before and after the irradiation, and subsequently after every seven days. Besides selective estimation of the counts of the test organisms, total aerobic counts were evaluated in all samples and in case of Cordon Bleu, colony counts of lactic acid bacteria, Enterobacteriaceae, sulphite reducing clostridia, yeasts and moulds were also selectively estimated. The 3-kGy dose reduced the S. aureus count in tortellini below the detection limit (logCFU=0.26, and it remained undetectably low in the irradiated samples during all 28 days of storage, while the S. aureus count in the unirradiated samples increased up to 108 CFU/g during 8 days. The Listeria count in Cordon Bleu was reduced by irradiation from the initial count of 6.1 to 3.5 logCFU/g. At 5 °C storage, this residual count remained stagnant up to 3–4 weeks, but started to increase at 9 °C after one week of storage. In the unirradiated samples, the Listeria count increased hundred-fold during 4 weeks at 5 °C, and during 2 weeks at 9 °C. Sulphite reducing clostridia were, and remained, undetectable (<0

  3. Technical Report for a Study on the Improvement of Extraction Process and Physiological Activities of Polysaccharides from Undaria pinnatifida by Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Lee, Ju Won; Kim, Jae Hun; Yoon, Yo Han; Song, Beom Seok; Yoon, Min Chul; Sung, Nak Yun; Lee, Hak Jyung

    2010-06-15

    By reason of Undaria pinnatifida growth is temperature dependent, U. pinnatifida produced in April and May are obtained as the main byproducts and it is normally wasted. The objective of the this study was investigated to the improvement of extraction process and physiological activities of polysaccharides from U. pinnatifida by gamma irradiation. The extraction yield of fucoidan and laminarrin was increased by gamma irradiation, and the molecular weight of extracted polysaccharides was decreased by irradiation. The effect of gamma irradiation on storage of U. pinnatifida was investigated. No viable cells were observed in samples irradiated at 3 and 5 kGy. Finally, fucoidan and laminarin were applied in the pork patty, and it was shown that lower lipid oxidation and positive effect on microbial stability and quality of the pork patty. These results will suggest that radiation technology can be applied for the extraction of functional materials and storages safe of the seaweeds

  4. Radioprotective effect of green tea and grape seed extracts mixture on gamma irradiation induced immune suppression in male albino rats.

    Science.gov (United States)

    El-Desouky, Wael; Hanafi, Amal; Abbas, Manal M

    2017-04-01

    Green tea extract (GTE) and grape seed extract (GSE) have antioxidant and radioprotective effects. The current study aimed to investigate the radioprotective effect of GTE and GSE mixture on radiation-induced immune suppression in rats. A total of 35 male albino rats were divided into five groups: group 1 (control rats). The 2nd and 3rd groups rats were exposed to a single dose of gamma radiation (5 and 10 Gy), respectively. The 4th and 5th groups of rats were gamma-irradiated with 5 and 10 Gy, respectively, then administrated by gavage with GTE and GSE mixture (100 mg: 200 mg/kg BW), respectively, for 14 consecutive days. Gamma irradiation induced hematological, immunological and biochemical effects in rats. Treated rats with GTE and GSE mixture (1:2) showed an increase in concentrations of immune cells including CD4 and CD8. The level of pro-inflammatory cytokines Tumor necrosis factor-α and C-reactive protein elevated after γ-irradiation and significantly decreased by mixture administration. Moreover, groups treated with antioxidant mixture showed a significant increase in all hematological parameters and a significant decrease in cholesterol and triglyceride levels. GTE and GSE mixture is a good radioprotector and immune modulator compound, indicating its possible use as an adjuvant during radiotherapy.

  5. Ameliorative effect of septilin, an ayurvedic preparation against gamma-irradiation-induced oxidative stress and tissue injury in rats.

