WorldWideScience

Sample records for irradiating high-z targets

  1. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  2. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    Science.gov (United States)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  3. High-vacuum chamber for the irradiation of targets

    International Nuclear Information System (INIS)

    Krimmel, E.; Dullnig, H.

    1975-01-01

    The high vacuum chamber for irradiating targets with X-rays, electron or ion beams is connected to a magazine storage vessel for the targets through a loading duct which can be evacuated. This duct is traversed by a carriage transporting a magazine to the irradiation position. The duct can be closed by a closing valve. Inside the chamber there is a grip attached to a swivel arm which takes a frame with a target from the magazine, or vice versa, and moves it into the irradiation position. This means that the chamber must always be kept at a constant internal pressure. The swiveling shaft for the swivel arm and the transport pinion of the carriage in addition are magnetically coupled to drive shafts located outside the chamber, which obviates the need for any seals. The grip may also deposit the frame on a goniometer, which allows the target to be aligned in the irradiation position. In addition, the measuring probes used to record the amount of reflected radiation are installed in the chamber under electrically insulated conditions relative to the chamber. (DG/RF) [de

  4. Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Colombant, D.G.; Karasik, M.; Pawley, C.J.; Serlin, V.; Schmitt, A.J.; Weaver, J.L.; Gardner, J.H.; Phillips, L.; Aglitskiy, Y.; Chan, Y.; Dahlburg, J.P.; Klapisch, M.

    2002-01-01

    Experimental results and simulations that study the effects of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of laser accelerated plastic targets are presented. These experiments employ a laser pulse with a low-intensity foot that rises into a high-intensity main pulse. This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability. Large reductions are observed in hydrodynamic instability seeded by laser imprint when certain minimum thickness gold or palladium layers are applied to the laser-illuminated surface of the targets. The experiment indicates that the reduction in imprint is at least as large as that obtained by a 6 times improvement in the laser uniformity. Simulations supported by experiments are presented showing that during the low intensity foot the laser light can be nearly completely absorbed by the high-Z layer. X rays originating from the high-Z layer heat the underlying lower-Z plastic target material and cause large buffering plasma to form between the layer and the accelerated target. This long-scale plasma apparently isolates the target from laser nonuniformity and accounts for the observed large reduction in laser imprint. With onset of the higher intensity main pulse, the high-Z layer expands and the laser light is transmitted. This technique will be useful in reducing laser imprint in pellet implosions and thereby allow the design of more robust targets for high-gain laser fusion

  5. The interactions of laser beam with high Z solid target

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-01-01

    The 1-D non-LTE radiative hydrodynamic laser irradiated code JB-19 is used to calculate the laser-produced plasma conditions of high z gold disk. Following physical processes are considered: bremsstrahlung effect, radiative ionization and recombination, collisional ionization by electrons and three-body recombination, collisional excitation and de-excitation by electrons, radiative line emission and absorption and Compton scattering. A gaussian laser pulse with wavelength 1.06 μm, FWHM 600 ps and peak intensity 3 x 10 14 W/cm 2 is used to irradiate 20 μm thick gold disk. The computational results for laser-produced plasma conditions and the absorption efficiency and laser-x-rays conversion efficiency for gold disk are shown

  6. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  7. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  8. Study of high-Z target plate materials in the divertor of ASDEX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, S; Asmussen, K; Engelhardt, W; Field, A R; Fussmann, G; Lieder, G; Naujoks, D; Neu, R; Radtke, R; Wenzel, U [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    The reduction of divertor tile erosion is a challenging problem in present and future tokamaks. Until now, graphite has almost exclusively been used for divertor plates, and it is estimated that unacceptable amounts of material would be eroded under reactor relevant conditions where power fluxes to the target plates as high as 20 MW/m{sup 2} are expected. In a high-recycling divertor with relatively low temperature (5 eVhigh density (n{sub e} {approx} 10{sup 19} m{sup -3}) high-Z materials, e.g. tungsten, offer a possible solution to the target erosion problem. The reason is that the sputtering rates for these materials are extremely low under low temperature conditions. In addition, at high density the ionization lengths can be smaller than the gyro-radius leading to a high probability for prompt redeposition of the eroded ions. To provide a test of the suitability of high-Z materials for the divertor plates, in-situ studies of the erosion of various divertor target materials have been performed by means of passive spectroscopy. From our spectroscopic observations we infer that under high density divertor conditions the advantages of high-Z materials become fully efficient. (author) 6 refs., 2 figs.

  9. Theoretical interpretation of high-Z discs irradiated with 1.06 μ laser light

    International Nuclear Information System (INIS)

    Rosen, M.D.; Mead, W.C.; Thomson, J.J.; Kruer, W.L.

    1978-01-01

    High Z discs have been irradiated with 1.06 μ laser light at intensities between 7 x 10 13 and 3 x 10 15 W/cm, and pulse lengths between 200 and 1000 ps. Due to the high Z, inverse bremsstrahlung becomes an important absorption effect and competes strongly with resonance absorption and stimulated scattering. We find that inhibited electron thermal conduction and non-LTE ionization physics are important. Their inclusion in the LASNEX modeling results in steepened temperature and density profiles near critical, thus producing a several keV underdense corona. These conditions bring what would otherwise be 100% inverse bremsstrahlung absorption down to the experimentally observed values (50% at 10 14 W/cm). The non-LTE physics is essential to correctly compute the level populations of the high Z atoms moving rapidly through a steep density gradient into the corona. This modeling also shows that x-rays are emitted in a thin overdense region, and on a time scale 50% longer than the laser pulse. Both of these effects are seen in the experiments

  10. K-α emission form medium and high-Z materials irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Limpouch, J.; Klimo, O.; Zhavoronkov, N.; Andreev, A.A.

    2006-01-01

    Complete test of publication follows. Fast electrons are created at the target surface during the interaction of high intensity ultra short laser pulses with solids. Fast electrons penetrate deep into the target where they generate K-α and Bremsstrahlung radiation. Generated high brightness K-α pulses offer the prospect of creating a cheap and compact X-ray source, posing a promising alternative to synchrotron radiation, e.g. in medical application and in material science. With an increase in laser intensity, efficient X-ray emission in the multi-keV range with pulse duration shorter than few picoseconds is expected. This short incoherent but monochromatic X-ray emission synchronized with laser pulses may be used for time-resolved measurements. Acceleration of fast electrons, their transport and K-α photon generation and emission from the target surface in both forward and backward directions are studied here numerically. The results are compared to recent experiments studying K-α emission from the front and rear surface of copper foil targets of various thicknesses and for various parameters of the laser plasma interaction. One-dimensional PIC simulations coupled with 3D time-resolved Monte Carlo simulations show that account of ionization processes and of density profile formed by laser ASE emission is essential for reliable explanation of experimental data. While sub-relativistic intensities are optimum for laser energy transformation into K-α emission for medium-Z targets, relativistic laser intensities have to be used for hard X-ray generation in high-Z materials. The cross-section for K-α shell ionization of high-Z elements by electrons increases or remains approximately constant within a factor of two at relativistic electron energies up to electron energies in the 100-MeV range. Moreover, the splitting ratio of K-α photon emission to Auger electron emission is favorable for high-Z materials, and thus efficient K-α emission is possible. In our

  11. Calculation for laser-produced plasmas conditions of thin middle-Z targets: Pt.I

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian; Shao Yunfeng; Zhang Yinchun

    1988-01-01

    An one-dimentional non-LTE laser irradiated code was used to simulate the laser-produced plasmas conditions of thin middle Z targets with high intensities (about 10 13 W/cm 2 ) irradiation. Following physical processes are considered: bremsstrahlung, radiative ionization, collisional ionization by electrons and their inverse processes, Compton scattering. Fokker-Planck approximtaion is used in Compton scattering; the thermal flux limits are taken for electrons and ions in the calculating, and the multigroup flux-limited diffusion approximation is taken for the radiative transport equations. The average-atom model is used to calculate the population probabilities of atoms. Laser absorption via inverse bremsstrahlung is considered to be the most important in the simulation. Using laser beams with intensities 5 x 10 13 W/cm 2 and 1 x 10 14 W/cm 2 , λ L = 0.53 μm, τ = 450 ps to irradiate thin Se target from single-side and double-sides separately, the computational results for laser-produced plasmas conditions are well agree with experimental results

  12. Method for the irradiation of single targets

    International Nuclear Information System (INIS)

    Krimmel, E.; Dullnig, H.

    1977-01-01

    The invention pertains to a system for the irradiation of single targets with particle beams. The targets all have frames around them. The system consists of an automatic advance leading into a high-vacuum chamber, and a positioning element which guides one target after the other into the irradiation position, at right angles to the automatic advance, and back into the automatic advance after irradiation. (GSCH) [de

  13. Post-Irradiation Properties of Candidate Materials for High-Power Targets

    International Nuclear Information System (INIS)

    Kirk, H.G.; Ludewig, H.; Mausner, L.F.; Simos, N.; Thieberger, P.; Brookhaven; Hayato, Y.; Yoshimura, K.; McDonald, K.T.; Sheppard, J.; Trung, L.P.

    2006-01-01

    The desire of the high-energy-physics community for more intense secondary particle beams motivates the development of multi-megawatt, pulsed proton sources. The targets needed to produce these secondary particle beams must be sufficiently robust to withstand the intense pressure waves arising from the high peak-energy deposition which an intense pulsed beam will deliver. In addition, the materials used for the targets must continue to perform in a severe radiation environment. The effect of the beam-induced pressure waves can be mitigated by use of target materials with high-yield strength and/or low coefficient of thermal expansion (CTE) [1, 2, 3]. We report here first results of an expanded study of the effects of irradiation on several additional candidate materials with high strength (AlBeMet, beryllium, Ti-V6-Al4) or low CTE (a carbon-carbon composite, a new Toyota ''gum'' metal alloy [4], Super-Invar)

  14. High-energy, twelve-channel laser facility (DEFIN) for spherical irradiation of thermonuclear targets

    International Nuclear Information System (INIS)

    Basov, N.G.; Danilov, A.E.; Krokhin, O.N.; Kruglov, B.V.; Mikhailov, Yu.A.; Sklizkov, G.V.; Fedotov, S.I.; Fedorov, A.N.

    This paper describes a high-energy, twelve-channel laser facility (DELFIN) intended for high-temperature heating of thermonuclear targets with spherical symmetry. The facility includes a neodymium-glass laser with the ultimate radiation energy of 10 kJ, a pulse length of approximately 10 -10 to 10 -9 s, beam divergence of 5 x 10 -4 radians, a vacuum chamber in which laser radiation interacts with the plasma, and a system of diagnostic instrumentation for the observation of laser beam and plasma parameters. Described are the optical scheme and construction details of the laser facility. Presented is an analysis of focusing schemes for target irradiation and described is the focusing scheme of the DELFIN facility, which is capable of attaining a high degree of spherical symmetry in irradiating targets with maximum beam intensity at the target surface of approximately 10 15 W/cm 2 . This paper examines the most important problems connected with the physical investigations of thermonuclear laser plasma and the basic diagnostic problems involved in their solution

  15. Navy Advertising: Targeting Generation Z

    Science.gov (United States)

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT NAVY ADVERTISING : TARGETING GENERATION Z December......study recommends improvements for Navy advertising efficiency by examining characteristics of recruits defined as Generation Z. Data gathered from five

  16. Photo-neutron yields from thin and thick targets irradiated by 2.0 GeV electrons

    International Nuclear Information System (INIS)

    Hee-Seock, Lee; Syuichi, Ban; Toshiya, Sanami; Kazutoshi, Takahashi; Tatsuhiko, Sato; Kazuo, Shin

    2005-01-01

    The photo-neutron yields from thin and thick targets irradiated by high energy electrons were studied. The photo-neutron spectra at 90 deg C relative to the incident 2.0 GeV electrons were measured by the pulsed beam time-of-flight technique using the Pilot-U plastic scintillator and the NE213 liquid scintillator with 2 inches in length and 2 inches in diameter. Targets, from low-Z element (carbon) to high-Z element (bismuth) and with thin (0.5 Xo) and thick (10 Xo) thickness, were used in this study. The differential photo-neutron yields between 2 MeV (mainly 8 MeV) and 400 MeV were obtained. The systematics was studied to make empirical yield terms for shielding application. Recently, the study of the angular distributed yields was conducted at two other observing angles, 48 deg C and 140 deg C. The photo-neutron yields between 8 MeV and 250 MeV were obtained for thick targets. The experimental data were compared with results calculated using the EGS4+PICA3 or the MCNPX 2.5d code. (authors)

  17. Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments

    Science.gov (United States)

    Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.

    2016-10-01

    We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.

  18. Computational Modeling of Ablation on an Irradiated Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  19. Experimental benchmark for an improved simulation of absolute soft-X-ray emission from polystyrene targets irradiated with the Nike laser

    International Nuclear Information System (INIS)

    Weaver, J.L.; Colombant, D.G.; Mostovych, A.N.; Busquet, M.; Feldman, U.; Klapisch, M.; Seely, J.F.; Brown, C.; Holland, G.

    2005-01-01

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hν∼0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of ∼1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/δE∼1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra

  20. Experimental benchmark for an improved simulation of absolute soft-x-ray emission from polystyrene targets irradiated with the Nike laser.

    Science.gov (United States)

    Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G

    2005-02-04

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.

  1. Analytical solutions for thermal transient profile in solid target irradiated with low energy and high beam current protons

    International Nuclear Information System (INIS)

    Oliveira, Henrique B. de; Brazao, Nei G.; Sciani, Valdir

    2009-01-01

    There were obtained analytical solutions for thermal transient in solid targets, used in short half-life radioisotopes production, when irradiated with low energy and high beam current protons, in the cyclotron accelerator Cyclone 30 of the Institute for Energy and Nuclear Research (IPEN/CNEN-SP). The beam spatial profile was considered constant and the time depended heat distribution equation was resolved for a continuous particles flow entering the target. The problem was divided into two stages: a general solution was proposed which is the sum of two functions, the first one related to the thermal equilibrium situation and the second one related to a time dependent function that was determinate by the setting of the contour conditions and the initial conditions imposed by the real problem. By that one got an analytic function for a complete description of the heat transport phenomenon inside the targets. There were used both, numerical and symbolic computation methods, to obtain temperature maps and thermal gradients and the results showed an excellent agreement when compared with purely numerical models. The results were compared with obtained data from Gallium-67 and Thallium-201 irradiation routines conducted by the IPEN Cyclotrons accelerators center, showing excellent agreement. The objective of this paper is to develop solid targets irradiation systems (metals and oxides) so that one can operate with high levels of current beam, minimizing the irradiation time and maximizing the final returns. (author)

  2. Muon radiography technology for detecting high-Z materials

    International Nuclear Information System (INIS)

    Ma Lingling; Wang Wenxin; Zhou Jianrong; Sun Shaohua; Liu Zuoye; Li Lu; Du Hongchuan; Zhang Xiaodong; Hu Bitao

    2010-01-01

    This paper studies the possibility of using the scattering of cosmic muons to identify threatening high-Z materials. Various scenarios of threat material detection are simulated with the Geant4 toolkit. PoCA (Point of Closest Approach) algorithm reconstructing muon track gives 3D radiography images of the target material. Z-discrimination capability, effects of the placement of high-Z materials, shielding materials inside the cargo, and spatial resolution of position sensitive detector for muon radiography are carefully studied. Our results show that a detector position resolution of 50 μm is good enough for shielded materials detection. (authors)

  3. LPI studies with grazing incidence irradiation at the Nike laser

    Science.gov (United States)

    Weaver, J.; Kehne, D.; Schmitt, A.; Obenschain, S.; Serlin, V.; Oh, J.; Lehmberg, R.; Seely, J.

    2013-10-01

    Studies of laser plasma instabilities (LPI) at the Nike laser facility at NRL have previously concentrated on planar targets irradiated with their surface normal aligned to the central axis of the laser. Shots with planar targets rotated up 60° to the laser have shown changes in thresholds for the two-plasmon decay instability and stimulated Raman scattering near the quarter critical region. In the case of rotated low-Z targets, spectra were observed to shift to lower wavelength and were substantially stronger in the visible and ultraviolet spectral ranges. The low-Z target data show growth at an incident intensity slightly below (~30%) the threshold values observed at normal incidence. A rapid rise in signal level over the same laser intensities was also observed in the hard x-ray data which serve as an overall indicator of LPI activity. Shots with rotated planar high-Z targets showed that the visible and ultraviolet emissions dropped significantly when compared to low-Z targets in the same geometry. This presentation will include results from upcoming experiments to determine the LPI signal for low-Z, high-Z, and high-Z coated targets at lower laser intensities for several angles of target rotation. Shots with widely separated laser beams are also planned to explore cross beam energy transport at Nike. Work supported by DoE/NNSA.

  4. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  5. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-10-17

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted to concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.

  6. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  7. Irradiation uniformity of spherical targets by multiple uv beams from OMEGA

    International Nuclear Information System (INIS)

    Beich, W.; Dunn, M.; Hutchison, R.

    1984-01-01

    Direct-drive laser fusion demands extremely high levels of irradiation uniformity to ensure uniform compression of spherical targets. The assessment of illumination uniformity of targets irradiated by multiple beams from the OMEGA facility is made with the aid of multiple beams spherical superposition codes, which take into account ray tracing and absorption and a detailed knowledge of the intensity distribution of each beam in the target plane. In this report, recent estimates of the irradiation uniformity achieved with 6 and 12 uv beams of OMEGA will be compared with previous measurements in the IR, and predictions will be made for the uv illumination uniformity achievable with 24 beams of OMEGA

  8. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  9. Recovery of hafnium radioisotopes from a proton irradiated tantalum target

    International Nuclear Information System (INIS)

    Taylor, W.A.; Garcia, J.G.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Ott, M.A.; Philips, D.R.; Radzinski, S.D.

    1998-01-01

    The 178m2 Hf nucleus, with its long half-life (31 y) and high-spin isomeric state (16 + ) is desired for new and exotic nuclear physics studies. The Los Alamos Radioisotope Program irradiated a kilogram of natural tantalum at the Los Alamos Meson Physics Facility in early 1981. After fifteen years of decay, this target was ideal for the recovery of 178m2 Hf. There was more than a millicurie of 178m2 Hf produced during this irradiation and there has been a sufficient period of time for most of the other hafnium radioisotopes to decayed away. Traditionally, separation techniques for recovering hafnium isotopes from tantalum targets employ solvent extractions with reagents that are considered hazardous. These techniques are no longer condoned because they generate a mixed-waste (radioactive and hazardous components) that can not be treated for disposal. In this paper we describe a new and unique procedure for the recovery of hafnium radioisotopes from a highly radioactive, proton irradiated, tantalum target using reagents that do not contribute a hazardous waste component. (author)

  10. High-speed photographic methods for compression dynamics investigation of laser irradiated shell target

    International Nuclear Information System (INIS)

    Basov, N.G.; Kologrivov, A.A.; Krokhin, O.N.; Rupasov, A.A.; Shikanov, A.S.

    1979-01-01

    Three methods are described for a high-speed diagnostics of compression dynamics of shell targets being spherically laser-heated on the installation ''Kal'mar''. The first method is based on the direct investigation of the space-time evolution of the critical-density region for Nd-laser emission (N sub(e) asymptotically equals 10 21 I/cm 3 ) by means of the streak photography of plasma image in the second-harmonic light. The second method involves investigation of time evolution of the second-harmonic spectral distribution by means of a spectrograph coupled with a streak camera. The use of a special laser pulse with two time-distributed intensity maxima for the irradiation of shell targets, and the analysis of the obtained X-ray pin-hole pictures constitute the basis of the third method. (author)

  11. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E. [Obninsk Institute of Nuclear Power Engineering, Obninsk (Russian Federation)

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  12. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  13. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Siebenwirth, C. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Greubel, C. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Drexler, S.E. [Department of Radiation Oncology, Ludwig-Maximilians-Universität München, Munich (Germany); Girst, S.; Reindl, J. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Walsh, D.W.M. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Dollinger, G. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Friedl, A.A. [Department of Radiation Oncology, Ludwig-Maximilians-Universität München, Munich (Germany); and others

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  14. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    International Nuclear Information System (INIS)

    Siebenwirth, C.; Greubel, C.; Drexler, S.E.; Girst, S.; Reindl, J.; Walsh, D.W.M.; Dollinger, G.; Friedl, A.A.

    2015-01-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future

  15. Ultra-high vacuum target assembly for charged particle irradiations in the materials research field

    International Nuclear Information System (INIS)

    Bressers, J.; Cassanelli, G.; Cat, R. de; Kohnen, H.; Gherardi, G.

    1978-01-01

    A target assembly designed for ion irradiation and ion implantation experiments on different particle accelerators is described. It consists of a target chamber separated from the beam line by a thin metal window, thus allowing implantations to be carried out under ultra-high vacuum conditions. Homogeneous in-depth distribution of the implanted ion species is realized by rotating the target about an axis perpendicular to the ion beam (rocking). The target holder is driven by means of a stepping motor with a constant step angle and a rocking device controller containing the required rocking angle-dwell time relation. Ion beam homogeneity over a sufficiently large target area is arrived at by transforming the Gaussian beam intensity profile into a flat beam intensity distribution by means of an electrostatic ring lens. The beam intensity profile is monitored by means of a specially designed ion beam monitor based on the Nipkov disc principle. A toroidal beam current monitoring transformer continuously measures the total beam current. Beam scanners and current measuring collimators complete the beam analysing equipment

  16. Z-pinch driven inertial confinement fusion target physics research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Asay, J.R.

    2001-01-01

    Three hohlraum concepts are being pursued at Sandia National Laboratories (SNL) to investigate the possibility of using pulsed power driven magnetic implosions (z-pinches) to drive high gain targets capable of yields in the range of 200-1000 MJ. This research is being conducted on SNL's Z facility that is capable of driving peak currents of 20 MA in z-pinch loads producing implosion velocities as high as 7.5x10 7 cm/s, x-ray energies approaching 2 MJ, and x-ray powers exceeding 200 TW. This paper will discuss each of these hohlraum concepts and will overview the experiments that have been conducted on these systems to date. (author)

  17. Spitzer and z' secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, Thomas G.; Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Collins, Karen A.; Kielkopf, John F. [Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Bruns, Jacob M. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, 1629 E. University Blvd., University of Arizona, Tucson, AZ (United States); Eastman, Jason [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Siverd, Robert J.; Stassun, Keivan G., E-mail: tbeatty@astronomy.ohio-state.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2014-03-10

    We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, the atmospheres of irradiated giant planets at high surface gravity, and the atmospheres of brown dwarfs that are dominated by external, rather than internal, energy. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195% ± 0.010% at 3.6 μm and 0.200% ± 0.012% at 4.5 μm. We also find tentative evidence for the secondary eclipse in the z' band with a depth of 0.049% ± 0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6] – [4.5] color of 0.07 ± 0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6] – [4.5] colors of ∼0.4, with a very large range from ∼0 to ∼1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b appears to have an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.

  18. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Bliss, David Emery; Vesey, Roger Alan; Rambo, Patrick K.; Lebedev, Sergey V.; Hanson, David L.; Nash, Thomas J.; Yu, Edmund P.; Matzen, Maurice Keith; Afeyan, Bedros B.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Campbell, Robert B.; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Waisman, Eduardo Mario; Mehlhorn, Thomas Alan

    2005-01-01

    Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

  19. Low-Z internal target from a cryogenically cooled liquid microjet source

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, M.; Petridis, N. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Winters, D.F.A. [GSI, Planckstr. 1, 64291 (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Philosophenweg 12, 69120 Heidelberg (Germany); Popp, U. [GSI, Planckstr. 1, 64291 (Germany); Doerner, R. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt a. M. (Germany); Stoehlker, Th. [GSI, Planckstr. 1, 64291 (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Philosophenweg 12, 69120 Heidelberg (Germany); Grisenti, R.E. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); GSI, Planckstr. 1, 64291 (Germany)], E-mail: grisenti@atom.uni-frankfurt.de

    2009-04-21

    We carried out an extensive investigation on the production of cryogenically cooled liquid hydrogen and helium droplet beams at the experimental storage ring at GSI with the goal to achieve high area densities for these low-Z internal targets. Our results show that an area density of up to 10{sup 14}cm{sup -2} is achieved for both light gases by expanding the liquid through sub-10 {mu}m diameter nozzles. The achieved area density is comparable with the previous results for the hydrogen internal target and represents an improvement by about four orders of magnitude for the helium target.

  20. Low-Z internal target from a cryogenically cooled liquid microjet source

    International Nuclear Information System (INIS)

    Kuehnel, M.; Petridis, N.; Winters, D.F.A.; Popp, U.; Doerner, R.; Stoehlker, Th.; Grisenti, R.E.

    2009-01-01

    We carried out an extensive investigation on the production of cryogenically cooled liquid hydrogen and helium droplet beams at the experimental storage ring at GSI with the goal to achieve high area densities for these low-Z internal targets. Our results show that an area density of up to 10 14 cm -2 is achieved for both light gases by expanding the liquid through sub-10 μm diameter nozzles. The achieved area density is comparable with the previous results for the hydrogen internal target and represents an improvement by about four orders of magnitude for the helium target.

  1. Shiva target irradiation facility

    International Nuclear Information System (INIS)

    Manes, K.R.; Ahlstrom, H.G.; Coleman, L.W.; Storm, E.K.; Glaze, J.A.; Hurley, C.A.; Rienecker, F.; O'Neal, W.C.

    1977-01-01

    The first laser/plasma studies performed with the Shiva laser system will be two sided irradiations extending the data obtained by other LLL lasers to higher powers. The twenty approximately 1 TW laser pulses will reach the target simultaneously from above and below in nested pentagonal clusters. The upper and lower clusters of ten beams each are radially polarized so that they strike the target in p-polarization and maximize absorption. This geometry introduces laser system isolation problems which will be briefly discussed. The layout and types of target diagnostics will be described and a brief status report on the facility given

  2. WEBEXPIR: Windowless target electron beam experimental irradiation

    International Nuclear Information System (INIS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Tichelen, Katrien Van; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Ait

    2008-01-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R and D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications

  3. Post-Irradiation Examination of 237Np Targets for 238Pu Production

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Robert Noel [ORNL; Baldwin, Charles A [ORNL; Hobbs, Randy W [ORNL; Schmidlin, Joshua E [ORNL

    2015-01-01

    Oak Ridge National Laboratory is recovering the US 238Pu production capability and the first step in the process has been to evaluate the performance of a 237Np target cermet pellet encased in an aluminum clad. The process proceeded in 3 steps; the first step was to irradiate capsules of single pellets composed of NpO2 and aluminum power to examine their shrinkage and gas release. These pellets were formed by compressing sintered NpO2 and aluminum powder in a die at high pressure followed by sintering in a vacuum furnace. Three temperatures were chosen for sintering the solution precipitated NpO2 power used for pellet fabrication. The second step was to irradiate partial targets composed of 8 pellets in a semi-prototypical arrangement at the two best performing sintering temperatures to determine which temperature gave a pellet that performed the best under the actual planned irradiation conditions. The third step was to irradiate ~50 pellets in an actual target configuration at design irradiation conditions to assess pellet shrinkage and gas release, target heat transfer, and dimensional stability. The higher sintering temperature appeared to offer the best performance after one cycle of irradiation by having the least shrinkage, thus keeping the heat transfer gap between the pellets and clad small minimizing the pellet operating temperature. The final result of the testing was a target that can meet the initial production goals, satisfy the reactor safety requirements, and can be fabricated in production quantities. The current focus of the program is to verify that the target can be remotely dissembled, the pellets dissolved, and the 238Pu recovered. Tests are being conducted to examine these concerns and to compare results to code predictions. Once the performance of the full length targets has been quantified, the pellet 237Np loading will be revisited to determine if it can be

  4. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  5. Preliminary Beam Irradiation Test for RI Production Targets at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Pil; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub; Seol, Kyung Tae; Song, Young Gi; Kim, Dae Il; Jung, Myung Hwan; Kim, Kye Ryung; Min, Yi Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The new beamline and target irradiation facility has been constructed for the production of therapeutic radio-isotope. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. For the facility commissioning, the irradiation test for the prototype-target was conducted to confirm the feasibility of radio-isotope production, the proto-type targets are made of RbCl pellet and the natural Zn metal for Sr-82 and Cu-67 production respectively, In this paper, an introduction to the RI production targetry system and the results of the preliminary beam irradiation test are discussed. the low-flux beam irradiation tests for proto-type RI target have been conducted. As a result of the beam irradiation tests, we could obtain the evidence of Sr-82 and Cu-67 production, have confirmed the feasibility of Sr-82 and Cu-67 production at KOMAC RI production facility.

  6. Preliminary Beam Irradiation Test for RI Production Targets at KOMAC

    International Nuclear Information System (INIS)

    Yoon, Sang Pil; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub; Seol, Kyung Tae; Song, Young Gi; Kim, Dae Il; Jung, Myung Hwan; Kim, Kye Ryung; Min, Yi Sub

    2016-01-01

    The new beamline and target irradiation facility has been constructed for the production of therapeutic radio-isotope. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. For the facility commissioning, the irradiation test for the prototype-target was conducted to confirm the feasibility of radio-isotope production, the proto-type targets are made of RbCl pellet and the natural Zn metal for Sr-82 and Cu-67 production respectively, In this paper, an introduction to the RI production targetry system and the results of the preliminary beam irradiation test are discussed. the low-flux beam irradiation tests for proto-type RI target have been conducted. As a result of the beam irradiation tests, we could obtain the evidence of Sr-82 and Cu-67 production, have confirmed the feasibility of Sr-82 and Cu-67 production at KOMAC RI production facility

  7. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy.

    Directory of Open Access Journals (Sweden)

    Zhiru Li

    2011-11-01

    Full Text Available The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286.

  8. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions

    International Nuclear Information System (INIS)

    Griem, H.R.

    1988-10-01

    In our work this past year at the University of Rochester's Laboratory for Laser Energetics we have studied laser-produced plasmas using spherical targets continuing layers of high Z and low Z materials. Our emphasis was on quantitative spectroscopy of ions in a very dense, recombining plasma. The targets used consisted of carbon-copper, carbon-gold, and aluminum-gold mixtures, instead of the originally proposed Fe or Mo mixtures with carbon. The thickness of the Cu and the Au layers were varied in order to study the effect of higher Z ions cooling the plasma. Indeed a pronounced cooling effect was observed by increasing the thickness of the Au layer in targets with Al-Au layers. Electron temperatures were studied by measuring the 1s-2p/1s 2 -1s2p line ratio of Al XIII to Al XII. Our experimental measurements, together with a collisional-radiative model and a 1-D hydrodynamic code, indicate that the electron temperature falls from 1500 eV with no gold to 950 eV with a 500 angstrom layer of gold. A detailed discussion of our results with Al-Au targets can be found in the enclosed preprint entitled Radiation Cooling in Laser-Produced Plasmas Due to High-Z Layers

  9. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  10. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  11. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation

    International Nuclear Information System (INIS)

    Reske, S.N.; Buchmann, I.; Seitz, U.; Glatting, G.; Neumaier, B.; Kotzerke, J.; Buck, A.; Martin, H.; Bergmann, L.

    2001-01-01

    Disease recurrence following stem cell transplantation (SCT) remains a major problem. Despite the sensitivity of leukaemias to chemotherapy and irradiation, conventional conditioning before SCT is limited by significant organ toxicity. Targeted irradiation of bone marrow and spleen by radioimmunotherapy may provide considerable dose escalation, with limited toxicity to non-target organs. In this study, 27 patients with high-risk or relapsing leukaemia were treated with rhenium-188-labelled CD66a,b,c,e radioimmunoconjugates ( 188 Re-mAb) specific for normal bone marrow in addition to conventional conditioning with high-dose chemotherapy and 12 Gy total body irradiation prior to SCT. A mean activity of 10.2±2.1 (range 6.9-15.8) GBq 188 Re-mAb was administered intravenously. Acute side-effects were assessed according to the CTC classification and patient outcome was determined. Mean radiation doses (Gy; range in parentheses) to relevant organs and whole body were as follows: 13.1 (6.5-22) to bone marrow, 11.6 (1.7-31.1) to spleen, 5.0 (2.0-11.7) to liver, 7.0 (2.3-11.6) to kidneys, 0.7 (0.3-1.3) to lungs and 1.4 (0.8-2.1) to the whole body. Stem cells engrafted in all patients within 9-18 days post SCT. Acute organ toxicity of grade II or less was observed. During follow-up for 25.4±5.3 (range 18-34) months, 4/27 (15%) patients died from relapse, and 9/27 (33%) from transplantation-related complications. Fourteen patients (52%) are still alive and in ongoing complete clinical remission. Radioimmunotherapy with the bone marrow-seeking 188 Re-labelled CD66 mAb can double the dose to bone marrow and spleen without undue extramedullary acute organ toxicity, when given in addition to high-dose chemotherapy and 12 Gy TBI before allogeneic SCT. This intensified conditioning regimen may reduce the relapse rate of high-risk leukaemia. (orig.)

  12. Post-Irradiation Examination of Array Targets - Part I

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.

  13. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  14. Thermal analysis of LEU modified Cintichem target irradiated in TRIGA reactor

    International Nuclear Information System (INIS)

    Catana, A; Toma, C.

    2009-01-01

    Actions conceived during last years at international level for conversion of Molybdenum fabrication process from HEU to LEU targets utilization created opportunities for INR to get access to information and participating to international discussions under IAEA auspices. Concrete steps for developing fission Molybdenum technology were facilitated. Institute of Nuclear Research bringing together a number of conditions like suitable irradiation possibilities, direct communication between reactor and hot cell facility, handling capacity of high radioactive sources, and simultaneously the existence of an expanding internal market, decided to undertake the necessary steps in order to produce fission molybdenum. Over the course of last years of efforts in this direction we developed the steps for fission Molybdenum technology development based on modified Cintichem process in accordance with the Argonne National Laboratory proved methodology. Progress made by INR to heat transfer computations of annular target using is presented. An advanced thermal-hydraulic analysis was performed to estimate the heat removal capability for an enriched uranium (LEU) foil annular target irradiated in TRIGA reactor core. As a result, the present analysis provides an upper limit estimate of the LEU-foil and external target surface temperatures during irradiation in TRIGA 14 MW reactor. (authors)

  15. Progress on z-pinch inertial fusion energy

    International Nuclear Information System (INIS)

    Olson, C.; Rochau, G.; Matzen, M.K.

    2005-01-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented. (author)

  16. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    Science.gov (United States)

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  17. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  18. Analysis of Mo99 production irradiating 20% U targets

    International Nuclear Information System (INIS)

    Calabrese, C. Ruben; Grant, Carlos R.; Marajofsky, Andres; Parkansky, David G.

    1999-01-01

    At present time, the National Atomic Energy Commission is producing about 800 Ci of Mo99 per week irradiating 90% enriched uranium-aluminum alloy plate targets in the RA-3 reactor, a 5 MW. Mtr type one. In order to change to 20% enriched uranium, and to increase the production to about 3000 Ci per week some configurations were studied with rod and plate geometry with uranium (20% enriched) -aluminum targets. The first case was the irradiation of a plate target element in the normal reactor configuration. Results showed a good efficiency, but both reactivity value and power density were too high. An element with rods was also analyzed, but results showed a poor efficiency, too much aluminum involved in the process, although a low reactivity and an acceptable rod power density. Finally, a solution consisting of plate elements with a Zircaloy cladding was adopted, which has shown not only a good efficiency, but it is also acceptable from the viewpoint of safety, heat transference criteria and feasibility

  19. Effects of gamma-ray irradiation on interspecific hybridization between Chamaecyparis obtusa S. et Z. and Chamaecyparis pisifera S. et Z

    Energy Technology Data Exchange (ETDEWEB)

    Maeta, Takehiko (Institute of Radiation Breeding, Omiya, Ibaraki (Japan))

    1982-03-01

    C. obtusa S. et Z. is one of the most important forest trees in Japan, and possesses high wood quality. It adapts to dry or semi-dry planting sites, but when it is planted in humid and productive soil, physiological damage is often seen, and its woods are not resistant against termite harm. On the contrary, C. pisifera S. et Z. has high adaptability to humid and productive soil, and is resistant against termite harm. In order to improve the resistance of C. obtusa against diseases and insects, an attempt to obtain a hybrid between C. obtusa and C. pisifera has been made. However, it was found to be very difficult to obtain the hybrid because of low cross compatibility. Therefore, the radiosensitivity of reproductive organs and the induction of mutation in C. obtusa and C. pisifera, the cause of interspecific incompatibility between both species, and the possibility of breaking down the incompatibility were investigated. Also, the cytological screening of the hybrids between C. obtusa and C. pisifera was made. It was considered that the acute gamma-ray irradiation from 500 to 600 R on male flowers was optimum for the hybridization of the present purpose. All of the hybrids produced in this study were triploid.

