WorldWideScience

Sample records for irradiation hssi program

  1. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel irradiation (HSSI) Program was aimed at obtaining a statistically significant fracture toughness data base on two weldments with high-copper contents to determine the shift and shape of the K lc curve as a consequence of irradiation. The program included irradiated Charpy V-notch impact, tensile, and drop-weight specimens in addition to compact fracture toughness specimens. Compact specimens with thicknesses of 25.4, 50.8, and 101.6 mm [1T C(T), 2T C(T), and 4T C(T), respectively] were irradiated. Additionally, unirradiated 6T C(T) and 8T C(T) specimens with the same K lc measuring capacity as the irradiated specimens were tested. The materials for this irradiation series were two weldments fabricated from special heats of weld wire with copper added to the melt. One lot of Linde 0124 flux was used for all the welds. Copper levels for the two welds are 0.23 and 0.31 wt %, while the nickel contents for both welds are 0.60 wt %. Twelve capsules of specimens were irradiated in the pool-side facility of the Oak Ridge Research Reactor at a nominal temperature of 288 degree C and an average fluence of about 1.5 x 10 19 neutrons/cm 2 (> 1 MeV). This volume, Appendices E and F, contains the load-displacement curves and photographs of the fracture toughness specimens from the 72W weld (0.23 wt % Cu) and the 73 W weld (0.31 wt % Cu), respectively

  2. Irradiation, annealing, and reirradiation research in the ORNL heavy-section steel irradiation program

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results from work performed as part of the Heavy-Section Steel Irradiation (HSSI) Program managed by Oak Ridge National Laboratory (ORNL) for the U.S. Nuclear Regulatory Commission. The HSSI Program focuses on annealing and re-embrittlement response of materials which are representative of those in commercial RPVs and which are considered to be radiation-sensitive. Experimental studies include (1) the annealing of materials in the existing inventory of previously irradiated materials, (2) reirradiation of previously irradiated/annealed materials in a collaborative program with the University of California, Santa Barbara (UCSB), (3) irradiation/annealing/reirradiation of U.S. and Russian materials in a cooperative program with the Russian Research Center-Kurchatov Institute (RRC-KI), (4) the design and fabrication of an irradiation/anneal/reirradiation capsule and facility for operation at the University of Michigan Ford Reactor, (5) the investigation of potential for irradiation-and/or thermal-induced temper embrittlement in heat-affected zones (HAZs) of RPV steels due to phosphorous segregation at grain boundaries, and (6) investigation of the relationship between Charpy impact toughness and fracture toughness under all conditions of irradiation, annealing, and reirradiation

  3. Heavy-Section Steel Irradiation Program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. It is imperative to understand and predict the capabilities and limitations of its integrity. It is particularly vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. The Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Results from HSSI studies provide information needed to aid in resolving major regulatory issues facing the USNRC which involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf (LUS) welds. Taken together the results of these studies also provide guidance and bases for evaluating both the aging behavior and the potential for plant life extension of light-water RPVs. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. Embrittlement modeling studies have shown that the time or dose required for the point defect concentrations, which ultimately contribute to irradiation embrittlement, to reach their steady state values can be comparable to the component lifetime or to the duration of an irradiation experiment

  4. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E.

    1995-01-01

    The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab

  5. Heavy-Section Steel Irradiation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rosseel, T.M.

    2000-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  6. Heavy-Section Steel Irradiation Program

    International Nuclear Information System (INIS)

    Rosseel, T.M.

    2000-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established

  7. Heavy-section steel irradiation program summary

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1992-01-01

    Since a failure of the RPV carries the potential of major contamination release and severe accident, it is imperative to safe reactor operation to understand and be able to accurately predict failure models of the vessel material. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water RPVs. The program includes the direct continuation of irradiation studies previously conducted within the Heavy-Section Steel Technology Program augmented by enhanced examinations of the accompanying microstructural changes. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness (K Ic and J Ic ), crack-arrest toughness (K Ia ), ductile tearing resistance (dJ/da), Charpy V-notch impact energy, dropweight nil-ductility temperature (NDT), and tensile properties. Models based on observations of radiation-induced microstructural changes using field ion and high-resolution transmission electron microscopy provide a firmer basis for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI Program are highcopper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. In addition, a limited effort will focus on stainless steel weld overlay cladding, typical of that used on the inner surface of RPVs, since its postirradiation fracture properties have the potential for strongly affecting the extension of small surface flaws during overcooling transients. (orig./GL)

  8. Heavy-section steel irradiation program. Semiannual progress report, October 1996--March 1997

    International Nuclear Information System (INIS)

    Rosseel, T.M.

    1998-02-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established. Its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into eight tasks: (1) program management, (2) irradiation effects in engineering materials, (3) annealing, (4) microstructural analysis of radiation effects, (5) in-service irradiated and aged material evaluations, (6) fracture toughness curve shift method, (7) special technical assistance, and (8) foreign research interactions. The work is performed by the Oak Ridge National Laboratory

  9. Heavy-Section Steel Irradiation Program. Volume 5, No. 2, Progress report, April 1994--September 1994

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-07-01

    The Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness curve shift in high-copper weldments (Series 5 and 6), (3) K lc and K la curve shifts in low upper-shelf (LUS) welds (Series 8), (4) irradiation effects in a commercial LUS weld (Series 10), (5) irradiation effects on weld heat-affected zone and plate materials (Series 11), (6) annealing effects in LUS welds (Series 9), (7) microstructural and microfracture analysis of irradiation effects, (8) in-service irradiated and aged material evaluations, (9) Japan Power Development Reactor (JPDR) steel examination, (10) fracture toughness curve shift method, (11) special technical assistance, (12) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, (13) correlation monitor materials, and (14) test reactor coordination. Progress on each task is reported

  10. Heavy-section steel irradiation program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. The RPV is one of only two major safety- related components of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness crack arrest toughness ductile tearing resistance Charpy V-notch impact energy, dropweight nil-ductility temperature and tensile properties. Models based on observations of radiation-induced microstructural changes using the field on microprobe and the high resolution transmission electron microscopy provide improved bases for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs

  11. Heavy-section steel irradiation program. Progress report, October 1994--March 1995

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-10-01

    This document is the October 1994-March 1995 Progress Report for the Heavy Section Steel Irradiation Program. The report contains a summary of activities in each of the 14 tasks of the HSSI Program, including: (1) Program management, (2) Fracture toughness shifts in high-copper weldments, (3) Fracture toughness shifts in low upper-shelf welds, (4) Irradiation effects in a commercial low upper-shelf weld, (5) Irradiation effects on weld heat-affected zone and plate materials, (6) Annealing effects in low upper-shelf welds, (7) Microstructural analysis of radiation effects, (8) In-service irradiated and aged material evaluations, (9) Japanese power development reactor vessel steel examination, (10) fracture toughness curve shift method, (11) Special technical assistance, (12) Technical assistance for JCCCNRS, (13) Correlation monitor materials, and (14) Test reactor irradiation coordination. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  12. Heavy-section steel irradiation program. Volume 4, No. 2. Semiannual progress report, April 1993--September 1993

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-03-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents which have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage, it is virtually impossible to postulate a realistic scenario that would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established to provide a quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K lc ) curve shift in high-copper welds, (3) crack-arrest toughness (K la ) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K lc and K la curve shifts in low upper-shelf (LUS) welds, (6) annealing effects in LUS welds, (7) irradiation effects in a commercial LUS weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) Japan Power Development Reactor steel examination, (13) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, and (14) additional requirements for materials

  13. Heavy-Section Steel Irradiation Program: Volume 3, Progress report, October 1991--September 1992

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-02-01

    The primary goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 10 tasks: (1) program management, (2) K Ic curve shift in high-copper welds, (3) K Ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf welds, (6) irradiation effects in a commercial low upper-shelf weld, (7) microstructural analysis of irradiation effects, (8) in-service aged material evaluations, (9) correlation monitor materials, and (10) special technical assistance. This report provides an overview of the activities within each of these tasks from October 1991 to September 1992

  14. Heavy-Section Steel Irradiation Program. Volume 2, No. 1: Semiannual progress report, October 1990--March 1991

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1994-07-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure-vessel steels as they relate to light-water reactor pressure-vessel integrity. The HSSI Program is arranged into nine tasks: (1) program management, (2) K ic curve shift in high-copper welds, (3) K ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K ic and K ia curve shifts in low upper-shelf (LUS) weld, (6) irradiation effects in a commercial LUS weld, (7) microstructural analysis of irradiation, (8) in-service aged material evaluations, and (9) correlation monitor materials. During this period, additional analyses on the effects of precleavage stable ductile tearing on the toughness of high-copper welds 72W and 73W demonstrated that the size effects observed in the transition region are not due to substantial differences in ductile tearing behavior. Possible modifications to irradiated duplex crack-arrest specimens were examined to increase the likelihood of their successful testing. Characterization of a second batch of 72W and 73W welds was begun and results of the Charpy V-notch testing is provided. A review of literature on the annealing response of reactor pressure vessel steels was initiated

  15. Design, Fabrication, and Initial Operation of a Reusable Irradiation Facility

    International Nuclear Information System (INIS)

    Heatherly, D.W.; Thoms, K.R.; Siman-Tov, I.I.; Hurst, M.T.

    1999-01-01

    A Heavy-Section Steel Irradiation (HSSI) Program project, funded by the US Nuclear Regulatory Commission, was initiated at Oak Ridge National Laboratory to develop reusable materials irradiation facilities in which metallurgical specimens of reactor pressure vessel steels could be irradiated. As a consequence, two new, identical, reusable materials irradiation facilities have been designed, fabricated, installed, and are now operating at the Ford Nuclear Reactor at the University of Michigan. The facilities are referred to as the HSSI-IAR facilities with the individual facilities being designated as IAR-1 and IAR-2. This new and unique facility design requires no cutting or grinding operations to retrieve irradiated specimens, all capsule hardware is totally reusable, and materials transported from site to site are limited to specimens only. At the time of this letter report, the facilities have operated successfully for approximately 2500 effective full-power hours

  16. Heavy-Section Steel Irradiation Program. Volume 2, No. 2: Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1994-10-01

    Goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel stools as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and post-irradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is into 10 tasks: (1) program management, (2) K Ic curve shift in high-copper welds, (3) K Ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf welds, (6) irradiation effects in a commercial low upper-sheer weld, (7) microstructural analysis of irradiation effects, (8) in-service aged material evaluations, (9) correlation monitor materials, and (10) special technical assistance. This report provides an overview of the activities within each of these tasks from April to September 1991

  17. Heavy-section steel irradiation program. Progress report, October 1992--March 1993

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1998-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is one of only two more safety-related components of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established at Oak Ridge National Laboratory (ORNL) under sponsorship of the Nuclear Regulatory Commission (NRC). The primary goal of this major safety program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (in particular, the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program centers on experimental assessments of irradiation-induced embrittlement (including the completion of certain irradiation studies previously conducted by the Heavy-Section Steel Technology Program) augmented by detailed examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties

  18. Heavy-Section Steel Irradiation Program

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In FY1990 the Heavy-Section Steel Irradiation (HSSI) Program was arranged into 8 tasks: (1) program management, (2) K Ic curve shift in high-copper welds, (3) K Ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf (LUS) welds, (6) irradiation effects in a commercial LUS weld, (7) microstructural analysis of irradiation effects, and (8) in-service aged material evaluations. Of particular interest are the efforts in FY1990 concerning the shifts in fracture toughness and crack arrest toughness in high-copper welds, the unirradiated examination of a LUS weld from the Midland reactor, and the continued investigation into the causes of accelerated low-temperature embrittlement recently observed in RPV support steels. In the Fifth and Sixth Irradiation Series, designed to examine the shifts and possible changes in shape in the ASME K Ic and K Ia curves for two irradiated high-copper welds, it was seen that both the lower bound and mean fracture toughness shifts were greater than those of the associated Charpy-impact energies, whereas the shifts in crack arrest toughness were comparable. The irradiation-shifted fracture toughness data fell slightly below the appropriately indexed ASME K Ic curve even when it was shifted according to Revision 2 of Regulatory Guide 1.99 including its margins. The beltline weld, which was removed from the Midland reactor, fabricated by Babcock and Wilcox, Co. using Linde 80 flux, is being examined in the Tenth Irradiation Series to establish the effects of irradiation on a commercial LUS weld. A wide variation in the unirradiated fracture properties of the Midland weld were measured with values of RT NDT ranging from -22 to 54F through its thickness. In addition, a wide range of copper content from 0.21 to 0.45 wt % was found, compared to the 0.42 wt % previously reported

  19. Heavy-Section Steel Irradiation Program: Progress report for April--September 1995. Volume 6, Number 2

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1996-08-01

    The goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of effects of neutron irradiation on material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and post-irradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K Ic ) curve shift in high-copper welds, (3) crack-arrest toughness (K Ia ) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf welds, (6) annealing effects in low upper-shelf welds, (7) irradiation effects in a commercial low upper-shelf weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) JPDR steel examination, (13) technical assistance for JCCCNRS Working Groups 3 and 12, and (14) additional requirements for materials. This report provides an overview of the activities within each of these task from April through September 1995

  20. Influence of specimen size/type on the fracture toughness of five irradiated RPV materials

    International Nuclear Information System (INIS)

    Sokolov, Mikhail A; Lucon, Enrico

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 10 11 n/cm 2 /s (>1 MeV) to fluences from 0.5 to 3.4 10 19 n/cm 2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 10 13 n/cm 2 /s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 10 13 n/cm 2 /s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 10 19 n/cm 2 . The irradiation-induced shifts of the Master Curve reference temperatures, ΔT 0 , for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, ΔT 0 , 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT 0 , were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  1. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI Series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel Irradiation Program obtained a statistically significant fracture toughness data base on two high-copper (0.23 and 0.31 wt %) submerged-arc welds to determine the shift and shape of the K Ic curve as a consequence of irradiation. Compact specimens with thicknesses to 101.6 mm (4 in) in the irradiated condition and 203.2 mm (8 in) in the unirradiated condition were tested, in addition to Charpy impact, tensile, and drop-weight specimens. Irradiations were conducted at a nominal temperature of 288 degree C and an average fluence of 1.5 x 10 19 neutrons/cm 2 (>l MeV). The Charpy 41-J temperature shifts are about the same as the corresponding drop-weight NDT temperature shifts. The irradiated welds exhibited substantial numbers of cleavage pop-ins. Mean curve fits using two-parameter (with fixed intercept) nonlinear and linearized exponential regression analysis revealed that the fracture toughness 100 MPa lg-bullet √m shifts exceeded the Charpy 41-J shifts for both welds. Analyses of curve shape changes indicated decreases in the slopes of the fracture toughness curves, especially for the higher copper weld. Weibull analyses were performed to investigate development of lower bound curves to the data, including the use of a variable K min parameter which affects the curve shape

  2. Influence of specimen size/type on the fracture toughness of five irradiated RPV materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lucon, Enrico [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 1011 n/cm2/s (>1 MeV) to fluences from 0.5 to 3.4 1019 n/cm2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 1013 n/cm2/s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 1013 n/cm2/s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 1019n/cm2. The irradiation-induced shifts of the Master Curve reference temperatures, ΔT0, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T0, 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT0, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  3. Comparisons of irradiation-induced shifts in fracture toughness, crack arrest toughness, and Charpy impact energy in high-copper welds

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.

    1991-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program is examining relative shifts and changes in shape of fracture and crack-arrest toughness versus temperature behavior for two high-copper welds. Fracture toughness 100-MPa√m temperature shifts are greater than Charpy 41-J shifts for both welds. Mean curve fits to the fracture toughness data provide mixed results regarding curve shape changes, but curves constructed as lower boundaries indicate lower slopes. Preliminary crack-arrest toughness results indicate that shifts of lower-bound curves are approximately the same as CVN 41-J shifts with no shape changes

  4. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  5. Heavy-Section Steel Technology Program

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-11-01

    The Heavy-Section Steel Technology (HSST) Program is conducted for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory (ORNL). The program focus is on the development and validation of technology for the assessment of fracture-prevention margins in commercial nuclear reactor pressure vessels. The HSST Program is organized in 11 tasks: program management, fracture methodology and analysis, material characterization and properties, special technical assistance, fracture analysis computer programs, cleavage-crack initiation, cladding evaluations, pressurized-thermal-shock technology, analysis methods validation, fracture evaluation tests, and warm prestressing. The program tasks have been structured to place emphasis on the resolution fracture issues with near-term licensing significance. Resources to execute the research tasks are drawn from ORNL with subcontract support from universities and other research laboratories. Close contact is maintained with the sister Heavy-Section Steel Irradiation (HSSI) Program at ORNL and with related research programs both in the United States and abroad. This report provides an overview of principal developments in each of the II program tasks from October 1, 1991 to March 31, 1992

  6. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  7. Heavy-Section Steel Technology Program: Semiannual progress report for April--September 1994. Volume 11, Number 2

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.E. [Oak Ridge National Lab., TN (United States)

    1996-04-01

    The Heavy-Section Steel Technology (HSST) Program is conducted for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory (ORNL). The program focus is on the development and validation of technology for the assessment of fracture-prevention margins in commercial nuclear reactor pressure vessels. The HSST Program is organized in seven tasks: (1) program management, (2) constraint effects analytical development and validation, (3) evaluation of cladding effects, (4) ductile-to-cleavage fracture-mode conversion, (5) fracture analysis methods development and applications, (6) material property data and test methods, and (7) integration of results. The program tasks have been structured to place emphasis on the resolution fracture issues with near-term licensing significance. Resources to execute the research tasks are drawn from ORNL with subcontract support from universities and other research laboratories. Close contact is maintained with the sister Heavy-Section Steel Irradiation (HSSI) Program at ORNL and with related research programs both in the US and abroad. This report provides an overview of principal developments in each of the seven program tasks from April 1994 to September 1994.

  8. Heavy-Section Steel Technology Program: Semiannual progress report for April--September 1994. Volume 11, Number 2

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1996-04-01

    The Heavy-Section Steel Technology (HSST) Program is conducted for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory (ORNL). The program focus is on the development and validation of technology for the assessment of fracture-prevention margins in commercial nuclear reactor pressure vessels. The HSST Program is organized in seven tasks: (1) program management, (2) constraint effects analytical development and validation, (3) evaluation of cladding effects, (4) ductile-to-cleavage fracture-mode conversion, (5) fracture analysis methods development and applications, (6) material property data and test methods, and (7) integration of results. The program tasks have been structured to place emphasis on the resolution fracture issues with near-term licensing significance. Resources to execute the research tasks are drawn from ORNL with subcontract support from universities and other research laboratories. Close contact is maintained with the sister Heavy-Section Steel Irradiation (HSSI) Program at ORNL and with related research programs both in the US and abroad. This report provides an overview of principal developments in each of the seven program tasks from April 1994 to September 1994

  9. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  10. Heavy-Section Steel Irradiation Program

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1990-08-01

    The primary goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (particularly the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program includes direct continuation of irradiation studies previously conducted by the Heavy-Section Steel Technology Program augmented by enhanced examinations of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are examined on a wide range of fracture properties. Detailed statistical analyses of the fracture data on K Ic shift of high-copper welds were performed. Analysis of the first phase of irradiated crack-arrest testing on high-copper welds was completed. Final analysis and publication of the results of the second phase of the irradiation studies on stainless steel weld-overlay cladding were completed. Determinations were made of the variations in chemistry and unirradiated RT NDT of low upper-shelf weld metal from the Midland reactor. Final analyses were performed on the Charpy impact and tensile data from the Second and Third Irradiation series on low upper-shelf welds, and the report on the series was drafted. A detailed survey of existing data on microstructural models and data bases of irradiation damage was performed, and initial development of a reaction-rate-based model was completed. 40 refs., 7 figs., 4 tabs

  11. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  12. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    International Nuclear Information System (INIS)

    Chun, Yong Bum; Min, Duck Kee; Kim, Eun Ka and others

    2000-12-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  13. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    International Nuclear Information System (INIS)

    Chun, Yong Bum; So, Dong Sup; Lee, Byung Doo; Lee, Song Ho; Min, Duck Kee

    2001-09-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  14. The PHENIX experimental irradiation program

    International Nuclear Information System (INIS)

    Michel, P.; Courcon, P.; Coulon, P.

    1985-03-01

    The PHENIX experimental irradiation program represents a substancial volume of work. For example, more than forty experiments were in the core during the 33rd PHENIX irradiation cycle at the end of 1984. This program ensures the implementation, optimization and qualification of new solutions for the future developpment of French LMFBRs in three significant areas: fissile, fertile and absorber elements

  15. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  16. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, S.; Campbell, C.A.

    1993-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 1800 deg F) and to simulate Regulatory Guide 1.99 database materials (austenitized at 1600 deg. F). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (U. of Michigan Test Reactor) which had never been used for this type of irradiation program. Materials taken from plate surface locations (vs. 1/4T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, is maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (500 deg. F and 550 deg. F) to determine the effect of irradiation temperature on embrittlement. The preliminary results of the irradiation program show an increase in T 30 shift of 69 deg. F for a decrease in irradiation temperature of 50 deg. F. The results suggest that for nickel bearing steels, the superior toughness of plate surface material is maintained after irradiation and for the copper content tested, nickel had no apparent effect on irradiation response. No apparent microstructure

  17. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  18. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    International Nuclear Information System (INIS)

    Abe, K.; Namba, C.; Wiffen, F.W.; Jones, R.H.

    1998-01-01

    A Japan-USA program of irradiation experiments for fusion research, ''JUPITER'', has been established as a 6 year program from 1995 to 2000. The goal is to study ''the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment''. This is phase-three of the collaborative program, which follows RTNS-II program (phase-1: 1982-1986) and FFTF/MOTA program (phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA program. JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects. (orig.)

  19. Effects of annealing time on the recovery of Charpy V-notch properties of irradiated high-copper weld metal

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1994-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. An important issue to be resolved is the effect on the toughness properties of reirradiating a vessel that has been annealed. This paper describes the annealing response of irradiated high-copper submerged-arc weld HSSI 73W. For this study, the weld has been annealed at 454 C (850 F) for lengths of time varying between 1 and 14 days. The Charpy V-notch 41-J (30-ft-lb) transition temperature (TT 41J ) almost fully recovered for the longest period studied, but recovered to a lesser degree for the shorter periods. No significant recovery of the TT 41J was observed for a 7-day anneal at 343 C (650 F). At 454 C for the durations studied, the values of the upper-shelf impact energy of irradiated and annealed weld metal exceeded the values in the unirradiated condition. Similar behavior was observed after aging the unirradiated weld metal at 460 and 490 C for 1 week

  20. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, Stephen; Campbell, C.A.

    1994-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 982 o C (1800 o F)) and to simulate Regulatory Guide 1.99 database materials (austenitized at 871 o C (1600 o F)). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (University of Michigan Test Reactor) which had never been used before for this type of irradiation program. Materials taken from plate surface locations (versus 1/4 T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, are maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (260 o C and 288 o C) to determine the effect of irradiation temperature on embrittlement. (Author)

  1. Segmented fuel irradiation program: investigation on advanced materials

    International Nuclear Information System (INIS)

    Uchida, H.; Goto, K.; Sabate, R.; Abeta, S.; Baba, T.; Matias, E. de; Alonso, J.

    1999-01-01

    The Segmented Fuel Irradiation Program, started in 1991, is a collaboration between the Japanese organisations Nuclear Power Engineering Corporation (NUPEC), the Kansai Electric Power Co., Inc. (KEPCO) representing other Japanese utilities, and Mitsubishi Heavy Industries, Ltd. (MHI); and the Spanish Organisations Empresa Nacional de Electricidad, S.A. (ENDESA) representing A.N. Vandellos 2, and Empresa Nacional Uranio, S.A. (ENUSA); with the collaboration of Westinghouse. The objective of the Program is to make substantial contribution to the development of advanced cladding and fuel materials for better performance at high burn-up and under operational power transients. For this Program, segmented fuel rods were selected as the most appropriate vehicle to accomplish the aforementioned objective. Thus, a large number of fuel and cladding combinations are provided while minimising the total amount of new material, at the same time, facilitating an eventual irradiation extension in a test reactor. The Program consists of three major phases: phase I: design, licensing, fabrication and characterisation of the assemblies carrying the segmented rods (1991 - 1994); phase II: base irradiation of the assemblies at Vandellos 2 NPP, and on-site examination at the end of four cycles (1994-1999). Phase III: ramp testing at the Studsvik facilities and hot cell PIE (1996-2001). The main fuel design features whose effects on fuel behaviour are being analysed are: alloy composition (MDA and ZIRLO vs. Zircaloy-4); tubing texture; pellet grain size. The Program is progressing satisfactorily as planned. The base irradiation is completed in the first quarter of 1999, and so far, tests and inspections already carried out are providing useful information on the behaviour of the new materials. Also, the Program is delivering a well characterized fuel material, irradiated in a commercial reactor, which can be further used in other fuel behaviour experiments. The paper presents the main

  2. Beneficial uses program. Progress report ending December 31, 1978. [Irradiated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The Beneficial Uses Program is a comprehensive program to develop the necessary technologies for cost-beneficial uses of existing and future surplus radioactive materials. The major portion of the work at Sandia is concentrated in two sub-programs: The Waste Resources Utilization Program and the Separation Technology and Source Development Program. Progress is reported on: (1) the Sandia Irradiator for Dried Sewage Sludge; (2) bacteriology; (3) mycology; (4) virology; (5) animal feeds containing irradiated sewage solids; (6) use of irradiated sewage sludge as fertilizer; and (7) development of /sup 90/Sr and /sup 137/Cs radiation sources obtained from radioactive wastes. (TFD)

  3. Fracture toughness shifts in high-copper weldments (series 5 and 6)

    International Nuclear Information System (INIS)

    Iskander, S.K.

    1995-01-01

    The specific activities to be performed in this task are the: (1) continuation of Phase 2 of the Fifth Irradiation Series, and (2) completion of the Sixth Irradiation Series, including testing nine irradiated Italian crack-arrest specimens. The test results of the Italian crack-arrest specimens are being analyzed, and full details will be published in a NUREG report currently in preparation. The crack-mouth opening displacement (CMOD) was measured at a distance greater than that prescribed in the American Society for Testing and Materials (ASTM) open-quotes Test for Determining Plane-Strain Crack-Arrest Fracture Toughness, K la , of Ferritic Steelsclose quotes (E 1221-88). A method for adjusting the CMOD to account for this has been developed and is presented. The correction was ∼4% for small specimens and ∼2% for the larger ones. As part of this task, irradiation of HSSI weld 73W to a high fluence [5 x 10 19 neutrons/cm 2 ( > 1 MeV)] will be performed to determine whether the K Jc curve shape change observed in the Fifth HSSI Series is exacerbated. The design and fabrication of the temperature and dosimetry verification capsules are performed under this task, but for purposes of continuity, their progress will be reported under Task 6, where the design of the new irradiation facilities and capsules is performed

  4. Beneficial Uses Program. Progress report, period ending December 31, 1977. [Irradiated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The Beneficial Uses Program is a comprehensive program to develop the necessary technologies for cost-beneficial uses of existing and future surplus radioactive materials. The major portion of the work at Sandia is concentrated in two sub-programs: the Waste Resources Utilization Program and the Separation Technology and Source Development Program. Progress is reported on: (1) the Sandia Irradiator for Dried Sewage Solids; (2) bacteriology; (3) mycology; (4) virology; (5) animal feeds containing irradiated sewage solids; (6) use of irradiated sewage sludge as fertilizer; and (7) development of /sup 90/Sr and /sup 137/Cs radiation sources obtained from radioactive wastes. (TFD)

  5. Beneficial Uses Program. Progress report, period ending March 31, 1979. [Irradiated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The Beneficial Uses Program is a comprehensive program to develop the necessary technologies for cost-beneficial uses of existing and future surplus radioactive materials. The major portion of the work at Sandia is concentrated in two sub-programs: the Waste Resources Utilization Program and the Separation Technology and Source Development Program. Progress is reported on: (1) the Sandia Irradiator for Dried Sewage Solids; (2) bacteriology; (3) mycology; (4) virology; (5) animal feeds containing irradiated sewage solids; (6) use of irradiated sewage sludge as fertilizer; and (7) development of /sup 137/Cs radiation sources obtained from radioactive wastes. (TFD)

  6. Fracture toughness evaluation of a low upper-shelf weld metal from the Midland Reactor using the master curve

    International Nuclear Information System (INIS)

    McCabe, D.E.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The primary objective of the Heavy-Section Steel Irradiation (HSSI) Program Tenth Irradiation Series was to develop a fracture mechanics evaluation of weld metal WF-70, which was taken from the beltline and nozzle course girth weld joints of the Midland Reactor vessel. This material became available when Consumers Power Company of Midland, Michigan, decided to abort plans to operate their nuclear power plant. WF-70 is classified as a low upper-shelf steel primarily due to the Linde 80 flux that was used in the submerged-arc welding process. The master curve concept is introduced to model the transition range fracture toughness when the toughness is quantified in terms of K Jc values. K Jc is an elastic-plastic stress intensity factor calculated by conversion from J c ; i.e., J-integral at onset of cleavage instability

  7. The German carbide program: Performance, experimental findings, and evaluation of irradiation results

    International Nuclear Information System (INIS)

    Steiner, H.; Freund, D.; Geithoff, D.

    1982-09-01

    In this report a synopsis of the German carbide program is presented. The program comprises the irradiation of about 100 carbide pins equipped with pelletted fuel. Most of these fuel pins were He-bonded, the sodium bonding concept taken as a back-up solution. The main design parameters such as smear and pellet density, gap size, pin diameter and wall thickness as well as the irradiation conditions were varied mostly within wide ranges. Based on a compilation of relevant pin parameters, irradiation conditions, and the results of various irradiation experiments conclusions on the optimum ranges of the main design parameters are drawn. Furthermore, some important aspects of fuel pin behaviour are discussed based on quantitative results from post irradiation examinations. (orig.) [de

  8. Beneficial Uses Program. Progress report for period ending June 30, 1978. [Irradiated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Beneficial Uses Program is a comprehensive program to develop the necessary technologies for cost-beneficial uses of existing and future surplus radioactive materials. The major portion of the work at Sandia is concentrated in two sub-programs: the Waste Resources Utilization Program and the Separation Technology and Source Development Program. Progress is reported on: (1) the Sandia Irradiator for Dried Sewage Solids; (2) bacteriology; (3) mycology; (4) virology; (5) animal feeds containing irradiated sewage solids; (6) use of irradiated sewage sludge as fertilizer; and (7) development of /sup 137/Cs radiation sources obtained from radioactive wastes. (TFD)

  9. Alloy development for irradiation performance: program strategy

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Wiffen, F.W.; Dalder, E.N.C.; Reuther, T.C.; Gold, R.E.; Holmes, J.J.; Kummer, D.L.; Nolfi, F.V.

    1978-01-01

    The objective of the Alloy Development for Irradiation Performance Program is the development of structural materials for use in the first wall and blanket region of fusion reactors. The goal of the program is a material that will survive an exposure of 40 MWyr/m 2 at a temperature which will allow use of a liquid-H 2 O heat transport system. Although the ultimate aim of the program is development of materials for commercial reactors by the end of this century, activities are organized to provide materials data for the relatively low performance interim machines that will precede commercial reactors

  10. Present status of ESNIT (energy selective neutron irradiation test facility) program

    International Nuclear Information System (INIS)

    Noda, K.; Ohno, H.; Sugimoto, M.; Kato, Y.; Matsuo, H.; Watanabe, K.; Kikuchi, T.; Sawai, T.; Usui, T.; Oyama, Y.; Kondo, T.

    1994-01-01

    The present status of technical studies of a high energy neutron irradiation facility, ESNIT (energy selective neutron irradiation test facility), is summarized. Technological survey and feasibility studies of ESNIT have continued since 1988. The results of technical studies of the accelerator, the target and the experimental systems in ESNIT program were reviewed by an International Advisory Committee in February 1993. Recommendations for future R and D on ESNIT program are also summarized in this paper. ((orig.))

  11. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    -thick (25-mm)] specimen. Thus, fracture toughness of the material can be described by a fracture toughness-based reference temperature rather that by a temperature derived from a combination of drop-weight and Charpy impact tests. A statistical size correction based upon weakest-link theory is used to adjust the measured fracture toughness to that expected from a 1T specimen. Although the details of a consensus procedure is still under development, the basic procedure is widely used now to characterize elastic-plastic K Jc values in the transition range. For application to commercial nuclear RPVs, however, various uncertainties are being investigated as part of the Heavy-Section Steel Irradiation (HSSI) Program managed by the Oak Ridge National laboratory (ORNL) for the U.S. Nuclear Regulatory Commission. These include the use of relatively small specimens, e.g., precracked CVN (PCVN) and smaller size specimens, the applicability of the master curve to highly irradiated steels, and the effects of intergranular fracture. (author)

  12. R and D Developments. Research Programs on Irradiation Embrittlement of Reactor Vessel Steels

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.; Perosanz, F.

    2000-01-01

    Irradiation embrittlement of pressure vessel steels is a degradation mechanism time dependent that can lead to operational restrictions with adverse effects in the efficiency and life of a plant. For the last year, several research programs have been devoted to study thye evaluation of neutronic radiation effect on mechanical properties of pressure vessel steels. However, at the present, there is a growing interest on the development of new methodologies to optimize the surveillance program information, and the understanding of the irradiation damage mechanism. This paper give an overview of international research programs, and on the R+D activities carried out by the Structural Materials Project on irradiation embrittlement on pressure vessel steels. (Author)

  13. Utilization of a system of automated radiotherapy of malignant tumors using optimum programs of irradiation

    International Nuclear Information System (INIS)

    Pavlov, A.S.; Kostromina, K.N.; Fadeeva, M.A.

    1983-01-01

    The clinical experience in the implementation of optimized irradiation programs is summed up for tumors of different sites with the help of the first serial specimen of the system of automated control over irradiation - Altai-MT. The utilization of the system makes it possible to save time and avoid an error in the implementation of complex irradiation programs as well as to lower the exposure of medical personnel to radiation. Automated programs of irradiation meet the requirements of the conformity and homogeneity of a dose field within a focus of lesion, gradient conditions on the border with normal tissues, the minimization of radiation exposure in critical organs

  14. Thoria-fuel irradiation. Program to irradiate 80% ThO2/20% UO2 ceramic pellets at the Savannah River Plant

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1982-02-01

    This report describes the fabrication of proliferation-resistant thorium oxide/uranium oxide ceramic fuel pellets and preparations at the Savannah River Laboratory (SRL) to irradiate those materials. The materials were fabricated in order to study head end process steps (decladding, tritium removal, and dissolution) which would be required for an irradiated proliferation-resistant thorium based fuel. The thorium based materials were also to be studied to determine their ability to withstand average commercial light water reactor (LWR) irradiation conditions. This program was a portion of the Thorium Fuel Cycle Technology (TFCT) Program, and was coordinated by the Oak Ridge National Laboratory (ORNL) under the Consolidated Fuel Reprocessing Program (CFRP). The fuel materials were to be irradiated in a Savannah River Plant (SRP) reactor at conditions simulating the heat ratings and burnup of a commercial LWR. The program was terminated due to a de-emphasis of the TFCT Program, following completion of the fabrication of the fuel and the modified assemblies which were to be used in the SRP reactor. The reactor grade ceramic pellets were fabricated for SRL by Battelle, Pacific Northwest Laboratories. Five fuel types were prepared: 100% UO 2 pellets (control); 80% ThO 2 /20% UO 2 pellets; approximately 80% ThO 2 /20% UO 2 + 0.25 CaO (dissolution aid) pellets; 100% UO 2 hybrid pellets (prepared from sol-gel microspheres); and 100% ThO 2 pellets (control). All of the fuel materials were transferred to SRL from PNL and were stored pending a subsequent reactivation of the TFCT Programs

  15. Irradiation Embrittlement Monitoring Programs of RPV's in the Slovak Republic NPP's

    International Nuclear Information System (INIS)

    Kupca, Ludovik

    2006-01-01

    Four types of surveillance programs were (are) realized in Slovak NPP's: 'Standard Surveillance Specimen Program' (SSSP) was finished in Jaslovske Bohunice V-2 Nuclear Power Plant (NPP) Units 3 and 4, 'Extended Surveillance Specimen Program' (ESSP), was prepared for Jaslovske Bohunice NPP V-2 with aim to validate the SSSP results, For the Mochovce NPP Unit 1 and 2 was prepared completely new surveillance program 'Modern Surveillance Specimen Program' (MSSP), based on the philosophy that the results of MSSP must be available during all NPP service life, For the Bohunice V-1 NPP was finished 'New Surveillance Specimen Program' (NSSP) coordinated by IAEA, which gave arguments for prolongation of service life these units for minimum 20 years, New Advanced Surveillance Specimen Program (ASSP) for Bohunice V-2 NPP (units 3 and 4) and Mochovce NPP (units 1, 2) is approved now. ASSP is dealing with the irradiation embrittlement of heat affected zone (HAZ) and RPV's austenitic cladding, which were not evaluated till this time in surveillance programs. SSSP started in 1979 and was finished in 1990. ESSP program started in 1995 and will be finished in 2007, was prepared with aim of: increasing of neutron fluence measurement accuracy, substantial improvement the irradiation temperature measurement, fixed orientation of samples to the centre of the reactor core, minimum differences of neutron dose for all the Charpy-V notch and COD specimens, the dose rate effect evaluation. In the year 1996 was started the new surveillance specimen program for the Mochovce RPV's unit-1 and 2, based on the fundamental postulate - to provide the irradiation embrittlement monitoring till the end of units operation. The 'New Surveillance Specimen Program' (NSSP) prepared in the year 1999 for the Bohunice V-1 NPP was finished in the year 2004. Main goal of this program was to evaluate the weld material properties degradation due to the irradiation and recovery efficiency by annealing too. The

  16. Heavy-section steel irradiation program. Semiannual progress report, September 1993--March 1994

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only component in the primary pressure boundary for which, if it should rupture, the engineering safety systems cannot assure protection from core damage. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, ft is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. The Heavy-Section Steel (HSS) Irradiation Program has been established; its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties of typical pressure-vessel steels, as they relate to light-water RPV integrity. The program includes the direct continuation of irradiation studies previously conducted within the HSS Technology Program augmented by enhanced examinations of the accompanying microstructural changes. During this period, the report on the duplex-type crack-arrest specimen tests from Phase 11 of the K la program was issued, and final preparations for testing the large, irradiated crack-arrest specimens from the Italian Committee for Research and Development of Nuclear Energy and Alternative Energies were completed. Tests on undersize Charpy V-notch (CVN) energy specimens in the irradiated and annealed weld 73W were completed. The results are described in detail in a draft NUREG report. In addition, the ORNL investigation of the embrittlement of the High Flux Isotope RPV indicated that an unusually large ratio of the high-energy gamma-ray flux to fast-neutron flux is most likely responsible for the apparently accelerated embrittlement

  17. Coordinated irradiation plan for the Fuel Refabrication and Development Program

    International Nuclear Information System (INIS)

    Barner, J.O.

    1979-04-01

    The Department of Energy's Fuel Refabrication and Development (FRAD) Program is developing a number of proliferation-resistant fuel systems and forms for alternative use in nuclear reactors. A major portion of the program is the development of irradiation behavioral information for the fuel system/forms with the ultimate objective of qualifying the design for licensing and commercial utilization. The nuclear fuel systems under development include denatured thoria--urania fuels and spiked urania--plutonia or thoria--plutonia fuels. The fuel forms being considered include pellet fuel produced from mechanically mixed or coprecipitated feed materials, pellet fuel fabricated from partially calcined gel-derived or freeze-dried spheres (hybrid fuel) and packed-particle fuel produced from sintered gel-derived spheres (sphere-pac). This document describes the coordinated development program that will be used to test and demonstrate the irradiation performance of alternative fuels

  18. Super Phenix. Monitoring of structures subject to irradiation. Neutron dosimetry measurement and calculation program

    International Nuclear Information System (INIS)

    Cabrillat, J.C.; Arnaud, G.; Calamand, D.; Manent, G.; Tavassoli, A.A.

    1984-09-01

    For the Super Phenix reactor, the evolution, versus the irradiation of the mechanical properties of the core diagrid steel is the object of studies and is particularly monitored. The specimens irradiated, now in PHENIX and will be later irradiated in SUPER PHENIX as soon as the first operating cycles. An important dosimetry program coupling calculation and measurement, is parallely carried out. This paper presents the reasons, the definition of the structure, of the development and of materials used in this program of dosimetry, as also the first results of a calculation-measurement comparison [fr

  19. A computer program (FUGI) for design and operation of a conveyor type irradiator with multi-tier and multi-layer

    International Nuclear Information System (INIS)

    Hoshi, Tatsuo; Aggarwal, K.S.

    1976-10-01

    A computer program (FUGI) was established to facilitate the determination of factors related to design and operation of a conveyor type irradiator with multi-tier and multi-layer. The factors determined by this program are as follows: (1) maximum dose, minimum dose and dose uniformity in irradiated material; (2) dose rate distribution on the path of irradiated material; (3) mass flow rate of irradiated material; (4) requisite activity of source; (5) requisite speed of conveyor; (6) utilization efficiency. This program partly uses the program FUDGE 4A for determination of dose rate in irradiated material in static state by Galanter and Krishnamurthy. (auth.)

  20. Finite element method programs to analyze irradiation behavior of fuel pellets

    International Nuclear Information System (INIS)

    Yamada, Rayji; Harayama, Yasuo; Ishibashi, Akihiro; Ono, Masao.

    1979-09-01

    For the safety assessment of reactor fuel, it is important to grasp local changes of fuel pins due to irradiation in a reactor. Such changes of fuel result mostly from irradiation of fuel pellets. Elasto-plastic analysis programs based on the finite element method were developed to analyze these local changes. In the programs, emphasis is placed on the analysis of cracks in pellets; the interaction between cracked-pellets and cladding is not taken into consideration. The two programs developed are FEMF3 based on a two-dimensional axially symmetric model (r-z system) and FREB4 on a two-dimensional plane model (r-theta system). It is discussed in this report how the occurrence and distribution of cracks depend on heat rate of the fuel pin. (author)

  1. Recent developments in Sandia Laboratories' sewage sludge irradiation program

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-01-01

    Pathogen reduction studies show that gamma irradiation is effective in inactivating pathogenic bacteria, parasite ova, and viruses in liquid sludges. Ammonia is shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are relatively economical for composted or dried sludges, but only marginally competitive with costs of heat treatment for liquid sludges. Physical and chemical studies show that effects of irradiation of sludges on dewatering properties are insignificant when compared to the effects of polymer addition. Dried, irradiated undigested sludge has significant nutritional value as a feed supplement for sheep and cattle and in agronomic uses such as greenhouses and field plots. No significant harmful effects have been demonstrated in the feeding program. Product enhancement studies are under way, including schemes for removing nitrogen from wastewaters and adding it to sludges in the form of ammonium salts

  2. Estimation of irradiation temperature within the irradiation program Rheinsberg

    CERN Document Server

    Stephan, I; Prokert, F; Scholz, A

    2003-01-01

    The temperature monitoring within the irradiation programme Rheinsberg II was performed by diamond powder monitors. The method bases on the effect of temperature on the irradiation-induced increase of the diamond lattice constant. The method is described by a Russian code. In order to determine the irradiation temperature, the lattice constant is measured by means of a X-ray diffractometer after irradiation and subsequent isochronic annealing. The kink of the linearized temperature-lattice constant curves provides a value for the irradiation temperature. It has to be corrected according to the local neutron flux. The results of the lattice constant measurements show strong scatter. Furthermore there is a systematic error. The results of temperature monitoring by diamond powder are not satisfying. The most probable value lays within 255 C and 265 C and is near the value estimated from the thermal condition of the irradiation experiments.