    Science.gov (United States)

    Mansour, Heba Hosny; Ismael, Naglaa El-Sayed Rifaat; Hafez, Hafez Farouk

    2014-04-01

    Ionizing radiation is known to induce multiple organ dysfunctions directly related to an increase of cellular oxidative stress, due to overproduction of reactive oxygen species (ROS). This study was aimed to investigate the effect of septilin (an ayurvedic poly-herbal formulation containing the principal herbs, namely Commiphora wightii, Trinospora cordifolia, Rubia cardifolia, Emblica officinalis, Saussurea lappa and Glycyrrhiza glabra) against whole body gamma-irradiation-induced oxidative damage in hepatic and brain tissues in rats. Administration of septilin for 5 days (100 mg/kg) prior to radiation resulted in a significant increase in both superoxide dismutase (SOD) activity and total glutathione (GSH) level in hepatic and brain tissues, while serum high-density lipoprotein-cholesterol (HDL) was reduced by gamma-irradiation. Also, septilin resulted in a significant decrease in NO(x), nitric oxide and malondialdehyde (MDA) levels in hepatic and brain tissues and a significant decrease in serum triglycerides, low-density lipoprotein-cholesterol (LDL) and total cholesterol levels and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) activities, as well as serum tumor necrosis factor-alpha (TNF-alpha), compared to irradiated group. In conclusion, data obtained from this study indicated that septilin exhibited potential antioxidant activity and showed radioprotective effect against gamma-radiation by preventing oxidative stress and scavenging free radicals.

  6. RhNRG-1β Protects the Myocardium against Irradiation-Induced Damage via the ErbB2-ERK-SIRT1 Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Anxin Gu

    Full Text Available Radiation-induced heart disease (RIHD, which is a serious side effect of the radiotherapy applied for various tumors due to the inevitable irradiation of the heart, cannot be treated effectively using current clinical therapies. Here, we demonstrated that rhNRG-1β, an epidermal growth factor (EGF-like protein, protects myocardium tissue against irradiation-induced damage and preserves cardiac function. rhNRG-1β effectively ameliorated irradiation-induced myocardial nuclear damage in both cultured adult rat-derived cardiomyocytes and rat myocardium tissue via NRG/ErbB2 signaling. By activating ErbB2, rhNRG-1β maintained mitochondrial integrity, ATP production, respiratory chain function and the Krebs cycle status in irradiated cardiomyocytes. Moreover, the protection of irradiated cardiomyocytes and myocardium tissue by rhNRG-1β was at least partly mediated by the activation of the ErbB2-ERK-SIRT1 signaling pathway. Long-term observations further showed that rhNRG-1β administered in the peri-irradiation period exerts continuous protective effects on cardiac pump function, the myocardial energy metabolism, cardiomyocyte volume and interstitial fibrosis in the rats receiving radiation via NRG/ErbB2 signaling. Our findings indicate that rhNRG-1β can protect the myocardium against irradiation-induced damage and preserve cardiac function via the ErbB2-ERK-SIRT1 signaling pathway.

  7. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo.

    Science.gov (United States)

    Yu, Hsin-Su; Wu, Chieh-Shan; Yu, Chia-Li; Kao, Ying-Hsien; Chiou, Min-Hsi

    2003-01-01

    Low-energy helium-neon lasers (632.8 nm) have been employed in a variety of clinical treatments including vitiligo management. Light-mediated reaction to low-energy laser irradiation is referred to as biostimulation rather than a thermal effect. This study sought to determine the theoretical basis and clinical evidence for the effectiveness of helium-neon lasers in treating vitiligo. Cultured keratinocytes and fibroblasts were irradiated with 0.5-1.5 J per cm2 helium-neon laser radiation. The effects of the helium-neon laser on melanocyte growth and proliferation were investigated. The results of this in vitro study revealed a significant increase in basic fibroblast growth factor release from both keratinocytes and fibroblasts and a significant increase in nerve growth factor release from keratinocytes. Medium from helium-neon laser irradiated keratinocytes stimulated [3H]thymidine uptake and proliferation of cultured melanocytes. Furthermore, melanocyte migration was enhanced either directly by helium-neon laser irradiation or indirectly by the medium derived from helium-neon laser treated keratinocytes. Thirty patients with segmental-type vitiligo on the head and/or neck were enrolled in this study. Helium-neon laser light was administered locally at 3.0 J per cm2 with point stimulation once or twice weekly. The percentage of repigmented area was used for clinical evaluation of effectiveness. After an average of 16 treatment sessions, initial repigmentation was noticed. Marked repigmentation (>50%) was observed in 60% of patients with successive treatments. Basic fibroblast growth factor is a putative melanocyte growth factor, whereas nerve growth factor is a paracrine factor for melanocyte survival in the skin. Both nerve growth factor and basic fibroblast growth factor stimulate melanocyte migration. It is reasonable to propose that helium-neon laser irradiation clearly stimulates melanocyte migration and proliferation and mitogen release for melanocyte growth