  20. Effects of gamma-ray irradiation on interspecific hybridization between Chamaecyparis obtusa S. et Z. and Chamaecyparis pisifera S. et Z

    International Nuclear Information System (INIS)

    Maeta, Takehiko

    1982-01-01

    C. obtusa S. et Z. is one of the most important forest trees in Japan, and possesses high wood quality. It adapts to dry or semi-dry planting sites, but when it is planted in humid and productive soil, physiological damage is often seen, and its woods are not resistant against termite harm. On the contrary, C. pisifera S. et Z. has high adaptability to humid and productive soil, and is resistant against termite harm. In order to improve the resistance of C. obtusa against diseases and insects, an attempt to obtain a hybrid between C. obtusa and C. pisifera has been made. However, it was found to be very difficult to obtain the hybrid because of low cross compatibility. Therefore, the radiosensitivity of reproductive organs and the induction of mutation in C. obtusa and C. pisifera, the cause of interspecific incompatibility between both species, and the possibility of breaking down the incompatibility were investigated. Also, the cytological screening of the hybrids between C. obtusa and C. pisifera was made. It was considered that the acute gamma-ray irradiation from 500 to 600 R on male flowers was optimum for the hybridization of the present purpose. All of the hybrids produced in this study were triploid. (Kako, I.)

  1. Design and Characterization of High Power Targets for RIB Generation

    International Nuclear Information System (INIS)

    Zhang, Y.

    2001-01-01

    In this article, thermal modeling techniques are used to simulate ISOL targets irradiated with high power proton beams. Beam scattering effects, nuclear reactions and beam power deposition distributions in the target were computed with the Monte Carlo simulation code, GEANT4. The power density information was subsequently used as input to the finite element thermal analysis code, ANSYS, for extracting temperature distribution information for a variety of target materials. The principal objective of the studies was to evaluate techniques for more uniformly distributing beam deposited heat over the volumes of targets to levels compatible with their irradiation with the highest practical primary-beam power, and to use the preferred technique to design high power ISOL targets. The results suggest that radiation cooling, in combination, with primary beam manipulation, can be used to control temperatures in practically sized targets, to levels commensurate with irradiation with 1 GeV, 100 kW proton beams

  2. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    Energy Technology Data Exchange (ETDEWEB)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L., E-mail: rosatac@gmail.com, E-mail: raquel.lucchesi@icloud.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Wendhausen, Paulo A.P.; Evangelista, Leandro L., E-mail: paulo.wendhausen@ufsc.br, E-mail: leandro.materiais@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Laboratorio de Materiais

    2015-07-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of {sup 99}Mo production {sup 99m}Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  3. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    International Nuclear Information System (INIS)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L.; Wendhausen, Paulo A.P.; Evangelista, Leandro L.

    2015-01-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of 99 Mo production 99m Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  4. Influence of different moderator materials on characteristics of neutron fluxes generated under irradiation of lead target with proton beams

    International Nuclear Information System (INIS)

    Sosnin, A.N.; Polanski, A.; Petrochenkov, S.A.

    2002-01-01

    Neutron fields generated in extended heavy (Z ≥ 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (diam. 8 cm x 20 cm or diam. 8 cm x 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin

  5. Analytical models for development of high performance metal targets irradiated in IPEN-CNEN/SP Cyclone 30 and Cyclone 18 cyclotrons

    International Nuclear Information System (INIS)

    Oliveira, Henrique Barcellos de

    2009-01-01

    Analytical models were developed that describe the basic elements for metal targets irradiation in cyclotrons. Important parameters such as maximum beam current value and thermal power deposited on target were obtained and compared with practical situations. In an unprecedented way, were determined analytically the features found in intense thermal transient situations, when high protons concentrations in a small region of the beam cause intense temperature gradients in small regions of the target. Comparing with results found in the literature showed that the developed models are satisfactory, in view of all limitations of the proposed model. (author)

  6. Recovery and purification of nickel-63 from HFIR-irradiated targets

    International Nuclear Information System (INIS)

    Williams, D.F.; O'Kelley, G.D.; Knauer, J.B.; Porter, C.E.; Wiggins, J.T.

    1993-06-01

    The production of large quantities of high-specific-activity 63 Ni (>10 Ci/g) requires both a highly enriched 62 Ni target and a long irradiation period at high neutron flux. Trace impurities in the nickel and associated target materials are also activated and account for a significant fraction of the discharged activity and essentially all of the gamma activity. While most of these undesirable activation products can be removed as chloride complexes during anion exchange, chromium, present at 51 Cr, and scandium, present as 46 Sc, are exceptions and require additional processing to achieve the desired purity. Optimized flowsheets are discussed based upon the current development and production experience

  7. The disintegration and vaporization of plastic targets irradiated by high-power laser pulses

    International Nuclear Information System (INIS)

    Greig, J.R.; Pechacek, R.E.

    1977-01-01

    We have studied the disintegration of polyethylene and polystyrene targets irradiated by 100-J 40-nsec Nd/glass laser pulses. At power densities of approximately-less-than10 12 W/cm 2 relatively massive targets (6 x 10 -5 to 5 x 10 -4 cm 3 ) are totally disintegrated to produce finely divided target material and un-ionized vapor. Both the size of the target and the presence or absence of a laser prepulse strongly influence the proportions of finely divided target material and un-ionized vapor, especially within the first few microseconds after peak laser power. This disintegration is always preceded by the emission of a hot fully ionized plasma, but only 1% of the target material is contained in the hot plasma. Typically, (1--3) x 10 19 atoms of un-ionized vapor are released as a slowly expanding (vapprox.10 5 cm/sec) cold dense gas cloud (n/sub o/>10 19 cm -3 ) surrounding the initial target position. This cloud of target material has subsequently been heated by absorption of a 300-J 100-nsec CO 2 laser pulse to produce an approximately fully ionized plasma

  8. High Yield F-18 Target for KOTRON-13 Cyclotron

    International Nuclear Information System (INIS)

    Lee, W. K.; Song, J. Y.; Park, J. Y.; Jung, K. I.; Chae, S. K.

    2009-01-01

    Currently the domestic radiation market for medical diagnosis witnesses a high increase of the use of PET/CT for the purpose of cancer diagnosis, and the cases of cancer diagnosis using PET/CT increase by geometric progression every year. In case of domestic practice, full body scan is taken by using FDG medical isotope medicines mainly using F-18, but the necessity of various medical radioactive isotopes according to each medical purpose is increasing. F-18 output yield is directly proportional to energy of protons and beam current, and has correlation with heat production rate in case of target and decides the function of target in accordance with the efficiency of a cooling device. At present, in case of most F-18 target, when one irradiates beam in O-18 water of about 0.2∼5mL, one has to apply heat of over 300W, a high thermal energy per unit area is irradiated in target, which is easily damaged, and it has limitation in beam current. Currently, in case of commercial target, about 2,000W beam current is the maximum value, and in case of double-grid target developed by Korea Institute of Radiological and Medical Sciences in 2004, it was designed to stand up to about 1,000W theoretically, but in reality it can irradiate lower beam current than this because of the shortage of cooling efficiency. In general, the irradiation strength to produce radioactive isotopes given in the heat emission by target substance currently is limited to 50μA against target substance irradiated in 1.6mL. However, current KOTRON-13 cyclotron can accelerate proton beam with a high scope of strength marking 100μA thru 120μA by a continuous development. Therefore, it doesn't fully function compared with that of proton beam of KOTRON-13 cyclotron. The solution about this is to get over the problem of cooling target substance of cavity in the production system of radioactive isotopes. Especially, one has to develop the method to cool target substance, and provide higher F-18 yield than

  9. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  10. Uranium briquettes for irradiation target

    International Nuclear Information System (INIS)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo

    2011-01-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl x dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of 235 U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  11. MULTI-KEV X-Ray Yields From High-Z Gas Targets Fielded At Omega

    International Nuclear Information System (INIS)

    Kane, J.O.; Fournier, K.B.; May, M.J.; Colvin, J.D.; Thomas, C.A.; Marrs, R.E.; Compton, S.M.; Moody, J.D.; Bond, E.J.; Davis, J.F.

    2010-01-01

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ∼ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3ω (∼ 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  12. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    Science.gov (United States)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  13. Optimum combination of targeted 131I and total body irradiation for treatment of disseminated cancer

    International Nuclear Information System (INIS)

    Amin, Amin E.; Wheldon, Tom E.; O'Donoghue, Joseph A.; Gaze, Mark N.; Barrett, Ann

    1995-01-01

    Purpose: Radiobiological modeling was used to explore optimum combination strategies for treatment of disseminated malignancies of differing radiosensitivity and differing patterns of metastatic spread. The purpose of the study was to derive robust conclusions about the design of combination strategies that incorporate a targeting component. Preliminary clinical experience of a neuroblastoma treatment strategy, which is based upon general principles obtained from modelling, is briefly described. Methods and Materials: The radiobiological analysis was based on an extended (dose-rate dependent) formulation of the linear quadratic model. Radiation dose and dose rate for targeted irradiation of tumors of differing size was in part based on microdosimetric considerations. The analysis was applied to several tumor types with postulated differences in the pattern of metastatic spread, represented by the steepness of the slope of the relationship between numbers of tumors present and tumor diameter. The clinical pilot study entailed the treatment of five children with advanced neuroblastoma using a combination of 131 I metaiodobenzylguanidine (mIBG) and total body irradiation followed by bone marrow rescue. Results: The theoretical analysis shows that both intrinsic radiosensitivity and pattern of metastatic spread can influence the composition of the ideal optimum combination strategy. High intrinsic radiosensitivity generally favors a high proportion of targeting component in the combination treatment, while a strong tendency to micrometastatic spread favors a major contribution by total body irradiation. The neuroblastoma patients were treated using a combination regimen with an initially low targeting component (2 Gy whole body dose from targeting component plus 12 Gy from total body irradiation). The treatment was tolerable and resulted in remissions in excess of 9 months in each of these advanced neuroblastoma patients. Conclusions: Radiobiological analysis, which

  14. Method for mounting laser fusion targets for irradiation

    Science.gov (United States)

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  15. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    inorganic nanoparticles. A facile single-precursor method is first developed to synthesize HfO2 nanoparticles, the highest-Z simple oxide with band gap larger than polyvinyltoluene, with uniform size distribution around 5 nm. A nanoparticle-surface-modification protocol is then developed for the fabrication of transparent nanocomposite monoliths with high nanoparticle loadings (up to 40 wt%). Using this method, transparent HfO2-loaded blue-emitting nanocomposite scintillators (2 mm thick, transmittance at 550 nm >75%) have been fabricated capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution production. The resulting nanocomposites thus exhibit unprecedented simultaneous enhancements in both light yield (visible photons produced per MeV of gamma photon energy) and gamma attenuation power. In a best demonstration, a 60 wt% quantum-dot nanocomposite scintillator exhibits a light yield of 9255 photons/MeV and a photopeak resolution of 9.8% under 662 keV Cs-137 gamma irradiation, demonstrating the potential of this model system for future high-performance low-cost spectroscopic gamma detectors.

  16. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    International Nuclear Information System (INIS)

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick (/similar to/1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target (/similar to/1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs

  17. Validation of a new design of tellurium dioide-irradiated target

    Energy Technology Data Exchange (ETDEWEB)

    Fllaoui, Aziz; Ghamad, Younes; Zoubir, Brahim; Ayaz, Zinel Abidine; El Morabiti, Aissam; Amayoud, Hafid [Centre National de l' Energie des Sciences et des Techniques Nucleaires, Rabat (Morocco); Chakir, El Mahjoub [Nuclear Physics Department, University Ibn Toufail, Kenitra (Morocco)

    2016-10-15

    Production of iodine-131 by neutron activation of tellurium in tellurium dioxide (TeO{sub 2}) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gas welding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ≤ 10 - 4 mbr.L/s, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to 600 .deg. C with the appearance of deformations on lids beyond 450 .deg. C. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from 4 hours of irradiation at a power level of 0.5 MW up to 35 hours (7 h/d for 5 days a week) at 1.5 MW. The results show that the irradiated targets are

  18. Validation of a New Design of Tellurium Dioxide-Irradiated Target

    Directory of Open Access Journals (Sweden)

    Aziz Fllaoui

    2016-10-01

    Full Text Available Production of iodine-131 by neutron activation of tellurium in tellurium dioxide (TeO2 material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gas welding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ≤ 10−4 mbr.L/s, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics. To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to 600°C with the appearance of deformations on lids beyond 450°C. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes—convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from 4 hours of irradiation at a power level of 0.5 MW up to 35 hours (7 h/d for 5 days a week at 1.5 MW. The results show that the irradiated targets are

  19. Experimental and theoretical studies of the physical processes occurring in thin plane targets irradiated by intense X-ray pulses

    International Nuclear Information System (INIS)

    Bugrov, A. E.; Burdonskii, I. N.; Gavrilov, V. V.; Gol'tsov, A. Yu.; Grabovskii, E. V.; Efremov, V. P.; Zhuzhukalo, E. V.; Zurin, M. V.; Koval'skii, N. G.; Kondrashov, V. N.; Oleinik, G. M.; Potapenko, A. I.; Samokhin, A. A.; Smirnov, V. P.; Fortov, V. E.; Frolov, I. N.

    2007-01-01

    Results are presented from experimental and theoretical studies of the interaction of intense X-ray pulses with different types of plane targets, including low-density (∼10 mg/cm 3 ) ones, in the Angara-5-1 facility. It is found experimentally that a dense low-temperature plasma forms on the target surface before the arrival of the main heating X-ray pulse. It is demonstrated that the contrast of the X-ray pulse can be increased by placing a thin organic film between the target and the discharge gap. The expansion velocity of the plasma created on the target surface irradiated by Z-pinch-produced X rays was found to be (3-4) x 10 6 cm/s. A comparison between the simulation and experimental results confirms the validity of the physical-mathematical model used

  20. Interfractional Target Variations for Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Ahunbay, Ergun E.; Robbins, Jared; Christian, Robert; Godley, Andrew; White, Julia; Li, X. Allen

    2012-01-01

    Purpose: In this work, we quantify the interfractional variations in the shape of the clinical target volume (CTV) by analyzing the daily CT data acquired during CT-guided partial breast irradiation (PBI) and compare the effectiveness of various repositioning alignment strategies considered to account for the variations. Methods and Materials: The daily CT data for 13 breast cancer patients treated with PBI in either prone (10 patients) or supine (3 patients) with daily kV CT guidance using CT on Rails (CTVision, Siemens, Malvern, PA) were analyzed. For approximately 25 points on the surface of the CTV, deformation vectors were calculated by means of deformable image registration and verified by visual inspection. These were used to calculate the distances along surface normals (DSN), which directly related to the required margin expansions for each point. The DSN values were determined for seven alignment methods based on volumetric imaging and also two-dimensional projections (portal imaging). Results: The margin expansion necessary to cover 99% of all points for all days was 2.7 mm when utilizing the alignment method based on deformation field data (the best alignment method). The center-of-mass based alignment yielded slightly worse results (a margin of 4.0 mm), and shifts obtained by operator placement (7.9 mm), two-dimensional-based methods (7.0–10.1 mm), and skin marks (13.9 mm) required even larger margin expansions. Target shrinkage was evident for most days by the negative values of DSN. Even with the best alignment, the range of DSN values could be as high as 7 mm, resulting in a large amount of normal tissue irradiation, unless adaptive replanning is employed. Conclusion: The appropriate alignment method is important to minimize the margin requirement to cover the significant interfractional target deformations observed during PBI. The amount of normal tissue unnecessarily irradiated is still not insignificant, and can be minimized if adaptive

  1. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  2. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Tsiamas, Panogiotis [Department of Radiation Oncology, St. Jude Children’s Hospital, Memphis, Tennessee 38105 (United States); Parsons, David; Yewondwossen, Mammo; Robar, James [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.

  3. Diffuse scattering from laser-irradiated plane targets

    International Nuclear Information System (INIS)

    Kessel, C.G.M. van; Olsen, J.N.; Sachsenmaier, P.; Sigel, R.; Eidmann, K.; Godwin, R.P.

    1976-11-01

    Optical calorimetry of the laser radiation scattered from plane targets irradiated by 0.3 Joule/30 ps Nd-laser pulses with intensities up to 10 16 W cm -2 has been performed with an emphasis on diffuse scattering. Diffuse scattering outside the solid angle of the focusing lens is found to be a major reflection loss from the target. A fraction of 0.3 to 0.5 of the incident pulse energy was absorbed in the target with only a very weak dependence on pulse energy and target material. (orig.) [de

  4. The evaluation study of high performance gas target system

    International Nuclear Information System (INIS)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-01

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production

  5. The evaluation study of high performance gas target system

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-15

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production.

  6. Proton irradiation effects on beryllium – A macroscopic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Zhong, Zhong [Photon Sciences, NSLS II, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Camino, Fernando [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2016-10-15

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  7. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-01-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He + ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C + ion impurities in He + ion irradiations. For introducing such tiny C + ion impurities, gas mixtures of He and CH 4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He + ion (for Mo fuzz growth due to only He + ions) and 100% H + ion (for confirming the significance of tiny 0.04–2.0% H + ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10 24  ions m −2 ), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He + ion irradiation case. Enhancement of C + ion impurities in He + ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity concentrations. Additionally, no fuzz formation for 100% H + ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H + ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H + ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He + ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C + ion impurities in He + ions. • Almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity in He + ions. • No Mo fuzz formation for 100% H + ion

  8. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility.

    Science.gov (United States)

    Rovang, D C; Lamppa, D C; Cuneo, M E; Owen, A C; McKenney, J; Johnson, D W; Radovich, S; Kaye, R J; McBride, R D; Alexander, C S; Awe, T J; Slutz, S A; Sefkow, A B; Haill, T A; Jones, P A; Argo, J W; Dalton, D G; Robertson, G K; Waisman, E M; Sinars, D B; Meissner, J; Milhous, M; Nguyen, D N; Mielke, C H

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  9. Automation in irradiating target systems for cyclotrons

    International Nuclear Information System (INIS)

    Araujo, Sumair G.; Sciani, Valdir; Almeida, Rosemeire S.

    2000-01-01

    Nowadays, two cyclotron are being operated at IPEN-CNEN/SP: one model CV-28, capable of accelerating p, d, 3 He 4 and α, with energies of 24, 14, 36 and 28 MeV, respectively, and beam currents up to 30 μA; the other one, model cyclone 30, accelerates protons with energy of 30 MeV and currents up to 350 μ A. Both have the objective of irradiating targets both for radioisotope production for use in Nuclear Medicine, such as 67 Ga, 201 Tl, 111 In, 123 I, 18 F, and general research. The development of irradiating systems completely automatized was the objective of this work, always aiming to reduce the radiation exposition dose to the workers and to increasing the reliability of use of these systems, because very high activities are expected in these processes. In the automation, a Programmable Logical Controller (PLC) was used connected to a feedback net, to manage all the variables involved in the irradiation processes. The program of the PLC was developed using Simatic Step Seven (S7), Software from Siemens, where all the steps are supervised in screens at a microcomputer. The assembling and sequence of leading were developed using the software from Unisoft, that keeps the operator informed about the work being carried out, at any time. (author)

  10. Thermal transport measurements of uv laser irradiated spherical targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Delettrez, J.; Henke, B.L.; Richardson, M.C.

    1985-01-01

    New measurements are presented of thermal transport in spherical geometry using time-resolved x-ray spectroscopy. We determine the time dependence of the mass ablation rate m(dot) by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements made with 6 and 12 uv (351 nm) beams from OMEGA are compared to previous thermal transport data and are in qualitative agreement with detailed LILAC hydrodynamic code simulations which predict a sharp decrease in m(dot) after the peak of the laser pulse. Non-uniform laser irradiation of the target results in the anomalously high values of m(dot) measured in these experiments

  11. Chemical recovery of palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets may be irradiated by protons with energy of 60-200 MeV or more to generate palladium-103 simultaneously with other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver. According to the dependence experimental production yield of Pd-103 and isotopes of other elements in thick silver target vs. Proton energy the most suitable energy for maximum yield of Pd-103 and minimum yield of other elements is from about 100 to about 140 MeV. Activity of radionuclides produced in silver target depends from many factors (target thickness, irradiation time, etc.). Two methods of Pd-103 recovering from irradiated silver target are considered in this work: (1) Silver target is dissolved in nitric acid followed by silver precipitation in the form of silver chloride by addition of HCl. The solution containing Pd, Rh and other radionuclides is passed through the layer of fibrous sorbent POLYORGS-15n. Then the sorbent is washed and Pd is desorbed by hot 12 M hydrochloric acid; (2) Silver target is dissolved in nitric acid followed by passing of the obtained solution (2 M HNO 3 ) through a disk set of complex forming sorbent POLYORGS-33n. Under these conditions palladium is sorbed by the sorbent while silver, rhodium, ruthenium and technetium are passed through the sorbent. Then the sorbent is washed with 2M nitric acid, and Pd is desorbed by 12 M hydrochloric acid. Extraction of palladium is occurred during the formation of palladium complex with a chelate sorbent specific to palladium in acidic solutions. Such a sorbent makes possible separation of palladium from accompanying radionuclides such as rhodium, ruthenium and technetium. The polymeric complex-forming sorbent of fibrous structure with the groups of 3(5)-methylpyrazole (POLYORGS-15) is used. The distinctive feature of the sorbents in the form of fibrous 'filled' material is

  12. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  13. Review of high Z materials for PSI applications

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo; Noda, Nobuaki; Nakamura, Hiroo.

    1992-06-01

    Application of carbon based low Z materials to PFM has significantly improved plasma parameters in large tokamaks. There are, however, serious concerns of erosion, neutron damage etc. for application of low Z materials in future D - T burning machine. To apply high Z metals to PFM, there are several issues to be solved; high Z impurity production by sputtering, their accumulation in plasma center, and high radiation loss. Because of these concerns high Z metals are not widely employed nor planned to be used in the present large tokamaks. Since our efforts have been concentrated to optimize the low Z materials, little systematic investigations for high Z materials in tokamak have been done, lacking data base especially those concerning the impacts on plasma core. In order to employ high Z material as PFM near future, material properties related to impurity production and hydrogen recycling are reviewed and discussed what is important and what shall be done. (author) 109 refs

  14. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    International Nuclear Information System (INIS)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu; Ishizaki, Yoshifumi; Onoue, Masafusa; Toshikawa, Jun; Ishikawa, Shogo; Willott, Chris J.; Im, Myungshin; Shimasaku, Kazuhiro; Ouchi, Masami; Hibon, Pascale

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg 2 utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z B ) and (z B -z R ) colors, where z B and z R are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z R < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M 1450 = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M 1450 = –22.58 and a narrow Lyα emission with HWHM =427 km s –1 , which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6

  15. Effects of buried high-Z layers on fast electron propagation

    International Nuclear Information System (INIS)

    Yang, Xiaohu; Zhuo, Hongbin; Ma, Yanyun; Shao, Fuqiu; Xu, Han; Yin Yan; Borghesi, M.

    2014-01-01

    The transport through high density plasmas of relativistic electron beams generated by ultra-intense laser-plasma interaction has potential applications in laser-driven ion acceleration and in the fast igniter scheme for inertial confinement fusion. By extending a prior model [A.R. Bell, J.R. Davies, S.M. Guerin, Phys. Rev. E 58, 2471 (1998)], the magnetic field generated during the transport of a fast electron beam driven by an ultra-intense laser in a solid target is derived analytically and applied to estimate the effect of such field on fast electron propagation through a buried high-Z layer in a lower-Z target. It is found that the effect gets weaker with the increase of the depth of the buried layer, the divergence of the fast electrons, and the laser intensity, indicating that magnetic field effects on the fast electron divergence as measured from K a X-ray emission may need to be considered for moderate laser intensities. On the basis of the calculations, some considerations are made on how one can mitigate the effect of the magnetic field generated at the interface. (authors)

  16. X-ray imaging of targets irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Serlin, V.; Sethian, J.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Foil targets irradiated by the Naval Research Laboratory Nike KrF laser were imaged in the x-ray region with two-dimensional spatial resolution in the 2 endash 10 μm range. The images revealed the smoothness of the emission from target and backlighter foils, the acceleration of the target foils, and the growth of Rayleigh endash Taylor instabilities that were seeded by patterns on the irradiated sides of CH foils

  17. High-Z organic-scintillation solution

    International Nuclear Information System (INIS)

    Berlman, I.B.; Fluornoy, J.M.; Ashford, C.B.; Lyons, P.B.

    1983-01-01

    In the present experiment, an attempt is made to raise the average Z of a scintillation solution with as little attendant quenching as possible. Since high-Z atoms quench by means of a close encounter, such encounters are minimized by the use of alkyl groups substituted on the solvent, solute, and heavy atoms. The aromatic compound 1,2,4-trimethylbenzene (pseudocumene) is used as the solvent; 4,4''-di(5-tridecyl)-p-terphenyl (SC-180) as the solute; and tetrabutyltin as the high-Z material. To establish the validity of our ideas, various experiments have been performed with less protected solvents, and heavy atoms. These include benzene, toluene, p-terphenyl, bromobutane, and bromobenzene

  18. Study of radiative ablation to low-Z material and energy transport

    International Nuclear Information System (INIS)

    Yang Jiamin; Ding Yaonan; Miao Wenyong; Sun Kexu; Yi Rongqing; Chen Zhenglin; Wang Hongbin; Li Sanwei; Wang Yaomei; Wen Shuhuai; Zheng Zhijian; Zhang Wenhai; Yu Yanning

    1998-12-01

    X-ray emissions from the gold foil target, irradiated by 0.35 μm laser on the Xingguang facility, have been studied. A clean and intense X-ray source has been obtained from the rear of gold foil target by selection of irradiating laser parameters. Then, characteristics of radiation ablation to low-Z materials C 8 H 8 and C 10 H 16 O 5 and energy transport have been investigated comprehensively. Experimental results show that mass ablative rate of C 10 H 16 O 5 are greater than those of C 8 H 8 due to its better match with the ablative source spectra

  19. Chemical recovery of a palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets were irradiated by protons with the energy of 60-140 MeV to generate palladium-103. Other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver are also formed at the same time. Two methods of Pd-103 recovering from irradiated silver target are considered. The first one includes the dissolving of the irradiated silver target in nitric acid followed by adding of hydrochloric acid to the solution. Palladium with rhodium, ruthenium and technetium completely remained in solution while silver was precipitated in the form of silver chloride. Extraction of palladium from the obtained solution was provided by the formation of palladium complex with a chelate sorbent which is specific to palladium in acidic solutions. The sorbent makes it possible to separate palladium from admixtures of rhodium, ruthenium and technetium isotopes. The polymeric complex-forming sorbent of fibrous structure with the groups of 3 (5) - methylpyrazole (POLYORGS-15n) is used. An other possible method has been also studied. It includes again dissolving of metallic silver in nitric acid, but does not need silver chloride precipitation. Silver may be sorbed by the complex-forming sorbents, but its sorption is very sensitive to acid concentration. Chelate sorbents of fibrous structure with the groups of amidoxime and hydrazidine (POLYORGS-33n) have been successfully used in our experiments. A high efficiency of palladium extraction by POLYORGS-33n from 2-4 M nitric acid solutions was achieved. Concentrated hydrochloric acid (without heating) was used for palladium desorption with higher yield than in the first method. (authors)

  20. Thermoluminescence of Z1 centres in Sr-doped KCl

    International Nuclear Information System (INIS)

    Kamavisdar, V.S.; Moholkar, S.C.; Deshmukh, B.T.

    1980-01-01

    It is well known for alkali halides doped with divalent metal impurities that exposure to high energetic radiation and subsequent F band bleaching leads to the formation of Z 1 centres. Optical absorption measurements have shown that a low concentration of Z 1 centres is produced along with F centres during irradiation without any optical bleaching. Now the question is whether Z 1 centres are really formed along with F centres during irradiation. The aim of the present paper was to study the formation of a small amount of Z 1 centres during irradiation with the help of optical absorption and thermoluminescence measurements. The crystals of KCl:Sr were exposed to γ-rays for different doses. The TL curve for the crystal exposed to a minimum dose of γ-rays shows a TL peak at 457 K and a weak shoulder in the region 400 K to 408 K. The TL curve of the crystal exposed to maximum dose of rays shows the peak at 408 K with a greater intensity. Upon F band bleaching 408 K peak increases in intensity and optical absorption is also broadened. It is shown that the peak at 457 K is due to F centres and the peak at 408 K is due to Z 1 centres. These results clearly show that a small anount of Z 1 centres is really formed along with F centres during irradiation. (author)

  1. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    Science.gov (United States)

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Measurements of the Properties of Highly-charged high-Z ions

    International Nuclear Information System (INIS)

    Augustine J. Smith, Ph.D.

    2007-01-01

    We had proposed carrying out a systematic experimental investigation of the atomic physics of highly charged, high-Z ions, produced in the Lawrence Livermore National Laboratory LLNL electron beam ion trap (EBIT-I) in its high energy mode, superEBIT. In particular we were going to accurately measure line positions for Δn=0 transitions in few electron high-Z ions; this was meant to enable us to investigate relativistic and quantum electrodynamics QED contributions to the energy levels as well as the nuclear properties of heavy ions. We were also going to measure cross sections for various electron-ion interactions, the degree of polarization of emitted x-rays, and radiation cooling rates of various ionization stages of highly charged, high-Z ions. This would enable us to study fundamental atomic physics of high-Z ions at relativistic electron impact energies and in the intense nuclear fields of highly ionized, high-Z ions. This would extend previous measurements we have carried out to a regime where there is a paucity of good data. These measurements were expected to generate increased theoretical interest and activity in this area. The project will extend a very successful collaboration between Morehouse College (MC) and a national laboratory LLNL, Minority student training and development are major components of the proposal

  3. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    Science.gov (United States)

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  4. Stopping power and range relations for low and high Z ions in solids: a critical analysis

    International Nuclear Information System (INIS)

    Virk, H.S.; Randhawa, G.S.

    1997-01-01

    A critical analysis of various stopping power and range formulations has been made by comparing the calculated stopping power and range values with corresponding experimental values for different low Z (1≤Z≤8) and high Z projectiles (54≤Z≤92) in different targets, e.g. Be, C, Al, Au, Pb, CR-39, Lexan, Mylar, LR-115, CH, (CH)n, TRIFOL-TN, etc. atvarious low and high energies. A comparative study has been made by taking into consideration different target and projectile combinations, e.g., heavy ion-light target, light ion-heavy target and light ion -light target etc., Overall the Ziegler formulation (TRIM-95) provides the best agreement with the experimental results for all projectile and target combinations except for heavy ion-light target combination where it underestimates the stopping power data and overestimates the range data in the range, 2-50 MeV/u. Mukherjee and Nayak formulation totally fails at relativistic and low energies of the projectile, irrespective of the projectile-target combination. Northcliffe and Schilling formulation does not show any particular trend. Benton and Henke formulation gives good agreement between experimental and theoretical data within the range of experimental errors. (orig.)

  5. Conductive cooling of high-power RIB targets

    International Nuclear Information System (INIS)

    Talbert, W.L.; Drake, D.M.; Wilson, M.T.; Lenz, J.W.; Hsu, H.-H.

    2002-01-01

    A short review is presented of target cooling approaches suggested for targets irradiated by intense high-energy proton beams to produce radioactive species for use in a broad range of physics studies. This work reports on conductive cooling approaches for operation at temperatures lower than effective for radiative cooling. The possibilities for conductive cooling are discussed, and a prototype test target is described. This target was constructed for an experiment, designed to validate the numerical analysis approaches, at the TRIUMF/ISAC facility. Fabrication issues and the results of the experiment are presented, followed by a discussion of the implications of the experiment outcome for future development of targets to produce intense beams of radioactive ions

  6. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-09-15

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He{sup +} ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C{sup +} ion impurities in He{sup +} ion irradiations. For introducing such tiny C{sup +} ion impurities, gas mixtures of He and CH{sub 4} have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He{sup +} ion (for Mo fuzz growth due to only He{sup +} ions) and 100% H{sup +} ion (for confirming the significance of tiny 0.04–2.0% H{sup +} ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10{sup 24} ions m{sup −2}), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He{sup +} ion irradiation case. Enhancement of C{sup +} ion impurities in He{sup +} ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C{sup +} ion impurity concentrations. Additionally, no fuzz formation for 100% H{sup +} ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H{sup +} ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H{sup +} ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He{sup +} ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C{sup +} ion impurities in He{sup +} ions. • Almost complete prevention of Mo

  7. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  8. Uniform irradiation of adjustable target spots in high-power laser driver

    International Nuclear Information System (INIS)

    Jiang Xiujuan; Li Jinghui; Li Huagang; Li Yang; Lin Zunqi

    2011-01-01

    For smoothing and shaping the on-target laser patterns flexibly in high-power laser drivers, a scheme has been developed that includes a zoom lens array and two-dimensional smoothing by spectral dispersion (SSD). The size of the target pattern can be controlled handily by adjusting the focal length of the zoom lens array, while the profile of the pattern can be shaped by fine tuning the distance between the target and the focal plane of the principal focusing lens. High-frequency stripes inside the pattern caused by beamlet interference are wiped off by spectral dispersion. Detailed simulations indicate that SSD works somewhat differently for spots of different sizes. For small spots, SSD mainly smooths the intensity modulation of low-to-middle spatial frequency, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity of middle-to-high frequency. Spatial spectra of the target patterns are given and their uniformity is evaluated.

  9. Ephestia Kuehniella Z.: Gamma irradiation effects on the adult stage and mating competitiveness of sterile males

    International Nuclear Information System (INIS)

    Ahmed, M.Y.Y.; El-Banby, M.A.; Salem, Y.S.; Abdel-Baky, S.M.

    1985-01-01

    Effects of gamma radiation dosages from 5 to 50 Krad on the adult stage of Ephestia Kuehielia Z. were studied. Irradiated adults paired with untreated adults produced fewer eggs than pairs of unirradiated adults, and these eggs had reduced hatch. This effect was more pronounced with irradiated females or when both parents were irradiated. Radiation greatly reduced life span of treated adults. Adult females were more sensitive to the sterilizing effect of gamma radiation than were males. Males were sterilized when irradiated at 50 Krad, but females at 25 Krad. Previous studies showed that males irradiated as fully grown pupae at 45 Krad were completely sterile. When irradiated (I) males were confined with unirradiated (U) males and females (1:1:1 ratio), infertility of eggs was 48%. Increasing the ratio to 5:1:1, 10:1:1 and 15:1:1 caused 77.9, 84.6 and 94.4 percent infertility of the resulting eggs, respectively. The calculated competitiveness values for the 4 ratios were 0.55, 0.52, 0.42 and 0.88, respectively. Thus I males were only competitive at the highest flooding ration (15:1:1)

  10. Analysis of uranium and thorium thin targets irradiated at the PSI accelerator

    International Nuclear Information System (INIS)

    Wenger, H.U.; Botta, F.; Chawla, R.; Daum, M.; Gavillet, D.; Hegedues, F.; Ingold, F.; Kopajtic, Z.; Ledergerber, G.; Linder, H.P.; Roellin, S.; Wichser, J.; Wyss, F.