  3. An overview of the PIREX Proton Irradiation facility and its research program

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M.; Gavillet, D. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The main design characteristics of PIREX (Proton Irradiation Experiment) are described. The facility is installed in the 590 MeV proton beam of the PSI accelerator system. Its main task is the irradiation and testing of fusion reactor candidate materials. Protons of this energy produce simultaneously in the target material displacement damage and impurities, amongst them helium. They can therefore simulate possible synergistic effects between helium and damage that would result from irradiations with the fusion neutrons. The research program being developed includes studies on both materials of technological interest, such as martensitic stainless steels and Mo - based alloys and basic radiation damage research on pure metals. The facility is also being used for actinide transmutation studies, in the so called ATHENA experiment. The main directions of the research program are described and examples of present results are given.

  4. HEINBE; the calculation program for helium production in beryllium under neutron irradiation

    International Nuclear Information System (INIS)

    Shimakawa, Satoshi; Ishitsuka, Etsuo; Sato, Minoru

    1992-11-01

    HEINBE is a program on personal computer for calculating helium production in beryllium under neutron irradiation. The program can also calculate the tritium production in beryllium. Considering many nuclear reactions and their multi-step reactions, helium and tritium productions in beryllium materials irradiated at fusion reactor or fission reactor may be calculated with high accuracy. The calculation method, user's manual, calculated examples and comparison with experimental data were described. This report also describes a neutronics simulation method to generate additional data on swelling of beryllium, 3,000-15,000 appm helium range, for end-of-life of the proposed design for fusion blanket of the ITER. The calculation results indicate that helium production for beryllium sample doped lithium by 50 days irradiation in the fission reactor, such as the JMTR, could be achieved to 2,000-8,000 appm. (author)

  5. Technology development on analysis program for measuring fracture toughness of irradiated specimens

    International Nuclear Information System (INIS)

    Shibata, Akira; Takada, Fumiki

    2007-03-01

    The fracture toughness which represents resistance for brittle or ductile fracture is one of the most important material property concerning linear and non-linear fracture mechanics analyses. In order to respond to needs of collecting data relating to fracture toughness of pressure vessel and austenitic stainless steels, fracture toughness test for irradiated materials has been performed in JMTR hot laboratory. On the other hand, there has been no computer program for analysis of fracture toughness using the test data obtained from the test apparatus installed in the hot cell. Therefore, only load-displacement data have been provided to users to calculate fracture toughness of irradiated materials. Recently, request of analysis of fracture toughness have been increased. Thus a computer program, which calculates the amount of the crack extension, the compliance and the fracture toughness from the data acquired from the test apparatus installed in the hot cell, has been developed. In the program unloading elastic compliance method is applied based on ASTM E1820-01. Through the above development, the request for the fracture toughness analysis can be satisfied and the fracture toughness of irradiated test specimens can be provided to users. (author)

  6. The irradiation test program for transmutation in the French Phenix fast reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Chaucheprat, P.; Fontaine, B.; Brunon, E.

    2004-01-01

    Put on commercial operation in July 1974, the French fast reactor Phenix reached a 100 000 hours operation time in september 2003. When the French law relative to long lived radioactive waste management was promulgated on December 1991, priority was given to Phenix to be run as a research reactor and to carry on a wide irradiation program dedicated to study transmutation of minor actinides and long-lived fission products. After a major renovation program required to extend the reactor lifetime, Phenix power buildup took place in 2003. Experimental irradiations have been loaded in the core, involving components for heterogeneous and homogeneous transmutation modes, americium targets, technetium 99 metal pins and isolated isotopes for integral cross-sections measurements. Associated post- irradiated examination programs are already underway or planned. With new experiments to be loaded in the core in 2006 the Phenix reactor remains to be a powerful tool providing an important experimental data on fast reactors and on transmutation of minor actinides and long-lived fission products, as well as it will contribute to gain further experience in the framework of the GENERATION IV International Forum. (authors)

  7. Extension of the RPV irradiation surveillance program of NPP GKN II by T0 approach

    International Nuclear Information System (INIS)

    Barthelmes, J.; Keim, E.; Hein, H.; Koenig, G.

    2015-01-01

    The nuclear power plant (NPP) Neckarwestheim II (GKN II) started operation in 1989 and was designed for 40 years of operation. During the plant life time the reactor pressure vessel (RPV) integrity is a main aspect for nuclear safety since the RPV is exposed to neutron irradiation affecting the mechanical material properties, in particular toughness. In this context the ductile to brittle transition reference temperature of the RPV materials can be determined either indirectly according to the RT(NDT) concept by means of comparative examinations of irradiated and unirradiated notched-bar impact specimens or directly according to the Master Curve concept by means of examination of irradiated fracture mechanic specimens and determination of an alternative reference temperature RT(T0). With the implementation and evaluation of the first irradiation surveillance program consisting of three sets, one unirradiated reference set (set 1) and two irradiated sets (set 2 and 3), the RPV safety could be proven for the assessment fluence (AF) of 8*10 18 cm -2 (E > 1 MeV) using the RT(NDT) concept. Against the background of a possible long term operation and the state-of-the-art of science and technology in 1998 the NPP GKN II initiated a supplemental irradiation surveillance program with two irradiation sets (set 4 and 5) containing fracture mechanic specimens for complementary proof of safety according to the Master Curve concept. The results of the first irradiated set 4 are presented and assessed by means of the reference temperatures according to the Master Curve concept and compared to the results of the irradiation sets 1 to 3 of the conventional irradiation surveillance program. As an important outcome the existing RPV integrity assessment could be ensured by the Master Curve results. The applied approach adapts to the state-of-the-art of science and technology and is best practice to ensure the safe operation of RPV supplementary. (authors)

  8. Brazilian Irradiation Project: CAFE-MOD1 validation experimental program

    International Nuclear Information System (INIS)

    Mattos, Joao Roberto Loureiro de; Costa, Antonio Carlos L. da; Esteves, Fernando Avelar; Dias, Marcio Soares

    1999-01-01

    The Brazilian Irradiation Project whose purpose is to provide Brazil with a minimal structure to qualify the design, fabrication and quality procedures of nuclear fuels, consists of three main facilities: IEA-R1 reactor of IPEN-CNEN/SP, CAFE-MOD1 irradiation device and a unit of hot cells. The CAFE-MOD1 is based on concepts successfully used for more than 20 years in the main nuclear institutes around the world. Despite these concepts are already proved it should be adapted to each reactor condition. For this purpose, there is an ongoing experimental program aiming at the certification of the criteria and operational limits of the CAFE-MOD1 in order to get the allowance for its installation at the IEA-R1 reactor. (author)

  9. Activity computer program for calculating ion irradiation activation

    Science.gov (United States)

    Palmer, Ben; Connolly, Brian; Read, Mark

    2017-07-01

    A computer program, Activity, was developed to predict the activity and gamma lines of materials irradiated with an ion beam. It uses the TENDL (Koning and Rochman, 2012) [1] proton reaction cross section database, the Stopping and Range of Ions in Matter (SRIM) (Biersack et al., 2010) code, a Nuclear Data Services (NDS) radioactive decay database (Sonzogni, 2006) [2] and an ENDF gamma decay database (Herman and Chadwick, 2006) [3]. An extended version of Bateman's equation is used to calculate the activity at time t, and this equation is solved analytically, with the option to also solve by numeric inverse Laplace Transform as a failsafe. The program outputs the expected activity and gamma lines of the activated material.

  10. A summary of recent developments in the sludge irradiation program at Sandia laboratories

    International Nuclear Information System (INIS)

    Morris, M.E.; Sivinski, J.S.; Brandon, J.R.; Neuhauser, K.S.; Ward, R.L.

    1978-01-01

    Sandia Laboratories has shifted the emphasis of its Sewage Sludge Irradiation Program toward treating dried sewage sludges rather than liquid sludges for the following reasons: (1) cities' interests in composting sewage sludge before final disposal; (2) need for disinfection of the product before sale to the public; and (3) low cost of disinfection by radiation processing. As a result of this shift, the Sandia Irradiator for Dried Sewage Solids (SIDSS), was designed and is near completion. The irradiator will treat up to 8 tons/day of solids with a 1 megarad absorbed dose. A bucket conveyor will transport the sewage sludge past a 1 megacurie cesium-137 γ-ray source. If a lower dose than 1 megarad is acceptable for disinfection, the daily throughput of the irradiator will be correspondingly increased. The irradiator is designed so that the cesium-137 γ-ray sources used to charge the facility can be manipulated underwater. After source unloading is complete, the water will be drained and the irradiator will be operated dry. Either bagged or bulk solids can be irradiated with the system. (Auth.)

  11. Qualification program for JHR fuel elements: Irradiation of the first JHR test assembly in the BR2-Evita loop

    International Nuclear Information System (INIS)

    Anselmet, M.-C.; Lemoine, P.; Koonen, E.; Benoit, P.; Gouat, P.; Claes, W.; Geens, F.; Miras, G.; Brisson, S.

    2010-01-01

    An experimental program has been designed by CEA to qualify the behaviour of the JHR fuel under conditions representative of the reactor operating ones. This program uses the SCK.CEN facilities, irradiating JHR lead test elements in the BR2 reactor, inside its central channel which has been particularly arranged for this objective (Evita loop). As a first step in the program, a two cycle irradiation (4 weeks by cycle) started mid-July 2009 and ended mid-November (EVITA-1). After a cooling phase, this first JHR lead test element will be submitted to post-irradiation examination. The second JHR test element began its irradiation in the first quarter of 2010; its unloading is planned before the end of 2010, after 5 cycles in the BR2 reactor. The results of these two experiments are expected as input information for the Safety Authority Report. This paper presents the qualification program with the objectives assigned to each phase (irradiation, examination). A first interpretation of the irradiation data for the first element is presented, so as the information available on the progress of the following phases of the programme. (author)

  12. Program description for the qualification of CNEA - Argentina as a supplier of LEU silicide fuel and post-irradiation examinations plan for the first prototype irradiated in Argentina

    International Nuclear Information System (INIS)

    Rugirello, Gabriel; Adelfang, Pablo; Denis, Alicia; Zawerucha, Andres; Marco, Agustin di; Guillaume, Eduardo; Sbaffoni, Monica; Lacoste, Pablo

    1998-01-01

    In this report we present a description of the ongoing and future stages of the program for the qualification of CNEA, Argentina, as a supplier of low enriched uranium silicide fuel elements for research reactor. Particularly we will focus on the characteristics of the future irradiation experiment on a new detachable prototype, the post-irradiation examinations (PIE) plan for the already irradiated prototype PO4 and an overview of the recently implemented PIE facilities and equipment. The program is divided in several steps, some of which have been already completed. It concludes: development of the uranium silicide fissile material, irradiation and PIE of several full-scale prototypes. Important investments have been already carried out in the facilities for the FE production and PIE. (author)

  13. Program for photon shielding calculations. Examination of approximations on irradiation geometries

    International Nuclear Information System (INIS)

    Isozumi, Yasuhito; Ishizuka, Fumihiko; Miyatake, Hideo; Kato, Takahisa; Tosaki, Mitsuo

    2004-01-01

    Penetration factors and related numerical data in 'Manual of Practical Shield Calculation of Radiation Facilities (2000)', which correspond to the irradiation geometries of point isotropic source in infinite thick material (PI), point isotropic source in finite thick material (PF) and vertical incident to finite thick material (VF), have been carefully examined. The shield calculation based on the PI geometry is usually performed with effective dose penetration factors of radioisotopes given in the 'manual'. The present work cleary shows that such a calculation may lead to an overestimate more than twice larger, especially for thick shield of concrete and water. Employing the numerical data in the 'manual', we have fabricated a simple computer program for the estimation of penetration factors and effective doses of radioisotopes in the different irradiation geometries, i.e., PI, PF and VF. The program is also available to calculate the effective dose from a set of radioisotopes in the different positions, which is necessary for the γ-ray shielding of radioisotope facilities. (author)

  14. The U.S. Department of Energy Program in low-dose food irradiation

    International Nuclear Information System (INIS)

    Krenz, D.L.; McMullen, W.H.

    1985-01-01

    The U.S. Department of Energy's Byproducts Utilization Program (BUP) seeks to develop and encourage the widespread beneficial commercial use of waste byproducts produced by Department of Energy (DOE) programs. These byproducts are generally radioactive to varying degrees and consist of fission products resulting from irradiation of nuclear reactor fuel for production of special nuclear material at DOE facilities in Richland, Washington, and Savannah River, South Carolina

  15. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  16. Executive strategy plan for beneficial uses program: cesium-137 sewage sludge irradiation

    International Nuclear Information System (INIS)

    1981-07-01

    Energy-efficient disinfection of sewage sludge, permitting its use as a fertilizer and soil conditioner in areas open to public access or on certain food chain crops, is possible using the process technology developed by Sandia National Laboratories under DOE and EPA joint support. This process accomplishes disinfection by gamma ray irradiation with cesium-137, a by-product isotope recovered from reprocessing of defense production waste. Disinfection with cesium-137 gamma irradiation provides an energy-efficient option for the Nation's cities to beneficially utilize sewage sludge, while at the same time conserving energy by utilizing a radioisotope, traditionally considered waste, in a beneficial manner. While the Sandia sludge irradiation technology has successfully completed its research and development phase, a major consideration remains: the introduction of a new technology into a marketplace which traditionally is skeptical of new products or process technologies until their performance is well proven. This document analyzes the factors important to market introduction of this new technology, develops options, and recommends a program strategy for transfer of the Sandia sludge irradiation technology to the marketplace by developing public awareness and acceptance, and by stimulating private sector commercialization interest

  17. Second program of materials irradiation within VISA-2 Project, Parts I-II, Part I; Drugi program ozracivanja materijala po projektu VISA-2, I-II Deo, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Smokovic, Z [Institute of Nuclear Sciences Boris Kidric, Odeljenje za reaktorsku eksperimentalnu tehniku, Vinca, Beograd (Serbia and Montenegro)

    1965-03-15

    This second program of irradiating the materials in special VISA-2 experimental channels includes irradiation of 8 capsules with French graphite, magnesium and aluminium oxides, zircaloy, leak tight capsules with Zirconium and steel samples; capsules with domestic graphite, iron, domestic steel and molybdenum samples. The samples are irradiated in the integral fast neutron flux of 2 10{sup 20} n/cm{sup 2}. Temperature of the samples is measured continuously. This task includes activities which are necessary for completing the irradiation procedures.

  18. Second program of materials irradiation within VISA-2 Project, Parts I-II, Part II; Drugi program ozracivanja materijala po projektu VISA-2, I-II Deo, II Deo

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Smokovic, Z [Institute of Nuclear Sciences Boris Kidric, Odeljenje za reaktorsku eksperimentalnu tehniku, Vinca, Beograd (Serbia and Montenegro)

    1965-03-15

    This second program of irradiating the materials in special VISA-2 experimental channels includes irradiation of 8 capsules with French graphite, magnesium and aluminium oxides, zircaloy, leak tight capsules with Zirconium and steel samples; capsules with domestic graphite, iron, domestic steel and molybdenum samples. This volume of the report includes design specification and engineering drawings of VISA-2 different irradiation capsules to be used and of the devices needed for completing the task.

  19. Irradiation testing of miniature fuel plates for the RERTR program

    Energy Technology Data Exchange (ETDEWEB)

    Senn, R L; Martin, M M [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    1983-08-01

    An irradiation test facility, which provides a test bed for irradiating a variety of miniature fuel plates miniplates) for the Reduced Enrichment Research and Test Reactors (RERTR) program, has been placed into operation. The objective of these tests is to screen various candidate fuel materials as to their suitability for replacing the highly enriched uranium fuel materials currently used by the world's test and research reactors with a lower enrichment fuel material, without significantly degrading reactor operating characteristics and power levels. The use of low uranium enrichment of about 20% {sup 235}U in place of highly enriched fuel for these reactors would reduce the potential for {sup 235}U diversion. Fuel materials currently being evaluated in this first phase of these screening tests include aluminum-base dispersion-type fuel plates with fuel cores of 1) high uranium content U{sup 3}){sup 8}-Al being developed by ORNL, 2) high uranium content UAI{sub x}-Al being developed by EG and G Idaho, Inc., and 3) very high uranium content U{sub 3}Si-Al- being developed by ANL. The miniplates are 115-mm long by 50-mm wide with overall plate thicknesses of 1.27 or 1.52 mm. The fuel core dimensions vary according to overall plate thicknesses with a minimal clad thickness requirement of 0.20 mm. Sixty such miniplates (thirty of each thickness) can be irradiated in one test facility. The irradiation test facility, designated as HFED-1 is operating in core position E-7 in the Oak Ridge Research Reactor (ORR), a 30-MW water-moderated reactor. The peak neutron flux measured for this experiment is 1.96 x 10{sup 18} neutrons m{sub -2} s{sub -1}. The various types of miniplates will achieve burnups of up to approximately 2.2x10{sup 27} fissions/m{sup 3} of fuel, which will require approximately eight full power months of irradiation. During reactor shutdown periods, the experiment is removed from the reactor, moved to a special poolside station, disassembled, and inspected

  20. Irradiation of Northwest agricultural products

    International Nuclear Information System (INIS)

    Eakin, D.E.; Tingey, G.L.; Anderson, D.B.; Hungate, F.P.

    1985-01-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing resrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides

  1. Irradiation of Northwest agricultural products

    International Nuclear Information System (INIS)

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides

  2. Recent developments in the Sandia Laboratories' sewage sludge irradiation program

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-11-01

    Pathogen reduction studies have shown that a 1 Mrad treatment (or less at elevated temperatures) is very effective in eliminating pathogenic bacteria and viable parasite ova in liquid sludges. Heat is effective in reducing levels not only of pathogenic bacteria and Ascaris ova, but viruses as well. Ammonia has been shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are seen to be marginally competitive with heat treatment for liquid sludges and relatively economical for composted or dried sludges. Physical/chemical effects studies have shown that the effects of irradiation of sludges on dewatering properties are not significant when compared to polymers, nor is the combined effect synergistic. Dried, irradiated undigested sludge has been shown to be of significant nutritional value when used as a feed supplement for sheep and cattle, as well as in agronomic uses. No significant harmful effects have been demonstrated in the feeding program thus far. Product enhancement studies are currently under way, including schemes for removing nitrogen from effluent streams for addition as ammonium salts to sludges

  3. Irradiation temperature measurements in the surveillance program

    International Nuclear Information System (INIS)

    Pav, T.; Krhounek, V.

    1991-01-01

    Evaluation of the diamond monitor method for the determination of the irradiation temperature in the surveillance programme of WWER-440 reactors is discussed. One of the difficulties with the practical application of the method is that the measured values of irradiation temperature are unlikely high. Using a thermodynamical model of the processes in the annealing of the irradiated diamond crystals, it was shown that experimental difficulties came from the principles of the method used. An analysis was performed of the thermal field inside the capsule of the surveillance chain in operational conditions, using the finite element method. The diamond monitor method was suggested to be eliminated from the surveillance programme and the use was proposed of the value of 273+-3 degC (as the most likely value) for the irradiation temperature of surveillance samples in WWER-440 reactors. (Z.S.). 3 tabs., 6 figs., 4 refs

  4. Efigie: a computer program for calculating end-isotope accumulation by neutron irradiation and radioactive decay

    International Nuclear Information System (INIS)

    Ropero, M.

    1978-01-01

    Efigie is a program written in Fortran V which can calculate the concentration of radionuclides produced by neutron irradiation of a target made of either a single isotope or several isotopes. The program includes optimization criteria that can be applied when the goal is the production of a single nuclide. The effect of a cooling time before chemical processing of the target is also accounted for.(author) [es

  5. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  6. Development and utilization of irradiational capsule - Mechanical and thermal performance analysis and development of design program on the cylindrical structures with multi-holes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Shin; Choi, M. H.; Shin, D. S. [Chungnam National University, Taejon (Korea)

    2000-04-01

    Irradiation tests in the research reactor are used with the specially designed capsules for irradiation test and loop. Accordingly, suitable instrumented capsule for HANARO must be designed and manufactured. To satisfy the requirements of users and to conduct irradiation test effectively, the accurate informations on the thermal and mechanical characteristics of capsule should be understood. The structural analysis results show that stress characteristics of the cylinder with multi-holes is not significantly effected by the sizes of specimen hole, numbers of specimen and eccentric characteristics. The thermal and structural analysis of the capsule with multi-holes under thermal loading shows that the peak temperature in the circular cylinder is occurred in the specimens inserted in the center or specimen holes and is significantly effected by gap size between the holder and the external tube. In this study, CAPSYS program is developed by interfacing finite element analysis program, ANSYS with graphic user interface program, VISUAL C++. This program will be useful on the design and safety analysis of the capsule for material irradiation test. 20 refs., 37 figs., 9 tabs. (Author)

  7. SATURN-S - a program system for the description of the thermomechanical behaviour of reactor fuel pins under irradiation

    International Nuclear Information System (INIS)

    Pesl, R.; Freund, D.; Gaertner, H.; Steiner, H.

    1987-07-01

    On the basis of post irradiation examination results of various irradiation experiments with different fuel types real case calculations showed many of the existing models to be applicable to a restricted extent only. Therefore a re- and partially new formulation of models was necessary. Furthermore, the data base had been actualized and numerical procedures had been improved. This, together with the capabilities of modern computer systems, conducted the development of the program system SATURN-S with a strictly modular structure, specified by the requirements of the determination of the superposition of effects. In the present report the program SATURN-S as well as some analysis results are presented. (orig./HP) [de

  8. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  9. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  10. Neutron irradiation of seeds 2

    Energy Technology Data Exchange (ETDEWEB)

    1968-10-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs.

  11. Neutron irradiation of seeds 2

    International Nuclear Information System (INIS)

    1968-01-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  12. Harvest surgical site infection following coronary artery bypass grafting: risk factors, microbiology, and outcomes.

    Science.gov (United States)

    Sharma, Mamta; Fakih, Mohamad G; Berriel-Cass, Dorine; Meisner, Susan; Saravolatz, Louis; Khatib, Riad

    2009-10-01

    Our goals were to evaluate the risk factors predisposing to saphenous vein harvest surgical site infection (HSSI), the microbiology implicated, associated outcomes including 30-day mortality, and identify opportunities for prevention of infection. All patients undergoing coronary artery bypass grafting (CABG) procedures from January 2000 through September 2004 were included. Data were collected on preoperative, intraoperative, and postoperative factors, in addition to microbiology and outcomes. Eighty-six of 3578 (2.4%) patients developed HSSI; 28 (32.6%) of them were classified as deep. The median time to detection was 17 (range, 4-51) days. An organism was identified in 64 (74.4%) cases; of them, a single pathogen was implicated in 50 (78%) cases. Staphylococcus aureus was the most frequently isolated pathogen: 19 (38% [methicillin-susceptible S aureus (MSSA) = 12, methicillin-resistant S aureus (MRSA) = 7]). Gram-negative organisms were recovered in 50% of cases, with Pseudomonas aeruginosa predominating in 11 (22%) because of a single pathogen. Multiple pathogens were identified in 14 (22%) cases. The 30-day mortality was not significantly different in patients with or without HSSI. Multivariate analysis showed age, diabetes mellitus, obesity, congestive heart failure, renal insufficiency, and duration of surgery to be associated with increased risk. Diabetes mellitus, obesity, congestive heart failure, renal insufficiency, and duration of surgery were associated with increased risk for HSSI. S aureus was the most frequently isolated pathogen.

  13. Recent developments in the Sandia Laboratories' sewage sludge irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-11-01

    Pathogen reduction studies have shown that a 1 Mrad treatment (or less at elevated temperatures) is very effective in eliminating pathogenic bacteria and viable parasite ova in liquid sludges. Heat is effective in reducing levels not only of pathogenic bacteria and Ascaris ova, but viruses as well. Ammonia has been shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are seen to be marginally competitive with heat treatment for liquid sludges and relatively economical for composted or dried sludges. Physical/chemical effects studies have shown that the effects of irradiation of sludges on dewatering properties are not significant when compared to polymers, nor is the combined effect synergistic. Dried, irradiated undigested sludge has been shown to be of significant nutritional value when used as a feed supplement for sheep and cattle, as well as in agronomic uses. No significant harmful effects have been demonstrated in the feeding program thus far. Product enhancement studies are currently under way, including schemes for removing nitrogen from effluent streams for addition as ammonium salts to sludges.

  14. Status of fuel irradiation tests in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  15. Alaskan Commodities Irradiation Project

    International Nuclear Information System (INIS)

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.

    1988-01-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs

  16. Characterization program, management and isotopic inventory calculation, radiological and fuel thermal irradiated in nuclear power Cofrentes

    International Nuclear Information System (INIS)

    Albendea, M.; Diego, J. L. de; Urrea, M.

    2012-01-01

    Characterization is a very detailed and user-friendly program takes into account the history of irradiation individualized and real all the fuel, even taking into account the interim periods are periods of discharge and recharge cycles and which have not been used.

  17. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    International Nuclear Information System (INIS)

    Le Pape, Yann; Rosseel, Thomas M.

    2015-01-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program Material Pathway Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  18. Application of advanced irradiation analysis methods to light water reactor pressure vessel test and surveillance programs

    International Nuclear Information System (INIS)

    Odette, R.; Dudey, N.; McElroy, W.; Wullaert, R.; Fabry, A.

    1977-01-01

    Inaccurate characterization and inappropriate application of neutron irradiation exposure variables contribute a substantial amount of uncertainty to embrittlement analysis of light water reactor pressure vessels. Damage analysis involves characterization of the irradiation environment (dosimetry), correlation of test and surveillance metallurgical and dosimetry data, and projection of such data to service conditions. Errors in available test and surveillance dosimetry data are estimated to contribute a factor of approximately 2 to the data scatter. Non-physical (empirical) correlation procedures and the need to extrapolate to the vessel may add further error. Substantial reductions in these uncertainties in future programs can be obtained from a more complete application of available damage analysis tools which have been developed for the fast reactor program. An approach to reducing embrittlement analysis errors is described, and specific examples of potential applications are given. The approach is based on damage analysis techniques validated and calibrated in benchmark environments

  19. Post irradiation examination technology exchange

    International Nuclear Information System (INIS)

    Sozawa, Shizuo; Ito, Masayasu; Taguchi, Taketoshi; Nakagawa, Tetsuya; Lee, Hyung-Kwon

    2012-01-01

    Under the KAERI and JAEA agreement, in a part of the program 18 (Post Irradiation Examination (PIE) and Evaluation Technique of Irradiated Materials), an eddy current test was proposed as a round robin test, and it has been being progressed in both organizations in order to enhance the post irradiation examination technology. Up to now, several data are obtained by both PIE facilities. In this paper, the round robin test program is shown, and also shown obtained data with discussion from applicability as a nondestructive test in the hot cell. (author)

  20. Irradiation damage

    International Nuclear Information System (INIS)

    Howe, L.M.

    2000-01-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization

  1. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  2. ERG [Engineering Review Group] review of the SRP [Salt Repository Project] salt irradiation effects program: Technical report

    International Nuclear Information System (INIS)

    Clark, D.E.

    1986-11-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1985 meeting of the ERG reviewed the Salt Repository Project (SRP) salt irradiation effects program. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  3. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rosseel, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  4. Design of single-walled NaK capsules for fast breeder fuel pins irradiation (IVO-FR2-Vg7 program)

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Hafner, H.E.

    1979-01-01

    In Frame of the Joint Irradiation Program IVO-FR2 between the Nuclear Research Centre of Karlsruhe (RFA) and the Junta de Energia Nuclear (Spain) is carried out in the FR2 reactor (Karlsruhe) the irradiation of 12 mixed-oxide fuel rods of 172 mm length. These test rods are first irradiated under various conditions in four modified FR2 capsule (Typ 7). Two versions of single-walled NaK (78% K) are used for this purpose. This report contains the design and description of these two capsule versions as well as the considerations required to oftain the operations licence, supplemented by the relevant figures. (author)

  5. Food irradiation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Food preservation by irradiation is one part of Eisenhower's Atoms for Peace program that is enjoying renewed interest. Classified as a food additive by the Food, Drug, and Cosmetic Act of 1958 instead of a processing technique, irradiation lost public acceptance. Experiments have not been done to prove that there are no health hazards from gamma radiation, but there are new pressures to get Food and Drug Administration approval for testing in order to make commercial use of some radioactive wastes. Irradiation causes chemical reactions and nutritional changes, including the destruction of several vitamins, as well as the production of radiolytic products not normally found in food that could have adverse effects. The author concludes that, lacking epidemiological evidence, willing buyers should be able to purchase irradiated food as long as it is properly labeled

  6. In-pile irradiation test program and safety analysis report of the KAERI fuel for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Wan; Ryu, Woo Suck; Byun, Taek Sang; Park, Jong Man; Lee, Byung Chul; Kim, Hack No; Park, Hee Tae; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-05-01

    Localization of HANARO fuel has been carried out successfully, and design and fabrication technologies of the fuel are recently arrived the final stage of development. The performance of the fuel which has been fabricated in KAERI is confirmed through out-of-pile characterization, and the quality assurance procedure and assessment criteria are described. In order to verify the KAERI fuel, thus, in-pile irradiation test program of the KAERI fuel is scheduled in HANARO. This report summarizes the in-pile testing schedule, design documents of test rods and assemblies, fabrication history and out-of-pile characteristics of test rods, irradiation test condition and power history, post-irradiation examination scheme, linear power generation distribution, and safety analysis results. The design code for HANARO fuel is used to analyze the centerline temperature and swelling of the KAERI fuels. The results show that at 120 kW/m of linear power the maximum centerline temperature is 267 deg C which is much lower than the limitation temperature of 350 deg C, and that the swelling is 9.3 % at 95 at% lower than criterion of 20 %. Therefore, the KAERI fuels of this in-pile irradiation test is assessed to show good performance of integrity and safety in HANARO. 10 tabs., 7 figs., 3 refs. (Author).

  7. Components production and assemble of the irradiation capsule of the Surveillance Program of Materials of the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Medrano, A.

    2009-01-01

    To predict the effects of the neutrons radiation and the thermal environment about the mechanical properties of the reactor vessel materials of the nuclear power plant of Laguna Verde, a surveillance program is implemented according to the outlines settled by Astm E185-02 -Standard practice for design of surveillance programs for light-water moderated nuclear power reactor vessels-. This program includes the installation of three irradiation capsules of similar materials to those of the reactor vessels, these samples are test tubes for mechanical practices of impact and tension. In the National Institute of Nuclear Research and due to the infrastructure as well as of the actual human resources of the Pilot Plant of Nuclear Fuel Assembles Production it was possible to realize the materials rebuilding extracted in 2005 of Unit 2 of nuclear power plant of Laguna Verde as well as the production, assemble and reassignment of the irradiation capsule made in 2006. At the present time the surveillance materials extracted in 2008 of Unit 1 of the nuclear power plant of Laguna Verde are reconstituting and the components are manufactured for the assembles of the irradiation capsule that will be reinstalled in the reactor vessel in 2010. The purpose of the present work is to describe the necessary components as well as its disposition during the assembles of the irradiation capsule for the surveillance program of the reactors vessel of the nuclear power plant of Laguna Verde. (Author)

  8. Potato irradiation technology in Japan

    International Nuclear Information System (INIS)

    Takehisa, M.

    1981-01-01

    After the National research program on potato irradiation, the public consumption of potatoes irradiated to a maximum of 15 krad was authorized by the Ministry of Welfare. Shihoro Agricultural Cooperative Association, one of the largest potato producers in Japan with an annual production of 200,000 tons, intended an application of the irradiation to their potato storage system. This paper describes the technological background of the potato irradiation facility and operational experience. (author)

  9. Selection of irradiator for potato preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kinsara, A R; Melaibari, A G; Abulfaraj, W H; Mamoon, A M; Kamal, S E [Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University P.O.Box 9027, Jeddah-21413, (Saudi Arabia)

    1997-12-31

    A formal decision methodology is a sound approach for assisting in decision making needed for the selection of irradiators for Potato preservation. A formal analysis is preferred over an informal intuitive analysis which has limitations. This will focus on substantial issues and provide the basis for a compromise between conflicting objectives. All critical issues in selection of irradiators for Potato preservation can be addressed within the decision analysis framework. Of special significance is the treatment of the uncertainly associated with consequences of a decision and the preferences of the experts. A decision theory is employed in providing a strategy for implementation of the irradiator selection for food preservation for Saudi Arabia. To select a suitable decision methodology for the present case, a detailed survey of available decision methods was conducted. These methods have been developed and applied with varying degrees of success to many diverse areas of interest. Based on detailed surveys, the Analytic Hierarchy process (AHP) was selected to evaluate the various irradiators for Potato irradiation. These are electron accelerators, X-ray irradiators, and gamma irradiators. The purpose was to determine the optimal. The set of factors impacting irradiator selection were developed and defined to provide comprehensive and realistic variables that judge the represented irradiator alternatives. The factors developed are economic considerations, technical considerations, safety aspects, and compatibility with local environment. The AHP computer program was developed to computerize the tedious complicated computations towards implementing the AHP systematic procedures to solve the present problem. The program was developed using FOXPRO. Based upon the available data, and employing the APH computer program, the results show superiority of {sup 60} Co gamma-ray irradiator over other irradiators for saudi arabia`s present circumstances. 2 figs.,7 tabs.

  10. Irradiation techniques at BR2 reactor

    International Nuclear Information System (INIS)

    Hebel, W.

    1978-01-01

    Since 1963 the material testing reactor BR2 at Mol is operated for the realisation of numerous research programs and experiments on the behavior of materials under nuclear radiation and in particular under intensive neutron exposure. During this period special irradiation techniques and experimental devices were developed according to the desiderata of the different experiments and to the irradiation possibilities offered at BR2. The design and the operating characteristics of quite a number of those irradiation rigs of proven reliability may be used or can be made available for new irradiation experiments. A brief description is given of some typical irradiation devices designed and constructed by CEN/SCK, Technology and Energy Dpt. They are compiled according to their main use for the different research and development programs realized at BR2. Their eventual application however for different objectives could be possible. A final chapter summarizes the principal irradiation conditions offered by BR2 reactor. (author)

  11. Thermal, physiological strain index and perceptual responses in Iranian Muslim women under Thermal Condition in order to Guide in Prevention of Heat Stress

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2014-09-01

    Full Text Available Heat stress risk assessment, as a harmful agent at workplace, is essential for controlling heat strain. The purpose of this study was relation between physiological and perceptual heat strain responses in Iranian veiled women under laboratory thermal conditions. This experimental study was carried out on 36 healthy females (age 22.3 ± 2.0 yr, height 162.76±5. 57cm, weight 55.82 ± 9.27kg in sitting state under thermal conditions (27 - 38° C in the hot-dry climatic condition for 120 min. In order to calculate the physiological strain index (PSI, oral temperature and heart rate were measured every 5 min. Physiological factors, and Heat Strain Score Index (HSSI questionnaires are simultaneous measurements taken at any 5 min during the exposure and physiological factors, and Heat Strain Score Index (HSSI questionnaires are the initial measurements. The data were analyzed using correlation and line regression by test spss16. The results showed that the average heart rate and oral temperature at resting and sitting were between 83.06 ±9.41bpm, 87.91 ±7.87 bpm and 36.7° C, 37. 1° C respectively. Also, the results have revealed a direct and significant and direct correlation among HSSI with WBGT (R2 = 0.97, P< 0.001, PSI (R2 = 0.96, P< 0.001, oral temperature (R2 = 0.96, P< 0.001 and heart rate (R2 = 0.62, P< 0.01 indices. The results have shown that simultaneously with the increase in valid indices of heat stress evaluation such as WBGT and PSI indices, the amount of HSSI index has also increased with high power. Therefore, it can be conclude that when there is no access to a reliable heat stress method such as WBGT or PSI indices, HSSI index, an objective and subjective heat strain method, can be used as a simple, fast and inexpensive method for evaluating the heat strain in women.

  12. Consumer acceptance of irradiated poultry

    International Nuclear Information System (INIS)

    Hashim, I.B.; Resurreccion, A.V.A.; McWatters, K.H.

    1995-01-01

    A simulated supermarket setting (SSS) test was conducted to determine whether consumers (n = 126) would purchase irradiated poultry products, and the effects of marketing strategies on consumer purchase of irradiated poultry products. Consumer preference for irradiated poultry was likewise determined using a home-use test. A slide program was the most effective educational strategy in changing consumers' purchase behavior. The number of participants who purchased irradiated boneless, skinless breasts and irradiated thighs after the educational program increased significantly from 59.5 and 61.9% to 83.3 and 85.7% for the breasts and thighs, respectively. Using a label or poster did not increase the number of participants who bought irradiated poultry products. About 84% of the participants consider it either 'somewhat necessary' or 'very necessary' to irradiate raw chicken and would like all chicken that was served in restaurants or fast food places to be irradiated. Fifty-eight percent of the participants would always buy irradiated chicken if available, and an additional 27% would buy it sometimes. About 44% of the participants were willing to pay the same price for irradiated chicken as for nonirradiated. About 42% of participants were willing to pay 5% or more than what they were currently paying for nonirradiated chicken. Seventy-three percent or more of consumers who participated in the home-use test (n = 74) gave the color, appearance, and aroma of the raw poultry products a minimum rating of 7 (= like moderately). After consumers participated in a home-use test, 84 and 88% selected irradiated thighs and breasts, respectively, over nonirradiated in a second SSS test

  13. Consumer acceptance of irradiated poultry.

    Science.gov (United States)

    Hashim, I B; Resurreccion, A V; McWatters, K H

    1995-08-01

    A simulated supermarket setting (SSS) test was conducted to determine whether consumers (n = 126) would purchase irradiated poultry products, and the effects of marketing strategies on consumer purchase of irradiated poultry products. Consumer preference for irradiated poultry was likewise determined using a home-use test. A slide program was the most effective educational strategy in changing consumers' purchase behavior. The number of participants who purchased irradiated boneless, skinless breasts and irradiated thighs after the educational program increased significantly from 59.5 and 61.9% to 83.3 and 85.7% for the breasts and thighs, respectively. Using a label or poster did not increase the number of participants who bought irradiated poultry products. About 84% of the participants consider it either "somewhat necessary" or "very necessary" to irradiate raw chicken and would like all chicken that was served in restaurants or fast food places to be irradiated. Fifty-eight percent of the participants would always buy irradiated chicken if available, and an additional 27% would buy it sometimes. About 44% of the participants were willing to pay the same price for irradiated chicken as for nonirradiated. About 42% of participants were willing to pay 5% or more than what they were currently paying for nonirradiated chicken. Seventy-three percent or more of consumers who participated in the home-use test (n = 74) gave the color, appearance, and aroma of the raw poultry products a minimum rating of 7 (= like moderately). After consumers participated in a home-use test, 84 and 88% selected irradiated thighs and breasts, respectively, over nonirradiated in a second SSS test.

  14. Progress report on the accelerator production of tritium materials irradiation program

    International Nuclear Information System (INIS)

    Maloy, S.A.; Sommer, W.F.; Brown, R.D.; Roberts, J.E.

    1997-01-01

    The Accelerator Production of Tritium (APT) project is developing an accelerator and a spoliation neutron source capable of producing tritium through neutron capture on He-3. A high atomic weight target is used to produce neutrons that are then multiplied and moderated in a blanket prior to capture. Materials used in the target and blanket region of an APT facility will be subjected to several different and mixed particle radiation environments; high energy protons (1-2 GeV), protons in the 20 MeV range, high energy neutrons, and low energy neutrons, depending on position in the target and blanket. Flux levels exceed 10 14 /cm 2 s in some areas. The APT project is sponsoring an irradiation damage effects program that will generate the first data-base for materials exposed to high energy particles typical of spallation neutron sources. The program includes a number of candidate materials in small specimen and model component form and uses the Los Alamos Spallation Radiation Effects Facility (LASREF) at the 800 MeV, Los Alamos Neutron Science Center (LANSCE) accelerator

  15. Irradiation growth of Zircaloy (LWBR) development program

    International Nuclear Information System (INIS)

    Williard, H.J.

    1984-01-01

    Irradiation growth of recrystallized annealed (RXA) Zircaloy is divided into four stages and a model is presented to account for each stage. Stage I is a short time, low-strain transient caused by the accumulation of point defects, small interstitial loops, and vacancy clusters. Stage II is a quasi-steady-state region of relatively low strain rate during which the loops grow and intrinsic dislocations climb. Stage III is a transient during which the strain rate increases due to the production and motion of irradiation-induced dislocation lines. Stage IV is a high-strain-rate, steady-state region during which nonrecoverable strain is caused predominantly by glide of the irradiationinduced dislocations. The proposed model is based on two new mechanisms: (1) direct production of an interstitial dislocation loop accompanied by a vacancy cluster in the primary damage event, and (2) production of dislocations due to the activation of Frank-Read sources by internal stresses caused by interaction of the loops with themselves and with intrinsic (cold work) dislocations. Nonconservative, recoverable strain is due to climb of all dislocations, whereas conservative, nonrecoverable strain is caused by glide of irradiation-induced and intrinsic dislocations under the action of the internal stress. The conservative strain follows a (1-3f) texture dependence

  16. 8 x 8 fuel surveillance program at Monticello site - end of Cycle 6: fourth post-irradiation inspection, October 1978

    International Nuclear Information System (INIS)

    Skarshaug, N.H.

    1980-09-01

    A fuel surveillance program for a lead 8 x 8 reload fuel assembly was implemented at the Monticello Nuclear Power Station in May 1974 prior to Reactor Cycle 3. Inspection results of the fourth post-irradiation inspection performed on this surveillance fuel assembly in October 1978 at EOC 6, after a bundle average exposure of 25,900 MWd/MT, are presented. The measurement techniques, results obtained and comparisons to previous measurements are discussed. The bundle and individual rods examined exhibited characteristics of normal operation and were approved for continued irradiation during Monticello operating Cycle 7

  17. Results of the FAO/IAEA program on 'Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly'

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1998-01-01

    The FAO/IAEA Program on 'Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' has been implemented in 1992, and lasted up to the end of 1997. The Coordination Research Program put emphasis on the following aspects of research: (1) Determine criteria, e.g. inability to reproduce, for accepting irradiation as a quarantine treatment against quarantine pests; (2) Determine the effete of irradiation on the most resistant stage of these quarantine pests at the time of treatment; (3) Evaluate the quality of agricultural commodities irradiated at 2-3 times the dose(s) required to meet quarantine requirements; (4) Develop method(s) for identifying insects/other pests which were subjected to irradiation at a dose required for quarantine purposes. The followings are the most important achievements of the CRP: Generic dose for sterilization of both males and females of spider mites (Tetranychidae) was determined to be 320 Gy. With regard to insects other than fruit flies, it appears that a minimum dose of 300 Gy would cause either no adult emergence or sterility of most species of insects studied. Radiation doses required to cause complete mortality to various infective stages of plant parasitic nematodes is higher than 6 kGy. The minimum dose required to prevent gall development and reproduction of these nematodes is largely over 2 kGy, which is too high for most fresh plant materials. Thus, irradiation should be considered as an alternative to methyl bromide fumigation to control nematodes in non-perishable materials. While many fresh fruits and vegetables could tolerate radiation doses required for quarantine purposes, the response of various types of cut-flowers to irradiation varied widely. Some cut-flowers and ornamentals such as ferns, phoenix leaf, narcissus, tulips, carnation or red ginger were tolerant to radiation up to 700 Gy and more, others such as chrysanthemum, rose, lily, anthurium, dendrobium, gerbera did not tolerate

  18. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    Exarhos, C.A.; Van Swam, L.F.; Wahlquist, F.P.

    1981-12-01

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  19. Radiation-disorder and aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1992-01-01

    This final technical report documents the accomplishments of the program of research entitled ''Radiation Disorder and Aperiodicity in Irradiated Ceramics'' for the period June 22, 1989--June 21, 1992. This research forms the latest part on an on-going program, begun at MIT in 1983 under DOE support, which has had as its objectives investigation of the responses in radiation environments of ceramics heavily-irradiated with electrons, neutrons and ions, with potential applications to fusion energy technology and high-level nuclear waste storage. Materials investigated have included SiO 2 , MgAl 2 O 4 , Al 23 O 27 N 5 , SiC, BeO, LiAlO 2 , Li 2 ZrO 3 , CaTiO 3 KTaO 3 and Ca(Zr, Pu)Ti 2 O 7 . The program initially proposed for 1989 had as its major objectives two main thrusts: (1) research on defect aggregation in irradiated non-oxide ceramics, and (2) research on irradiation-induced amorphization of network silicas and phosphates

  20. Nondestructive post-irradiation examination of Loop-1, S1 and B1 rods

    International Nuclear Information System (INIS)

    Bratton, R.L.