  8. Structural changes induced in silica by ion irradiation observed by IR reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Rafael [Materiales para Fusión, Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Martin, Piedad, E-mail: piedad.martin@ciemat.es [Materiales para Fusión, Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Jimenez-Rey, David [Materiales para Fusión, Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Centro Micro-Análisis Materiales (CMAM), Universidad Autónoma de Madrid (UAM), 28049 Madrid (Spain); Vila, Rafael [Materiales para Fusión, Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • IR reflection spectroscopy was used to study microstructural changes in silica. • Electronic excitation was the predominant process of energy transfer in this work. • IR reflection spectra of ion and neutron irradiated silica has been compared. • New IR reflection bands related to three-four member rings appear at high ion fluence. • He{sup +} ions are the best suited to reproduce neutron microstructural changes. - Abstract: The structural changes produced by ion irradiation, He{sup +} (2.5 MeV), O{sup 4+} (13.5 MeV), Si{sup 4+} (24.4 MeV), and Cu{sup 7+} (32.6 MeV), in different types of silica (KU1, KS-4V and Infrasil 301) were observed by IR reflection spectroscopy. The IR reflectance spectra were measured between 400 and 1400 cm{sup −1}. Structural bands wavenumber of the three silica grades, irradiated with the same ion and fluence, is independent on OH or impurity content of silica. Modification in the surface structure of the irradiated face of a silica sample was studied monitoring the changes in the wavenumber of fundamental structural bands as function of the ion fluence. Samples irradiated at high ion fluence present a shift of known structural bands and new IR reflection bands around 608 cm{sup −1} and between 920 and 990 cm{sup −1}, corresponding to a new structure. The spectra of neutron irradiated samples at fluences 10{sup 17} and 10{sup 18} n/cm{sup 2} were also measured and compared with ion irradiated samples.

  9. Aging-like skin changes induced by ultraviolet irradiation in an animal model of metabolic syndrome.

    Science.gov (United States)

    Akase, Tomoko; Nagase, Takashi; Huang, Lijuan; Ibuki, Ai; Minematsu, Takeo; Nakagami, Gojiro; Ohta, Yasunori; Shimada, Tsutomu; Aburada, Masaki; Sugama, Junko; Sanada, Hiromi

    2012-04-01

    Both physiological skin aging and pathologic photo-aging caused by ultraviolet (UV) irradiation are mediated by latent inflammation and oxidative stress. Although numerous animal skin-aging models have used UV irradiation, most require massive doses or long-term irradiation. To establish a more refined skin-aging model, we focused on an animal model of metabolic syndrome (MS) because MS involves damage to various organs via oxidative stress or inflammation, similar to the changes associated with aging. We hypothesized that MS skin might exhibit more aging-like changes after milder, shorter-term UV irradiation than would normal animal skin under similar conditions, thus providing a useful model for skin aging. The authors therefore examined the skin from Tsumura Suzuki obese diabetic (TSOD) mice (MS model) and control Tsumura Suzuki non-obese (TSNO) mice before and after UV irradiation. Skin from TSOD mice had a thinner epidermis and dermis, a thicker fatty layer, reduced density and convolution of the fragmented collagen fibers, and upregulated expression of tumor necrosis factor (TNF)-α, a dual marker for inflammation and aging, compared to the skin from TSNO mice. UV irradiation affected TSOD skin more severely than TSNO skin, resulting in various changes resembling those in aged human skin, including damage to the dermis and subcutaneous fatty tissue, infiltration of inflammatory cells, and further upregulation of TNF-α expression. These results suggest that UV-irradiated TSOD mice may provide a new model of skin aging and imply that skin from humans with MS is more susceptible to UV- or aging-related damage than normal human skin.

  10. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution.

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-05-12

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca(2+) influx through ruthenium red- and SKF 96365-sensitive Ca(2+)-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine.