    1997-01-01

    The aim of the ATHENA programme at PSI is to provide experimental data for the validation of theoretical models in nucleon-meson transport codes used for accelerator-based transmutation studies. Emphasis is placed on the mass yield distribution of spallation and fission products for irradiated thin actinide targets. This paper presents results of an irradiation experiment carried out with 238 UO 2 and 232 ThO 2 . Isobaric production cross-sections of fission and spallation products based on mass spectrometric measurements and γ-spectroscopy are compared with calculations carried out using the HETC code and the RAL high-energy fission model. (author) 6 figs., 8 refs

  11. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors

    International Nuclear Information System (INIS)

    Muller, O.

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO 2 /Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix

  12. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    Energy Technology Data Exchange (ETDEWEB)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  13. Influences of target geometry on the microdosimetry of alpha particles in water

    International Nuclear Information System (INIS)

    Huston, T.E.

    1992-01-01

    Application of microdosimetric concepts to radiation exposure situations requires knowledge of the single-event density function, f 1 (z) , where z denotes specific energy imparted to target matter. Multiple-event density functions are calculated by taking convolutions of f 1 (z) with itself with the overall specific energy density function is then found by employing a compound Poisson process involving single and multiple-event spectra. The f l (z), depends strongly on the geometric details of a the source, target, and all intermediate matter. While most past applications of microdosimetry have been represented targets as spheres, may be better modeled as prolate or oblate spheroids. Using a ray-tracing technique coupled with a continuous-slowing-down approximation, methods are developed and presented for calculating single-event density functions for spheroidal targets irradiated by alpha-emitting point sources. Computational methods are incorporated into a fortran computer code entitled SEROID (single-event density functions for spheroids), which is listed in this paper. This was used to generate several single-event density functions, along with related means and standard deviations in specific energy, for spheroidal targets irradiated by alpha particles. Targets of varying shapes and orientations are examined. Results for non-spherical targets are compared to spherical targets of equal volume in order to assess influences which target geometry has on single-event quantities. From these comparisons it is found that both target shape and orientation are important in adequately characterizing the quantities examined in this study; over-simplifying the target geometry can lead to substantial error

  14. Direct-drive–ignition designs with mid-Z ablators

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  15. A wide temperature range irradiation cryostat for reasearch on solid state targets

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Scott; Dutz, Hartmut; Goertz, Stefan; Runkel, Stefan; Voge, Thomas [Physikalisches Institut, Universitaet Bonn (Germany)

    2012-07-01

    To qualitatively improve the data obtained in asymmetry measurements of scattering experiments the figure of merit (FOM) plays a major role and can reduce the data acquisition time when a certain precision in the measurement is needed. One of the defining factors for the improvement of the polarised experiment lies in the target choice and preparation, in particular the method employed to introduce the paramagnetic defects for the use of dynamic nuclear polarisation (DNP). To this end the Polarized Target Group in Bonn has developed a wide range temperature cryostat for the irradiation of potential target materials in which materials can be irradiated to varying doses at specified temperatures. The stable irradiation temperature of the materials can be controlled to within {+-}1 K over a range of 90 K

  16. Lateral propagation of fast electrons at the laser-irradiated target surfaces

    International Nuclear Information System (INIS)

    Li, Y T; Lin, X X; Liu, B C; Du, F; Wang, S J; Li, C; Zhou, M L; Zhang, L; Liu, X; Wang, J; Liu, X L; Chen, L M; Wang, Z H; Ma, J L; Wei, Z Y; Zhang, J; Liu, F; Liu, F

    2010-01-01

    Lateral propagation of fast electrons at the target surfaces irradiated by femtosecond intense laser pulses is measured by k α x-ray imaging technique when a preplasma is presented. An annular halo surrounding a bright spot is observed in the x-ray images when the scale length of the electron density is large. For an incidence angle of 70 0 the x-ray images show a non-symmetrical distribution peaked to the laser propagation direction. The x-ray photons in the halo are mainly excited by the fast electrons that flow in the preplasma when their paths intersect the high density regions near the target surface.

  17. Development of a PVD-based manufacturing process of monolithic LEU irradiation targets for {sup 99}Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Hollmer, Tobias

    2015-08-03

    {sup 99}Mo is the most important radioisotope in nuclear medicine. It is produced by fission of uranium in irradiation targets. The usage of cylindrical monolithic targets can ensure a safe supply of {sup 99}Mo and at the same reduce the amount of highly radioactive waste generated during production. To manufacture these targets, a novel PVD-based technique was developed. Both the feasibility and the high efficiency of this process were demonstrated in a prototype apparatus.

  18. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  19. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gnanvo, Kondo, E-mail: kgnanvo@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Mitra, Debasis [Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2011-10-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes ({approx}0.03 L) using GEM-based Muon Tomography.

  20. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    International Nuclear Information System (INIS)

    Gnanvo, Kondo; Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar; Mitra, Debasis

    2011-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (∼0.03 L) using GEM-based Muon Tomography.

  1. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.; Howard, A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented

  2. Petawatt laser and target irradiation system at LLNL

    International Nuclear Information System (INIS)

    Pennington, D.M.; Perry, M.D.; Britten, J.A.; Brown, C.G.; Herman, S.; Homer, J.; Miller, J.L.; Stuart, B.C.; Tietbohl, G.; Van Lue, J.; Yanovsky, V.

    1997-01-01

    In May, 1996, we demonstrated the production over a petawatt of peak power in the Nova/Petawatt Laser Facility, generating 620 J in ∼ 430 fs. Results of the first focused irradiance tests, and recent deployment of a novel targeting system will be presented

  3. Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept

    International Nuclear Information System (INIS)

    Cuneo, Michael E.; Vesey, Roger A.; Porter, John L. Jr.; Chandler, Gordon A.; Fehl, David L.; Gilliland, Terrance L.; Hanson, David L.; McGurn, John S.; Reynolds, Paul G.; Ruggles, Laurence E.; Seamen, Hans; Spielman, Rick B.; Struve, Ken W.; Stygar, William A.; Simpson, Walter W.; Torres, Jose A.; Wenger, David F.; Hammer, James H.; Rambo, Peter W.; Peterson, Darrell L.

    2001-01-01

    Initial experiments to study the Z-pinch-driven hohlraum high-yield inertial confinement fusion (ICF) concept of Hammer, Tabak, and Porter [Hammer et al., Phys. Plasmas 6, 2129 (1999)] are described. The relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ('hohlraum energetics') is well understood from zero-dimensional semianalytic, and two-dimensional view factor and radiation magnetohydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pinch-driven secondary hohlraum (26±5 TW), indicating the concept could scale to fusion yields of >200 MJ. A novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry has also been developed. This source will permit investigation of the pinch power balance and hohlraum geometry requirements for ICF relevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)

  4. Neutronic and thermal hydraulic analyses of LEU targets irradiated in a research reactor for Molybdenum-99 production

    International Nuclear Information System (INIS)

    Jo, Daeseong; Lee, Kyung-Hoon; Kim, Hong-Chul; Chae, Heetaek

    2014-01-01

    Highlights: • Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99. • Heat production during and after irradiation was evaluated using MCNP and ORIGEN-APR. • Cooling capacities under various cooling conditions were evaluated using TMAP. • Natural convective cooling was adequate for the decay power after 0.03 h from withdrawal. • Maximum temperature of the target decayed for 24 h does not exceed the blistering threshold. - Abstract: Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99 production in a research reactor were performed to investigate (1) the heat production during irradiation, (2) decay heat after irradiation, and (3) cooling capacities under various cooling conditions. The heat production on the target plates irradiated in the core was evaluated using the MCNP code. The decay heat after irradiation was evaluated using the ORIGEN-APR code, and compared against ANSI/ANS-5.1-1979. The cooling capacities of forced convective cooling during irradiation and natural convective cooling after irradiation were estimated using the TMAP code. An equilibrium core with different core statuses i.e., BOC, MOC, and EOC was used to evaluate power released from the targets and the axial power distribution. Based on the neutronic calculations, thermal margins i.e., the maximum wall temperature, minimum ONB temperature margin, and minimum CHF ratio were estimated, and the cooling strategy of the fission Mo targets was discussed. The targets were cooled by forced convective cooling during irradiation, and cooled by natural convective cooling after irradiation. For a further production process, the targets transported to a hot cell were exposed to the air, and cooled by natural convection cooling in air. As a result, the maximum wall temperature remained below the ONB temperature while the targets were under water, and the maximum wall temperature remained under the blistering limit while the targets

  5. High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers

    CERN Document Server

    Maciariello, Fausto; Butcher, Mark; Calviani, Marco; Folch, Ramon; Kain, Verena; Karagiannis, Konstantinos; Lamas Garcia, Inigo; Lechner, Anton; Nuiry, Francois-Xavier; Steele, Genevieve; Uythoven, Jan

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the resul...

  6. Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching

    International Nuclear Information System (INIS)

    Chen, Tao; Pan, An; Li, Cunxia; Si, Jinhai; Hou, Xun

    2015-01-01

    Highlights: • We studied morphologies of silicon grooves fabricated by laser irradiation and wet etching. • We found nano-ripple structures formed on the groove sidewall. • Formations of nano-ripples were due to the formation of standing wave and nanoplanes. • Remaining debris on the groove bottom was removed by KOH etching. - Abstract: Morphologies of high-aspect-ratio silicon grooves fabricated by using femtosecond laser irradiation and selective chemical etching of hydrofluoric acid (HF) were studied. Oxygen was deeply doped into silicon under femtosecond laser irradiation in air, and then the oxygen-doped regions were removed by HF etching to form high-aspect-ratio grooves. After HF etching, periodic nano-ripples which were induced in silicon by femtosecond laser were observed on the groove sidewalls. The ripple orientation was perpendicular or parallel to the laser propagation direction (z direction), which depended on the relative direction between the laser polarization direction and the scanning direction. The formation of nano-ripples with orientations perpendicular to z direction could be attributed to the standing wave generated by the interference of the incident light and the reflected light in z direction. The formation of nano-ripples with orientations parallel to z direction could be attributed to the formation of self-organized periodic nanoplanes (bulk nanogratings) induced by femtosecond laser inside silicon. Materials in the tail portion of laser-induced oxygen doping (LIOD) regions were difficult to be etched by HF solution due to low oxygen concentration. The specimen was etched further in KOH solution to remove remaining materials in LIOD regions and all-silicon grooves were fabricated

  7. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield

    International Nuclear Information System (INIS)

    Sharpe, Robin Arthur; Kingsep, Alexander S.; Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F.; Schumer, Joseph Wade; Welch, Dale Robert; Kim, Alexander; Kulcinski, Gerald L.; Kammer, Daniel C.; Rose, David Vincent; Nedoseev, Sergei L.; Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G.; Bruner, Nichelle

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO 2 production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  8. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle " Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  9. Study on irradiation conditions of producing 153Sm with natural abundance samarium target

    International Nuclear Information System (INIS)

    Du Jin; Jin Xiaohai; Bai Hongsheng; Liu Yuemin; Chen Daming; Wang Fan

    1998-01-01

    Irradiation conditions of natural abundance 152 Sm targets in different forms are studied in the heavy water reactor and the light water swimming pool reactor at the China Institute of Atomic Energy. The result shows that the specific activity of 153 Sm in liquid form target irradiated in the light water swimming pool reactor is two times greater than that in solid form target. The radionuclide purity of 153 Sm is more than 99%, which can meet the needs of clinical application

  10. SU-E-T-244: Designing Low-Z Targets To Enhance Surface Dose: A Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R [Nova Scotia Cancer Centre, Halifax, NS (Canada); Robar, J [Capital District Health Authority, Halifax, NS (Canada); Parsons, D [Dalhousie University, Halifax, Nova Scotia (Canada)

    2015-06-15

    Purpose: Recent developments in The Varian Truebeam linac platform allows for the introduction of low-Z targets into the beam line for the imaging purposes. We have proposed using a low-Z target for radiation therapy purposes to enhance the surface dose during radiation treatment. The target arm of the Varian Truebeam accelerator consists of multiple targets with are linearly translated into the beam line. We have designed two Low-Z targets made of carbon: 1) a step target consisting of three steps of 15%, 30% and 60% CSDA range for 2.5 MeV electrons Figure 1a; 2) and a ramp target, an incline plane 2cm long with thicknesses ranging from 0% to 60% CSDA range, Figure 1b. The purpose of this work will determine the spectral characteristics of these target designs and determine if they have practical clinical applications for enhancing surface dose. Methods: To calculate the spectral characteristics of these targets, a standard Monte Carlo model of a Varian Clinac accelerator was used. Simulations were performed with a carbon step target, and a carbon ramp target, located at the same position as the electron foil in the rotating carousel. Simulations were carried out using a 2.5 MeV electron beam. Results: The step target design produced spectral characteristics which were similar to spectral model using a single disk target of the same thickness. The ramp target provides a means to have positional variation of the spectral components of the beam, however, the electron component as 60% CSDA us much broader than the step target. Conclusion: The carbon step-target provides a spectral distribution which is similar to a carbon disk of comparable thickness. The spectral distribution from the ramp-target can be modified as a function of position to provide a wide range of low energy electrons for surface dose enhancement.

  11. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  12. Transfer and focusing of high current relativistic electron beams on a target

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Penkina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.; Bakshaeev, Yu.L.

    Research is being conducted at the I. V. Kurchatov Atomic Energy Institute to investigate possibilities of creating a pulsed thermonuclear reactor based on REBs; this work involves the creation of a multimodel system using vacuum lines for transferring energy and an acute angled external magnetic field for transferring electron beams to the target. A field of this configuration can be used at the same time for accumulating a ''cloud'' of relativistic protons around the target for purposes of irradiating them. This alternative solution of the problem of target irradiation, instead of focusing beams directly on it, may prove to be highly promising. Experiments are described which were conducted recently on high current electron accelerators ''URAL'', ''MS'' and others and which were directed at investigating possibilities of transferring and focusing high current REBs, as well as effective transmission of electromagnetic energy using vacuum lines at considerable distances

  13. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  14. Near-Threshold Production of W±, Z0, and H0 at a Fixed-Target Experiment at the Future Ultrahigh-Energy Proton Colliders

    Directory of Open Access Journals (Sweden)

    J. P. Lansberg

    2015-01-01

    Full Text Available We outline the opportunities to study the production of the Standard Model bosons, W±, Z0, and H0, at “low” energies at fixed-target experiments based on possible future ultrahigh-energy proton colliders, that is, the High-Energy LHC, the Super proton-proton Collider, and the Future Circular Collider hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to s=100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serving for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centre-of-mass energies above the W±, Z0, and H0 masses, s≃170–300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape.

  15. Flat cladding and pellets in the design of an irradiation target

    International Nuclear Information System (INIS)

    Yorio, Daniel; Denis, Alicia C.; Soba, Alejandro; Beuter, Oscar; Marajofsky, Adolfo

    2003-01-01

    The design of an enriched uranium irradiation target made of flat pellets and cladding is proposed in order to improve the fission Mo 99 production. The variation range of each one of the parameters is studied and the basic design of the target is given

  16. On corotating high-z HI

    International Nuclear Information System (INIS)

    Lockman, F.J.

    1983-01-01

    There is evidence in surveys of HI in the inner Galaxy for gas more than 500 pc from the plane that shares the rotation of material in the plane. The percentage of HI with mod(z) > 500 pc at the subcentral points rises approximately montonically from less than 2% at R 15% near the solar neighborhood. Some cloudy structure is observed. Some of the high-z gas has a larger velocity dispersion than the HI confined more closely to the plane. (Auth.)

  17. ISAC target operation with high proton currents

    CERN Document Server

    Dombsky, M; Schmor, P; Lane, M

    2003-01-01

    The TRIUMF-ISAC facility target stations were designed for ISOL target irradiations with up to 100 mu A proton beam currents. Since beginning operation in 1998, ISAC irradiation currents have progressively increased from initial values of approx 1 mu A to present levels of up to 40 mu A on refractory metal foil targets. In addition, refractory carbide targets have operated at currents of up to 15 mu A for extended periods. The 1-40 mu A operational regime is achieved by tailoring each target to the thermal requirements dictated by material properties such as beam power deposition, thermal conductivity and maximum operating temperature of the target material. The number of heat shields on each target can be varied in order to match the effective emissivity of the target surface for the required radiative power dissipation. Targets of different thickness, surface area and volume have been investigated to study the effect of diffusion and effusion delays on the yield of radioisotopes. For yields of short-lived p...

  18. In vitro and in vivo ion beam targeted micro-irradiation for radiobiology

    International Nuclear Information System (INIS)

    Vianna, Francois

    2014-01-01

    The main goal of radiobiology is to understand the effects of ionizing radiations on the living. These past decades, ion microbeams have shown to be important tools to study for example the effects of low dose exposure, or the bystander effect. Since 2003, the CENBG has been equipped with a system to perform targeted micro-irradiation of living samples. Recently, microbeams applications on this subject have diversified and the study of DNA repair mechanisms at the cellular and multicellular scales, in vitro and in vivo, has become possible thanks to important evolutions of fluorescence imaging techniques and cellular biology. To take into account these new approaches, the CENBG micro-irradiation beamline has been entirely redesigned and rebuilt to implement new features and to improve the existing ones. My PhD objectives were i) commissioning the facility, ii) characterizing the system on track etch detectors, and on living samples, iii) implementing protocols to perform targeted irradiations of living samples with a con-trolled delivered dose, at the cellular and multicellular scales, and to visualize the early consequences online, iv) modelling these irradiations to explain the biological results using the calculated physical data. The work of these past years has allowed us i) to measure the performances of our system: a beam spot size of about 2 μm and a targeting accuracy of ± 2 μm, and to develop ion detection systems for an absolute delivered dose control, ii) to create highly localized radiation-induced DNA damages and to see online the recruitment of DNA repair proteins, iii) to apply these protocols to generate radiation-induced DNA damages in vivo inside a multicellular organism at the embryonic stage: Caenorhabditis elegans. These results have opened up many perspectives on the study of the interaction between ionizing radiations and the living, at the cellular and multicellular scales, in vitro and in vivo. (author) [fr

  19. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  20. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  1. Nuclear design considerations for Z-IFE chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)]. E-mail: meier5@llnl.gov; Schmitt, R.C. [Bettis Atomic Power Laboratory, Pittsburgh, PA 15203 (United States); Abbott, R.P. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Reyes, S. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)

    2006-02-15

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (X-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped recyclable transmission line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  2. Shock dynamics induced by double-spot laser irradiation of layered targets

    Directory of Open Access Journals (Sweden)

    Aliverdiev Abutrab A.

    2015-06-01

    Full Text Available We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.

  3. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    Science.gov (United States)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  4. Accumulation of the radionuclides in a target irradiated in the reactor of tajoura nuclear research center

    International Nuclear Information System (INIS)

    Abdunnobi, A.R.; Arebi, B.

    1998-01-01

    One of the main stages of radionuclides production in reactor is the distinguishing of a regime on target irradiation in order to acquire the sufficient activity and the purity of radioisotope required. The authors have derived formula for calculating radionuclidic accumulation on a target irradiated in the reactor operating 10 hours per day, 4 days a week during 4 weeks. The results of I-131 and other radionuclide accumulation are illustrated by a tellurium target irradiation in the reactor operating continuously or with interruptions

  5. Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hurh, P. [Fermilab; Sidorov, V. [Fermilab; Zwaska, R. [Fermilab; Asner, D. M. [PNL, Richland; Casella, Casella,A.M [PNL, Richland; Edwards, D. J. [PNL, Richland; Schemer-Kohrn, A. L. [PNL, Richland; Senor, D. J. [PNL, Richland

    2017-02-10

    The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potential localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.

  6. The development of radiocaries after high-dose irradiation

    International Nuclear Information System (INIS)

    Willich, N.; Gundacker, K.; Rohloff, R.

    1988-01-01

    39 patients, who were irradiated with doses of 50 to 70 Gy for ENT-tumors over a period of 3.5 months to three years prior to the examination, showed a rapidly progressing caries of the teeth inside the target volume. The teeth outside the target volume developed a caries of less extent. Radiation induced xerostomia, effects of the irradiation of the soft tissues, nutrition habits and hygienics are discussed as causes for the damage of the teeth. (orig.) [de

  7. Results of four one-day electron-accelerator irradiations of enriched Mo-100 targets for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, V. [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    A series of four one-day irradiations was conducted with 100Mo-enriched disk targets. After irradiation, the enriched disks were removed from the target and dissolved. The resulting solution was processed using a NorthStar RadioGenix™ 99mTc generator either at Argonne National Laboratory or at the NorthStar Medical Radioisotopes facility. Runs on the RadioGenix system produced inconsistent analytical results for 99mTc in the Tc/Mo solution. These inconsistencies were attributed to the impurities in the solution or improper column packing. During the irradiations, the performance of the optic transitional radiation (OTR) and infrared cameras was tested in high radiation field. The OTR cameras survived all irradiations, while the IR cameras failed every time. The addition of X-ray and neutron shielding improved camera survivability and decreased the number of upsets.

  8. Intracranial meningiomas after high-dose irradiation

    International Nuclear Information System (INIS)

    Soffer, D.; Gomori, J.M.; Siegal, T.; Shalit, M.N.

    1989-01-01

    Three patients who presented with intracranial meningiomas 12, 15, and 20 years, respectively, after therapeutic high-dose irradiation of a primary brain tumor are described. Analysis of these cases and similar documented cases suggests that meningiomas after high-dose irradiation constitute a recognizable entity. Patients with such tumors received radiation therapy at a young age (mean age, 9.4 years). After a latent period of 2 to 47 years (mean, 19.8 years) they developed meningiomas at the site of irradiation, at a much younger age than patients with ''spontaneous'' meningiomas. Similar to the situation with meningiomas after low-dose irradiation, a relatively high proportion of meningiomas induced by high-dose irradiation tend to be malignant and biologically aggressive. A very young age at the time of irradiation seems to predispose to the induction of malignant meningiomas, rather than benign tumors. These unusual features provide indirect evidence that high-dose radiation may play a role in the pathogenesis of meningiomas.41 references

  9. Irradiation cryostat for LiH and LiD polarized solid targets

    International Nuclear Information System (INIS)

    Goertz, S.

    1991-01-01

    Scattering experiments with polarized nucleon targets are an important tool to understand the nuclear spin structure. Pion photoproduction experiments on polarized protrons and neutrons as well as measurements of the neutron and deuteron formfactors will be performed at ELSA. 7 LiH and 6 LiD seem to be attractive target materials for these experiments, because they offer high proton and deuteron polarisation, respectively. Expecially 6 LiD has further very important advantages compared to the common deuteron target materials as d-Butanol and ND 3 . This work describes the mechanism of DNP (Dynamic Nuclear Polarization) in LiH and LiD and gives a view on the nature of the so-called paramagnetic impurities in these materials. In order to maximize the nuclear polarization, the production of these radicals have to take place under well defined temperature conditions. Therefore the first version of an irradiation cryostat was built and tested in regard to its cooling power and temperature adjustment. (orig.)

  10. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  11. The target theory applied to the analysis of irradiation damages in organic detectors

    International Nuclear Information System (INIS)

    Mesquita, Carlos Henrique de

    2005-01-01

    The Target Theory was used to explain the radiation damage in samples containing 1% (g//L) of 2,5-diphenyl-oxazolyl (PPO) diluted in toluene and irradiated with 60 Co (1.8 Gy/s). The survival molecules of irradiated PPO obeys the bi-exponential mathematical model [74.3 x exp(-D/104.3) + 25.7 x exp(-D/800,0)]. It indicates that 74.3% of the molecules decay with D37=104.3 kGy and 25.7% decay with D37=800 kGy. From the Target Theory it was inferred the energies involved in the irradiation damages which were 0.239 ± 0.031 eV (G=418.4 ± 54.1. damages/100 eV) and 1.83 ± 0.30 eV (54.5 ± 8.9 damages/100 eV). The diameter of PPO molecule estimated from the Target Theory is in the interval of 45.5 to 64.9 angstrom. (author)

  12. Low- and high-dose laser irradiation effects on cell migration and destruction

    Science.gov (United States)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  13. Target for production of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A. E-mail: sergey_korenev@steris.com

    2004-10-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  14. Target for production of X-rays

    International Nuclear Information System (INIS)

    Korenev, S.A.

    2004-01-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented

  15. Target for production of X-rays

    Science.gov (United States)

    Korenev, S. A.

    2004-09-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  16. Irradiation of target volumes with concave outlines

    Energy Technology Data Exchange (ETDEWEB)

    De Neve, W; Fortan, L; Derycke, S; Van Duyse, B; DE Wagter, C [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde

    1995-12-01

    A heuristic planning procedure allowing to obtain a 3-dimensional conformal dose distribution for target volumes with concavities has been investigated. The procedure divides the planning problem into a number of sub-problems each solvable by known methods. By patching together the solutions to the sub-problems, a solution with a predictable dosimetric outcome can be obtained. The procedure can be applied to most 3-dimensional systems. The procedure is described and its applications to the irradiation of neoplasms are discussed. (A.S.).

  17. Irradiation of target volumes with concave outlines

    International Nuclear Information System (INIS)

    De Neve, W.; Fortan, L.; Derycke, S.; Van Duyse, B.; DE Wagter, C.

    1995-01-01

    A heuristic planning procedure allowing to obtain a 3-dimensional conformal dose distribution for target volumes with concavities has been investigated. The procedure divides the planning problem into a number of sub-problems each solvable by known methods. By patching together the solutions to the sub-problems, a solution with a predictable dosimetric outcome can be obtained. The procedure can be applied to most 3-dimensional systems. The procedure is described and its applications to the irradiation of neoplasms are discussed. (A.S.)

  18. High-dose irradiation of food

    International Nuclear Information System (INIS)

    Diehl, J.F.

    1999-01-01

    Studies performed on behalf of the International Project on Food Irradiation in the period from 1971 until 1980 resulted in the concluding statement that ''.the irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard; hence, toxicological testing of foods so treated is no longer required.'' Since then, licenses for food irradiation have been restricted to this maximum dose in any country applying this technology. Further testing programmes have been carried out investigating the wholesomeness or hazards of high-dose irradiation, but there has been little demand so far by the food industry for licensing of high-dose irradiation, as there is only a small range of products whose irradiation at higher doses offers advantages for given, intended use. These include eg. spices, dried herbs, meat products in flexible pouch packagings for astronauts, or patients with immune deficiencies. (orig./CB) [de

  19. Design, synthesis and evaluation of novel 2,5,6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents.

    Science.gov (United States)

    Park, Bora; Awasthi, Divya; Chowdhury, Soumya R; Melief, Eduard H; Kumar, Kunal; Knudson, Susan E; Slayden, Richard A; Ojima, Iwao

    2014-05-01

    Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 μg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63-12.5 μg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 μM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  1. Scale-up of high specific activity {sup 186g}Re production using graphite-encased thick {sup 186}W targets and demonstration of an efficient target recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric [Washington Univ., Seattle, WA (United States). Dept. of Radiation Oncology; and others

    2017-07-01

    Production of high specific activity {sup 186g}Re is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity {sup 186g}Re can be obtained by cyclotron irradiation of enriched {sup 186}W via the {sup 186}W(d,2n){sup 186g}Re reaction, but most irradiations were conducted at low beam currents and for short durations. In this investigation, enriched {sup 186}W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched {sup 186}W metal encased between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick {sup 186}W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the {sup 186}W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. To demonstrate scaled-up production, a graphite-encased {sup 186}W target made from recycled {sup 186}W was irradiated for ∝2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of {sup 186g}Re, decay-corrected to the end of bombardment. ICP-MS analysis of the

  2. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M. -C.; Berthelot, T.; Baudin, C.; Déléris, G., E-mail: giancarlo.rizza@polytechnique.edu [Commissariat à l' énergie atomique (CEA), Institut Rayonnement Matière de Saclay (IRaMIS), B.P. 52, 91191 Gif Sur Yvette Cedex (France)

    2010-07-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy.

  3. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  4. The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    MEHLHORN, THOMAS A.; DESJARLAIS, MICHAEL P.; HAILL, THOMAS A.; LASH, JOEL S.; ROSENTHAL, STEPHEN E.; SLUTZ, STEPHEN A.; STOLTZ, PETER H.; VESEY, ROGER A.; OLIVER, B.

    1999-01-01

    Peak x-ray powers as high as 280 ± 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments

  5. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    International Nuclear Information System (INIS)

    Priegnitz, M; Helmbrecht, S; Fiedler, F; Janssens, G; Smeets, J; Vander Stappen, F; Perali, I; Sterpin, E

    2015-01-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation. (paper)

  6. The alpha-particle irradiator set up at the ISS for radiobiological studies on targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Esposito, G.; Antonelli, F.; Belli, M.; Campa, A.; Simone, G.; Sorrentino, E.; Tabocchini, M.A.

    2008-01-01

    In this paper we describe the alpha-particle irradiator that has been set up at the Istituto Superiore di Sanita (ISS) for controlled exposure of cultured mammalian cells. It can be equipped with two different sources, namely 2'4'4'Cm and 2'4'1'Am, allowing irradiation at different dose-rates (typically 1-100 mGy/min). The irradiator has dimensions small enough to be inserted into a standard cell culture incubator to perform irradiation of cultured cells in physiological conditions. The dose uniformity is such that the variations in the irradiation area are less than ± 12% of the average dose value on different irradiation areas up to ∼ 25 cm'2. Moreover, in the framework of the FP6 Euratom Integrated Project Non-targeted effects of ionizing radiation (NOTE), Petri dishes were realized for housing permeable membrane insert(s) to be used in co-culture experiments. Aluminium shields were also realized for half shield irradiation experiments. The alpha-particle irradiator of the ISS has been successfully used for studying DNA damage, namely double strand breaks (DSB, as measured by the γ-H2AX assay), in directly hit and in bystander primary human fibroblasts [it

  7. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  8. Genomic instability after targeted irradiation of human lymphocytes: Evidence for inter-individual differences under bystander conditions

    International Nuclear Information System (INIS)

    Kadhim, Munira A.; Lee, Ryonfa; Moore, Stephen R.; Macdonald, Denise A.; Chapman, Kim L.; Patel, Gaurang; Prise, Kevin M.

    2010-01-01

    Environmental 222 radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET α-particle irradiation initiate deleterious genetic consequences in both irradiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations. We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single 3 He 2+ particle traversal to a single cell, are sufficient to induce RIGI. Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors. Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (RIGI, measured as delayed chromosome aberrations). Although this was not highly significant, it was possibly masked by high levels of intra-individual variation. While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes. In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed. We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population. The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype.

  9. Genomic instability after targeted irradiation of human lymphocytes: Evidence for inter-individual differences under bystander conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadhim, Munira A., E-mail: mkadhim@brookes.ac.uk [School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP (United Kingdom); Lee, Ryonfa [Biophysics, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Moore, Stephen R.; Macdonald, Denise A. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Chapman, Kim L. [School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP (United Kingdom); Patel, Gaurang; Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2010-06-01

    Environmental {sup 222}radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET {alpha}-particle irradiation initiate deleterious genetic consequences in both irradiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations. We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single {sup 3}He{sup 2+} particle traversal to a single cell, are sufficient to induce RIGI. Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors. Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (RIGI, measured as delayed chromosome aberrations). Although this was not highly significant, it was possibly masked by high levels of intra-individual variation. While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes. In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed. We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population. The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype.

  10. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Saudi Arabia)

    Energy Technology Data Exchange (ETDEWEB)

    Al Jammaz, Ibrahim; AlYanbawi, S.; Van-Heerden, W.; Miliebari, S.; Rahma, S.; Carrol, D. [King Faisal Specialist Hospital & Research Centre, Riyadh (Saudi Arabia)

    2009-07-01

    The development and improvement of target technology for reliable and higher production yields is described with respect to fluorine-18 and krypton-81. This report includes specific studies on: 1) beam degradation, distribution and diagnostic tools for monitoring the beam during irradiation; 2) targets that are capable of withstanding high current beam and consequently high specific activity radiopharmaceuticals; 3) greater understanding of in-target chemical and physical phenomena for the preparation of new radiolabeled species; and 4) recovery and characterization very expensive enriched material. (author)

  11. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Saudi Arabia)

    International Nuclear Information System (INIS)

    Al Jammaz, Ibrahim; AlYanbawi, S.; Van-Heerden, W.; Miliebari, S.; Rahma, S.; Carrol, D.

    2009-01-01

    The development and improvement of target technology for reliable and higher production yields is described with respect to fluorine-18 and krypton-81. This report includes specific studies on: 1) beam degradation, distribution and diagnostic tools for monitoring the beam during irradiation; 2) targets that are capable of withstanding high current beam and consequently high specific activity radiopharmaceuticals; 3) greater understanding of in-target chemical and physical phenomena for the preparation of new radiolabeled species; and 4) recovery and characterization very expensive enriched material. (author)

  12. Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation.

    Science.gov (United States)

    Robar, James L; Connell, Tanner; Huang, Weihong; Kelly, Robin G

    2009-09-01

    The purpose of this study is to investigate the improvement of megavoltage planar and cone-beam CT (CBCT) image quality with the use of low atomic number (Z) external targets in the linear accelerator. In this investigation, two experimental megavoltage imaging beams were generated by using either 3.5 or 7.0 MeV electrons incident on aluminum targets installed above the level of the carousel in a linear accelerator (2100EX, Varian Medical, Inc., Palo Alto, CA). Images were acquired using an amorphous silicon detector panel. Contrast-to-noise ratio (CNR) in planar and CBCT images was measured as a function of dose and a comparison was made between the imaging beams and the standard 6 MV therapy beam. Phantoms of variable diameter were used to examine the loss of contrast due to beam hardening. Porcine imaging was conducted to examine qualitatively the advantages of the low-Z target approach in CBCT. In CBCT imaging CNR increases by factors as high as 2.4 and 4.3 for the 7.0 and 3.5 MeV/Al beams, respectively, compared to images acquired with 6 MV. Similar factors of improvement are observed in planar imaging. For the imaging beams, beam hardening causes a significant loss of the contrast advantage with increasing phantom diameter; however, for the 3.5 MeV/Al beam and a phantom diameter of 25 cm, a contrast advantage remains, with increases of contrast by factors of 1.5 and 3.4 over 6 MV for bone and lung inhale regions, respectively. The spatial resolution is improved slightly in CBCT images for the imaging beams. CBCT images of a porcine cranium demonstrate qualitatively the advantages of the low-Z target approach, showing greater contrast between tissues and improved visibility of fine detail. The use of low-Z external targets in the linear accelerator improves megavoltage planar and CBCT image quality significantly. CNR may be increased by a factor of 4 or greater. Improvement of the spatial resolution is also apparent.

  13. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    International Nuclear Information System (INIS)

    Bache, S; Belley, M; Benning, R; Adamovics, J; Stanton, I; Therien, M; Yoshizumi, T; Oldham, M

    2014-01-01

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R 2 = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE

  14. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  15. ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments.

    Directory of Open Access Journals (Sweden)

    Anuradha Kuchibhatla

    Full Text Available A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0 pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.

  16. UV-C irradiation of HSV-1 infected fibroblasts (HSV-FS) enhances human natural killer (NK) cell activity against these targets

    International Nuclear Information System (INIS)

    Pettera, L.; Fitzgerald-Bocarsly, P.