    1997-05-01

    As a part of the Pacific Northwest National Laboratory's Tritium Target Development Program, eleven tritium target rods were irradiated in the Advanced Test Reactor located at the Idaho National Engineering and Environmental Laboratory during 1991. Both nondestructive and destructive post-irradiation examination on all eleven rods was planned under the Tritium Target Development Program. Funding for the program was reduced in 1991 resulting in the early removal of the program experiments before reaching their irradiation goals. Post-irradiation examination was only performed on one of the irradiated rods at the Pacific Northwest National Laboratory before the program was terminated in 1992. On December 6, 1995, the Secretary of Energy announced the pursuit of the Commercial Light-Water Reactor option for producing tritium establishing the Tritium Target Qualification Program at the Pacific Northwest National Laboratory. This program decided to pursue nondestructive and destructive post-irradiation examination of the ten remaining rods from the previous program. The ten rods comprise three experiments. The Loop-1 experiment irradiated eight target rods in a loop configuration for 217 irradiation days. The other two rods were irradiated in two separate irradiation experiments, designated as S1 and B1 for 143 effective full-power days, but at different power levels. After the ten rods were transferred from the ATR Canal to the Hot Fuels Examination Facility, the following examinations were performed: (1) visual examination and photography; (2) neutron radiography; (3) axial gamma scanning; (4) contact profilometry measurement; (5) bow and length measurements; (6) rod puncture and plenum gas analysis/measurement of plenum gas quantity; (7) void volume determination; and (8) internal pressure determination. This report presents the data collected during these examinations

  1. Schedule and status of irradiation experiments

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P.

    1998-01-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has four irradiation experiments in reactor, and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments

  2. WHO wants more use of irradiated food, calls for education programs

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Short note. The World Health Organization (WHO) has taken aim at critics of irradiated food, claiming that the process has the potential to reduce the incidence of foodborne diseases such as salmonellosis, to cut postharvest food losses and to provide a wider variety of foods for consumers. 'The unwarranted rejection of this process, often based on lack of understanding of what food irradiation entails, may hamper its use in those countries which may benefit most', Dr. Jean-Paul Jardel, WHO's assistant director-general, argued following a recent international conference on the subject. Critics, including Canadians, has opposed food irradiation for years, claiming that more needs to be known about its effects. WHO said the 'vast majority' of the 54 national delegations at the conference supported use of the technology on foods ranging from grain and potatoes to poultry, tropical fruit and strawberries. WHO wants governments to educate the public on the benefits and safety of irradiation because 'strange as it may seem, at least to the scientific community, this misconception (that irradiated food is radioactive) proves to be a stumbling block in general public acceptance of irradiated food'

  3. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  4. Feasibility and preliminary results of intensive chemotherapy and extensive irradiation in selected patients with limited small-cell lung carcinoma--results of three consecutive phase II programs

    International Nuclear Information System (INIS)

    Tourani, J.M.; Jaillon-Abraham, C.; Coscas, Y.; Dabouis, G.; Andrieu, J.M.

    2000-01-01

    We report the results of three consecutive programs combining initial intensive chemotherapy and radiotherapy in the treatment of patients with limited small-cell lung cancer (SCLC). The objective was to test the feasibility and the effect of high-dose chemotherapy and three thoracic irradiation programs on survival and patterns of relapse. Forty-two patients with limited SCLC were enrolled. All patients received high-dose chemotherapy (vindesine, etoposide, doxorubicin, cisplatin and cyclophosphamide or ifosfamide). In the SC 84 program, chest and brain radiotherapy was delivered during each course of chemotherapy, with a complementary irradiation after chemotherapy. In the SC 86 and SC 92 programs, patients received chemotherapy followed by thoracic irradiation and prophylactic brain and spinal axis radiotherapy. At the end of treatment, 40 patients (95%) were in complete response. During chemotherapy, high levels of toxicity were noted. All patients had grade IV hematological toxicities. The extra-hematological toxicities were digestive (grade III: 21%; grade IV: 7%) and hepatic (grades III and IV: 14%). During irradiation, patients presented digestive, pulmonary and hematological toxicities. Five patients developed late toxicities and a second malignancy was observed in 4 patients. The 2- and 5-year survival rates for all patients were 51% and 27%, respectively. Despite the marked toxicity of the initial intensive chemotherapy, the treatments are tolerable and effective in the control of extra-thoracic micrometastases, whereas they are less effective for thoracic primary tumor

  5. IAEA and food irradiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1995-01-01

    IAEA was founded in 1957. 122 countries take part in it. It is operated with the yearly ordinary budget of about 20 billion yen and the technical cooperation budget of about 6 billion yen and by 2200 personnel. Its two important roles are the promotion of the peaceful utilization of atomic energy and the prevention of nuclear proliferation. The activities of IAEA are shown. The cooperation with developing countries and the international research cooperation program are the important activities. The securing of foods is an urgent subject, and the utilization of radiation and isotopes has been promoted, aiming at sustaining agriculture. The necessity of food irradiation is explained, and at present, commercial food irradiation is carried out in 28 countries including Japan. The irradiation less than 10 kGy does not cause poisonous effect in any food, according to JECFI. The new international agreement is expected to be useful for promoting the international trade of irradiated foods. The international cooperation for the spread of food irradiation and the public acceptance of food irradiation are reported. (K.I.)

  6. Irradiation program of slightly enriched fuel elements at the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Casario, J.A.; Cesario, R.H.; Perez, R.A.; Sidelnik, J.I.

    1987-01-01

    An irradiation program of fuel elements with slightly enriched uranium is implemented, tending to the homogenization of core at Atucha I nuclear power plant. The main benefits of the enrichment program are: a) to extend the average discharge burnup of fuel elements, reducing the number of elements used to generate the same amount of energy. This implies a smaller annual consumption of elements and consequently the reduction of transport and replacement operations and of the storage pool systems as well as that of radioactive wastes; b) the saving of uranium and structural materials (Zircaloy and others). In the initial stage of program an homogeneous core enrichment of 0.85% by weight of U-235 is anticipated. The average discharge burnup of fuel elements, as estimated by previous studies, is approximately 11.6 MW d/kg U. The annual consumption of fuel elements is reduced from 396 of natural uranium to 205, with a load factor of 0.85. It is intended to reach the next equilibrium steps with an enrichment of 1.00 and 1.20% in U-235. (Author)

  7. Irradiation of UO2

    International Nuclear Information System (INIS)

    Stevanovic, M.

    1965-10-01

    Based on the review of the available literature concerned with UO 2 irradiation, this paper describes and explains the phenomena initiated by irradiation of the UO 2 fuel in a reactor dependent on the burnup level and temperature. A comprehensive review of UO 2 radiation damage studies is given as a broad research program. This part includes the abilities of our reactor as well as needed elements for such study. The third part includes the definitions of the specific power, burnup level and temperature in the center of the fuel element needed for planning and performing the irradiation. Methods for calculating these parameters are included [sr

  8. [Alaskan commodities irradiation project: An options analysis study

    International Nuclear Information System (INIS)

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.

    1989-09-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology

  9. Correlations between fuel pins irradiated in fast and thermal fluxes using the frump fuel pin modelling program

    International Nuclear Information System (INIS)

    Hayns, M.R.; Adam, J.

    1975-08-01

    There is no experimental facilities in which a fuel pin can be irradiated in a fast environment under well defined conditions of over power or flow run down. Consequently most of the infor mation which is being accumulated on the behaviour of fuel pins under severe conditions is obtained from either capsule or loop rigs in thermal reactors. It is the purpose of this paper to highlight the differences between the behaviour of fuel pins irradiated in a thermal flux and a fast flux. A typical set of conditions is taken from an overpower experiment in a thermal flux and the behaviour of the system is analysed using the fuel modelling program FRUMP. A second numerical experiment is then performed in which the same conditions prevail, except that a fast flux is assumed, the criterion for comparison being that the total power input to the system is the same in both cases. From the many possible correlations which result from such an exercise the fuel tempreature has been selected to highlight various important features of the two irradiations. It is demonstrated that the flux depression can cause differences in the pin behaviour, even to altering the order of events in a transient. For example fuel melting will occur at different times and at different positions in the fuel in the two cases. It is concluded that the techniques of fuel modelling, as typified in the program FRUMP can provide a very useful tool indeed for the analysis of such experiments and for guiding the establishment of the appropriate correlations for the extrapolation to the fast flux case. (author)

  10. Market Trials of Irradiated Spices

    International Nuclear Information System (INIS)

    Charoen, Saovapong; Eemsiri, Jaruratana; Sajjabut, Surasak

    2009-07-01

    Full text: The objectives of the experiment were to disseminate irradiated retail foods to the domestic publics and to test consumer acceptance on irradiated ground chilli and ground pepper. Market trials of irradiated ground chilli and ground pepper were carried out at 2 local markets and 4 in Bangkok and Nontaburi in 2005-2007. Before the start of the experiment, processing room, gamma irradiation room and labels of the products were approved by Food and Drug Administration, Thailand. 50 grams of irradiated products were packaged in plastic bags for the market trials. 688 and 738 bags of ground chilli and ground pepper were sold, respectively. Questionnaires distributed with the products were commented by 59 consumers and statistically analyzed by experimental data pass program. 88.1 and 91.4 percents of the consumers were satisfied with the quality and the price, respectively. 79.7% of the consumers chose to buy irradiated ground chilli and ground pepper because they believed that the quality of irradiated products were better than that of non-irradiated ones. 91.5% of the consumers would certainly buy irradiated chilli and pepper again. Through these market trials, it was found that all of the products were sold out and the majority of the consumers who returned the questionnaires was satisfied with the irradiated ground chilli and ground pepper and also had good attitude toward irradiated foods

  11. Irradiated dynamic fracture toughness of ASTM A533, Grade B, Class 1 steel plate and submerged arc weldment. Heavy section steel technology program technical report No. 41

    International Nuclear Information System (INIS)

    Davidson, J.A.; Ceschini, L.J.; Shogan, R.P.; Rao, G.V.

    1976-10-01

    As a result of the Heavy Section Steel Technology Program (HSST), sponsored by the Nuclear Regulatory Commission, Westinghouse Electric Corporation conducted dynamic fracture toughness tests on irradiated HSST Plate 02 and submerged arc weldment material. Testing performed at the Westinghouse Research and Development Laboratory in Pittsburgh, Pennsylvania, included 0.394T compact tension, 1.9T compact tension, and 4T compact tension specimens. This data showed that, in the transition region, dynamic test procedures resulted in lower (compared to static) fracture toughness results, and that weak direction (WR) oriented specimen data were lower than the strong direction (RW) oriented specimen results. Irradiated lower-bound fracture toughness results of the HSST Program material were well above the adjusted ASME Section III K/sub IR/ curve. An irradiated and nonirradiated 4T-CT specimen was tested during a fracture toughness test as a preliminary study to determine the effect of irradiation on the acoustic emission-stress intensity factor relation in pressure vessel grade steel. The results indicated higher levels of acoustic emission activity from the irradiated sample as compared to the unirradiated one at a given stress intensity factor (K) level

  12. AGR-2 Irradiation Test Final As-Run Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) program. The objectives of the AGR-2 experiment are to: 1. Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. 2. Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. 3. Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tristructural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S.-produced fuel.

  13. AGR-2 Irradiation Test Final As-Run Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel.

  14. Byproducts Utilization Program: Sewage Sludge Irradiation Project. Progress report, July-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Engineering support for a demonstration-scale irradiator design included assisting the City of Albuquerque in preparing a comprehensive site plan for their proposed sludge handling and treatment facilities. The solar sludge dryer has been delivered to SNLA. A preliminary sludge drying experiment indicated the importance of optimizing stirring and air flow. Installation of instrumentation and mechanical equipment continued. The Sandia Irradiator for Dried Sewage Solids (SIDSS) was used to irradiate 23 tons of dried, digested sewage sludge for the New Mexico State University (NMSU) Department of Crop and Soil Sciences. Gamma Irradiation Facility (GIF) operations included irradiation of ground pork for Toxoplasma gondii inactivation experiments, irradiation of surgical supplies and soil samples. Beneficial Uses Shipping Systems (BUSS) cask activities included near completion of the two full-scale cask bodies. Work continued on the Cask Safety Analysis Report (SAR) including additional analyses to reconfigure the six strontium fluoride capsules and/or reduce the number of capsules accommodated. NMSU has indicated no regrowth of salmonellae occurred in the irradiated sludge stockpile, while salmonellae did regrow in the unirradiated stockpile. Analyses of raw and digested sewage sludge from the Albuquerque Waste Water Treatment Plant showed levels of Yersinia enterocolitica (a human pathogen of emerging significance) to be below detection limits.

  15. Byproducts Utilization Program: Sewage Sludge Irradiation Project. Progress report, July-December 1983

    International Nuclear Information System (INIS)

    1984-12-01

    Engineering support for a demonstration-scale irradiator design included assisting the City of Albuquerque in preparing a comprehensive site plan for their proposed sludge handling and treatment facilities. The solar sludge dryer has been delivered to SNLA. A preliminary sludge drying experiment indicated the importance of optimizing stirring and air flow. Installation of instrumentation and mechanical equipment continued. The Sandia Irradiator for Dried Sewage Solids (SIDSS) was used to irradiate 23 tons of dried, digested sewage sludge for the New Mexico State University (NMSU) Department of Crop and Soil Sciences. Gamma Irradiation Facility (GIF) operations included irradiation of ground pork for Toxoplasma gondii inactivation experiments, irradiation of surgical supplies and soil samples. Beneficial Uses Shipping Systems (BUSS) cask activities included near completion of the two full-scale cask bodies. Work continued on the Cask Safety Analysis Report (SAR) including additional analyses to reconfigure the six strontium fluoride capsules and/or reduce the number of capsules accommodated. NMSU has indicated no regrowth of salmonellae occurred in the irradiated sludge stockpile, while salmonellae did regrow in the unirradiated stockpile. Analyses of raw and digested sewage sludge from the Albuquerque Waste Water Treatment Plant showed levels of Yersinia enterocolitica (a human pathogen of emerging significance) to be below detection limits

  16. Anticipated consumer reaction to irradiated foods

    International Nuclear Information System (INIS)

    Young, M.

    1983-01-01

    The reaction on first hearing of food irradiation is horror, revulsion, and disbelief that we could seriously anticipate such a thing. Ignorance coupled with fear of anything to do with the nuclear industry is the reason for such extreme reaction. Before anyone rushes into marketing irradiated foods, a lot of careful preparation must be done. A consumer education program is essential. The consumers must be told why it is proposed to irradiate food, what benefits it will bring to the public. Enough need will have to be demonstrated to overcome the supposed risk factor. Symbol on all irradiated foods must not be used to alert or alarm the consumer but rather as a piece of information. It will be necessary to be ever vigilant, to keep up the diligent training of food irradiators, food handlers and food inspectors. Irradiation is not a substitute for good manufacturing practice. So by using a different name or symbol, irradiated foods will soon be a part of our lives

  17. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ploger, Scott A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.

  18. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A series of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).

  19. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    International Nuclear Information System (INIS)

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental measurements. Temperature predictions compare favorably to temperature measurements in pressurized water reactor (PWR) and liquid-metal fast breeder reactor (LMFBR) simulated, electrically heated fuel assemblies. Also, temperature comparisons are made on an actual irradiated Fast-Flux Test Facility (FFTF) LMFBR fuel assembly

  20. Presentation of the CPR ISMIR (Insulators: IRradiation Modelling); Presentation du CPR ISMIR (ISolants: modelisation de l'IRradiation)

    Energy Technology Data Exchange (ETDEWEB)

    Lozes, G. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DSOE), 91 - Gif sur Yvette (France)

    2007-07-01

    The CPR ISMIR is a CEA-CNRS program on the behaviour of materials submitted to irradiation; it has been begun to support the applied current research programs on the aging of nuclear fuels, the storage and incineration matrices and the future reactors. Its aim is to contribute to scientifically set up the methods for anticipating the behaviour of ceramic materials under irradiation in using the important development of calculation means. Thus have been developed the basic knowledge and the interactions physics and calculation models at pertinent scales have been elaborated. (O.M.)

  1. RTNS-II irradiations and operations

    International Nuclear Information System (INIS)

    Logan, C.M.; Heikkinen, D.W.

    1982-01-01

    The objectives of this work are operation of RTNS-II (a 14-MeV neutron source facility), machine development, and support of the experimental program that utilizes this facility. Experimenter services include dosimetry handling, scheduling, coordination, and reporting. RTNS-II is dedicated to materials research for the fusion power program. Its primary use is to aid in the development of models of high-energy neutron effects. Such models are needed in interpreting and projecting to the fusion environment engineering data obtained in other neutron spectra. Irradiations were performed for a total of twenty-nine different experimenters during this quarter. A JOEL 200 CX TEM and other post-irradiation test equipment have been installed

  2. User's guide for FREG-3: a computer program to analyze pellet-cladding gap conductance in accordance with fuel-rod irradiation history

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Izumi, Fumio; Fujita, Misao; Ishibashi, Akihiro; Otsubo, Naoaki.

    1976-10-01

    The present report describes user's manual for program FREG-3, and provides a general description of the program and instructions of input/output. FREG-3 estimates the temperature distribution in a fuel rod and the stored energy based on the distribution. The temperature distribution is calculated in accordance with fuel-rod irradiation history. Mechanical properties and models in handling specific problems, such as densification and relocation, are optional in the program. The options are to be given by key word. If appropriate options are selected, the program is used not only as a safety evaluation code, but also as a best evaluation code. (auth.)

  3. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  4. Impact of socioeconomic characteristics on attitudes toward food irradiation

    International Nuclear Information System (INIS)

    Hinson, R.A.; Harrison, R.W.; Andrews, L.

    1998-01-01

    Irradiation of food products is one of several techniques that reduce the risk of food-borne illness. Despite its advantages, the technique has been used sparingly because consumers are wary about this technology. A logit model is used to evaluate the impacts of demographic factors on attitudes toward purchasing foods that have been irradiated and toward paying more for irradiated foods. An important finding of this study is that consumers who are familiar with irradiation are significantly more likely to buy and pay more for irradiated products than those who have never heard of irradiation. This implies that educational programs aimed at informing consumers about the benefits of irradiation can work

  5. Status of irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Centre was organised to development the new irradiation technology for the application at JMTR re-operation. The new irradiation engineering building was remoulded from the old RI development building, and was started to use from the end of September, 2008. Advanced in-situ instrumentation technology(high temperature multi-paired thermocouple, ceramic sensor,application of optical measurement), 99 Mo production technology by new Mo solution irradiation method,recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian countries. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi-paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  6. Status of Irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Center was organized to development the new irradiation technology for the application at JMTR re operation. The new irradiation engineering building was remodeled from the old RI development building, and was started to use from the end of September, 2008. Advanced in situ instrumentation technology (high temperature multi paired thermocouple, ceramic sensor, application of optical measurement), 99M o production technology by new Mo solution irradiation method, recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian counties. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  7. Saturation behavior of irradiation hardening in F82H irradiated in the HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Shiba, K.; Tanigawa, H.; Ando, M. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Klueh, R.L. [Oak Ridge National Laboratory, TN (United States); Stoller, R. [ORNL - Oak Ridge National Laboratory, Materials Science and Technology Div., Oak Ridge, AK TN (United States)

    2007-07-01

    Full text of publication follows: Post irradiation tensile tests on reduced activation ferritic/martensitic steel, F82H have been conducted over the past two decades using Japan Materials Testing Reactor (JMTR) of JAEA, and Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, USA, under Japan/US collaboration programs. According to these results, F82H does not demonstrate irradiation hardening above 673 K up to 60 dpa. The current study has been concentrated on hardening behavior at temperature around 573 K. A series of low temperature irradiation experiment has been conducted at the HFIR under the international collaborative research between JAEA/US-DOE. In this collaboration, the irradiation condition is precisely controlled by the well matured capsule designing and instrumentation. This paper summarizes recent results of the irradiation experiments focused on F82H and its modified steels compared with the irradiation properties database on F82H. Post irradiation tensile tests have been conducted on the F82H and its modified steels irradiated at 573 K and the dose level was up to 25 dpa. According to these results, irradiation hardening of F82H is saturated by 9 dpa and the as-irradiated 0.2 % proof stress is less than 1 GPa at ambient temperature. The deterioration of total elongation was also saturated by 9 dpa irradiation. The ductility of some modified steels which showed larger total elongation than that of F82H before irradiation become the same level as that of standard F82H steel after irradiation, even though its magnitude of irradiation hardening is smaller than that of F82H. This suggests that the more ductile steel demonstrates the more ductility loss at this temperature, regardless to the hardening level. The difference in ductility loss behavior between various tensile specimens will be discussed as the ductility could depend on the specimen dimension. (authors)

  8. Microstructure and elemental distribution of americium containing MOX fuel under the short term irradiation tests

    International Nuclear Information System (INIS)

    Tanaka, Kosuke; Hirosawa, Takashi; Obayashi, Hiroshi; Koyama, Shin Ichi; Yoshimochi, Hiroshi; Tanaka, Kenya

    2008-01-01

    In order to investigate the effect of americium addition to MOX fuels on the irradiation behavior, the 'Am-1' program is being conducted in JAEA. The Am-1 program consists of two short term irradiation tests of 10-minute and 24 hour irradiations and a steady-state irradiation test. The short-term irradiation tests were successfully completed and the post irradiation examinations (PIEs) are in progress. The PIEs for Am-containing MOX fuels focused on the microstructural evolution and redistribution behavior of Am at the initial stage of irradiation and the results to date are reported

  9. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  10. Behaviour of irradiated uranium silicide fuel revisited

    International Nuclear Information System (INIS)

    Finlay, M. Ross; Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    2002-01-01

    Irradiated U 3 Si 2 dispersion fuels demonstrate very low levels of swelling, even at extremely high burn-up. This behaviour is attributed to the stability of fission gas bubbles that develop during irradiation. The bubbles remain uniformly distributed throughout the fuel and show no obvious signs of coalescence. Close examination of high burn-up samples during the U 3 Si 2 qualification program revealed a bimodal distribution of fission gas bubbles. Those observations suggested that an underlying microstructure was responsible for the behaviour. An irradiation induced recrystallisation model was developed that relied on the presence of sufficient grain boundary surface to trap and pin fission gas bubbles and prevent coalescence. However, more recent work has revealed that the U 3 Si 2 becomes amorphous almost instantaneously upon irradiation. Consequently, the recrystallisation model does not adequately explain the nucleation and growth of fission gas bubbles in U 3 Si 2 . Whilst it appears to work well within the range of measured data, it cannot be relied on to extrapolate beyond that range since it is not mechanistically valid. A review of the mini-plates irradiated in the Oak Ridge Research Reactor from the U 3 Si 2 qualification program has been performed. This has yielded a new understanding of U 3 Si 2 behaviour under irradiation. (author)

  11. Consumer acceptance of irradiated food: theory and reality

    International Nuclear Information System (INIS)

    Bruhn, Christine M.

    1998-01-01

    For years most consumers have expressed less concern about food irradiation than other food processing technologies. Attitude studies have demonstrated that when given science-based information, from 60% to 90% of consumers prefer the advantages irradiation processing provides. When information is accompanied by samples, acceptance may increase to 99%. Information on irradiation should include product benefits, safety and wholesomeness, address environmental safety issues, and include endorsements by recognized health authorities. Educational and marketing programs should now be directed toward retailers and processors. Given the opportunity, consumers will buy high quality, safety-enhanced irradiated food

  12. Integrity Assessment of HANARO Irradiation Capsule for Long-Term Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee Nam; Cho, Man Soon; Yang, Sung Woo; Shin, Yoon Taek; Park, Seng Jae; Yang, Tae Ho; Jun, Byung Hyuk; Kim, Myong Seop [KAERI, Daejeon (Korea, Republic of); Hong, Sang Hyun [Chungnam University, Daejeon (Korea, Republic of)

    2016-05-15

    The capsule technology was basically developed for irradiation testing under a commercial reactor operation environment. Most irradiation testing using capsules has been performed at around 300 .deg. C within four reactor operation cycles (about 100 days equivalent to 1.5 dpa (displacement for atom)) at HANARO. Based on the accumulated experience as well as the sophisticated requirements of users, HANARO has recently been required to support national R and D projects requiring much higher neutron fluence. To scope the user requirements for higher neutron irradiation fluence, several efforts using an instrumented capsule have been applied at HANARO. In this paper, the applied stresses on the capsule are estimated because the capsule was suspected to be susceptible to fatigue failure during irradiation testing. In addition, the on-going design improvements of the irradiation capsule for higher neutron irradiation fluence at HANARO are described. The applied stresses on the rod tip were analyzed using the ANSYS program. The applied stresses on the rod tip can be classified into stresses by the designed bottom spring, by the upward flowing coolant, by the capsule vibration, and by the welding residual stress. The maximal stresses due to the first three factors were estimated as 5.4 MPa, 132.9 MPa, and 161 MPa, respectively. These stresses do not exceed the known fatigue strength of stainless steels (∼300 MPa). Residual stress by welding is another possible stress and it is known to occur at up to about 300 MPa.

  13. Effect of telecobalt irradiation on the function of implantable pacemaker

    International Nuclear Information System (INIS)

    Toyoda, Michiaki

    1986-01-01

    In patients implanted with a pacemaker, radiotherapy may be chosen as the treatment when malignant tumor is complicated. Therefore, on the assumption that the pacemaker apparatus is exposed to X-ray, 21 lithium cells used for CMOS or TTL circuit were collected before expiration date and irradiated with 60 Co. The pacemaker used were 10 apparatuses of unprogrammed model VVI, 9 apparatuses of programmed model VVI and 2 apparatuses programmed model DVI. Irradiation was done up to 1,000 rads in dividing doses or at 1,000 rads as a single dose. Observations were made for effects on intervals, amplitude and wave shape of stimula to pacemaker, power, sensitivity, refractory phase, and program functions. In conclusion, it was found that pacemaker is sure to be affected considerably for various functions, although no functional arrest occurs, under irradiation up to 1,000 rads of 60 Co in dividing dose. When irradiation at 1,000 rads was given as a single dose, dysfunctions of pacemaker developed in some cases indicating that direct irradiation at high doses is contraindicated for pacemakers using much of LSI-CMOS. (author)

  14. [Grain boundary and interface kinetics during ion irradiation

    International Nuclear Information System (INIS)

    Atwater, H.A.

    1991-01-01

    Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications

  15. Paranasal sinus tumors: Results of irradiation alone vs. irradiation and surgery

    International Nuclear Information System (INIS)

    Shumway, R.C.; Chung, C.T.; Sagerman, R.H.; King, G.A.; Dalal, P.S.

    1987-01-01

    Forty patients were treated for carcinoma of the paranasal sinuses from 1965 to 1983. Thirteen patients were treated with an integrated program of surgery plus irradiation; and 27 received irradiation alone. Five-year actuarial survival for patients with maxillary antral tumors was 45% (5 of 11) in the combined treatment group and 21% (3 of 14) in the radiation-only group. Local control for the combined treatment group was 73% (8 of 11), compared to 20% (3 of 15) for the radiation-only group (P > .01). Twenty of 24 patients dying of disease had local recurrence. The technical aspects of treatment and a review of the literature are presented

  16. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  17. Experimental data base for assessment of irradiation induced ageing effects in pre-irradiated RPV materials of German PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hein, H.; Gundermann, A.; Keim, E.; Schnabel, H. [AREVA NP GmbH (Germany); Ganswind, J. [VGB PowerTech e.V (Germany)

    2011-07-01

    The 5 year research program CARISMA which ended in 2008 has produced a data base to characterize the fracture toughness of pre-irradiated original RPV (Reactor Pressure Vessel) materials being representative for all four German PWR construction lines of former Siemens/KWU company. For this purpose tensile, Charpy-V impact, crack initiation and crack arrest tests have been performed for three base materials and four weld metals irradiated to neutron fluences beyond the designed EoL range. RPV steels with optimized chemical composition and with high copper as well as high nickel content were examined in this study. The RTNDT concept and the Master Curve approach were applied for the assessment of the generated data in order to compare both approaches. A further objective was to clarify in which extent crack arrest curves can be generated for irradiated materials and how crack arrest can be integrated into the Master Curve approach. By the ongoing follow-up project CARINA the experimental data base will be extended by additional representative materials irradiated under different conditions and with respect to the accumulated neutron fluences and specific impact parameters such as neutron flux and manufacturing effects. The irradiation data cover also the long term irradiation behavior of the RPV steels concerned. Moreover, most of the irradiated materials were and will be used for microstructural examinations to get a deeper insight in the irradiation embrittlement mechanisms and their causal relationship to the material property changes. By evaluation of the data base the applicability of the Master Curve approach for both crack initiation and arrest was confirmed to a large extent. Moreover, within both research programs progress was made in the development of crack arrest test techniques and in specific issues of RPV integrity assessment. (authors)

  18. The insulation irradiation test program for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    McManamy, T.J.; Kanemoto, G.; Snook, P.

    1990-01-01

    The electrical insulation for the toroidal field coils of the Compact Ignition Tokamak (CIT) is expected to be exposed to radiation doses on the order of 10 10 rad with ∼90% of the dose from neutrons. The coils are cooled to liquid nitrogen temperature and then heated during the pulse to a peak temperature >300 K. In a program to evaluate the effects of radiation exposure on the insulators, three types of boron-free insulation were irradiated at room temperature in the Advanced Technology Reactor (ATR) and tested at the Idaho National Engineering Laboratory. The materials were Spaulrad-S, Shikishima PG5-1, and Shikishima PG3-1. The first two use a bismaleimide resin and the third an aromatic amine hardened epoxy. Spaulrad-S is a two-dimensional (2-D) weave of S-glass, while the others are 3-D weaves of T-glass. Flexure and shear/compression samples were irradiated to approximately 5 x 10 9 rad and 3 x 10 10 rad with 35 to 40% of the total dose from neutrons. The shear/compression samples were tested in pairs by applying an average compression of 345 MPa and then a shear load. After static tests were completed, fatigue testing was done by cycling the shear load for up to 30,000 cycles with a constant compression. The static shear strength of the samples that did not fail was then determined. Generally, shear strengths on the order of 120 MPa were measured. The behavior of the flexure and shear/compression samples was significantly different; large reductions in the flexure strength were observed, while the shear strength stayed the same or increased slightly. The 3-D weave material demonstrated higher strength and significantly less radiation damage than the 2-D material in flexure but performed nearly identically when tested with combined shear and compression. The epoxy system was much more sensitive to fatigue damage than the bismaleimide materials. 9 refs., 5 figs

  19. Irradiation and testing of compact ignition tokamak toroidal field coil insulation materials

    International Nuclear Information System (INIS)

    Kanemoto, G.K.; Sherick, M.J.; Sparks, D.C.

    1990-05-01

    This report documents the results of an irradiation and testing program performed on behalf of Martin Marietta Energy Systems, Inc. in support of the Compact Ignition Tokamak Research and Development program. The purpose of the irradiation and testing program was to determine the effects of neutron and gamma irradiation on the mechanical and electrical properties of candidate toroidal field coil insulation materials. Insulation samples were irradiated in the Advanced Test Reactor (ATR) in a large I-hole. The insulation samples were irradiated within a lead shield to reduce exposure to gamma radiation to better approximate the desired ration of neutron to gamma exposure. Two different exposure levels were specified for the insulation samples. To accomplish this, the samples were encapsulated in two separate aluminum capsules; the capsules positioned at the ATR core mid-plane and at the top of the fueled region to take advantage of the axial cosine distribution of the neutron and gamma flux; and by varying the length of irradiation time of the two capsules. Disassembly of the irradiated capsules and testing of the insulation samples were performed at the Test Reactor Area (TRA) Hot Cell Facilities. Testing of the samples included shear compression static, shear compression fatigue, flexure static, and electrical resistance measurements

  20. Analysis of the behavior under irradiation of high burnup nuclear fuels with the computer programs FRAPCON and FRAPTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Regis; Silva, Antonio Teixeira e, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The objective of this paper is to verify the validity and accuracy of the results provided by computer programs FRAPCON-3.4a and FRAPTRAN-1.4, used in the simulation process of the irradiation behavior of Pressurized Water Reactors (PWR) fuel rods, in steady-state and transient operational conditions at high burnup. To achieve this goal, the results provided by these computer simulations are compared with experimental data available in the database FUMEX III. Through the results, it was found that the computer programs used have a good ability to predict the operational behavior of PWR fuel rods in high burnup steady-state conditions and under the influence of Reactivity Initiated Accident (RIA). (author)

  1. Practical implications for RPV irradiation surveillance under long term operation based on latest research results

    International Nuclear Information System (INIS)

    Hein, H.; Keim, E.; Barthelmes, J.; Schnabel, H.

    2015-01-01

    The international programs CARISMA, CARINA and LONGLIFE belong to the research programs which have been performed during the last 10 years to study the irradiation behavior of RPV steels under long term operation of more than 60 years. Some characteristic but different irradiated RPV steels used in Pressurized Water Reactors have been extensively investigated in each of those three programs. Whereas the CARISMA and CARINA programs were mainly focused on material testing to study the irradiation-induced change of material properties in terms of fracture toughness, the main objective of LONGLIFE was to investigate the change of microstructure with various analysis techniques and to understand the mechanisms behind. In this way it was possible to get a comprehensive material characterization in terms of macro-physical properties and micro-structural features for a number of RPV steels which have been studied at different irradiation levels up to 8*10 19 cm -2 (E > 1 MeV). The essential macro-physical and micro-structural results are summarized, in particular regarding the impact of copper and nickel, and the neutron flux on the irradiation behavior and with respect to possible late irradiation effects under long term operation. Moreover, the change of material properties is linked with embrittlement mechanisms such as formation of element specific precipitations, segregations, and matrix defects. Well-known trend curves are also applied to the measured T 41 and T 0 data in order to assess their appropriateness for long term operation. Based on the comprehensive available data base, practical implications for RPV irradiation surveillance programs under long term operation are highlighted with respect to issues like material specific application of reference temperature concepts, data scattering, prediction of high fluence behavior and how to cope with possible late irradiation effects. Finally, best practices for RPV irradiation surveillance programs are suggested from

  2. SP-100 Fuel Pin Performance: Results from Irradiation Testing

    Science.gov (United States)

    Makenas, Bruce J.; Paxton, Dean M.; Vaidyanathan, Swaminathan; Marietta, Martin; Hoth, Carl W.

    1994-07-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pins are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  3. Irradiated fuel performance evaluation technology development

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Bang, J. G.; Kim, D. H.

    2012-01-01

    Alpha version performance code for dual-cooled annular fuel under steady state operation, so called 'DUOS', has been developed applying performance models and proposed methodology. Furthermore, nonlinear finite element module which could be integrated into transient/accident fuel performance code was also developed and evaluated using commercial FE code. The first/second irradiation and PIE test of annular pellet for dual-cooled annular fuel in the world have been completed. In-pile irradiation test DB of annular pellet up to burnup of 10,000 MWd/MTU through the 1st test was established and cracking behavior of annular pellet and swelling rate at low temperature were studied. To do irradiation test of dual-cooled annular fuel under PWR's simulating steady-state conditions, irradiation test rig/rod design/manufacture of mock-up/performance test have been completed through international collaboration program with Halden reactor project. The irradiation test of large grain pellets has been continued from 2002 to 2011 and completed successfully. Burnup of 70,000 MWd/MTU which is the highest burnup among irradiation test pellets in domestic was achieved

  4. Annealing effects in low upper-shelf welds (series 9)

    International Nuclear Information System (INIS)

    Iskander, S.K.; Nanstad, R.K.

    1995-01-01

    The purpose of the Ninth Irradiation Series is to evaluate the correlation between fracture toughness and CVN impact energy during irradiation, annealing, and reirradiation (IAR). Results of annealing CVN specimens from the low-USE welds from the Midland beltline and nozzle course welds, as well as HSST plate 02 and HSSI weld 73W are given. Also presented is the effect of annealing on the initiation fracture toughness of annealed material from Midland beltline weld and HSST plate 02. The results from capsule 10-5 specimens of weld 73W confirm those previously obtained on the so-called undersize specimens that were irradiated in the Fifth Irradiation Series, namely that the recovery due to annealing at 343 degrees C (650 degrees F) for 1 week is insignificant. The fabrication of major components for the IAR facility for two positions on the east side of the FNR at the University of Michigan has begun. Fabrication of two reusable capsules (one for temperature verification and the other for dosimetry verification), as well as two capsules for IAR, studies is also under way. The design of a reusable capsule capable of reirradiating previously irradiated and annealed CVN and 1T C(T) specimens is also progressing. The data acquisition and control (DAC) instrumentation for the first two IAR facilities is essentially complete and awaiting completion of the IAR facilities and temperature test capsule for checkout and control algorithm development

  5. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  6. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Rela, P.R.; Napolitano, C.M.; Kodama, Y.; Omi, N.M.; Costa, F.E. da; Andradee Silva, L.G. de

    2009-01-01

    The Radiation Technology Center from IPEN-CNEN/SP, Brazil, developed a revolutionary design and national technology, a small-sized continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of a continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotating door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m 2 of floor area, the irradiator design is a product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 PBq. The performed qualification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process qualification. The initial load of the multipurpose irradiator was 3.4 PBq with 13 cobalt-60 sources model C-188, supplied by MDS Nordion - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The polymethylmetacrylate (PMMA) dosimeter system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning with dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma irradiators available on the market. (authors)

  7. Post-irradiation handling and examination at the HFEF complex

    International Nuclear Information System (INIS)

    Bacca, J.P.

    1980-01-01

    The Hot Fuel Examination Facility provides postirradiation handling and examination of fast reactor irradiation experiments and safety tests for the United States Breeder Reactor Program. Nondestructive interim examinations and destructive terminal examinations at HFEF derive data from tests irradiated in the Experimental Breeder Reactor No. II, in the Transient Reactor Test Facility (TREAT), and in the Sodium Loop Safety Facility. Similar support will be provided in the near future for tests irradiated in the Fast Flux Test Facility, and for the larger sodium loops to be irradiated in TREAT

  8. Irradiations at RTNS-II

    International Nuclear Information System (INIS)

    Heikkinen, D.W.; Logan, C.M.

    1982-01-01

    The RTNS-II 14-MeV neutron source facility at Lawrence Livermore National Laboratory is described. Average neutron source parameters are outlined. A brief general description of the irradiation program to the present time is given. A short discussion of guidelines for prospective users is also given

  9. Pathfinder irradiation of advanced fuel (Th/U mixed oxide) in a power reactor

    International Nuclear Information System (INIS)

    Brant Pinheiro, R.

    1993-01-01

    Within the joint Brazilian-German cooperative R and D Program on Thorium Utilization in Pressurized Water Reactors carried out from 1979 to 1988 by Nuclebras/CDTN, KFA-Juelich, Siemens/KWU and NUKEM, a pathfinder irradiation of Th/U mixed oxide fuel in the Angra 1 nuclear power reactor was planned. The objectives of this irradiation testing, the irradiation strategy, the work performed and the status achieved at the end of the joint Program are presented. (author)

  10. Data acquisition system for light-ion irradiation creep experiment

    International Nuclear Information System (INIS)

    Hendrick, P.L.; Whitaker, T.J.

    1979-07-01

    Software was developed for a PDP11V/03-based data acquisition system to support the Light-Ion Irradiation Creep Experiment installed at the University of Washington Tandem Van de Graaff Accelerator. The software consists of a real-time data acquisition and storage program, DAC04, written in assembly language. This program provides for the acquisition of up to 30 chennels at 100 Hz, data averaging before storage on disk, alarming, data table display, and automatic disk switching. All analog data are acquired via an analog-to-digital converter subsystem having a resolution of 14 bits, a maximum throughput of 20 kHz, and an overall system accuracy of +-0.01%. These specifications are considered essential for the long-term measurement of irradiation creep strains and temperatures during the light-ion bombardment of irradiation creep specimens. The software package developed also contains a collection of FORTRAN programs designed to monitor a test while in progress. These programs use the foreground/background feature of the RT-11 operating system. The background programs provide a variety of services. The program, GRAFTR, allows transient data (i.e., prior to averaging) to be graphed at the graphics terminal. The program, GRAFAV, allows averaged data to be read from disk and displayed graphically at the terminal. The program, TYPAV, reads averaged data from disk and displays it at the terminal in tabular form. Other programs allow text messages to be written to disk, read from disk, and allow access to DAC04 initialization data. 5 figures, 18 tables

  11. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.

  12. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    International Nuclear Information System (INIS)

    Calvo, Wilson Aparecido Parejo

    2005-01-01

    The Radiation Technology Center from Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil, developed with a revolutionary design and national technology, a small size continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotate door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m 2 of floor area, the irradiator design is product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 P Bq (1 MCi). The performed quantification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process quantification. The initial load of the multipurpose irradiator was 3.4 P Bq (92.1 k Ci) with 13 cobalt-60 sources model C-188, supplied by MDS Nordion Ion Technologies - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The poly-methylmethacrylate (PMMA) dosimeters system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning to dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma

  13. High-water-base hydraulic fluid-irradiation experiments

    International Nuclear Information System (INIS)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10 6 Gy (10 8 rad) are expected

  14. High-water-base hydraulic fluid-irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10/sup 6/ Gy (10/sup 8/ rad) are expected.

  15. Food Irradiation Technology in the Philippines

    International Nuclear Information System (INIS)

    De Guzman, Zenaida M.

    2015-01-01

    The applications of ionizing radiation for the preservation of food and agricultural products by delaying ripening, destruction of insect pests and pathogenic microorganisms have shown great promise in the country. For more than 30 years, the Philippine Nuclear Research Institute (PNRI) in collaboration with other government and private sectors, has undertaken research and development studies and pilot and semi-commercial scale irradiation of foods. Some of the foods found to be benefit from the use of irradiation technology are mangoes and papayas for disinfestations and delay ripening; onions and garlic for inhibition of sprouting; spices and dehydrated products for reduction of microbial growth and rice and corn for insect and shelf-life extension. Two regulations approved by the Department of Health and the Bureau of Plant Industry are in place creating an enabling environment for food safety and trade of irradiated food. The conduct of awareness program in various parts of the country provided knowledge and information about the food irradiation technology. The Institute has been part of the international projects (IAEA and USDA) on the use of irradiation for sanity and phytosanitary treatment of food. The projects not only established the potential benefits of food irradiation for socio-economic development of the country but also built considerable capacity to properly treat foods. Some of the recent developments in the area of food irradiation include publication of Philippine National Standard (PNS) on Food Irradiation: Code of Good Irradiation Practices which will serve as a guide for stakeholders to irradiate food, a newly-established Electron Beam Facility to demonstrate the potential use of EB and a feasibility study of putting-up a commercial irradiation facility in the country. (author)

  16. Irradiation of parametria by double-wedge

    International Nuclear Information System (INIS)

    Weisz, Csaba; Katona, Ernoe; Zarand, Pal; Polgar, Istvan; Nemeth, Gyoergy

    1984-01-01

    The dose distribution of a cobalt unit modified with a double-wedge as well as its combination with intracavitary radiotherapy was investigated. The measurements were made in both Alderson-Rando and wather phantom by using film densitometry, thermoluminescence dosimetry and ionization chambers. The dose distribution calculated on the basis of the Van de Geij program was in good agreement with the measurements. A homogeneous irradiation of the parametria can be obtained by using a combination of intracavitary and external double-wedge irradiation. (author)

  17. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  18. Irradiation's potential for preserving food

    International Nuclear Information System (INIS)

    Morrison, R.M.