  11. Failure of lactose-restricted diets to prevent radiation-induced diarrhea in patients undergoing whole pelvis irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Stryker, J.A.; Bartholomew, M.

    1986-05-01

    Sixty-four patients were randomized prior to pelvic radiotherapy into one of three dietary groups: the control group maintained a regular diet except that they drank at least 480 cc of milk daily; the lactose-restricted group was placed on a lactose-restricted diet; and the lactase group drank at least 480 cc of milk with lactase enzyme added to hydrolyze 90% of the lactose. The patients kept records of their stool frequency and the number of diphenoxylate tablets required to control their diarrhea during a 5 week course of standard whole pelvis irradiation. The data does not support the concept that one of the mechanisms of radiation-induced diarrhea associated with pelvic irradiation is a reduction the ability of the intestine to hydrolyze ingested lactose due to the effect of the radiation on the small intestine. There was not a significant difference in stool frequency or diphenoxylate usage among the dietary groups.

  12. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    Science.gov (United States)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2013-12-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between -10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.

  13. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J.; Bonse, J. [BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.

  14. Whole Body Microwave Irradiation for Improved Dacarbazine Therapeutical Action in Cutaneous Melanoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Monica Neagu

    2013-01-01

    Full Text Available A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70, IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.

  15. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Halberg, F.E.; Fu, K.K.; Weaver, K.A.; Zackheim, H.S.; Epstein, E.H. Jr.; Wintroub, B.U.

    1989-08-01

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived.

  16. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice.

    Directory of Open Access Journals (Sweden)

    Renata M Martinez

    Full Text Available Naringenin (NGN exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2'-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid (ABTS and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10. Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation.

  17. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice.

    Science.gov (United States)

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Silva, Thais C C; Caviglione, Carla V; Bottura, Carolina; Fonseca, Maria J V; Vicentini, Fabiana T M C; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2016-01-01

    Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2'-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation.

  18. Ex vivo expansion of haematopoietic cells in the treatment of accidental irradiation-induced aplasia. Feasibility Studies

    Energy Technology Data Exchange (ETDEWEB)

    Thierry, D.; Bertho, J.M.; Chapel, A.; Gourmelon, P. [Institut de Protection et de Surete Nucleaire, Fountenay-aux-Roses (France)

    2000-05-01

    The lessons learnt from the treatment of previous radiation accidents using either bone marrow transplantation or growth factor therapy suggest that it is of importance to investigate new therapeutic regiments. Ex vivo expansion of haematopoietic stem cells, precursors and differentiated cells is a new approach of growth factor therapy which may be of interest for the treatment of patients with irradiation-induced bone marrow aplasia. Ex vivo expanded maturing cells could be used to limit the early risks bound to aplasia (infections related to granulocytopaenia, bleedings associated with thrombocytopaenia), whereas expanded immature cells could hasten haematopoietic recovery. Indeed, it is possible to culture from the blood or bone marrow the cells able to proliferate and differentiate. A sufficient quantity of cells to cover the transfusion needs of a radiation victim through an aplasia episode can be produced, in presence of a specific growth factor combination. Qualitative studies shows that the expanded cells exhibit a close to normal functionality. Long-term culture techniques demonstrate the expansion of immature cells. We have set up a high dose total body irradiation non-human primate model in order to study the therapeutic potential of ex vivo expansion of autologous progenitors and differentiating cells. All the steps of the process (sampling, positive selection of the immature cells, ex vivo expansion, irradiation of the animals, reinjection of the cultured cells and study of the outcome) are established. In order to allow the long term follow up of the ex vivo expanded haematopoietic cells (homing to the bone marrow or localization to specific organs for example), a retroviral gene transfer technique for transduction of green fluorescence protein (GFP) gene toward the selected immature blood or bone marrow cells is under development in this model. Taken together these elements will allow establishing the feasibility of ex vivo expansion of

  19. Displacement damage dose used for analyzing electron irradiation-induced degradation of GaInP/GaAs/Ge space solar cells

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Displacement damage dose (Dd) approach was applied to analyze the electron irradiation-induced degradation of GaInP/ GaAs/Ge space solar cells by effective 1 MeV electron Dd, the electron irradiation-induced maximum power Pmax degradation of the solar cells is plotted as a function of the effective 1 MeV electron Dd , and the result shows that all the measured electron data can be represented by a single curve using displacement damage dose. Obviously, the displacement damage dose approach simplifies the description of electron irradiation-induced degradation of GaInP/GaAs/Ge space solar cells, and also offers an alternative for handling the case where degradation occurs as a result of combined electron and proton irradiation.