    1991-01-01

    Expression of Herpes Simplex Virus Type 1 (HSV-1) immediate early gene products has been bound to be sufficient for NK cell mediated lysis of HSV-1 infected FS. To block the targets at various stages in the infectious cycle, HSV-FS were irradiated with UV light for 1 min at 2, 6, and 20 hr post-infection. NK mediated lysis of 2 hr and 5 hr UV treated HSV-FS was 2-fold higher than non-UV treated HSV-FS despite a >99% inhibition in virus yield. In contrast, 20 hr infected targets were lysed less well than 2 and 6 hr targets despite strong glycoprotein expression and induction of high levels of interferon-alpha (IFN-α) production by effector PBMC's; this lysis was not enhanced by UV treatment. Since NK lysis of HSV-FS has been found to be dependent on an HLA-DR + accessory cell (AC), lysis of irradiated HSV-FS by PBMC's depleted of AC was measured. Such depletion eradicated NK lysis of the UV treated HSV-FS indicating that irradiation does not overcome the AC requirement for NK lysis. UV irradiation of another HLA-DR + dependent target, Vesicular Stomatitis Virus (VSV) infected FS led to a dramatic reduction in both NK lysis and IFN-α induction. HSV-1 is a DNA virus whose genes are expressed in a cascade fashion whereas VSV is an RNA virus. The authors hypothesize that the enhancement in AC dependent NK activity observed for UV irradiated HSV-FS, but not VSV-FS, targets is due to overproduction of either a cellular or viral gene product which specifically occurs early in the HSV-1 infectious cycle and is downregulated by 20 hr post-infection

  17. A flexible testing facility for high-power targets T-MIF

    International Nuclear Information System (INIS)

    Fusco, Y.; Samec, K.; Behzad, M.; Kadi, Y.

    2015-01-01

    A dedicated material test irradiation facility is being proposed. The testing station will allow critical issues concerning materials under irradiation to be addressed, such as the impact of proton beam irradiation, neutron irradiation, liquid metal corrosion and temperature. The material samples to be investigated in such a facility will be subjected to tensile stress, either constant or cyclical. The facility may also be used for sensor development under irradiation and isotope production. The goal of the current work is to propose a facility that is sufficiently versatile and compact so that it may be transported and used in different laboratories. The power is limited to 100 kW. The general aspect of the proposed irradiation facility is a cube, 2 metres deep and comprising within it all the necessary systems. The interface to the laboratory is limited to the coolant connections, the secondary circuit, the electric energy supply and the signals from the instrumentation. The liquid metal target placed in the centre of the facility contains the samples which are subjected to a proton beam, creating irradiation damage directly through protons or indirectly through neutrons created by spallation of the surrounding liquid metal by the incoming protons. The design of the target is based upon the EURISOL target. The same beam window design is used, albeit stretched horizontally to adopt an elliptical section which is compatible with the shape of the beam used to irradiate the samples. The liquid metal in the target is re-circulated by an electromagnetic pump that drives the liquid metal through a heat exchanger located at the top of the facility, the position of which was chosen to encourage natural circulation. The heat exchanger is made up of two separate parts which allow the primary and secondary circuit to separate cleanly

  18. Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Geoffrey K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); National Institute of Environmental Health Science, Research Triangle Park, NC (United States); Heymann, Michael [Brandeis Univ., Waltham, MA (United States); Univ. of Hamburg and DESY, Hamburg (Germany); Benner, W. Henry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, Tommaso [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsai, Ching -Ju [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hunter, Mark S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Xiaodan [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Messerschmidt, Marc [SLAC National Accelerator Lab., Menlo Park, CA (United States); BioXFEL Science and Technology Center, Buffalo, NY (United States); Opathalage, Achini [Brandeis Univ., Waltham, MA (United States); Pedrini, Bill [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Williams, Garth J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krantz, Bryan A. [Univ. of California, Berkeley, CA (United States); Fraden, Seth [Brandeis Univ., Waltham, MA (United States); Hau-Riege, Stefan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Segelke, Brent W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frank, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-27

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructed of low-Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low-Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.

  19. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  20. Monte Carlo modelling and comparison with experiment of the nuclide production in thick stony targets isotropically irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Aylmer, D.; Herzog, G.F.; Kruse, T.H.; Cloth, P.; Filges, D.; Moniot, R.K.; Signer, P.; Wieler, R.; Tuniz, C.

    1987-05-01

    Depth profiles for the production of stable and radioactive nuclides have been measured for a large variety of target elements in three thick spherical stony targets with radii of 5, 15 and 26 cm isotropically irradiated with 600 MeV protons at the CERN synchrocyclotron. These irradiation experiments (CERN SC96) were intended to simulate the irradiation of meteoroids by galactic cosmic ray protons. In order to combine this experimental approach with a theoretical one the intra- and internuclear cascades were calculated using Monte Carlo techniques via the high energy transport code HET/KFA 1. Together with transport calculations for low energy neutrons by the MORSE-CG code the depth dependent spectra of primary and secondary protons and of secondary neutrons were derived. On the basis of these spectra and a set of evaluated experimental excitation functions for p-induced reactions and of theoretical ones for n-induced reactions, calculated by the code ALICE LIVERMORE 82, theoretical depth profiles for the production of stable and radioactive nuclides in the three thick targets were calculated. This report is a comprehensive survey on all those target/product combination for which both experimental and theoretical data are available. It provides the basis for a detailed discussion of the various production modes of residual nuclides and on the depth and size dependence of their production rates in thick stony targets, serving as a simulation of the galactic cosmic ray irradiation of meteoroids in space. On the other hand the comparison of the experimental and theoretical depth profiles validates the high energy transport calculations, making them a promissing tool for further model calculations of the interactions of cosmic rays with matter. (orig.)

  1. 80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers

    Science.gov (United States)

    Beloglazov, A.; Martino, M.; Nassisi, V.

    1996-05-01

    Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.

  2. High-z Universe with Gamma Ray Bursts

    Science.gov (United States)

    Kouveliotou, C.

    2011-01-01

    Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.

  3. Optimization of in-target yields for RIB production: Part 1: direct targets

    International Nuclear Information System (INIS)

    Chabod, S.; Thiolliere, N.; David, J.Ch.; Dore, D.; Ene, D.; Rapp, B.; Ridikas, D.; Chabod, S.; Blideanu, V.

    2008-03-01

    In the framework of the EURISOL-DS project and within Task-11, we have performed in-target yield calculations for different configurations of thick direct targets. The target materials tested are Al 2 O 3 , SiC, Pb(molten), Ta and UC 3 . The target was irradiated with protons of 0.5, 1.0, 1.5 and 2.0 GeV. The production rates have been computed using the MCNPX transport/generation code, coupled with the CINDER-90 evolution program. The yield distributions as a function of charge number Z and mass number A have been evaluated. Their production rates have been optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Hg, Sn and Fr) and 23 of their isotopes of interest. Finally, the isotopic distributions for each of these 11 elements have been optimized in terms of the target material, its geometry, and incident proton energy

  4. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies, the spectral energy range where current x-ray sources are weak. All project goals were met.

  5. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    CERN Document Server

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  6. Radiosensitization of high-Z compounds by medium-energy 160 kV vs. high-energy 6 MV X-rays for radiation therapy: Theoretical, in vitro and in vivo studies of platinum compounds activating glioma F98 cancer cells

    Science.gov (United States)

    Lim, S.; Pradhan, A.; Nahar, S.; Montenegro, M.; Barth, R.; Nakkula, R.; Turro, C.

    2013-03-01

    Energy dependence of X-ray irradiation of high-Z compounds for enhanced radiosensitization is explored thoeretically and via in vitro and in vivo experiments. The cell killing ability of medium-energy X-rays from 160 kV source are found to be more effective than 6 MV X-rays in activating high-Z contrast agents. Results are presented for a newly synthesized Pt compound, Pyridine Terpyridine Pt(II) Nitrate ([Pt(typ)(py)]) and carboplatin in treating F98 rat glioma. In-vitro results show considerable reduction in cell viability for radiosensitized cells irradiated with a 160 kV irradiator. Cells treated with 6 MV LINAC radiation find little variation with radiation dose. Maximum dose enhancement factors (DEFs) and minimum cancer cell survival fractions correspond to 50-200 keV range, and fall rapidly at higher energies. Theoretical calculations of photoelectric absorption vis-a-vis total scattering demonstrates this energy dependence. However, in vivo studies of rats treated with [Pt(tpy)(py)] had a severe negative neurotoxic response, confirmed by histopathological analysis. But subsequent in vivo studies using carboplatin showed very positive results in the treatment of F98 glioma bearing rats and potential clinical radiation therapy.

  7. Methods of thallium-201 preparation from proton irradiated thallium targets

    International Nuclear Information System (INIS)

    Kozlova, M.D.; Sevast'yanova, A.S.; Malinin, A.B.; Kurenkov, N.V.

    1989-01-01

    Two methods of thallium-201 preparation from Tl-targets irradiated by protons: oxidation-extraction (1) and extraction (2) - are developed. At first radioactive lead is separated from the target material - thallium macroquantities during ∼32 hours, then thallium-201 was separated from residual activity of lead radioisotopes and transformed it into the necessary chemical formula. The 1st and 2nd methods differ from each other by the 1st stage of target retreatment; only extraction was used to separate radioactive lead in the 2nd method. The target was solved in H 2 SO 4 . The 1st method permits to separate thallium-201 with chemical yield not less than 90 %, the 2nd one - higher than 95 %. Volumetric activity of thallium-201 prepared is more than 55 MBq/ml. 5 refs

  8. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    Science.gov (United States)

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  10. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  11. Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: A new concept of dual targeting drugs

    International Nuclear Information System (INIS)

    Dubois, Ludwig; Peeters, Sarah G.J.A.; Kuijk, Simon J.A. van; Yaromina, Ala; Lieuwes, Natasja G.; Saraya, Ruchi; Biemans, Rianne; Rami, Marouan; Parvathaneni, Nanda Kumar; Vullo, Daniela; Vooijs, Marc; Supuran, Claudiu T.; Winum, Jean-Yves

    2013-01-01

    Background and purpose: Carbonic anhydrase IX (CAIX) plays an important role in pH regulation processes critical for tumor cell growth and metastasis. We hypothesize that a dual targeting bioreductive nitroimidazole based anti-CAIX sulfamide drug (DH348) will reduce tumor growth and sensitize tumors to irradiation in a CAIX dependent manner. Material and methods: The effect of the dual targeting anti-CAIX (DH348) and its single targeting control drugs on extracellular acidification and radiosensitivity was examined in HT-29 colorectal carcinoma cells. Tumor growth and time to reach 4× start volume (T4×SV) was monitored for animals receiving DH348 (10 mg/kg) combined with tumor single dose irradiation (10 Gy). Results: In vitro, DH348 reduced hypoxia-induced extracellular acidosis, but did not change hypoxic radiosensitivity. In vivo, DH348 monotherapy decreased tumor growth rate and sensitized tumors to radiation (enhancement ratio 1.50) without systemic toxicity only for CAIX expressing tumors. Conclusions: A newly designed nitroimidazole and sulfamide dual targeting drug reduces hypoxic extracellular acidification, slows down tumor growth at nontoxic doses and sensitizes tumors to irradiation all in a CAIX dependent manner, suggesting no “off-target” effects. Our data therefore indicate the potential utility of a dual drug approach as a new strategy for tumor-specific targeting

  12. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  13. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  14. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation

    NARCIS (Netherlands)

    Leij, F. van der; Elkhuizen, P.H.M.; Janssen, T.M.; Poortmans, P.M.P.; Sangen, M. van der; Scholten, A.N.; Vliet-Vroegindeweij, C. van; Boersma, L.J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of

  15. High activity gamma irradiators developed in Hungary

    International Nuclear Information System (INIS)

    Stenger, V.

    1997-01-01

    The development of high activity Gamma irradiators began in Hungary already in the early years of 60s. The very first designs were serving research in irradiation chemistry, radiation physics, food and agricultural research, radiation sterilization, plastic radiation chemistry, radiobiology, cancer therapy, personal and high dose dosimetry, following the international trends. Domestic and new international demands forced us to design and construct High Activity Gamma Irradiators: Multipurpose Pilot, Portable and Large scale bulk, Multipurpose Industrial scale types

  16. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  17. Characterization of third-harmonic target plan irradiance on the National Ignition Facility Beamlet demonstration project

    International Nuclear Information System (INIS)

    Wegner, P.J.; Van Wonterghem, B.M.; Dixit, S.N.; Henesian, M.A.; Barker, C.E.; Thompson, C.E.; Seppala, L.G.; Caird, J.A.

    1997-01-01

    The Beamlet laser is a single-aperture prototype for the National Ignition Facility (NIF). We have recently installed and activated a 55 m 3 vacuum vessel and associated diagnostic package at the output of the Beamlet that we are using to characterize target plane irradiance at high power. Measurements obtained both with and without a kinoform diffractive optic are reported. Dependences on critical laser parameters including output power, spatial filtering, and wavefront correction are discussed and compared with simulations

  18. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity {sup 186g}Re using WO{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, M.E.; Ballard, B.; Birnbaum, E.R. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.] [and others

    2013-08-01

    Rhenium-186g (T{sub 1/2} = 89.2 h) is a {beta}{sup -} emitter suitable for therapeutic applications. Current production methods rely on reactor production via {sup 185}Re(n,{gamma}) which results in low specific activities, thereby limiting its use. Production by p,d activation of enriched {sup 186}W results in a {sup 186g}Re product with a higher specific activity, allowing it to be used for targeted therapy with limited receptors. A test target consisting of pressed, sintered {sup nat}WO{sub 3} was proton irradiated at Los Alamos (LANL-IPF) to evaluate product yield and impurities, irradiation parameters and wet chemical Re recovery for proof-of-concept for bulk production of {sup 186g}Re. We demonstrated isolation of {sup 186g}Re in 97% yield from irradiated {sup nat}WO{sub 3} targets within 12 h of end of bombardment (EOB) via an alkaline dissolution followed by anion exchange. The recovery process has potential for automation, and WO{sub 3} can be easily recycled for recurrent irradiations. A {sup 186g}Re batch yield of 42.7 {+-} 2.2 {mu}Ci/{mu}Ah or 439 {+-} 23 MBq/C was obtained after 24 h in an 18.5 {mu}A proton beam. The target entrance energy was determined to be 15.6 MeV. The specific activity of {sup 186g}Re at EOB was measured to be 1.9 kCi (70.3 TBq) mmol{sup -1}, which agrees well with the result of a previous {sup 185,186m}Re co-production EMPIRE and TALYS modeling study assuming similar conditions. Utilizing enriched {sup 186}WO{sub 3}, we anticipate that a proton beam of 250 {mu}A for 24 h will provide batch yields of 256 mCi (9.5 GBq) of {sup 186g}Re at EOB with specific activities even higher than 1.9 kCi (70.3 TBq) mmol{sup -1}, suitable for therapy applications. (orig.)

  19. U-target irradiation at FRM II aiming the production of Mo-99 - A feasibility study

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Mueller, C.; Neuhaus, I.; Roehrmoser, A.

    2010-01-01

    Following the shortage in radioisotope availability the Technische Unversitaet Muenchen and the Belgian Institut National des Radioelements conducted a common study on the suitability of the FRM II reactor for the generation of Mo-99 as a fission product. A suitable irradiation channel was determined and neutronic calculations resulted in sufficiently high neutron flux densities to make FRM II a promising candidate for Mo-99 production. In addition the feasibility study provides thermohydraulic calculations as input for the design and integration of the additional cooling circuit into the existing heat removal systems of FRM II. The required in-house processes for a regular uranium target irradiation programme have been defined and necessary upgrades identified. Finally the required investment cost was estimated and a possible time schedule was given. (author)

  20. Cytological profile of antibacterial FtsZ inhibitors and synthetic peptide MciZ

    Directory of Open Access Journals (Sweden)

    Lidia Araujo-Bazan

    2016-10-01

    Full Text Available Cell division protein FtsZ is the organizer of the cytokinetic ring in almost all bacteria and a target for the discovery of new antibacterial agents that are needed to counter widespread antibiotic resistance. Bacterial cytological profiling, using quantitative microscopy, is a powerful approach for identifying the mechanism of action of antibacterial molecules affecting different cellular pathways. We have determined the cytological profile on Bacillus subtilis cells of a selection of small molecule inhibitors targeting FtsZ on different binding sites. FtsZ inhibitors lead to long undivided cells, impair the normal assembly of FtsZ into the midcell Z-rings, induce aberrant ring distributions, punctate FtsZ foci, membrane spots and also modify nucleoid length. Quantitative analysis of cell and nucleoid length combined, or the Z-ring distribution, allows categorizing FtsZ inhibitors and to distinguish them from antibiotics with other mechanisms of action, which should be useful for identifying new antibacterial FtsZ inhibitors. Biochemical assays of FtsZ polymerization and GTPase activity combined explain the cellular effects of the FtsZ polymer stabilizing agent PC190723 and its fragments. MciZ is a 40-aminoacid endogenous inhibitor of cell division normally expressed during sporulation in B. subtilis. Using FtsZ cytological profiling we have determined that exogenous synthetic MciZ is an effective inhibitor of B. subtilis cell division, Z-ring formation and localization. This finding supports our cell-based approach to screen for FtsZ inhibitors and opens new possibilities for peptide inhibitors of bacterial cell division.

  1. Z-scaling in proton-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.V.; Panebrattsev, Yu.A.; Skoro, G.P.

    1997-01-01

    New scaling, z-scaling, in the inclusive particle production in pA collisions is studied. The scaling function H A (z) is expressed via the inclusive cross section of particle production Ed 3 σ/dq 3 and the particle multiplicity density dN/dη at pseudorapidity η=0 in the corresponding nucleon-nucleon (NN) center-of-mass (CMS) system. The dependence of H A (z) on scaling variable z, the center-of-mass energy √, and the detection angle θ is investigated. The available experimental data on inclusive particle production (π ± , K ± ) in pA interactions at high energies are used to verify the universality of z-scaling found in hadron-hadron collisions. The A-dependence of H A (z) for π + -meson production is studied. It is shown that the experimental data >from pd collisions confirm the scaling properties of the function H d (z). Some predictions for H au (z) concerning production of π + -mesons in pAu interaction using the HIJING Monte Carlo code have been made. The obtained results can be of interest for future experiments at RHI and LHC in searching the signals of quark-gluon plasma formation

  2. Target volume delineation in external beam partial breast irradiation: Less inter-observer variation with preoperative- compared to postoperative delineation

    International Nuclear Information System (INIS)

    Leij, Femke van der; Elkhuizen, Paula H.M.; Janssen, Tomas M.; Poortmans, Philip; Sangen, Maurice van der; Scholten, Astrid N.; Vliet-Vroegindeweij, Corine van; Boersma, Liesbeth J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of twenty-four breast cancer patients

  3. Behavior of high Tc-superconductors and irradiated defects under reactor irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Yoshida, Hiroyuki.

    1991-01-01

    It has been well known that the lattice defects of various types are introduced in ceramics without exception, and exert large effect to the function of these materials. Among oxides, the electronic materials positively using oxygen defect control have been already put in practical use. Also in the oxide high temperature superconductors which are Perovskite type composite oxides, the superconductive characteristics are affected largely by the concentration of the oxygen composing them. This is regarded as an important factor for causing superconductivity, related with the oxygen cavities arising at this time and the carriers bearing superconductivity. In this study, the irradiation effect with relatively low dose, the measurement under irradiation, the effect of irradiation temperature, and the effect of radiation quality were evaluated by the irradiation of YBCO, EBCO and LBCO. The experimental method, and the irradiation effect at low temperature and normal temperature, the effect of Co-60 gamma ray irradiation instead of reactor irradiation are reported. (K.I.)

  4. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  5. High current Tl-203, Rh-103 targets preparation for cyclotron production of Tl-201 and Pd-103 radionuclides

    International Nuclear Information System (INIS)

    Arzumanov, A.; Berger, V.; Borissenko, A.; Gorodisskaya, N.; Ilmatov, I.; Knyazev, A.; Koptev, V.; Lyssukhin, S.; Platov, A.; Sychikov, G.; Zheltov, D.

    2004-01-01

    The objectives of the present work are to increase thermal stability of cyclotron targets for production of Tl-201 isotope, increase Tl-203 regeneration rate at radiochemical reprocessing of the targets and develop production technology for radiochemical sources based on Rd-103 isotope. Electrochemical coating of copper substrate with Tl increased the beam current at target irradiation from 100 μA to 125 μA. Further increase of the beam current results in sharp decrease of target stability time at irradiation to 15 min at beam current 150 μA. Thermal calculations and tests at the electron-beam stand predict satisfactory stability at such currents. The discrepancy with the irradiation results has not been explained. More accurate specification of regimes for Tl-203 electrochemical recovery from irradiated targets and better matching of the electrolyte composition made it possible to increase the recovery rate up to 99.5%. Before the present Project, the INP had no experience in production of radioactive sources based on Pd-103. Thermo-diffusion extraction of Pd-103 from irradiated rhodium foil has been chosen as a technology-defining method. The process assures good extraction rate and high purity of extracted isotope. Production of Pd-103 sources based on this technology is much simpler compared to the same based on electrochemical processes. (author)

  6. Studies of plasma interactions with tungsten targets in PF-1000U facility

    Directory of Open Access Journals (Sweden)

    Ladygina Maryna S.

    2016-06-01

    Full Text Available This paper presents results of experimental studies of tungsten samples of 99.95% purity, which were irradiated by intense plasma-ion streams. The behaviour of tungsten, and particularly its structural change induced by high plasma loads, is of great importance for fusion technology. The reported measurements were performed within a modified PF-1000U plasma-focus facility operated at the IFPiLM in Warsaw, Poland. The working gas was pure deuterium. In order to determine the main plasma parameters and to study the behaviour of impurities at different instants of the plasma discharge, the optical emission spectroscopy was used. The dependence of plasma parameters on the initial charging voltage (16, 19 and 21 kV was studied. Detailed optical measurements were performed during interactions of a plasma stream with the tungsten samples placed at the z-axis of the facility, at a distance of 6 cm from the electrode outlets. The recorded spectra showed distinct WI and WII spectral lines. Investigation of a target surface morphology, after its irradiation by intense plasma streams, was performed by means of an optical microscope. The observations revealed that some amounts of the electrodes material (mainly copper were deposited upon the irradiated sample surface. In all the cases, melted zones were observed upon the irradiated target surface, and in experiments performed at the highest charging voltage there were formed some cracks.

  7. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, S; Kushima, N; Katsura, K; Tanabe, S; Hayakawa, T; Sakai, H; Yamada, T; Takahashi, H; Abe, E; Wada, S; Aoyama, H [Niigata University, Niigata (Japan)

    2016-06-15

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cm × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.

  8. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  9. A Monte Carlo investigation of low-Z target image quality generated in a linear accelerator using Varian's VirtuaLinac

    International Nuclear Information System (INIS)

    Parsons, David; Robar, James L.; Sawkey, Daren

    2014-01-01

    Purpose: The focus of this work was the demonstration and validation of VirtuaLinac with clinical photon beams and to investigate the implementation of low-Z targets in a TrueBeam linear accelerator (Linac) using Monte Carlo modeling. Methods: VirtuaLinac, a cloud based web application utilizing Geant4 Monte Carlo code, was used to model the Linac treatment head components. Particles were propagated through the lower portion of the treatment head using BEAMnrc. Dose distributions and spectral distributions were calculated using DOSXYZnrc and BEAMdp, respectively. For validation, 6 MV flattened and flattening filter free (FFF) photon beams were generated and compared to measurement for square fields, 10 and 40 cm wide and at d max for diagonal profiles. Two low-Z targets were investigated: a 2.35 MeV carbon target and the proposed 2.50 MeV commercial imaging target for the TrueBeam platform. A 2.35 MeV carbon target was also simulated in a 2100EX Clinac using BEAMnrc. Contrast simulations were made by scoring the dose in the phosphor layer of an IDU20 aSi detector after propagating through a 4 or 20 cm thick phantom composed of water and ICRP bone. Results: Measured and modeled depth dose curves for 6 MV flattened and FFF beams agree within 1% for 98.3% of points at depths greater than 0.85 cm. Ninety three percent or greater of points analyzed for the diagonal profiles had a gamma value less than one for the criteria of 1.5 mm and 1.5%. The two low-Z target photon spectra produced in TrueBeam are harder than that from the carbon target in the Clinac. Percent dose at depth 10 cm is greater by 3.6% and 8.9%; the fraction of photons in the diagnostic energy range (25–150 keV) is lower by 10% and 28%; and contrasts are lower by factors of 1.1 and 1.4 (4 cm thick phantom) and 1.03 and 1.4 (20 cm thick phantom), for the TrueBeam 2.35 MV/carbon and commercial imaging beams, respectively. Conclusions: VirtuaLinac is a promising new tool for Monte Carlo modeling of novel

  10. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  11. New target for high-intensity laser-matter interaction: Gravitational flow of micrometer-sized powders

    International Nuclear Information System (INIS)

    Servol, M.; Quere, F.; Bougeard, M.; Monot, P.; Martin, Ph.; Faenov, A.Ya; Pikuz, T.A.; Audebert, P.; Francucci, M.; Petrocelli, G.

    2005-01-01

    The design of efficient targets for high-intensity laser-matter interaction is essential to fully exploit the advantages of laser-induced photons or particles sources. We present an advantageous kind of target, consisting in a free gravitational flow of micrometer-sized powder, and describe its main technical characteristics. We demonstrate a laser-induced keV x-ray source using this target, and show that the photon flux obtained for the Kα line of Si by irradiating different silica powders is comparable to the one obtained with a bulk silica target

  12. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents the recommendations of an international group of experts convened by the World Health Organization, in association with the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency, to consider the implications of food irradiated to doses higher than those recommended in 1980 by the Joint Expert Committee on the Wholesomeness of Irradiated Food. Irradiation ensures the hygienic quality of food and extends shelf-life. The public perception of the safety of food irradiation has generally precluded its widespread use. However, current applications of food irradiation to doses over 10 kGy have been in the development of high-quality shelf-stable convenience foods for specific target groups such as immunosuppressed individuals and those under medical care, astronauts and outdoor enthusiasts. The Study Group reviewed data relating to the toxicological, nutritional, radiation chemical and physical aspects of food irradiated to doses above 10kGy from a wide range and number of studies carried out over the last forty years. This report presents a comprehensive summary, along with references, of the effectiveness and safety of the irradiation process. It concludes that foods treated with doses greater than 10kGy can be considered safe and nutritionally adequate when produced under established Good Manufacturing Practice

  13. SHARDS: Survey for High-z Absorption Red & Dead Sources

    Science.gov (United States)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  14. Momenta of particles emitted by target at intensive irradiation by low-energy ions

    CERN Document Server

    Beshenkov, V G; Marchenko, V A

    2002-01-01

    One measured the aggregate momenta of the target emitted particles at the intensive sputtering by E sub 0 approx = 0.5 keV energy heavy inert gases. For liquid and being under premelting temperature Ga target the measured values are close to the expected momenta of sputtered metallic atoms and reflection ions, for Cu and Zr targets they are essentially higher. One assumes that sputtering of atoms of gas-diffuser implanted into the target causes the surplus momentum. The estimated average energy of these atoms approx = 20 eV. Under Ga irradiation the implanted atoms diffuse mainly towards the surface and are desorbed

  15. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    Science.gov (United States)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  16. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-z target atoms

    International Nuclear Information System (INIS)

    Stoehlker, T.; Bosch, F.; Geissel, H.; Kozhuharov, C.; Ludziejewski, T.; Mokler, P.H.; Scheidenberger, C.; Stachura, Z.; Warczak, A.

    1997-09-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogen- and helium-like bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine structure splitting of Bi, the excitation cross-sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave-functions and the magnetic interaction are of considerable importance for the K-shell excitation process in high-Z ions like Bi. The experimental data confirm the result of the complete relativistic calculations, namely that the magnetic part of the Lienard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross-section. (orig.)

  17. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  18. High energy argon ion irradiations of polycrystalline iron

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Boulanger, L.

    1986-09-01

    We present here the results of our recent irradiations of polycrystalline iron targets with very energetic (1.76 GeV) Ar ions. The targets consist of piles of thin iron samples, the total thickness of each target being somewhat greater than the theoretical range (450 μm) of the ions. We can thus separate the phenomena which occur at different average energies of the ions and study during the slowing-down process: the different types of induced nuclear reactions. They allow us to determine the experimental range of the ions, the defect profiles in the targets, the structure of the displacement cascades (electron microscopy) and their stability

  19. Analysis list: Su(z)12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Su(z)12 Embryo,Larvae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/S...u(z)12.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/Su(z)12.5.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/dm3/target/Su(z)12.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Su(z)12.Embryo....tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Su(z)12.Larvae.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/dm3/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Larvae.gml ...

  20. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    International Nuclear Information System (INIS)

    Tahir, N A; Weick, H; Iwase, H

    2005-01-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump

  1. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, R S; Khishchenko, K V [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Krasyuk, I K; Semenov, A Yu; Stuchebryukhov, I A [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Rinecker, T; Schoenlein, A [Goethe University Frankfurt am Main (Germany); Rosmej, O N [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, 64291 Darmstadt, Planckstraße, 1 (Germany); Tomut, M [Technische Universität Darmstadt, Germany, 64289 Darmstadt, Karolinenplatz, 5 (Germany)

    2015-05-31

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength of graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)

  2. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors; Etude des effets d`irradiations pulsees intenses sur des cibles de silicium considere en tant que materiau de base pour detecteurs optiques

    Energy Technology Data Exchange (ETDEWEB)

    Muller, O

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO{sub 2}/Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix.

  3. Influence of neutron energy on formation of radioisotopes during the irradiation of targets in reactor

    Directory of Open Access Journals (Sweden)

    P. M. Vorona

    2011-09-01

    Full Text Available Method of calculation of nuclear transformations in irradiated targets is realized for selection of optimal conditions for accumulation of radioisotopes in reactor, taking into account contributions of different energy neutrons (thermal, resonance and fast. Wide potentialities of program complex MCNP-4C based on the method of statistical testing (Monte Carlo method were used. Positive in proposed method is that all calculations starting from spectra and fluxes of neutrons in reactor and completing by quantity of accumulating nuclei carry out within the framework of the same methodological approach. It was shown by the example of radioactive 98Mo production in Mo98Mo(n, γ99Mo reaction that for achievement of maximal yield of target radionuclide. it is necessary to irradiate start targets of Molybdenum in hard spectrum with essential contribution of resonance neutrons.

  4. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  5. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  6. Preliminary results on neutron production from a Pb/U target irradiated by deuteron beam at 1.25 GeV/amu

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Jokic, S.; Zamani, M.; Krivopustov, M.; Sosnin, A.; Stoulos, S.

    2008-01-01

    A spallation neutron source consisted of a cylindrical Pb target and surrounded by uranium blanket was irradiated by deuteron beam 1.25 GeV/amu provided from the Nuclotron accelerator at High Energy Laboratory, JINR, Dubna. For radiation protection purpose a polyethylene shielding was placed around the spallation neutron source. Neutron distributions along the surface of the U-blanket were measured by using solid state nuclear track detectors (SSNTDs) as particle and fission detectors. The neutron distributions appear to be similar to those obtained by proton irradiations. Applying a fitting procedure to the experimental data the inelastic cross section of deuteron in Pb was estimated. The escaping neutron distribution from the polyethylene shielding and parallel to the target was also measured and presented to be two orders of magnitude less than that over the U-blanket surface

  7. Radiation history and energy coupling to cylindrical targets on the Z machine

    International Nuclear Information System (INIS)

    Aubrey, J.; Bowers, R.L.; Peterson, D.L.; Chandler, G.A.; Derzon, M.S.; Nash, T.J.; Fehl, D.L.

    1999-01-01

    A series of experiments have been designed and fielded on the Sandia Z machine to characterize the radiation history and energy coupling to cylindrical targets embedded in a central cushion. The implosion of, a nested wire array, which has produced temperatures of 230 eV in a central cushion (Flying Radiation Case/Dynamic Hohlraum), is used as a source, in the calculations, to drive ablative shocks in cylindrical shells. These shells have initial radii of 1 mm, wall thickness of 20 to 50 microm and are embedded in low density foam. Simulations of the radiation environment in the cushion, including the radiation pre-pulse associated with the run-in of the load plasma and the energy coupling to the target will be presented. The dynamics of the imploding plasma, its evolution near the axial aperture and its effects on diagnostic access will also be considered

  8. High-Z material erosion and its control in DIII-D carbon divertor

    Directory of Open Access Journals (Sweden)

    R. Ding

    2017-08-01

    Full Text Available As High-Z materials will likely be used as plasma-facing components (PFCs in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to E ×B drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.

  9. Irradiation promotes Akt-targeting therapeutic gene delivery to the tumor vasculature

    International Nuclear Information System (INIS)

    Sonveaux, Pierre; Frerart, Francoise; Bouzin, Caroline; Brouet, Agnes; Wever, Julie de; Jordan, Benedicte F.; Gallez, Bernard; Feron, Olivier

    2007-01-01

    Purpose: To determine whether radiation-induced increases in nitric oxide (NO) production can influence tumor blood flow and improve delivery of Akt-targeting therapeutic DNA lipocomplexes to the tumor. Methods and Materials: The contribution of NO to the endothelial response to radiation was identified using NO synthase (NOS) inhibitors and endothelial NOS (eNOS)-deficient mice. Reporter-encoding plasmids complexed with cationic lipids were used to document the tumor vascular specificity and the efficacy of in vivo lipofection after irradiation. A dominant-negative Akt gene construct was used to evaluate the facilitating effects of radiotherapy on the therapeutic transgene delivery. Results: The abundance of eNOS protein was increased in both irradiated tumor microvessels and endothelial cells, leading to a stimulation of NO release and an associated increase in tumor blood flow. Transgene expression was subsequently improved in the irradiated vs. nonirradiated tumor vasculature. This effect was not apparent in eNOS-deficient mice and could not be reproduced in irradiated cultured endothelial cells. Finally, we combined low-dose radiotherapy with a dominant-negative Akt gene construct and documented synergistic antitumor effects. Conclusions: This study offers a new rationale to combine radiotherapy with gene therapy, by directly exploiting the stimulatory effects of radiation on NO production by tumor endothelial cells. The preferential expression of the transgene in the tumor microvasculature underscores the potential of such an adjuvant strategy to limit the angiogenic response of irradiated tumors

  10. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  11. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Raman, P.; Ruzic, D. [Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma Material Interaction, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-11-15

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  12. Disposal strategy of proton irradiated mercury from high power spallation sources

    International Nuclear Information System (INIS)

    Chiriki, Suresh

    2010-01-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  13. Disposal strategy of proton irradiated mercury from high power spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Chiriki, Suresh

    2010-07-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  14. Target-plasma production by laser irradiation of a pellet in the Baseball II-T experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    One way to generate a plasma target that can be used in conjunction with an injected neutral beam to initiate a high-energy plasma in a steady-state, magnetic-mirror field is by the laser irradiation of a solid pellet located within the confinement region. In the Lawrence Livermore Laboratory Baseball II-T experiment, a CO 2 laser was used to provide a two-sided irradiation of an ammonia pellet; the maximum laser intensity on the pellet was approximately 4 x 10 12 W/cm 2 . The 150-μm-dia pellets were guided to the laser focal spot in the Baseball II-T magnetic field using steering voltages controlled by a microcomputer-based system. Diagnostics showed complete ionization of the pellet, average ion energies in the keV range, synchronized triggering of the laser and the neutral beam, and rapid expansion of the plasma to a diameter that was a good match to the diameter of the neutral beam. Predictions obtained from the LASNEX code compared well with measured results. Although the laser-pellet approach was proven usable as a target-plasma startup system, it would be much more complicated and expensive than the method in which streaming plasma is used to trap the neutal beams

  15. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  16. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  17. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  18. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  19. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  20. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  1. WE-DE-BRA-08: A Linear Accelerator Target Allowing Rapid Switching Between Treatment and High-Contrast Imaging Modes

    Energy Technology Data Exchange (ETDEWEB)

    Yewondwossen, M; Robar, J; Parsons, D [Dalhousie University, Halifax, NS (Canada)

    2016-06-15

    Purpose: During radiotherapy treatment, lung tumors can display substantial respiratory motion. This motion usually necessitates enlarged treatment margins to provide full tumour coverage. Unfortunately, these margins limit the dose that can be prescribed for tumour control and cause complications to normal tissue. Options for real-time methods of direct detection of tumour position, and particularly those that obviate the need for inserted fiducial markers, are limited. We propose a method of tumor tracking without implanted fiducial markers using a novel fast switching-target that toggles between a FFF copper/tungsten therapy mode and a FFF low-Z target mode for imaging. In this work we demonstrate proof-of-concept of this new technology. Methods: The prototype includes two targets: i) a FFF copper/tungsten target equivalent to that in the Varian 2100 EX 6 MV, and ii) a low-Z (carbon) target with a thickness of 110% of continuous slowing down approximation range (CSDA) at 7 MeV. The two targets can be exchanged with a custom made linear slide and motor-driven actuator. The usefulness of the switching-target concept is demonstrated through experimental BEV Planar images acquired with continual treatment and imaging at a user-defined period. Results: The prototype switching-target demonstrates that two recent advances in linac technology (FFF target for therapy and low-Z target) can be combined with synergy. The switching-target approach offers the capacity for rapid switching between treatment and high-contrast imaging modes, allowing intrafractional tracking, as demonstrated in this work with dynamic breathing phantom. By using a single beam-line, the design is streamlined and may obviate the need for an auxiliary imaging system (e.g., kV OBI.) Conclusion: This switching-target approach is a feasible combination of two current advances in linac technology (FFF target for therapy and a FFF low-Z target) allowing new options in on-line IGRT.