    1986-01-01

    The first experimental studies on the use of ionizing radiation for the preservation of foods were published over thirty years ago (1, 2) . After a period of high expectations and perhaps exaggerated optimism a series of disappointments occurred in the late '60s .The first company specifically created to operate a food irradiation plant, Newfield Products Inc, ran into financial difficulties and had to close its potato irradiation facility in 1966. The irradiator, designed to process 15,000t of potatoes per month for inhibition of sprouting, was in operation during one season only. In 1968 the US Food an Drug Administration refused approval for radiation-sterilisation of ham and withdrew the approval it had granted in 1963 for irradiated bacon. An International Project on the Irradiation of Fruit and Fruit juices, created in 1965 at Seibersdorf, Austria, with the collaboration or 9 countries, ended with general disappointment after three years. The first commercial grain irradiator, built in the Turkish harbour town of Iskenderun by the International Atomic Energy Agency with funds from the United Nations Development Program, never received the necessary operating licence from the Turkish Government and had to be dismantled in 1968. The US Atomic Energy Commission terminated its financial support to all research programmes on food irradiation in 1970. For a number of years, little chance seemed to remain that the new process would ever be practically used. However, research and development work was continued in a number of laboratories all over the world, and it appears that the temporary setbacks now have been overcome. Growing quantities of irradiated foods are being marketed in several countries and indications are that irradiated foods will eventually be as generally accepted as are frozen, dried or heatsterilised foods

  19. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    International Nuclear Information System (INIS)

    Vladimirov, P.; Moeslang, A.

    2004-01-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions

  20. The effects of different source arrangement on the irradiation efficacy

    International Nuclear Information System (INIS)

    Liu Hongyue; Shi Peixin; Lin Yin

    1999-01-01

    The effects of 8 different arrangements with 16 pencil sources on irradiation productivity were studied by using a self-designed computer program. The results showed that the fashion of decentralized arrangement had a higher irradiation productivity than that of centralized in a static and uniform field

  1. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    WINTEC

    sensitivity increases more rapidly under high doses of irra- diation than under low doses of irradiation. The electron beam irradiation effects were simulated and the mecha- nism was discussed. Acknowledgements. The authors gratefully acknowledge financial support from the MOST 973 program, grant no. 2006CB705604 ...

  2. Irradiation of full size UMo plates

    International Nuclear Information System (INIS)

    Vacelet, H.; Lavastre, Y.; Grasse, M.; Sacristan, P.; Languille, A.

    1999-01-01

    An important development program for a UMo MTR fuel has been launched in France. The goal of the French working group is to develop a high performing and reprocessable fuel before the end of the US return policy. This paper is focussed on the fabrication of full-sized UMo plates with LEU (Low Enriched Enrichment) and their irradiation in OSIRIS reactor which was started on the 22nd of September. The results of the plates inspection are presented here as well as the irradiation conditions. (author)

  3. Endodontics and the irradiated patient

    International Nuclear Information System (INIS)

    Cox, F.L.

    1976-01-01

    With increasingly larger numbers of irradiated patients in our population, it seems likely that all dentists will eventually be called upon to manage the difficult problems that these patients present. Of utmost concern should be the patient's home care program and the avoidance of osteroradionecrosis. Endodontics and periodontics are the primary areas for preventing or eliminating the infection that threatens osteoradionecrosis. Endodontic treatment must be accomplished with the utmost care and maximum regard for the fragility of the periapical tissues. Pulpally involved teeth should never be left open in an irradiated patient, and extreme care must be taken with the between-visits seal. If one is called upon for preradiation evaluation, routine removal of all molar as well as other compromised teeth should be considered. Attention should be directed to the literature for further advances in the management of irradiated patients

  4. Status of irradiation testing and PIE of MOX (Pu-containing) fuel

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Zhou, Y.N.; Ryz, M.A.

    1995-01-01

    This paper describes AECL's mixed oxide (MOX) fuel-irradiation and post-irradiation examination (PIE) program. Post-irradiation examination results of two major irradiation experiments involving several (U, Pu)O 2 fuel bundles are highlighted. One experiment involved bundles irradiated to burnups ranging fro 400 to 1200 MWh/kgHe in the Nuclear Power Demonstration (NPD) reactor. The other experiment consisted of several (U, Pu)O 2 bundles irradiated to burnups of up to 500 Mwh/kgHe in the National Research Universal (NRU) reactor. Results of these experiments demonstrate the excellent performance of CANDU MOX fuel. This paper also outlines the status of current MOX fuel irradiation tests, including the irradiation of various (U, Pu)O 2 bundles. The strategic importance of MOX fuel to CANDU fuel-cycle flexibility is discussed. (author)

  5. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  6. Development and verification of an excel program for calculation of monitor units for tangential breast irradiation with external photon beams

    International Nuclear Information System (INIS)

    Woldemariyam, M.G.

    2015-07-01

    The accuracy of MU calculation performed with Prowess Panther TPS (for Co-60) and Oncentra (for 6MV and 15MV x-rays) for tangential breast irradiation was evaluated with measurements made in an anthropomorphic phantom using calibrated Gafchromic EBT2 films. Excel programme which takes in to account external body surface irregularity of an intact breast or chest wall (hence absence of full scatter condition) using Clarkson’s sector summation technique was developed. A single surface contour of the patient obtained in a transverse plane containing the MU calculation point was required for effective implementation of the programme. The outputs of the Excel programme were validated with the respective outputs from the 3D treatment planning systems. The variations between the measured point doses and their calculated counterparts by the TPSs were within the range of -4.74% to 4.52% (mean of -1.33% and SD of 2.69) for the prowess panther TPS and -4.42% to 3.14% (mean of -1.47% and SD of -3.95) for the Oncentra TPS. The observed degree of deviation may be attributed to limitations of the dose calculation algorithm within the TPSs, set up inaccuracies of the phantom during irradiation and inherent uncertainties associated with radiochromic film dosimetry. The percentage deviations between MUs calculated with the two TPSs and the Excel program were within the range of -3.45% and 3.82% (mean of 0.83% and SD of 2.25). The observed percentage deviations are within the 4% action level recommended by TG-114. This indicates that the Excel program can be confidently employed for calculation of MUs for 2D planned tangential breast irradiations or to independently verify MUs calculated with another calculation methods. (au)

  7. Systematic dental management in head and neck irradiation

    International Nuclear Information System (INIS)

    Horiot, J.C.; Bone, M.C.; Ibrahim, E.

    1981-01-01

    Preservation of teeth has been possible in 528 head and neck patients treated with irradiation at Centre Georges Leclerc, University of Dijon, by careful adherence to precise dental care. Careful initial dental evaluation with appropriate x rays, restoration of oral hygiene, atraumatic extraction technique where indicated, and institution of a program of topical fluoridation has resulted in an overall incidence of less than 3% post-irradiation dental decay and 2% osteoradionecrosis. In a small group of 22 patient who required extraction post-irradiation, precise, strict technique resulted in successful extraction in all but one patient who subsequently developed osteonecrosis. Soft-based dental prostheses were well tolerated in nearly 90% of patients. Adherence to the described principles of dental care will virtually eliminate post-irradiation decay and osteoradionecrosis

  8. DOE uses transportable irradiator for demonstration and testing

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The U.S. Dept. of Energy's Pacific Northwest Laboratory (PNL), Richland, Washington (operated by Battelle Memorial Institute), has a transportable irradiator that was built to travel to various locations to demonstrate the benefits of low-dose irradiation for the processing of food. Part of a DOE program designed to establish irradiation facilities in Alaska, Florida, Hawaii, Iowa, Oklahoma, and Washington, the mobile unit can also be used for research, pilot-scale processing, operator training, and education. The irradiation unit consists of two lead-lined cylindrical chambers-an irradiation chamber and a source chamber-inside a steel casing. During operation, the item to be irradiated is placed inside the irradiation chamber, which is then rotated until a window in the chamber lines up with a screened window in the source chamber. The source chamber contains the transportation cask containing the four capsules of cesium-137 that are used as the source of gamma radiation. During operation, the lid of the cask is raised, pulling the capsules into operating position. In this alignment, the product is irradiated for a predetermined length of time. Then the lid of the cask is lowered and the irradiation chamber is rotated back to its original position for removal of the product

  9. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk form, on the order of 7 x 10 20 cm -3 , far short of he approximately 20 x 10 20 cm -3 goal established for the RERTR Program. The purpose of the irradiation experiments on silicide fuels in the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix. The first group of experimental 'mini' fuel plates have recently reached the program's goal burnup and are in various stages of examination. Although the results to date indicate some limitations, it appears that within the range of parameters examined thus far the uranium silicide dispersion holds promise for satisfying most of the needs of the RERTR Program. The twelve experimental silicide dispersion fuel plates that were irradiated to approximately their goal exposure show the 30-vol % U 3 Si-Al plates to be in a stage of relatively rapid fission-gas-driven swelling at a fission density of 2 x 10 20 cm -3 . This fuel swelling will likely result in unacceptably large plate-thickness increases. The U 3 Si plates appear to be superior in this respect; however, they, too, are starting to move into the rapid fuel-swelling stage. Analysis of the currently available post irradiation data indicates that a 40-vol % dispersed fuel may offer an acceptable margin to the onset of unstable thickness changes at exposures of 2 x 10 21 fission/cm 3 . The interdiffusion between fuel and matrix

  10. Materials irradiation subpanel report to BESAC neutron sources and research panel

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Goland, A.N.; Lott, R.

    1992-01-01

    The future success of the nuclear power option in the US (fission and fusion) depends critically on the continued existence of a healthy national materials-irradiation program. Consideration of the requirements for acceptable materials-irradiation systems in a new neutron source has led the subcommittee to identify an advanced steady-state reactor (ANS) as a better choice than a spallation neutron source. However, the subcommittee also hastens to point out that the ANS cannot stand alone as the nation's sole high-flux mixed-spectrum neutron irradiation source in the next century. It must be incorporated in a broader program that includes other currently existing neutron irradiation facilities. Upgrading and continuing support for these facilities must be planned. In particular, serious consideration should be given to converting the HFIR into a dedicated materials test reactor, and long-term support for several university reactors should be established

  11. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  12. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  13. Proceedings of 2005 JAEA-KAERI joint seminar on advanced irradiation and PIE technologies

    International Nuclear Information System (INIS)

    2006-05-01

    In this seminar, total participants of over 100 were jointed from JAEA, KAERI, Hanyang University, Chungnam National University, Kyung Hee University, Oarai Branch of Institute for Materials Research (IMR) of Tohoku University, Nippon Nuclear Fuel Development Co., Ltd., Nuclear Development Corporation and others. The technical development and experimental data on the irradiation test and PIE were aggressively discussed in this seminar. Contributed presentations were 35 in three sessions; Current status and future program on irradiation test and PIE (10 presentations), Development of irradiation and PIE technologies (15 presentations) and Evaluation of irradiation and PIE data (10 presentations). Development of instrumented capsule technologies for HANARO irradiation, current PIE activities in each hot laboratory of both countries, development of irradiation capsules in JMTR for the Irradiation Assisted Stress Corrosion Cracking (IASCC) study, development of irradiation and PIE techniques for the safety research on the high burnup fuel, utilization plan of JOYO and development of MOX fuel containing americium have been widely noticed as topic items on irradiation and PIE technologies. This proceedings is containing papers presented in the 2005 JAEA-KAERI Joint Seminar. It also indicates the current status of the aggressive information exchange activity on two fields of irradiation test and PIE technologies between JAEA and KAERI under the Arrangement for the Implementation of Cooperative Research Program mentioned above. The 35 of the presented papers are indexed individually. (J.P.N.)

  14. Total body irradiation

    International Nuclear Information System (INIS)

    Novack, D.H.; Kiley, J.P.

    1987-01-01

    The multitude of papers and conferences in recent years on the use of very large megavoltage radiation fields indicates an increased interest in total body, hemibody, and total nodal radiotherapy for various clinical situations. These include high dose total body irradiation (TBI) to destroy the bone marrow and leukemic cells and provide immunosuppression prior to a bone marrow transplant, high dose total lymphoid irradiation (TLI) prior to bone marrow transplantation in severe aplastic anemia, low dose TBI in the treatment of lymphocytic leukemias or lymphomas, and hemibody irradiation (HBI) in the treatment of advanced multiple myeloma. Although accurate provision of a specific dose and the desired degree of dose homogeneity are two of the physicist's major considerations for all radiotherapy techniques, these tasks are even more demanding for large field radiotherapy. Because most large field radiotherapy is done at an extended distance for complex patient geometries, basic dosimetry data measured at the standard distance (isocenter) must be verified or supplemented. This paper discusses some of the special dosimetric problems of large field radiotherapy, with specific examples given of the dosimetry of the TBI program for bone marrow transplant at the authors' hospital

  15. Status of Wrought FeCrAl-UO2 Capsules Irradiated in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harp, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Core, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Candidate cladding materials for accident tolerant fuel applications require extensive testing and validation prior to commercial deployment within the nuclear power industry. One class of cladding materials, FeCrAl alloys, is currently undergoing such effort. Within these activities is a series of irradiation programs within the Advanced Test Reactor. These programs are developed to aid in commercial maturation and understand the fundamental mechanisms controlling the cladding performance during normal operation of a typical light water reactor. Three different irradiation programs are on-going; one designed as a simple proof-of-principle concept, the other to evaluate the susceptibility of FeCrAl to fuel-cladding chemical interaction, and the last to fully simulate the conditions of a pressurized water reactor experimentally. To date, nondestructive post-irradiation examination has been completed on the rodlet deemed FCA-L3 from the simple proof-of-concept irradiation program. Initial results show possible breach of the rodlet under irradiation but further studies are needed to conclusively determine whether breach has occurred and the underlying reasons for such a possible failure. Further work includes characterizing additional rodlets following irradiation.

  16. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  17. Study on dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment

    International Nuclear Information System (INIS)

    Abe, K.; Kohyama, A.; Namba, C.; Wiffen, F.W.; Jones, R.H.

    2001-01-01

    A Japan-USA Program of irradiation experiments for fusion research, 'JUPITER', has been established as a 6 year program from 1995 to 2000. The goal is to study the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment using fission reactors. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects. The irradiation capsules for in-situ measurement and varying temperature were developed successfully. It was found that insulating ceramics were worked up to 3 dpa. The property changes and related issues in low activation structural materials were summarized. (author)

  18. Characterization of irradiated fuel rods using pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Martin, M.R.; Francis, W.C.

    1975-11-01

    A number of irradiated fuel rods and unfueled zircaloy cladding tubes (''water tubes'') were obtained from the Saxton reactor through arrangements with the Westinghouse Electric Corporation for use in subsequent irradiation effects and fuel behavior programs. A comprehensive nondestructive and corroborative destructive characterization program was undertaken on these fuel rods and tubes by ANC to provide baseline data on their characteristics prior to further testing and for comparison against post-post data. This report deals primarily with one portion of the NDT program performed remotely in the hot cells. The portion of interest in this paper is the pulsed eddy current inspection used in the nondestructive phase of the work. 6 references

  19. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.; Cooper, P.C.; Vandenburg, A.J.; Musselman, H.D.; Lowe, H.N.; Florida Inst. of Tech., Melbourne; Army Facilities Engineering Support Agency, Fort Belvoir, Va.

    1975-01-01

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.) [de

  20. Metal fuel manufacturing and irradiation performance

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Walters, L.C.

    1992-01-01

    The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed

  1. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  2. Competitiveness values of irradiated adults of callosobruchus maculatus (F.) irradiated as mature pupae

    International Nuclear Information System (INIS)

    Ahmed, M.Y.Y.

    1981-01-01

    When mature pupae of Callosobruchus maculatus were treated with 3 Krad, the resulting adults were sterile when they were paired with untreated opposite sex. Males and females both treated with a sterilizing dose (3 Krad) and confined with untreated (U) males and females at a I male: I female: U male: U female (irradiated males: irradiated females: unirradiated males: unirradiated females) ratio caused 69.1% infertility in the resulting eggs. When the ratio of sterile males and females was increased to 5.5:1:1; 10:10:1:1 or 15:1:1 (I male: female: U male: U female) the percentage infertility reached 82.5, 95.0 and 100.0, respectively. The percentage of observed infertility was less than the expected infertility for the ratios 1:1:1:1:5:5:1:1 and 10:10:1:1, but it was exceeded with the highest ratio used (15:15:1:1). Competitiveness values for irradiated adults increased with an increasing ratio of irradiated to unirradiated adults. Since the ratio of 15:15:1:1 gave rise to 100% egg infertility (the expected infertility was 99.6%), no F 1 adults was produced; and the competitiveness value slightly exceeded 1.0 (i.e. the sterile adults were fully competitive with the normal ones). These results indicated that irradiation with 3 Krad, a sterilizing dose, did not decrease sexual competitiveness of irradiated adults. Also, the release of (I) females together with (I) males could give good results in controlling a population of C. maculatus in a autocidal control program; and, therefore, separation of the sexes prior to release is probably unnecessary. (author)

  3. Assessment of models predicting irradiation effects on tensile properties of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pineau, L.; Landron, C.

    2015-01-01

    In this paper, an analysis of tensile data acquired as part of the French Reactor Vessel Surveillance Program (RVSP) is produced. This program contains amongst other mechanical tests, tensile tests at 20 and 300 C degrees on non irradiated base metals and at 300 C degrees only on irradiated materials. It shows that irradiation leads to an increase in the yield strength and a decrease in the strain hardening. The exploitation of tensile results has permitted to express a relationship between yield strength increase measured and fluence value, as well as between strain hardening decrease and yield strength evolution. The use of these relations in the aim at predicting evolution of tensile properties with irradiation has then permitted to propose a methodology to model entire stress-strain curves of irradiated base metal only based on the non irradiated stress-strain curve. These predictions were successfully compared with an experimental standard case. (authors)

  4. Standard irradiation facilities for use in TRIGA reactors

    International Nuclear Information System (INIS)

    Kolbasov, B.N.; Luse, R.A.

    1972-01-01

    The standard neutron irradiation facility (SNIP) was developed under IAEA and FAO co-ordinated research program for the standardization of neutron irradiation facilities for radiobiological research, resulting in the possibility to use fast neutrons from pool-type reactors for radiobiological studies. The studies include irradiation of seeds for crop improvement, of Drosophila for genetic studies, and of microorganisms for developing industrially useful mutants, as well as fundamental studies in radiation biology. The facilities, located in the six pool-type reactors (in Austria, Bulgaria, India, Philippines, Thailand and Taiwan), have been calibrated and utilized to compare the response to fast neutrons of barley seeds (variety Himalaya CI 000620) which were selected as a standard biological monitor by which to estimate neutron fluxes in different reactors. These comparative irradiation studies showed excellent agreement and reproducibility

  5. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  6. Beneficial uses of nuclear waste/sewage sludge irradiation project. Progress report, April 1981-September 1981

    International Nuclear Information System (INIS)

    1982-05-01

    The objective is the further development and transfer of sludge irradiation technology to the municipal sector. At the conclusion of this project, a number of sludge irradiation demonstration plants will have been constructed and placed in operation by municipalities across the country. The following program elements have been established to ensure successful accomplishment of the program objectives: technology transfer by means of municipal demonstration plants; research support and data base development through operation of the SIDSS (Sandia Irradiator for Dried Sewage Solids) pilot plant; engineering support for the demonstration plants by SNL and LANL to include required support for NEPA/licensing activities, risk assessment, safety, and basic design engineering support to A and E firms; life sciences and agricultural R and D support by NMSU for base program activities and for demonstration plants; quality assurance activities to support licensing and other requirements; and program management. During the period covered by this report, the objectives of the BU/SSIP project have been expanded to include determination of an appropriate role for DOE and SNL in food irradiation. Progress on the program elements for the period April 1, 1981 through September 30, 1981, is discussed in detail

  7. Developing a fast simulator for irradiated silicon detectors

    CERN Document Server

    Diez Gonzalez-Pardo, Alvaro

    2015-01-01

    Simulation software for irradiated silicon detectors has been developed on the basis of an already existing C++ simulation software called TRACS[1]. This software has been already proven useful in understanding non-irradiated silicon diodes and microstrips. In addition a wide variety of user-focus features has been implemented to improve on TRACS flexibility. Such features include an interface to allow any program to leverage TRACS functionalities, a configuration file and improved documentation.

  8. Irradiation swelling in self-ion irradiated niobium

    International Nuclear Information System (INIS)

    Bajaj, R.; Shiels, S.A.; Hall, B.O.; Fenske, G.R.

    1987-01-01

    This paper presents initial results of an investigation of swelling mechanisms in a model body centered cubic (bcc) metal, niobium, irradiated at elevated temperatures (0.3 T/sub m/ to 0.6 T/sub m/) where T/sub m/ = melting point in K. The objective of this work is to achieve an understanding of the elevated temperature swelling in bcc metals, which are the prime candidate alloys and composite matrix materials for space reactor applications. Niobium was irradiated with 5.3 MeV Nb ++ ions, at temperatures ranging from 700 0 C to 1300 0 C, to a nominal dose of 50 dpa at a dose rate of 6 x 10 -3 dpas. Swelling was observed over a temperature range of 700 0 C to 1200 0 C, with a peak swelling of 7% at 900 0 C. The microstructural data, obtained from transmission electron microscopy, were compared to the predictions of the theoretical model developed during this program. A reasonable agreement was obtained between the experimental measurements of swelling and theoretical predictions by adjusting both the niobium-oxygen binding energy and the incubation dose for swelling to realistic values

  9. Proceedings of 1991-workshops of the working group on 'Development and application of facilities for low temperature irradiation as well as controlled irradiation'

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Okada, Moritami

    1992-09-01

    This is the proceedings of 1991-workshops of the working group on 'Development and Application of Facilities for Low Temperature Irradiation as well as Controlled Irradiation' held at the Research Reactor Institute of Kyoto University on July 25, 1991 and on February 28, 1992. In the present proceedings, it is emphasized that the study of radiation damages in various materials must be performed under carefully controlled irradiation conditions (irradiation temperature, neutron spectrum and so forth) during reactor irradiations. Especially, it is pointed out that a middle scale reactor such as KUR is suitable for the precise control of neutron spectra. Several remarkable results, which are made through experiments using the Low Temperature Irradiation Facility in KUR (KUR-LTL), are reported. Also, possible advanced research programs are discussed including the worldwide topics on the radiation damages in metals, semi-conductors and also insulators. Further, the present status of KUR-LTL is reported and the advanced plan of the facility is proposed. (author)

  10. Potential of food irradiation in Malaysia

    International Nuclear Information System (INIS)

    Rahman, Mohd Ghazali Bin HJ Abdul

    1985-01-01

    Food irradiation has recently been viewed as a technology that can contribute to the solution of problems associated with the preservation of Malaysia's agricultural produce, hence improving the economic status of the rural sector. Economic, political, social and environmental factors need to be taken into consideration in the implementation of a food irradiation program in Malaysia. Coordinated research is being carried out on various food items such as rice and pepper. The government holds a positive view of the technology. However, it is important to consider consumer acceptance of the technology and its legislation before the technology is adopted

  11. Migration under irradiation of the I, Cs fission products in SiC; Migration sous irradiation des produits de fission I, Cs dans SiC

    Energy Technology Data Exchange (ETDEWEB)

    Benyagoub, A. [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse; Centre Interdisciplinaire de Recherche Ions Lasers (CIRIL), 14 - Caen (France)

    2007-07-01

    This work is a part of the CEA-CNRS program on the behaviour of materials under irradiation. Its aim is to contribute to scientifically base the predicting methods of the behaviour of ceramic materials under irradiation in using the important development of calculation means. In particular, its role has been 1)to develop the basic knowledge and the interactions physics and 2)to elaborate calculation models at relevant scales. The studied topics are until now, the damage mechanisms, the diffusion under irradiation, the micro-structural evolutions and the incidences on the mechanical properties. (O.M.)

  12. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y H; Cho, M S [and others

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  13. Detection of irradiated spice in blend of irradiated and un-irradiated spices using thermoluminescence method

    International Nuclear Information System (INIS)

    Goto, Michiko; Yamazaki, Masao; Sekiguchi, Masayuki; Todoriki, Setsuko; Miyahara, Makoto

    2007-01-01

    Five blended spice sample were prepared by mixing irradiated and un-irradiated black pepper and paprika at different ratios. Blended black pepper containing 2%(w/w) of 5.4 kGy-irradiated black pepper showed no maximum at glow1. Irradiated black pepper samples, mixed to 5 or 10%(w/w), were identified as 'irradiated' or 'partially irradiated' or 'un-irradiated'. All samples with un-irradiated pepper up to 20%(w/w) were identified as irradiated'. In the case 5.0 kGy-irradiated paprika were mixed with un-irradiated paprika up to 5%(w/w), all samples were identified as irradiated'. The glow1 curves of samples, including irradiated paprika at 0.2%(w/w) or higher, exhibited a maximum between 150 and 250degC. The results suggest the existence of different critical mixing ratio for the detection of irradiation among each spices. Temperature range for integration of the TL glow intensity were compared between 70-400degC and approximate 150-250degC, and revealed that the latter temperature range was determined based on the measurement of TLD100. Although TL glow ratio in 150-250degC was lower than that of 70-400degC range, identification of irradiation was not affected. Treatment of un-irradiated black pepper and paprika with ultraviolet rays had no effect on the detection of irradiation. (author)

  14. Design considerations and operating experience with wet storage of Ontario Hydro's irradiated fuel

    International Nuclear Information System (INIS)

    Frost, C.R.; Naqvi, S.J.; McEachran, R.A.

    1987-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor irradiated fuel storage water pools (or irradiated fuel bays) are described. There are two types of bay known respectively as primary bays and auxiliary bays, used for at-reactor irradiated fuel storage. Irradiated fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. The major considerations in irradiated fuel bay design, including site-specific requirements, reliability and quality assurance, are discussed. The monitoring of critical fuel bay components, such as bay liners, the development of high storage density fuel containers, and the use of several irradiated fuel bays at each reactor site have all contributed to the safe handling of the large quantities of irradiated fuel over a period of about 25 years. Routine operation of the irradiated fuel bays and some unusual bay operational events are described. For safety considerations, the irradiated fuel in storage must retain its integrity. Also, as fuel storage is an interim process, likely for 50 years or more, the irradiated fuel should be retrievable for downstream fuel management phases such as reprocessing or disposal. A long-term experimental program is being used to monitor the integrity of irradiated fuel in long-term wet storage. The well characterized fuel, some of which has been in wet storage since 1962 is periodically examined for possible deterioration. The evidence from this program indicates that there will be no significant change in irradiated fuel integrity (and retrievability) over a 50 year wet storage period

  15. TRIGA out of core gamma irradiation facility

    International Nuclear Information System (INIS)

    Rant, J.; Pregl, G.

    1988-01-01

    A possibility to irradiate extended objects in a gamma field inside the shielding water tank and above the core of operating TRIGA Mark II Reactor has been investigated. The irradiation cask is shielded with Cd cover to filter out thermal neutrons. The dose rate of the gamma field strongly depends on the distance of the irradiation position above the core. At 25 cm above the core, the gamma dose rate is 2.2 Gy/s and epithermal neutron flux is ∼ 8.10 6 ncm -2 s -1 ∼ 3 as measured by TLD (CaF 2 : Mn) dosimeters and Au foils respectively. Tentative applications of the gamma irradiation facility are in the studies of radiation induced accelerated aging and within the Nuclear Power Plant Equipment Qualification Program (EQP). A complete characterization of the neutron spectrum and optimization of the 7 radiation field within the cask has still to be performed. (author)

  16. Preliminary test results for post irradiation examination on the HTTR fuel

    International Nuclear Information System (INIS)

    Ueta, Shohei; Umeda, Masayuki; Sawa, Kazuhiro; Sozawa, Shizuo; Shimizu, Michio; Ishigaki, Yoshinobu; Obata, Hiroyuki

    2007-01-01

    The future post-irradiation program for the first-loading fuel of the HTTR is scheduled using the HTTR fuel handling facilities and the Hot Laboratory in the Japan Materials Testing Reactor (JMTR) to confirm its irradiation resistance and to obtain data on its irradiation characteristics in the core. This report describes the preliminary test results and the future plan for a post-irradiation examination for the HTTR fuel. In the preliminary test, fuel compacts made with the same SiC-coated fuel particle as the first loading fuel were used. In the preliminary test, dimension, weight, fuel failure fraction, and burnup were measured, and X-ray radiograph, SEM, and EPMA observations were carried out. Finally, it was confirmed that the first-loading fuel of the HTTR showed good quality under an irradiation condition. The future plan for the post-irradiation tests was described to confirm its irradiation performance and to obtain data on its irradiation characteristics in the HTTR core. (author)

  17. Programmed temperature control of capsule in irradiation test with personal computer at JMTR

    International Nuclear Information System (INIS)

    Saito, H.; Uramoto, T.; Fukushima, M.; Obata, M.; Suzuki, S.; Nakazaki, C.; Tanaka, I.

    1992-01-01

    The capsule irradiation facility is one of various equipments employed at the Japan Materials Testing Reactor (JMTR). The capsule facility has been used in irradiation tests of both nuclear fuels and materials. The capsule to be irradiated consists of the specimen, the outer tube and inner tube with a annular space between them. The temperature of the specimen is controlled by varying the degree of pressure (below the atmospheric pressure) of He gas in the annular space (vacuum-controlled). Beside this, in another system the temperature of the specimen is controlled with electric heaters mounted around the specimen (heater-controlled). The use of personal computer in the capsule facility has led to the development of a versatile temperature control system at the JMTR. Features of this newly-developed temperature control system lie in the following: the temperature control mode for a operation period can be preset prior to the operation; and the vacuum-controlled irradiation facility can be used in cooperation with the heater-controlled. The introduction of personal computer has brought in automatic heat-up and cool-down operations of the capsule, setting aside the hand-operated jobs which had been conducted by the operators. As a result of this, the various requirements seeking a higher accuracy and efficiency in the irradiation can be met by fully exploiting the capabilities incorporated into the facility which allow the cyclic or delicate changes in the temperature. This paper deals with a capsule temperature control system with personal computer. (author)

  18. Postirradiation examination results for the Irradiation Effects Scoping Test 2

    International Nuclear Information System (INIS)

    Mehner, A.S.

    1977-01-01

    The postirradiation examination results are reported for two rods from the second scoping test (IE-ST-2) of the Nuclear Regulatory Commission Irradiation Effects Program. The rods were irradiated in the in-pile test loop of the Power Burst Facility at the Idaho National Engineering Laboratory. Rod IE-005 was fabricated from fresh fuel and cladding previously irradiated in the Saxton Reactor. Rod IE-006, fabricated from fresh fuel and unirradiated cladding, was equipped with six developmental cladding surface thermocouples. The rods were preconditioned, power ramped, and then subjected to film boiling operation. The performance of the rods and the developmental thermocouples are evaluated from the post irradiation examination results. The effects of prior irradiation damage in cladding are discussed in relation to fuel rod behavior during a power ramp and subsequent film boiling operation

  19. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: ksato@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Xu, Q.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Dai, Y. [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kikuchi, K. [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan)

    2012-12-15

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<{approx}0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  20. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    International Nuclear Information System (INIS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-01-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<∼0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  1. Status as of March 2002 of the UMo development program

    International Nuclear Information System (INIS)

    Hamy, J.M.; Languille, A.; Guigon, B.; Lemoine, P.; Jarousse, C.; Boyard, M.; Emin, JL.

    2002-01-01

    The French program for the development of U Mo fuel has been launched in 1999 in close collaboration with five partners [5][6][9]. The aim of this program is to develop a high performance and reprocessable U Mo fuel and to obtain a world wide qualified fuel before the end of the present US return policy. The very first step of this program is the experimental irradiation of fuel plates. Three full size plates (20% enrichment, 8 g U/cm 3 density) have been irradiated in OSIRIS reactor between September 1999 and January 2001. This paper gives the results already obtained. Four full sized plates (20% and 35% enrichment, 8 g U/cm 3 density) have been irradiated in HFR reactor during two cycles; the irradiation was interrupted due to a plate failure. All PIE, non destructive and destructive, were completed in 2001. This paper gives some comments about the results of these examinations. The French development program is covering complementary full-sized plates irradiation tests and experimental irradiation of fuel size U-7%Mo elements will be started on the basis of the results obtained with plates. This paper presents the next steps of the U Mo development program, and the time schedule focused on the milestone of 2006. (author)

  2. Sampling by electro-erosion on irradiated materials

    International Nuclear Information System (INIS)

    Riviere, M.; Pizzanelli, J.P.

    1986-05-01

    Sampling on irradiated materials, in particular for mechanical property study of steels in the FAST NEUTRON program needed the set in a hot cell of a machining device by electroerosion. This device allows sampling of tenacity, traction, resilience test pieces [fr

  3. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  4. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  5. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S. (and others)

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  6. Irradiation effects on organic insulators

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1986-01-01

    The overall objective of this work is to contribute to development of organic insulators having the cryogenic neutron irradiation resistance required for MFE systems utilizing superconducting magnet confinement. The system for producing standard 3.2-mm (0.125-in) diameter rod specimens discussed in previous reports has been further refined to permit the fabrication of both fiber-reinforced and heat-resin specimens from hot-melt resin systems. The method has been successfully used to produce very high quality specimens duplicating the G-11CR system and specimens from a variant of that system eliminating a boron-containing additive. We have also produced specimens from an epoxy system suitable for impregnation or potting operations and from a bismaleimide polyimide system. These materials will be used in the first irradiation program in the National Low Temperature Neutron Irradiation Facility (NLTNIF) reactor at Oak Ridge. We have refined the 4-K torsional shear test method for evaluating radiation degradation of the fiber-matrix interface and have developed a method of quantitatively measuring changes in fracture energy as a function of radiation dose. Cooperative work with laboratories in Japan and England in this area is continuing and plans are being formulated for joint production, irradiation, and testing of specimens

  7. Low level chronic irradiation of salmon. Annual progress report

    International Nuclear Information System (INIS)

    Hershberger, W.K.; Donaldson, L.R.; Bonham, K.; Brannon, E.L.

    1975-01-01

    A question of primary importance in the use of nuclear energy is what effect the effluent from a reactor will have on the aquatic life in the water used for cooling. Of particular concern in the Pacific Northwest are the effects of chronic irradiation on salmon that use the rivers for spawning and nursery area. The present program was designed in the early days of the atomic era to address this concern, and to provide some insight into the long-term consequences of exposure of fish to chronic, low levels of irradiation. The experimental techniques are described and data are summarized on irradiation effects on the entire life cycle of the chinook salmon. Also, long-term effects transmitted to future generations were assessed in F 1 offspring of irradiated parents

  8. Sterility and Sexual Competitiveness of Tapachula-7 Anastrepha ludens Males Irradiated at Different Doses.

    Science.gov (United States)

    Orozco-Dávila, Dina; Adriano-Anaya, Maria de Lourdes; Quintero-Fong, Luis; Salvador-Figueroa, Miguel

    2015-01-01

    A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed.

  9. BWRVIP-140NP: BWR Vessel and Internals Project Fracture Toughness and Crack Growth Program on Irradiated Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Gilman, J.

    2005-01-01

    To prepare for this project, EPRI and BWRVIP conducted a workshop at Ponte Vedra Beach, Florida during February 19-21, 2003 (EPRI report 1007822). Attendees were invited to exchange relevant information on the effects of irradiation on austenitic materials in light water reactors and to produce recommendations for further work. EPRI reviewed the data, recommendations, and conclusions derived from the workshop and developed prioritized test matrices defining new data needs. Proposals were solicited, and selected proposals are the basis for the program described in this report. Results The planned test matrix for fracture toughness testing includes 21 tests on 5 materials

  10. Irradiation Behavior and Post-Irradiation Examinations of an Acoustic Sensor Using a Piezoelectric Transducer

    International Nuclear Information System (INIS)

    Lambert, T.; Zacharie-Aubrun, I.; Hanifi, K.; Valot, Ch.; Fayette, L.; Rosenkantz, E.; Ferrandis, J.Y.; Tiratay, X.

    2013-06-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. In the framework of high burn-up fuel experiments under transient operating conditions, an innovative sensor based on acoustic method was developed by CEA and IES (Southern Electronic Institute).This sensor is used to determine the on-line composition of the gases located in fuel rodlet free volume and thus, allows calculating the molar fractions of fission gases and helium. The main principle of the composition determination by acoustic method consists in measuring the time of flight of an acoustic signal emitted and reflected in a specific cavity. A piezoelectric transducer, driven by a pulse generator, generates the acoustic wave in the cavity. The piezoelectric transducer is a PZT ceramic disk, mainly consisting of lead, zirconium and titanium. This acoustic method was tested with success during a first experiment called REMORA 3, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. However, during the irradiation test, acoustic signal degradation was observed, mainly due to irradiation effect but also due to the increasing of the gas temperature. Despite this acoustic signal degradation, the time of flight measurements were carried out with good accuracy throughout the test, thanks to the development of a more efficient signal processing. After experiment, neutronic calculations were performed in order to determine neutron fluence at the level of the piezoelectric transducer. In order to have a better understanding of the acoustic sensor behavior under irradiation, Post Irradiation Examination program was done on piezoelectric transducer and on acoustic coupling material too. These examinations were also realized on a non-irradiated acoustic sensor built in the same conditions and with the same materials and the same

  11. Irradiated Concrete in Nuclear Power Plants: Bridging the Gap in Operational Experience

    International Nuclear Information System (INIS)

    Hohmann, Brian P.; Esselman, Thomas C.; Wall, James J.

    2012-01-01

    The world's fleet of operating nuclear power plants (NPP) has been in-service for more than 20 years. In order to support the increasing demand for inexpensive power, many plants will be required to operate beyond 40 years, which was the original licensing period for existing NPPs. Improved knowledge of the performance of irradiated concrete is required to form a technical basis for long term operation (operation to 80+ years) of nuclear plants around the world. To date, operating experience (OE) of concrete subjected to irradiation has been acceptable, but there is an absence of data on this topic for extended periods of operation. The lack of empirical data has contributed to the difficulty of quantifying the long term behavior of concrete that is experiencing irradiation. Programs are in place that address other degradation mechanisms of concrete, but a clear and focused program is required on the effects of radiation. This paper presents a review of the available literature on the topic of the long-term irradiation effects on the mechanical properties of concrete, and provides a proposed methodology for the characterization of irradiated concrete removed from shut down or decommissioned commercial plants. (author)

  12. Complete Report on the Development of Welding Parameters for Irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Greg [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Sutton, Benjamin J. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Tatman, Jonathan K. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Vance, Mark Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clark, Scarlett R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Jian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gibson, Brian T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    The advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory, which was conceived to enable research and development of weld repair techniques for nuclear power plant life extension, is now operational. The development of the facility and its advanced welding capabilities, along with the model materials for initial welding trials, were funded jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, with additional support from Oak Ridge National Laboratory. Welding of irradiated materials was initiated on November 17, 2017, which marked a significant step in the development of the facility and the beginning of extensive welding research and development campaigns on irradiated materials that will eventually produce validated techniques and guidelines for weld repair activities carried out to extend the operational lifetimes of nuclear power plants beyond 60 years. This report summarizes the final steps that were required to complete weld process development, initial irradiated materials welding activities, near-term plans for irradiated materials welding, and plans for post-weld analyses that will be carried out to assess the ability of the advanced welding processes to make repairs on irradiated materials.

  13. Influence of audiovisuals and food samples on consumer acceptance of food irradiation

    International Nuclear Information System (INIS)

    Pohlman, A.J.; Wood, O.B.; Mason, A.C.

    1994-01-01

    The effects of audiovisual presentation on consumers' knowledge and attitudes toward food irradiation were demonstrated. Food irradiation is a method of food preservation that can destroy the microorganisms responsible for many foodborne illnesses and food spoilage. However, the food industry has been slow to adopt this method because it is unsure of consumer acceptance. One hundred and seventy-nine consumers were given a slide-tape presentation on food irradiation. Test subjects were also presented with a sample of irradiated strawberries. It was found that participants knew more about and were more positive toward food irradiation following the educational program. These findings demonstrate the value of educational materials in influencing the food preferences of consumers

  14. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  15. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    International Nuclear Information System (INIS)

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas; Harp, Jason Michael

    2016-01-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  16. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  17. Irradiation effects on plasma diagnostic components (2)

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Sugie, Tatsuo

    2002-03-01

    Irradiation tests on a number of diagnostic components under fission neutrons, gamma-rays and 14 MeV neutrons have been carried out as a part of the ITER technology R and D program. UV range transmission losses of a KU-1 quartz were measured during 14 MeV neutron and 60 Co gamma-ray irradiation. Significant transmission losses were observed in the wavelength of 200-300 nm. Five kinds of ITER round robin fibers were irradiated in JMTR and the 60 Co gamma-ray irradiation facility. KS-4V, KU-H2G and F-doped fibers have a rather good radiation hardness, which might be available just outside of the vacuum vessel in ITER. Mica substrate bolometer was irradiated in JMTR up to 0.1 dpa. During the cool down phase of the first cycle all connections went open circuit. The use of gold meanders in the bolometer might be problematic in ITER. The magnetic probes were irradiated in JMTR. Drift of 10 - 40 mVs for 1000s was observed with a digital longterm integrator, however, which might be induced not only by RIEMF but also drift inside the integrator itself. ITER-relevant magnetic coil could be made with MI-cables, whose electric drift for 1000-s integration is less than 0.5 mVs. (author)

  18. Updated FY12 Ceramic Fuels Irradiation Test Plan

    International Nuclear Information System (INIS)

    Nelson, Andrew T.

    2012-01-01

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  19. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1989-01-01

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor

  20. Post-irradiation examination of U3SIX-AL fuel element manufactured and irradiated in Argentina

    International Nuclear Information System (INIS)

    Ruggirello, Gabriel; Calabroni, Hector; Sanchez, Miguel; Hofman, Gerard

    2002-01-01

    As a part of CNEA's qualification program as a supplier of low enriched Al-U 3 Si 2 dispersion fuel elements for research reactors, a post irradiation examination (PIE) of the first prototype of this kind, called P-04, manufactured and irradiated in Argentina, was carried out. The main purpose of this work was to set up various standard PIE techniques in the hot cell, looking forward to the next steps of the qualification program, as well as to acquire experience on the behaviour of this nuclear material and on the control of the manufacturing process. After an appropriate cooling period, on May 2000 the P-04 was transported to the hot cell in Ezeiza Atomic Centre. Non destructive and destructive tests were performed following the PIE procedures developed in Argonne National Laboratory (ANL), this mainly included dimensional measurement, microstructural observations and chemical burn-up analyses. The methodology and results of which are outlined in this report. The results obtained show a behaviour consistent with that of other fuel elements of the same kind, tested previously. On the other hand the results of this PIE, specially those concerning burn-up analysis and stability and corrosion behaviour of the fuel plates, will be of use for the IAEA Regional Program on the characterization of MTR spent fuel. (author)

  1. Reconstruction of Co-60 Irradiation Facility No.1

    International Nuclear Information System (INIS)

    Nakamura, Yoshiteru; Takada, Isao; Kaneko, Hirohisa; Hirao, Toshio; Haneda, Noriyuki; Mitomo, Shouichi; Tachibana, Hiroyuki; Yoshida, Kenzou

    1989-01-01

    Cobalt Irradiation Facility No.1 was constructed in 1964 as the first large scale Co-60 irradiation facility equipped a deep water pool for source storage of Co-60 sources. Recently, the reconstruction of the facility was decided because the aging of various parts of the facility became remarkable and new research programs required upgradings of the facility. Important points of upgradings are as follows: A shielding capacity of the source storage and pool is increased to 55.5 PBq from 18.5 PBq. The opening in a floor of the irradiation room which is used for the source lifting in the room, is enlarged in order to utilize a large and high intensity source. Radiation resistance of the irradiation apparatus and installed equipments in the radiation room is increased for a high dose rate irradiation. Basic structure and shape of the facility building such as shielding, pool and building roof is not changed but electrical, mechanical equipments and systems are completely renewed. To increase a reliability, the irradiation apparatus and systems are also replaced with an improved and up-to-date one designed based on operation experiences of Co-60 facilities at TRCRE through many years. In addition, auxiliary equipments such as radiation monitors, manipulators, water treatment system and so on are replaced. This report presents the reconstruction of Co-60 Irradiation Facility No.1 stressing on the replacement and modification of the irradiation apparatus. (author)

  2. Physiologic consequences of local heart irradiation in rats

    International Nuclear Information System (INIS)

    Geist, B.J.; Lauk, S.; Bornhausen, M.; Trott, K.R.