  20. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Science.gov (United States)

    Seetala, Naidu V.; Harrell, J. W.; Lawson, Jeremy; Nikles, David E.; Williams, John R.; Isaacs-Smith, Tamara

    2005-12-01

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 × 1016 ions/cm2 at 43 °C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 °C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 × 107 erg/cc, and thermal stability factor of 130. A much higher 375 °C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  1. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  2. Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing.

    Science.gov (United States)

    Glowacki, Julie; Mizuno, Shuichi; Kung, Jason; Goff, Julie; Epperly, Michael; Dixon, Tracy; Wang, Hong; Greenberger, Joel S

    2014-01-01

    We tested the effects of mouse genotype (C57BL/6NHsd, NOD/SCID, SAMR1, and SAMP6) and ionizing irradiation on bone wound healing. Unicortical wounds were made in the proximal tibiae, and the time course of spontaneous healing and effects of irradiation were monitored radiographically and histologically. There was reproducible healing beginning with intramedullary osteogenesis, subsequent bone resorption by osteoclasts, gradual bridging of the cortical wound, and re-population of medullary hematopoietic cells. The most rapid wound closure was noted in SAMR1 mice, followed by SAMP6, C57BL/6NHsd, and NOD/SCID. Ionizing irradiation (20 Gy) to the leg significantly delayed bone wound healing in mice of all four genotypes. Mice with genetically-determined predisposition to early osteopenia (SAMP6) or with immune deficiency (NOD/SCID) had impairments in bone wound healing. These mouse models should be valuable for determining the effects of irradiation on bone healing and also for the design and testing of novel bone growth-enhancing drugs and mitigators of ionizing irradiation.

  3. Paramagnetic defects induced by electron irradiation in barium hollandite ceramics for caesium storage.

    Science.gov (United States)

    Aubin-Chevaldonnet, V; Gourier, D; Caurant, D; Esnouf, S; Charpentier, T; Costantini, J M

    2006-04-26

    We have studied by electron paramagnetic resonance the mechanism of defect production by electron irradiation in barium hollandite, a material used for immobilization of radioactive caesium. The irradiation conditions were the closest possible to those occurring in Cs storage waste forms. Three paramagnetic defects were observed, independently of the irradiation conditions. A hole centre (H centre) is attributed to a superoxide ion O(2)(-) originating from hole trapping by interstitial oxygen produced by electron irradiation. An electron centre (E(1) centre) is attributed to a Ti(3+) ion adjacent to the resulting oxygen vacancy. Another electron centre (E(2) centre) is attributed to a Ti(3+) ion in a cation site adjacent to an extra Ba(2+) ion in a neighbouring tunnel, originating from barium displacement by elastic collisions. Comparison of the effects of external irradiations by electrons with the β-decay of Cs in storage waste forms is discussed. It is concluded that the latter would be dominated by E(1) and H centres rather than E(2) centres.

  4. Effects of GM-CSF, IL-3, and GM-CSF/IL-3 fusion protein on apoptosis of human myeloid leukemic cell line Tf-1 induced by irradiation

    Institute of Scientific and Technical Information of China (English)