  2. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  3. Highly sensitive immunoassay based on E. coli with autodisplayed Z-domain

    International Nuclear Information System (INIS)

    Jose, Joachim; Park, Min; Pyun, Jae-Chul

    2010-01-01

    The Z-domain of protein A has been known to bind specifically to the F c region of antibodies (IgGs). In this work, the Z-domain of protein A was expressed on the outer membrane of Escherichia coli by using 'Autodisplay' technology as a fusion protein of autotransport domain. The E. coli with autodisplayed Z-domain was applied to the sandwich-type immunoassay as a solid-support of detection-antibodies against a target analyte. For the feasibility demonstration of the E. coli based immunoassay, C-reactive protein (CRP) assay was carried out by using E. coli with autodisplayed Z-domain. The limit of detection (LOD) and binding capacity of the E. coli based immunoassay were estimated to be far more sensitive than the conventional ELISA. Such a far higher sensitivity of E. coli based immunoassay than conventional ELISA was explained by the orientation control of immobilized antibodies and the mobility of E. coli in assay matrix. From the test results of 45 rheumatoid arthritis (RA) patients' serum and 15 healthy samples, a cut-off value was established to have optimal sensitivity and selectivity values for RA. The CRP test result of each individual sample was compared with ELISA which is the reference method for RA diagnosis. From this work, the E. coli with Z-domain was proved to be feasible for the medical diagnosis based on sandwich-type immunoassay.

  4. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V., E-mail: fedorov@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2016-01-15

    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  5. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  6. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    Science.gov (United States)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  7. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra–target-tissue irradiation

    Science.gov (United States)

    Stimato, Gerardina; Ippolito, Edy; Silipigni, Sonia; Venanzio, Cristina Di; Gaudino, Diego; Fiore, Michele; Trodella, Lucio; D'Angelillo, Rolando Maria; Ramella, Sara

    2016-01-01

    Objective: To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Methods: Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm3 and/or BMI >25 kg m−2], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial–lateral beam and additional fields were added to reduce hot spot areas and extra–target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a “proper” normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). Results: In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra–target-tissue irradiation was significantly reduced using S5F for V105% (cm3) and V107% (cm3) with a very high difference in tissue irradiation (46.6 vs 3.0 cm3, p ≤ 0.001 for V105% and 12.2 vs 0.0 cm3, p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra–target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm3, p = 0.002). Conclusion: The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be

  8. K{sub α} x-ray imaging of laser-irradiated, limited-mass zirconium foils

    Energy Technology Data Exchange (ETDEWEB)

    Storm, M.; Orban, C.; Jiang, S.; Freeman, R. R.; Akli, K. [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States); Eichman, B.; Fiksel, G.; Stoeckl, C.; Theobald, W.; Delettrez, J. A. [The Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Dyer, G.; Ditmire, T. [The Texas Center of High Energy Density Science, The University of Texas at Austin, 2511 Speedway Street, Austin, Texas 78712 (United States); Stephens, R. [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)

    2014-07-15

    X-ray fluorescence measurements to determine the effect of target heating on imaging efficiency, at a photon energy of 15.7 keV corresponding to the K{sub α} line of zirconium, have been carried out using limited-mass foils irradiated by the Texas Petawatt Laser. Zirconium foils that ranged in volume from 3000 × 3000 × 21 μm{sup 3} to 150 × 150 × 6 μm{sup 3} were irradiated with 100 J, 8 ps-long pulses and a mean intensity of 4 × 10{sup 19} W/cm{sup 2}. The K{sub α} emission was measured simultaneously using a highly ordered pyrolytic graphite crystal spectrometer and a curved quartz imaging crystal. The measured ratio of the integrated image signal to the integrated spectral signal was, within the experimental error, constant, indicating that the imaging efficiency's dependence on temperature is weak throughout the probed range. Based on our experience of target heating under similar conditions, we estimate a temperature of ∼200 eV for the smallest targets. The successful imaging of K{sub α} emission for temperatures this high represents an important proof of concept for Zr K{sub α} imaging. At these temperatures, the imaging of K{sub α} emission from lower-Z materials (such as Cu) is limited by temperature-dependent shifts in the K{sub α} emission energy.

  9. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Kar, S., E-mail: s.kar@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Cantono, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Nersisyan, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Brauckmann, S. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Doria, D.; Gwynne, D. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Macchi, A. [Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Naughton, K. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Lewis, C.L.S.; Borghesi, M. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom)

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed. - Highlights: • Prompt charging of laser irradiated target generates ultra-short EM pulses. • Its ultrafast propagation along a wire was studied by self-proton probing technique. • Self-proton probing technique is the proton probing with one laser pulse. • Pulse temporal profile and speed along the wire were measured with high resolution.

  10. Studies on mating competition of irradiated melon flies

    International Nuclear Information System (INIS)

    Limohpasmanee, W.

    1994-01-01

    Mating competition is the key factor for fruit flies control by using sterile insect technique project. Mass rearing and irradiation can reduce the mating competition of fruit flies. This experiment has purpose to evaluate the mating competition of the irradiated melon fly. The results show that mating competition values of irradiated melon flies were 0.36 and 0.24 when they mated with normal and irradiated females. Both normal male and female can mate more frequency than irradiated flies. (Z=1.322, P<0.05; Z=1.851, P<0.05). The results show that quality of mass rearing and irradiated melon fly was lower than the normal flies. So that quality of irradiated fly must be improved and the number of released flies as less must be higher than natural flies 6 time

  11. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene

    Directory of Open Access Journals (Sweden)

    Shumei Liang

    2015-01-01

    Conclusion: Our results demonstrate that the potent effects of PNAs on bacterial growth and cell viability were mediated by the down-regulation or even knock-out of ftsZ gene expression. This highlights the utility of ftsZ as a promising target for the development of new antisense antibacterial agents to treat MRSA infections.

  12. MirZ: an integrated microRNA expression atlas and target prediction resource.

    Science.gov (United States)

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-07-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens.

  13. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  14. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  15. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    Science.gov (United States)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0<z<1.8.

  16. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  17. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  18. Using education on irradiated foods to change behavior of Korean elementary, middle, and high school students

    OpenAIRE

    Han, Eunok; Kim, Jaerok; Choi, Yoonseok

    2014-01-01

    BACKGROUND/OBJECTIVES Educational interventions targeted food selection perception, knowledge, attitude, and behavior. Education regarding irradiated food was intended to change food selection behavior specific to it. SUBJECTS AND METHODS There were 43 elementary students (35.0%), 45 middle school students (36.6%), and 35 high school students (28.5%). The first step was research design. Educational targets were selected and informed consent was obtained in step two. An initial survey was cond...

  19. Study of an automatized experimental device for the irradiation of a radioactive target

    International Nuclear Information System (INIS)

    Claverie, G.

    1996-01-01

    In order to solve the enigma of solar neutrinos, a team of physicians of the nuclear research center of Bordeaux-Gradignan and of the center of nuclear spectroscopy and mass spectroscopy of Orsay (France) decided to measure again the cross section of the beryllium-proton nuclear reaction at the lowest possible energies. This measurement requires the design of an automatized experimental device to irradiate in a specific way a beryllium target with an accelerated proton beam. The aim of this work is the study of such a device for an energy range of 800 to 300 KeV. This device comprises a particle multi-detector and a shutter for the irradiation of the target and the counting of the reaction products according to a programmable time sequence. The advantage of this setup is to allow an important bombardment of the target and to ensure its cooling. This device is automatically controlled thanks to a micro-controller, actuators (step motors and electrostatic deflector). It includes some beam diagnosis elements controlled by step motors and a target temperature monitoring system controlling a safety valve. The management of the experiment cell vacuum has led to the design of a vacuum monitor allowing the precise follow up of the vacuum and the control of the safety valves of the device. The nuclear instrumentation necessary to be implemented for this measurement is also presented. (J.S.)

  20. Dosimetry and irradiation methods for the ANSTO gamma technology research irradiator (GATRI)

    International Nuclear Information System (INIS)

    Izard, M.E.

    1988-07-01

    The Australian Nuclear Science and Technology Organisation's gamma technology research irradiator (GATRI) at Lucas Heights, New South Wales, has been modified for use as a research and small-scale commercial irradiation facility to be available to government agencies and private industry for the technical and economic evaluation of irradiation processing. The new source rack was designed around existing mechanical components to optimise the limited space available within the irradiation cell. Irradiation parameters investigated during commissioning included the effect of source-to-target distance on relative dose rates within targets of the same density; effect of density on dose-rate distribution within targets irradiated at the same distance from the source; and the contribution of transit dose to low absorbed doses as the source is raised and lowered. The efficiency of the irradiator was determined for various target densities and overdose ratios

  1. Direct flow separation strategy, to isolate no-carrier-added {sup 90}Nb from irradiated Mo or Zr targets

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Roesch, Frank [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Filosofov, Dmitry V.; Dadakhanov, Jakhongir [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Karaivanov, Dimitar V. [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy; Marinova, Atanaska [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Sofia Univ. (Bulgaria). Faculty of Chemistry and Pharmacy; Baimukhanova, Ayagoz [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty (Kazakhstan)

    2016-11-01

    {sup 90}Nb has an intermediate half-life of 14.6 h, a high positron branching of 53% and optimal β{sup +} emission energy of only E{sub mean} 0.35 MeV per decay. These favorable characteristics suggest it may be a potential candidate for application in immuno-PET. Our recent aim was to conduct studies on distribution coefficients for Zr{sup IV} and Nb{sup V} in mixtures of HCl/H{sub 2}O{sub 2} and HCl/oxalic acid for anion exchange resin (AG 1 x 8) and UTEVA resin to develop a ''direct flow'' separation strategy for {sup 90}Nb. The direct flow concept refers to a separation accomplished using a single eluent on multiple columns, effectively streamlining the separation process and increasing the time efficiency. Finally, we also demonstrated that this separation strategy is applicable to the production of the positron emitter {sup 90}Nb via the irradiation of molybdenum targets and isolation of {sup 90}Nb from the irradiated molybdenum target.

  2. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  3. Postmastectomy irradiation in high-risk breast cancer patients

    International Nuclear Information System (INIS)

    Overgaard, M.; Juul Christensen, J.; Johansen, H.; Nybo-Rasmussen, A.; Brincker, H.; Kooy, P. van der; Frederiksen, P.L.; Laursen, F.; Panduro, J.; Soerensen, N.E.; Gadeberg, C.C.; Hjelm-Hansen, M.; Overgaard, J.; West Andersen, K.; Zedeler, K.

    1988-01-01

    All pre- and postmenopausal high-risk breast cancer patients in the protocols DBCG 77 of the Danish Breast Cancer Cooperative Group received postmastectomy irradiation before randomization to either adjuvant systemic therapy or no such treatment. The actuarial loco-regional recurrence rate at 9 years was 6-17%, with the lowest rate in patients who also received additional adjuvant chemotherapy or tamoxifen. In a subsequent study (DBCG 82) the role of postmastectomy irradiation together with systemic treatment was evaluated in high-risk patients. Pre- and menopausal patients were randomized to postmastectomy irradiation+CMF (cyclophosphamide, methotrexate, 5-fluorouracil), CMF alone or CMF+TAM (tamoxifen). Postmenopausal patients were randomized to postmastectomy irradiation+TAM, TAM or CMF+TAM. At 4 years the loco-regional recurrence rate was significantly lower in the irradiated patients (5-7% vs. 23-33%). Further, disease-free survival was significantly improved in both pre- and postmenopausal irradiated patients compared with those who had only systemic treatment. At present, there are no significant differences between survival in the treatment groups. Thus, adjuvant systemic treatment alone (chemotherapy and/or tamoxifen) did not prevent loco-regional recurrences in high-risk patients after mastectomy and axillary lymph node sampling. However, a longer observation time is necessary to evaluate the consequence of primary optimal loco-regional tumour control in high-risk breast cancer patients with respect to survival. (orig.)

  4. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    Science.gov (United States)

    Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  5. Development of pulsed high current drivers for fast Z-pinch

    International Nuclear Information System (INIS)

    Sun Fengju; Qiu Aici; Zeng Zhengzhong; Zeng Jiangtao; Kuai Bin; Yang Hailiang

    2006-01-01

    It is required that the peak current of high power pulsed drive for fast Z-pinch reaches 60 MA to realize inertial confine fusion (ICF) and high yield (HY). With the conventional technological methods similar to the Z or Saturn apparatus, increasing driver current further is impractical and difficult according to the cost, structure complexity and reliability of the driver, so it is necessary to develop novel fast pulsed high current driver. The present art-of-state and trends of fast Z-pinch driver are summarized, and the typical conceptual designs and technological methods on ICF/HY PRS (plasma radiation source) and destroying-level super X-ray simulators in USA and Russia are outlined, such as HCEI's UGXX1 driver and new Saturn driver based on fast linear transformer driver (FLTD) and novel driver based on fast Marx generator (FMG) with current of 15 MA. The crucial technological problems and requirements to investigate in the future are presented. (authors)

  6. Converting targets and processes for fission-product molybdenum-99 from high- to low-enriched uranium

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Snelgrove, J.L.; Aase, S.

    1999-01-01

    Most of the world's supply of 99 Mo is produced by the fissioning of 235 U in high-enriched uranium targets (HEU, generally 93% 235 U). To reduce nuclear-proliferation concerns, the U.S. Reduced Enrichment for Research and Test Reactor Program is working to convert the current HEU targets to low-enriched uranium (LEU, 235 U). Switching to LEU targets also requires modifying the separation processes. Current HEU processes can be classified into two main groups based on whether the irradiated target is dissolved in acid or base. Our program has been working on both fronts, with development of targets for acid-side processes being the furthest along. However, using an LEU metal foil target may allow the facile replacement of HEU for both acid and basic dissolution processes. Demonstration of the irradiation and 99 Mo separation processes for the LEU metal-foil targets is being done in cooperation with researchers at the Indonesian PUSPIPTEK facility. We are also developing LEU UO 2 /Al dispersion plates as substitutes for HEU UA1 x /A1 dispersion plates for base-side processes. Results show that conversion to LEU is technically feasible; working with producers is essential to lowering any economic penalty associated with conversion. (author)

  7. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  8. High photocarrier mobility in ultrafast ion-irradiated In.sub.0.53./sub.Ga.sub.0.47./sub.As

    Czech Academy of Sciences Publication Activity Database

    Delagnes, J.C.; Mounaix, P.; Němec, Hynek; Fekete, Ladislav; Kadlec, Filip; Kužel, Petr; Martin, M.; Mangeney, J.

    2009-01-01

    Roč. 42, č. 19 (2009), 195103/1-195103/6 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GP202/09/P099; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100520 Keywords : InGaAs * photocarrier mobility * ultrafast photoconductivity terahertz * ion irradiation * terahertz * ion irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.083, year: 2009

  9. Target plane imaging system for the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-01-01

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 μm, 0.53 μm, and 0.35 μm. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described

  10. TARGET STUDIES WITH BNL E951 AT THE AGS

    International Nuclear Information System (INIS)

    KIRK, H.; BROWN, K.; FERNOW, R.; FINFROCK, C.; GASSNER, D.; GREENE, G.; KAHN, S.; KING, B.; PRIGL, R.; SAMULYAK, R.; SCADUTO, J.; SIMOS, N.; THIEBERGER, P.; TSANG, T.; WANG, H.; WEGGEL, R.

    2001-01-01

    We report initial results of exposing low-Z solid and high-Z liquid targets to 150-ns, 4 x 10 12 proton pulses with spot sizes on the order of 1 to 2 mm. The energy deposition density approached 100 J/g. Diagnostics included fiberoptic strain sensors on the solid target and high-speed photography of the liquid targets. This work is part of the R and D program of the Neutrino Factory and Muon Collider Collaboration

  11. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  12. Analysis of staged Z-pinch implosion trajectories from experiments on Zebra

    Science.gov (United States)

    Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.

    2017-10-01

    The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  13. Pre-Irradiation Chemotherapy in High Risk Medulloblastoma

    International Nuclear Information System (INIS)

    Abd-El-Aal, H.

    2006-01-01

    Rationale: The present study evaluates the effect of pre-irradiation chemotherapy in pediatric patients with high risk medulloblastoma. Twenty-four (24) pediatric patients attended the pediatric unit of Kasr-EI-Aini Center of Radiation Oncology and Nuclear Medicine (NEMROCK) from January 2000 to January 2003. Patients and Methods: Our patients were 13 boys and II girls aged 3-12 years with a median of 6.5 years. According to Chang staging system 6 cases had T2, 14 cases had T3 A and 4 cases had T3 B, 20 cases were M0, 3 cases were M I and I case was M2. All patients were treated by initial surgery, 2 cycles of pre-irradiation chemotherapy followed by craniospinal radiation then by 4 cycles of post-radiation chemotherapy. Results: Fifteen out of the 20 patients with M0 had objective response (10CR + 5PR) and no one had disease progression after pre-irradiation chemotherapy. Among 4 patients with M0 disease, 2 patients had PR and 2 had S.D. There was no disease progression among patients who received pre-irradiation chemotherapy. The 3-year overall survival and 3-year progression-free survival; (PFS) were 50% and 51 %, respectively, Myelosuppression was the main toxic effect observed during pre-irradiation chemotherapy; however, there was no delay or interruption of craniospinal irradiation. Conclusion: Pre-irradiation chemotherapy is effective in high risk medulloblastoma and is associated with acceptable side effects. The delay in craniospinal irradiation (CSI) for about 5 weeks to receive 2 courses of chemotherapy will not significantly increase disease progression. Multiple cycles of post-irradiation chemotherapy can be given safely after C51. A larger number of patients and longer follow-up is needed to confirm the results

  14. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    Science.gov (United States)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  15. Identification of irradiated potatoes by impedance

    International Nuclear Information System (INIS)

    Singh, Rita; Singh, Antaryami; Wadhawan, A.K.

    1997-01-01

    The electrical impedance of potatoes irradiated at 60, 90, 150 and 1000 Gy was measured using various frequencies of alternating current. The impedance of the irradiated potatoes was higher than the unirradiated potatoes particularly in the frequency range of 100 Hz to 10 kHz. The ratio of the impedance at 5 kHz to that at 50 Hz (Z5k/Z50) was found to be the best indicator for detection of radiation treatment. (author). 4 refs., 2 figs

  16. Mono-energetic ions emission by nanosecond laser solid target irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Muoio, A., E-mail: Annamaria.Muoio@lns.infn.it [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G.A.P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Trifirò, A. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Sezione INFN, Catania (Italy)

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser–matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  17. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    International Nuclear Information System (INIS)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-01-01

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma-material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ''. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.'' The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the ''signature facility'' FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of

  18. Detection of irradiated potatoes by impedance measurements

    International Nuclear Information System (INIS)

    Hayashi, Toru; Sugiyama, Junnichi; Otobe, Kazuki; Todoriki, Setsuko

    1993-01-01

    The impedance ratio at 5kHz to 50kHz (Z 6K /Z 50K ) determined at 22degC at an apical region of potato tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radian treatment. Irradiated potatoes of 10 cultivars could be detected with this method, and potatoes 'Danshaku' commercially irradiated at Shihoro could be distinguished from unirradiated 'Danshaku'. (author)

  19. On the possibility of using lithium-6 deuteride, irradiated with gas discharge plasma in a target with polarized nuclei of deuterium and lithium

    International Nuclear Information System (INIS)

    Bunyatova, E.I.; Bubnov, N.N.; Solodovnikov, S.P.

    1991-01-01

    A target with polarized nuclei made on the basis of irradiated lithium-6 deuteride is of great interest for carrying out investigations in elementary particle physics. Up to now high-energy electrons have been used for generation of F-centers in 6 LiD. It is shown that one can, in principle, use ultraviolet irradiation and gas discharge plasma for generation of F-centers in 6 LiD. Both types of irradiation cause electron paramagnetic resonance signals from conductance electrons of lithium and form F-centers in 6 LiD. It seems possible to obtain the necessary samples by exposing 6 LiD to the gas discharge plasma. 9 refs.; 2 figs

  20. β-ray irradiation effects in RbBr: Eu crystals

    International Nuclear Information System (INIS)

    Pacheco B, J.M.; Rodriguez M, R.; Perez S, R.

    2006-01-01

    Defects induced by β-ray irradiation in RbBr: Eu 2+ crystals doped with a high concentration of Eu 2+ ions are studied by means of optical absorption (OA), thermoluminescence (TL), and optically stimulated TL (OSTL). The fading, dose, and optical bleaching effects on the TL glow curves of room temperature irradiated samples has been analyzed. OA indicates that irradiation of samples at room temperature induce the formation of F but not F z centers. The TL glow curves show peaks at 267, 303, and 403 K. The 267 K glow peak disappear in less than 1 s under blue light or infrared radiation photo bleaching. A high sensitivity to the ionizing radiation has been observed. These results confirm that this material is an efficient phosphor. (Author)

  1. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    Science.gov (United States)

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  2. UV Continuum Slope and Dust Obscuration from z ~ 6 to z ~ 2: The Star Formation Rate Density at High Redshift

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Conselice, C. J.; Ford, H.; Giavalisco, M.; van Dokkum, P.

    2009-11-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ~ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z = 3) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi "dropout" Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ~ 2-4 than it is at z ~ 5-6 (from ~-2.4 at z ~ 6 to ~-1.5 at z ~ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ~ 2.5 and z ~ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ~ 4, and particularly at z gsim 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ~ 4). This suggests that star-forming galaxies at z gsim 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z gsim 5 that are missed in "dropout" searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ~ 0 and z ~ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (lsim2 times) at all times for lower luminosity galaxies. Because these same lower luminosity galaxies

  3. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States); Borden, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  4. Behavior of structural and target materials irradiated in spallation neutron environments

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Wechsler, M.; Borden, M.

    1995-01-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources

  5. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  6. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  7. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  8. Effects of low priming dose irradiation on cell cycle arrest of HepG2 cells caused by high dose irradiation

    International Nuclear Information System (INIS)

    Xia Jingguang; Jin Xiaodong; Chinese Academy of Sciences, Beijing; Li Wenjian; Wang Jufang; Guo Chuanling; Gao Qingxiang

    2005-01-01

    Human hepatoma cells hepG2 were irradiated twice by 60 Co γ-rays with a priming dose of 5 cGy and a higher dose of 3 Gy performed 4h or 8h after the low dose irradiation. Effects of the priming dose irradiation on cell cycle arrest caused by high dose were examined with flow cytometry. Cells in G 2 /M phase accumulated temporarily after the 5 cGy irradiation, and proliferation of tumor cells was promoted significantly by the low dose irradiation. After the 3 Gy irradiation, G 2 phase arrest occurred, and S phase delayed temporally. In comparison with 3 kGy irradiation only, the priming dose delivered 4h prior to the high dose irradiation facilitated accumulation of hepG2 cells in G 2 /M phase, whereas the priming dose delivered 8h prior to the high dose irradiation helped the cells to overcome G 2 arrest. It was concluded that effects of the priming dose treatment on cell cycle arrest caused by high dose irradiation were dependent on time interval between the two irradiations. (authors)

  9. Laser irradiation of disk targets at 0.53 μm wavelength

    International Nuclear Information System (INIS)

    Mead, W.C.; Campbell, E.M.; Estabrook, K.G.

    1981-01-01

    We present results and analysis for laser-irradiations of Be, CH, Ti, and Au disk targets with 0.53 μm light in 3 to 35 J, 600 ps pulses, at nominal intensities from 3 x 10 13 to approx. 4 x 10 15 W/cm 2 . The measured absorptions are higher than observed in similar 1.06 μm irradiations, and are largely consistent with modeling which shows the importance of inverse bremsstrahlung and Brillouin scattering. Observed red-shifted back-reflected light shows that Brillouin is operating at low to moderate levels. The measured fluxes of multi-keV x-rays indicate low hot-electron fractions, with temperatures which are consistent with resonance absorption. Measurements show efficient conversion of absorbed light into sub-keV x-rays, with time-, angular-, and spatial-emission distributions which are generally consistent with non-LTE modeling using inhibited thermal electron transport

  10. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  11. Optical emission from Al target irradiated by FLASH

    International Nuclear Information System (INIS)

    Stránský, M; Rohlena, K

    2014-01-01

    The following text touches on some peculiarities in optical emission spectroscopy results from experiments on the free-electron laser FLASH [1, 2]. Aluminum targets were irradiated with 13.5 nm ∼ 25 fs pulses at intensities of 10 13 and 10 16 W/cm 2 (20 and 1 μm foci). Surprisingly, only neutral atom lines for the case with wider focus and traces of ion lines in the tighter focus case were observed with the optical emission spectroscopy (200–600 nm range), [2]. The motivating idea behind this work is the suggestion in [1] by Zastrau that the optical spectrometer sees only emissions from a cold expanding lower-density (< 10 22 cm −3 ) plasma plume. In this contribution the notion of UV range screening is analyzed in detail.

  12. High resolution study of nucleonic cosmic rays with Z >= 34

    International Nuclear Information System (INIS)

    Fowler, P.H.; Alexander, C.; Clapham, V.M.; Henshaw, D.L.; O'Ceallaigh, C.; O'Sullivan, D.; Thompson, A.

    1976-01-01

    Preliminary results of the analysis of large area lexan polycarbonate and nuclear emulsion sandwich stacks flown from Sioux Falls between 1971 and 1974 are given. The total exposure was approximately 120 m 2 days at approximately 3.8 g cm -2 atmospheric depth and 284 tracks of nuclei with Z >= 34 have been found to date, of which 97 have Z >= 65. The charge distribution features a platinum peak, a marked actinide gap and a high uranium group flux, but no example of a super heavy nucleus was observed. The energy spectrum of nuclei with Z >= 65 is 'normal' confirming our earlier results. (orig.) [de

  13. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  14. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Ford, H.; Conselice, C. J.; Giavalisco, M.; Van Dokkum, P.

    2009-01-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ∼ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z= 3 ) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi 'dropout' Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ∼ 2-4 than it is at z ∼ 5-6 (from ∼-2.4 at z ∼ 6 to ∼-1.5 at z ∼ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ∼ 2.5 and z ∼ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ∼ 4, and particularly at z ∼> 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ∼ 4). This suggests that star-forming galaxies at z ∼> 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z ∼> 5 that are missed in 'dropout' searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ∼ 0 and z ∼ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (∼ 4.

  15. SAR studies on trisubstituted benzimidazoles as inhibitors of Mtb FtsZ for the development of novel antitubercular agents.

    Science.gov (United States)

    Awasthi, Divya; Kumar, Kunal; Knudson, Susan E; Slayden, Richard A; Ojima, Iwao

    2013-12-12

    FtsZ, an essential protein for bacterial cell division, is a highly promising therapeutic target, especially for the discovery and development of new-generation anti-TB agents. Following up the identification of two lead 2,5,6-trisubstituted benzimidazoles, 1 and 2, targeting Mtb-FtsZ in our previous study, an extensive SAR study for optimization of these lead compounds was performed through systematic modification of the 5 and 6 positions. This study has successfully led to the discovery of a highly potent advanced lead 5f (MIC = 0.06 μg/mL) and several other compounds with comparable potencies. These advanced lead compounds possess a dimethylamino group at the 6 position. The functional groups at the 5 position exhibit substantial effects on the antibacterial activity as well. In vitro experiments such as the FtsZ polymerization inhibitory assay and TEM analysis of Mtb-FtsZ treated with 5f and others indicate that Mtb-FtsZ is the molecular target for their antibacterial activity.

  16. Coherent structures in ablatively compressed ICF targets and Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Pant, H.C.; Desai, T.

    1996-01-01

    One of the major issues in laser induced inertial confinement fusion (ICF) is a stable ablative compression of spherical fusion pellets. The main impediment in achievement of this objective is Rayleigh-Taylor instability at the pellet's ablation front. Under sufficiently high acceleration this instability can grow out of noise. However, it can also arise either due to non-uniform laser intensity distribution over the pellet surface or due to pellet wall areal mass irregularity. Coherent structures in the dense target behind the ablation front can be effectively utilised for stabilisation of the Rayleigh-Taylor phenomenon. Such coherent structures in the form of a super lattice can be created by doping the pellet pusher with high atomic number (Z) micro particles. A compressed-cool pusher under laser irradiation behaves like a strongly correlated non ideal plasma when compressed to sufficiently high density such that the non ideality parameter exceeds unity. Moreover, the nonideality parameter for high Z microinclusions may exceed a critical value of 180 and as a consequence they remain in the form of intact clusters, maintaining the superlattice intact during ablative acceleration. Micro-hetrogeneity and its superlattice plays an important role in stabilization of Rayleigh-Taylor instability, through a variety of mechanisms. (orig.)

  17. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    Energy Technology Data Exchange (ETDEWEB)

    Nishibuchi, Ikuno [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Horikoshi, Yasunori [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan); Shima, Hiroki [Department of Biochemistry, Graduate School of Medical Sciences, Tohoku University, Sendai (Japan); Kusakabe, Masayuki; Harata, Masahiko [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai (Japan); Fukagawa, Tatsuo [Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima (Japan); Ikura, Tsuyoshi [Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto (Japan); Ishida, Takafumi [Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi, E-mail: ktashiro@hiroshima-u.ac.jp [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan)

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  18. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    International Nuclear Information System (INIS)

    Nishibuchi, Ikuno; Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang; Horikoshi, Yasunori; Shima, Hiroki; Kusakabe, Masayuki; Harata, Masahiko; Fukagawa, Tatsuo; Ikura, Tsuyoshi; Ishida, Takafumi; Nagata, Yasushi; Tashiro, Satoshi

    2014-01-01

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  19. Irradiated target cooling using circular air jet

    International Nuclear Information System (INIS)

    Selvaraj, P.; Natesan, K.; Velusamy, K.; Baskaran, V.; Sundararajan, T.

    2015-01-01

    To study the effect of irradiation on materials, sample coupons are irradiated in cyclotron facilities. During the irradiation process, these samples produce significant heat. This heat needs to be continuously removed from the samples in order to avoid melting of the samples as well as to keep the samples at a particular temperature during irradiation. The area available for heat transfer is limited due to the small size of the samples. To increase the heat transfer rate, jet cooling is used as it provides large heat transfer co-efficient. To understand the heat transfer characteristics of jet cooling under these conditions, experiments have been carried out. Electric Joule heating is adopted to simulate irradiation heat in stainless steel samples. An array of circular nozzles is used to create air jet. From the study the values of the parameters correspond to the maximum heat removal rate are found out. The results are also compared with an empirical correlation from the literature. (author)

  20. Soviet paper on laser target heating, symmetry of irradiation, and two-dimensional effects on compression

    International Nuclear Information System (INIS)

    Sahlin, H.L.

    1976-01-01

    Included is a paper presented at the Annual Meeting of the Plasma Physics Division of the American Physical Society in San Francisco on November 19, 1976. The paper discusses some theoretical problems of laser target irradiation and compression investigated at the laboratory of quantum radiophysics of Lebedev Physical Institute. Of significant interest was the absorption and reflection of laser radiation in the corona plasma of a laser target

  1. Two-dimensional integrated Z-pinch ICF design simulations

    International Nuclear Information System (INIS)

    Lash, J.S.

    1999-01-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility

  2. Two-dimensional integrated Z-pinch ICF design simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lash, J.S.

    1999-07-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.

  3. Irradiation effects of high temperature superconductor of lanthanoid oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Koh-ichi; Kohara, Takao [Himeji Inst. of Tech., Hyogo (Japan)

    1996-04-01

    Neutron irradiation effects on excess oxygen were studied by neutron irradiation on La{sub 2}CuO{sub 4} treated with high pressure oxygen. La{sub 2}CuO{sub 4} was prepared by the usual method and annealed for 10 h under the oxygen pressure of 800-2000 atm. at 600degC. The superconducting transition temperature (Tc) is 27-32K before irradiation (La{sub 2}CuO{sub 4+d}, amount of excess oxygen d=0.03-0.12). Neutron irradiation was carried out by two kinds of experiments. Low irradiation dose test at low temperature (LTL: {approx}20-200K, storage in LN{sub 2}) showed Tc decreased more slowly than that of high temperature range. Experiment at high temperature (Hyd:{approx}80deg{yields}, storage at room temperature) showed -10K/10{sup 18}n/cm{sup 2}, the decrease of Tc was three times larger than that of YBCO type superconductor. (S.Y.)

  4. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  5. Development of a High Irradiance LED Configuration for Small Field of View Motion Estimation of Fertilizer Particles

    Directory of Open Access Journals (Sweden)

    Simon Cool

    2015-11-01

    Full Text Available Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m2 with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications.

  6. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  7. Targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Clauser, M.J.

    1978-01-01

    This paper describes some of the basic principles of fusion target implosions, using some simple targets designed for irradiation by ion beams. Present estimates are that ion beams with 1-5 MJ, and 100-500 TW will be required to ignite high gain targets. (orig.) [de

  8. Shielding Aspects of Accelerators, Targets and Irradiation Facilities - SATIF-11 Workshop Proceedings Report

    International Nuclear Information System (INIS)

    2013-01-01

    Particle accelerators have evolved over the last decades from simple devices to powerful machines. In recent years, new technological and research applications have helped to define requirements while the number of accelerator facilities in operation, being commissioned, designed or planned has grown significantly. Their parameters, which include the beam energy, currents and intensities, and target composition, can vary widely, giving rise to new radiation shielding issues and challenges. Particle accelerators must be operated in safe ways to protect operators, the public and the environment. As the design and use of these facilities evolve, so must the analytical methods used in the safety analyses. These workshop proceedings review the state of the art in radiation shielding of accelerator facilities and irradiation targets. They also evaluate progress in the development of modelling methods used to assess the effectiveness of such shielding as part of safety analyses. The transport of radiation through shielding materials is a major consideration in the safety design studies of nuclear power plants, and the modelling techniques used may be applied to many other types of scientific and technological facilities. Accelerator and irradiation facilities represent a key capability in R and D, medical and industrial infrastructures, and they can be used in a wide range of scientific, medical and industrial applications. High-energy ion accelerators, for example, are now used not only in fundamental research, such as the search for new super-heavy nuclei, but also for therapy as part of cancer treatment. While the energy of the incident particles on the shielding of these facilities may be much higher than those found in nuclear power plants, much of the physics associated with the behaviour of the secondary particles produced is similar, as are the computer modelling techniques used to quantify key safety design parameters, such as radiation dose and activation levels

  9. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  10. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, Maarten C.C.M. [Department of Radiation Oncology, University of Amsterdam (Netherlands)]. E-mail: m.c.hulshof@amc.uva.nl; Andel, George van [Department of Urology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands); Bel, Arjen [Department of Radiation Oncology, University of Amsterdam (Netherlands); Gangel, Pieter [Department of Radiation Oncology, University of Amsterdam (Netherlands); Kamer, Jeroen B. van de [Department of Radiation Oncology, University of Amsterdam (Netherlands)

    2007-07-15

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  11. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas

    International Nuclear Information System (INIS)

    Hulshof, Maarten C.C.M.; Andel, George van; Bel, Arjen; Gangel, Pieter; Kamer, Jeroen B. van de

    2007-01-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer

  12. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas.