    1990-01-01

    Noninvasive methods have been used to study the long-term cardiovascular and pulmonary functional changes at rest and after exercise in adult rats following local heart irradiation with single x-ray doses of 15, 17.5 or 20 Gy, and in non-irradiated control animals. Rats that had undergone a chronic exercise program were compared with untrained cohorts. The earliest dysfunction detected was an increased respiratory rate (f) at 10 weeks after irradiation in the highest dose group. In contrast, both telemetric heart-rate (HR) and rhythm and indirect systolic blood pressure measurements performed at rest only revealed changes starting at 43 weeks after irradiation with 20 Gy, up to which point the rats showed no clinical signs of heart failure. However, the number of minutes required for the recovery of the HR to pre-exercise levels following the implementation of a standardized exercise challenge was elevated in untrained rats compared with their trained cohorts at 18 weeks after irradiation with 20 Gy. Increases in recovery times were required in the two lowest dose groups, starting at 26 weeks after irradiation. It was concluded that the reserve capacity of the cardiopulmonary system masks functional decrements at rest for many months following local heart irradiation, necessitating the use of techniques which reveal reductions in reserve capacities. Further, the influence of local irradiation to the heart and lungs deserves closer scrutiny due to mutual interactions

  3. Surveillance of irradiation embrittlement of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Najzer, M.

    1982-01-01

    Surveillance of irradiation embrittlement of nuclear reactor pressure vessels is briefly discussed. The experimental techniques and computer programs available for this work at the J. Stefan Institute are described. (author)

  4. Dental management of patients irradiated for oral cancer

    International Nuclear Information System (INIS)

    Regezi, J.A.; Courtney, R.M.; Kerr, D.A.

    1976-01-01

    Management of patients irradiated for oral cancer should include consideration of their oral health prior to, and after, radiation therapy. Data from 130 patients, followed for a period of 1 to 10 years, are presented and evaluated. The philosophy of retention and maintenance of as many teeth as possible is supported by this data. Extraction of teeth with severe periodontal disease after irradiation also proves to be a relatively safe operation. Osteoradionecrosis tends to be limited in extent and is generally well tolerated by the patient when treated conservatively. A treatment regimen is presented that significantly reduces the morbidity from therapeutic irradiation of the jaws. A comprehensive dental evaluation and follow-up plan coupled with patient cooperation are instrumental to the success of this program

  5. The identification of irradiated fish: a review

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    This report reviews different methods of detecting whether fish and fish products have been irradiated. A brief description of each method is followed by a discussion of its advantages and disadvantages. It is concluded that none of the methods available to date can establish beyond doubt whether fish has been irradiated or not and to what dose. It is recommended that a short-term research program be carried out to test the suitability of the o-tyrosine method to detect radiation treatment of fish. Although the method has not been fully developed, the preliminary results with chicken meat are very promising. 31 refs

  6. Irradiation tests of THTR fuel elements in the DRAGON reactor (irradiation experiment DR-K3)

    International Nuclear Information System (INIS)

    Burck, W.; Duwe, R.; Groos, E.; Mueller, H.

    1977-03-01

    Within the scope of the program 'Development of Spherical Fuel Elements for HTR', similar fuel elements (f.e.) have been irradiated in the DRAGON reactor. The f.e. were fabricated by NUKEM and were to be tested under HTR conditions to scrutinize their employability in the THTR. The fuel was in the form of coated particles moulded into A3 matrix. The kernels of the particles were made of mixed oxide of uranium and thorium with an U 235 enrichment of 90%. One aim of the post irradiation examination was the investigation of irradiation induced changes of mechanical properties (dimensional stability and elastic behaviour) and of the corrosion behaviour which were compared with the properties determined with unirradiated f.e. The measurement of the fission gas release in annealing tests and ceramografic examinations exhibited no damage of the coated particles. The measured concentration distribution of fission metals led to conclusions about their release. All results showed, that neither the coated particles nor the integral fuel spheres experienced any significant changes that could impair their utilization in the THTR. (orig./UA) [de

  7. Model of the dose rate for a semi industrial irradiation plant. Pt. 1

    International Nuclear Information System (INIS)

    Mangussi, Josefina; Gomez, Enzo

    2003-01-01

    This paper introduces the first stage of a software for visualization of isodose curves, at the irradiation area of a semi-industrial irradiation plant operating with cobalt-60. The dose rate is calculated in each point of the area as the sum of the contributions of each one of the radioactive sources located in the irradiator. The regions of the space with equal dose rate were solved as lines in the Cartesian planes with a set of programs written in Free Pascal. In this first stage, external programs and utilities were used for the visualization and the validation of simulated and experimental data. In future stages, visualization modules will be integrated into the software to produce graphs from ASCII outputs. (author)

  8. AGC-2 Specimen Post Irradiation Data Package Report

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William Enoch [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rohrbaugh, David T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens were subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between

  9. Development of a portable blood irradiator for potential clinical uses

    Energy Technology Data Exchange (ETDEWEB)

    Hungate, F.P.

    1988-12-01

    This document provides an account of the development of a fully portable blood irradiator and the evaluation of its safety and efficacy when implanted in goats, sheep, a baboon and dogs. The program was initiated because the control of lymphocyte populations by irradiation is a potential method for improving success in organ or tissue transplantation and for treating a variety of blood diseases. 15 refs., 27 figs., 2 tabs.

  10. Irradiation probe and laboratory for irradiated material evaluation

    International Nuclear Information System (INIS)

    Smutny, S.; Kupca, L.; Beno, P.; Stubna, M.; Mrva, V.; Chmelo, P.

    1975-09-01

    The survey and assessment are given of the tasks carried out in the years 1971 to 1975 within the development of methods for structural materials irradiation and of a probe for the irradiation thereof in the A-1 reactor. The programme and implementation of laboratory tests of the irradiation probe are described. In the actual reactor irradiation, the pulse tube length between the pressure governor and the irradiation probe is approximately 20 m, the diameter is 2.2 mm. Temperature reaches 800 degC while the pressure control system operates at 20 degC. The laboratory tests (carried out at 20 degC) showed that the response time of the pressure control system to a stepwise pressure change in the irradiation probe from 0 to 22 at. is 0.5 s. Pressure changes were also studied in the irradiation probe and in the entire system resulting from temperature changes in the irradiation probe. Temperature distribution in the body of the irradiation probe heating furnace was determined. (B.S.)

  11. Chapter 2: Irradiators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    The chapter 2 presents the subjects: 1) gamma irradiators which includes: Category-I gamma irradiators (self-contained); Category-II gamma irradiators (panoramic and dry storage); Category-III gamma irradiators (self-contained in water); Category-IV gamma irradiators (panoramic and wet storage); source rack for Category-IV gamma irradiators; product transport system for Category-IV gamma irradiators; radiation shield for gamma irradiators; 2) accelerators which includes: Category-I Accelerators (shielded irradiator); Category-II Accelerators (irradiator inside a shielded room); Irradiation application examples.

  12. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  13. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  14. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  15. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  16. Implementation of good manufacturing practices (GMP) on human blood irradiation

    International Nuclear Information System (INIS)

    Boghi, Claudio; Napolitano, Celia M.; Ferreira, Danilo C.; Rela, Paulo Roberto; Zarate, Herman S.

    2007-01-01

    The irradiation of human blood is used to avoid the TA-GVHD (transfusion-associated graft-versus-host-disease), a rare but devastating adverse effect of leukocytes present in blood components for a immuno-competent transfusion recipients. Usually this irradiation practice is performed to a physical elimination of lymphocytes. The implementation of the GMP will assure that the properly dose in a range of 25 Gy to 50 Gy will be delivered to the blood in the bag collected in a blood tissue bank. The studies to establish the GMP were developed under the guidelines of the standard ISO 11137 - Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. In this work, two dosimetric systems were used for dose mapping during the studies of irradiator qualification, loading pattern, irradiation process validation and auditing. The CaSO 4 : Dy dosimeter presented difficulties concerning to uncertainty on dose measurement, stability, trace ability and calibration system. The PMMA and gafchromic dosimetric systems have shown a better performance and were adopted on establishment of GMP procedures. The irradiation tests have been done using a Gammacell 220 Irradiator. The developed GMP can be adapted for different types of gamma irradiators, allowing to set up a quality assurance program for blood irradiation. (author)

  17. Implementation of good manufacturing practices (GMP) on human blood irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boghi, Claudio; Napolitano, Celia M.; Ferreira, Danilo C.; Rela, Paulo Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: cboghi@uol.com.br; cmnapoli@ipen.br; dancarde@ig.com.br; prela@ipen.br; Zarate, Herman S. [Comission Chilena de Energia Nuclear, Santiago (Chile)]. E-mail: hzarate@cchen.cl

    2007-07-01

    The irradiation of human blood is used to avoid the TA-GVHD (transfusion-associated graft-versus-host-disease), a rare but devastating adverse effect of leukocytes present in blood components for a immuno-competent transfusion recipients. Usually this irradiation practice is performed to a physical elimination of lymphocytes. The implementation of the GMP will assure that the properly dose in a range of 25 Gy to 50 Gy will be delivered to the blood in the bag collected in a blood tissue bank. The studies to establish the GMP were developed under the guidelines of the standard ISO 11137 - Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. In this work, two dosimetric systems were used for dose mapping during the studies of irradiator qualification, loading pattern, irradiation process validation and auditing. The CaSO{sub 4}: Dy dosimeter presented difficulties concerning to uncertainty on dose measurement, stability, trace ability and calibration system. The PMMA and gafchromic dosimetric systems have shown a better performance and were adopted on establishment of GMP procedures. The irradiation tests have been done using a Gammacell 220 Irradiator. The developed GMP can be adapted for different types of gamma irradiators, allowing to set up a quality assurance program for blood irradiation. (author)

  18. Good manufacturing practices (GMP utilized on human blood irradiation process

    Directory of Open Access Journals (Sweden)

    Cláudio Boghi

    2008-01-01

    Full Text Available Irradiation of human blood is used to avoid the TA-GVHD (transfusion-associated graft-versus-host-disease, a rare but devastating adverse effect of leukocytes present in blood components for immunocompetent transfusion recipients. Usually this irradiation practice is performed to a physical elimination of lymphocytes. The implementation of the GMP will assure that the properly dose in a range of 25Gy to 50Gy will be delivered to the blood in the bag collected in a blood tissue bank. The studies to establish the GMP were developed under the guidelines of the standard ISO 11137 - Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. In this work, two dosimetric systems were used for dose mapping during the studies of irradiator qualification, loading pattern, irradiation process validation and auditing. The CaSO4: Dy dosimeter presented difficulties concerning to uncertainty on dose measurement, stability, trace ability and calibration system. The PMMA and gafchromic dosimetric systems have shown a better performance and were adopted on establishment of GMP procedures. The irradiation tests have been done using a Gammacell 220 Irradiator. The developed GMP can be adapted for different types of gamma irradiators, allowing to set up a quality assurance program for blood irradiation.

  19. LWR pressure vessel irradiation surveillance dosimetry. Quarterly progress report, July--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G L; McElroy, W N; Lippincott, E P; Gold, R

    1978-12-01

    Program objectives and progress to date by the national laboratories in LWR pressure vessel irradiation surveillance dosimetry are summarized. Participants in the program include: Rockwell International, Hanford Engineering Development Laboratory, National Bureau of Standards, and Oak Ridge National Laboratory.

  20. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  1. Food irradiation

    International Nuclear Information System (INIS)

    Sato, Tomotaro; Aoki, Shohei

    1976-01-01

    Definition and significance of food irradiation were described. The details of its development and present state were also described. The effect of the irradiation on Irish potatoes, onions, wiener sausages, kamaboko (boiled fish-paste), and mandarin oranges was evaluated; and healthiness of food irradiation was discussed. Studies of the irradiation equipment for Irish potatoes in a large-sized container, and the silo-typed irradiation equipment for rice and wheat were mentioned. Shihoro RI center in Hokkaido which was put to practical use for the irradiation of Irish potatoes was introduced. The state of permission of food irradiation in foreign countries in 1975 was introduced. As a view of the food irradiation in the future, its utilization for the prevention of epidemics due to imported foods was mentioned. (Serizawa, K.)

  2. FRESCO-II: A computer program for analysis of fission product release from spherical HTGR-fuel elements in irradiation and annealing experiments

    International Nuclear Information System (INIS)

    Krohn, H.; Finken, R.

    1983-06-01

    The modular computer code FRESCO has been developed to describe the mechanism of fission product release from a HTGR-Core under accident conditions. By changing some program modules it has been extended to take into account the transport phenomena (i.e. recoil) too, which only occur under reactor operating conditions and during the irradiation experiments. For this report, the release of cesium and strontium from three HTGR-fuel elements has been evaluated and compared with the experimental data. The results show that the measured release can be described by the considered models. (orig.) [de

  3. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gruenewald, T

    1985-01-01

    Food irradiation has become a matter of topical interest also in the Federal Republic of Germany following applications for exemptions concerning irradiation tests of spices. After risks to human health by irradiation doses up to a level sufficient for product pasteurization were excluded, irradiation now offers a method suitable primarily for the disinfestation of fruit and decontamination of frozen and dried food. Codex Alimentarius standards which refer also to supervision and dosimetry have been established; they should be adopted as national law. However, in the majority of cases where individual countries including EC member-countries so far permitted food irradiation, these standards were not yet used. Approved irradiation technique for industrial use is available. Several industrial food irradiation plants, partly working also on a contractual basis, are already in operation in various countries. Consumer response still is largely unknown; since irradiated food is labelled, consumption of irradiated food will be decided upon by consumers.

  4. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  5. Design considerations of the irradiation test vehicle for the advanced test reactor

    International Nuclear Information System (INIS)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-01-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements

  6. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis

    OpenAIRE

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiati...

  7. Overview of Japanese control rods development program

    International Nuclear Information System (INIS)

    Koyama, M.

    1984-01-01

    The Japanese control rods development program was established based on the fast breeder reactor program. Therefore, PNC's efforts have been made mainly for the development of analysis, design and fabrication technologies for ''JOYO'' and ''MONJU'' control rods. Laboratory studies were performed to obtain the information for absorber materials. The design and fabrication of the sealed and vented type control rod pins were completed, and water loop tests and in-sodium tests were carried out. Irradiation behavior of enriched B 4 C pellets with low and high density in DFR was examined. Japan's experimental fast reactor, JOYO, has been operated at the rated power of 50MWt and 75MWt since April 1977 when the MK-I core (breeder core) attained initial criticality. Post irradiation examinations on control rod, removed from the reactor, were carried out and their performance behavior were evaluated. In the MK-II core, a control rods monitoring program has been in investigation. Absorber Materials Irradiation Rigs (AMIR) are scheduled to be loaded and irradiated in the JOYO MK-II core from 1984. (author)

  8. Current situation of food irradiation practice in U.S.A

    International Nuclear Information System (INIS)

    Furuta, Masakazu

    1996-01-01

    It is essential that private food companies adopt the process and retail stores sell irradiated food products in order to popularize food irradiation among consumers. FOOD TECHnology Inc. (former Vindicator Inc.), which is founded in Florida 1992 for the purpose of decontamination of fruit flies infected in Oranges using 60 Co gamma-irradiation, and Carrot Top, which has been selling irradiated foods since 1992, are well known to be actively involved in PA activity of irradiated foods. Carrot Top is now strongly interested in selling tropical fruits from Hawaii, which has been prohibited to ship from Hawaii to the mainland without decontamination treatment by US government because of fruit fly infestation. They got a temporal permit for the shipment of those fruits with irradiation at Chicago. FOOD TECHnology Inc. irradiates chicken, tomatoes, strawberries and mushrooms. Foods for hospitalized patients and astronauts are also irradiated at FOOD TECHnology Inc.. All food supply for the 'Space Shuttle' program has been provided. Recently they began to irradiate frozen shrimps and salmons. Carrot Top says that irradiated food items gain popularity among their customers although they changed the information transfer method from news letter to news paper advertisement as well as minimizing the description in the store. They noted that the goods sold well whether or not they are irradiated if they are fresh, good-looking and reasonable in price. FOOD TECHnology also commented that food industries has become more friendly towards food irradiation and they petitioned FDA for clearance of beef irradiation to decontaminate E. coli 0157:H7, but the private companies still hesitated to pick up this process therefore we need more efforts of PR. (J.P.N.)

  9. AGR-2 irradiation test final as-run report, Rev. 1

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO 2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO 2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO 2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The

  10. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a

  11. The impact of microwaves irradiation and temperature manipulation ...

    African Journals Online (AJOL)

    The impact of microwaves irradiation and temperature manipulation for control of stored-products insects. ... This treatment could provide an effective and friendly environmental treatment technique in integrated pest management (IPM) program. Key words: Cold storage, microwaves, saw-toothed grain beetle, cigarette ...

  12. Three year trend analysis of food irradiation education for elementary school students

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Lee, Seung Koo; Park, Pil Han; Han, Eun Ok

    2015-01-01

    In this context, the present study was designed as part of a large-scale communication strategy for the enhancement of public understanding through the creation of a national consensus about irradiated foodstuffs. In order to provide basic data required to formulate such a strategy, elementary school students were selected as the research population in this study, in consideration of the high ripple effects expected in this population group. Analyzed were differences in perception, knowledge, and attitude regarding irradiated foods as a result of the implementation of an education program designed to enhance the understanding of food irradiation, between the baseline (pre-education) level and the post-education level. Bruhn et al. (1986) reported that even consumers with little knowledge or negative views of irradiation show favorable attitudes towards irradiated foodstuffs after being exposed to promotional materials or campaigns on processing techniques using food irradiation and their advantages

  13. Three year trend analysis of food irradiation education for elementary school students

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Seok; Lee, Seung Koo; Park, Pil Han; Han, Eun Ok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2015-10-15

    In this context, the present study was designed as part of a large-scale communication strategy for the enhancement of public understanding through the creation of a national consensus about irradiated foodstuffs. In order to provide basic data required to formulate such a strategy, elementary school students were selected as the research population in this study, in consideration of the high ripple effects expected in this population group. Analyzed were differences in perception, knowledge, and attitude regarding irradiated foods as a result of the implementation of an education program designed to enhance the understanding of food irradiation, between the baseline (pre-education) level and the post-education level. Bruhn et al. (1986) reported that even consumers with little knowledge or negative views of irradiation show favorable attitudes towards irradiated foodstuffs after being exposed to promotional materials or campaigns on processing techniques using food irradiation and their advantages.

  14. Food irradiation

    International Nuclear Information System (INIS)

    Lindqvist, H.

    1996-01-01

    This paper is a review of food irradiation and lists plants for food irradiation in the world. Possible applications for irradiation are discussed, and changes induced in food from radiation, nutritional as well as organoleptic, are reviewed. Possible toxicological risks with irradiated food and risks from alternative methods for treatment are also brought up. Ways to analyze weather food has been irradiated or not are presented. 8 refs

  15. Recent advances in detection of irradiated foods

    International Nuclear Information System (INIS)

    Kawamura, Yoko

    1996-01-01

    Food irradiation has been applied in many countries and it is desirable to establish the analytical methods needed to determine whether food has been treated or not by irradiation. These methods would serve to check the compliance with labelling regulations in permitting countries and to prevent the illegal import of irradiated foods in prohibiting countries. Initially, it was difficult to find parameters for such detection, since the irradiation treatment has few effects on food quality. Recently, detection techniques are rapidly advancing as a result of international cooperation programs of FAO/IAEA and BCR, and are very close to practicable routine application. The methods for the detection of irradiated foods are required not only discrimination but also specificity, sensitivity, stability and so on. Attempts have been made to apply physical, chemical and biological forms of measurement, and several techniques have been developed for routine analysis. The following techniques will be presented concerning their principle, applicable foods, method, detection limit and so on. Electron Spin Resonance (ESR) Method, Thermoluminescence (TL) Method, Photostimulated Luminescence (PSL) Method, Impedance Method, Viscosity Method, Volatile Hydrocarbon Method, Cyclobutanone Method, DNA Method (Mitochondrial DNA, Comet Assay), Immunochemical Detection Method, Direct Epifluorescent Filter Technique/Aerobic Plate Count (DEFT/APC) Method, Half-embryo Method. Most foodstuffs, which would be practically irradiated, could be detected if the most suitable method is used. The TL method has already been adopted as the official method of the United Kingdom (UK), and the standardized protocol of TL, ESR, Volatile Hydrocarbon and Cyclobutanone Methods could soon be established by the European Committee for Standardization (CEN). The detection technique for irradiated foods could be applied to practicable routine analysis. (author)

  16. Food Preservation by Irradiation (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Urrows, Grace M.

    1968-01-01

    Up to 30% of food harvests are lost in some parts of the world because of animal pests and microorganisms. Nuclear techniques can help reduce and extend the shelf life of these foods. Around 55 countries now have food irradiation programs. The use of radiation is the most recent step in man's attempts to preserve some of his harvest for the lean part of the year.

  17. Improving the efficiency of CDTN's Gamma Irradiation Laboratory with additional designed turntables

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Albino, Sergio Celeghini; Candido, Marcos Antonio; Grossi, Pablo Andrade; Correa, Ricardo Ferracini; Pinto, Fausto Carvalho

    2007-01-01

    The Gamma Irradiation Laboratory (LIG) of CDTN was originally supplied with four turntables. Operating with this configuration was a loss of time and irradiation volume, what induced the Irradiator's staff creating an optimisation production program. Firstly, the staff requests the Gamma Irradiator Manufacturer a quotation for new turntables, but the price was very high. Secondly, the CDTN Design Group was invited to develop new LIG turntables. The groups worked together and found a very good solution. The new turntables are much cheaper and their rotating plate diameters are increased in 5 cm and four of them were made to attend the LIG demand. They have been in operation without significant problems for 1.5 years and absorbed an estimated dose of 7 MGy. This fact confirms the design and materials good quality. Operating with the eight turntables was possible to improve the LIG irradiation capacity in six times in weigh and in volume. Irradiation time is reduced; nowadays doses up to 5 KGy can be done in the same day. For irradiation doses greater than 5 KGy, the process was speeded up by positioning the new turntables in the spaces between the original ones. With this operational configuration the samples receive the dose escaped in those spaces. Calculation of the new dose necessary for the sample is done and it is repositioned in the internals turntables to finish the irradiation process. With this technique the samples do not need to wait so much on the line. The scope of the research program includes day and night operation. Continuously operating in association with the four new turntables enhanced the original operational capacity of the LIG fifteen times. The objectives of this work are to present the developed turntables characteristics and the results acquired. (author)

  18. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.; Howard, A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented

  19. Irradiation proctitis

    International Nuclear Information System (INIS)

    Minami, Akira

    1977-01-01

    Literatures on late rectal injuries are discussed, referring to two patients with uterine cervical cancer in whom irradiation proctitis occurred after telecobalt irradiation following uterine extirpation. To one patients, a total of 5000 rads was irradiated, dividing into 250 rads at one time, and after 3 months, irradiation with a total of 2000 rads, dividing into 200 rads at one time, was further given. In another one patient, two parallel opposing portal irradiation with a total of 6000 rads was given. About a year after the irradiation, rectal injuries and cystitis, accompanying with hemorrhage, were found in both of the patients. Rectal amputation and proctotoreusis were performed. Cystitis was treated by cystic irradiation in the urological department. Pathohistological studies of the rectal specimen revealed atrophic mucosa, and dilatation of the blood vessels and edema in the colonic submucosa. Incidence of this disease, term when the disease occurs, irradiation dose, type of the disease, treatment and prevention are described on the basis of the literatures. (Kanao, N.)

  20. Irradiation proctitis

    Energy Technology Data Exchange (ETDEWEB)

    Minami, A [Osaka Kita Tsishin Hospital (Japan)

    1977-06-01

    Literatures on late rectal injuries are discussed, referring to two patients with uterine cervical cancer in whom irradiation proctitis occurred after telecobalt irradiation following uterine extirpation. To one patients, a total of 5000 rads was irradiated, dividing into 250 rads at one time, and after 3 months, irradiation with a total of 2000 rads, dividing into 200 rads at one time, was further given. In another one patient, two parallel opposing portal irradiation with a total of 6000 rads was given. About a year after the irradiation, rectal injuries and cystitis, accompanying with hemorrhage, were found in both of the patients. Rectal amputation and proctotoreusis were performed. Cystitis was treated by cystic irradiation in the urological department. Pathohistological studies of the rectal specimen revealed atrophic mucosa, and dilatation of the blood vessels and edema in the colonic submucosa. Incidence of this disease, term when the disease occurs, irradiation dose, type of the disease, treatment and prevention are described on the basis of the literatures.

  1. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

  2. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    International Nuclear Information System (INIS)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO 3 and H 2 O 2 solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area)

  3. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    International Nuclear Information System (INIS)

    Karam, M.; Dimayuga, F.C.; Montin, J.

    2010-01-01

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O 2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt.% Th and 1.53 wt.% Pu in (Th, Pu)O 2 . The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O 2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O 2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O 2 fuel performance characteristics were superior to UO 2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  4. Irradiation-induced permeability in pyrocarbon coatings. Final report of work conducted under PWS FD-12

    International Nuclear Information System (INIS)

    Kania, M.J.; Thiele, B.A.; Homan, F.J.

    1982-10-01

    Two US irradiation experiments were planned to provide information to supplement data from the German program on irradiation-induced permeability in pyrocarbon coatings. Hopefully, the data from both programs could be combined to define the onset of neutron-induced permeability in a variety of Biso coatings produced with different process variables (coating temperature, coating gases, and coating rates). The effort was not successful. None of the preirradiation characterization procedures were able to adequately predict irradiation performance. A large amount of within-batch scatter was observed in the fission gas and cesium release data along with significant within-batch variation in coating properties. Additional preirradiation characterization might result in a procedure that could successfully predict irradiation performance, but little can be done about the within-batch variation in coating properties. This variation is probably the result of random movement of particles within the coating furnace during pyrocarbon deposition. 19 figures, 4 tables

  5. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  6. Scoring irradiation mucositis in head and neck cancer patients

    International Nuclear Information System (INIS)

    Spijkervet, F.K.L.; Panders, A.K.; Saene, H.K.F. van; Vermey, A.; Mehta, D.M.

    1989-01-01

    Irradiation mucositis is defined as an inflammatory-like process of the oropharyngeal mucosa following therapeutic irradiation of patients who have head and neck cancer. Clinically, it is a serious side effect because severe mucositis can cause generalized problems (weight loss, nasogastic tube feedings) and interferes with the well-being of the patient seriously. Grading mucositis is important for the evaluation of preventive and therapeutic measures. The object of this study was to develop a scoring method based on local mucositis signs only. Four clinical local signs of mucositis were used in this score: white discoloration, erythema, pseudomembranes and ulceration. Mucositis of the oral cavity was calcualted during conventional irradiation protocol for 8 distinguishable areas using the 4 signs and their extent. A prospective evaluation of this method in 15 irradiated head and neck cancer patients displayed an S-curve reflecting a symptomless first irradiation week, followed by a rapid and steady increase of white discoloration, erythema and pseudomembranes during the second and third week. Oral candidiasis, generalized symptoms such as weight loss and the highest mucositis scores were seen after 3 weeks irradiation. The novel mucositis scoring method may be of value in studying the effect of hygiene programs, topical application of disinfectans or antibiotics on oral mucositis. (author)

  7. Scoring irradiation mucositis in head and neck cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Spijkervet, F.K.L.; Panders, A.K. (Departments of Oral and Maxillofacial Surgery, University Hospital Groningen (Netherlands)); Saene, H.K.F. van (Medical Microbiology, University of Liverpool (UK)); Vermey, A. (Department of Surgery Oncology Division, University Hospital Groningen (Netherlands)); Mehta, D.M. (Department of Radiotherapy, University Hospital Groningen (Netherlands))

    1989-01-01

    Irradiation mucositis is defined as an inflammatory-like process of the oropharyngeal mucosa following therapeutic irradiation of patients who have head and neck cancer. Clinically, it is a serious side effect because severe mucositis can cause generalized problems (weight loss, nasogastic tube feedings) and interferes with the well-being of the patient seriously. Grading mucositis is important for the evaluation of preventive and therapeutic measures. The object of this study was to develop a scoring method based on local mucositis signs only. Four clinical local signs of mucositis were used in this score: white discoloration, erythema, pseudomembranes and ulceration. Mucositis of the oral cavity was calcualted during conventional irradiation protocol for 8 distinguishable areas using the 4 signs and their extent. A prospective evaluation of this method in 15 irradiated head and neck cancer patients displayed an S-curve reflecting a symptomless first irradiation week, followed by a rapid and steady increase of white discoloration, erythema and pseudomembranes during the second and third week. Oral candidiasis, generalized symptoms such as weight loss and the highest mucositis scores were seen after 3 weeks irradiation. The novel mucositis scoring method may be of value in studying the effect of hygiene programs, topical application of disinfectans or antibiotics on oral mucositis. (author).

  8. Food irradiation

    International Nuclear Information System (INIS)

    Soothill, R.

    1987-01-01

    The issue of food irradiation has become important in Australia and overseas. This article discusses the results of the Australian Consumers' Association's (ACA) Inquiry into food irradiation, commissioned by the Federal Government. Issues discussed include: what is food irradiation; why irradiate food; how much food is consumer rights; and national regulations

  9. Gamma Irradiation Effects on Oil Palm (Elaies Guineensis) Pollen Viability, Fruits and Bunch Formations

    International Nuclear Information System (INIS)

    Aida Nazlyn Nazari; Azhar Mohamad; Shuhaimi Shamsuddin

    2014-01-01

    Assessing performance and genetic diversity of the wild material of oil palm is important for understanding genetic structure of natural oil palm populations towards improvement of the crops. This information is important for oil palm breeding programs, and also for continued ex-situ conservation of the germplasm and breeding program in Malaysia. Mutation induction is one of the alternative ways in creating variants for selection in the breeding program. In this study, evaluation on the effect of irradiated pollen towards pollen viability, bunches formation and no. of parthenocarpic fruits were conducted. Series of acute gamma radiation at dose 0, 10, 20, 40, 50, 100, 200, 300, 500, 100 and 2000 Gy were exposed to Elaies guineensis pollen. Increasing level of irradiation higher than 200 Grays (Gy) affects pollen viability based on the 12 consecutive days observation evaluated in situ conditions. Besides, at this level of irradiation (> 200 Gy), the pollen tube formation were disrupted and subsequently unable the pollen to reach the ovule which cause the embryo to aborted and contributed to the formation of parthenocarpic fruits and rotten bunches. These observations suggested that at low levels of irradiation (< 200 Gy) may damage only part of the generative nucleus while maintaining its capacity to fertilise the egg cells and lead to hybridization. (author)

  10. Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation

    International Nuclear Information System (INIS)

    Yabuuchi, Kiyohiro; Kuribayashi, Yutaka; Nogami, Shuhei; Kasada, Ryuta; Hasegawa, Akira

    2014-01-01

    Ion irradiation experiments are useful for investigating irradiation damage. However, estimating the irradiation hardening of ion-irradiated materials is challenging because of the shallow damage induced region. Therefore, the purpose of this study is to prove usefulness of nanoindentation technique for estimation of irradiation hardening for ion-irradiated materials. SUS316L austenitic stainless steel was used and it was irradiated by 1 MeV H + ions to a nominal displacement damage of 0.1, 0.3, 1, and 8 dpa at 573 K. The irradiation hardness of the irradiated specimens were measured and analyzed by Nix–Gao model. The indentation size effect was observed in both unirradiated and irradiated specimens. The hardness of the irradiated specimens changed significantly at certain indentation depths. The depth at which the hardness varied indicated that the region deformed by the indenter had reached the boundary between the irradiated and unirradiated regions. The hardness of the irradiated region was proportional to the inverse of the indentation depth in the Nix–Gao plot. The bulk hardness of the irradiated region, H 0 , estimated by the Nix–Gao plot and Vickers hardness were found to be related to each other, and the relationship could be described by the equation, HV = 0.76H 0 . Thus, the nanoindentation technique demonstrated in this study is valuable for measuring irradiation hardening in ion-irradiated materials

  11. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V., E-mail: fedorov@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2016-01-15

    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  12. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  13. Facts about food irradiation: Irradiated foods and the consumer

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet discusses market testing of irradiate food, consumer response to irradiated products has always been positive, and in some countries commercial quantities of some irradiated food items have been sold on a regular basis. Consumers have shown no reluctance to buy irradiated food products. 4 refs

  14. Food irradiation

    International Nuclear Information System (INIS)

    Matsuyama, Akira

    1990-01-01

    This paper reviews researches, commentaries, and conference and public records of food irradiation, published mainly during the period 1987-1989, focusing on the current conditions of food irradiation that may pose not only scientific or technologic problems but also political issues or consumerism. Approximately 50 kinds of food, although not enough to fill economic benefit, are now permitted for food irradiation in the world. Consumerism is pointed out as the major factor that precludes the feasibility of food irradiation in the world. In the United States, irradiation is feasible only for spices. Food irradiation has already been feasible in France, Hollands, Belgium, and the Soviet Union; has under consideration in the Great Britain, and has been rejected in the West Germany. Although the feasibility of food irradiation is projected to increase gradually in the future, commercial success or failure depends on the final selection of consumers. In this respect, the role of education and public information are stressed. Meat radicidation and recent progress in the method for detecting irradiated food are referred to. (N.K.) 128 refs

  15. Gamma Irradiation does not Cause Carcinogenesis of Irradiated Herbs

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch; Eamsiri, Jarurut; Pongpat, Suchada

    2009-07-01

    Full text: Microbial contamination of medicinal herbs can be effectively reduced by gamma irradiation. Since irradiation may cause carcinogenicity of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on carcinogenicity. The herbs studied were Pueraria candollei Grah., Curcuma longa Linn. Zingiber montanum, Senna alexandrina P. Miller, Eurycoma Longifolia Jack, Gymnostema pentaphylum Makino, Ginkgo biloba, Houttuynia cordata T., Andrographis paniculata, Thunbergia laurifolia L., Garcinia atroviridis G., and Cinnamomum verum J.S.Presl. The results showed that gamma irradiation at the dose of 10 and 25 kGy did not cause carcinogenicity of the irradiated herbs

  16. Status of IVO-FR2-Vg7 experiment for irradiation of fast reactor fuel rods

    International Nuclear Information System (INIS)

    Elbel, H.; Kummerer, K.; Bojarsky, K.; Lopez Jimenez, J.; Otero de la Gandara, J.L.

    1979-01-01

    Report on the Seminar celebrated in Madrid between KfK (Karlsruhe) and JEN (Madrid) concerning a Joint Irradiation Program of Fast Reactor Fuel Rods. The design of fuel rods in general is defined, and, in particular of those with a density 94% DT and diameter 7.6 mm up to a burn-up of 7% FIMA, to be irradiated in the FR2 Reactor (Karlsruhe). Together with the design of NaK and single-wall capsules used in this irradiation, other possibilities of irradiation in the reactor will also be described. (auth.)

  17. Food irradiation

    International Nuclear Information System (INIS)

    Duchacek, V.

    1989-01-01

    The ranges of doses used for food irradiation and their effect on the processed foods are outlined. The wholesomeness of irradiated foods is discussed. The present food irradiation technology development in the world is described. A review of the irradiated foods permitted for public consumption, the purposes of food irradiaton, the doses used and a review of the commercial-scale food irradiators are tabulated. The history and the present state of food processing in Czechoslovakia are described. (author). 1 fig., 3 tabs., 13 refs

  18. AGR 3/4 Irradiation Test Final As Run Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several fuel and material irradiation experiments have been planned for the Idaho National Laboratory Advanced Reactor Technologies Technology Development Office Advanced Gas Reactor Fuel Development and Qualification Program (referred to as the INL ART TDO/AGR fuel program hereafter), which supports the development and qualification of tristructural-isotropic (TRISO) coated particle fuel for use in HTGRs. The goals of these experiments are to provide irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, support development and validation of fuel performance and fission product transport models and codes, and provide irradiated fuel and materials for post irradiation examination and safety testing (INL 05/2015). AGR-3/4 combined the third and fourth in this series of planned experiments to test TRISO coated low enriched uranium (LEU) oxycarbide fuel. This combined experiment was intended to support the refinement of fission product transport models and to assess the effects of sweep gas impurities on fuel performance and fission product transport by irradiating designed-to-fail fuel particles and by measuring subsequent fission metal transport in fuel-compact matrix material and fuel-element graphite. The AGR 3/4 fuel test was successful in irradiating the fuel compacts to the burnup and fast fluence target ranges, considering the experiment was terminated short of its initial 400 EFPD target (Collin 2015). Out of the 48 AGR-3/4 compacts, 42 achieved the specified burnup of at least 6% fissions per initial heavy-metal atom (FIMA). Three capsules had a maximum fuel compact average burnup < 10% FIMA, one more than originally specified, and the maximum fuel compact average burnup was <19% FIMA for the remaining capsules, as specified. Fast neutron fluence fell in the expected range of 1.0 to 5.5×1025 n/m2 (E >0.18 MeV) for all compacts. In addition, the AGR-3/4 experiment was globally successful in keeping the

  19. Irradiated fuel by-product separation research in Canada

    International Nuclear Information System (INIS)

    Burston, M.

    1984-01-01

    Although no decision has been made to reprocess irradiated CANDU fuel, by-product separation research has recently been initiated in Canada because of its potential importance to Canadian research programs in advanced fuel cycles (especially U/Pu cycle development in the near term) and nuclear waste management. In addition, separated by-products could have a significant commercial potential. Demonstrated applications include: heat sources, gamma radiation sources, light sources, new materials for productions of other useful isotopes, etc. For illustrative purposes the calculated market value of by-products currently stored in irradiated CANDU fuel is approximately $210/kgU. Ontario Hydro has initiated a program to study the application of new separation technolgies, such as laser-based techniques and the plasma ion cyclotron resonance separation technique, to either augment and/or supplant the chemical extraction methods. The main goal is to develop new, more economical extraction methods in order to increase the magnitude of the advantages resulting from this approach to reprocessing. (author)

  20. Irradiated foods

    International Nuclear Information System (INIS)

    Darrington, Hugh

    1988-06-01

    This special edition of 'Food Manufacture' presents papers on the following aspects of the use of irradiation in the food industry:- 1) an outline view of current technology and its potential. 2) Safety and wholesomeness of irradiated and non-irradiated foods. 3) A review of the known effects of irradiation on packaging. 4) The problems of regulating the use of irradiation and consumer protection against abuse. 5) The detection problem - current procedures. 6) Description of the Gammaster BV plant in Holland. 7) World outline review. 8) Current and future commercial activities in Europe. (U.K.)

  1. Modeling of complex melting and solidification behavior in laser-irradiated materials [a description and users guide to the LASER8 computer program

    International Nuclear Information System (INIS)

    Geist, G.A.; Wood, R.F.

    1985-11-01

    The conceptual foundation of a computational model and a computer program based on it have been developed for treating various aspects of the complex melting and solidification behavior observed in pulsed laser-irradiated materials. A particularly important feature of the modeling is the capability of allowing melting and solidification to occur at temperatures other than the thermodynamic phase change temperatures. As a result, interfacial undercooling and overheating can be introduced and various types of nucleation events can be simulated. Calculations on silicon with the model have shown a wide variety of behavior, including the formation and propagation of multiple phase fronts. Although originally developed as a tool for studying certain problems arising in the field of laser annealing of semiconductors, the program should be useful in treating many types of systems in which phase changes and nucleation phenomena play important roles. This report describes the underlying physical and mathematical ideas and the basic relations used in LASER8. It also provides enough specific and detailed information on the program to serve as a guide for its use; a listing of one version of the program is given

  2. AGC-3 Experiment Irradiation Monitoring Data Qualification Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Laurence C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Technology Development Office

    2014-08-01

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear-grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC-3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC-3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. The report documents qualification of AGC-3 experiment irradiation monitoring data following MCP-2691. This report also documents whether AGC-3 experiment irradiation monitoring data meet the requirements for data collection as specified in technical and functional requirements documents and quality assurance (QA) plans. Data handling is described showing how data are passed from the data collection experiment to the Nuclear Data Management and Analysis System (NDMAS) team. The data structure is described, including data batches, components, attributes, and response variables. The description of the approach to data qualification includes the steps taken to qualify the data and the specific tests used to verify that the data meet requirements. Finally, the current status of the data received by NDMAS from the AGC-3 experiment is presented with summarized information on test results and resolutions. This report addresses all of the irradiation monitoring data collected during the AGC-3 experiment.

  3. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below

  4. Radiation-induced aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1993-02-01

    The experimental program is designed to reveal details of the metamict (amorphization, or crystal-to-glass) transformation in irradiated ceramics (silica compounds, less-connected lead phosphates). The silica compounds were amorphized using electrons, neutrons, and ions, while the phosphates were amorphized using ions (primarily) and neutrons. Energy-filtered electron microdiffraction, high-resoltuion transmission electron microscopy, and high-performance liquid-phase chromatography are being used

  5. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  6. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  7. Software for planning processes gamma irradiation sterilization of products intended for health care

    International Nuclear Information System (INIS)

    Gonzalez, Juan P; Carrillo, Miguel A; Mangussi, Josefina; Menendez, Franco

    2012-01-01

    In this work was developed an application software for PC, with a friendly interface whose main objective is to facilitate the planning processes for gamma irradiation of health care devices for a irradiation plant, decreasing costs and delays caused in the dosimetry and pretesting. Wascreated a program that predicts, previously establishing the location of a plane in the enclosure of irradiation, dose rate in [kGy/h] at certain strategic points of this plane in addition to calculating the corresponding absorbed dose [kGy] for a time defined by the user (author)

  8. Progress report on irradiation experiment on small size specimens in high temperature flux module

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.; Jacquet, P.; Chaouadi, R.

    2011-02-15

    This report describes the progress made in IFREC/DEMO Research and Development Program during the year 2010 at SCK/CEN. This task is part of demonstrating the possibility to irradiate small specimens in the HFTM modules that will be used in DEMO. Different small specimens of three candidate materials of DEMO fusion reactor will be irradiated with the objective of validating the specimen geometry and size to reliably characterize the mechanical properties of unirradiated and in future of irradiated materials.

  9. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions

    International Nuclear Information System (INIS)

    Fiedler, F.

    2008-01-01

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for 3 He irradiations. For this experiments on a 3 He beam were performed. The activity yield is at equal applied dose about three times larger than at 12 C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the 3 He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work

  10. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    International Nuclear Information System (INIS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-01-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  11. Linear accelerator: a reproducible, efficacious and cost effective alternative for blood irradiation.

    Science.gov (United States)

    Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J

    2013-12-01

    The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Safety margins of PWR irradiated vessels - The Chooz A issue

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, F; Barthelet, B [Electricite de France (EDF), 75 - Paris (France); Guilleret, J C

    1988-12-31

    In 1986, some irradiated specimen of CHOOZ A (SENA) vessel showed a significant excess of {delta} RTNDT to former previsions. The lack of data on one of the two irradiated shells, and discrepancies between dosimeters results and available previous fluence calculations whose accuracy was questionable, cause the safety authorities to require an important complementary work program before putting again the plant on the grid after 1987 fuel reloading. These works are presented and discussed. They lead to a state that a conservative to day value of the vessel RTNDT is 64 degrees Celsius and that there is no underclad defect in the vessel wall and welds. Then the plant was allowed to restart with certitude that vessel irradiation will not impair its lifetime. (author). 4 refs.

  13. Storage tests with irradiated and non-irradiated onions

    International Nuclear Information System (INIS)

    Gruenewald, T.; Rumpf, G.; Troemel, I.; Bundesforschungsanstalt fuer Ernaehrung, Karlsruhe

    1978-07-01

    The results of several test series on the storage of irradiated and non-irradiated German grown onion are reported. Investigated was the influence of the irradiation conditions such as time and dose and of the storage conditions on sprouting, spoilage, browning of the vegetation centres, composition of the onions, strength and sensorial properties of seven different onion varieties. If the onions were irradiated during the dormancy period following harvest, a dose of 50 Gy (krad) was sufficient to prevent sprouting. Regarding the irradiated onions, it was not possible by variation of the storage conditions within the limits set by practical requirements to extend the dormancy period or to prevent browning of the vegetation centres, however. (orig.) 891 MG 892 RSW [de

  14. Food irradiation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The article explains what radiation does to food to preserve it. Food irradiation is of economic importance to Canada because Atomic Energy of Canada Limited is the leading world supplier of industrial irradiators. Progress is being made towards changing regulations which have restricted the irradiation of food in the United States and Canada. Examples are given of applications in other countries. Opposition to food irradiation by antinuclear groups is addressed

  15. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  16. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  17. Characterization of Irradiated and Non-Irradiated Rubber from Automotive Scrap Tires

    Science.gov (United States)

    Souza, Clécia Moura; Silva, Leonardo G.

    The aim of this work was to characterize the samples of irradiated and non-irradiated rubber from automotive scrap tires. Rubber samples from scrap tires were irradiated at irradiation doses of 200, 400 and 600kGy in an electron beam accelerator. Subsequently, both the irradiated and non-irradiated samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), tensile strength mechanical test, and Fourier transform infrared (FTIR) spectrophotometry.

  18. Consumer opinions in Argentina on food irradiation: irradiated onions

    International Nuclear Information System (INIS)

    Curzio, O.A.; Croci, C.A.

    1998-01-01

    Two surveys were carried out in Buenos Aires of consumer attitudes towards irradiated onions [no data given]. The first investigated the general level of consumer knowledge concerning food irradiation, whilst the second (which covered consumers who had actually bought irradiated onions) examined reasons for purchase and consumer satisfaction. Results reveal that more than 90% of consumers surveyed had a very limited knowledge of food irradiation

  19. High Burnup Effects Program

    International Nuclear Information System (INIS)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the course of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs

  20. From the Phenix irradiation end to the analytical results: PROFIL R target destructive characterization

    International Nuclear Information System (INIS)

    Ferlay, G.; Dancausse, J. Ph.

    2009-01-01

    In the French long-lived radionuclide (LLRN) transmutation program, several irradiation experiments were initiated in the Phenix fast neutron reactor to obtain a better understanding of the transmutation processes. The PROFIL experiments are performed in order to collect accurate information on the total capture integral cross sections of the principal heavy isotopes and some important fission products in the spectral range of fast reactors. One of the final goals is to diminish the uncertainties on the capture cross-section of the fission products involved in reactivity losses in fast reactors. This program includes two parts: PROFIL-R irradiated in a standard fast reactor spectrum and PROFIL-M irradiated in a moderated spectrum. The PROFIL-R and PROFIL-M irradiations were completed in August 2005 and May 2008, respectively. For both irradiations more than a hundred containers with isotopes of pure actinides and other elements in different chemical forms must be characterized. This raises a technical and analytical challenge: how to recover by selective dissolution less than 5 mg of isotope powder from a container with dimensions of only a few millimeters using hot cell facilities, and how to determine analytically both trace and ultra-trace elemental and isotopic compositions with sufficient accuracy to be useful for code calculations. (authors)

  1. Microstructural examination of irradiated zircaloy-2 pressure tube material

    International Nuclear Information System (INIS)

    Srivastava, D.; Tewari, R.; Dey, G.K.; Sah, D.N.; Banerjee, S.

    2005-01-01

    Irradiation induced microstructural changes in Zr alloys strongly influence the creep, growth and mechanical properties of pressure tube material. Since dimensional changes and mechanical property degradation can limit the life of pressure tube, it is essential to study and develop an understanding of the microstructure produced by neutron irradiation, by examining samples taken from the irradiated components. In the present work, an effort has been made to examine, microstructure of the Zircaloy-2 pressure tube material irradiated in the Indian Pressurized Heavy Water Reactor (PHWR). The present work is a first step towards a comprehensive program of characterization of microstructure of reactor materials after irradiation to different fluence levels in power reactors. In this study, samples from a Zircaloy-2 pressure tube, which had been in operation in the high flux region of Rajasthan Atomic Power Station Unit 1, for a period for 6.77 effective full power years (EFPYs), have been prepared and examined. The samples selected from the tube are expected to have a cumulative radiation damage of about 3 dpa. Samples prepared from the off cuts of RAPS-1 pressure tubes were also studied for examining the unirradiated microstructure of the material. The samples were examined in a 200kV JEOL 2000 FX microscope. This paper presents the distinct features observed in irradiated sample and a comprehensive comparison of the microstructures of the unirradiated and irradiated material. The effect of annealing on the annihilation of the defects generated during irradiation has been also studied. The bright field micrographs revealed that microstructure of the irradiated samples was different in many respects from the microstructure of the unirradiated samples. The presence of defect structure in the form of loops etc could be seen in the irradiated sample. These loops were mostly c-type loops lying in the basal plane. The dissolution and redistribution of the precipitates were

  2. Establishment of experimental equipments in irradiation technology development building (2)

    International Nuclear Information System (INIS)

    Shibata, Hiroshi; Nakano, Hiroko; Suzuki, Yoshitaka; Ohtsuka, Noriaki; Nishikata, Kaori; Takeuchi, Tomoaki; Hirota, Noriaki; Tsuchiya, Kunihiko

    2018-01-01

    From the viewpoints of utilization improvement of the Japan Materials Testing Reactor (JMTR), the experimental devices have been established for the out-pile tests in the irradiation technology development building. The devices for the irradiation capsule assembly, material tests and inspections were established at first and experimental data were accumulated before the neutron irradiation tests. On the other hand, after the Great East Japan Earthquake, the repairs and earthquake-resistant measures of the existing devices were carried out. New devices and equipments were also established for the R and D program for power plant safety enhancement of the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI) and 99 Mo/ 99m Tc production development under the Tsukuba International Strategic Zone. This report describes the outline and basic operation manuals of the devices established from 2011 to 2016 and the management points for the safety works in the irradiation technology development building. (author)

  3. Facts about food irradiation: Chemical changes in irradiated foods

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet addresses the safety of irradiated food. The irradiation process produces very little chemical change in food, and laboratory experiments have shown no harmful effects in animals fed with irradiated milk powder. 3 refs

  4. Radiation Effect on Secondary Cancerization by Tumour Cell Grafts. Take of Irradiated Tumour Cells in Irradiated and Non-Irradiated Animals

    Energy Technology Data Exchange (ETDEWEB)

    Costachel, O.; Sandru, Gh.; Kitzulescu, I. [Oncological Institute, Bucharest (Romania)

    1969-11-15

    This study was designed to determine the ability of haemocytoblastoma, SME and Jensen tumours, which had been irradiated in vitro, to take in C{sub 57}BL/6 mice or Wistar rats that were whole-body irradiated at 0.4 kR and 0.6 kR respectively. It was found-that the take of tumour cell grafts irradiated in vitro increased in whole-body irradiated mice and rats but not in non-irradiated ones. When Wistar rats, that had been whole-body irradiated with 0.7 and 0.8 kR 1 - 7 months earlier and survived after treatment, were grafted with Jensen tumour cells irradiated in vitro with 3 kR they were found to develop tumours and lung metastases (in contrast to non-irradiated rats). A cross resistance against non-irradiated Jensen tumour cells was obtained in non- irradiated Wistar rats by grafting irradiated Jensen tumour cells. Chromosomal analysis showed two supplementary giant markers in the Jensen tumour cells that had been irradiated in vitro before grafting. (author)

  5. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  6. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.

  7. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  8. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Yongqiang; Liu, Juan [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhang, Chonghong, E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Chen, Jiachao [Paul Scherrer Institute, Villigen PSI (Switzerland); Yang, Yitao; Zhang, Liqing; Song, Yin [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2015-06-15

    Highlights: • Fractal dimensions of fracture surfaces of steels before and after irradiation were calculated. • Fractal dimension can effectively describe change of fracture surfaces induced by irradiation. • Correlation of change of fractal dimension with embrittlement of irradiated steels is discussed. - Abstract: A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.

  9. Microstructure of HFIR-irradiated 12-Cr 1 MoVW ferritic steel

    International Nuclear Information System (INIS)

    Vitek, J.M.; Klueh, R.L.

    1983-01-01

    As part of the fusion materials development program in the United States, a 12 Cr-1 MoVW ferritic steel was irradiated in the High Flux Isotope Reactor (HFIR) to a damage level of 36 dpa at 300, 400, 500, and 600 0 C. During irradiation in HFIR, a transmutation reaction of nickel results in the production of helium, to a level of 99 at. ppM in the present experiment. The microstructures were evaluated after irradiation and the results are presented. Cavities were found at all temperatures. Small cavities (3 to 9 nm) were observed after irradiation at 300, 500 and 600 0 C. At 500 and 600 0 C, the cavities were found preferentially at dislocations, lath boundaries, and prior austenite grain boundaries. After irradiation at 400 0 C, larger cavities (4 to 30 nm) were observed homogeneously distributed throughout the tempered martensite structure. The maximum swelling was 0.07% after irradiation at 400 0 C. Comparision of the results with other studies in which helium was not present at such high levels indicated helium enhances the swelling of 12 Cr-1 MoVW

  10. Residual stress improvement mechanism on metal material by underwater laser irradiation

    International Nuclear Information System (INIS)

    Sano, Yuji; Yoda, Masaki; Mukai, Naruhiko; Obata, Minoru; Kanno, Masanori

    2000-01-01

    Residual stress improvement technology for component surface by underwater pulsed laser irradiation has been developed as a method of preventing stress corrosion cracking (SCC) of core components in nuclear reactors. In order to optimize the laser irradiation conditions based on a complete understanding of the mechanism, the propagation of a shock wave induced by the impulse of laser irradiation and the dynamic response of the irradiated material were analyzed through time-dependent elasto-plastic calculations with a finite element program. The calculated results are compared with the measured results obtained by experiments in which laser pulses with an energy of 200 mJ are focused to a diameter of 0.8 mm on a water-immersed test piece of 20% cold-worked Type 304 austenitic stainless steel to simulate neutron irradiation hardening. A residual compressive stress, which is nearly equivalent to the yield stress of the processed material, remains on the material surface after passage of the shock wave with enough amplitude to induce a permanent strain. Multiple irradiation of laser pulses extends the stress-improved depth to about 1 mm, which would be the limit corresponding to the three-dimensional dispersion effect of the shock wave. (author)

  11. Food irradiation

    International Nuclear Information System (INIS)

    Beyers, M.

    1977-01-01

    The objectives of food irradiation are outlined. The interaction of irradiation with matter is then discussed with special reference to the major constituents of foods. The application of chemical analysis in the evaluation of the wholesomeness of irradiated foods is summarized [af

  12. PFR/TREAT program: objectives, accomplishments, and plans

    International Nuclear Information System (INIS)

    Cowking, C.B.; Alter, H.; Stillwell, J.; Wood, M.H.; Woods, W.J.; Culley, G.E.; Klickman, A.E.; Borys, S.S.

    1984-01-01

    The PFR-TREAT collaborative program of transient safety testing of fast reactor fuel was established in 1979 to provide mutual advantage to USDOE and the UKAEA through irradiation of US and UK full-length fuel pins in PFR, followed by safety testing in TREAT. The tests which were planned include Transient Over-Power (TOP) and Transient Under-Cooling with Over-Power (TUCOP) tests to fuel destruction and re-distribution; the results will provide significant new information on fuel and cladding behavior in hypothetical reactor faults. The information obtained in both US and UK fuel pins is to be interpreted by both partners and published jointly when mutually agreed. Thirteen tests, on fresh and irradiated fuel, in single-pin and 7-pin test sections, were completed by the end of 1983. The test matrix, which is currently being re-evaluated, calls for additional tests to be run under the present agreement. There has been an extensive program of post irradiation examination of sibling pins in both the UK and the US to characterize the test fuel prior to destructive irradiation, including testing of irradiated cladding to determine its failure characteristics

  13. Food irradiation

    International Nuclear Information System (INIS)

    Macklin, M.

    1987-01-01

    The Queensland Government has given its support the establishment of a food irradiation plant in Queensland. The decision to press ahead with a food irradiation plant is astonishing given that there are two independent inquiries being carried out into food irradiation - a Parliamentary Committee inquiry and an inquiry by the Australian Consumers Association, both of which have still to table their Reports. It is fair to assume from the Queensland Government's response to date, therefore, that the Government will proceed with its food irradiation proposals regardless of the outcomes of the various federal inquiries. The reasons for the Australian Democrats' opposition to food irradiation which are also those of concerned citizens are outlined

  14. CRPE: Cesium Return Program Experience FY 1995

    International Nuclear Information System (INIS)

    Clements, E.P.

    1995-11-01

    Since 1945, the chemical reprocessing of irradiated nuclear fuels in the Hanford Chemical Separation areas has resulted in the generation of significant volumes of high-level, liquid, radioactive, by-product materials. However, because these materials were recognized to have beneficial uses, their disposal was delayed. To investigate the possibilities, the By-product Utilization Program (BUP) was initiated. The program mission was to develop a means for the application of radioactive-fission products for the benefit of society. Cs capsules were fabricated and distributed to private irradiation facilities for beneficial product sterilization. In June of 1988, a small leak developed in one of the Cs capsules at a private irradiator facility that is located in Decatur, Georgia. This leak prompted DOE to remove these capsules and to re-evaluate the BUP with the irradiator facilities that were currently using Cs capsules. As a result of this evaluation, a recall was issued to require that all remaining Cs capsules be returned to Hanford for safe management and storage pending final capsule disposition. The WHC completed the return of 309 capsules from a private irradiation facility, located in Northglenn, Colorado, to the Hanford Reservation. The DOE is also planning to remove 25 Cs capsules from a small, private irradiator facility located in Lynchburg, Virginia. This small irradiator facility is currently operational and uses the capsules for the underwater irradiation of wood-flooring products. This report discusses transportation-related activities that WHC has researched, developed, implemented, and is currently managing to ensure the safe and efficient movement of Cs-137 back to the Hanford Reservation

  15. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    International Nuclear Information System (INIS)

    Jona, R.; Fronda, A.

    1990-01-01

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30 0 C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers. (author)

  16. Beryllium irradiation embrittlement test programme. Material and specimen specification, manufacture and qualification

    International Nuclear Information System (INIS)

    Harries, D.R.; Dalle Donne, M.

    1996-06-01

    The report presents the specification, manufacture and qualification of the beryllium specimens to be irradiated in the BR2 reactor in Mol to investigate the effect of the neutron irradiation on the embrittlement as a function of temperature and beryllium oxide content. This work was been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe and is supported by the European Union within the European Fusion Technology Program. (orig.)

  17. Crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1994-03-01

    The objective of the Heavy-Section Steel Irradiation Program Sixth Irradiation Series is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest toughness data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degrees C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). This is the second report giving the results of the tests on irradiated duplex-type crack-arrest specimens. A previous report gave results of tests on irradiated weld-embrittled-type specimens. Charpy V-notch (CVN) specimens irradiated in the same capsules as the crack-arrest specimens were also tested, and a 41-J transition temperature shift was determined from these specimens. open-quotes Mean close-quote curves of the same form as the American Society of Mechanical Engineers (ASME) K la curve were fit to the data with only the open-quotes reference temperatureclose quotes as a parameter. The shift between the mean curves agrees well with the 41-J transition temperature shift obtained from the CVN specimen tests. Moreover, the four data points resulting from tests on the duplex crack-arrest specimens of the present study did not make a significant change to mean curve fits to either the previously obtained data or all the data combined

  18. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  19. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  20. Fracture toughness and stress relief response of irradiated Type 347/348 stainless steel

    International Nuclear Information System (INIS)

    Haggag, F.M.

    1985-01-01

    A test program has experimentally determined: (1) The fracture toughness of Type 347/348 stainless steel (SS) specimens with high values of irradiation fluence (2.3 to 4.8 x 10 22 n/cm 2 , E > 1.0 MeV) and experiencing different levels of irradiation creep (0.0, 0.6, 1.1, 1.8%), (2) the effect of thermal stress relief on fracture toughness recovery for the highly irradiated material, and (3) the mechanisms associated with fracture toughness recovery due to thermal stress relief. The postirradiation fracture toughness tests and tensile tests were conducted at 427 0 C

  1. NRC data base for power reactor surveillance programs and for irradiation experiments results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.

    1991-01-01

    The radiation damage of pressure vessel materials in nuclear reactors depends on many different factors, primarily fluence, fluence spectrum, fluence rate, irradiation temperature, and chemistry. These factors and, possibly, others such as heat treatment and type of flux used in weldments must be considered to reliably predict the pressure vessel embrittlement and to assure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters, low-leakage fuel management, possible life extension, and the need for annealing of the pressure vessel. Large numbers of data obtained from surveillance capsules and test reactor experiments are needed, comprising many different materials and different irradiation conditions, to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. The US Nuclear Regulatory Agency has, therefore, sponsored a project to construct an Embrittlement Data Base (EDB) for a comprehensive collection of data concerning changes in material properties of pressure vessel steels due to neutron irradiation. A first version containing data from surveillance capsules of commercial power reactors, the Power Reactor Embrittlement Data Base (PR-EDB) Version 1, has been completed and is available to authorized users from the Radiation Shielding Information Center at the Oak Ridge National Laboratory. This document provides a discussion of the features of the current database. 1 fig

  2. Foodstuff irradiation

    International Nuclear Information System (INIS)

    1982-01-01

    Report written on behalf of the Danish Food Institute summarizes national and international rules and developments within food irradiation technology, chemical changes in irradiated foodstuffs, microbiological and health-related aspects of irradiation and finally technological prospects of this conservation form. Food irradiatin has not been hitherto applied in Denmark. Radiation sources and secondary radiation doses in processed food are characterized. Chemical changes due to irradiation are compared to those due to p.ex. food heating. Toxicological and microbiological tests and their results give no unequivocal answer to the problem whether a foodstuff has been irradiated. The most likely application fields in Denmark are for low radiation dosis inhibition of germination, riping delay and insecticide. Medium dosis (1-10 kGy) can reduce bacteria number while high dosis (10-50 kGy) will enable total elimination of microorganisms and viruses. Food irradiation can be acceptable as technological possibility with reservation, that further studies follow. (EG)

  3. Austin: austenitic steel irradiation E 145-02 Irradiation Report

    International Nuclear Information System (INIS)

    Genet, F.; Konrad, J.

    1987-01-01

    Safety measures for nuclear reactors require that the energy which might be liberated in a reactor core during an accident should be contained within the reactor pressure vessel, even after very long irradiation periods. Hence the need to know the mechanical properties at high deformation velocity of structure materials that have received irradiation damage due to their utilization. The stainless steels used in the structures of reactors undergo damage by both thermal and fast neutrons, causing important changes in the mechanical properties of these materials. Various austenitic steels available as structural materials were irradiated or are under irradiation in various reactors in order to study the evolution of the mechanical properties at high deformation velocity as a function of the irradiation damage rate. The experiment called AUSTIN (AUstenitic STeel IrradiatioN) 02 was performed by the JRC Petten Establishment on behalf of Ispra in support of the reactor safety programme

  4. Morphological characterization of the reproductive system of irradiated Anastrepha fraterculus

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Andrea [Instituto de Sanidad y Calidad Agropecuaria de Mendoza (ISCAMEN), Mendoza (Argentina); Vera, M Teresa [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), (Argentina); Yusef, Veronica [Comision Nacional de Energia Atomica (Argentina). Centro Atomico Ezeiza; Oviedo, Andrea [Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman (Argentina)

    2006-07-01

    Field identification of released sterile insects is a major issue for eradication and suppression programs. Irradiated flies are normally identified by the presence of a fluorescent dye. When a fly lacks fluorescent dye, determination of gonadal state is necessary to identified between sterile or fertile flies. This is particularly relevant when population levels have decreased. Animal and identification is required to be as unequivocal as possible. Here we describe the reproductive system of irradiated Anastrepha fraterculus of different ages and we compare it with that of fertile flies in order to provide a diagnosis tool. Fertile and irradiated A. fraterculus were dissected from the day of emergence and until 15 days of age. Gross morphology was described and the gonads were measured. Germ cells were visualized in the testis. The reproductive systems of both males and females contained the same structures as other Anastrepha species. From day 1 to day 3, there were no detectable differences between irradiated and fertile males. The growing region encompassed half the testis total length and there was no free sperm in the seminal vesicle. On day 4 the presence of free sperm was seen in the seminal vesicle. At this stage irradiated males started differentiating from fertile ones: the growing region reduced in size and totally disappeared by day 11; sperm bundle zones occupied most of the testis; spermatids lost their triangular shape and sperm remained in the seminal vesicle without moving into the apical region. Testis length and width of irradiated males did not differ from fertile males. In females, the maturation of the ovaries involved a change in size that was more pronounced in the length of the ovary. This became noticeable at day 3. At this stage, the formation of yolk and the basal follicle began in fertile females and the oocyte had the same size as the trophocytes. From this point, the oocyte started growing. After day 8, the maturing oocyte reached

  5. Morphological characterization of the reproductive system of irradiated Anastrepha fraterculus

    International Nuclear Information System (INIS)

    Bartolucci, Andrea; Vera, M. Teresa; Yusef, Veronica

    2006-01-01

    Field identification of released sterile insects is a major issue for eradication and suppression programs. Irradiated flies are normally identified by the presence of a fluorescent dye. When a fly lacks fluorescent dye, determination of gonadal state is necessary to identified between sterile or fertile flies. This is particularly relevant when population levels have decreased. Animal and identification is required to be as unequivocal as possible. Here we describe the reproductive system of irradiated Anastrepha fraterculus of different ages and we compare it with that of fertile flies in order to provide a diagnosis tool. Fertile and irradiated A. fraterculus were dissected from the day of emergence and until 15 days of age. Gross morphology was described and the gonads were measured. Germ cells were visualized in the testis. The reproductive systems of both males and females contained the same structures as other Anastrepha species. From day 1 to day 3, there were no detectable differences between irradiated and fertile males. The growing region encompassed half the testis total length and there was no free sperm in the seminal vesicle. On day 4 the presence of free sperm was seen in the seminal vesicle. At this stage irradiated males started differentiating from fertile ones: the growing region reduced in size and totally disappeared by day 11; sperm bundle zones occupied most of the testis; spermatids lost their triangular shape and sperm remained in the seminal vesicle without moving into the apical region. Testis length and width of irradiated males did not differ from fertile males. In females, the maturation of the ovaries involved a change in size that was more pronounced in the length of the ovary. This became noticeable at day 3. At this stage, the formation of yolk and the basal follicle began in fertile females and the oocyte had the same size as the trophocytes. From this point, the oocyte started growing. After day 8, the maturing oocyte reached

  6. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  7. Programs of the Materials and Radiation Effects Branch

    International Nuclear Information System (INIS)

    Dalder, E.N.C.

    1976-01-01

    This report describes specific efforts devoted to resolving fusion reactor materials needs as they relate to major fusion power program objectives and construction of major fusion facilities. Summaries of ERDA-sponsored research being conducted on the following areas are given: surface program, bulk irradiation program, dosimetry program, materials selection and development program, and neutron source development program

  8. Irradiation of goods

    International Nuclear Information System (INIS)

    Huebner, G.

    1992-01-01

    The necessary dose and the dosage limits to be observed depend on the kind of product and the purpose of irradiation. Product density and density distribution, product dimensions, but also packaging, transport and storage conditions are specific parameters influencing the conditions of irradiation. The kind of irradiation plant - electron accelerator or gamma plant - , its capacity, transport system and geometric arrangement of the radiation field are factors influencing the irradiation conditions as well. This is exemplified by the irradiation of 3 different products, onions, deep-frozen chicken and high-protein feed. Feasibilities and limits of the irradiation technology are demonstrated. (orig.) [de

  9. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  10. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  11. Current status of food irradiation overseas. Data update from 2013

    International Nuclear Information System (INIS)

    Todoriki, Setsuko

    2015-01-01

    As the movement of international standards and specifications, the treatment standards related to food irradiation have been summarized on the basis of the ISPM 28 Annex PT-19 of International Plant Protection Convention. As the movement in the United States, there are the following tables: (1) food and radiation dose approved by FDA, (2) lowest radiation dose for the pests of each quarantine target stipulated by the USDA/APHIS as the plant quarantine authorities of the United States Department of Agriculture, (3) items and production sites of vegetables/fruits about which irradiation treatment in import phytosanitary has been approved by USDA, and (4) import volume of irradiated fruits into the United States. The following statistics have also been summarized: (1) materials and irradiation dose permitted FSANZ, which is the food safety regulatory authorities of Australia and New Zealand, and (2) irradiation-treated amount of each food in the EU territory in 2013, and treated amount in each country. In Asia, the amount and facilities of irradiation treatment are described for ten countries including China, Thailand, India, etc. As the contents of the Coordinated Research Programs (CRPs) of International Atomic Energy Agency (IAEA), the following are introduced: (1) three items including 'Development of generic irradiation doses for quarantine treatments,' and (2) three items of the contents of 'The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology for Asia and the Pacific: RCA).' (A.O.)

  12. Response of irradiated diet fed rats to whole body X irradiation

    International Nuclear Information System (INIS)

    Hasan, S.S.; Kushwaha, A.K.S.

    1985-01-01

    The response to whole body X irradiation has been studied in the brain of rats fed both on a normal diet (consisting of equal parts of wheat and gram flour) and on a low protein irradiated diet (consisting of a part of normal diet and three parts of wheat). The activity of enzymes related to the glucose metabolism (glucose 6-phosphate dehydrogenase and fructose diphosphate aldolase) is reduced, while that of peroxidant enzymes (catalase and lipid peroxidase) increased in the brain of rats that received a diet poor in proteins and irradiated diets (normal or hypoproteic). DNA and RNA levels and protein content show a significant reduction in the brain of rats with hypoproteic and irradiated diets. The total body irradiation causes serious alterations in the brain in animals with a hypoproteic malnutritions due both to a low protein and an irradiated diet. The brain of rats fed on a low protein and irradiated diet exhibits after whole body irradiation damages more severe than those in rats fed on a normal irradiated diet

  13. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  14. FFTF-cycle 10 program and future plan

    Science.gov (United States)

    Kohyama, Akira

    1988-04-01

    Brief outlines are provided of the FFTF cycle 10 program and future plans in consideration. The primary objective of the Japan-US collaboration program is to enable predictions of material behavior in MFRs to be made from data obtained in other irradiation environments. Major program goals are outlined.

  15. Microcomputer-based systems for automatic control of sample irradiation and chemical analysis of short-lived isotopes

    International Nuclear Information System (INIS)

    Bourret, S.C.

    1974-01-01

    Two systems resulted from the need for the study of the nuclear decay of short-lived radionuclides. Automation was required for better repeatability, speed of chemical separation after irradiation and for protection from the high radiation fields of the samples. A MCS-8 computer was used as the nucleus of the automatic sample irradiation system because the control system required an extensive multiple-sequential circuit. This approach reduced the sequential problem to a computer program. The automatic chemistry control system is a mixture of a fixed and a computer-based programmable control system. The fixed control receives the irradiated liquid sample from the reactor, extracts the liquid and disposes of the used sample container. The programmable control executes the chemistry program that the user has entered through the teletype. (U.S.)

  16. Study of bixin oxidation by ionizing irradiation

    International Nuclear Information System (INIS)

    Fonseca, Thais N.; Teixeira, Paula S.; Moura, Eduardo de; Geraldo, Áurea Beatriz C.

    2017-01-01

    Brazil is the world's largest producer of anatto, followed by Kenya and Peru. The fruit of the annatto tree is constituted by a capsule containing external spines and internal seeds with reddish coloration, providing a natural pigment which is environmentally efficient, being able to replace synthetic pigments and dyes. The active substance of the pigment is Bixin, which is a type of carotenoid which constitutes a greater percentage of pigment in these seeds and has a lipo soluble character. Bixin reacts with NaOH in a saponification reaction giving norbixin, which is water soluble. It is known that the destination of the dye extracted from the fruit is intended for industry, especially the food industry. The culture of annatto tree brings prospects of development in agricultural programs for medium and small producers, which are able to use decadent areas of other crops. In addition to the food sector, new applications for the pigment helps the development of family farming. The pigment extracted from annatto undergoes a natural oxidation; this work aims to evaluate this phenomenon and also the oxidation of the pigment after the irradiation process. This work also evaluates of the how the oxidation process is affected by irradiation and the modifications introduced to irradiated pigments. Irradiated and nonirradiated samples were characterized by thermogravimetry, UV-vis spectrophotometry and infrared spectroscopy (FTIR). The results are then discussed. (author)

  17. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  18. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  19. Identification of irradiated foods prospects for post-irradiation estimate of irradiation dose in irradiated dry egg products

    International Nuclear Information System (INIS)

    Katusin-Raxem, B.; Mihaljievic, B.; Razem, D.

    2002-01-01

    Radiation-induced chemical changes in foods are generally very small at the usual processing doses. Some exception is radiation degradation of lipids, which are the components most susceptible to oxidation. A possible use of lipid hydroperoxides (LOOH) as indicators of irradiation is described for whole egg and egg yolk powders. A sensitive and reproducible spectrophotometric method for LOOH measurement based on feric thiocyanate, as modified in our laboratory, was applied. This method enabled the determination of LOOH, including oleic acid hydroperoxides, which is usually not possible with some other frequently used methods. The lowest limit of 0.05 mmol LOOH/kg lipid could be measured. The measurements were performed in various batches of whole egg and egg yolk powders by the same producer, as well as in samples supplied by various producers. Baseline level in unirradiated egg powder 0.110 ± 0.067 mmol LOOH /kgL was established. The formation of LOOH with dose, as well as the influence of age, irradiation conditions, storage time and storage conditions on LOOH were investigated. The irradiation of whole egg and egg yolk powders in the presence of air revealed an initially slow increase of LOOH, caused by an inherent antioxidative capacity, followed by a fast linear increase after the inhibition dose (D o ). In all investigated samples D o of 2 kGy was determined. Hydroperoxides produced in irradiated materials decay with time. In whole egg and egg yolk powders, after an initially fast decay, the level of LOOH continued to decrease by the first-order decay. Nevertheless, after a six months storage it was still possible to unambiguously identify samples which had been irradiated with 2 kGy in the presence of air. Reirradiation of these samples revealed a significant reduction of D o to 1 kGy. In samples irradiated with 4 kGy and kept under the same conditions, the shortening of D o to 0.5 kGy was determined by reirradiation. This offers a possibility for the

  20. Comparison of irradiated and hydrogen implanted German RPV steels using PAS technique

    Energy Technology Data Exchange (ETDEWEB)

    Pecko, Stanislav, E-mail: stanislav.pecko@stuba.sk; Sojak, Stanislav; Slugeň, Vladimír

    2015-12-15

    Highlights: • German RPV steels were originally studied by positron annihilation spectroscopy. • Neutron irradiated and hydrogen ion implanted specimens were studied. • Both irradiation ways caused to increase of defect size. • We determined that the defect size was higher in implanted specimens. - Abstract: Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This spectroscopic method is a really effective tool for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to irradiation. German commercial reactor pressure vessel steels, originally from CARISMA program, were used in our study. The German experimental reactor VAK was selected as the proper irradiation facility in the 1980s. A specimen in as-received state and 2 different irradiated cuts from the same material were measured by PALS and size of defects with their intensity was indentified. Afterwards there was prepared an experiment with concern in simulation of neutron irradiation by hydrogen ion implantation on a linear accelerator with energy of 100 keV. Results are concerning on comparison between defects caused by neutron irradiation and hydrogen implantation. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to hydrogen ions implantation.

  1. Neutron metrology in the HFR. Steel irradiation R139-805 (SINAS)

    International Nuclear Information System (INIS)

    Baard, J.H.

    1996-10-01

    The experiment R139-80 is part of a material program to test austenitic stainless steel of different types and has been irradiated in the HFR Petten. This report presents the final metrology results obtained from activation monitors in the specimen holder, coded as R139-805. Data about the helium production as well as the number of displacements per atom are included. The irradiation circumstances for this experiment, carried out in a TRIO type capsule in HFR position F2, represent the conditions at the first wall of NET (Next European Torus). The aim of this irradiation for specimen holder R139-805 was to reach a damage level of 2.4 dpa at a temperature of 325 C. However, the specimens have been irradiated up to a damage level of 1.7-2.0 dpa. The main results of the thermal and fast neutron fluence measurements are presented in tables 2 and 3 as well as in the figure 2. (orig.)

  2. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Magielsen, A.J., E-mail: magielsen@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands)

    2011-08-31

    In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 deg. C and 500 deg. C. During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 deg. C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 deg. C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.

  3. Irradiation creep under 60 MeV alpha irradiation

    International Nuclear Information System (INIS)

    Reiley, T.C.; Shannon, R.H.; Auble, R.L.

    1980-01-01

    Accelerator-produced charged-particle beams have advantages over neutron irradiation for studying radiation effects in materials, the primary advantage being the ability to control precisely the experimental conditions and improve the accuracy in measuring effects of the irradiation. An apparatus has recently been built at ORNL to exploit this advantage in studying irradiation creep. These experiments employ a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). The experimental approach and capabilities of the apparatus are described. The damage cross section, including events associated with inelastic scattering and nuclear reactions, is estimated. The amount of helium that is introduced during the experiments through inelastic processes and through backscattering is reported. Based on the damage rate, the damage processes and the helium-to-dpa ratio, the degree to which fast reactor and fusion reactor conditions may be simulated is discussed. Recent experimental results on the irradiation creep of type 316 stainless steel are presented, and are compared to light ion results obtained elsewhere. These results include the stress and temperature dependence of the formation rate under irradiation. The results are discussed in relation to various irradiation creep mechanisms and to damage microstructure as it evolves during these experiments. (orig.)

  4. Evaluating the effects of gamma-irradiation for decontamination of medicinal cannabis

    Directory of Open Access Journals (Sweden)

    Arno eHazekamp

    2016-04-01

    Full Text Available In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative HPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated.

  5. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis.

    Science.gov (United States)

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative UPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated.

  6. Food irradiation: An update

    International Nuclear Information System (INIS)

    Morrison, Rosanna M.

    1984-01-01

    Recent regulatory and commercial activity regarding food irradiation is highlighted. The effects of irradiation, used to kill insects and microorganisms which cause food spoilage, are discussed. Special attention is given to the current regulatory status of food irradiation in the USA; proposed FDA regulation regarding the use of irradiation; pending irradiation legislation in the US Congress; and industrial applications of irradiation

  7. The application of irradiation to phyto sanitary problems

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R T [USDA/APHIS/PPQ. Department of Agriculture, Room 1630 Soagribg, 1400 Independence Ave. Sw. Mail Code Stop 3438, 20250 Washington D.C. (United States)

    1998-12-31

    The first formally adopted regulatory policy for irradiation as a phyto sanitary treatment in the United States was issued in 1989 and was based on Title 7 of the Code of Federal Regulations. These regulations authorized irradiation as a quarantine treatment for papayas intended for movement from the State of Hawaii to the continental United States (U.S.), Guam, Puerto Rico, and the U.S. Virgin Islands. This authorization was specific for commodity, place of origin, and program, but was designed for a complex of three fruit flies rather than a single pest. Routine commercial shipments were never realized under this regulation due to the lack of a treatment facility in Hawaii. However, the authorization has proven useful from the standpoint of beginning to establish policies for irradiation as a phyto sanitary treatment in the United States. The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) remains dedicated to using the most up-to-date, appropriate and least intrusive technology to provide quarantine security. The need for alternative treatments for pests mitigation systems is greater than ever. Global trade pressures and the possible loss of methyl bromide make it imperative that all practical treatment options be explored. Since 1989 irradiation treatment concepts have matured significantly. Technological advances, greater experience, and an increasingly larger body of research indicate that irradiation has important potential as a treatment for quarantine pest problems. It is in this light that PPQ is expanding its regulatory framework, is addressing irradiation treatment options, and is developing comprehensive policy statements intended to facilitate the development and formalization of new treatments for phyto sanitary applications. (Author)

  8. The application of irradiation to phyto sanitary problems

    International Nuclear Information System (INIS)

    Ross, R.T.

    1997-01-01

    The first formally adopted regulatory policy for irradiation as a phyto sanitary treatment in the United States was issued in 1989 and was based on Title 7 of the Code of Federal Regulations. These regulations authorized irradiation as a quarantine treatment for papayas intended for movement from the State of Hawaii to the continental United States (U.S.), Guam, Puerto Rico, and the U.S. Virgin Islands. This authorization was specific for commodity, place of origin, and program, but was designed for a complex of three fruit flies rather than a single pest. Routine commercial shipments were never realized under this regulation due to the lack of a treatment facility in Hawaii. However, the authorization has proven useful from the standpoint of beginning to establish policies for irradiation as a phyto sanitary treatment in the United States. The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) remains dedicated to using the most up-to-date, appropriate and least intrusive technology to provide quarantine security. The need for alternative treatments for pests mitigation systems is greater than ever. Global trade pressures and the possible loss of methyl bromide make it imperative that all practical treatment options be explored. Since 1989 irradiation treatment concepts have matured significantly. Technological advances, greater experience, and an increasingly larger body of research indicate that irradiation has important potential as a treatment for quarantine pest problems. It is in this light that PPQ is expanding its regulatory framework, is addressing irradiation treatment options, and is developing comprehensive policy statements intended to facilitate the development and formalization of new treatments for phyto sanitary applications. (Author)

  9. The application of irradiation to phyto sanitary problems

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R.T. [USDA/APHIS/PPQ. Department of Agriculture, Room 1630 Soagribg, 1400 Independence Ave. Sw. Mail Code Stop 3438, 20250 Washington D.C. (United States)

    1997-12-31

    The first formally adopted regulatory policy for irradiation as a phyto sanitary treatment in the United States was issued in 1989 and was based on Title 7 of the Code of Federal Regulations. These regulations authorized irradiation as a quarantine treatment for papayas intended for movement from the State of Hawaii to the continental United States (U.S.), Guam, Puerto Rico, and the U.S. Virgin Islands. This authorization was specific for commodity, place of origin, and program, but was designed for a complex of three fruit flies rather than a single pest. Routine commercial shipments were never realized under this regulation due to the lack of a treatment facility in Hawaii. However, the authorization has proven useful from the standpoint of beginning to establish policies for irradiation as a phyto sanitary treatment in the United States. The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) remains dedicated to using the most up-to-date, appropriate and least intrusive technology to provide quarantine security. The need for alternative treatments for pests mitigation systems is greater than ever. Global trade pressures and the possible loss of methyl bromide make it imperative that all practical treatment options be explored. Since 1989 irradiation treatment concepts have matured significantly. Technological advances, greater experience, and an increasingly larger body of research indicate that irradiation has important potential as a treatment for quarantine pest problems. It is in this light that PPQ is expanding its regulatory framework, is addressing irradiation treatment options, and is developing comprehensive policy statements intended to facilitate the development and formalization of new treatments for phyto sanitary applications. (Author)

  10. Training program for students and young engineers in JMTR

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Suzuki, Masahide

    2012-01-01

    The JMTR is expected to be a key infrastructure to contribute the nuclear Human Resource Development (HRD) by a research and On-Job-Training (OJT) in order to support global expansion of nuclear power industry. The training program for Asian young researchers and engineers were started from JFY 2011 in JAEA, and ten trainees from Kazakhstan and Thailand had attended in this program in JFY 2011. In addition, in the nuclear HRD initiative program sponsored by the MEXT, the training course was newly established for domestic students and young engineers from JFY 2010 to JFY 2012. In this course, basic understanding on irradiation test and post irradiation examination is aimed to achieve by overall and practical training such as the neutronic/thermal designs of irradiation capsule, post irradiation examination, measurement and evaluation of neutron fluence, etc. using the JMTR and the related facilities. The 1st training course was held with 10 trainees in JFY 2010. The 2nd and 3rd training courses were also held with 19 trainees and 16 trainees in JFY 2011. From JFY 2012, two courses will be held in every year, and 20 trainees will be accepted in each course. (author)

  11. Training program for students and young engineers in JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The JMTR is expected to be a key infrastructure to contribute the nuclear Human Resource Development (HRD) by a research and On-Job-Training (OJT) in order to support global expansion of nuclear power industry. The training program for Asian young researchers and engineers were started from JFY 2011 in JAEA, and ten trainees from Kazakhstan and Thailand had attended in this program in JFY 2011. In addition, in the nuclear HRD initiative program sponsored by the MEXT, the training course was newly established for domestic students and young engineers from JFY 2010 to JFY 2012. In this course, basic understanding on irradiation test and post irradiation examination is aimed to achieve by overall and practical training such as the neutronic/thermal designs of irradiation capsule, post irradiation examination, measurement and evaluation of neutron fluence, etc. using the JMTR and the related facilities. The 1st training course was held with 10 trainees in JFY 2010. The 2nd and 3rd training courses were also held with 19 trainees and 16 trainees in JFY 2011. From JFY 2012, two courses will be held in every year, and 20 trainees will be accepted in each course. (author)

  12. Proceedings of 2012 JAEA/KAERI joint seminar on advanced irradiation and PIE technologies

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Ishitsuka, Etsuo; Suzuki, Masahide

    2012-12-01

    Under the 'Arrangement for Corporation in the field of peaceful uses of Nuclear Energy between the Japan Atomic Energy Agency (JAEA) and the Korean Atomic Energy Research Institute (KAERI)', the 2012 JAEA/KAERI Joint Seminar on Advanced Irradiation and PIE (post-irradiation examination) Technologies has been held at Mito, Japan from March 28 to 30, 2012. This triennial seminar is the seventh in series of bilateral exchange of irradiation and PIE technologies and research reactor management. Since the first joint seminar on the PIE Technology between JAERI (Japan Atomic Energy Research Institute, former agency of JAEA) and KAERI was held at JAERI Oarai Research Institute, Japan in 1992, the international cooperation program between JAEA and KAERI has been actively carried out in the field of neutron irradiation. At the fifth seminar in 2005 and sixth in 2008, the irradiation technology and the research reactor management fields were included, respectively, to the joint seminar, and it covers whole areas of irradiation using research reactors. In this seminar total 37 presentations were made in three technical sessions, which are 'research reactor management', 'advanced irradiation technology' and 'post-irradiation examination technology', and active information exchange was done among participants. Papers or manuscripts presented in the 2012 JAEA/KAERI Joint Seminar on Advanced Irradiation and PIE Technologies are contained in the proceedings. (author)

  13. U-turn type continuous irradiation method and device for radiation-irradiated capsule

    International Nuclear Information System (INIS)

    Kikuchi, Takayuki.

    1997-01-01

    A capsule to be irradiated is moved while being rotated in one of conveying shafts disposed in a reactor to conduct irradiation treatment. Then, the irradiated capsule is made U-turn in the reactor, inserted to the other conveying shaft and moved while being rotated to conduct irradiation treatment again, and then transported out of the reactor. The device comprises a rotational conveying shaft for moving the irradiated capsule while rotating it, a conveying gear for U-turning the irradiated capsule in the reactor and inserting it to the conveying shaft and a driving mechanism for synchronously rotating the conveying gear relative to the conveying shaft at a constant ratio. Mechanical time loss and manual operation time loss can be reduced upon loading and taking up of the irradiated capsule. Then, the amount of irradiation treatment per unit time is increased, and an optional neutron irradiation amount can be obtained thereby enabling to reduce operator's radiation exposure. (N.H.)

  14. Prenatal irradiation: radioinduced apoptosis in developing central nervous system

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Michelin, S.; Perez, M.R.; Barboza, M.

    1998-01-01

    Severe mental retardation (SMR) is the most significant effect of prenatal irradiation. The high radiosensitivity of developing brain is related with the chronology of morpho genetic phenomena regarding neuroblast proliferation, neuronal differentiation and migration, synaptogenesis and dendritic arborization. Programmed cell death (apoptosis) normally occurs during development in central nervous system (CNS). Apoptosis is a direct result of the expression of specific genes with a final common pathway leading to a characteristic DNA fragmentation pattern. A wide variety of situations and toxic agents have been reported to result in apoptotic death in developing CNS. The aim of this work was the characterization and quantification of apoptosis using an in vitro model of prenatal irradiation. Primary cell cultures from rat brain cortex of 17 days g.a. were irradiated with a gamma source, with doses between 0.2 Gy to 2 Gy. Apoptosis was evaluated 4 hours and 20 hours after irradiation by hematoxylin/eosin, fluorescent microscopy, flow cytometry and DNA electrophoresis. It was also evaluated the neuro protective effect of L-NAME, SOD and glutathion. A dose-dependent increase in apoptotic cell fraction was observed. A protector effect related with the presence of glutathion was observed. (author) [es

  15. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  16. Irradiation of foodstuffs

    International Nuclear Information System (INIS)

    Sjoeberg, A.M.

    1993-01-01

    Foodstuffs are irradiated to make them keep better. The ionizing radiation is not so strong as to cause radioactivity in the foodstuffs. At least so far, irradiation has not gained acceptance among consumers, although it has been shown to be a completely safe method of preservation. Irradiation causes only slight chemical changes in food. What irradiation does, however, is to damage living organisms, such as bacteria, DNA and proteins, thereby making the food keep longer. Irradiation can be detected from the food afterwards; thus it can be controlled effectively. (orig.)

  17. Data formats design of laser irradiation experiments in view of data analysis

    International Nuclear Information System (INIS)

    Su Chunxiao; Yu Xiaoqi; Yang Cunbang; Guo Su; Chen Hongsu

    2002-01-01

    The designing rules of new data file formats of laser irradiation experiments are introduced. Object-oriented programs are designed in studying experimental data of the laser facilities. The new format data files are combinations of the experiment data and diagnostic configuration data, which are applied in data processing and analysis. The edit of diagnostic configuration data in data acquisition program is also described

  18. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  19. Food irradiation

    International Nuclear Information System (INIS)

    Migdal, W.

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author)

  20. Food irradiation

    International Nuclear Information System (INIS)

    1991-01-01

    Processing of food with low levels of radiation has the potential to contribute to reducing both spoilage of food during storage - a particular problem in developing countries - and the high incidence of food-borne disease currently seen in all countries. Approval has been granted for the treatment of more than 30 products with radiation in over 30 countries but, in general, governments have been slow to authorize the use of this new technique. One reason for this slowness is a lack of understanding of what food irradiation entails. This book aims to increase understanding by providing information on the process of food irradiation in simple, non-technical language. It describes the effects that irradiation has on food, and the plant and equipment that are necessary to carry it out safely. The legislation and control mechanisms required to ensure the safety of food irradiation facilities are also discussed. Education is seen as the key to gaining the confidence of the consumers in the safety of irradiated food, and to promoting understanding of the benefits that irradiation can provide. (orig.) With 4 figs., 1 tab [de

  1. Progress of the RERTR program in 2001

    International Nuclear Information System (INIS)

    Travelli, A.

    2002-01-01

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of mini plates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm 3 range. Qualification of the U-Mo dispersion fuels has been declared by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm 3 are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid 2005. U-Mo fuel with uranium density of 8-9 g/cm 3 is expected to be qualified by mid 2007. Final irradiation tests of LEU 99 Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/ AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO 2 dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIJNM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4'562 spent fuel assemblies from foreign research

  2. Progress of the RERTR program in 2001

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A. [Technology Development Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4841 (United States)

    2002-07-01

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of mini plates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualification of the U-Mo dispersion fuels has been declared by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid 2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid 2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/ AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIJNM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4'562 spent fuel

  3. Upgrading program of the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  4. Hemibody irradiation

    International Nuclear Information System (INIS)

    Schen, B.C.; Mella, O.; Dahl, O.

    1992-01-01

    In a large number of cancer patients, extensive skeletal metastases or myelomatosis induce vast suffering, such as intolerable pain and local complications of neoplastic bone destruction. Analgetic drugs frequently do not yield sufficient palliation. Irradiation of local fields often has to be repeated, because of tumour growth outside previously irradiated volumes. Wide field irradiation of the lower or upper half of the body causes significant relief of pain in most patients. Adequate pretreatment handling of patients, method of irradiation, and follow-up are of importance to reduce side effects, and are described as they are carried out at the Department of Oncology, Haukeland Hospital, Norway. 16 refs., 2 figs

  5. Enhancing productivity of adlai (Coix lacryma-jobi L.) by gamma irradiation

    International Nuclear Information System (INIS)

    Barrida, Adelaida C.; Veluz, Ana Marie S.; Manrique, Mary Jayne C.; Dimaano, Arvin O.; Costimiano, Eduardo C.

    2015-01-01

    The Department of Agriculture (DA) has embarked into the Food Staples Sufficiency Program 2011 to 2016. To complement this Program, the DA is currently pursuing the development and promotion of adlai as alternative staple food for rice. Adlai has the potential for development in the country as it is resilient to drought and flood. At present there is no available variety of adlai that is early maturing, short plant type and high yielding. The PNRI through the Agriculture Research Section is conducting a study in this crop by the application of mutation breeding. The objective is to develop mutant variety with desirable/improved agronomic traits using gamma irradiation.Locally available adlai variety ‘Ginampay’ was irradiated using 100, 200, 300, 400, and 500 Gy. Radiosensitivity test was done and 200 Gy was found to be the optimum dose for irradiating adlai and the lethal dose was 500 Gy. Field planting was performed and the doses used were 100 and 200 Gy including the control. Selection of desirable agronomic traits was started at the M2 segregating population. Further selection of putative mutant lines with improved agronomic traits was carried out at M3 and M4 generations. In the M3 generation statistical analysis showed significant result on the number of days to flower, plant height at maturity, number of sterile seed per panicle and 100 seed-weight. The results of M4 generation were almost similar with M3 generation. Early flowering with 114-120 days from planting were obtained in irradiated plants in comparison with the control with 145 days. Reduction in plant height by about 56.80% over the control was obtained in 100 Gy while 39.73% was recorded in 200 Gy. Long panicle length per panicle was increased in irradiated plants which showed significant result in grain yield sterility was induced in irradiated plant as compared with the control. Weight of 100 seeds (g) was heavier at 100 Gy followed by 200 Gy. The average grain yield/plant was higher on

  6. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  7. Bakery products from irradiated and non-irradiated eggs - analytical problems associated with the detection of irradiation in processed foods

    International Nuclear Information System (INIS)

    Grabowski, H.U. von; Pfordt, J.

    1993-01-01

    In spring and early summer 1992, a number of irradiated egg products were illegally imported into Germay. To prove the irradiation of these egg products, mainly combined gas chromatography-mass spectrometry was applied. With this present study we wanted to answer the question if we were also able to detect the use of irradiated eggs in processed foods. The processed food we chose to produce and to investigate was a tart layer. For this product, dilution effects are of minor importance as no extra fat was added. Thus, the layers' fat almost exclusively came from the eggs. To study the influence of emulsifiers, we produced batters both with and without adding an emulsifer. The unsaturted hydrocarbons C14:1, C16:3, C16:2, C17:2, and C17:1 served as markers for an irradiation. In the non-irradiated egg samples and in the tart layers produced from them, these compounds could not be detected (or in some cases only in small amounts). They were, however, detectable in all irradiated samples. DCB could be found in all irradiated egg samples and in the tart layers that were baked from irradiated eggs. It was not present in non-irradiated eggs and in tart layers produced from them. (orig./Vhe)

  8. An overview of microstructural and experimental factors that affect the irradiation growth behavior of zirconium alloys

    International Nuclear Information System (INIS)

    Fidleris, V.; Tucker, R.P.; Adamson, R.B.

    1987-01-01

    This paper presents an overview of factors affecting irradiation growth of zirconium alloys. Recent data obtained from irradiation programs in EBR-II, ATR, and NRU reactors are used to illustrate the effects of various microstructural and experimental factors on the growth of Zircaloy, zirconium, and zirconium-biobium alloys irradiated to fluences up to 2 X 10 26 nm -2 (E > 1 MeV) over the temperature range 330 to 720 K. Open literature results are also used to confirm or illustrate various effects. Important factors are texture, grain boundary parameters, residual stresses, original dislocation density, microstructure evolution, temperature during irradiation, solute effects, and fluence

  9. Efficacy of prophylactic irradiation in altering renal allograft survival

    International Nuclear Information System (INIS)

    Faber, R.; Johnson, H.K.; Braren, H.V.; Richie, R.E.

    1974-01-01

    Renal allograft rejection is a complex phenomenon involving both cell-mediated and humoral antibody responses. Most transplant programs have used a combination of therapeutic modalites to combat the immune system in an attempt to prolong both allograft and patient survival. Corticosteroids (methylprednisolone (Solu-Medrol) and prednisone and azathioprine (Imuran) are widely accepted as immunosuppressive drugs; however, both are non-specific and have the disadvantage of compromising the recipients' defense mechanisms. Nevertheless, these drugs have proved to be essential to the success of renal transplantation and they are routinely used while the efficacy of other modalities continues to be evaluated. We could find no reports of a prospective study to evaluate the efficacy of prophylactic irradiation in the complex therapeutic situation of renal transplantation with the only variable being the administration of local graft irradiation. The purpose of this study was to evaluate prophylactic graft irradiation for its effectiveness in preventing graft rejection in conjunction with Imuran and corticosteroids

  10. The natural aging of austenitic stainless steels irradiated with fast neutrons

    Science.gov (United States)

    Rofman, O. V.; Maksimkin, O. P.; Tsay, K. V.; Koyanbayev, Ye. T.; Short, M. P.

    2018-02-01

    Much of today's research in nuclear materials relies heavily on archived, historical specimens, as neutron irradiation facilities become ever more scarce. These materials are subject to many processes of stress- and irradiation-induced microstructural evolution, including those during and after irradiation. The latter of these, referring to specimens "naturally aged" in ambient laboratory conditions, receives far less attention. The long and slow set of rare defect migration and interaction events during natural aging can significantly change material properties over decadal timescales. This paper presents the results of natural aging carried out over 15 years on austenitic stainless steels from a BN-350 fast breeder reactor, each with its own irradiation, stress state, and natural aging history. Natural aging is shown to significantly reduce hardness in these steels by 10-25% and partially alleviate stress-induced hardening over this timescale, showing that materials evolve back towards equilibrium even at such a low temperature. The results in this study have significant implications to any nuclear materials research program which uses historical specimens from previous irradiations, challenging the commonly held assumption that materials "on the shelf" do not evolve.

  11. New JMTR irradiation test plan on fuels and materials

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Nishiyama, Yutaka; Chimi, Yasuhiro; Sasajima, Hideo; Ogiyanagi, Jin; Nakamura, Jinichi; Suzuki, Masahide; Kawamura, Hiroshi

    2009-01-01

    In order to maintain and enhance safety of light water reactors (LWRs) in long-term and up-graded operations, proper understanding of irradiation behavior of fuels and materials is essentially important. Japanese government and the Japan Atomic Energy Agency (JAEA) have decided to refurbish the Japan Materials Testing Reactor (JMTR) and to install new tests rigs, in order to play an active role for solving irradiation related issues on plant aging and high-duty uses of the current LWRs and on development of next-generation reactors. New tests on fuel integrity under simulated abnormal transients and high-duty irradiation conditions are planned in the JMTR. Power ramp tests of newdesign fuel rods will also be performed in the first stage of the program, which is expected to start in year 2011 after refurbishment of the JMTR. Combination of the JMTR tests with simulated reactivity initiated accident tests in the Nuclear Safety Research Reactor (NSRR) and loss of coolant accident tests in hot laboratories would serve as the integrated fuel safety research on the high performance fuels at extended burnups, covering from the normal to the accident conditions, including abnormal transients. For the materials irradiation, fracture toughness of reactor vessel steels and stress corrosion cracking behavior of stainless steels are being studied in addition to basic irradiation behavior of nuclear materials such as hafnium. The irradiation studies would contribute not only to solve the current problems but also to identify possible seeds of troubles and to make proactive responses. (author)

  12. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  13. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  14. Fracture toughness behavior of irradiated stainless steel in PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Fyfitch, S. [AREVA NP Inc., Lynchburg, Pennsylvania (United States); Tang, H.T. [Electric Power Research Inst., Palo Alto, California (United States)

    2007-07-01

    Data from available research programs were collected and evaluated by the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) to determine the relationship between fracture toughness and neutron fluence for conditions representative of pressurized water reactor (PWR) conditions. It is shown that the reduction of fracture toughness with increasing neutron dose in both boiling water reactors (BWRs) and PWRs is consistent with that observed in fast reactors. The lower bound fracture toughness observed for irradiated stainless steels in PWRs is 38 MPa{radical}m (34.6 ksi{radical}in) at neutron exposures greater than 6.7 X 10{sup 21} n/cm{sup 2} (E > 1.0 MeV) or approximately 10 dpa. For such levels of fracture toughness, it is recommended that linear-elastic fracture mechanics (LEFM) analyses be considered for design and operational analyses. The results from this study can be used by the nuclear industry to assess the effects of irradiation on stainless steels in PWR systems. (author)

  15. Maintenance Of The EPS 3000 Electron Beam Machine As Part Of Quality Assurance Program For Irradiation Service At ALURTRON, Nuclear Malaysia

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Shari Jahar; Ayub Muhammad; Azmi Ali; Abdul Basit Shafiei; Sarada Idris

    2012-01-01

    The EPS 3000 electron beam machine is the first of its kind in the country and was installed in Nuclear Malaysia in 1991. It was manufactured by Nissin High Voltage having variable energies from 0.5 to 3.0 MeV and maximum power of 90 kW. The machine is currently used for commercial irradiation that serves local industries. The Alurtron facility where the EPS is housed is an ISO 9000 certified plant. Maintenance program for the EPS is an essential part of Alurtron's Quality Assurance program. This is to ensure that the machine is in good condition and can serve the customer as the demand requires. Preventive maintenance is carried out at scheduled period based on recommendation of the machine's manufacturer. Corrective maintenance and repairs are carried out in-house by Alurtron's technical staff. Assistance may be sought from the manufacturer if necessary. Over the years, Alurtron had built its own capabilities in term of operation and maintenance of Cockcroft Walton type electron beam machine. (author)

  16. New high density MTR fuel. The CEA-CERCA-COGEMA development program

    International Nuclear Information System (INIS)

    Languille, A.; Durand, J.P.; Gay, A.

    1999-01-01

    The development of a new generation of LEU, high in density and with reprocessing capacities MTR fuel, is a key issue to provide reactor operators with a smooth operation which is necessary for a long term development of Nuclear Energy. In the RRFM'98 meeting, a joint contribution of CEA, CERCA and COGEMA presented a technical classification of the potential candidates uranium alloys. In this paper this MTR working group presents the development program of a new high density fuel. This program is composed of three main steps: Basic Data analysis and collection, Plate Tests (Irradiation and Post Irradiation Examinations) and Lead Test Assemblies (Irradiation and Post Irradiation Examinations). The goal to be reached is to make this new fuel available before the end of the present US return policy. (author)

  17. Behavior of high Tc-superconductors and irradiated defects under reactor irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Yoshida, Hiroyuki.

    1991-01-01

    It has been well known that the lattice defects of various types are introduced in ceramics without exception, and exert large effect to the function of these materials. Among oxides, the electronic materials positively using oxygen defect control have been already put in practical use. Also in the oxide high temperature superconductors which are Perovskite type composite oxides, the superconductive characteristics are affected largely by the concentration of the oxygen composing them. This is regarded as an important factor for causing superconductivity, related with the oxygen cavities arising at this time and the carriers bearing superconductivity. In this study, the irradiation effect with relatively low dose, the measurement under irradiation, the effect of irradiation temperature, and the effect of radiation quality were evaluated by the irradiation of YBCO, EBCO and LBCO. The experimental method, and the irradiation effect at low temperature and normal temperature, the effect of Co-60 gamma ray irradiation instead of reactor irradiation are reported. (K.I.)

  18. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  19. Food irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko; Kikuchi, Masahiro

    2009-01-01

    Food irradiation can have a number of beneficial effects, including prevention of sprouting; control of insects, parasites, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored for long periods. It is most unlikely that all these potential applications will prove commercially acceptable; the extend to which such acceptance is eventually achieved will be determined by practical and economic considerations. A review of the available scientific literature indicates that food irradiation is a thoroughly tested food technology. Safety studies have so far shown no deleterious effects. Irradiation will help to ensure a safer and more plentiful food supply by extending shelf-life and by inactivating pests and pathogens. As long as requirement for good manufacturing practice are implemented, food irradiation is safe and effective. Possible risks of food irradiation are not basically different from those resulting from misuse of other processing methods, such as canning, freezing and pasteurization. (author)

  20. A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Weiterová, Lenka

    2011-01-01

    Roč. 176, č. 2 (2011), s. 269-272 ISSN 0033-7587 R&D Projects: GA ČR(CZ) GA305/08/0158 Grant - others:GA ČR(CZ) GAP303/11/0128 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cyclooxygenase-2 inhibition * lethal irradiation * survival Subject RIV: BO - Biophysics Impact factor: 2.684, year: 2011

  1. Facts about food irradiation: Microbiological safety of irradiated food

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet considers the microbiological safety of irradiated food, with especial reference to Clostridium botulinum. Irradiated food, as food treated by any ''sub-sterilizing'' process, must be handled, packaged and stored following good manufacturing practices to prevent growth and toxin production of C. botulinum. Food irradiation does not lead to increased microbiological hazards, nor can it be used to save already spoiled foods. 4 refs

  2. Total body irradiation: current indications; L`irradiation corporelle totale: les indications actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1998-05-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  3. Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C

    International Nuclear Information System (INIS)

    Materna-Morris, E.; Schneider, H.-C.; Möslang, A.

    2014-01-01

    Tensile specimen of steel EUROFER97 and other alloys on the basis of RAFM steels such, as OPTIFER and F82H alloys, and Ga3X were irradiated and post-examined during a neutron irradiation program of up to 16.3 dpa between 250 and 450 °C in the HFR (High Flux Reactor) in the Netherlands. These tensile results were compared with former irradiation programs, with lower neutron doses of up to 0.8 and 2.4 dpa to quantify the difference in tensile strengthening. The average increase of tensile strength was in a range of 300 MPa between 0.8 and 16.3 dpa at temperatures of 250–300 °C. This behavior can be correlated with irradiation-induced changes in the microstructure. Most of the hardening can be attributed to dislocation loops, point defects or small precipitates as observed in boron-free alloys as F82H mod. and EUROFER97. Whereas the hardening in boron-containing alloys OPTIFER alloys and Ga3X can be correlated in addition with the combination of helium bubbles. At the highest irradiation and test temperature at 450 °C, all tensile data of all investigated materials were in the range of those of non-irradiated and irradiated material due to thermal aging effects

  4. Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C

    Energy Technology Data Exchange (ETDEWEB)

    Materna-Morris, E., E-mail: edeltraud.materna-morris@kit.edu; Schneider, H.-C., E-mail: hans-christian.schneider@kit.edu; Möslang, A., E-mail: anton.moeslang@kit.edu

    2014-12-15

    Tensile specimen of steel EUROFER97 and other alloys on the basis of RAFM steels such, as OPTIFER and F82H alloys, and Ga3X were irradiated and post-examined during a neutron irradiation program of up to 16.3 dpa between 250 and 450 °C in the HFR (High Flux Reactor) in the Netherlands. These tensile results were compared with former irradiation programs, with lower neutron doses of up to 0.8 and 2.4 dpa to quantify the difference in tensile strengthening. The average increase of tensile strength was in a range of 300 MPa between 0.8 and 16.3 dpa at temperatures of 250–300 °C. This behavior can be correlated with irradiation-induced changes in the microstructure. Most of the hardening can be attributed to dislocation loops, point defects or small precipitates as observed in boron-free alloys as F82H mod. and EUROFER97. Whereas the hardening in boron-containing alloys OPTIFER alloys and Ga3X can be correlated in addition with the combination of helium bubbles. At the highest irradiation and test temperature at 450 °C, all tensile data of all investigated materials were in the range of those of non-irradiated and irradiated material due to thermal aging effects.

  5. Food irradiation

    International Nuclear Information System (INIS)

    Paganini, M.C.

    1991-06-01

    Food treatment by means of ionizing energy, or irradiation, is an innovative method for its preservation. In order to treat important volumes of food, it is necessary to have industrial irradiation installations. The effect of radiations on food is analyzed in the present special work and a calculus scheme for an Irradiation Plant is proposed, discussing different aspects related to its project and design: ionizing radiation sources, adequate civil work, security and auxiliary systems to the installations, dosimetric methods and financing evaluation methods of the project. Finally, the conceptual design and calculus of an irradiation industrial plant of tubercles is made, based on the actual needs of a specific agricultural zone of our country. (Author) [es

  6. Beneficial uses of nuclear byproducts/sewage sludge irradiation project. Progress report, October 1981-March 1982

    International Nuclear Information System (INIS)

    Zak, B.D.

    1982-12-01

    A cooperative agreement was made between Albuquerque and DOE during FY81 for sewage sludge irradiation in upgrading the sewage treatment facilities. Other potential sites for implementation of sludge irradiation technology were also considered. Sludge was irradiated in the SIDSS for agronomy and animal feeding experiments. Sludge was also irradiated for use on turf areas. Cooperative work was also performed on grapefruit irradiation for fruit fly disinfestation, and on irradiation of sugar cane waste (bagasse) for enhanced ruminant digestibility. Preliminary design work began on a shipping cask to accomodate WESF Cs-137 capsules. The shielding performance, steady-state thermal response, and response to specified regulatory accident sequences have been evaluated. Work has been initiated on pathogen survival and post-irradiation pathogen behavior. Agronomy field, greenhouse, and soil chemistry studies continue. Various field experiments are ongoing. The fifth year of a five-year program to evaluate the potential use of a sludge product as a range feed supplement for cows is now in its fifth year. In agricultural economics, a preliminary marketing plan has been prepared for Albuquerque

  7. Management of irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Lupien, Mario

    1985-01-01

    The nuclear industry, like any other industrial activity, generates waste and, since these radioactive products are known to be hazardous both to man and his natural environment, they are subject to stringent controls. The irradiated fuel is also highly radioactive and remains so for thousands of years. It is estimated that by the year 2000, nuclear reactors in Canada alone will have produced some 50 Gg of radioactive fuel which is stored at the nuclear plant site itself. The nuclear industry plays a leading role in the research and development effort to find suitable waste-management methods. Its R and D programs cover many scientific fields, including chemistry, and therefore demand a considerable amount of coordination. The knowledge acquired in this multidisciplinary context should form a basis for solving many of today's industrial-waste problems. This paper describes the various stages in the long management process. In the medium term, the irradiated fuel will be stored in surface installations but the long-term solution proposed is to emplace the used fuel or the fuel recycle waste deep underground in a stable geologic formation

  8. Biology of food irradiation

    International Nuclear Information System (INIS)

    Murray, D.R.

    1990-01-01

    The author presents his arguments for food scientists and biologists that the hazards of food irradiation outweigh the benefits. The subject is discussed in the following sections: introduction (units, mutagenesis, seed viability), history of food irradiation, effects of irradiation on organoleptic qualities of staple foods, radiolytic products and selective destruction of nutrients, production of microbial toxins in stored irradiated foods and loss of quality in wheat, deleterious consequences of eating irradiated foods, misrepresentation of the facts about food irradiation. (author)

  9. DAMAGE IN MOLYBDENUM ASSOCIATED WITH NEUTRON IRRADIATION AND SUBSEQUENT POST-IRRADIATION ANNEALING

    Energy Technology Data Exchange (ETDEWEB)

    Mastel, B.

    1963-07-23

    Molybdemum containing carbon was studied in an attempt to establish the combined effect of impurity content and neutron irradiation on the properties and structure of specific metals. Molybdenum foils were punched into discs and heat treated in vacuum. They were then slow-cooled and irradiated. After irradiation and subsequent decay of radioactivity to a low level the foils were subjected to x-ray diffraction measurements. Cold-worked foils with less than 10 ppm carbon showed no change in microstructure due to irradiation. Molybdenum foils that were annealed prior to irradiation showed spot defects. In foils containing up to 500 ppm carbon, it was concluded that the small loops present after irradiation are due to the clustering of point defects at interstitial carbon atoms, followed by collapse to form a dislocation loop. The amount of lattice expansion after irradiation was strongly dependent on impurity content. Neutron irradiation was found to reduce the number of active slip systems. (M.C.G.)

  10. Structural evaluation of fast reactor core restraint with irradiation creep-swelling opposition effects

    International Nuclear Information System (INIS)

    Kalinowski, J.E.

    1979-01-01

    Irradiation creep and swelling correlations are derived from primary loading in-reactor experiments in which irradiation creep and swelling act in the same direction. When correlation uncertainty bands are applied in core restraint evaluations, significant variability in sub-assembly behavior is predicted. For example, sub-assemblies in the outer core region where neutron flux and duct temperature gradients are significant exhibit bowing responses ranging from a creep dominated outward bow to a swelling dominated inward bow. Furthermore, solutions based on upper bound and lower bound correlation uncertainty combinations are observed to cross-over indicating that such combinations are physically unrealistic in the assessment of creep-swelling opposition effects. In order to obtain realistic upper and lower bound sub-assembly responses, judgement must be applied in the selection of creep-swelling equation uncertainty combinations. Experimental programs have been defined which will provide the needed basic as well as prototypic creep-swelling opposition data for reference and advanced sub-assembly duct alloys. The first of these is an irradiation of cylindrical capsules subjected to a through-wall temperature gradient. This test which is presently underway in the EBR-II reactor will provide the data needed to refine irradiation creep and swelling correlations and their associated uncertainties when applied to core restraint evaluations. Restrained pin and duct bowing experiments in FFTF have also been defined. These will provide the prototypic data necessary to verify irradiated duct bowing methodology. The results of this experimental program are expected to reduce creep and swelling uncertainties and permit better definition of the design window for load plane gaps. (orig.)

  11. Perspective on food irradiation

    International Nuclear Information System (INIS)

    Newsome, R.L.

    1987-01-01

    A brief review summarizes current scientific information on the safety and efficacy of irradiation processing of foods. Attention is focused on: specifics of the irradiation process and its effectiveness in food preservation; the historical development of food irradiation technology in the US; the response of the Institute of Food Technologists to proposed FDA guidelines for food irradiation; the potential uses of irradiation in the US food industry; and the findings of the absence of toxins and of unaltered nutrient density (except possibly for fats) in irradiated foods. The misconceptions of consumers concerning perceived hazards associated with food irradiation, as related to consumer acceptance, also are addressed

  12. Fabrication of irradiation capsule for IASCC irradiation tests (2). Irradiation capsule for crack propagation test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported. (author)

  13. Fabrication of irradiation capsule for IASCC irradiation tests (1). Irradiation capsule for crack growth test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack growth test is reported. (author)

  14. Irradiation of foodstuffs

    International Nuclear Information System (INIS)

    Bugyaki, L.

    1977-01-01

    The author studies the criteria for the harmlessness of irradiation as a food-preservation process. The glucose and proteins of bacto-tryptone, irradiated at 5 Mrads, do not increase the Escherichia Coli C 600 lysogenous bacteriophages, compared to the induction produced by direct irradiation of the strain or to the exposition to nitrogenous yperite. The possible mutagenic effect is therefore different. Wheat flour freshly irradiated at 5 Mrads shows physico-chemical changes. When given to mice as 50% of their ration, it leads to a higher incidence of tumours and a greater number of meiotic chromosome alteration (besides some discreet physio-pathological changes in fertility and longevity). Immunoelectrophoresis in agar or agarose gel does not allow any detection of irradiation of meat, fish or eggs. A vertical electrophoresis in starch gel can lead to a differentiation between frozen or chilled meat and the one that is irradiated at 0.5 or 5 Mrads, but the same thing can't be said for fish or eggs. Lastly an irradiated mushroom shows every sign of freshness but, when planted in a suitable medium, its cuttings do not present any cell proliferation which could give a rapid and simple method of detecting the irradiation. (G.C.)

  15. Blood irradiation

    International Nuclear Information System (INIS)

    Chandy, Mammen

    1998-01-01

    Viable lymphocytes are present in blood and cellular blood components used for transfusion. If the patient who receives a blood transfusion is immunocompetent these lymphocytes are destroyed immediately. However if the patient is immunodefficient or immunosuppressed the transfused lymphocytes survive, recognize the recipient as foreign and react producing a devastating and most often fatal syndrome of transfusion graft versus host disease [T-GVHD]. Even immunocompetent individuals can develop T-GVHD if the donor is a first degree relative since like the Trojan horse the transfused lymphocytes escape detection by the recipient's immune system, multiply and attack recipient tissues. T-GVHD can be prevented by irradiating the blood and different centers use doses ranging from 1.5 to 4.5 Gy. All transfusions where the donor is a first degree relative and transfusions to neonates, immunosuppressed patients and bone marrow transplant recipients need to be irradiated. Commercial irradiators specifically designed for irradiation of blood and cellular blood components are available: however they are expensive. India needs to have blood irradiation facilities available in all large tertiary institutions where immunosuppressed patients are treated. The Atomic Energy Commission of India needs to develop a blood irradiator which meets international standards for use in tertiary medical institutions in the country. (author)

  16. Prenatal irradiation: Apoptosis radioinduced in the central nervous system in development

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Michelin, S.

    1998-01-01

    The objective gives the present work it is the characterization and quantification gives the cellular death programmed in a model irradiation gamma cortical primary cultivations with dose between 0,2 and 2 Gy.. You values timbers the answer to different narcotics neuroprotectores

  17. Integrated preoperative irradiation and radical cystectomy

    International Nuclear Information System (INIS)

    Sagerman, R.H.; Yu, W.S.; Ryoo, M.C.; King, G.A.; Chung, C.T.; Emmanuel, I.G.

    1980-01-01

    Thirty patients with stage B 2 -C-D 1 and/or grade III-IV transitional cell carcinoma of the bladder were entered into a pilot study of integrated surgery and radiotherapy. Staging laparotomy with formation of an ileal loop preceded the delivery of 4000 to 5000 rad in 4 to 5 weeks to the pelvis; cystectomy was accomplished in 26 patients 4 to 8 weeks after completion of irradiation. The program was accomplished without undue difficulty and resulted in a lowering of the clinical stage in 22 of 26 patients; no residual invasive cancer was seen histologically in 8 patients. Although it was formidable, the morbidity rate was not significantly different than it was after cystectomy without preoperative irradiation. The short term survival rate, in conjunction with an analysis of sites of failure, suggests that a prospective study be accomplished to document the validity of this therapeutic approach to bladder cancer; patient selection, surgical technique, and time-dose-volume radiation factors should also be considered

  18. Irradiation effects on plasma diagnostic components

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Iida, Toshiyuki; Ikeda, Yujiro

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m 2 and 1 MWa/m 2 , respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  19. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  20. Study of the recrystallisation of irradiated uranium; Etude sur l'uranium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J; Mustelier, J P; Bussy, P; Blin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1- Study of the recrystallisation of irradiated uranium. The recrystallisation of uranium irradiated to a burnup level of 220 MWj/t, at a temperature of the order of 350 deg. C, has been investigated. The observations were made chiefly by means of micrography an hardness measurements. If the irradiated metal is compared with a cold-drawn metal showing the same shearing of the twinned crystals, and therefore the same rate of plastic deformation, as the irradiated metal, it is noted that the restoring of the irradiated metal takes place at a considerably higher temperature than that of the cold-drawn metal. Pre-crystallisation is very much delayed. Only, a passage of the {alpha}-{beta} transformation point quickly wipes out irradiation effect. 2- Hardening of uranium by irradiation. Using hardness measurements we have studied more especially the effect of very weak irradiations on uranium (integrated flux < 10{sup 16} nvt). The hardness does not increase linearly with the flux, but a period of incubation is observed probably representing the time necessary for saturation of the dislocations. (author)Fren. [French] 1- Etude de la recristallisation de l'uranium irradie. On a etudie la recristallisation d'uranium irradie jusqu'a un taux de combustion de 220 MWj/t a une temperature de l'ordre de 350 deg. C. Les observations ont ete faites principalement a l'aide de la micrographie et de la durete. Si l'on compare le metal irradie avec un metal ecroui presentant le meme cisaillement des macles, donc le meme taux de deformation plastique que le metal irradie, on constate que la restauration du metal irradie se fait a une temperature notablement superieure a celle du metal ecroui. La recristallisation est tres retardee. Seul, un passage du point de transformation {alpha}-{beta} efface rapidement l'effet de l'irradiation. 2- Durcissement de l'uranium par irradiation. Nous avons, a l'aide de la durete, etudie plus particulierement l'effet de tres faibles irrtions sur l

  1. AGC-4 Experiment Irradiation Monitoring Data Qualification Interim Report

    International Nuclear Information System (INIS)

    Hull, Laurence Charles

    2016-01-01

    The Graphite Technology Development Program is running a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The fourth experiment, Advanced Graphite Creep 4 (AGC 4), began with Advanced Test Reactor (ATR) cycle 157D on May 30, 2015, and has been irradiated for two cycles. The capsule was removed from the reactor after ATR cycle 158A, which ended on January 2, 2016, due to interference with another experiment. Irradiation will resume when the interfering experiment is removed from the reactor. This report documents qualification of AGC 4 experiment irradiation monitoring data for use by the Advanced Reactor Technologies (ART) Technology Development Office (TDO) Program for research and development activities required to design and license the first HTR nuclear plant. Qualified data meet the requirements for use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements and provide no useable information. Trend data may not meet all requirements, but still provide some useable information. Use of Trend data requires assessment of how any deficiencies affect a particular use of the data. All thermocouples (TCs) have functioned throughout the AGC-4 experiment. All temperature data are Qualified for use by the ART TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the ART TDO Program. Discharge gas line moisture values were consistently low during cycle 157D. At the start of cycle 158A, gas moisture briefly spiked to over 600 ppmv and then declined throughout the cycle. Moisture values are within the measurement range of the instrument and are Qualified for use by the ART TDO Program. Graphite creep specimens were subjected to one of three loads, 393, 491, or 589 lbf. For a brief period during cycle 157D between 12:19 on June 2, 2015 and 08:23 on June 11, 2015 the load cells were wired incorrectly resulting in missing

  2. AGC-4 Experiment Irradiation Monitoring Data Qualification Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Laurence Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    The Graphite Technology Development Program is running a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The fourth experiment, Advanced Graphite Creep 4 (AGC 4), began with Advanced Test Reactor (ATR) cycle 157D on May 30, 2015, and has been irradiated for two cycles. The capsule was removed from the reactor after ATR cycle 158A, which ended on January 2, 2016, due to interference with another experiment. Irradiation will resume when the interfering experiment is removed from the reactor. This report documents qualification of AGC 4 experiment irradiation monitoring data for use by the Advanced Reactor Technologies (ART) Technology Development Office (TDO) Program for research and development activities required to design and license the first HTR nuclear plant. Qualified data meet the requirements for use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements and provide no useable information. Trend data may not meet all requirements, but still provide some useable information. Use of Trend data requires assessment of how any deficiencies affect a particular use of the data. All thermocouples (TCs) have functioned throughout the AGC-4 experiment. All temperature data are Qualified for use by the ART TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the ART TDO Program. Discharge gas line moisture values were consistently low during cycle 157D. At the start of cycle 158A, gas moisture briefly spiked to over 600 ppmv and then declined throughout the cycle. Moisture values are within the measurement range of the instrument and are Qualified for use by the ART TDO Program. Graphite creep specimens were subjected to one of three loads, 393, 491, or 589 lbf. For a brief period during cycle 157D between 12:19 on June 2, 2015 and 08:23 on June 11, 2015 the load cells were wired incorrectly resulting in missing

  3. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  4. Property changes in graphite irradiated at changing irradiation temperature

    International Nuclear Information System (INIS)

    Price, R.J.; Haag, G.

    1979-07-01

    Design data for irradiated graphite are usually presented as families of isothermal curves showing the change in physical property as a function of fast neutron fluence. In this report, procedures for combining isothermal curves to predict behavior under changing irradiation temperatures are compared with experimental data on irradiation-induced changes in dimensions, Young's modulus, thermal conductivity, and thermal expansivity. The suggested procedure fits the data quite well and is physically realistic

  5. Process and apparatus for irradiating film, and irradiated film

    International Nuclear Information System (INIS)

    1981-01-01

    A process for irradiating film is described, which consists of passing the film through an electron irradiation zone having an electron reflection surface disposed behind and generally parallel to the film; and disposing within the irradiation zone adjacent the edges of the film a lateral reflection member for reflecting the electrons toward the reflection surface to further reflect the reflected electrons towards the adjacent edges of the film. (author)

  6. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 deg. C

    International Nuclear Information System (INIS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-01-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 deg. C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 deg. C and 300 deg. C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 deg. C (up to 2.6 dpa), and tested between -170 deg. C and 300 deg. C. Irradiation effects at lower irradiation temperatures are more significant

  7. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C

    Science.gov (United States)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-06-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between -170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.

  8. Shear Punch Testing of BOR-60 Irradiated TEM Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    As a part of the project “High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation” an Integrated Research Program (IRP) project from the U.S. Department of Energy, Nuclear Energy University Programs (NEUP), TEM geometry samples of ferritic cladding alloys, Ni based super alloys and model alloys were irradiated in the BOR-60 reactor to ~16 dpa at ~370°C and ~400°C. Samples were sent to Los Alamos National Laboratory and subjected to shear punch testing. This report presents the results from this testing.

  9. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  10. Effects of CTR irradiation on the mechanical properties of structural materials

    International Nuclear Information System (INIS)

    Wiffen, F.W.

    1976-11-01

    Mechanical properties of CTR structural materials are important in determining the reliability and economics of fusion power. Furthermore, these properties are significantly affected by the high neutron flux experienced by components in the regions near the plasma of the fusion reactor. In general, irradiation hardens the material and leads to a reduction in ductility. An exception to this is in some complex engineering alloys where either hardening or softening can be observed depending on the alloy and the irradiation conditions. Regardless of this restriction, irradiation usually leads to a reduction in ductility. Available tensile data examined in this paper show that significant ductility reduction can be found for irradiation conditions typical of CTR operation. Consideration of these effects show that extensive work will be needed to fully establish the in-service properties of CTR structures. This information will be used by designers to develop conditions and design philosophies adapted to avoid the most deleterious conditions and minimize stresses on structures on reactor design. The information will also be used as input to alloy development programs with goals of producing materials more resistant to property degradation during irradiation. It is clear that a great deal of additional work will be required both to understand the effect of CTR irradiation on properties and to develop optimal alloys for this application

  11. Irradiation service, a look at 2000

    International Nuclear Information System (INIS)

    Espinoza, Juan; Rubio, Tatiana

    1999-01-01

    Twenty years after the Multipurpose Irradiation Plant (PIM) operation was established, we think that it is about time to briefly review the experiences that have been carried out and to look at future challenges. Having defined the purpose of the PIM as the intermediate stage between laboratory studies and applications and their industrial development, the decision taken about one year ago to join the PIM's business with the irradiation sector is seen as a very positive strategy to strengthen the management capacity for both units and to provide a service with solid technical back-up and a renewed spirit. Over the last year we have been working at various levels simultaneously. Decisions have been made to integrate all the employees working in the PIM into a work team. A first diagnosis showed that if there were a group of employees with a good level of experience their activity should be consolidated into a team. An in-house training session was held for the irradiation section and the training Manual for irradiation plan operators, published by the International Food Irradiation Consultative Group (IFICG), is being studied and applied. With the support of the Information Unit a storage and operation control system is being developed using a bar code, which will improve the information about productive and administrative aspects as well as obtain better production statistics than what were previously available. A computer record of the Operation Logbook will automatically generate information about shifts, efficiency indicators for the plant and the operation, detention times, etc. The main quality control for the irradiation processes is the dosimetric control and the corresponding certification. The client base has expanded with validations of their product processes and the service provided is being certified, to become part of the food certification program. The advances made in the certification of our products has given our clients a better perception of our

  12. Quality assurance of the UV irradiances of the UV-B Monitoring and Research Program: the Mauna Loa test case

    Science.gov (United States)

    Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.

  13. Irradiation enhanced diffusion and irradiation creep tests in stainless steel alloys

    International Nuclear Information System (INIS)

    Loelgen, R.H.; Cundy, M.R.; Schuele, W.

    1977-01-01

    A review is given of investigations on the rate of phase changes during neutron and electron irradiation in many different fcc alloys showing either precipitation or ordering. The diffusion rate was determined as a function of the irradiation flux, the irradiation temperature and the irradiation dose. It was found that the radiation enhanced diffusion in all the investigated alloys is nearly temperature independent and linearly dependent on the flux. From these results conclusions were drawn concerning the properties of point defects and diffusion mechanisms rate determining during irradiation, which appears to be of a common nature for fcc alloys having a similar structure to those investigated. It has been recognized that the same dependencies which are found for the diffusion rate were also observed for the irradiation creep rate in stainless steels, as reported in literature. On the basis of this observation a combination of measurements is suggested, of radiation enhanced diffusion and radiation enhanced creep in stainless steel alloys. The diffusion tests will be performed at the Euratom Joint Research Centre in Ispra, Italy, and the irradiation creep tests will be carried out in the High Flux Reactor /9/ of the Euratom Joint Research Centre in Petten, The Netherlands. In order to investigate irradiation creep on many samples at a time two special rigs were developed which are distinguished only by the mode of stress applied to the steel specimens. In the first type of rig about 50 samples can be tested uniaxially under tension with various combinations of irradiation temperature and stress. The second type of rig holds up to 70 samples which are tested in bending, again with various combinations of irradiation temperature and stress

  14. Technical review on irradiation tests and post-irradiation examinations in JMTR

    International Nuclear Information System (INIS)

    2017-07-01

    The Japan Materials Testing Reactor (JMTR) has been contributing to various R and D activities in the nuclear research such as the fundamental research of nuclear materials/ fuels, safety research and development of power reactors, radio isotope (RI) production since its beginning of the operation in 1968. Irradiation technologies and post irradiation examination (PIE) technologies are the important factors for irradiation test research. Moreover, these technologies induce the breakthrough in area of nuclear research. JMTR has been providing unique capabilities for the irradiation test research for about 40 years since 1968. In future, any needs for irradiation test research used irradiation test reactors will continue, such as R and D of generation 4 power reactors, fundamental research of materials/fuels, RI production. Now, decontamination and new research reactor construction are common issue in the world according to aging. This situation is the same in Japan. This report outlines irradiation and PIE technologies developed at JMTR in 40 years to contribute to the technology transfer and human resource development. We hope that this report will be used for the new research rector design as well as the irradiation test research and also used for the human resource development of nuclear engineers in future. (author)

  15. Proceedings of 2008 KAERI/JAEA joint seminar on advanced irradiation and PIE technologies

    International Nuclear Information System (INIS)

    Ryu, Woo-Seog; Ishihara, Masahiro

    2008-12-01

    Under the Arrangement for Cooperation in the field of peaceful uses of Nuclear Energy between the Korea Atomic Energy Research Institute (KAERI) and the Japan Atomic Energy Agency (JAEA), the 2008 KAERI-JAEA Joint Seminar on Advanced Irradiation and PIE (post-irradiation examination) Technologies has been held at KAERI in Daejeon, Korea, from November 5 to 7, 2008. This seminar was organized by the PIE and Radwaste Division, Research Reactor Engineering Division, and HANARO Management Division in KAERI. It was also the first time to hold the seminar under the agreement signed September 4, 2008. This triennial seminar is the sixth in series of bilateral exchange of irradiation technologies. Since the first joint seminar on Post Irradiation Examination Technology between JAERI and KAERI held at JAERI Oarai center, Japan in 1992, it has been a good model of international cooperation program between KAERI and JAEA in the field of neutron irradiation uses. At the fifth seminar in 2005, irradiation technology field was included to the joint seminar, moreover in this time it is expanded to the research reactor management field for covering whole areas of irradiation using in research reactors. The seminar was divided into three technical sessions; the sessions addressed the general topics of 'research reactor management', 'advanced irradiation technology' and 'post-irradiation examination technology'. Total 46 presentations were made, and active information exchange was done among participants. This proceeding is containing the papers or manuscripts presented in the 2008 KAERI-JAEA Joint Seminar on Advanced Irradiation and PIE Technologies. The 46 of the presented papers indexed individually. (J.P.N.)

  16. The effects of irradiation to 8x1026m-2 on the mechanical properties of 6061-T651 aluminum

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1995-01-01

    The effects of irradiation on the mechanical properties of candidate structural materials are being examined. A key to the generation of useful neutron beams is allowing the neutrons produced in the core to escape. Therefore, an aluminum alloy has been selected for the first wall containment adjacent to the core, the Core Pressure Boundary Tube (CPBT), Alloy (6061 J651 Al 1.0Mg-0.6Si-0.3Cu-0.2Cr) with acceptable mechanical properties in unirradiated condition, low neutron cross-section, high thermal conductivity for heat removal. This alloy may also be used for the beam tubes and reflector tank. An irradiation program is underway to determine the effects of irradiation on the mechanical properties of 6061-T651 aluminium in particular the fracture toughness. This data will allow the operating lifetime of the CPBT to determined which will in turn determine its replacement schedule in the ANS. The first two capsules for the ANS Irradiation Effects program have been successfully irradiated to 10 26 and 8x10 26 m -2 (thermal flux), respectively, at a nominal irradiation temperature of 95 deg. C. The testing of the specimens of 6061-T651 aluminum has shown: 1. The yield and ultimate tensile strengths are increased by irradiation; 2. The uniform and total elongations are reduced, but useful ductility remains, even at the higher irradiation level; 3. The fracture toughness at 25 deg. C and 95 deg. C is unaffected by irradiation, but at 150 deg. C, it decreases with an increase in irradiation; 4. The tearing modulus of 6061-T651 is low in the unirradiated condition, and is reduced to very low values by irradiation. This alloy also shows a tendency for sudden unstable crack extension

  17. Effect of medium and post-irradiation storage on rooting of irradiated onions

    International Nuclear Information System (INIS)

    Singh, Rita

    2000-01-01

    Rooting test for detection of irradiation in onion bulbs was studied. Onions were exposed to different dose levels of 30, 60, 90, 120 and 150 Gy. The effects of irradiation dose, cultivar difference, rooting medium and post-irradiation storage on the rooting were investigated. The number and the length of the roots formed in onions were found to decrease on irradiation. The effect was more at higher doses. The effect of irradiation on rooting was also evident after 120 days of storage. (author)

  18. Irradiation and flavor

    International Nuclear Information System (INIS)

    Reineccius, G.A.

    1992-01-01

    Flavor will not be a significant factor in determining the success of irradiated foods entering the U.S. market. The initial applications will use low levels of irradiation that may well result in products with flavor superior to that of products from alternative processing techniques (thermal treatment or chemical fumigation). The success of shelf-stable foods produced via irradiation may be much more dependent upon our ability to deal with the flavor aspects of high levels of irradiation

  19. Dosimetry and irradiation methods for the ANSTO gamma technology research irradiator (GATRI)

    International Nuclear Information System (INIS)

    Izard, M.E.

    1988-07-01

    The Australian Nuclear Science and Technology Organisation's gamma technology research irradiator (GATRI) at Lucas Heights, New South Wales, has been modified for use as a research and small-scale commercial irradiation facility to be available to government agencies and private industry for the technical and economic evaluation of irradiation processing. The new source rack was designed around existing mechanical components to optimise the limited space available within the irradiation cell. Irradiation parameters investigated during commissioning included the effect of source-to-target distance on relative dose rates within targets of the same density; effect of density on dose-rate distribution within targets irradiated at the same distance from the source; and the contribution of transit dose to low absorbed doses as the source is raised and lowered. The efficiency of the irradiator was determined for various target densities and overdose ratios

  20. Shippingport station decommissioning project irradiated components transfer: Topical report

    International Nuclear Information System (INIS)

    1988-01-01

    This topical report is a synopsis of the transfer of irradiated components into the Shippingport Reactor Pressure Vessel (RPV) performed at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities for the decommissioning of a nuclear power reactor to be removed in one piece

  1. The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton.

    Science.gov (United States)

    Helinski, M E H; Knols, B G J

    2009-06-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments with a higher ratio of irradiated versus un-irradiated males were performed. Second, pupae were irradiated just prior to emergence and male mating competitiveness was determined. Males were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. Pupae were irradiated aged 20-26 h (young) as routinely performed, or the pupal stage was artificially prolonged by cooling and pupae were irradiated aged 42-48 h (old). Irradiated males competed at a ratio of 3:1:1 to un-irradiated males for mates in a large cage design. At the 3:1 ratio, the number of females inseminated by males irradiated with 70 Gy as young pupae was similar to the number inseminated by un-irradiated males for the majority of the replicates. At 120 Gy, significantly fewer females were inseminated by irradiated than by un-irradiated males. The irradiation of older pupae did not result in a significantly improved male mating competitiveness compared to the irradiation of young pupae. Our findings indicate that the loss of competitiveness after pupal stage irradiation can be compensated for by a threefold increase of irradiated males, but only for the partially-sterilizing dose. In addition, cooling might be a useful tool to facilitate handling processes of large numbers of mosquitoes in genetic control programmes.

  2. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Miller, Roger G. [ORNL; Chen, Jian [ORNL; Tang, Wei [ORNL; Clark, Scarlett R. [ORNL; Gibson, Brian T. [ORNL; Vance, Mark Christopher [ORNL; Frederick, Greg [Electric Power Research Institute (EPRI); Tatman, Jonathan K. [Electric Power Research Institute (EPRI); Sutton, Benjamin J. [Electric Power Research Institute (EPRI)

    2018-04-01

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additional support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.

  3. Irradiation performance updates on Korean advanced fuels for PWRs

    International Nuclear Information System (INIS)

    Jang, Y.K.; Jeon, K.L.; Kim, Y.H.; Yoo, J.S.; Kim, J.I.; Shin, J.C.; Chung, J.G.; Park, J.R.; Chung, S.K.; Kim, T.W.; Yoon, Y.B.; Park, K.M.; Yoo, M.J.; Kim, M.S.; Lee, T.H.

    2010-01-01

    The developments of advanced nuclear fuels for PWRs were started in 1999 and in 2001, respectively: PLUS7 TM for eight operating optimized power reactors of 1000 MWe class (OPR1000) and four advanced power reactors of 1400 MWe class (APR1400) under construction, and 16ACE7 TM and 17ACE7 TM for an operating 16x16 Westinghouse type plant and six operating 17x17 Westinghouse type plants. The design targets were as follows: batch average burnup up to 55 GWD/MTU, over 10% thermal margin increase, improvement of the mechanical integrity of higher seismic capability, higher debris or grid fretting wear performance, higher control rod insertion capability, increase of neutron economy, improvement of manufacturability, solving incomplete rod insertion (IRI) issue and top nozzle screw failure issue, etc. in comparison of the existing nuclear fuels. The irradiation tests using each four LTAs (Lead Test Assemblies) during 3 cycles were completed in three Korean nuclear reactors until 2009. The eight irradiation performance items which are assembly growth, rod growth, grid width growth, assembly bow, rod bow, assembly twist, rod diameter and cladding oxidation were examined in pool-side after each cycle and evaluated. The irradiation tests could be continued by expecting the good performances for next cycle from the previous cycle. After 2 cycle irradiations, the region implementation could be started in 15 nuclear power plants. Even though the verifications using the LTAs were completed, each surveillance program was launched and the irradiation performance data were being updated during region implementation. In addition to pool-side examinations (PSEs) by assembly-wise during irradiation tests, six rod-wise performance items were also examined in pool-side using each LTA after discharge. All performance items met their design criteria as a result of the evaluation. Even though the interesting ones among the irradiation performance parameters were assembly and grid growths

  4. Studies of neutron irradiation effects at IPNS-REF

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1983-09-01

    Neutron irradiation effects studies at the Radiation Effects Facility (REF) at the Intense Pulsed Neutron Source (IPNS) located at Argonne National Laboratory (ANL) are reviewed. A brief history of the development of this user facility is followed by an overview of the scientific program. Experiments unique to a spallation neutron source are covered in more detail. Future direction of research at this facility is suggested

  5. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  6. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  7. Report of the Working Group on low-temperature neutron irradiation

    International Nuclear Information System (INIS)

    1982-07-01

    This report summarizes deliberations at a Working Group meeting sponsored by the Department of Energy, Division of Materials Sciences for the purpose of: (1) assessing the need for maintaining a low temperature neutron irradiation program in the United States; and (2) recommending a course of action based on this assessment

  8. Irradiation device

    International Nuclear Information System (INIS)

    Suzuki, Toshimitsu.

    1989-01-01

    In an irradiation device for irradiating radiation rays such as electron beams to pharmaceuticals, etc., since the distribution of scanned electron rays was not monitored, the electron beam intensity could be determined only indirectly and irradiation reliability was not satisfactory. In view of the above, a plurality of monitor wires emitting secondary electrons are disposed in the scanning direction near a beam take-out window of a scanning duct, signals from the monitor wires are inputted into a display device such as a cathode ray tube, as well as signals from the monitor wires at the central portion are inputted into counting rate meters to measure the radiation dose as well. Since secondary electrons are emitted when electron beams pass through the monitor wires and the intensity thereof is in proportion with the intensity of incident electron beams, the distribution of the radiation dose can be monitored by measuring the intensity of the emitted secondary electrons. Further, uneven irradiation, etc. can also be monitored to make the radiation of irradiation rays reliable. (N.H.)

  9. Sensory properties of irradiated foods

    International Nuclear Information System (INIS)

    Plestenjak, A.

    1997-01-01

    Food irradiation is a simple and effective preservation technique. The changes caused by irradiation depend on composition of food, on the absorbed dose, the water content and temperature during and after irradiation. In this paper the changes of food components caused by irradiation, doses for various food irradiation treatments, foods and countries where the irradiation is allowed, and sensory properties of irradiated food are reviewed

  10. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  11. Dose-time relationships for post-irradiation cutaneous telangiectasia

    International Nuclear Information System (INIS)

    Cohen, L.; Ubaldi, S.E.

    1977-01-01

    Seventy-five patients who had received electron beam radiation a year or more previously were studied. The irradiated skin portals were photographed and late reactions graded in terms of the number and severity of telangiectatic lesions observed. The skin dose, number of fractions, overall treatment time and irradiated volume were recorded in each case. A Strandqvist-type iso-effect line was derived for this response. A multi-probit search program also was used to derive best-fitting cell population kinetic parameters for the same data. From these parameters a comprehensive iso-effect table could be computed for a wide range of treatment schedules including daily treatment as well as fractionation at shorter and longer intervals; this provided a useful set of normal tissue tolerance limits for late effects

  12. Tritium release from beryllium pebbles after high temperature irradiation up to 3000 appm He in the HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Til, S. van, E-mail: vantil@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Fedorov, A.V.; Stijkel, M.P.; Cobussen, H.L.; Mutnuru, R.K.; Idsert, P. van der [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and The Development of Fusion Energy, c/ Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    In the HIDOBE (HIgh DOse irradiation of BEryllium) irradiation program, various grades of constrained and unconstrained beryllium pebbles, beryllium pellets and titanium-beryllide samples are irradiated in the High Flux Reactor (HFR) in Petten at four different temperatures (between 698 K and 1023 K) for 649 days [1]. The first of two HIDOBE irradiation experiments, HIDOBE-01, was completed after achieving a DEMO relevant helium production level of 3000 appm and the samples are retrieved for postirradiation examination (PIE). This work shows preliminary results of the out-of-pile tritium release analysis performed on different grades of irradiated beryllium pebbles (different in size). Relationships between irradiation temperature, tritium inventory and microstructural evolution have been observed by light microscopy and scanning electron microscopy.

  13. Food irradiation

    International Nuclear Information System (INIS)

    Luecher, O.

    1979-01-01

    Limitations of existing preserving methods and possibilities of improved food preservation by application of nuclear energy are explained. The latest state-of-the-art in irradiation technology in individual countries is described and corresponding recommendations of FAO, WHO and IAEA specialists are presented. The Sulzer irradiation equipment for potato sprout blocking is described, the same equipment being suitable also for the treatment of onions, garlic, rice, maize and other cereals. Systems with a higher power degree are needed for fodder preserving irradiation. (author)

  14. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Hanna, W.W.; Burton, G.W.

    1978-05-01

    Progress is reported on plant breeding programs for the genetic improvement of warm season grasses using irradiation as a tool. Data are included from studies on alteration of the protein quantity and quality in pearl millet grain by irradiation and mutation breeding; the effects of nitrogen and genotype on pearl millet grain; the effects of seed size on quality in pearl millet; irradiation breeding of sterile triploid turf Bermuda grasses; irradiation breeding of sterile coastcross-1, a forage grass, to increase winter hardiness; use of irradiation to induce resistance to rust disease; and an economic assessment of irradiation-induced mutants for plant breeding programs

  15. Characterization program, management and isotopic inventory calculation, radiological and fuel thermal irradiated in nuclear power Cofrentes; Programa Caracterizacion Gestion y calculo del inventario isotopico, radiologico y termico del combustible irradiado en la Central Nuclear de Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Albendea, M.; Diego, J. L. de; Urrea, M.

    2012-07-01

    Characterization is a very detailed and user-friendly program takes into account the history of irradiation individualized and real all the fuel, even taking into account the interim periods are periods of discharge and recharge cycles and which have not been used.

  16. PIREX II, a new irradiation facility for testing fusion first wall materials

    International Nuclear Information System (INIS)

    Marmy, P.; Daum, M.; Gavillet, D.; Green, S.; Green, W.V.; Hegedues, F.; Pronnecke, S.; Rohrer, U.; Stiefel, U.; Victoria, M.

    1988-12-01

    A new irradiation facility, PIREX II, became operational in March 1987. It is located on a dedicated beam line split from the main beam of the 590 MeV proton accelerator at the Paul Scherrer Institute (PSI). Irradiation with protons of this energy introduces simultaneously displacement damage, helium and other impurities. Because of the penetration range of 590 MeV protons, both damage and impurities are homogeneously distributed in the target. The installation has its own beam line optics that can support a proton current of up to 50 μA. At a typical beam density of 4 μA/mm 2 , the damage rate in steels is 0.7 x 10 -5 dpa/sec (dpa: displacements per atom) and the helium production rate is 170 appm He/dpa. Both flat tensile specimens of up to 0.4 mm thickness and tubular fatigue samples of 3 mm diameter can be irradiated. Cooling of the temperatures can be controlled between 100 o and 800 o C. Installation of an in situ low cycle fatigue device is foreseen. Beams of up to 20 μA have been obtained, the beam having approximately a gaussian distribution of elliptical cross section with 4 σ between 0.8 and 3 mm by 10 mm. Irradiations for a dosimetry program have been completed on samples of Al, Cu, Fe, Ni, Au, W, and the 1.4914 ferritic steel. The evaluation of results allows the correct choice of reactions to be used for determining total dose, from the standpoint of half life and gamma energy. A program of irradiations on candidate materials for the Next European Torus (NET) design (Cu and Cu alloys, the 1.4914 ferritic martensitic steel, W and W-Re alloys and Mo alloys), where the above mentioned characteristics of this type of irradiation can be used advantageously, is now under way. (author) 11 figs., 4 tabs., 20 refs

  17. Materials program for magnetic fusion energy

    International Nuclear Information System (INIS)

    Zwilsky, K.M.; Cohen, M.M.; Finfgeld, C.R.; Reuther, T.C.

    1978-01-01

    The Magnetic Fusion Reactor Materials Program is currently operating at a level of $7.8M. The program is divided into four technical areas which cover both short and long term problems. These are: Alloy Development for Irradiation Performance, Damage Analysis and Fundamental Studies, Plasma-Materials Interaction, and Special Purpose Materials. A description of the program planning process, the continuing management structure, and the resulting documents is presented

  18. Practice for dosimetry for a self-contained dry-storage gamma-ray irradiator

    International Nuclear Information System (INIS)

    2002-01-01

    This practice outlines dosimetric procedures to be followed with self-contained dry-storage gamma-ray irradiators. If followed, these procedures will help to ensure that calibration and testing will be carried out with acceptable precision and accuracy and that the samples processed with ionizing radiation from gamma rays in a self-contained dry-storage irradiator receive absorbed doses within a predetermined range. This practice covers dosimetry in the use of dry-storage gamma-ray irradiators, namely self-contained dry storage 137 Cs or 60 Co irradiators (shielded free-standing irradiators). It does not cover underwater pool sources, panoramic gamma-ray sources such as those raised mechanically or pneumatically to irradiate isotropically into a room or through a collimator, nor does it cover self-contained bremsstrahlung x-ray units. The absorbed dose range for the use of the dry-storage self-contained gamma-ray irradiators covered by this practice is typically 1 to 10 5 Gy, depending on the application. The absorbed-dose rate range typically is from 10 -2 to 10 3 Gy/min. This practice describes general procedures applicable to all self-contained dry-storage gamma-ray irradiators. For procedures specific to dosimetry in blood irradiation, see ISO/ ASTM Practice 51939. For procedures specific to dosimetry in radiation research on food and agricultural products, see ISO/ASTM Practice 51900. For procedures specific to radiation hardness testing, see ASTM Practice E 1249. For procedures specific to the dosimetry in the irradiation of insects for sterile release programs, see ISO/ASTM Guide 51940. In those cases covered by ISO/ASTM Practices 51939, 51900, 51940, or ASTM E 1249, those standards take precedence. In addition, this practice does not cover absorbed-dose rate calibrations of radiation protection instrumentation

  19. Facts about food irradiation: Packaging of irradiated foods

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet considers the effects on packaging materials of food irradiation. Extensive research has shown that almost all commonly used food packaging materials toted are suitable for use. Furthermore, many packaging materials are themselves routinely sterilized by irradiation before being used. 2 refs

  20. Development of advanced blanket performance under irradiation and system integration through JUPITER-II project

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru; Namba, C.; Terai, T.; Kunugi, T.; Muroga, Takeo; Hasegawa, Akira; Sagara, A.; Berk, S.; Zinkle, Steven J.; Sze, Dai Kai; Petti, D. A.; Abdou, Mohamed A.; Morley, Neil B.; Kurtz, Richard J.; Snead, Lance L.; Ghoniem, Nasr M.

    2008-12-01

    This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].

  1. Cost-benefit analysis of irradiation of vegetables and fruits at the Shanghai irradiation centre

    International Nuclear Information System (INIS)

    Xu Zhicheng; Sha Zhenyuan

    1993-01-01

    Differences between the developing and the developed countries in development and application of food irradiation are discussed, including the objectives of irradiation, scale, and the operation and control of facilities. These represent the chief problems of development of food irradiation in the developing countries. A proposal concerning the economic benefit of a gamma irradiation facility is discussed. In the light of many years' operating experience at the Shanghai Irradiation Centre, the operation cost per hour and coefficient of economic benefit are presented. These data can be used to estimate the economic benefit of gamma irradiated products at any time, and are useful for directing the daily operation of gamma irradiation facilities. From examples of cost-benefit analysis of irradiated garlic and apples it is shown that to improve the benefit of gamma irradiation facilities the annual hours of operation must be increased, so as to reduce the cost of operation. Food irradiated with a low dose provides more economic benefit than other irradiated products; the coefficients of economic benefit will increase as the irradiated processing throughput increases. Practical examples are given relating to garlic and apples, showing the economic benefit to wholesalers and retailers. (author). 4 refs, 3 figs, 7 tabs

  2. Detection of irradiated strawberries by identifying ESR peak of irradiated cellulose component

    International Nuclear Information System (INIS)

    Goto, Michiko; Tanabe, Hiroko

    2002-01-01

    The method of detecting low-dose irradiated strawberries by identifying ESR peak of irradiated cellulose component was studied. Ratio of peak height (S) of high magnetic field cellulose component, and noise width (N) of either irradiated or unirradiated seeds of strawberries were compared. In this study, sample was identified to be irradiated when S/N ratio of ESR spectrum of 4 min. sweep time was above 0.7. In the case of S/N ratio below 0.7, when the S/N ratio of integrated ESR spectrum, obtained from measuring 10 times with 1 min. sweep time was above 1.0, the sample was identified to be irradiated. The result suggests that S/N ratio is a good marker to detect the irradiation. The strawberries irradiated above 0.5kGy was able to be detected after 3 days storage at room temperature, after 21 days refrigeration and after 60 days freezing, respectively. (author)

  3. Irradiation and Post-Irradiation Storage of Chicken: Effects on Fat and Proteins

    International Nuclear Information System (INIS)

    Abou-Tarboush, H.M.; Al-Kahtani, H.A.; Abou-Arab, A.A.; Atia, M.; Bajaber, A.S.; Ahmed, M.A.; El-Mojaddidi, M.A.

    1997-01-01

    Chicken were subjected to gamma irradiation doses of 2.5, 5.0, 7.5 and 10.0 KGy and post-irradiation storage of 21 days at 4±2º. The effects on fat and protein of chicken were studied. Rate of formation of total volatile basic-nitrogen was less in irradiated samples particularly in samples treated with 5.0KGy during the entire storage. Fatty acid profiles of chicken lipids were not significantly (P≤ 0.05) affected by irradiation especially at doses of 5.0 KGy. However, irradiation caused a large increase in thiobarbituric acid (TBA) values which continued gradually during storage. Changes in amino acids were minimal. Irradiated and unirradiated samples showed the appearance of protein subunits with molecular weights in the range of 10.0 to 88.0 and 10.0 to 67.0 KD, respectively. No changes were observed in the sarcoplasmic protein but the intensity of bands in all irradiated samples decreased after 21 days of storage

  4. A computer program to calculate nuclide yields in complex decay chain for selection of optimum irradiation and cooling condition

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-11-01

    This report is prepared as a user's input manual for a computer code CODAC-No.5 and provides a general description of the code and instructions for its use. The code represents a modified version of the CODAC-No.4 code. The code developed is capable of calculating radioactive nuclide yields in an any given complex decay and activation chain independent of irradiation history. In this code, eighteen kinds of valuable tables and graphs can be prepared for output. They are available for selection of optimum irradiation and cooling conditions and for other intentions in accordance with irradiation and cooling. For a example, the ratio of a nuclide yield to total nuclide yield depending on irradiation and cooling times is obtained. In these outputs, several kinds of complex and intricate equations and others are included. This code has almost the same input forms as that of CODAC-No.4 code excepting input of irradiation history data. Input method and formats used for this code are very simple for any kinds of nuclear data. List of FORTRAN statements, examples of input data and output results and list of input parameters and its definitions are given in this report. (auth.)

  5. Food irradiation: fiction and reality

    International Nuclear Information System (INIS)

    1991-01-01

    The International Consultative Group on Food Irradiation (IGCFI), sponsored by World Health Organization (WHO), Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA), with the intention to provide to governments, especially those of developing countries, scientifically correct information about food irradiation, decided to organize a file and questions of general public interest. The document is composed by descriptive files related with the actual situation and future prospective, technical and scientific terms, food irradiation and the radioactivity, chemical transformations in irradiated food, genetic studies, microbiological safety of irradiated food, irradiation and harmlessness, irradiation and additives, packing, irradiation facilities control, process control, irradiation costs and benefits as well as consumers reaction

  6. [Effect of irradiation on the degradation of rat thymocyte chromatin].

    Science.gov (United States)

    Tsudzevich, B O; Parkhomets', Iu P; Andriĭchuk, T R; Iurkina, V V

    1998-01-01

    Genome instability of adaptive nature is formed under the experimental influence on a cell. Under critical conditions, strategy of organism is to damage the cells that cannot be restored and controlled by including the program of apoptosis. The ordered internucleosomal DNA degradation is considered to be one of the proof attributes of immunocompetent cell apoptosis. We investigated the effects of various doses of irradiation on the thymocytes chromatine fragmentation in 1,2,3 hours after a single X-ray exposure or after chronic influence in conditions of Chernobyl research base. By the means of electrophoresis in agarose and judging by polydeoxyribonucleotides accumulation we observed the "ladder pattern" of degradation in 3 hr after single 1 Gr irradiation (the smallest dose displaying the effect). We suppose that the influence of both chronic low-intensity irradiation taking place in Chernobyl and single X-ray exposure result in intensifying of DNA fragmentation in the cells of immunocompetent organs.

  7. Modeling the influence of high dose irradiation on the deformation and damage behavior of RAFM steels under low cycle fatigue conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: aktaa@imf.fzk.de; Petersen, C. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2009-06-01

    A viscoplastic deformation damage model developed for RAFM steels in the reference un-irradiated state was modified taking into account the irradiation influence. The modification mainly consisted in adding an irradiation hardening variable with an appropriate evolution equation including irradiation dose driven terms as well as inelastic deformation and thermal recovery terms. With this approach, the majority of the material and temperature dependent model parameters are no longer dependent on the irradiation dose and only few parameters need to be determined by applying the model to RAFM steels in the irradiated state. The modified model was then applied to describe the behavior of EUROFER 97 observed in the post irradiation examinations of the irradiation programs ARBOR 1, ARBOR 2 and SPICE. The application results will be presented and discussed in addition.

  8. Irradiation of food

    International Nuclear Information System (INIS)

    Lindell, B.; Danielsson-Tham, M.L.; Hoel, C.

    1983-01-01

    A committee has on instructions from the swedish government made an inquiry into the possible effects on health and working environment from irradition of food. In this report, a review is presented on the known positiv and negative effects of food irradiation Costs, availabilty, shelf life and quality of irradiated food are also discussed. According to the report, the production of radiolysis products during irradiation is not easily evaluated. The health risks from irradiation of spices are estimated to be lower than the risks associated with the ethenoxid treatment presently used. (L.E.)

  9. Facts about food irradiation: Food irradiation costs

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet gives the cost of a typical food irradiation facility (US $1 million to US $3 million) and of the food irradiation process (US $10-15 per tonne for low-dose applications; US $100-250 per tonne for high-dose applications). These treatments also bring consumer benefits in terms of availability, storage life and improved hygiene. 2 refs

  10. Facts about food irradiation: Nutritional quality of irradiated foods

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet briefly considers the nutritional value of irradiated foods. Micronutrients, especially vitamins, are sensitive to any food processing method, but irradiation does not cause any special nutritional problems in food. 4 refs

  11. 16-rod-bundle: Irradiation in the MZFR and post-irradiation examinations

    International Nuclear Information System (INIS)

    Manzel, R.

    1979-04-01

    In the course of the irradiation of a 16-rod prototype bundle, the basis has been established for the irradiation of experimental fuel assemblies containing full-length PWR fuel rods in standard positions of the MZFR. The prototype bundle was discharged after an irradiation time of 284 full power days and a burnup of 11400 MWd/tU. The overall performance of the prototype bundle was highly satisfactory. Detailed post-irradiation examinations confirmed the good conditions of bundle structures and fuel rods. (orig.) [de

  12. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1985-01-01

    Economic constraints require that a food irradiation processing facility have a throughput of approximately 1 MGy ton/day (0.91 MGy m.t./day) requiring 3 MegaCuries (MCi) of cobalt-60 at each site. This requirement means that the total world amount of cobalt-60 would have to be increased by about 60 percent just to handle the California almond and raisin crop during peak season. It is doubtful that public opinion would allow the increased distribution of radioactive isotopes, with the resultant burden upon the transportation networks, as a price to be paid to eat irradiated food. Electric sources have characteristics that allow the production of more penetrating, uniform, and efficient radiation that is available from nuclear isotopes. The heart of the electric radiation source is the electron accelerator. At present, there are no accelerators commercially available that can meet the requirements for food irradiation processing. However, the U.S. Department of Defense-funded beam weapons programs have provided a very promising accelerator technology at the Lawrence Livermore National Laboratory. If this technology were to be commercialized, it appears that the required accelerators would be available for US$1.5 million apiece, and quite possibly for less than this amount. A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost, assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed for 1 kGy for a price of $5.98/ton ($6.59/m.t.)

  13. Mechanical properties of irradiated and non-irradiated Zr1%Nb and Zircaloy claddings

    International Nuclear Information System (INIS)

    Griger, Agnes

    2004-01-01

    The mechanical properties of irradiated and non-irradiated Zr1%Nb were determined and they were compared with the analogous properties of Zircaloy-4 to establish connections between the evolution of mechanical parameters of Zr1%Nb and Zircaloy-4 cladding materials and the measure of irradiation. Samples were irradiated in the vertical channels of the Budapest Research Reactor for different time periods at 50-65 C temperature. The measure of irradiation (fluent) for different samples was estimated by means of flux measurement and using the effective irradiation time. Post irradiation uniaxial tension tests in transverse direction were carried out on ring specimens. The mechanical parameters of the Zr1%Nb alloy significantly improve due to the effect of irradiation. However, the values of mechanical parameters do not further increase when the fluent increases above 10 20 n/cm 2 . These results are in good accordance with the Russian ones [1]. Contrary to the behaviour of Zr1%Nb alloy, the mechanical parameters of the Zircaloy practically do not change on the effect of irradiation. The originally high values of ultimate tensile strength and yield stress change only slightly with the increasing fluent in the investigated fluent-region. (Author)

  14. Education campaign focuses on effects of irradiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    An educational campaign was recently launched to call attention to the increased risk of thyroid carcinoma resulting from radiotherapy administered to the head and neck during childhood or adolescence. Although irradiation therapy for benign conditions of the head and neck was discontinued 15 years ago, the late effects of this treatment are being reported with increasing frequency. Thyroid screening programs are being established in the Chicago area. (ERB)

  15. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator; Desenvolvimento do sistema de irradiacao em um irradiador multiproposito de cobalto-60 tipo compacto

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Wilson Aparecido Parejo

    2005-07-01

    The Radiation Technology Center from Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil, developed with a revolutionary design and national technology, a small size continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotate door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m{sup 2} of floor area, the irradiator design is product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 P Bq (1 MCi). The performed quantification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process quantification. The initial load of the multipurpose irradiator was 3.4 P Bq (92.1 k Ci) with 13 cobalt-60 sources model C-188, supplied by MDS Nordion Ion Technologies - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The poly-methylmethacrylate (PMMA) dosimeters system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning to dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial

  16. Comprehensive quality management program for radiation oncology

    International Nuclear Information System (INIS)

    Dawson, J.; Roy, T.; Abrath, F.; Wu, T.; Gu, J.; McDonald, R.; Kim, H.; Haenchen, M.

    1994-01-01

    A quality management program for both external beam irradiation (electron and photon modes) and brachytherapy (high dose rate (HDR) and low dose rate (LDR) has been developed. The program follows current USA federal regulations for therapeutic administration of by-product materials. After implementation of the program, 54 HDR patients, 36 LDR brachytherapy patients and 311 external beam patients (including 30 stereotactic radiosurgery cases) were treated. The results of this program are presented

  17. Irradiation enhanced diffusion and irradiation creep tests in stainless steel alloys

    International Nuclear Information System (INIS)

    Loelgen, R.H.; Cundy, M.R.; Schuele, W.

    1977-01-01

    A review is given of investigations on the rate of phase changes during neutron and electron irradiation in many different fcc alloys showing either precipitation or ordering. The diffusion rate was determined as a function of the irradiation flux, the irradiation temperature and the irradiation dose. It was found that the radiation enhanced diffusion in all the investigated alloys is nearly temperature independent and linearly dependent on the flux. From these results conclusions were drawn concerning the properties of point defects and diffusion mechanisms rate determining during irradiation, which appears to be of a common nature for fcc alloys having a similar structure to those investigated. It has been recognized that the same dependencies which are found for the diffusion rate were also observed for the irradiation creep rate in stainless steels, as reported in literature. On the basis of this obervation a combination of measurements is suggested, of radiation enhanced diffusion and radiation enhanced creep in stainless steel alloys. Measurements of radiation enhanced diffusion are less time consuming and expensive than irradiation creep tests and information on this property can be obtained rather quickly, prior to the selection of stainless steel alloys for creep tests. In order to investigate irradiation creep on many samples at a time two special rigs were developed which are distinguished only by the mode of stress applied to the steel specimens. Finally, a few uniaxial tensile creep tests will be performed in fully instrumented rigs. (Auth.)

  18. Food irradiation

    International Nuclear Information System (INIS)

    Hetherington, M.

    1989-01-01

    This popular-level article emphasizes that the ultimate health effects of irradiated food products are unknown. They may include vitamin loss, contamination of food by botulism bacteria, mutations in bacteria, increased production of aflatoxins, changes in food, carcinogenesis from unknown causes, presence of miscellaneous harmful chemicals, and the lack of a way of for a consumer to detect irradiated food. It is claimed that the nuclear industry is applying pressure on the Canadian government to relax labeling requirements on packages of irradiated food in order to find a market for its otherwise unnecessary products

  19. Survival and reproductive capacity of the tobacco budworm, heliothis virescens (lepidoptera:noctuidae), irradiated as diapausing and young nondiapausing pupae

    International Nuclear Information System (INIS)

    Proshold, F.I.; North, D.T.

    1978-01-01

    Pupal survival, mating, and sperm transfer in tobacco budworm, Heliothis virescens (F.), irradiated as diapause pupae, decreased proportionately with increasing doses of 3, 5, and 7.5 krad. Also, the fertility of tobacco budworms irradiated as nondiapause pupae and of the F 1 progeny of such males decreased with increasing dose. When the female partner received eupyrene sperm, insects irradiated while the pupae were in diapause were fertile as were their progeny. Therefore, it does not appear plausible to irradiate diapause pupae of our strain of tobacco budworms to obtain sterile insects for a release program. (author)

  20. Radiation damage calculations for the APT materials test program

    International Nuclear Information System (INIS)

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-01-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons (∼1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV

  1. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  2. Isolation of chlamydia in irradiated and non-irradiated McCoy cells

    International Nuclear Information System (INIS)

    Johnson, L.; Harper, I.A.

    1975-01-01

    Specimens from eye and genital tract were cultured in parallel in irradiated and non-irradiated McCoy cells and the frequency of isolation of chlamydia using these culture methods was compared. There was a significant difference between the frequencies of isolation; irradiated McCoy cells produced a greater number of positive results. (author)

  3. HRB-22 capsule irradiation test for HTGR fuel. JAERI/USDOE collaborative irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Kazuo; Sawa, Kazuhiro; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    As a JAERI/USDOE collaborative irradiation test for high-temperature gas-cooled reactor fuel, JAERI fuel compacts were irradiated in the HRB-22 irradiation capsule in the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). Postirradiation examinations also were performed at ORNL. This report describes 1) the preirradiation characterization of the irradiation samples of annular-shaped fuel compacts containing the Triso-coated fuel particles, 2) the irradiation conditions and fission gas releases during the irradiation to measure the performance of the coated particle fuel, 3) the postirradiation examinations of the disassembled capsule involving visual inspection, metrology, ceramography and gamma-ray spectrometry of the samples, and 4) the accident condition tests on the irradiated fuels at 1600 to 1800degC to obtain information about fuel performance and fission product release behavior under accident conditions. (author)

  4. Radiation therapy in leukemia (total body irradiation excluded); Irradiations pour leucemie a l`exclusion de l`irradiation corporelle totale

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Hoffstetter, S. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France). Dept. de Radiotherapie

    1999-03-01

    Radiation techniques and indications in leukemias have been described in detail, yet prophylactic cranial irradiation in acute leukemia still has few indications. Cerebrospinal and testicular irradiation are reserved for relapsing disease. Radiation usually results in rapid functional improvement when used in neurologic emergencies and symptomatic neurologic or gross tumors relapses. Nevertheless, the improvements recently obtained by systemic chemotherapy have resulted in the reduction in the use of irradiation, especially in children, where it was considered deleterious with neuropsychological sequelae. Splenic irradiation remains useful for symptomatic myelo-proliferative syndrome. (authors)

  5. An overview of the Cooperative IASCC Research (CIR) program

    International Nuclear Information System (INIS)

    Pathania, R.; Gott, K.; Scott, P.

    2007-01-01

    Irradiation-Assisted Stress Corrosion Cracking (IASCC) has affected reactor core internal structures fabricated from austenitic stainless steels in both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The Cooperative IASCC Research (CIR) Program is an international research effort designed to address irradiation-assisted stress corrosion cracking (IASCC) in light water reactor (LWR) components. The objectives of the CIR program are to develop a mechanistic understanding of IASCC initiation and crack growth, to derive a predictive model of IASCC, if possible based on a mechanistic understanding, and thus to identify possible countermeasures to IASCC. It complements other more applied programs by concentrating on the underlying physical causes of IASCC. This paper provides an overview of the current status and achievements of the CIR program, which has been running since 1995. Two phases of the program have been completed and a final extension program is in progress which is scheduled to finish in 2008. The extent to which the CIR program has met its objectives, or will meet them with its current plans extending into 2008, is assessed. (author)

  6. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  7. Quality engineering in FFTF irradiation tests

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1980-01-01

    The design and fabrication of an irradiation test for the Fast Flux Test Facility are planned, controlled and documented in accordance with the Department of Energy standards. Tests built by Westinghouse Hanford Company are further controlled and guided by a series of increasingly specific documents, including guidelines for program control, procedures for engineering operations, standard practices and detailed operating procedures. In response to this guidance, a series of five documents is prepared covering each step of the experiment from conception through fabrication and assembly. This paper describes the quality assurance accompanying these five steps

  8. Planning of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Caha, A; Krystof, V [Vyzkumny Ustav Klinicke a Experimentalni Onkologie, Brno (Czechoslovakia)

    1979-07-01

    The principles are discussed of the planning of irradiation, ie., the use of the various methods of location of a pathological focus and the possibility of semiautomatic transmission of the obtained data on a two-dimensional or spatial model. An efficient equipment is proposed for large irradiation centres which should cooperate with smaller irradiation departments for which also a range of apparatus is proposed. Irradiation planning currently applied at the Research Institute of Clinical and Experimental Oncology in Brno is described. In conclusion, some of the construction principles of semi-automatic operation of radiotherapy departments are discussed.

  9. ESR detection of free radicals in gamma irradiated spices and other foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Pilbrow, J.R.; Troup, G.J.; Hutton, D.R. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Hunter, C.R. [Monash Univ., Clayton, VIC (Australia). Dept. of Astronomy

    1996-12-31

    Irradiation of various food products, including vegetables, fruits, meats, seafoods, herbs, spices and seeds by appropriate doses of {gamma}-rays has for many years been suggested as a means of killing or sterilizing bacteria, viruses and pests and, therefore, as a means of preserving the foods. The position of food irradiation has been under review in Australia generally, through consumer organisations and by a Federal Government (House of Representatives) inquiry. From these reviews and inquiries, recommendations for irradiation, packaging, and labelling etc., are emerging with, for example, an NH and MRC recommended maximum dose of 10 kGy for Australia, with 6 kGy being a minimum dose for grains and spices. In early studies, electron spin resonance (ESR) spectroscopy was used to detect stable free radicals in bone and cuticle and it was demonstrated that {gamma}-irradiation breaks down proteins and DNA. Earlier studies suggested that induced free radical signals in spices rapidly decayed to negligible levels after three weeks, especially if some moisture was present. Although the members of the Monash group do not carry out research formally in the area of food technology, participation in the ADMIT program was appropriate given the availability of suitable ESR and {sup 137}Cs irradiation facilities and interest both politically and amongst consumer groups regarding food irradiation. (author).

  10. ESR detection of free radicals in gamma irradiated spices and other foodstuffs

    International Nuclear Information System (INIS)

    Pilbrow, J.R.; Troup, G.J.; Hutton, D.R.; Hunter, C.R.

    1996-01-01

    Irradiation of various food products, including vegetables, fruits, meats, seafoods, herbs, spices and seeds by appropriate doses of γ-rays has for many years been suggested as a means of killing or sterilizing bacteria, viruses and pests and, therefore, as a means of preserving the foods. The position of food irradiation has been under review in Australia generally, through consumer organisations and by a Federal Government (House of Representatives) inquiry. From these reviews and inquiries, recommendations for irradiation, packaging, and labelling etc., are emerging with, for example, an NH and MRC recommended maximum dose of 10 kGy for Australia, with 6 kGy being a minimum dose for grains and spices. In early studies, electron spin resonance (ESR) spectroscopy was used to detect stable free radicals in bone and cuticle and it was demonstrated that γ-irradiation breaks down proteins and DNA. Earlier studies suggested that induced free radical signals in spices rapidly decayed to negligible levels after three weeks, especially if some moisture was present. Although the members of the Monash group do not carry out research formally in the area of food technology, participation in the ADMIT program was appropriate given the availability of suitable ESR and 137 Cs irradiation facilities and interest both politically and amongst consumer groups regarding food irradiation. (author)

  11. Economics of gamma irradiation processing

    International Nuclear Information System (INIS)

    Tani, Toshio

    1980-01-01

    The gamma-ray irradiation business started at the Takasaki Laboratory of Japan Atomic Energy Research Institute. The irradiation facilities were constructed thereafter at various sites. The facilities must accept various types of irradiation, and must be constructed as multi-purpose facilities. The cost of irradiation consists of the cost of gamma sources, construction expense, personnel expense, management expense, and bank interest. Most of the expenses are considered to be fixed expense, and the amount of irradiation treatment decides the original costs of work. The relation between the irradiation dose and the construction expense shows the larger facility is more economical. The increase of amount of treatment reduces the original cost. The utilization efficiency becomes important when the amount of treatment and the source intensity exceed some values. The principal subjects of gamma-ray irradiation business are the sterilization of medical tools and foods for aseptic animals, the improvement of quality of plastic goods, and the irradiation of foods. Among them, the most important subject is the sterilization of medical tools. The cost of gamma irradiation per m 3 in still more expensive than that by ethylene oxide gas sterilization. However, the demand of gamma-ray irradiation is increasing. For the improvement of quality of plastic goods, electron irradiation is more favourable than the gamma irradiation. In near future, the economical balance of gamma irradiation can be achieved. (Kato, T.)

  12. Development of irradiation rig in HTTR and dosimetry method. I-I type irradiation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Kikuchi, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Miyamoto, Satoshi; Ogura, Kazutomo [Japan Atomic Power Co., Tokyo (Japan)

    2002-12-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated, helium gas-cooled test reactor with a maximum power of 30 MW. The HTTR aims not only to establish and upgrade the technological basis for the HTGRs but also to perform the innovative basic research on high temperature engineering with high temperature irradiation fields. It is planned that the HTTR is used to perform various engineering tests such as the safety demonstration test, high temperature test operation and irradiation test with large irradiation fields at high temperatures. This paper describes the design of the I-I type irradiation equipment developed as the first irradiation rig for the HTTR and does the planned dosimetry method at the first irradiation test. It was developed to perform in-pile creep test on a stainless steel with large standard size specimens in the HTTR. It can give great loads on the specimens stably and can control the irradiation temperature precisely. The in-core creep properties on the specimens are measured by newly developed differential transformers and the irradiation condition in the core is monitored by thermocouples and self-powered neutron detectors (SPNDs), continuously. The irradiated neutron fluence is assessed by neutron fluence monitors of small metallic wires after the irradiation. The obtained data at the first irradiation test can strongly be contributed to upgrade the technological basis for the HTGRs, since it is the first direct measurement of the in-core irradiation environments of the HTTR. (author)

  13. Use of miniature and standard specimens to evaluate effects of irradiation temperature on pressure vessel steels

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Byrne, S.T.

    1991-01-01

    The effects of neutron irradiation on the steel reactor vessel for the modular high-temperature gas-cooled reactor (MHTGR) are being investigated, primarily because the operating temperatures are low [121 to 210 degrees C (250--410 degrees F)] compared to those for commercial light-water reactors (LWRs) [∼288 degrees C (550 degrees F)]. The need for design data on the reference temperature shift necessitated the irradiation at different temperatures of A 533 grade B class 1 plate. A 508 class 3 forging, and welds used for the vessel shell, vessel closure head, the vessel flange. This paper presents results from the first four irradiation capsules of this program. The four capsules were irradiated in the University of Buffalo Reactor to an effective fast fluence of 1 x10 18 neutron/cm 2 [0.68 x 10 18 neutron/cm 2 (>1 MeV)] at temperatures of 288, 204, 163, and 121 degrees C (550, 400, 325, and 250 degrees F), respectively. The yield and ultimate strengths of both steel plate materials of the MHTGR Program increased with decreasing irradiation<