    Su-rongYANG; LiWEN; Ying-qingLU; Qin-yanGONG; RongYU; Ming-huiYAO

    2004-01-01

    AIM: To observe the effects of three cytokines on the apoptosis of Tf-1 cells induced by γ irradiation and investigate the relationship between apoptosis and caspase-3 activity. METHODS: Different cytokines GM-CSF, IL-3 and GM-CS/IL-3 fusion protein were added into the irradiated Tf-1 cells. MTT assay, morphology, flow cytometry,and DNA fragmentation assay were used to observe the effects of cytokines on apoptosis. The caspase-3 activity was determined with a fluorocytometer. RESULTS: Irradiated Tf-1 cells showed typical morphological characteristic of apoptosis demonstrated by transmission electron microscopy and were accumulated in G0/G1 phase. In the groups treated with growth factors after irradiation, three cytokines significantly increased the viability rate, distinctly decreased the apoptosis rate and the proportion of DNA fragmentation. When Tf-1 cells were irradiated by γ irradiation, caspase-3 activity was increased at different time points. In comparison with the control group in which no growth factor was added after the cells were irradiated, the caspase-3 activity of irradiated Tf-1 cells was significantly inhibited by addition of the above cytokines. Thirty-six hours after irradiation, in the control group,GM-CSF, IL-3, GM-CSF and IL-3 in combination, and two GM-CSF/IL-3 fusion protein groups, the apoptosis ratewas 73 %, 11%, 15 %, 13 %, 12 %, and 13 %. The percent of fragmented DNA was 36 %, 19 %, 18 %, 14 %,13 %, and 14 %. The fluorescence intensity was 16923, 5529, 6581, 5322, 5426, and 5485. CONCLUSION:GM-CSF, IL-3, and GM-CSF/IL-3 fusion protein could protect Tf-1 cells from apoptosis induced by γ irradiation.After Tf-1 cells were irradiated, the caspase-3 activity was significantly increased but was dramatically decreased by the above cytokines. The remarkable inhibition of caspase-3 activity may be one of the mechanisms of these hematopoietic growth factors exerting their anti-apoptotic effects.

  5. Irradiation effects in 6H-SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis

    Science.gov (United States)

    Chen, Xiaofei; Zhou, Wei; Feng, Qijie; Zheng, Jian; Liu, Xiankun; Tang, Bin; Li, Jiangbo; Xue, Jianming; Peng, Shuming

    2016-09-01

    Irradiation effects of neutron and 3 MeV C+, Si+ in 6H-SiC were investigated by Raman spectroscopy and high-resolution XRD. The total disorder values of neutron irradiated SiC agree well with that of samples irradiated by ions at the same doses respectively. On the other hand, high-resolution XRD results shows that the lattice strain rate caused by neutron irradiation is 6.8%/dpa, while it is only 2.6%/dpa and 4.2%/dpa for Si+ and C+ irradiations respectively. Our results illustrate that the total disorder in neutron irradiated SiC can be accurately simulated by MeV Si+ or C+ irradiations at the same dose, but for the lattice strain and strain-related properties like surface hardness, the depth profile of irradiation damages induced by energetic ions must be considered. This research will contribute to a better understanding of the difference in irradiation effects between neutron and heavy ions.

  6. Histomorphologic change of radiation pneumonitis in rat lungs: captopril reduces rat lung injury induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [College of Medicine, Keimhyung Univ., Taegu (Korea, Republic of)

    1999-09-01

    To assess the histomorphologic changes in the rat lung injury induced by radiation, to determine whether captopril reduces the rat lung injury and to evaluate change in TNF-{alpha} and TGF {beta} and rat lung damage by radiation and captopril. Right lungs in male Sprague-Dawley rats were divided irradiation alone (10, 20, 30 Gy) or radiation (same dose with radiation alone group) with captopril (500 mg/L). Radiation alone group were sacrificed at twelve hours and eleven weeks after radiation and radiation with captopril group (captopril group) were sacrificed at eleven weeks after radiation with captopril. We examined the light microscope and electron microscopic features in the groups. In radiation alone group, there were patch parenchymal collapse and consolidation at twelve hours after radiation. The increase of radiation dose shows more prominent the severity and broader the affected areas. Eleven weeks after radiation, the severity and areas of fibrosis had increased in proportion to radiation dose given in the radiation alone group. There was notable decrease of lung fibrosis in captopril group than in radiation alone group. The number of mast cells rapidly increased with increase of radiation dose in radiation alone group and the degree of increase of mast cell number and severity of collagen accumulation more decreased in captopril group than in radiation alone group. In radiation alone group expression of TNF-{alpha} and TGF-{beta}] increased according to increase of radiation dose at twelve hours after radiation in both group. At eleven weeks after radiation, expression of TGF- P increased according to increase of radiation dose in radiation group but somewhat decreased in captopril group. In the captopril group the collagen deposition increased but less dense than those of radiation alone group. The severity of perivascular thickening, capillary change, the number and degranulation of mast cells more decreased in the captopril group than in the radiation

  7. Development of Sorghum Tolerant to Acid Soil Using Induced Mutation with Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2010-04-01

    Full Text Available Water scarcity still becomes a problem in some dryland agricultural areas in Indonesia. Development of dryland farming system may be focused on crops that are required less water such as sorghum. Sorghum is a cereal crop that is usually grown under hot and dry condition and it is ideal for Indonesia. Sorghum is a good source of food, animal feed and raw material for ethanol. Indonesia is currently looking for alternative renewable energy resources and sorghum is regarded as one of the promising source of bioethanol as bioenergy. Unfortunately, most agricultural land in western part of the country particularly in Sumatera and Kalimantan is dryland and dominated by acid soil. The main constraint of crop production in acid soil is deficiency and Al toxicity. Therefore, development of sorghum cultivation in dryland farming system requires a variety which is tolerant to such conditions. Sorghum breeding for acid soil tolerance had been conducted at PATIR-BATAN by using induced mutations with gamma irradiation. The breeding objective was to search for sorghum genotypes tolerant to acid soil condition and with regard to sorghum use for bioethanol production. A number of 66 breeding materials, including the mutants, had been screened for acid soil tolerance on land with soil pH of 4.2 and 39% Al saturation in Lampung Province. Ten sorghum genotypes had been identified as high yielding in the acid soil condition. The mutant lines GH-ZB-41-07, YT30-39-07, B-76 and B-92 had grain yield higher (>4.5 t/ha than the control plants (Durra, Mandau and Numbu. Sorghum mutants ZH30-29-07, ZH30-30-07 and ZH30-35-07 were promising for grain-base bioethanol production with ethanol yield exceeded 2,000 l/ha. Meanwhile, the sweet sorghum mutants ZH30-35-07, ZH30-30-07 and ZH30-29-07 had brix content of 11.59, 11.95 and 10.50%, respectively. These mutant lines are promising to be developed further in sorghum breeding since they are highly tolerant to acid soils.

  8. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of

  9. Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?

    Energy Technology Data Exchange (ETDEWEB)

    Azzariti, Amalia, E-mail: a.azzariti@oncologico.bari.it [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Porcelli, Letizia [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Mangia, Anita; Saponaro, Concetta [Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Quatrale, Anna E. [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Popescu, Ondina S. [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Strippoli, Sabino [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Simone, Gianni [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Paradiso, Angelo [Experimental Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Guida, Michele [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy)

    2014-02-15

    Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugs cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic approach

  10. Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state

    CERN Document Server

    Lappan, U; Lunkwitz, K

    2000-01-01

    Polytetrafluoroethylene (PTFE) was exposed to electron beam radiation at elevated temperature above the melting point under nitrogen atmosphere and in vacuum for comparison. Fourier-transform infrared (FTIR) spectroscopy was used to study the changes in the chemical structure. The irradiation under nitrogen atmosphere leads to the same structures as described recently for PTFE irradiated in vacuum. Trifluoromethyl branches and double bond structures were detected. The concentrations of terminal and internal double bonds are higher after irradiation under nitrogen than in vacuum. Annealing experiments have shown that the thermal oxidative stability of the radiation-modified PTFE is reduced compared to unirradiated PTFE. The reason are the formation of unstable structures such as double bonds.

  11. Experimentally induced intestinal metaplasia in Wistar rats by x-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H.

    1978-11-01

    The gastric region of 5-week-old female Wistar rats was irradiated daily with 500 rad of x-ray up to a total of six times. Goblet cells and marker enzymes of the small intestine, such as lactase, trehalase, and maltase, appeared in the pyloric region of the glandular stomach of the rats from the 1st week after final irradiation. Intestinal type crypt without Paneth cells was observed from the 8th week. Sucrase activity appeared from the 26th week. Intestinal metaplasia with Paneth cells appeared from the 71st week. The number of goblet cells, intestinal type crypts, and Paneth cells increased with age. Gastric adenocarcinoma did not develop after irradiation.

  12. Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film

    KAUST Repository

    San-Román-Alerigi, Damián P.

    2013-01-01

    In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of As 2 S 3 chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of ? 40 %. Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by As 2 S 3-thin film, can be crucial for the development of photonic