    Science.gov (United States)

    Hulshof, Maarten C C M; van Andel, George; Bel, Arjen; Gangel, Pieter; van de Kamer, Jeroen B

    2007-07-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  13. High-water-base hydraulic fluid-irradiation experiments

    International Nuclear Information System (INIS)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10 6 Gy (10 8 rad) are expected

  14. High-water-base hydraulic fluid-irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10/sup 6/ Gy (10/sup 8/ rad) are expected.

  15. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    International Nuclear Information System (INIS)

    Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.

  16. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian

    2011-01-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10 12 W cm -2 normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10 -8 . The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  17. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-05-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10{sup 12} W cm{sup -2} normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10{sup -8}. The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  18. The ISOLDE target robots

    CERN Multimedia

    Maximilein Brice

    2002-01-01

    ISOLDE targets need to be changed frequently, around 80 times per year. The high radiation levels do not permit this to be done by human hands and the target changes are effected by 2 industrial robots (picture _01). On the left, in the distance, the front-end of the GPS (General Purpose Separator) is seen, while the HRS (High Resolution Separator) is at the right. Also seen are the doors to the irradiated-target storage.

  19. Windowless Electron Beam Experimental Irradiation WEBExplr

    International Nuclear Information System (INIS)

    Heyse, J.

    2009-01-01

    The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation

  20. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  1. A grey incidence algorithm to detect high-Z material using cosmic ray muons

    Science.gov (United States)

    He, W.; Xiao, S.; Shuai, M.; Chen, Y.; Lan, M.; Wei, M.; An, Q.; Lai, X.

    2017-10-01

    Muon scattering tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear materials. However, the flux of cosmic ray muons is low, in the real life application, the detection has to be done a short timescale with small numbers of muons. In this paper, we present a novel approach to detection of special nuclear material by using cosmic ray muons. We use the degree of grey incidence to distinguish typical waste fuel material, uranium, from low-Z material, medium-Z material and other high-Z materials of tungsten and lead. The result shows that using this algorithm, it is possible to detect high-Z materials with an acceptable timescale.

  2. Dosimetric applications of cellular electrophysiological changes under high- and low-LET irradiation in health physics

    International Nuclear Information System (INIS)

    Steinhausler, F.; Hofmann, W.; Eckl, P.; Pohl-Ruling, J.

    1980-01-01

    The first step of interaction of radiation with any biological target occurs at the cellular level, especially at the cell membrane. This results in a Linear Energy Transfer (LET)-dependent deposition of energy at membrane substructures, where the supramolecular arrangement of components represents highly sensitive targets for ionizing radiation, e.g. the natural membrane lipid component. As part of a current research project on the influence of low level effects of ionizing radiation on biophysical cellular parameters, changes of electrical properties of irradiated cell membranes were studied for their suitability as biological dosimeters. Normal human embryonic lung cells (Flow 2002) and transformed human lung cells (WI-38/SV13) were exposed to ionizing radiation with LET ranging from 10 to over 100 keV/μm. With the use of micromanipulators, glass-micro-electrodes in a special headstage were used to determine intracellular electrical activity at different time intervals after irradiation of the cells. Population density of the irradiated cell colonies was varied in order to determine the influence of contact inhibition and intercellular communication on the observable radiation induced effect. Dose- and dose rate-dependent variation of cellular membrane resting potential and membrane resistance are discussed for both normal and malignant human cells. (author)

  3. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  4. Intracavitary irradiation of prostatic carcinoma by a high dose-rate afterloading technique

    Energy Technology Data Exchange (ETDEWEB)

    Odelberg-Johnson, O.; Underskog, I.; Johansson, J.E.; Bernshaw, D.; Sorbe, B.; Persson, J.E. (Oerebro Medical Center Hospital (Sweden). Dept. of Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Urology Oerebro Medical Center Hospital (Sweden). Dept. of Gynecologic Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Radiation Physics)

    1991-01-01

    A high dose-rate ({sup 60}Co) afterloading technique was evaluated in a series of 73 patients with prostatic carcinoma stages I-IV. The intraurethral irradiation was combined with external pelvic radiotherapy. A minimum total dose of 78 Gy was delivered to the target volume. In a subgroup of patients extramustine (Estracyt) was given as adjuvant chemohormonal therapy during irradiation. The median follow-up for the whole group was 63 months. The crude 5-year survival rate was 60% and the corrected survival rate 90%. Survival was related to the tumor grade. Local pelvic recurrences were recorded in 17.8%. 'Viable cells' in posttherapy aspiration biopsy were not associated with tumor recurrences or survival. Four patients (5%) had grade 3 late radiation reactions with urethral structure or bladder fibrosis. Urinary tract infections and prior transurethral resections were not associated with a higher frequency of reactions. Concurrent estramustine therapy seemed to increase the frequency of both acute and chronic radiation reactions. Local control, recurrence, and survival were not affected by chemohormonal therapy. The use of tomography, magnetic resonance, and ultrasound as aids to computerized dosimetry may improve local dose distribution and reduce the irradiated volume. (orig.).

  5. Influence of predicted climage change elements on Z. ...

    Science.gov (United States)

    Global climate change (GCC) is expected to have pronounced impacts on estuarine and marine habitats including sea level rise, increased storm intensity, increased air and water temperatures, changes in upwelling dynamics and ocean acidification. All of these elements are likely to impact the growth and potential distribution of the non-indigenous seagrass Zostera japonica both within the State of Washington and within the region. Understanding how Z. japonica will respond to GCC requires a thorough understanding of plant physiology and predictions of GCC effects. Furthermore, Washington State is proposing to list Z. japonica as a “noxious weed” which will allow the state to use herbicide controls for management. We present data from manipulative experiments designed to better understand how Z. japonica photosynthetic physiology responds to temperature, salinity and light. We found that Z. japonica is well adapted to moderate temperatures and salinity with maximum photosynthesis of salinity of 20. The Coos Bay population had greater Pmax and saturation irradiance (Ik) than the Padilla bay population (p < 0.001) and tolerates daily exposure to both freshwater and marine water, suggesting that this population tolerates fairly extreme environmental fluctuations. Extreme temperatures (35 °C) were generally lethal to Z. japonica populations from Padilla, Coos and Yaquina Bays. High salinity (35) had lower mortality than either salinity of 5 or 20 (p = 0.0

  6. The biochemical changes of bone collagen after high-dose irradiation

    International Nuclear Information System (INIS)

    Tajiri, Ken

    1980-01-01

    In our clinic, patients with malignant bone tumors have been treated by high-dose irradiation therapy, 10,000-20,000 rads, for primary lesions. In order to study the biochemical changes of normal bone around tumor tissue, especially bone collagen, after high-dose irradiation, the author performed the following experiments. The right knee joint of rabbits was irradiated with either 6,000, 10,000, or 15,000 rads by 60 Co-γ ray. The cortical bone of the right tibial metaphysis was used for analyses and compared with the left tibia of the same rabbit. These studies were followed for one year after the final irradiation. The calcium, phosphorous and collagen contents of irradiated bone were remarkably changed. These data indicate that collagen biosynthesis of irradiated bone was decreased and the calcification was disturbed. An increase in the amount of total soluble collagen and a decrease in the amount of hydroxylysine bound sugar were observed. The ratio of β to α chains of the collagen molecule was also changed by the irradiation. The amount of reducible cross-links per hydroxyproline residue was strikingly increased three months after the final irradiation. These changes were remarkable especially in the 10,000 and 15,000 rads irradiated group and found to be recovered approximately six months to one year after the final irradiation. These findings indicate that high-dose irradiation reduces the stability of bone collagen both with the destruction of sugar bonds of hydroxylysine residues and the replacement of matured collagen matrix to immatured one which contain mostly labile reducible cross-links. (author)

  7. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  8. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    scintillation record was used to examine the material stability under long time application. Here, the light yield Y of the targets was nearly constant or decreased only in the range of 10-15 %, relative to the initial value. For the targets with single crystal characteristic (P46, YAG:Ce), Y even increased slightly and than saturated, offering an enhanced mobility of charge carriers under irradiation. The emission spectra were reproduced continuously and the beam profiles showed good accordance to the reference methods. Within all performed beam times, the targets offered a great stability. Non-linear characteristics, e.g. due to quenching during irradiation at high beam intensities, were not observed. The light yield Y showed a decreasing tendency as function of calculated electronic energy loss dE/dx. The characteristics of the calculated beam profiles, as well as the recorded emission spectra did not change significantly. So a material degradation in the investigated materials was not verified. This observation is confirmed by the performed material characterization measurements. The need of target replacement, e.g. due to damage, did not occur and was thus not performed during the complete investigations. As material for future beam diagnostics of FAIR cerium-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal with a thickness in the range of 300 μm is recommended in cross-points between different storage sections, due to the stable imaging properties for high energy ion beams, even under long-time irradiation. For beam alignment to experimental and research areas, common Al{sub 2}O{sub 3}:Cr is recommended due to the cost advantage.

  9. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  10. High Precision Measurement of the differential W and Z boson cross-sections

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at a center-of-mass energies of 8TeV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to the theory predictions.

  11. Irradiation temperature measurements in the surveillance program

    International Nuclear Information System (INIS)

    Pav, T.; Krhounek, V.

    1991-01-01

    Evaluation of the diamond monitor method for the determination of the irradiation temperature in the surveillance programme of WWER-440 reactors is discussed. One of the difficulties with the practical application of the method is that the measured values of irradiation temperature are unlikely high. Using a thermodynamical model of the processes in the annealing of the irradiated diamond crystals, it was shown that experimental difficulties came from the principles of the method used. An analysis was performed of the thermal field inside the capsule of the surveillance chain in operational conditions, using the finite element method. The diamond monitor method was suggested to be eliminated from the surveillance programme and the use was proposed of the value of 273+-3 degC (as the most likely value) for the irradiation temperature of surveillance samples in WWER-440 reactors. (Z.S.). 3 tabs., 6 figs., 4 refs

  12. Infrared MUSIC from Z technology focal planes

    International Nuclear Information System (INIS)

    Waters, C.R.; Sommese, A.; Johnston, D.; Landau, H.

    1989-01-01

    Presented is the Multiple Signal Classification (MUSIC) algorithm which uses the high frequency differences in sensed time signals to discriminate, count, and accurately locate closely spaced targets. Z technology focal planes allow the implementation of this algorithm and the trade-off between finer spatial resolution systems and systems with coarser resolution but higher sampling rates

  13. The classical exchange algebra of a Green-Schwarz sigma model on supercoset target space with Z4m grading

    International Nuclear Information System (INIS)

    Ke Sanmin; Yang Wenli; Shi Kangjie; Wang Chun; Jiang Kexia

    2011-01-01

    We investigate the classical exchange algebra of the monodromy matrix for a Green-Schwarz sigma model on supercoset target space with Z 4m grading by using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution in the Poisson bracket sense. Our calculation is based on a general world-sheet metric. Taking a particular case of m= 1 (and a particular choice of supergroup), our results coincide with those of the Green-Schwarz superstring theory in AdS 5 xS 5 background obtained by Magro [J. High Energy Phys. 0901, 021 (2009)].

  14. Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage.

    Science.gov (United States)

    Hofmann, Norbert; Markert, Tanja; Hugo, Burkard; Klaiber, Bernd

    2003-12-01

    To determine polymerization shrinkage kinetics and temperature rise of light-cured resin-based composites after high intensity vs. soft-start quartz tungsten halogen irradiation. Shrinkage kinetics was evaluated using the "deflecting disk technique", modified for simultaneous measurement of temperature within the resin-based composite using a thermocouple. Additional irradiations after 60 and 65 minutes allowed the determination of temperature rises caused by radiation or by reaction heat. Four hybrids (Filtek Z250, Herculite, Solitaire 2, Tetric Ceram), an inhomogeneously filled hybrid (InTen-S) and a microfill (Filtek A110, formerly Silux Plus) were cured using the quartz tungsten halogen units Astralis 10 and Optilux 501 in the high intensity (A10 HiPo: 10 seconds at 1300 mW/cm2; OL Boost: 10 seconds at 1140 mW/cm2) or soft-start modes (A10 Pulse: increase to 700 mW/cm2 within 10 seconds, three periods of 2 seconds at 1300 mW/cm2 alternating with two periods of 2 seconds at 700 mW/cm2; OL Ramp: exponential increase within 10 seconds, followed by 10 seconds at 1140 mW/cm2). The soft-start protocols produced less contraction, and polymerization shrinkage started later and progressed slower (or: more slowly), compared to high intensity irradiation [correction]. The lowest shrinkage was observed for InTen-S, followed by Filtek Z250 and A110, whereas Solitaire 2, Herculite and Tetric Ceram scored highest for this parameter. Temperature rise was caused more or less equally by radiation and by reaction heat and reached values of up to 28.9 degrees C relative to a baseline of 37 degrees C. For some combinations of curing modes and resin-based composites, less heat was generated by the soft-start protocols and by Optilux 501.

  15. Electron beam irradiation facility for low to high dose irradiation applications

    International Nuclear Information System (INIS)

    Petwal, V.C.; Wanmode, Yashwant; Verma, Vijay Pal; Bhisikar, Abhay; Dwivedi, Jishnu; Shrivastava, P.; Gupta, P.D.

    2013-01-01

    Electron beam based irradiation facilities are becoming more and more popular over the conventional irradiator facilities due to many inherent advantages such as tunability of beam energy, availability of radiation both in electron mode and X-ray mode, wide range of the dose rate, control of radiation from a ON-OFF switch and other safety related merits. A prototype experimental facility based on electron accelerator has been set-up at RRCAT to meet the low-dose, medium dose and high-dose requirements for radiation processing of food, agricultural and medical products. The facility can be operated in the energy range from 7-10 MeV at variable power level from 0.05-3 kW to meet the dose rate requirement of 100 Gy to kGy. The facility is also equipped with a Bremsstrahlung converter optimized for X-ray irradiation at 7.5 MV. Availability of dose delivery in wide range with precision control and measurement has made the facility an excellent tool for researchers interested in electron/X-ray beam irradiation. A precision dosimetry lab based on alanine EPR and radiochromic film dosimetry system have been established to characterize the radiation field and precise dose measurements. Electron beam scattering technique has been developed to achieve low dose requirement for EB irradiation of various seeds such as groundnut, wheat, soybeans, moong beans, black gram etc. for mutation related studies. This paper describes various features of the facility together with the dosimetric measurements carried out for qualification of the facility and recent irradiation experiments carried out using this facility. (author)

  16. Highly ionized plasma plume generation by long-pulse CO2 laser irradiation of solid targets in strong axial magnetic fields

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Crawford, E.A.

    1982-01-01

    The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10 18 cm -3 electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions

  17. Targeting pro-apoptotic trail receptors sensitizes HeLa cervical cancer cells to irradiation-induced apoptosis

    NARCIS (Netherlands)

    Maduro, John H.; de Vries, Elisabeth G. E.; Meersma, Gert-Jan; Hougardy, Brigitte M. T.; van der Zee, Ate G. J.; De Jong, Steven

    2008-01-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL

  18. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  19. Probing the distance-duality relation with high- z data

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande—PB (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CEP 05508-090, São Paulo—SP (Brazil); Lima, F.S. [Departamento de Física, Universidade Federal de Campina Grande, 58429-900, Campina Grande—PB (Brazil); Alcaniz, J.S., E-mail: holanda@uepb.edu.br, E-mail: viniciusbusti@gmail.com, E-mail: limasdl@bol.com.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro—RJ (Brazil)

    2017-09-01

    Measurements of strong gravitational lensing jointly with type Ia supernovae (SNe Ia) observations have been used to test the validity of the cosmic distance duality relation (CDDR), D{sub L}( z )/[(1+ z ){sup 2D{sub A}}( z )]=η=1, where D{sub L}(z) and D{sub A}(z) are the luminosity and the angular diameter distances to a given redshift z , respectively. However, several lensing systems lie in the interval 1.4 ≤ z ≤ 3.6 i.e., beyond the redshift range of current SNe Ia compilations ( z ≈ 1.50), which prevents this kind of test to be fully explored. In this paper, we circumvent this problem by testing the CDDR considering observations of strong gravitational lensing along with SNe Ia and (a subsample from) the latest gamma-ray burst distance modulus data, whose redshift range is 0.033 ≤ z ≤ 9.3. We parameterize their luminosity distances with a second degree polynomial function and search for possible deviations from the CDDR validity by using four different η( z ) functions: η( z )=1+η{sub 0z}, η( z )=1+η{sub 0z}/(1+ z ), η( z )=(1+ z ){sup η{sub 0}} and η( z )=1+η{sub 0ln}(1+ z ). Unlike previous tests done at redshifts lower than 1.50, the likelihood for η{sub 0} depends strongly on the η( z ) function considered, but we find no significant deviation from the CDDR validity (η{sub 0}=0). However, our analyses also point to the fact that caution is needed when one fits data in higher redshifts to test the CDDR as well as a better understanding of the mass distribution of lenses also is required for more accurate results.

  20. Comprehensive irradiation of head and neck cancer using conformal multisegmental fields: assessment of target coverage and noninvolved tissue sparing

    International Nuclear Information System (INIS)

    Eisbruch, Avraham; Marsh, Lon H.; Martel, Mary K.; Ship, Jonathan A.; Haken, Randall ten; Pu, Anthony T.; Fraass, Benedick A.; Lichter, Allen S.

    1998-01-01

    achieved the planning goal of delivering 50 Gy to these nodes. In the conformal plans, the magnitude and volumes of high doses in noninvolved tissue were significantly reduced. The main reasons for hot spots in the standard plans (whose dose calculations included missing tissue compensators) were photon/electron match line inhomogeneities, which were avoided in the conformal plans. The mean doses to all the major salivary glands, notably the contralateral parotid (receiving on average 32% of the prescribed dose, SD 7%) were significantly lower in the conformal plans compared with standard radiation plans. The mean dose to the noninvolved oral cavity tended to be lower in the conformal plans (p = 0.07). One to 3 months after radiation, on average 60% (SD 49%) of the preradiation saliva flow rate was retained in the contralateral parotid glands and 10% (SD 16%) was retained in the submandibular/sublingual glands. Conclusions: Planning and delivery of comprehensive irradiation for head and neck cancer using static, multisegmental intensity modulation are feasible. Target coverage has not been compromised and dose distributions in noninvolved tissue are favorable compared with standard radiation. Substantial major salivary gland function can be retained

  1. Materials, devices, techniques, and applications for Z-plane focal plane array technology; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Carson, John C.

    1989-09-01

    The papers contained in this volume focus on the implementation and application of Z-plane focal array technology. Topics discussed include civil and military applications of Z-plane technology, electronic design and technology for on-scale plane signal processing, detector development and fabrication technology, and Z-plane module development and producibility. Papers are presented on future capabilities of Z-plane technology, comparison of planar and Z-plane focal plane technologies for dim target detection, Z-plane modules as target extraction engines, and high complexity tape automated bonding application for space hardware.

  2. Void formation in pure aluminium irradiated with high-energetic electron beams and gamma-quanta

    DEFF Research Database (Denmark)

    Gan, V. V.; Ozhigou, L. S.; Yamnitsky, V. A.

    1983-01-01

    The spatial distribution of displaced atoms and helium atoms and also the spectra of damaging energies of primary displaced atoms in a thick aluminium target irradiated with electrons of 225 MeV energy were calculated. Pure aluminium (99.9999%) irradiated up to 0.04 dose was studied by electron...

  3. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    International Nuclear Information System (INIS)

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-01-01

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). γH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  4. Solvent extraction of no-carrier-added 103Pd from irradiated rhodium target with α-furyldioxime

    International Nuclear Information System (INIS)

    Mahdi Sadeghi; Behrouz Shirazi; Nami Shadanpour

    2006-01-01

    Solvent extraction of no-carrier-added 103 Pd was investigated from irradiated rhodium target with a-furyldioxime in chloroform from diluted hydrochloric acid. Extraction yield was 85.3% for a single extraction from 0.37M HCl and 103 Pd purity was better than 99%. (author)

  5. High-temperature method of rapid separation of In-111 from irradiated silver targets

    International Nuclear Information System (INIS)

    Mazgaj, Z.; Kolaczkowski, A.; Mikulski, J.; Novgorodov, A.F.; Zielinski, A.; Joint Inst. for Nuclear Research, Dubna

    1990-01-01

    A high-temperature method of separation of In-111 from α-particle activated silver targets was developed. The separation is carried out under reduced pressure, in the atmosphere of HCl and H 2 O vapours. Indium-111, adsorbed on a quartz collector, is washed out quantitatively with 0.1 N HCl. The contaminant, Cd-109 (product of decay of In-109), is removed from the preparation by means of ion-exchange chromatography. 4 tabs., 6 refs. (author)

  6. High power laser interaction with single and double layer targets

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Demchenko, N. N.; Gus'kov, S. Yu.; Jungwirth, Karel; Kálal, M.; Kasperczuk, A.; Kondrashov, V. N.; Králiková, Božena; Krouský, Eduard; Limpouch, Jiří; Mašek, Karel; Pisarczyk, P.; Pisarczyk, T.; Pfeifer, Miroslav; Rohlena, Karel; Rozanov, V. B.; Skála, Jiří; Ullschmied, Jiří

    2005-01-01

    Roč. 35, č. 2 (2005), s. 241-262 ISSN 0078-5466 R&D Projects: GA MŠk(CZ) LN00A100; GA AV ČR(CZ) KSK2043105 Grant - others:EU(XE) HPRI-CT-1999-00053; RFBR(RU) 02-02-16966; IAEA(XE) 11655/RBF; INTAS(XX) 01-0572 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser produced plasma * three-frame interferometry * macroparticle * single and double targets * crater * shock wave * laser energy absorption Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.459, year: 2005

  7. A probability of synthesis of the superheavy element Z = 124

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)

    2017-10-15

    We have studied the fusion cross section, evaporation residue cross section, compound nucleus formation probability (P{sub CN}) and survival probability (P{sub sur}) of different projectile target combinations to synthesize the superheavy element Z=124. Hence, we have identified the most probable projectile-target combination to synthesize the superheavy element Z = 124. To synthesize the superheavy element Z=124, the most probable projectile target combinations are Kr+Ra, Ni+Cm, Se+Th, Ge+U and Zn+Pu. We hope that our predictions may be a guide for the future experiments in the synthesis of superheavy nuclei Z = 124. (orig.)

  8. Highly efficient direct Z-scheme WO3/CdS-diethylenetriamine photocatalyst and its enhanced photocatalytic H2 evolution under visible light irradiation

    Science.gov (United States)

    Hu, Taiping; Li, Pengfei; Zhang, Jinfeng; Liang, Changhao; Dai, Kai

    2018-06-01

    Cadmium sulfide (CdS) has demonstrated great promise in artificial photocataytic hydrogen (H2) production. However, the serious photocorrosion hinders its effective interaction and real-life application. In this work, a typical direct Z-scheme WO3/CdS-diethylenetriamine (CdS-DETA) composite has been designed via facile in-situ solvothermal method, which exhibits excellent H2 production properties in visible light region. In this system, the inorganic-organic CdS-DETA nanobelts (NBs) possess enough active sites and large surface area for the encouraging nanojunction structure information. Furthermore, we also systematically calculated energy band structure and investigated charge transfer of the WO3/CdS-DETA by PL and photocurrent test, the results demonstrated that the suitable band gap matching between CdS-DETA and WO3 and high redox potential improve the separation of photogenerated holes and electrons, restraining intrinsic photocorrosion of CdS as well as improving the photocatalytic activity. 5%WO3/CdS-DETA presented the most outstanding H2 evolution rate (15522 μmol g-1 h-1), which is twice higher than that of pure CdS-DETA. WO3/CdS-DETA composites also presented high stability after three recycle H2 production experiment. Finally, direct Z-scheme photocatalytic mechanism is calculated.

  9. Transplutonium elements production program: extraction chromatographic process for plutonium irradiated targets

    International Nuclear Information System (INIS)

    Bourges, J.; Madic, C.; Koehly, G.

    1980-01-01

    The treatment of irradiated plutonium targets by extraction chromatography allowed the purification of the isotopes 243 Am and 244 Cm on the scale of few tens of grams. This process proved to be extremely simple and flexible, and yielded results which are reproducible in time. The chief advantage of the TBP process over the HDEHP process in high and medium activity conditions lies in the rapid absorption/desorption kinetics of the elements to be purified and in the separation of americium from curium, which largely offsets its lower selectivity for lanthanide elements. it is certainly possible to improve the performance of this process by: a) optimization of the characteristics of the stationary phase, b) improvement in the filling technique and in hydraulic operation of the columns, c) on-line analysis of americium (the key element in actinide/lanthanide separation) in the eluate. The application of extraction chromatography with HD(DiBM)P to the purification of 243 Am of the end of treatment makes the process more consistent, eliminates the delicate stages implemented in hot cell, and considerably improves final product quality

  10. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  11. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  12. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  13. Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse

    International Nuclear Information System (INIS)

    Gus'kov, S. Yu.; Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Pisarczyk, P.

    2007-01-01

    The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 10 14 W/cm 2 . It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2-3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed

  14. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    International Nuclear Information System (INIS)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-01-01

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150μA of proton current from the source, with over 70μA on the target stage. However, beam fluxes above ∼1×10 17 /m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  15. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  16. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  17. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  18. Lifetime survivability of contaminated target-chamber optics

    International Nuclear Information System (INIS)

    Rainer, F.; Anderson, A.; Burnham, A.; Milam, D.; Turner, R.

    1996-11-01

    Target chambers used for Inertial Confinement Fusion (ICF) expose laser optics to a very hostile environment, not only from high-fluence laser irradiation but also x-ray irradiation and particulate debris from targets and chamber wall materials. Expendable debris shields provide the first line of defense to more costly optics upstream in the laser beam path to contaminants generated within the target chamber. However, the replacement of a large number of debris shields is also an expensive proposition so that extending their usable lifetime within the chamber is important. We have conducted tests to show that optics can both be cleaned and damaged by laser irradiation at 355 nm after being contaminated with potential chamber-wall materials such as B 4 C and Al 2 O 3 . Such optics can survive from one to hundreds of laser shots, depending on degree of contamination and laser fluence levels. Similarly, we have studied the survivability of optics that have been exposed to direct contamination from representative target materials irradiated in the target chamber. We have also studied the effects on optics that were not directly exposed to targets, yet received secondary exposure from the above directly-exposed samples

  19. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  20. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  1. Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)

  2. Irradiated NH3 and ND3 - two new target materials for polarized targets

    International Nuclear Information System (INIS)

    Meyer, W.

    1982-11-01

    A study of dynamic nuclear polarization (DNP) in NH 3 and ND 3 was made at the Bonn 2.5 GeV electron synchrotron. The paramagnetic radicals in the polycristalline ammonia beads were created by irradiation in the high intensity 20 MeV electron beam (> 10 14 electrons/sec) of the injection linac. During irradiation the ammonia beads, produced by dropping into liquid nitrogen, were cooled in liquid argon at approx.= 90 K. DNP measurements were performed at 1 K, 0.5 K and 0.2 K in a 2.5 T magnetic field. Samples of NH 3 , prepared in this way, yielded a maximum proton polarization of 66% at a temperature of 0.5 K with a short polarization build-up time of 9 minutes. ND 3 could be polarized at a temperature of 0.2 K up to 31%. The radiation resistance of the polarization of NH 3 is better than that of butanol. (orig.)

  3. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Vaněček, Václav; Zablotskyy, Vitaliy A.; Forostyak, Serhiy; Růžička, Jiří; Herynek, V.; Babič, Michal; Jendelová, Pavla; Kubinová, Šárka; Dejneka, Alexandr; Syková, Eva

    2012-01-01

    Roč. 7, 16 Jul (2012), s. 3719-3730 E-ISSN 1178-2013 R&D Projects: GA ČR(CZ) GAP304/12/1370; GA ČR GAP304/11/0731; GA ČR(CZ) GAP304/11/0189; GA ČR GAP304/11/0653; GA AV ČR IAA500390902 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z10100522; CEZ:AV0Z40500505 Keywords : nanoparticles * mesenchymal stem cells * magnetic targeting Subject RIV: FH - Neurology; BM - Solid Matter Physics ; Magnetism (FZU-D); FH - Neurology (UMCH-V) Impact factor: 3.463, year: 2012

  4. Preservation of Minced Meats by Using Medium and High-doses Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.I.; Swailam, H.M.H.; Taha, S.M.A.

    2003-01-01

    The effect of medium (2.5-10 kGy) dose irradiation and high(20-70 kGy) dose irradiation on the microbiological, chemical and organoleptic properties of minced meat samples was studied. It was found that irradiation dose of only 5 kGy greatly reduced all microbial counts and completely eliminated all non-spore forming pathogenic bacteria contaminated minced meat samples. Consequently this irradiation dose extended the refrigerated (3 degree ±1) storage life of these products for more than 8 weeks. This irradiation dose almost did not affect the chemical composition, particularly the main amino acids and main fatty acids of minced meat samples. Panelists could not differentiate between irradiated minced meat samples at this dose and unirradiated samples. High doses irradiation, i.e.40 and 70 kGy were sufficient and efficient in sterilization of minced meat samples and in obtaining long-stable minced meat products (Two years) at ambient temperature. These irradiation doses slightly reduced (not more than 7%) aspartic acid, glutamic acid, methionine and lysine of minced meat. It also decreased the relative percentage of total unsaturated fatty acids by not more than 17 % . These high irradiation doses caused loss of C 18:3 and C 20:1

  5. Experimental and theoretical study of the yields of residual product nuclei produced in thin targets irradiated by 100-2600 MeV protons

    CERN Document Server

    Titarenko, Y E; Karpikhin, E I

    2003-01-01

    The objective of the project is measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators. The yields of residual product nuclei are of great importance when estimating such basic radiation-technology characteristics of hybrid facility targets as the total target activity, target 'poisoning', buildup of long-lived nuclides that, in turn, are to be transmuted, product nuclide (Po) alpha-activity, content of low-pressure evaporated nuclides (Hg), content of chemically-active nuclides that spoil drastically the corrosion resistance of the facility structure materials, etc. In view of the above, radioactive product nuclide yields from targets and structure materials were determined by an experiment using the ITEP U-10 proton accelerator in 51 irradiation runs for different thin targets: sup 1 sup 8 sup 2 sup , sup 1 sup 8 ...

  6. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  7. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  8. Margin estimation and disturbances of irradiation field in layer-stacking carbon-ion beams for respiratory moving targets.

    Science.gov (United States)

    Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki

    2017-11-01

    Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Analysis of high school students' perception and attitude toward irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Seok; Han, Eun Ok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2014-04-15

    We chose high school students, who are expected to show significant response to education, to try to understand perception and behavior toward irradiated food, and derive evidential materials for education. High school students who had ever acquired information or received education on irradiated food, and students who had ever purchased or eaten irradiated food, tended to have aproper attitude regarding its necessity, safety, and purchase without prejudice. It is necessary to provide information and education to high school students. Additionally, exposure to the irradiated food could be helpful in changing perception and attitude toward irradiated food.

  10. Analysis of high school students' perception and attitude toward irradiated food

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Han, Eun Ok

    2014-01-01

    We chose high school students, who are expected to show significant response to education, to try to understand perception and behavior toward irradiated food, and derive evidential materials for education. High school students who had ever acquired information or received education on irradiated food, and students who had ever purchased or eaten irradiated food, tended to have aproper attitude regarding its necessity, safety, and purchase without prejudice. It is necessary to provide information and education to high school students. Additionally, exposure to the irradiated food could be helpful in changing perception and attitude toward irradiated food

  11. Nuclear prehistory influence on irradiated metallic iron phase composition

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    With application of different Moessbauer spectroscopy applications the phase composition of metallic iron after irradiation by both neutrons and charged particles were studied. Irradiation conditions, method of targets examination and phase composition of samples after irradiation were presented in tabular form. It is shown, that phase composition of irradiated metal is defined by nuclear prehistory. So, in a number of cases abnormals (stabilization of high- and low-temperature structural phases of iron at room temperature after irradiation end) were revealed

  12. High ion temperatures from buried layers irradiated with Vulcan Petawatt

    International Nuclear Information System (INIS)

    Karsch, S.; Schreiber, J.; Willingale, L.; Lancaster, K.; Habara, H.; Nilson, P.; Gopal, A.; Wei, M. S.; Stoeckl, C.; Evans, R.; Clarke, R.; Heathcote, R.; Najmudin, Z.; Krushelnick, K.; Neely, D.; Norreys, P. A.

    2005-01-01

    Deuteron acceleration from CH/CD/CH layer targets irradiated with PW laser pulses has been studied using. Thomson parabola spectrometers and neutron TOF spectroscopy. The measured ion and neutron spectra reveal significant MeV deuteron acceleration from the deeply buried CD layer, which scales with the thickness of the overlying CH layer. While the neutron spectra reveal the scaling of the thermal heating with target thickness, the ion spectra indicate the presence of an efficient nonthermal acceleration mechanism inside. the bulk. Possible explanations will be discussed. (Author)

  13. Stereocontrolled generation of nucleophilic (Z)- or (E)-α-fluoroalkenylchromium reagents via carbon-fluorine bond activation: highly stereoselective synthesis of (E)- or (Z)-β-fluoroallylic alcohols.

    Science.gov (United States)

    Nihei, Takashi; Yokotani, Saya; Ishihara, Takashi; Konno, Tsutomu

    2014-02-14

    Highly nucleophilic (Z)- or (E)-α-fluoroalkenylchromium species could be generated in a stereoselective manner via C-F bond activation of CBrF2-containing molecules, and they reacted smoothly with various aldehydes to give (E)- or (Z)-β-fluoroallylic alcohol derivatives in high yields, respectively.

  14. Effect of gamma-ray irradiation on hybridization between Chamaecyparis obtusa S. et Z. and C. pisifera S. et Z

    International Nuclear Information System (INIS)

    Maeta, Takehiko

    1980-01-01

    The effect of gamma irradiation on the interspecific hybridization between Chamaecyparis obtusa and C. pisifera was investigated, and F 1 seedlings were examined cytologically. Acute gamma irradiation and chronic gamma irradiation given throughout annual growing seasons on male flowers were effective in producing hybrids between these two species. The crossing of C. obtusa x C. pisifera was better than the reverse crossing because the pollen of C. obtusa rapidly loses its fertility, and C. pisifera blooms earlier than C. obtusa. Chronic gamma irradiation of male flowers throughout the annual growing season was slightly effective for producing the hybrids, but that of female flowers was not. Acute gamma irradiation of male flowers at the first to second telophase (300 R) was considered to be desirable for hybrid production. However, it was confirmed by cytological observation that all of the hybrids produced were triploid which had two identical genomes originated from either parent. Therefore, the unreduced male gametophytes or unreduced eggs seem to participate in the formation of the hybrids. It seems difficult to produce diploid hybrids between C. obtusa and C. pisifera. (Kaihara, S.)

  15. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  16. Z-Beamlet: a multikilojoule, terawatt-class laser system

    International Nuclear Information System (INIS)

    Rambo, Patrick K.; Smith, Ian C.; Porter, John L. Jr.; Hurst, Michael J.; Speas, C. Shane; Adams, Richard G.; Garcia, Antonio J.; Dawson, Ellis; Thurston, Benjamin D.; Wakefield, Colleen; Kellogg, Jeff W.; Slattery, Michael J.; Ives III, Harry C.; Broyles, Robin S.; Caird, John A.; Erlandson, Alvin C.; Murray, James E.; Behrendt, William C.; Neilsen, Norman D.; Narduzzi, Joseph M.

    2005-01-01

    A large-aperture (30-cm) kilojoule-class Nd:glass laser system known as Z-Beamlet has been constructed to perform x-ray radiography of high-energy-density science experiments conducted on the Z facility at Sandia National Laboratories, Albuquerque, New Mexico. The laser, operating with typical pulse durations from 0.3 to 1.5 ns, employs a sequence of successively larger multipass amplifiers to achieve up to 3-kJ energy at 1054 nm. Large-aperture frequency conversion and long-distance beam transport can provide on-target energies of up to 1.5 kJ at 527 nm

  17. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  18. Evaluation of hardening by ion irradiation in molybdenum using nanoindentation techniques

    International Nuclear Information System (INIS)

    Iwakiri, Hirotomi; Watanabe, Hideo; Yoshida, Naoaki

    1997-01-01

    As a part of fundamental research on interaction of plasma and wall, some model experiments on loading of particles such as He, H and so forth suffered by plasma facing material were conducted for Mo in high Z material. As an evaluation method for it, nanoindentation technique was proposed. By this method, the hardness evaluation in surface neighboring damage range was conducted. As a result, in the helium irradiated materials, sufficient hardening was observed even at low dpa range impossible to recognize hardening on heavy ion and deuterium irradiated materials, and extreme hardening was established by formation of helium bubble at high dpa region. Furthermore, in the helium irradiated materials, recovery of hardening could not be observed even for annealed materials at 1173 K for 1 hr after irradiation. From such results, hardening promotion work due to helium and extreme thermal stability of the formed defects were elucidated. (B.K.)

  19. Novel technique for high-precision stereotactic irradiation of mouse brains

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, J.; Woelfelschneider, J.; Derer, A.; Fietkau, R.; Gaipl, U.S.; Bert, C.; Frey, B. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Department of Radiation Oncology, Universitaetsklinikum Erlangen, Erlangen (Germany); Stache, C.; Buslei, R.; Hoelsken, A. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Institute of Neuropathology, Universitaetsklinikum Erlangen, Erlangen (Germany); Schwarz, M.; Baeuerle, T. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Universitaetsklinikum Erlangen, Erlangen (Germany)

    2016-11-15

    Small animal irradiation systems were developed for preclinical evaluation of tumor therapy closely resembling the clinical situation. Mostly only clinical LINACs are available, so protocols for small animal partial body irradiation using a conventional clinical system are essential. This study defines a protocol for conformal brain tumor irradiations in mice. CT and MRI images were used to demarcate the target volume and organs at risk. Three 6 MV photon beams were planned for a total dose of 10 fractions of 1.8 Gy. The mouse position in a dedicated applicator was verified by an X-ray patient positioning system before each irradiation. Dosimetric verifications (using ionization chambers and films) were performed. Irradiation-induced DNA damage was analyzed to verify the treatment effects on the cellular level. The defined treatment protocol and the applied fractionation scheme were feasible. The in-house developed applicator was suitable for individual positioning at submillimeter accuracy of anesthetized mice during irradiation, altogether performed in less than 10 min. All mice tolerated the treatment well. Measured dose values perfectly matched the nominal values from treatment planning. Cellular response was restricted to the target volume. Clinical LINAC-based irradiations of mice offer the potential to treat orthotopic tumors conformably. Especially with respect to lateral penumbra, dedicated small animal irradiation systems exceed the clinical LINAC solution. (orig.) [German] Kleintierbestrahlungsanlagen wurden entwickelt um praeklinische Studien in der Tumortherapie unter moeglichst klinischen Bedingungen durchzufuehren. Da an den meisten Instituten nur klinische LINACs zur Verfuegung stehen, werden Standardprotokolle zur Kleintierbestrahlung benoetigt, die konventionelle Systeme nutzen. In dieser Studie wird ein solches Protokoll fuer tumorkonforme Hirnbestrahlung von Maeusen definiert. CT- und MRT-Bilder wurden aufgenommen, um Zielvolumen und

  20. Irradiation performance of HTGR fertile fuel in HFIR target capsules HT-12 through HT-15. Part I. Experiment description and fission product behavior

    International Nuclear Information System (INIS)

    Kania, M.J.; Lindemer, T.B.; Morgan, M.T.; Robbins, J.M.

    1977-02-01

    Sixteen types of Biso-coated designs, on ThO 2 kernels, were irradiated in High Flux Isotope Reactor target capsules HT-12 through HT-15. The report addresses the description of the experiment and extensive postirradiation analyses and experiments to determine fertile-particle burnup, fuel coating failures, and fission product behavior. Several low-temperature isotropic (LTI) pyrocarbon coatings, which ''survived'' according to visual inspection, were shown to have developed permeability during irradiation. These particles were irradiated at temperatures approximately equal to 1250 0 C and to burnups equal to or greater than 8 percent fission per initial heavy-metal atom (FIMA). No evidence of permeability was found in similar particles irradiated at temperatures approximately equal to 1550 0 C and burnups approximately equal to 16 percent FIMA. Failures due to permeability were not detectable by visual inspection but required a more extensive investigation by the 1000 0 C gaseous chlorine leaching technique. Maximum particle surface operating temperatures were found to be approximately 300 0 C in excess of design limits of 900 0 C (low-temperature magazines) and 1250 0 C (high-temperature magazines). The extremes of high temperatures and fast neutron fluences up to 1.6 x 10 22 neutrons/cm 2 produced severe degradation and swelling of the Poco graphite magazines and sample holders

  1. Load unload system optimization on H218O irradiation target used for 18F- production at the cyclotron cyclone 30 from IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Costa, Osvaldo Luiz da

    2009-01-01

    The demand growing in Brazil by the radiopharmaceutical [ 18 F]FDG in positron emission tomography (PET-CT) and the 109,7 minutes half life claim special attention to the productive chain of this radiopharmaceutical. Since the [ 18 O]water irradiation until the tomograph patient scanning, in sequential procedures that may spent about six hours, all the productive chain stages must be as reliable as possible, because any stage failed will be perceived in productive chain extremity. The position indication absence from Load and Unload 18 F- Target System valve in Cyclotron Accelerators Center resulted in 18 F- production loss, Irradiation Room contamination and the increase workers' dose responsible by operation and maintenance of irradiation systems. This study tested the behaviour of three types of position sensors (micro switch, reed switch and inductive sensor), into Irradiation Room 1.2 environment of the Cyclotron Accelerators Center, where there are high gamma radiation and neutrons rates because the routine 18 F- and 1 '2 3 I production, through this test was possible to discover the fitter position sensor to run on 18 F- Target, and after rewriting the programmable logic controller software was possible avoid this type of fail at 18 F- production time in Cyclotron Accelerators Center, and to grow up the reliability on [ 18 F]FDG productive chain. (author)

  2. Z-petawatt driven ion beam radiography development.

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, Marius; Geissel, Matthias; Rambo, Patrick K.; Schwarz, Jens; Sefkow, Adam B.

    2013-09-01

    Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser.

  3. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  4. Parallel transport studies of high-Z impurities in the core of Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M. L.; Hutchinson, I. H.; Rice, J. E.; Greenwald, M.; Howard, N. T.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Wolfe, S. M. [MIT-Plasma Science and Fusion Center Cambridge, Massachusetts 02139 (United States)

    2013-05-15

    Measurements of poloidal variation, ñ{sub z}/z}>, in high-Z impurity density have been made using photodiode arrays sensitive to vacuum ultraviolet and soft x-ray emission in Alcator C-Mod plasmas. In/out asymmetries in the range of −0.2z,cos}/z}><0.3 are observed for r/a<0.8, and accumulation on both the high-field side, n{sub z,cos}<0, and low-field side, n{sub z,cos}>0, of a flux surface is found to be well described by a combination of centrifugal, poloidal electric field, and ion-impurity friction effects. Up/down asymmetries, −0.05z,sin}/z}><0.10, are observed over 0.5z,sin}>0 corresponding to accumulation opposite the ion ∇B drift direction. Measurements of the up/down asymmetry of molybdenum are found to disagree with predictions from recent neoclassical theory in the trace limit, n{sub z}Z{sup 2}/n{sub i}≪1. Non-trace levels of impurities are expected to modify the main-ion poloidal flow and thus change friction-driven impurity density asymmetries and impurity poloidal rotation, v{sub θ,z}. Artificially modifying main-ion flow in parallel transport simulations is shown to impact both ñ{sub z}/z}> and v{sub θ,z}, but simultaneous agreement between measured and predicted up/down and in/out asymmetry as well as impurity poloidal rotation is not possible for these C-Mod data. This link between poloidal flow and poloidal impurity density variation outlines a more stringent test for parallel neoclassical transport theory than has previously been performed. Measurement and computational techniques specific to the study of poloidal impurity asymmetry physics are discussed as well.

  5. Development of annular targets for 99Mo production

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E.F.; Snelgrove, J.L.; Liberatore, M.W.; Walker, D.E.; Wiencek, T.C.; McGann, D.J.; Hofman, G.L.; Vandegrift, G.F.

    1999-01-01

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99 Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99 Mo from the fissioning of 235 U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  6. Colon mucosal cells after high-dose fractional irradiation

    International Nuclear Information System (INIS)

    Zorc-Pleskovic, R.; Vraspir-Porenta, O.; Petrovic, D.; Zorc, M.; Pleskovic, L.

    2000-01-01

    The aim of this study was to investigate histological and stereological changes in cryptal enterocytes, mucosal lymphocytes and mast cells 10 days after irradiation. For experimental model, 24 Beagle dogs 1-2 years old were used. Twelve dogs were irradiated 20 days with 32 Gy over the whole pelvis and tail. Another 12 dogs represented a control group. For the detection of apoptosis, the TUNEL technique was used. Histological and stereological analyses were performed using a Wild sampling microscope M 1000. In the irradiated group, volume density (P < 0.01), numerical density (P < 0.05) and average volume of lymphocytes (P < 0.001) were significantly lower than in the nonirradiated group. Numerical areal density of mast cells in the irradiated group was also significantly lower (P < 0.05). Volume density (P < 0.001) and average volume of mast cells (P < 0.001) were significantly higher in the irradiated group. The results of our experiments show that irradiation causes injury and loss of lymphocytes and mast cells in the colon mucosa. Apoptosis was detected in enterocytes and lymphocytes in the irradiated group and in nonirradiated group in equal numbers (2.5 ± 0.3 vs. 2.3 ± 0.3; ns.), suggesting that 10 days after high-dose irradiation, the cell loss is not due to apoptosis. (author)

  7. Present status of low-Z coating development in JAERI

    International Nuclear Information System (INIS)

    Nakamura, K.; Abe, T.; Obara, K.; Murakami, Y.

    1986-01-01

    In the JT-60 at JAERI, TiC-coated molybdenum and TiC-coated Inconel tiles are currently used as plasma interactive components. They have already been subjected to initial ohmic heating experiments and exhibited good adhesion characteristics under high heat flux conditions. The present article reviews a JAERI's coating development program for JT-60 experiments currently under way and for the next-step experiments. The program includes development and performance tests of the TiC-coated tiles, development of an in-situ coating technique for the repair of damaged surface of the tiles, and research on carbonization. Stress is laid on thermal shock and thermal fatigue tests of these coatings. In the thermal tests, adhesion between low-Z coatings and bulk materials have been investigated under high heat irradiation. TiC and TiN are used as coating material while Mo and Inconel 625 are employed as bulk material. Results are shown in this report concerning calculated temperature elavation of TiC/TiN/Mo due to hydrogen beam irradiation. As regards the irradiation time required for the melting of the substrate, experimental results mostly agree with calculations. Almost all coatings investigated are not exfoliated from the substrate until the melting of the substrate. (Nogami, K.)

  8. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    International Nuclear Information System (INIS)

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-01-01

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm 2 fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL-33

  9. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jun Won, E-mail: JUNWON@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoo, Hyun, E-mail: gochunghee@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kwak, Woori, E-mail: asleo02@snu.ac.kr [Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Won Hoon, E-mail: wonhoon@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Cho, Seoae, E-mail: seoae@cnkgenomics.com [C& K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919 (Korea, Republic of); Choi, Yu Jeong, E-mail: yunk9275@daum.net [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Yoon-Jin, E-mail: yjlee8@kirams.re.kr [Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  10. An experimental platform for generating Richtmyer-Meshkov instabilities on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Eric; Martin, Matthew

    2013-04-01

    The Richtmyer-Meshkov (RM) instability results when a shock wave crosses a rippled interface between two different materials. The shock deposited vorticity causes the ripples to grow into long spikes. Ultimately this process encourages mixing in many warm dense matter and plasma flows of interest. However, generating pure RM instabilities from initially solid targets is difficult because longlived, steady shocks are required. As a result only a few relevant experiments exist, and current theoretical understanding is limited. Here we propose using a flyer-plate driven target to generate RM instabilities with the Z machine. The target consists of a Be impact layer with sinusoidal perturbations and is followed by a low-density carbon foam. Simulation results show that the RM instability grows for 60 ns before release waves reach the perturbation. This long drive time makes Z uniquely suited for generating the high-quality data that is needed by the community.

  11. Development of a Z-pinch-driven ICF hohlraum concept on Z

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Porter, J.L. Jr.; Vesey, R.A.

    1999-01-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity

  12. Development of a Z-pinch-driven ICF hohlraum concept on Z

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M E; Porter, Jr, J L; Vesey, R A [and others

    1999-07-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity.

  13. Polythiophene derivative functionalized with disperse red 1 chromophore: Its third-order nonlinear optical properties through Z-scan technique under continuous and femtosecond irradiation

    Science.gov (United States)

    de la Garza-Rubí, R. M. A.; Güizado-Rodríguez, M.; Mayorga-Cruz, D.; Basurto-Pensado, M. A.; Guerrero-Álvarez, J. A.; Ramos-Ortiz, G.; Rodríguez, M.; Maldonado, J. L.

    2015-08-01

    A copolymer of 3-hexylthiophene and thiophene functionalized with disperse red 1, poly(3-HT-co-TDR1), was synthesized. Chemical structure, molecular weight distribution, optical and thermal properties of this copolymer were characterized by NMR, FT-IR, UV-vis, GPC and DSC-TGA. An optical nonlinear analysis by Z-scan method was also performed for both continuous wave (CW) and pulsed laser pumping. In the CW regime the nonlinearities were evaluated in solid films, and a negative nonlinear refractive index in the range 2.7-4.1 × 10-4 cm2/W was obtained. These values are notoriously high and allowed to observe self-defocusing effects at very low laser intensities: below 1 mW. Further, nonlinear self-phase modulation patterns, during laser irradiation, were also observed. In the pulsed excitation the nonlinear response was evaluated in solution resulting in large two-photon absorption cross section of 5725 GM for the whole copolymer chain and with a value of 232 GM per repeated monomeric unit.

  14. High-energy irradiation in the management of chondrosarcoma

    International Nuclear Information System (INIS)

    Kim, R.Y.; Salter, M.M.; Brascho, D.J.

    1983-01-01

    We present a retrospective analysis of seven patients with chondrosarcoma of the bone treated by high-energy irradiation between 1961 and 1976. Its major role in this series was prevention of local recurrence in cases with inadequate resection. In three of the five cases in which radiation therapy was adjuvant rather than primary treatment, long-term local control was obtained in a dose of 5,000 to 6,500 rads in five to six weeks. Although primary treatment of chondrosarcoma is surgical, high-dose radiation therapy is indicated when surgical resection is not possible. Chondrosarcoma can respond to high doses of irradiation even though the response is slow

  15. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  16. Irradiation effects on c-axis lattice parameter in EuBa{sub 2}Cu{sub 3}O{sub y} irradiated with energetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Norito; Chimi, Yasuhiro; Iwase, Akihiro; Maeta, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuru, Koji; Michikami, Osamu

    1997-03-01

    We report an irradiation effect on c-axis lattice parameter in EuBa{sub 2}Cu{sub 3}O{sub y} oxide superconductors when irradiated with ions of energy ranging from 0.85 to 200 MeV. For the irradiation with low energy (0.85-2 MeV) ions, the defect production and the resultant c-axis lattice expansion were dominated by elastic collisions. On the other hand, for the irradiation with high energy (120-200 MeV) ions, the change in the c-axis lattice parameter was found to be much greater than that expected from the elastic displacement of target atoms. For high energy ion irradiation we could observe the excessive increase of c-axis lattice parameter reflecting additional production of defects which can be attributed to the electronic excitation. The large increase in c-axis lattice parameter due to high energy ion irradiation should be taken into account for the study on the interaction between vortices and irradiation-induced defects. (author)

  17. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    International Nuclear Information System (INIS)

    Simos, N.; Nocera, P.; Zwaska, R.; Mokhov, N.

    2017-01-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10"2"0 p/cm"2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10"2"0 cm"-"2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  18. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Directory of Open Access Journals (Sweden)

    N. Simos

    2017-07-01

    Full Text Available In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF of the Deep Underground Neutrino Experiment (DUNE four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ∼10^{20}  cm^{−2} where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite

  19. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Science.gov (United States)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  20. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  1. The radio galaxy K-z relation to z ~ 4.5

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Eales, Steve; Blundell, Katherine M.; Willott, Chris J.

    2001-01-01

    Using a new radio sample, 6C* designed to find radio galaxies at z > 4 along with the complete 3CRR and 6CE sample we extend the radio galaxy K-z relation to z~4.5. The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high redshift (z > 2). Accounting for non-stellar contamination, and for correlations between radio luminosity and estimates of stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity ...

  2. Fusion with Z-pinches

    International Nuclear Information System (INIS)

    Cook, D.

    1998-06-01

    In the past thirty-six months, great progress has been made in x-ray production using high-current z-pinches. Today, the x-ray energy and power output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. In this paper, the recent technical progress with Z-pinches will be described, and a technical strategy for achieving high-yield ICF with z-pinches will be presented

  3. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells

    International Nuclear Information System (INIS)

    Scholz, M.; Kraft-Weyrather, W.; Ritter, S.; Kraft, G.

    1994-01-01

    Cell cycle delays in V79 Chinese hamster cells induced by heavy ion exposure have been investigated using flow cytometry. Synchronous cell populations in G 1 -, S- and late-S/G 2 M-phase were used. Cells were irradiated with particles from Z = 10 (neon) up to Z = 96 (uranium) in the energy range from 2.4 to 17.4 MeV/u and the LET range from 415 to 16225 keV/μm at the UNILAC at GSI, Darmstadt. For comparison, experiments with 250 kV X-rays were performed. For light particles like neon, cell cycle perturbations comparable to those after X-ray irradiation were found, and with increasing LET an increasing delay per particle traversal was observed. For the highest LET-values, extended delays in G 1 -, S- and G 2 M-phase were detected immediately after irradiation. A large fraction of the cells remained in S-phase or G 2 M-phase up to 48 h or longer after irradiation. No significant cell age dependence of cycle delays was detected for the very high LET values. In addition to cell cycle delays, two effects related to the DNA-content as determined by flow cytometry were found after irradiation with very high LET particles, which were attributed to cell fusion and to drastic morphological changes of the cells. Estimations based on the dose deposited by a single particle hit in the cell nucleus and the actual number of hits show, that the basic trend of the experimental results can be explained by the stochastic properties of particle radiation. (orig.)

  4. High-voltage irradiation of xenotransplanted human ovarial, endometrial, and cervical carcinomas

    International Nuclear Information System (INIS)

    Kleine, W.; Wrzodek, W.; Stange, S.; Ladner, H.A.

    1981-01-01

    High-voltage irradiation of four ovarial carcinomas, four endometrial carcinomas and two carcinomas of the cervix is reported on which were transplanted subcutaneously to nu/nu mice. In all cases, the growth was stopped and the tumour receded under irradiation; in 8 cases, after stopping the irradiation with a dose of 30 to 60 Gy the growth went on. Of two carcinomas with decrease in the size and a stopped growth over 20 weeks, in one case no vital cells could be found any more while in the other one there were still numerous vital cells. These showed also after irradiation an unchanged radionucleotid incorporation in the single cell suspension. The effect of a high-voltage irradiation seems to be independent on the histologic picture, but dependent on the dose and the fractioning. The incorporation rates of 3 H-thymidine and 3 H-uridine in the single cell suspension reamined inchanged both before and after irradiation. Irradiation of the xenotransplantate of one side showed the exclusively local effect of this measure. This is confirmed by comparative examinations of the same tumours with a chemotherapy. Thus the nude mouse model offers the possibility of observing the effects of a high-voltage irradiation of human tissue in vivo without involving the total organism of the tumourous animal like in chemotherapy. This shows another field for future questions with nude mice. (orig.) [de

  5. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  6. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  7. New properties of z-scaling: flavor independence and saturation at low z

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.V.

    2008-01-01

    Experimental ISR, RHIC, and Tevatron data on inclusive cross sections of particles produced in high energy proton-(anti)proton collisions are analyzed in the framework of z-scaling. New features of the scaling function ψ(z) are established. These are flavor independence of ψ(z) including particles with heavy flavor content and saturation at low z. Flavor independence means that the shape of the scaling function ψ(z) is the same for different hadron species. Saturation corresponds to flattering of ψ(z) for low z < 0.1. Relations of model parameters used in data z-presentation with some thermodynamical quantities (entropy, specific heat, temperature) are discussed. It is shown that behavior of particle spectra at low z is controlled by a parameter c interpreted as specific heat of the created medium associated with production of the inclusive particle. The saturation regime of ψ(z) observed at low z is assumed to be preferable in searching for phase transitions of hadron matter and for study of nonperturbative QCD in high energy proton-(anti)proton collisions at U70, RHIC, Tevatron, and LHC

  8. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    Science.gov (United States)

    Eakins, D. E.; Chapman, D. J.

    2014-12-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  9. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    International Nuclear Information System (INIS)

    Eakins, D. E.; Chapman, D. J.

    2014-01-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology

  10. High-energy and high-fluence proton irradiation effects in silicon solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Taylor, S.J.; Yang, M.; Matsuda, S.; Kawasaki, O.; Hisamatsu, T.

    1996-01-01

    We have examined proton irradiation damage in high-energy (1 endash 10 MeV) and high-fluence (approx-gt 10 13 cm -2 ) Si n + -p-p + structure space solar cells. Radiation testing has revealed an anomalous increase in short-circuit current I sc followed by an abrupt decrease and cell failure, induced by high-fluence proton irradiation. We propose a model to explain these phenomena by expressing the change in carrier concentration p of the base region as a function of the proton fluence in addition to the well-known model where the short-circuit current is decreased by minority-carrier lifetime reduction after irradiation. The reduction in carrier concentration due to majority-carrier trapping by radiation-induced defects has two effects. First, broadening of the depletion layer increases both the generation endash recombination current and also the contribution of the photocurrent generated in this region to the total photocurrent. Second, the resistivity of the base layer is increased, resulting in the abrupt decrease in the short circuit current and failure of the solar cells. copyright 1996 American Institute of Physics

  11. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  12. Time-resolved x-ray line emission studies of thermal transport in multiple beam uv-irradiated targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Henke, B.L.; Delettrez, J.; Richardson, M.C.

    1984-01-01

    Thermal transport in spherical targets irradiated with multiple, nanosecond duration laser beams, has been a topic of much discussion recently. Different inferences on the level of thermal flux inhibition have been drawn from plasma velocity and x-ray spectroscopic diagnostics. We present new measurements of thermal transport on spherical targets made through time-resolved x-ray spectroscopic measurements of the progress of the ablation surface through thin layers of material on the surface of the target. These measurements, made with 6 and 12 uv (351 nm) nanosecond beams from OMEGA, will be compared to previous thermal transport measurements. Transparencies of the conference presentation are given

  13. Stability of uranium silicides during high energy ion irradiation

    International Nuclear Information System (INIS)

    Birtcher, R.C; Wang, L.M.

    1991-11-01

    Changes induced by 1.5 MeV Kr ion irradiation of both U 3 Si and U 3 Si 2 have been followed by in situ transmission electron microscopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion beam amorphization, both compounds disorder with the Martensite twin structure in U 3 Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material

  14. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  15. Z-pinch driven fusion energy

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Olson, Craig L.; Rochau, Gary E.; Dezon, Mark S.; Peterson, P.F.; Degroot, J.S.; Jensen, N.; Miller, G.

    2000-01-01

    The Z machine at Sandia National Laboratories (SNL) is the most powerful multi-module synchronized pulsed-power accelerator in the world. Rapid development of z-pinch loads on Z has led to outstanding progress in the last few years, resulting in radiative powers of up to 280 TW in 4 ns and a total radiated x-ray energy of 1.8 MJ. The present goal is to demonstrate single-shot, high-yield fusion capsules. Pulsed power is a robust and inexpensive technology, which should be well suited for Inertial Fusion Energy, but a rep-rated capability is needed. Recent developments have led to a viable conceptual approach for a rep-rated z-pinch power plant for IFE. This concept exploits the advantages of going to high yield (a few GJ) at low rep-rate (approximately 0.1 Hz), and using a Recyclable Transmission Line (RTL) to provide the necessary standoff between the fusion target and the power plant chamber. In this approach, a portion of the transmission line near the capsule is replaced after each shot. The RTL should be constructed of materials that can easily be separated from the liquid coolant stream and refabricated for a subsequent shots. One possibility is that most of the RTL is formed by casting FLiBe, a salt composed of fluorine, lithium, and beryllium, which is an attractive choice for the reactor coolant, with chemically compatible lead or tin on the surface to provide conductivity. The authors estimate that fusion yields greater than 1 GJ will be required for efficient generation of electricity. Calculations indicate that the first wall will have an acceptable lifetime with these high yields if blast mitigation techniques are used. Furthermore, yields above 5 GJ may allow the use of a compact blanket direct conversion scheme

  16. Experimental modeling of high burn-up structure in SIMFUEL with ion irradiation

    International Nuclear Information System (INIS)

    Baranov, V.; Isaenkova, M.; Lunev, A.; Tenishev, A.; Khlunov, A.

    2013-01-01

    Experiments are conducted to simulate high burn-up structure in accelerator conditions. Three ion irradiation schemes are used: 1. Xe 27+ 160 MeV up to 5x10 15 cm -2 (thermal spikes). 2. Xe 16+ 320 keV up to 1x10 17 cm -2 (collision cascades). 3. He + 20 keV up to 5,5x10 17 cm -2 (implantation stage). Structural characterization performed by scanning electron microscopy, X-ray analysis and atomic force microscopy revealed prominent grain refinement in case of Xe 27+ irradiation. Artificial energy variation for incident ions showed varying size of subgrains. At maximum energy of incident ions, subgrain size amounts ∼ 320 nm. Moving to the edge of irradiated region changes the size to ∼ 170 nm. Typical size of coherent scattering regions matches subgrain size for high-energy irradiation. Low-energy irradiation results in less significant structural changes: flaky structure at random sites for samples irradiated with low-energy xenon ions and bubble nucleation for helium irradiation. Dislocation density increases significantly, and it is shown that a single fluence dependence exists for low- and high-energy irradiation. (authors)

  17. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  18. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  19. Design practice and operational experience of highly irradiated, high-performance normal magnets

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1982-09-01

    The limitations of high performance magnets are discussed in terms of mechanical, temperature, and electrical limits. The limitations of magnets that are highly irradiated by neutrons, gamma radiation, or x radiation are discussed

  20. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ye, B., E-mail: bye@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States); Jamison, L.; Miao, Y. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States); Bhattacharya, S. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr. Evanston, IL 60208 (United States); Hofman, G.L.; Yacout, A.M. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States)

    2017-05-15

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Therefore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo. - Highlights: •Three distinct zones were observed along the ion traveling direction in U-7Mo irradiated with 84 MeV Xe ions at 350 °C. •The α-U particles within the Xe-implanted region were reverted to γ-U phase by irradiation. •High-density random intra-granular bubbles in a size of 4–5 nm were found in the irradiated region, coexisting with large inter-granular bubbles. •The high lattice stresses built up during the irradiation-induced phase reversal is probably the driving force for the small grain formation at cell boundaries.

  1. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  2. Possible Noise Nature of Elsässer Variable z- in Highly Alfvénic Solar Wind Fluctuations

    Science.gov (United States)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.; Yao, S.; Zhang, L.

    2018-01-01

    It has been a long-standing debate on the nature of Elsässer variable z- observed in the solar wind fluctuations. It is widely believed that z- represents inward propagating Alfvén waves and interacts nonlinearly with z+ (outward propagating Alfvén waves) to generate energy cascade. However, z- variations sometimes show a feature of convective structures. Here we present a new data analysis on autocorrelation functions of z- in order to get some definite information on its nature. We find that there is usually a large drop on the z- autocorrelation function when the solar wind fluctuations are highly Alfvénic. The large drop observed by Helios 2 spacecraft near 0.3 AU appears at the first nonzero time lag τ = 81 s, where the value of the autocorrelation coefficient drops to 25%-65% of that at τ = 0 s. Beyond the first nonzero time lag, the autocorrelation coefficient decreases gradually to zero. The drop of z- correlation function also appears in the Wind observations near 1 AU. These features of the z- correlation function may suggest that z- fluctuations consist of two components: high-frequency white noise and low-frequency pseudo structures, which correspond to flat and steep parts of z- power spectrum, respectively. This explanation is confirmed by doing a simple test on an artificial time series, which is obtained from the superposition of a random data series on its smoothed sequence. Our results suggest that in highly Alfvénic fluctuations, z- may not contribute importantly to the interactions with z+ to produce energy cascade.

  3. The GEKKO XII-HIPER (High Intensity Plasma Experimental Research) system relevant to ignition targets

    International Nuclear Information System (INIS)

    Miyanaga, N.; Nakatsuka, M.; Azechi, H.

    2001-01-01

    To test high gain targets surrogated in the planar geometry, we have constructed a new experimental system (HIPER) which provides the high ablation pressure with a uniform irradiance profile. These performances were achieved by bundling twelve beams of the existing GEKKO XII into a F/3 focus cone. The partially coherent light is introduced for the beam smoothing of a green foot pulse consisting of three beams, and the three-directional smoothing by spectral dispersion is utilized for residual nine beams delivering a blue main drive pulse. The detail of design concept and results of initial activation of this system are reported. (author)

  4. Progress on LEU very high density fuel and target development in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Cabot, P.; Calzetta, O.; Duran, A.; Garces, J.; Hermida, J.D.; Manzini, A.; Pasqualini, E.; Taboada, H.

    2006-01-01

    Since last RRFM meeting, CNEA has continued on new LEU fuel and target development activities. Main goals are the plan to convert our RA-6 reactor from HEU to a new LEU core, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, to optimize techniques to recover U from silicide scrap samples as cold test for radiowaste separation for final conditioning of silicide spent fuels. and to improve the diffusion of LEU target and radiochemical technology for radioisotope production. Future plans include: - Completion of the RA-6 reactor conversion to LEU; - Improvement on fuel development and production facilities to implement new technologies, including NDT techniques to assess bonding quality; - Irradiation of miniplates and full scale fuel assembly at RA-3 and plans to perform irradiation on higher power and temperature regime reactors; - Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  5. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    Science.gov (United States)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  6. Studies of Z

    CERN Document Server

    Liu, Bo; The ATLAS collaboration

    2018-01-01

    These slides present the study of Z\\gamma production with high mass dijet system. The fiducial cross sections for the EWK and QCD productions of Z\\gamma+2j are measured with Z boson charged leptonic decay mode and found to be consistent with theoretical predictions. In addition, the aQGC is test in high photon pT region by using both Z boson charged and neutral lepton decay modes within EFT framework. No obvious excess is observed and the data are found to be consistent with predictions. Limit intervals for EFT dimension-8 operators are derived and presented.

  7. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-01-01

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M 1450 2 , then extend to lower luminosities (M 1450 2 of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 1450 * ∼-27). The bright-end slope is steep (β ∼ 1450 < –26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate ∼30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  8. [E75, R78 and D82 of Escherichia coli FtsZ are key residues for FtsZ cellular self-assembly and FtsZ-MreB interaction].

    Science.gov (United States)

    Huo, Yujia; Lu, Qiaonan; Zheng, Xiaowei; Ma, Yuanfang; Lu, Feng

    2016-02-04

    To explore effects of FtsZ mutants FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) on FtsZ self-assembly and interaction of FtsZ with MreB in Escherichia coli strains. METHODS) We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis methods, and purified targeted proteins by affinity chromatography. QN6(ftsZ::yfp-cat), QN7(tsZ::yfp-cat), QN8(ftsZ(R78G)::yfp-cat) and QN9 (ftsZ(D82A):.:yfp-cat) strains were constructed by linear DNA homologous recombination. We observed cellular localization pattern of FtsZ and its mutants in E. coli by living cell imaging experiments, examined interaction of FtsZ/FtsZ*-FtsZ* and FtsZ/FtsZ*-MreB by Coimmunoprecipitation and bacteria two hybrid, and analyzed assembly characteristics of FtsZ mutants by Light scattering. RESULTS) The Yfp-labeled FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) mutant proteins failed to assemble into functional Z-ring structure and localize correctly in E. coli strains. Interaction of FtsZ with its mutants, or FtsZ*-FtsZ* and FtsZ*-MreB interaction were weakened or completely disappeared. In addition, in vitro experiments show that E75A, R78G and D82A mutations decreased the polymerization efficiency of FtsZ monomer. FtsZ E75, R78 and D82 are critical amino acids in the assembly, function of FtsZ protein and FtsZ-MreB interaction in E. coli strains.

  9. Progress in transmutation targets from Efttra

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Warin, D.; Bonnerot, J.M.; Garzenne, C.; Scaffidi-Argentina, F.; Maschek, W.; Schram, R.; Klaassen, F.

    2007-01-01

    Since 15 years, the EFTTRA partners have organised programmes to demonstrate the feasibility of the transmutation of americium in uranium-free targets. In the related transmutation scenario, the targets are introduced in a thermal neutron zone of a fast reactor, to maximize the efficiency of transmutation. Amongst these programmes, those carried out in the HFR reactor in Petten have led to important conclusions and are still at the core of the research in that field. The analysis of the EFTTRA T4 and T4bis irradiation experiments, carried out with targets of MgAl 2 O 4 +11 wt% 241 Am, showed that the release/trapping of helium is the key issue for target design, and also demonstrated a lack of technical benefits of this material, due to a unsatisfactory in-pile behaviour in terms of irradiation damage and chemical stability. A new irradiation experiment called HELIOS is currently under fabrication and will be carried out in HFR. The in-pile behaviour of U-free fuels and targets such as (Am,Zr)O 2 , (Pu,Am,Zr)O 2 , CERCER (MgO) or CERMET (Mo) will be examined. The irradiation temperature will be high enough in some of the pins to be able to tune the release of a significant fraction of helium produced so that the material swelling can be minimized as much as reasonably possible. The HELIOS irradiation experiment is planned to be carried out in the HFR core and shall last 300 full power days starting in 2007. (authors)

  10. Project Plan Remote Target Fabrication Refurbishment Project

    International Nuclear Information System (INIS)

    Bell, Gary L.; Taylor, Robin D.

    2009-01-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of 252 Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The 252 Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of 252 Cf; the average irradiation period is ∼10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of 252 Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work

  11. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z ∼ 8

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-01-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z ∼ 8, selected by the so-called dropout method or photometric redshift; e.g., Y 105 -dropouts (Y 105 - J 125 > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z ∼ 8 galaxy candidates. We focus on the strong emission-line galaxies at z ∼ 2 in this paper. Such galaxies may be selected as Y 105 -dropouts since the [O III] λ5007 emission line is redshifted into the J 125 band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z ∼ 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z ∼ 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z ∼ 5 x 10 -4 Z sun ) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  12. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenboeck, S.M.; Kurth, J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Gocke, C.; Kuhnt, T.; Hildebrandt, G. [University Medical Centre Rostock, Department of Radiotherapy, Rostock (Germany); Krause, B.J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Universitaet Rostock, Department of Nuclear Medicine, Universitaetsmedizin Rostock, Rostock (Germany)

    2013-07-15

    Choline PET/CT has shown limitations for the detection of primary prostate cancer and nodal metastatic disease, mainly due to limited sensitivity and specificity. Conversely in the restaging of prostate cancer recurrence, choline PET/CT is a promising imaging modality for the detection of local regional and nodal recurrence with an impact on therapy management. This review highlights current literature on choline PET/CT for radiation treatment planning in primary and recurrent prostate cancer. Due to limited sensitivity and specificity in differentiating between benign and malignant prostatic tissues in primary prostate cancer, there is little enthusiasm for target volume delineation based on choline PET/CT. Irradiation planning for the treatment of single lymph node metastases on the basis of choline PET/CT is controversial due to its limited lesion-based sensitivity in primary nodal staging. In high-risk prostate cancer, choline PET/CT might diagnose lymph node metastases, which potentially can be included in the conventional irradiation field. Prior to radiation treatment of recurrent prostate cancer, choline PET/CT may prove useful for patient stratification by excluding distant disease which would require systemic therapy. In patients with local recurrence, choline PET/CT can be used to delineate local sites of recurrence within the prostatic resection bed allowing a boost to PET-positive sites. In patients with lymph node metastases outside the prostatic fossa and regional metastatic lymph nodes, choline PET/CT might influence radiation treatment planning by enabling extension of the target volume to lymphatic drainage sites with or without a boost to PET-positive lymph nodes. Further clinical randomized trials are required to assess treatment outcomes following choline-based biological radiation treatment planning in comparison with conventional radiation treatment planning. (orig.)

  13. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  14. Lifetime measurements in N=Z 72Kr

    Science.gov (United States)

    Andreoiu, C.; Svensson, C. E.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.

    2006-07-01

    High-spin states in the N=Z nucleus 72Kr have been populated in the 40Ca(40Ca, 2α)72Kr fusion-evaporation reaction at a beam energy of 165 MeV and using a thin isotopically enriched 40Ca target. The experiment, performed at Argonne National Laboratory close to Chicago, USA, employed the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in 72Kr were extended to a higher excitation energy of ~24 MeV and higher angular momentum of 30planck. Using the Doppler-shift attenuation method, the lifetimes of high-spin states were measured for the first time in order to investigate deformation changes associated with the g9/2 proton and neutron alignments in this N=Z nucleus. An excellent agreement with theoretical calculations including only standard t=1 np pairing was observed.

  15. Study of the di-nuclear system $^{A}$Rb + $^{209}$Bi (Z$_{1}$ + Z$_{2}$ = 120)

    CERN Multimedia

    The exact location of the next spherical shell closures beyond Z = 82, N = 126 is still an open question. According to model predictions shell closures are expected at Z = 114 or 120 or 126 and N = 184. Also experimental data cannot yet give a definite answer. Known nuclei with Z = 114 are too neutron‐deficient with respect to the N = 184 shell and nuclei with Z = 120 and beyond are still unknown. An option for studying reactions of super-heavy systems at Z = 120 and neutron numbers up to 184 becomes possible with the use of $^{209}$Bi targets and neutron‐rich beams. By studying quasi-fission and fusion‐fission reactions, which have significantly larger production cross‐sections than the evaporation residues, a possible influence of shell closures at Z = 120, N = 184 can be explored. Well suitable for such studies will be neutron‐rich rubidium beams at energies of about 5 MeV/u delivered by the HIE‐ISOLDE facility.

  16. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-31

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  17. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  18. Load and unload system optimization on H218 O irradiation target used for 18F- production at the cyclotron cyclone 30 from IPEN-CNEN/SP, Brazil

    International Nuclear Information System (INIS)

    Costa, Osvaldo Luiz da

    2009-01-01

    The demand growing in Brazil by the radiopharmaceutical [ 18 F] FDG in positron emission tomography (PET-CT) and the 109,7 minutes half life claim special attention to the productive chain of this radiopharmaceutical. Since the [ 18 O]water irradiation until the tomograph patient scanning, in sequential procedures that may spent about six hours, all the productive chain stages must be as reliable as possible, because any stage failed will be perceived in productive chain extremity. The position indication absence from Load and Unload 18 F - Target System valve in Cyclotron Accelerators Center resulted in 18 F - production loss, Irradiation Room contamination and the increase workers dose responsible by operation and maintenance of irradiation systems. This study tested the behaviour of three types of position sensors (micro switch, reed switch and inductive sensor), into Irradiation Room 1.2 environment of the Cyclotron Accelerators Center, where there are high gamma radiation and neutrons rates because the routine 18 F - and 123 I production, through this test was possible to discover the fitter position sensor to run on 18 F - Target, and after rewriting the programmable logic controller software was possible avoid this type of fail at 18 F - production time in Cyclotron Accelerators Center, and to grow up the reliability on [ 18 F]FDG productive chain. (author)

  19. LVDT Development for High Temperature Irradiation Test and Application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Yong; Ban, Chae Min; Choo, Kee Nam; Jun, Byung Hyuk [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The LVDT (Linear Variable Differential Transformer) is used to measure the elongation and pressure of a nuclear fuel rod, or the creep and fatigue of the material during a reactor irradiation test. This device must be a radiation-resistant LVDT for use in a research reactor. Norway Halden has LVDTs for an irradiation test by the own development and commercialized. But Halden's LVDTs have limited the temperature of the use until to 350 .deg. C. So, KAERI has been developing a new LVDT for high temperature irradiation test. This paper describes the design of a LVDT, the fabrication process of a LVDT, and the result of the performance test. The designed LVDT uses thermocouple cable for coil wire material and one MI cable as signal cable. This LVDT for a high temperature irradiation test can be used until a maximum of 900 .deg. C. Welding is a very important factor for the fabrication of an LVDT. We are using a 150W fiber laser welding system that consists of a welding head, monitoring vision system and rotary index.

  20. Simulations of tungsten, tungsten-coated and tungsten-doped targets at low KrF laser intensities

    Science.gov (United States)

    Colombant, D.; Klapisch, M.; Lehecka, T.; Seely, J.; Schmitt, A.; Obenschain, S.

    1998-11-01

    High-Z coatings can be used to create X-rays to preheat the ablator, thus reducing the laser imprint and the R-T instability. Targets with tungsten coated on the surface or mixed with CH have recently been irradiated using Nike at intensities of a few 10^12W/cm^2, typical of the foot of a laser fusion pulse. The present simulations in 1D have been carried out to provide an interpretation of these experiments and to validate the code for radiation-preheated target designs(S. E. Bodner et al., Phys. Plasmas, 5, 1901 (1998).). All computations were performed in non-LTE(M. Busquet, Phys. Fluids B, 5, 4191 (1993); M. Klapisch, A. Bar-Shalom, J. Oreg and D. Colombant, Phys. Plasmas, 5, 1919 (1998).). Low resolution X-ray spectra obtained from on-line computations are compared to time-integrated experimental spectra between 100 eV and 500 eV. Agreements and differences between computations and experiments will be discussed.

  1. Replication of UV-irradiated DNA in human cell extracts: Evidence for mutagenic bypass of pyrimidine dimers

    International Nuclear Information System (INIS)

    Thomas, D.C.; Kunkel, T.A.

    1993-01-01

    The authors have examined the efficiency and fidelity of simian virus 40-origin-dependent replication of UV-irradiated double-stranded DNA in extracts of human cells. Using as a mutational target the α-complementation domain of the Escherichia coli lacZ gene in bacteriophage M13mp2DNA, replication of undamaged DNA in HeLa cell extracts was highly accurate, whereas replication of DNA irradiated with UV light (280-320 nm) was both less efficient and less accurate. Replication was inhibited by irradiation in a dose-dependent manner. Nonetheless, covalently closed, monomer-length circular products were generated that were resistant to digestion by Dpn I, showing that they resulted from semiconservative replication. These products were incised by T4 endonuclease V, whereas the undamaged replication products were not, suggesting that pyrimidine dimers were bypassed during replication. When replicated, UV-irradiated DNA was used to transfect an E. coli α-complementation host strain to score mutant M13mp2 plaques, the mutant plaque frequency was substantially higher than that obtained with either unirradiated, replicated DNA, or unreplicated, UV-irradiated DNA. Both the increased mutagenicity and the inhibition of replication associated with UV irradiation were reversed by treatment of the irradiated DNA with photolyase before replication. Sequence analysis of mutants resulting from replication of UV-irradiated DNA demonstrated that most mutants contained C → T transition errors at dipyrimidine sites. A few mutants contained 1-nt frameshift errors or tandem double CC → TT substitutions. The data are consistent with the interpretation that pyrimidine dimers are bypassed during replication by the multiprotein replication apparatus in human cell extracts and that this bypass is mutagenic primarily via misincorporation of dAMP opposite a cytosine (or uracil) in the dimer. 56 refs., 2 figs., 3 tabs

  2. Saha's ionization equation for high Z elements

    International Nuclear Information System (INIS)

    Godwal, B.K.; Sikka, S.K.

    1977-01-01

    Saha's ionization equation has been solved for high Z elements with the aim of providing input for opacity calculations. Results are presented for two elements, tungsten and uranium. The ionization potentials have been evaluated using the simple Bhor's formula with suitable effective charges for ions. The reliability of the free electron density, ion concentrations, etc., obtained from the Saha's equation solutions has been checked by comparing the P and E computed from them with those given by the Thomas-Fermi-Dirac equation of state. The agreement between the two is good from temperatures above 0.2 keV. (author)

  3. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar; Greene, Sandra

    2015-01-01

    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  4. Development of odd-Z-projectile reactions for transactinide element synthesis

    International Nuclear Information System (INIS)

    Folden III, Charles Marvin

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay

  5. Z(3)-symmetric effective theory for pure gauge QCD at high temperature

    International Nuclear Information System (INIS)

    Vuorinen, A.

    2007-01-01

    We review the construction and basic properties of a three-dimensional effective field theory for high-temperature SU(3) Yang-Mills theory, which respects its center symmetry and was introduced in Ref. [A. Vuorinen, L.G. Yaffe, Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high, Phys. Rev. D 74 (2006) 025011, hep-ph/0604100]. We explain why the phase diagram of the new theory is expected to closely resemble the one of the full theory and argue that this implies that it is applicable down to considerably lower temperatures than the usual non-Z(3)-symmetric 3d effective theory EQCD

  6. Fusion materials irradiation test facility: description and status

    International Nuclear Information System (INIS)

    Trego, A.L.; Parker, E.F.; Hagan, J.W.

    1982-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility will generate a high-flux, high-energy neutron source that will provide a fusion-like radiation environment for fusion reactor materials development. The neutrons will be produced in a nuclear stripping reaction by impinging a 35 MeV beam of deuterons from an Alvarez-type linear accelerator on a flowing lithium target. The target will be located in a test cell which will provide an irradiation volume of over 750l within which 10 cm 3 will have an average neutron flux of greater than 1.4 x 10 15 n/cm 2 -s and 500 cm 3 an average flux of greater than 2.2 by 10 14 n/cm 2- s with an expected availability factor greater than 65%. The projected fluence within the 10 cm 3 high flux region of FMIT will effect damage upon the materials test specimens to 30 dpa (displacements per atom) for each 90 day irradiation period. This irradiation flux volume will be at least 500 times larger than that of any other facility with comparable neutron energy and will fully meet the fusion materials damage research objective of 100 dpa within three years for the first round of tests

  7. Electron loss mechanisms in collisions of He+ ions with various targets

    International Nuclear Information System (INIS)

    Sant'Anna, M.M.; Melo, W.S.; Santos, A.C.F.; Sigaud, G.M.; Montenegro, E.C.

    1995-01-01

    The electron loss of high-velocity ions by neutral atoms is due to two different and competing mechanisms. In the screening mode, the electron loss is basically due to the nucleus-electron interaction, with the target electrons assuming the passive role of decreasing the Coulomb field of the target nucleus in the vicinity of the projectile active electron. For a fixed projectile velocity, this contribution is expected to give a non-linear dependence with the target atomic number Z 2 due to the incomplete screening at the impact parameter region where the projectile ionization is more likely to occur. Within first-order theories, if the screening is completely absent, the expected dependence would be Z 2 2 ; with screening, it should scale between Z 2 and Z 2 2 . On the other hand, in the antiscreening mode, where the loss is due to the action of the target electrons and the target nucleus plays no active role, the expected dependence would be approximately linear with Z 2 . Thus, for first-order theories, the expected overall dependence with Z 2 would be dominated by the screening mode as Z 2 increases. We have measured total electron-loss cross sections of He + ions impinging upon He, Ne, Ar, Kr and Xe targets in the energy range from 1.0 to 4.0 MeV to complement previous measurements and the results point towards a much smaller contribution from the screening mode than expected from first-order theories, possibly due to a saturation effect manifested only in the screening channel. (orig.)

  8. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB.

    Science.gov (United States)

    Tan, Qian; Awano, Naoki; Inouye, Masayori

    2011-01-01

    Toxin-antitoxin (TA) systems of free-living bacteria have recently demonstrated that these toxins inhibit cell growth by targeting essential functions of cellular metabolism. Here we show that YeeV toxin inhibits cell division, leads to a change in morphology and lysis of Escherichia coli cells. YeeV interacts with two essential cytoskeleton proteins, FtsZ and MreB. Purified YeeV inhibits both the GTPase activity and the GTP-dependent polymerization of FtsZ. YeeV also inhibits ATP-dependent polymerization of MreB. Truncated C-terminal deletions of YeeV result in elongation of cells, and a deletion of the first 15 amino acids from the N-terminus of YeeV caused lemon-shaped cell formation. The YeeV toxin is distinct from other well-studied toxins: it directs the binding of two cytoskeletal proteins and inhibits FtsZ and MreB simultaneously. © 2010 Blackwell Publishing Ltd.

  9. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  10. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  11. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.

    Science.gov (United States)

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-05-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.

  12. Targets development at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Smith, M.L.; Hebron, D.; Derzon, M.; Olson, R.; Alberts, T.

    1997-01-01

    For many years, Sandia National Laboratories under contract to the Department of Energy has produced targets designed to understand complex ion beam and z-pinch plasma physics. This poster focuses on the features of target designs that make them suitable for Z-pinch plasma physics applications. Precision diagnostic targets will prove critical in understanding the plasma physics model needed for future ion beam and z-pinch design. Targets are designed to meet specific physics needs; in this case the authors have fabricated targets to maximize information about the end-on versus side-on x-ray emission and z-pinch hohlraum development. In this poster, they describe the fabrication and characterization techniques. They include discussion of current targets under development as well as target fabrication capabilities. Advanced target designs are fabricated by Sandia National Laboratories in cooperation with General Atomics of San Diego, CA and W.J. Schafer Associates, Inc. of Livermore, CA

  13. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  14. Characterization of mechanical properties and microstructure of highly irradiated SS 316

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kumar, RanVijay; Vijayaragavan, A.; Venkiteswaran, C.N.; Anandaraj, V.; Parameswaran, P.; Saroja, S.; Muralidharan, N.G.; Joseph, Jojo; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-08-15

    Cold worked austenitic stainless steel type AISI 316 is used as the material for fuel cladding and wrapper of the Fast Breeder Test Reactor (FBTR), India. The evaluation of mechanical properties of these core structurals is very essential to assess its integrity and ensure safe and productive operation of FBTR to very high burn-ups. The changes in the mechanical properties of these core structurals are associated with microstructural changes caused by high fluence neutron irradiation and temperatures of 673–823 K. Remote tensile testing has been used for evaluating the tensile properties of irradiated clad tubes and shear punch test using small disk specimens for evaluating the properties of irradiated hexagonal wrapper. This paper will highlight the methods employed for evaluating the mechanical properties of the irradiated cladding and wrapper and discuss the trends in properties as a function of dpa (displacement per atom) and irradiation temperature.

  15. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  16. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  17. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  18. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  19. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  20. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    Science.gov (United States)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  1. Research and development on materials for the SPES target

    Directory of Open Access Journals (Sweden)

    Corradetti Stefano

    2014-03-01

    Full Text Available The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C. Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  2. Irradiation effects on high efficiency Si solar cells

    International Nuclear Information System (INIS)

    Nguyen Duy, T.; Amingual, D.; Colardelle, P.; Bernard, J.

    1974-01-01

    By optimizing the diffusion parameters, high efficiency cells are obtained with 2ohmsxcm (13.5% AMO) and 10ohmsxcm (12.5% AMO) silicon material. These new cells have been submitted to radiation tests under 1MeV, 2MeV electrons and 2.5MeV protons. Their behavior under irradiation is found to be dependent only on the bulk material. By using the same resistivity silicon, the rate of degradation is exactly the same than those of conventional cells. The power increase, due to a better superficial response of the cell, is maintained after irradiation. These results show that new high efficiency cells offer an E.O.L. power higher than conventional cells [fr

  3. Bond formation in hafnium atom implantation into SiC induced by high-energy electron irradiation

    International Nuclear Information System (INIS)

    Yasuda, H.; Mori, H.; Sakata, T.; Naka, M.; Fujita, H.

    1992-01-01

    Bilayer films of Hf (target atoms)/α-SiC (substrate) were irradiated with 2 MeV electrons in an ultra-high voltage electron microscope (UHVEM), with the electron beam incident on the hafnium layer. As a result of the irradiation, hafnium atoms were implanted into the SiC substrate. Changes in the microstructure and valence electronic states associated with the implantation were studied by a combination of UHVEM and Auger valence electron spectroscopy. The implantation process is summarized as follows. (1) Irradiation with 2 MeV electrons first induces a crystalline-to-amorphous transition in α-SiC. (2) Hafnium atoms which have been knocked-off from the hafnium layer by collision with the 2 MeV electrons are implanted into the resultant amorphous SiC. (3) The implanted hafnium atoms make preferential bonding to carbon atoms. (4) With continued irradiation, the hafnium atoms repeat the displacement along the beam direction and the subsequent bonding with the dangling hybrids of carbon and silicon. The repetition of the displacement and subsequent bonding lead to the deep implantation of hafnium atoms into the SiC substrate. It is concluded that implantation successfully occurs when the bond strength between a constituent atom of a substrate and an injected atom is stronger than that between constituent atoms of a substrate. (Author)

  4. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  5. TU-H-BRC-06: Temperature Simulation of Tungsten and W25Re Targets to Deliver High Dose Rate 10 MV Photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J; Trovati, S; Loo, B; Maxim, P; Fahrig, R [Stanford University School of Medicine, Stanford, California (United States); Borchard, P [Tibaray Inc, San Francisco, CA (United States)

    2016-06-15

    Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Re targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad

  6. TU-H-BRC-06: Temperature Simulation of Tungsten and W25Re Targets to Deliver High Dose Rate 10 MV Photons

    International Nuclear Information System (INIS)

    Wang, J; Trovati, S; Loo, B; Maxim, P; Fahrig, R; Borchard, P

    2016-01-01

    Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Re targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad

  7. FEMAXI-7 analysis on behavior of medium and high burnup BWR fuels during base-irradiation and power ramp

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyanagi, Jin, E-mail: ohgiyanagi.jin@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hanawa, Satoshi; Suzuki, Motoe; Nagase, Fumihisa [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two power ramp experiments of BWR fuels were analyzed by FEMAXI-7 code. Black-Right-Pointing-Pointer Calculated FGR and cladding deformation showed reasonable agreement with PIE data. Black-Right-Pointing-Pointer High temperature FGR could be predicted by the enhanced Turnbull FG diffusion constant. Black-Right-Pointing-Pointer Local PCMI model in the code could reasonably predict cladding ridging deformation. - Abstract: Irradiation behavior of medium and high burnup BWR fuels during base-irradiation and subsequent power ramp test is analyzed by a fuel performance code FEMAXI-7. The code has a 1.5-D cylindrical geometry (4 axial segments) to have a coupled solution of thermal analysis and FEM mechanical analysis. Two kinds of target fuels are selected; one was subjected to a power ramp test in the DR3 reactor at RISO after the base-irradiation in a commercial BWR, and the other was subjected to the power ramp test in the DR3 reactor after the base-irradiation in the Halden boiling water reactor. The calculated values such as fission gas release after the base-irradiation and a cladding diameter profile before and after the ramp test show a reasonable agreement with measured data. In addition, the calculated ridging deformation of the cladding before and after the ramp test, which is obtained by using a local pellet-cladding mechanical interaction (PCMI) analysis geometry in FEMAXI-7, is compared with the measured data, and it is found that the FEMAXI-7 code is applicable to the local PCMI analysis of medium and high burnup rods under normal operation and power ramp conditions.

  8. Detection of High-Z Objects using Multiple Scattering of Cosmic Ray Muons

    International Nuclear Information System (INIS)

    Hogan, Gary E.; Borozdin, Konstantin N.; Gomez, John; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2004-01-01

    Detection of high-Z material hidden inside a large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons. Here, we show that compact, high-Z objects can be detected and located in 3 dimensions with muon radiography. The natural flux of cosmic-ray muons, approximately 10,000 m-2min-1, can generate a reliable detection signal in a fraction of a minute, using large-area muon detectors as used in particle and nuclear physics

  9. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  10. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J. [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R. [Department of Engineering Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  11. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    International Nuclear Information System (INIS)

    Nickel, H.

    1990-05-01

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO 2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10 -5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.) [de

  12. Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Marcu, A.; Avotina, L.; Porosnicu, C.; Marin, A.; Grigorescu, C.E.A.; Ursescu, D.; Lungu, M.; Demitri, N.; Lungu, C.P.

    2015-01-01

    Graphical abstract: - Highlights: • Polycrystalline graphite was irradiated with a high power fs (IR) laser. • Presence of a diamond peak was detected by synchrotron XRD. • XPS and Raman showed in-depth sp 3 % increase at tens of nm below the surface. • sp 3 % is increasing with laser power density but it is independent of photon absorption rate. • Graphite crystallite size locally increase at tens of nanometers below the irradiated spots. - Abstract: A polycrystalline graphite target was irradiated using infrared (800 nm) femtosecond (120 fs) laser pulses of different energies. Increase of sp 3 bonds percentage and possible diamond crystal formation were investigated ‘in-depth’ and on the irradiated surfaces. Synchrotron X-ray diffraction pattern have shown the presence of a diamond peak in one of the irradiated zones while X-ray photoelectron spectroscopy investigations have shown an increasing tendency of the sp 3 percent in the low power irradiated areas and similarly ‘in the depth’ of the higher power irradiated zones. Multiple wavelength Micro-Raman investigations have confirmed this trend along with an ‘in-depth’ (but not on the surface) increase of the crystallite size. Based on the wavelength dependent photon absorption into graphite, the observed effects are correlated with high density photon per atom and attributed to the melting and recrystallization processes taking place tens of nanometers below the target surface.

  13. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  14. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  15. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  16. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  17. High precision measurements of the differential W and Z boson cross-sections and top-quark pair to Z-boson cross-section ratios with the ATLAS detector

    CERN Document Server

    Zakharchuk, Nataliia; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7 TeV The measurements are performed for W+, W- and Z/gamma* bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. This measurement allows for strong constraints on Parton Distribution functions, in particular the strange quark density. Z cross sections are also measured at a center-of-mass energies of 8 TeV and 13 TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to theory predictions.

  18. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  19. Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target

    International Nuclear Information System (INIS)

    Moumita Maiti; Kaustab Ghosh; Susanta Lahiri

    2015-01-01

    A nat Co target was irradiated with 47 MeV 7 Li beam to produce no-carrier-added 61 Cu, 62 Zn in the target matrix. Two new green radiochemical methods were developed for separation of 61 Cu and 62 Zn from the target matrix, (i) liquid-liquid extraction (LLX) technique using room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) and ammonium pyrrolidinedithiocarbamate (APDC) (ii) adsorption on calcium alginate beads. (author)

  20. Discovery of a Color-selected Quasar at z = 5.50.

    Science.gov (United States)

    Stern; Spinrad; Eisenhardt; Bunker; Dawson; Stanford; Elston

    2000-04-20

    We present observations of RD J030117+002025, a quasar at z=5.50 discovered from deep, multicolor, ground-based observations covering 74 arcmin2. This is the most distant quasar or active galaxy currently known. The object was targeted as an R-band dropout, with RAB>26.3 (3 sigma limit in a 3&arcsec; diameter region), IAB=23.8, and zAB=23.4. The Keck/Low-Resolution Imaging Spectrometer spectrum shows broad Lyalpha/N v lambda1240 emission and sharp absorption decrements from the highly redshifted hydrogen forests. The fractional continuum depression due to the Lyalpha forest is DA=0.90. RD J030117+002025 is the least luminous high-redshift quasar known (MB approximately -22.7).

  1. Influence of boronization on operation with high-Z plasma facing components in Alcator C-Mod

    International Nuclear Information System (INIS)

    Lipschultz, B.; Lin, Y.; Marmar, E.S.; Whyte, D.G.; Wukitch, S.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Reinke, M.L.; Terry, J.L.; Wright, G.

    2007-01-01

    We report the results of operation of Alcator C-Mod with all high-Z molybdenum plasma facing component (PFC) surfaces. Without boron-coated PFCs energy confinement was poor (H ITER,89 ∼ 1) due to high core molybdenum (n Mo /n e ≤ 0.1%) and radiation. After applying boron coatings, n Mo /n e was reduced by a factor of 10-20 with H ITER,89 approaching 2. Results of between-discharge boronization, localized at various major radii, point towards important molybdenum source regions being small, outside the divertor, and due to RF-sheath-rectification. Boronization also has a significant effect on the plasma startup phase lowering Z eff , radiation, and lowering the runaway electron damage. The requirement of low-Z coatings over at least a fraction of the Mo PFCs in C-Mod for best performance together with the larger than expected D retention in Mo, give impetus for further high-Z PFC investigations to better predict the performance of un-coated tungsten surfaces in ITER and beyond

  2. Projectile-z3 and -z4 corrections to basic Bethe-Bloch stopping power theory and mean excitation energies of Al, Si, Ni, Ge, Se, Y, Ag and Au

    International Nuclear Information System (INIS)

    Porter, L.E.; Bryan, S.R.

    1980-01-01

    Three independent sets of measurements of the stopping power of solid elemental targets for alpha particles were previously analyzed in terms of basic Bethe-Bloch theory with the low velocity projectile-z 3 correction term included. These data for Al, Si, Ni, Ge, Se, Y, Ag and Au have now been analyzed with the Bloch projectile-z 4 term and a revised projectile-z 3 term incorporated in the Bethe-Bloch formula, the projectile-z 3 revision having been effected by variation of the single free parameter of the projectile-z 3 effect formalism. The value of this parameter, fixed at 1.8 in previous studies, which counteracts inclusion of the projectile-z 4 term is 1.3 +- 0.1 for all target elements except Si. (orig.)

  3. Novel trisubstituted benzimidazoles, targeting Mtb FtsZ, as a new class of antitubercular agents.

    Science.gov (United States)

    Kumar, Kunal; Awasthi, Divya; Lee, Seung-Yub; Zanardi, Ilaria; Ruzsicska, Bela; Knudson, Susan; Tonge, Peter J; Slayden, Richard A; Ojima, Iwao

    2011-01-13

    Libraries of novel trisubstituted benzimidazoles were created through rational drug design. A good number of these benzimidazoles exhibited promising MIC values in the range of 0.5-6 μg/mL (2-15 μM) for their antibacterial activity against Mtb H37Rv strain. Moreover, five of the lead compounds also exhibited excellent activity against clinical Mtb strains with different drug-resistance profiles. All lead compounds did not show appreciable cytotoxicity (IC(50) > 200 μM) against Vero cells, which inhibited Mtb FtsZ assembly in a dose dependent manner. The two lead compounds unexpectedly showed enhancement of the GTPase activity of Mtb FtsZ. The result strongly suggests that the increased GTPase activity destabilizes FtsZ assembly, leading to efficient inhibition of FtsZ polymerization and filament formation. The TEM and SEM analyses of Mtb FtsZ and Mtb cells, respectively, treated with a lead compound strongly suggest that lead benzimidazoles have a novel mechanism of action on the inhibition of Mtb FtsZ assembly and Z-ring formation.

  4. Developing plan and pre-conceptual design of target system for JAERI`s high intensity neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Kaminaga, Masanori; Haga, Katsuhiro; Ishikura, Syuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Fumito; Uchida, Shoji

    1997-11-01

    This paper presents an outline of developing plan of a target system and topics obtained by a pre-conceptual design, which aims to establish a technology base of the target system and to make clear a system concept. In the plan, two types of target - solid and mercury targets - are to be developed for a neutron scattering facility. Information obtained through the development shall be applied to designs of an irradiation and a transmutation facilities. Through the pre-conceptual design, system arrangement, scale etc. were made clear: total weight will be 12000 ton, and 26 beam lines with beam shutters will be equipped for 4 moderators. Engineering problems were also made clear through the design; high flux heat removal, dynamic stress caused by thermal shock and pressure wave, loop technology for the mercury target and a slurry moderator consisting of methane pellets and liquefied hydrogen. We are now constructing new test apparatuses and arranging computer codes for solving these problems. (author)

  5. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  6. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  7. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    Directory of Open Access Journals (Sweden)

    Chowdhury P.

    2016-01-01

    nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154, we have populated high angular momentum states in a series of Pu (Z = 94, Cm (Z = 96 and Cf (Z = 98 nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  8. Non-Linear Optical Studies On Sol-Gel Derived Lead Chloride Crystals Using Z-Scan Technique

    OpenAIRE

    Rejeena, I; Lillibai, B; Toms, Roseleena; Nampoori, VP N; Radhakrishnan, P

    2014-01-01

    In this paper we report the preparation, optical characterization and non linear optical behavior of pure lead chloride crystals. Lead chloride samples subjected to UV and IR irradiation and electric and magnetic fields have also been investigated Optical nonlinearity in these lead chloride samples were determined using single beam and high sensitive Z-scan technique. Non linear optical studies of these materials in single distilled water show reverse saturable absorption which makes th...

  9. Hemorrhages and hemostasis in guinea-pigs exposed to irradiation at high altitude

    International Nuclear Information System (INIS)

    Tartakovskij, V.N.; Daniyarov, S.B.

    1988-01-01

    Hemorrhagic intensity, hemostasis and blood vessel wall resistance to mechanical effects were studied in guinea-pigs exposed to whole-body irradiation (3.0 Gy). The animals were irradiated at low altitude (760 m above sea level) and at high altitude (3200 m above sea level) after 1 and 31 days of adaptation. It was demonstrated that hemorrhagic intensity in both groups of guinea-pigs irradiated at high altitude was significantly reduced in comparison with that at low altitude. The decrease of radiation-induced hemorrhages at high altitude is associated with less severe changes in thrombopoiesis, blood vessel wall and blood coagulation

  10. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  11. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  12. RERTR-12 Insertion 1 Irradiation Summary Report

    International Nuclear Information System (INIS)

    Perez, D.M.; Lillo, M.A.; Chang, G.S.; Woolstenhulme, N.E.; Roth, G.A.; Wachs, D.M.

    2012-01-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications. RERTR-12 insertion 1 includes the capsules irradiated during the first two irradiation cycles. These capsules include Z, X1, X2 and X3 capsules. The following report summarizes the life of the RERTR-12 insertion 1 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  13. RERTR-12 Insertion 2 Irradiation Summary Report

    International Nuclear Information System (INIS)

    Perez, D.M.; Chang, G.S.; Wachs, D.M.; Roth, G.A.; Woolstenhulme, N.E.

    2012-01-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  14. The HER2-binding affibody molecule (Z(HER2∶342₂ increases radiosensitivity in SKBR-3 cells.

    Directory of Open Access Journals (Sweden)

    Lina Ekerljung

    Full Text Available We have previously shown that the HER2-specific affibody molecule (Z(HER2∶342₂ inhibits proliferation of SKBR-3 cells. Here, we continue to investigate its biological effects in vitro by studying receptor dimerization and clonogenic survival following irradiation. We found that (Z(HER2∶342₂ sensitizes the HER2-overexpressing cell line SKBR-3 to ionizing radiation. The survival after exposure to (Z(HER2∶342₂ and 8 Gy (S(8Gy 0.006 was decreased by a factor four compared to the untreated (S(8Gy 0.023. The low HER2-expressing cell line MCF-7 was more radiosensitive than SKBR-3 but did not respond to (Z(HER2∶342₂. Treatment by (Z(HER2∶342₂ strongly increased the levels of dimerized and phosphorylated HER2 even after 5 minutes of stimulation. The monomeric Z(HER2∶342 does not seem to be able to induce receptor phosphorylation and dimerization or sensitize cells to irradiation.

  15. Radiological safety research of food irradiation with 7.5 MeV X-rays

    International Nuclear Information System (INIS)

    Yang Bin; Tang Weidong; Zhang Yue; Xu Tao; Jin Jianqiao; Ye Mingyang

    2012-01-01

    China and America both have 7.5 MeV high energy X-ray accelerator. The radiological safety of food irradiated with 7.5 MeV X-rays (bremsstrahlung) has been investigated. Samples of meat and meat ash were located in a large volume of fresh meat at the position of the highest photoneutron fluence and irradiated to an X-ray dose of 15 kGy, twice the maximum dose allowed by the US FDA for meat irradiation. An evaluation of the corresponding radiation exposure from ingestion of the irradiated product has been compared to natural background radiation. The paper concludes that the risk to individuals from intake of food irradiated with X-rays from 7.5 MeV electrons, even with a broad energy spectrum, would be trivial. The common target materials are Au, Ta and W. The U.S, requires only Au and Ta can be used as food irradiation target materials and China has not yet relevant provisions. The first 7.5 MeV accelerator for food irradiation in China is under built, and will do the explore research for the choice of target material. (authors)

  16. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E.; Rosen, M.; Glenzer, S.H.; Suter, L.J.; Girard, F.; Jadaud, J.P.; Schein, J.; Constantin, C.G.; Neumayer, P.; Landen, O.

    2008-01-01

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux

  17. Statistical approach for calculating opacities of high-Z plasmas

    International Nuclear Information System (INIS)

    Nishikawa, Takeshi; Nakamura, Shinji; Takabe, Hideaki; Mima, Kunioki

    1992-01-01

    For simulating the X-ray radiation from laser produced high-Z plasma, an appropriate atomic modeling is necessary. Based on the average ion model, we have used a rather simple atomic model for opacity calculation in a hydrodynamic code and obtained a fairly good agreement with the experiment on the X-ray spectra from the laser-produced plasmas. We have investigated the accuracy of the atomic model used in the hydrodynamic code. It is found that transition energies of 4p-4d, 4d-4f, 4p-5d, 4d-5f and 4f-5g, which are important in laser produced high-Z plasma, can be given within an error of 15 % compared to the values by the Hartree-Fock-Slater (HFS) calculation and their oscillator strengths obtained by HFS calculation vary by a factor two according to the difference of charge state. We also propose a statistical method to carry out detail configuration accounting for electronic state by use of the population of bound electrons calculated with the average ion model. The statistical method is relatively simple and provides much improvement in calculating spectral opacities of line radiation, when we use the average ion model to determine electronic state. (author)

  18. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  19. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  20. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher