WorldWideScience

Sample records for irradiated non-oxide ceramics

  1. Ion irradiation studies of oxide ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1988-01-01

    This paper presents the initial results of an investigation of the depth-dependent microstructures of three oxide ceramics following ion implantation to moderate doses. The implantations were performed using ion species that occur as cations in the target material; for example, Mg + ions were used for MgO and MgAl 2 O 4 (spinel) irradiations. This minimized chemical effects associated with the implantation and allowed a more direct evaluation to be made of the effects of implanted ions on the microstructure. 11 refs., 14 figs

  2. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  3. Radiation-disorder and aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1992-01-01

    This final technical report documents the accomplishments of the program of research entitled ''Radiation Disorder and Aperiodicity in Irradiated Ceramics'' for the period June 22, 1989--June 21, 1992. This research forms the latest part on an on-going program, begun at MIT in 1983 under DOE support, which has had as its objectives investigation of the responses in radiation environments of ceramics heavily-irradiated with electrons, neutrons and ions, with potential applications to fusion energy technology and high-level nuclear waste storage. Materials investigated have included SiO 2 , MgAl 2 O 4 , Al 23 O 27 N 5 , SiC, BeO, LiAlO 2 , Li 2 ZrO 3 , CaTiO 3 KTaO 3 and Ca(Zr, Pu)Ti 2 O 7 . The program initially proposed for 1989 had as its major objectives two main thrusts: (1) research on defect aggregation in irradiated non-oxide ceramics, and (2) research on irradiation-induced amorphization of network silicas and phosphates

  4. Environmental Effects on Non-oxide Ceramics

    Science.gov (United States)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  5. Overall viscoplastic behavior of non-irradiated porous nuclear ceramics

    International Nuclear Information System (INIS)

    Monerie, Yann; Gatt, Jean-Marie

    2006-01-01

    This paper deals with the overall behavior of nonlinear viscous and porous nuclear ceramics. Bi-viscous isotropic porous materials are considered: the matrix is subjected to two power-law viscosities with different exponents related to two stationary temperature-activated creeping mechanisms (scattering-creep and dislocation-creep), and this matrix contains a low porosity volume fraction. The overall behavior of these types of composite materials is obtained with the help of quadratic strain-rate potentials combined with experimental-based coupling function depending on stress and temperature. For each creeping mechanism, the hollow sphere model of [Michel, J.-C., Suquet, P., 1992. The constitutive law of nonlinear viscous and porous materials. Journal of the Mechanics and Physics of Solids 40, 783-812] is used. Mechanical parameters of the resulting model are identified and validated in the particular case of non-irradiated uranium dioxide nuclear ceramics. This model predicts, under pure thermo-mechanical loading, a variation of the material volume and a variation of the porosity volume fraction (the so-called densification or swelling). (authors)

  6. Ion Irradiation Damage in Zirconate and Titanate Ceramics for Pu Disposition

    International Nuclear Information System (INIS)

    Stewart, Martin W.; Begg, Bruce D.; Finnie, K.; Colella, Michael; Li, H.; McLeod, Terry; Smith, Katherine L.; Zhang, Zhaoming; Weber, William J.; Thevuthasan, Suntharampillai

    2004-01-01

    In this paper, we discuss the effect of ion irradiation on pyrochlore-rich titanate and defect-fluorite zirconate ceramics designed for plutonium immobilization. Samples, with Ce as an analogue for Pu, were made via oxide routes and consolidated by cold-pressing and sintering. Ion irradiation damage was carried out with 2 MeV Au2+ ions to a fluence of 5 ions nm-2 in the accelerator facilities within the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. Irradiated and non-irradiated samples were examined by x-ray diffraction, scanning and transmission electron microscopy, x-ray photoelectron and infrared spectroscopy, and spectroscopic ellipsometry. Samples underwent accelerated leach testing at pH 1.75 (nitric acid) at 90 C for 28 days. The zirconate samples were more ion-irradiation damage resistant than the titanate samples, showing little change after ion-irradiation whereas the titanate samples formed an amorphous surface layer ∼ 500 nm thick. While all samples had high aqueous durability, the titanate leach rate was ∼ 5 times that of the zirconate. The ion-irradiation increased the leach rate of the titanate without impurities by ∼ 5 times. The difference in the leach rates between irradiated and unirradiated zirconate samples is small. However, the zirconates were less able to incorporate impurities than the titanate ceramics and required higher sintering temperatures, ∼ 1500 C compared to 1350 C for the titanates.

  7. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  8. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  9. Influence of IR-laser irradiation on α-SiC-chromium silicides ceramics

    International Nuclear Information System (INIS)

    Vlasova, M.; Marquez Aguilar, P.A.; Resendiz-Gonzalez, M.C.; Kakazey, M.; Bykov, A.; Gonzalez Morales, I.

    2005-01-01

    This project investigated the influence of IR-laser irradiation (λ = 1064 nm, P = 240 mW) on composite ceramics SiC-chromium silicides (CrSi 2 , CrSi, Cr 5 Si 3 ) by methods of X-ray diffraction, electron microscopy, atomic force microscopy, and X-ray microanalysis. Samples were irradiated in air. It was established that a surface temperature of 1990 K was required to melt chromium silicides, evaporate silicon from SiC, oxidize chromium silicides, and enrich superficial layer by carbon and chromium oxide

  10. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  11. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  12. Effects of irradiation on ceramics for fusion-reactor applications

    International Nuclear Information System (INIS)

    Porter, D.L.

    1982-12-01

    The purpose of this study, coordinated with efforts of LANL and Grumman Aircraft, was to lay some basic groundwork to study the irradiation effects on the engineering properties of some useful classes of ceramic materials; ANL's efforts were pointed towards multiphase materials (glass ceramics and partially-stabilized zirconias). The materials were irradiated at 400 and 550 0 C to fast (E > 0.1 MeV) neutron fluences of approx. 2 x 10 22 n/cm 2 . Fluorophlogapite mica based glass ceramics (Macor, etc.) were found susceptible to weakening due to void formtion between mica plates. Composition variations within this class of glass ceramics seemed to cause sharp variations in the magnitude of the effect. Lithium silicate glass ceramic (ReX) showed sharp contrasts between the effects of ionization irradiation and displacement damage, neutron irradiation having little effect on the ReX structure while electron irradiation creating lithium silicate vitrification and rapid structural annealing

  13. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  14. The influence of {gamma}-irradiation on electrophysical properties of spinel-based oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kovalskiy, A.P.; Shpotyuk, O.I. E-mail: karat@ipm.lviv.ua; Hadzaman, I.V.; Mrooz, O.Ya.; Vakiv, M.M

    2000-05-02

    The influence of {sup 60}Co {gamma}-irradiation with 1.25 MeV average energy and 1 MGy absorbed dose on electrophysical properties of Cu-, Ni-, Co- and Mn-based spinel ceramic materials in the Cu{sub x}Ni{sub 1-x-y}Co{sub 2y}Mn{sub 2-y}O{sub 4} (0,1{<=}x{<=}0,8;0,1{<=}y{<=}0,9-x) system is investigated. The {gamma}-induced increasing of the electrical resistance is observed for the investigated samples of various compositions. It is supposed that these changes are explained by cationic redistribution in the spinel sublattices of the ceramics.

  15. The influence of γ-irradiation on electrophysical properties of spinel-based oxide ceramics

    International Nuclear Information System (INIS)

    Kovalskiy, A.P.; Shpotyuk, O.I.; Hadzaman, I.V.; Mrooz, O.Ya.; Vakiv, M.M.

    2000-01-01

    The influence of 60 Co γ-irradiation with 1.25 MeV average energy and 1 MGy absorbed dose on electrophysical properties of Cu-, Ni-, Co- and Mn-based spinel ceramic materials in the Cu x Ni 1-x-y Co 2y Mn 2-y O 4 (0,1≤x≤0,8;0,1≤y≤0,9-x) system is investigated. The γ-induced increasing of the electrical resistance is observed for the investigated samples of various compositions. It is supposed that these changes are explained by cationic redistribution in the spinel sublattices of the ceramics

  16. Neutron irradiation effects of iron alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Takenaka, Minoru; Hasegawa, Masayuki.

    1991-01-01

    Positron annihilation angular correlation measurements have been performed for the neutron irradiated various metals and ceramics in order to obtain the information of the microvoids and positronium formation in them. Positronium (Ps) formation was observed in Nb containing a small amount of oxygen and Fe-15%Cr-16%Ni-0.006%B 10 . In practical steels such as JPCA and JFMS no Ps formation was observed. High temperature deformation might induce microvoids into metals, but the positron annihilation angular correlation measurements could not confirm this. In non-metallic materials neutron irradiated no Ps formation has so far been observed. (author)

  17. UV irradiation-induced methionine oxidation in human skin keratins: Mass spectrometry-based non-invasive proteomic analysis.

    Science.gov (United States)

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-02-05

    Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation

  18. ESR investigations of gamma irradiated beryllium ceramics

    International Nuclear Information System (INIS)

    Ryabikin, Yu.A.; Polyakov, A.I.; Petukhov, Yu.V.; Bitenbaev, M.I.; Zashkvara, O.V.

    2000-01-01

    In this report the result of ESR- investigation of kinetics of radiation paramagnetic defects accumulated in beryllium ceramics under gamma irradiation are presented. The data on quantum yield and destruction rate constants of these defects under ionizing irradiation are obtained. (orig.)

  19. ESR investigations of gamma irradiated beryllium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ryabikin, Yu A; Polyakov, A I; Petukhov, Yu V; Bitenbaev, M I; Zashkvara, O V [Physical-Technical Inst., Almaty (Kazakhstan)

    2000-04-01

    In this report the result of ESR- investigation of kinetics of radiation paramagnetic defects accumulated in beryllium ceramics under gamma irradiation are presented. The data on quantum yield and destruction rate constants of these defects under ionizing irradiation are obtained. (orig.)

  20. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  1. Testing of neutron-irradiated ceramic-to-metal seals

    International Nuclear Information System (INIS)

    Brown, R.D.; Clinard, F.W. Jr.; Lopez, M.R.; Martinez, H.; Romero, T.J.; Cook, J.H.; Barr, H.N.; Hittman, F.

    1990-01-01

    This paper reports on ceramic-to-metal seals prepared by sputtering a titanium metallizing layer onto ceramic disks and then brazing to metal tubes. The ceramics used were alumina, MACOR, spinel, AlON, and a mixture of Al 2 O 3 and Si 3 N 4 . Except for the MACOR, which was brazed to a titanium tube, the ceramics were brazed to niobium tubes. The seals were leak tested and then sent to Los Alamos National Laboratory, where they were irradiated using the spallation neutron source at the Los Alamos Meson Physics Facility. Following irradiation for ∼ 90 days to a fluence of 2.8 x 10 23 n/m 2 , the samples were moved to hot cells and again leak tested. Only the MACOR samples showed any measurable leaks. One set of samples was then pressurized to 6.9 MPa (1000 psi) and subsequently leak tested. No leaks were found. Bursting the seals required hydrostatic pressures of at least 34 MPa (5000 psi). The high seal strength and few leaks indicate that ceramic-to-metal seals can resist radiation-induced degradation

  2. Effect of irradiation-induced defects on fusion reactor ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Structural, thermal, and electrical properties critical to performance of ceramics in a fusion environment can be profoundly altered by irradiation effects. Neutron damage may cause swelling, reduction of thermal conductivity, increase in dielectric loss, and either reduction or enhancement of strength depending on the crystal structure and defect content of the material. Absorption of ionizing energy inevitably leads to degradation of insulating properties, but these changes can be reduced by alterations in structural or compositional makeup. Assessment of the irradiation response of candidate ceramics Al 2 O 3 , MgAl 2 O 4 , SiC and Si 3 N 4 shows that each may find use in advanced fusion devices. The present understanding of irradiation-induced defects in ceramics, while far from complete, nevertheless points the way to methods for developing improved materials for fusion applications

  3. Thoria-fuel irradiation. Program to irradiate 80% ThO2/20% UO2 ceramic pellets at the Savannah River Plant

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1982-02-01

    This report describes the fabrication of proliferation-resistant thorium oxide/uranium oxide ceramic fuel pellets and preparations at the Savannah River Laboratory (SRL) to irradiate those materials. The materials were fabricated in order to study head end process steps (decladding, tritium removal, and dissolution) which would be required for an irradiated proliferation-resistant thorium based fuel. The thorium based materials were also to be studied to determine their ability to withstand average commercial light water reactor (LWR) irradiation conditions. This program was a portion of the Thorium Fuel Cycle Technology (TFCT) Program, and was coordinated by the Oak Ridge National Laboratory (ORNL) under the Consolidated Fuel Reprocessing Program (CFRP). The fuel materials were to be irradiated in a Savannah River Plant (SRP) reactor at conditions simulating the heat ratings and burnup of a commercial LWR. The program was terminated due to a de-emphasis of the TFCT Program, following completion of the fabrication of the fuel and the modified assemblies which were to be used in the SRP reactor. The reactor grade ceramic pellets were fabricated for SRL by Battelle, Pacific Northwest Laboratories. Five fuel types were prepared: 100% UO 2 pellets (control); 80% ThO 2 /20% UO 2 pellets; approximately 80% ThO 2 /20% UO 2 + 0.25 CaO (dissolution aid) pellets; 100% UO 2 hybrid pellets (prepared from sol-gel microspheres); and 100% ThO 2 pellets (control). All of the fuel materials were transferred to SRL from PNL and were stored pending a subsequent reactivation of the TFCT Programs

  4. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  5. Growth kinetics of dislocation loops in irradiated ceramic materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Kinoshita, C.

    2002-01-01

    Ceramic materials are expected to be applied in the future fusion reactor as radio frequency (RF) windows, toroidal insulating breaks and diagnostic probes. The radiation resistance of ceramic materials, degradation of the electrical properties and radiation induced conductivity of these materials under neutron irradiation are determined by the kinetics of the accumulation of point defects in the matrix and point defect cluster formation (dislocation loops, voids, etc.). Under irradiation, due to the ionization process, excitation of electronic subsystem and covalent type of interaction between atoms the point defects in ceramic materials are characterized by the charge state (e.g. an F + center, an oxygen vacancy with a single trapped electron) and the effective charge. For the investigation of radiation resistance of ceramic materials for future fusion applications it is very important to understand the physical mechanisms of formation and growth of dislocation loops and voids under irradiation taking into account in this system the effective charge of point defects. In the present paper the physical mechanisms of dislocation loop growth in ceramic material are investigated. For this aim a theoretical model is suggested for the description of the kinetics of point defect accumulation in the matrix taking into account the charge state of the point defects and the effect of an electric field on diffusion migration process of charged point defects. A self-consistent system of kinetic equations describing the generation of electrical fields near dislocation loops and diffusion migration of charged point defects in elastic and electrical fields is formulated. The solution of the kinetic equations allows to find the growth rate of dislocation loops in ceramic materials under irradiation taking into account the charge state of the point defects and the effect of electric and elastic stress fields near dislocation loop on the diffusion processes

  6. On the use of dental ceramics as a possible second-line approach to accident irradiation dosimetry

    International Nuclear Information System (INIS)

    Davies, J.E.

    1979-01-01

    Recent development in dental ceramic production has resulted in natural or depleted uranium, used for over half a century to mimic the fluorescence of natural teeth, being substituted in such ceramics by non-radioactive fluorescent materials. This creates the possibility of using dental ceramics incorporating the latter as second-line dosimeters in cases of accidental irradiation. This pilot study shows the feasbility of such an approach using both thermally stimulated exoelectron and thermoluminescent techniques. In conclusion, it is considered that it would be of interest to continue this investigation of dental ceramic materials as second-line accident dosimeters

  7. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. Structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  8. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  9. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  10. Some physical properties of irradiated and non-irradiated oxide glasses containing uranium

    International Nuclear Information System (INIS)

    Simon, V.; Ardelean, I.; Simon, S.; Cozar, O.; Milea, I.; Lupsa, I.; Mih, V.

    1995-01-01

    The x U O 3 (1-x) [2 P 2 O 5 · Na 2 O] non-irradiated and gamma irradiated glasses (0 3+ , U 4+ and U 5+ ions. The gamma irradiation induces paramagnetic defects around the glass network forming sites occupied by phosphorous atoms. The non-irradiated samples are weak paramagnetic up to x = 0.1. For higher U O 3 concentration (0.1 < x ≤ 0.2) the magnetic measurements indicated a larger number of paramagnetic ions which are magnetically isolated and exhibit a Curie type behaviour. (author) 5 figs., 14 refs

  11. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. In this paper, structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  12. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  13. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  14. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  15. Laser beam joining of non-oxidic ceramics for ultra high temperature resistant joints

    International Nuclear Information System (INIS)

    Lippmann, W.; Knorr, J.; Wolf, R.; Reinecke, A.M.; Rasper, R.

    2004-01-01

    The excellent technical properties of silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) ceramics, such as resistance to extreme temperatures, oxidation, mechanical wear, aggressive chemical substances and radioactive radiation and also its high thermal conductivity and good temperature-shock resistance, make these ceramics ideally suited for use in the field of nuclear technology. However, their practical use has been limited so far because of the unavailability of effective joining techniques for these ceramics, especially for high temperature applications. A new joining technology (CERALINK registered ) has been developed in a network project which allowed high temperature resistant and vacuum-tight joining of SiC or Si 3 N 4 ceramics. A power laser is used as heat source, which makes it possible to join ceramic components in free atmosphere in combination with a pure oxidic braze filler. As no furnace is necessary, there are no limitations on the component dimensions by the furnace-geometry. During the joining process, the heated area can be limited to the seam area so that this technology can also be used to encapsulate materials with a low melting point. The seam has a high mechanical strength, it is resistant to a wide range of chemicals and radiation and it is also vacuum-tight. The temperature resistance can be varied by variation of the braze filler composition - usually between 1,400 C and >1,600 C. Beside the optimum filler it is also important to select the suitable laser wavelength. The paper will demonstrate the influence of different wave lengths, i. e. various laser types, on the seam quality. Examples are chosen to illustrate the strengths and limitations of the new technology

  16. Updated FY12 Ceramic Fuels Irradiation Test Plan

    International Nuclear Information System (INIS)

    Nelson, Andrew T.

    2012-01-01

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  17. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  18. Structural behaviour of nitrogen in oxide ceramics

    International Nuclear Information System (INIS)

    Ghauri, K.M.

    1997-01-01

    The solubility of nitrogen in molten oxides has significant consideration for two quite different types of engineering materials. The implication of a knowledge of the role of nitrogen in these oxides for refining high nitrogen steels in obvious but similar nitrogen-bearing oxide melts are of critical importance in the densification of silicon nitride ceramics. Present paper discusses structural behaviour and phase equilibria qualitatively in the light of knowledge available on slag structure through infrared and x-ray diffraction. Nitrogen solubility in glasses and related sialon based ceramics may be of paramount importance to understand the role of nitrogen in these materials as these oxides are similar in composition, structure and characteristics to sintering glasses in nitrogen ceramics. It is quite logical to infer that the same oxide model can be applied in order to massively produce nitrogen alloyed steels which are actively competing to be the materials of the next century. (author)

  19. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  20. First results on irradiation of ceramic parallel plate chambers with gammas and neutrons

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; Dajko, G.; D'Alessandro, R.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Molnar, J.; Pojidaev, V.; Salicio, J.M.; Tanko, L.; Vesztergombi, G.

    1996-01-01

    Ceramic parallel plate chambers were irradiated with gamma rays and neutrons. Results on radiation resistance are presented after 60 Mrad gamma and 0.5.10 16 neutrons per cm 2 irradiation of the detector surface. Results of activation analysis of chambers made of two different ceramic materials are also presented. (orig.)

  1. Lutetium oxide-based transparent ceramic scintillators

    Science.gov (United States)

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  2. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  3. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reduction of P2O5 in the glass-ceramic where the P2O5 is to form Li3PO4 nuclei for growth of high expansion crystalline SiO2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.

  4. Heavy ion irradiation effects of brannerite-type ceramics

    International Nuclear Information System (INIS)

    Lian, J.; Wang, L.M.; Lumpkin, G.R.; Ewing, R.C.

    2002-01-01

    Brannerite, UTi 2 O 6 , occurs in polyphase Ti-based, crystalline ceramics that are under development for plutonium immobilization. In order to investigate radiation effects caused by α-decay events of Pu, a 1 MeV Kr + irradiation on UTi 2 O 6 , ThTi 2 O 6 , CeTi 2 O 6 and a more complex material, composed of Ca-containing brannerite and pyrochlore, was performed over a temperature range of 25-1020 K. The ion irradiation-induced crystalline-to-amorphous transformation was observed in all brannerite samples. The critical amorphization temperatures of the different brannerite compositions are: 970 K, UTi 2 O 6 ; 990 K, ThTi 2 O 6 ; 1020 K, CeTi 2 O 6 . The systematic increase in radiation resistance from Ce-, Th- to U-brannerite is related to the difference of mean atomic mass of A-site cation in the structure. As compared with the pyrochlore structure-type, brannerite phases are more susceptible to ion irradiation-induced amorphization. The effects of structure and chemical compositions on radiation resistance of brannerite-type and pyrochlore-type ceramics are discussed

  5. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1995-01-01

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to ∼7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of ∼0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe 2+ ions at RT produced amorphization in the implanted ion region after damage levels of ∼1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He + ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC

  6. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  7. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  8. Radiation-induced aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1993-02-01

    The experimental program is designed to reveal details of the metamict (amorphization, or crystal-to-glass) transformation in irradiated ceramics (silica compounds, less-connected lead phosphates). The silica compounds were amorphized using electrons, neutrons, and ions, while the phosphates were amorphized using ions (primarily) and neutrons. Energy-filtered electron microdiffraction, high-resoltuion transmission electron microscopy, and high-performance liquid-phase chromatography are being used

  9. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  10. Amorphization of complex ceramics by heavy-particle irradiations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO 2 ) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO 4 ]; the hexagonal orthosilicate/phosphate apatite structure-type [X 10 (ZO 4 ) 6 (F,Cl,O) 2 ]; the isometric pyrochlores [A 1-2 B 2 O 6 (O,OH,F) 0-1p H 2 O] and its monoclinic derivative zirconotite [CaZrTi 2 O 7 ]; the olivine (derivative - hcp) structure types, α- VI A 2 IV BO 4 , and spinel (ccp), γ- VI A 2 IV BO 4

  11. Light energy attenuation through orthodontic ceramic brackets at different irradiation times.

    Science.gov (United States)

    Santini, Ario; Tiu, Szu Hui; McGuinness, Niall J P; Aldossary, Mohammed Saeed

    2016-09-01

    To evaluate the total light energy (TLE) transmission through three types of ceramic brackets with, bracket alone and with the addition of orthodontic adhesive, at different exposure durations, and to compare the microhardness of the cured adhesive. Three different makes of ceramic brackets, Pure Sapphire(M), Clarity™ ADVANCED(P) and Dual Ceramic(P) were used. Eighteen specimens of each make were prepared and allocated to three groups (n = 6). MARC(®)-resin calibrator was used to determine the light curing unit (LCU) tip irradiance (mW/cm(2)) and TLE (J/cm(2)) transmitted through the ceramic brackets, and through ceramic bracket plus Transbond™ XT Light Cure Adhesive, for 5, 10 and 20 s. Vickers-hardness values at the bottom of the cured adhesive were determined. Statistical analysis used one-way analysis of variance (ANOVA); P = 0.05. TLE transmission rose significantly among all samples with increasing exposure durations. TLE reaching the adhesive- enamel interface was less than 10 J/cm(2), and through monocrystalline and polycrystalline ceramic brackets was significantly different (P brackets. Clinicians are advised to measure the tip irradiance of their LCUs and increase curing time beyond 5 s. Orthodontic clinicians should understand the type of light curing device and the orthodontic adhesive used in their practice.

  12. Variation of the dimensions and the strength of electrical ceramics during irradiation

    International Nuclear Information System (INIS)

    Blaunshtein, I.M.; Kishinevskaya, M.B.; Muminov, M.I.

    1988-01-01

    Changes were studied in the linear dimensions and the ultimate bend strength of a wide range or ceramic materials (MK and GB7 high-alumina ceramics, the UF-46 mullite-corundum ceramic, SNTs and SK-1 steatite ceramics, and the glasses that have the same chemical composition as that of the glass phase of the GB-7 and UF-46 ceramics) following irradiation with a gamma beam from a Co 60 source and in the field of mixed gamma-neutron radiation from a VVR-SM reactor up to the maximum doses

  13. HT oxidation activity of soil irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Tjahaja, P.I.; Takashima, Yoshimasa

    1992-01-01

    The HT oxidation activity was examined for soils irradiated with 60 Co γ-rays at various doses. The HT oxidation rate decreased with increase of initial H 2 concentration, indicating a similar oxidation mechanism between HT and H 2 . Irradiated soils showed decrease of oxidation activity with dose suggests that HT and H 2 oxidation activities were affected by sterilization with γ-rays. The decline of the oxidation activity with dose was analyzed by a composite of two components with different radiosensitivity and they were considered to be activities of soil microorganisms and abiotic soil enzymes. The oxidation activity due to soil microorganisms would be important at low dose range and more radioresistant abiotic soil enzymes would be responsible for the oxidation activity observed at more than several kGy. In non-irradiated soil about half of the oxidation activity was considered resulting from abiotic soil enzymes. (author)

  14. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  15. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  16. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  17. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  18. Radiation effects in cubic zirconia: A model system for ceramic oxides

    Science.gov (United States)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  19. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    International Nuclear Information System (INIS)

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  20. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  1. Effect of millimeter-wave irradiation on cation interdiffusion in the calcium titanate/strontium titanate ceramic couple

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Kamakura, Yukari; Teranishi, Takashi; Hayashi, Hidetaka

    2013-01-01

    Interdiffusion between the perovskite CaTiO 3 and SrTiO 3 diffusion couple was investigated in an annealing method using 24-GHz MMW irradiation as the heating source. Interdiffusion was enhanced by MMW irradiation, and the apparent activation energy for interdiffusion decreased 54%, compared with conventional furnace heating. The intrinsic diffusions for both Ca 2+ and Sr 2+ were also enhanced, although their relative degrees of enhancement differed, partly as a result of differences in MMW absorptivity between the two ceramics. The observed isothermal diffusion enhancement could be ascribed to a nonthermal effect, apart from the differential degree of enhancement between the transport species. - Highlights: ► Interdiffusion was enhanced by MMW (millimeter-wave) irradiation. ► At the same time the apparent activation energy decreased. ► The enhancement degrees were different between the transport species. ► The observed diffusion enhancement can be ascribed to a nonthermal effect. ► MMW irradiation could be an effective means of preparing novel complex oxides

  2. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    International Nuclear Information System (INIS)

    Feng, Xi; Ahn, Dong Uk

    2016-01-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant. - Highlights: • Irradiation had little effects on lipid oxidation of ready-to-eat cured turkey. • 4.5 kGy irradiation increased protein oxidation. • Irradiated samples were isolated due to Strecker/radiolytic degradation products. • 1.5 kGy irradiation had limited effects on the volatile profile of turkey sausages. • Dimethyl disulfide can be used as a potential marker for irradiated meat products.

  3. Electrical in situ and post-irradiation properties of ceramics relevant to fusion irradiation conditions

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Zinkle, S.J.

    2002-01-01

    Electrical properties of ceramic candidate materials for the next-generation nuclear fusion devices under relevant irradiation conditions are reviewed. A main focal point is placed on the degradation behavior of the electrical insulating ability during and after irradiation. Several important radiation induced effects play important roles: radiation induced conductivity, thermally stimulated electrical conductivity, radiation induced electrical charge separation, and radiation induced electromotive force. These phenomena will interact with each other under fusion relevant irradiation conditions. The design of electrical components for the next-generation fusion devices should take into account these complicated interactions among the radiation induced phenomena

  4. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  5. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    International Nuclear Information System (INIS)

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  6. Study on ceramic breeder and related materials by means of work function measurement under irradiation

    International Nuclear Information System (INIS)

    Luo, G.N.; Terai, T.; Yamawaki, M.; Yamaguchi, K.

    2002-01-01

    Ceramic breeder materials, Li 2 O, LiAlO 2 and Li 4 SiO 4 , under irradiation have been studied using a Kelvin probe that measures work function changes of materials. Surface charging was observed to influence greatly the probe output, which can be explained qualitatively employing a model concerning induction electric field due to external field and free charges on ceramic surface. It is found that the insulating ceramics could not be studied properly with the Kelvin probe. A probable solution is to heat the ceramics, so as to raise their electric conductivities high enough to root out the surface charging. Also briefly discussed is the application of the probe to metals under ion irradiation. (orig.)

  7. The radiolysis of lithium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J; Supe, A; Kizane, G; Tiliks, J Jr [Latvia Univ., Riga (Latvia). Dept. of Chemistry; Grishmanov, V; Tanaka, S

    1998-03-01

    The radiolysis of Li{sub 2}O ceramics exposed to accelerated electrons (5 MeV) at 380 K was studied in the range of high absorbed doses up to 250 MGy. The formation of radiation defects (RD) and radiolysis products (RP) was demonstrated to occur simultaneously in the regions of (1) the regular crystalline lattice and (2) an enhanced content of the intrinsic defects and impurities. The production of the electronic RD and RP is more efficient in the region of the defected lattice than that at the site of the regular crystalline lattice. However, the stability of RD and RP formed in the region of the intrinsic defects is far less than those produced at the crystalline lattice, since most of the first mentioned RD and RP disappears with irradiation dose due to the radiation stimulated recombination. By this means the enhanced quantity of RD and RP is localized in the Li{sub 2}O ceramics irradiated to absorbed dose of 40-50 MGy, and hence this can influence the tritium release parameters. As soon as the intrinsic defects have been consumed in the production of RD and RP and the recombination of unstable electronic RD and RP takes place (at dose of {approx}100 MGy), the radiolysis of Li{sub 2}O ceramics occurs only at the crystalline lattice. Furthermore, the concentration of RD and RP increases monotonically and tends to the steady-state level. (author)

  8. Effect of irradiation on lipid oxidation in eviscerated chicken carcasses during storage

    International Nuclear Information System (INIS)

    Hassan, I.M.; Hussein, M.F.; Mahmoud, A.A.; Hegazy, R.A.

    1988-01-01

    Oxidative changes induced in pectoralis major muscle of chicken after irradiation treatments with 0,6,10 and 20 KGy in both non frozen or frozen conditions during subsequent storage were investigated. Ultraviolet (UV) absorption, peroxides and thiobarbituric reactive substances increased in chicken lipids with increasing irradiation doses. These oxidative changes are greater in irradiated refrigerated (4 ± 1°C) than in irradiated frozen (-20°C) chicken lipids during storage. It was found the peroxides and TBA reactive substances do not accumulate as a stable end products of fat oxidation but reach a maximum during storage followed by gradual declining. The UV absorption provides an objective measure of chicken lipids autoxidation suitable for following the progress of autoxidation of irradiated chicken during subsequent non frozen (4 ± 1°C) or frozen (-20°C) storage. The extent of Maillard-like browning was followed in both unirradiated and irradiated samples during storage. All tested objective parameters correlated well with sensory assessment of odour particularly when irradiation dose was increased as well as in frozen samples

  9. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    OpenAIRE

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are created by ion implantation followed by thermal annealing. The ceramic oxides MgO and Al2O3 are used as embedding materials because of their stability and optical transparency. All clusters were cre...

  10. Effects of irradiation on color and lipid oxidation of prosciutto

    International Nuclear Information System (INIS)

    Kong Qiulian; Qi Wenyuan; Yue Ling; Chen Zhijun; Bao Yingzi; Dai Xudong; Xu Yun

    2012-01-01

    This study dealt with the effect of irradiation on the color, irradiation odor and lipid oxidation of prosciutto crudo. The hams were irradiated by γ-ray and electronic beam (EB). Changes of color, irradiation odor, TBA value (TBARS), peroxide value (POV), carbonyl value and conjugated diene value were analyzed and compared with non-irradiated hams. Results showed that color index (a * ) of control, γ-ray irradiated and EB irradiated were 14.39, 9.45 and 11.71 respectively. The ratios of a * /b * were different with the type of rays. The ratio of a * /b * of EB irradiation was same with control, while that of γ-ray irradiation was decreased apparently. γ-ray irradiation had been shown to have apparently detrimental effect on the color and odor of hams, while EB irradiation had little detrimental effect. Irradiation increased POV and conjugated diene value, but the amounts of lipid oxidation products (TBARS, carbonyl value) were less than nonirradiated hams. (authors)

  11. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  12. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  13. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Hou, Xiuli [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Zhiping; Su, Jingxin; Han, Zhiyong [College of Science, Civil Aviation University of China, Tianjin 300300 (China)

    2014-10-30

    Highlights: • The original coarse surface was re-melted by pulsed electron beam irradiation. • Very fine grains were homogeneously dispersed on the irradiated coat surface. • A compact Al{sub 2}O{sub 3} scale was formed in irradiated TBCs at the onset of oxidation. • The selective oxidation of Al element avoided the formation of other oxides. • The irradiated coating has a much higher oxidation resistance. - Abstract: Thermal sprayed CoCrAlY bond coat irradiated by high-current pulsed electron beam (HCPEB) and thermal barrier coatings (TBCs) prepared with the irradiated bond coat and the ceramic top coat were investigated. The high temperature oxidation resistance of these specimens was tested at 1050 °C in air. Microstructure observations revealed that the original coarse surface of the as-sprayed bond coat was significantly changed as the interconnected bulged nodules with a compact appearance after HCPEB irradiation. Abundant Y-rich alumina particulates and very fine grains were dispersed on the irradiated surface. After high temperature oxidation test, the thermally grown oxide (TGO) in the initial TBCs grew rapidly and was comprised of two distinct layers: a large percentage of mixed oxides in the outer layer and a relatively small portion of Al{sub 2}O{sub 3} in the inner layer. Severe local internal oxidation and extensive cracks in the TGO layer were discovered as well. Comparatively, the irradiated TBCs exhibited thinner TGO layer, slower TGO growth rate, and homogeneous TGO composition (primarily consisting of Al{sub 2}O{sub 3}). The results indicate that TBCs with the irradiated bond coat have a much higher oxidation resistance.

  14. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  15. Behavior of high Tc-superconductors and irradiated defects under reactor irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Yoshida, Hiroyuki.

    1991-01-01

    It has been well known that the lattice defects of various types are introduced in ceramics without exception, and exert large effect to the function of these materials. Among oxides, the electronic materials positively using oxygen defect control have been already put in practical use. Also in the oxide high temperature superconductors which are Perovskite type composite oxides, the superconductive characteristics are affected largely by the concentration of the oxygen composing them. This is regarded as an important factor for causing superconductivity, related with the oxygen cavities arising at this time and the carriers bearing superconductivity. In this study, the irradiation effect with relatively low dose, the measurement under irradiation, the effect of irradiation temperature, and the effect of radiation quality were evaluated by the irradiation of YBCO, EBCO and LBCO. The experimental method, and the irradiation effect at low temperature and normal temperature, the effect of Co-60 gamma ray irradiation instead of reactor irradiation are reported. (K.I.)

  16. The effect of irradiation of the thermal conductivity of lithium ceramics

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, D.E.

    1987-01-01

    An apparatus for measuring the thermal conductivity of irradiated lithium ceramics to 900 0 C was designed, fabricated, and tested. Special attention was necessary in order to accommodate tritium released during the high-temperature measurements

  17. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  18. Ceramic media amended with metal oxide for the capture of viruses in drinking water.

    Science.gov (United States)

    Brown, J; Sobsey, M D

    2009-04-01

    Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.

  19. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  20. Effect of soy sauce on lipid oxidation of irradiated pork patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang; Choi, Ji-Hun; Lee, Mi-Ai; Song, Dong-Heon; Kim, Hack-Youn; Lee, Ju-Woon; Kim, Cheon-Jei

    2013-01-01

    This study was conducted to find out the antioxidant effect of the soy sauce on lipid oxidation of electron beam irradiated pork patties. The pork patties prepared with sodium chloride or soy sauce solution at identical salt concentrations were irradiated at 0 or 5 kGy, and peroxide value, conjugated diene, 2-thiobarbituric acid, and free fatty acid values were evaluated for 10 days (4 °C). The irradiated pork patties treated with soy sauce showed the lowest peroxide value and 2-thiobarbituric acid value at the end of storage compared to those prepared with sodium chloride. The irradiated pork patties formulated with soy sauce and 0.5% ascorbic acid had similar 2-thiobarbituric acid and free fatty acid values compared to those of the non-irradiated pork patties treated with sodium chloride. Our results suggested that the soy sauce can retard the lipid oxidation of irradiated pork patty, and a synergistic effect between soy sauce and ascorbic acid was observed. - Highlights: • Antioxidant effect of soy sauce on irradiated pork patties was studied. • The soy sauce can retard lipid oxidation of the irradiated pork patties. • A synergistic effect of ascorbic acid for preventing lipid oxidation was observed

  1. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  2. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  3. Progress in the characterisation of structural oxide/oxide ceramic matrix composites fabricated by electrophoretic deposition (EPD)

    Czech Academy of Sciences Publication Activity Database

    Stoll, E.; Mahr, P.; Kruger, H. G.; Kern, H.; Dlouhý, Ivo; Boccaccini, A. R.

    2006-01-01

    Roč. 8, č. 4 (2006), s. 282-285 ISSN 1438-1656 R&D Projects: GA ČR(CZ) GA106/05/0495 Institutional research plan: CEZ:AV0Z20410507 Keywords : electorphoretic deposition * oxid/oxid ceramic matrix composites * flexural strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.402, year: 2006 http://www3.interscience.wiley.com/cgi-bin/jissue/112579545

  4. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    observations on the fracture surface using an optical microscope and SEM. 4 II. Background 2.1 Ceramics Ceramics are inorganic and nonmetallic... The original uses for ceramic were primarily decorative, until more utilitarian purposes were discovered. Pottery was developed around 9,000...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  5. Recent research activities on functional ceramics for insulator, breeder and optical sensing systems in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, S., E-mail: nagata@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Katsui, H.; Hoshi, K. [Institute for Materials Research, Tohoku University, Sendai (Japan); Tsuchiya, B. [Meijo University, Faculty of Science and Technology, Nagoya (Japan); Toh, K. [J-PARC Center Japan Atomic Energy Agency, Tokai (Japan); Zhao, M.; Shikama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan); Hodgson, E.R. [Euratom/CIEMAT Fusion Association, Madrid (Spain)

    2013-11-15

    The paper presents a brief overview of current research activities on functional ceramic materials for insulating components, tritium breeder and optical sensing systems, mainly carried out at Institute for Materials Research (IMR), Tohoku University. Topics include recent experimental results related to the electrical degradation and optical changes in typical oxide ceramics (e.g. Al{sub 2}O{sub 3} and SiO{sub 2}) concerning radiolytic effects. Hydrogen effects on the electrical conductivity in the Perovskite-type oxide ceramics and the interaction between hydrogen and irradiation induced defects in ternary Li oxides used as breeder materials, were dynamically observed under the irradiation environment. Further attention is focused on several challenging qualifications required for an advanced sensing system using optical characteristics (e.g., thermoluminescence in SiO{sub 2} core fiber, neutron-induced long lasting emission from oxides doped with rare-earth elements, and gasochromic coloration phenomenon of WO{sub 3})

  6. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    International Nuclear Information System (INIS)

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  7. Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesis.

    Science.gov (United States)

    Muñoz, Mariana; Goutier, Simon; Foucaud, Sylvie; Mariaux, Gilles; Poirier, Thierry

    2018-03-01

    Spray pyrolysis process has been used for the synthesis of non-oxide ceramic powders from liquid precursors in the Si/C/N system. Particles with a high thermal stability and with variable composition and size distribution have been obtained. In this process, the mechanisms involved in precursor decomposition and gas phase recombination of species are still unknown. The final aim of this work consists in improving the whole process comprehension by an experimental/modelling approach that helps to connect the synthesized particles characteristics to the precursor properties and process operating parameters. It includes the following steps: aerosol formation by a piezoelectric nebulizer, its transport and the chemical-physical phenomena involved in the reaction processes. This paper focuses on the aerosol characterization to understand the relationship between the liquid precursor properties and the liquid droplet diameter distribution. Liquids with properties close to the precursor of interest (hexamethyldisilazane) have been used. Experiments have been performed using a shadowgraphy technique to determine the drop size distribution of the aerosol. For all operating parameters of the nebulizer device and liquids used, bimodal droplet size distributions have been obtained. Correlations proposed in the literature for the droplet size prediction by ultrasonic nebulization were used and adapted to the specific nebulizer device used in this study, showing rather good agreement with experimental values. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  9. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  10. Manufacturing of porous oxide ceramics by replication of plant morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, H.; Rambo, C.; Cao, J.; Vogli, E.; Greil, P. [Erlangen-Nuernberg Univ., Erlangen (DE). Dept. of Materials Science (III) Glass and Ceramics

    2002-07-01

    Biomorphic oxide ceramics of alumina, mullite and zirconia with a directed pore morphology on the micrometer level were manufactured from bioorganic plant structures by sol-gel processing as well as sol-assisted nano-powder infiltrations. The inherent open porous morphology of natural grown rattan palms was used for vacuum-infiltration with aluminum isopropoxide (Al(OC{sub 3}H{sub 7}){sub 3}), zirconium oxichloride (ZrOCl{sub 2}.8H{sub 2}O) and SiO{sub 2} nano powder. Hydrolysis of the sols by adding HNO{sub 3} and pyrolysis in inert atmosphere at 800 C resulted in the formation of biocarbon/ceramic replica of the original wood morphology. The specimens were sintered in air at temperatures up to 1600 C to yield porous oxide ceramics with an unidirected pore structure similar to the original plant material. Repeated infiltration, hydrolysis and annealing steps were applied to increase the density of the ceramic materials. (orig.)

  11. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  12. Fabrication of lithium ceramic pellets, rings and single crystals for irradiation in BEATRIX-II

    International Nuclear Information System (INIS)

    Slagle, O.D.; Noda, K.; Takahashi, T.

    1989-04-01

    BEATRIX-II is an IEA sponsored experiment of lithium ceramic solid breeder materials in the FFTF/MOTA. Li 2 O solid pellets and annular ring specimens were fabricated for in-situ tritium release tests. In addition, a series of single crystal and polycrystalline lithium ceramic samples were fabricated to determine the irradiation behavior and beryllium compatibility. 6 refs., 10 figs., 4 tabs

  13. Neutron-irradiation effects on SiO2 and SiO2-based glass ceramics

    International Nuclear Information System (INIS)

    Porter, D.L.; Pascucci, M.R.; Olbert, B.H.

    1981-01-01

    A preliminary data base to assess the radiation-damage resistance of some glass ceramic materials has been gathered. These are rather complex materials, both in structure and composition, but possess many of those properties required for structural, insulator applications in fusion-reactor design. Property measurements were made after fast (E > 0.1 MeV) neutron irradiations of approx. 2.4 x 10 22 n/cm 2 at 400 0 C and 550 0 C. The results have shown general resistance to changes in thermal expansion and most did not eperience severe loss of mechanical integrity. The maximum volume expansion occurred in several of the fluorophlogapite-based glass ceramics (approx. 3.0%). Several observations demonstrated differences between the effects of neutron and electron irradiation; irradiation conditions proptotypic of projected reactor uses need be considered for optimum materials selection

  14. low temperature irradiation effects in iron-alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Abe, Hironobu; Tanaka, Minoru; Nishi, Kazuya; Tomiyama, Noriyuki.

    1991-01-01

    Electron beam irradiation at 77K and neutron irradiation at 20K were carried out on Fe-Cr and Fe-Cr-Ni alloys and ZnO and graphite system ceramics, and by measuring positron annihilation lifetime, the micro-information about irradiation-introduced defects was obtained. The temperature of the movement of atomic vacancies in pure iron is about 200K, but it was clarified that by the addition of Cr, it was not much affected. However, in the case of high concentration Cr alloys, the number of atomic vacancies which take part in the formation of micro-voids decreased as compared with the case of pure iron. It is considered that among the irradiation defects of ZnO, O-vac. restored below 300degC. It is considered that in the samples without irradiation, the stage of restoration exists around 550degC, which copes with structural defects. By the measurement of graphite without irradiation, the positron annihilation lifetime corresponding with the interface of matrix and crystal grains, grain boundaries and internal surfaces was almost determined. The materials taken up most actively in the research and development of nuclear fusion reactor materials are austenitic and ferritic stainless steels, and their irradiation defects have been studied. (K.I.)

  15. Light Weight Biomorphous Cellular Ceramics from Cellulose Templates

    Science.gov (United States)

    Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.

  16. On the nature of capture centers in irradiated ceramics SK-1

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Gasanov, E.M.; Kim, Gen Chan; Nuritdinov, I.; Saidahmedov, Kh.

    2006-01-01

    Full text: Along with other methods, for detection of radiation defects, the luminescent methods are widely used. One of such methods is the thermo-stimulated luminescence (TSL) method. By using this method, information on nature and energy depth (E c ) of capture centers can be obtained. In this work, the influence of high dose γ--irradiation on magnesial ceramics SK-1 was studied by the TL method. The samples were irradiated with ' 60 Co source, and the γ-irradiation dose varied between 10 4 and 10 10 R. The TL curves were measured in the temperature ranges from 80 to 700 K. As a result of irradiation the samples acquired brown colour. After γ-irradiation one can see the peak with maximum of 220 K and the peaks with 428, 548 and 658 K in the low-temperature ( 300 K) regions of the TL curves, respectively. To determine the nature of capture centers the samples were annealed in the air-conditions environment. Annealing conditions do not lead to changes in intensities of the existing TL peaks. After heat treatment in air the increase in intensity of 220, 428 and 548 K of TLS peaks can be observed, whereas in 10-hour treatment the saturation can be observed. Besides, the TL peaks at 353-363 K appears. Consequent restoring annealing decreases intensities of 220, 428 and 548 K and leads to disappearing peaks at 353-363 K. The energy depth values E c calculated by the Uhrbach formula E c =T, K/500 occurred to be : 0,44 eV; 0,86 eV and 1,096 eV for 220, 428 and 548 K, respectively. Besides, at annealing the increase of reflection characteristics of ceramics samples within 300-700 nm in observed, whereas the reflection intensities fall for the samples undergone the annealing. The analysis of the experimental results demonstrated that 220, 428 and 548 K peaks and additional absorption in the region of 300-700 nm are conditioned by V-centers. Possible mechanisms of CC formation and improvement of explanation characteristics of SK-1 ceramics in the ionization fields are

  17. Study of inhibition on lipid oxidation of irradiated pork

    International Nuclear Information System (INIS)

    Ha Yiming

    2006-03-01

    It was studied that the effect factors of irradiation dose, preservation temperature, oxygen content and antioxidant on lipid oxidation of irradiated pork. A mechanism was explained on lipid oxidation of irradiated pork. The results showed that irradiation might aggravate lipid oxidation of pork and that decreased preservation temperature and oxygen content of the packaging, added antioxidant also could effectively inhibit lipid oxidation of irradiated pork. (authors)

  18. Effect of soy sauce on lipid oxidation of irradiated pork patties

    Science.gov (United States)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang; Choi, Ji-Hun; Lee, Mi-Ai; Song, Dong-Heon; Kim, Hack-Youn; Lee, Ju-Woon; Kim, Cheon-Jei

    2013-09-01

    This study was conducted to find out the antioxidant effect of the soy sauce on lipid oxidation of electron beam irradiated pork patties. The pork patties prepared with sodium chloride or soy sauce solution at identical salt concentrations were irradiated at 0 or 5 kGy, and peroxide value, conjugated diene, 2-thiobarbituric acid, and free fatty acid values were evaluated for 10 days (4 °C). The irradiated pork patties treated with soy sauce showed the lowest peroxide value and 2-thiobarbituric acid value at the end of storage compared to those prepared with sodium chloride. The irradiated pork patties formulated with soy sauce and 0.5% ascorbic acid had similar 2-thiobarbituric acid and free fatty acid values compared to those of the non-irradiated pork patties treated with sodium chloride. Our results suggested that the soy sauce can retard the lipid oxidation of irradiated pork patty, and a synergistic effect between soy sauce and ascorbic acid was observed.

  19. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  20. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr2O3 at the interface in low partial oxygen (PO2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility of Co++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.

  1. FY 1997 report on the study on development of corrosion-resistant ceramics for refuse incinerators; 1997 nendo chosa hokokusho (gomi shokyakuroyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of structural materials for municipal refuse incinerators, in particular, high- temperature corrosion-resistant ceramics for inner walls. Unlike boiler tubes of which inner walls are cooled by water or water vapor, refractory for inner walls is subjected to high-temperature flame over 1000degC, corrosive gases such as HCl and SO2. and low-melting point corrosive dust such as chloride, sulfate and oxide under strong corrosive environment. Experiment was made on 14 kinds of ceramics including commercially available oxide system, non-oxide system and refractory system ceramics. Except graphite system ones, every ceramics, in particular, Al2O3, ZrO2, B4C-doped SiC and CVD-SiO showed superior properties. Commercially available ceramics, in particular, non-oxide system ones are very expensive. Since inner wall materials for refuse incinerators are heat-/corrosion-resistant consumption articles, it is suggested that improvement of reasonable oxide system ceramics or conventional SiC system ones is better. 73 refs., 89 figs., 39 tabs.

  2. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  3. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Ceramics research in a high-energy neutron source

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1989-01-01

    The studies on the irradiation effect to ceramics have added much to the basic understanding of their behavior, for example, the amorphous state of ceramics related to radiation-induced metamictization, the radiation-induced strengthening and toughening due to ultrafine defect aggregates, the in situ degradation of electrical resistivity, the role of radiation-induced defects on thermal conductivity and so on. Most of the irradiation testing on ceramics in the fields of structural and thermal properties have been carried out by using fast fission neutrons of about 1 MeV, but if this energy could be significantly changed, the size and nature of damage cascade and the quantity of transmutation gases produced would change. The significance of neutron source parameters, the special test requirement for ceramics such as the use of miniature specimens, the control of test environment, the transient reduction of electrical resistivity and so on are discussed. A special case of ceramic studies is that on new oxide superconductors. These materials can be made into amorphous state at about 1 dpa using 1 MeV electrons, and are considered to be fairly damage-sensitive. (K.I.)

  5. Machining of insulation ZrO2 ceramics by EDM using graphite electrode

    International Nuclear Information System (INIS)

    Tani, T.; Okada, M.; Fukuzawa, Y.; Mohri, N.

    1998-01-01

    As we proposed and reported before, insulating ceramics may be made into machinable materials with electrical discharge machining method by using an assisting electrode method. The machining properties depend on the formation mechanism of carbonization layer which has electrical conductivity on the ceramics surface during discharge. A big difference in machinability occurs between oxide and non-oxide ceramics. When ZrO 2 ceramics are machined with a copper tool electrode which was used for a machining of the non-oxide ceramics Si 3 N 4 , the electrical conductive layer is not formed on the machined surface uniformly. In this paper, in order to activate a carbonization reaction on the ceramics surface during discharge, the use of a porous graphite tool electrode is described. As a result of that, carbonized reaction occurs actively on the discharge gap and the uniform carbonized layer adheres to the machined surface. The surface roughness is much improved compared with previous machining conditions. Copyright (1998) Australasian Ceramic Society

  6. Anisotropy oxidation of textured ZrB2–MoSi2 ceramics

    DEFF Research Database (Denmark)

    Liu, Hai-Tao; Zou, Ji; Ni, De Wei

    2012-01-01

    Oxidation behavior of hot forged textured ZrB2–20vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500°C for exposure time from 0.5 to 12h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forgi...

  7. Kinetics of the oxidation of Ba2YCu3O/sub x/ ceramics

    International Nuclear Information System (INIS)

    O'Bryan, H.M.; Gallagher, P.K.

    1988-01-01

    The kinetics of the oxidation of dense and porous samples of Ba 2 YCu 3 O/sub x/ ceramic have been determined by gravimetric analysis at 400--700 0 C. At 600 0 C and above, the rate decreases as the thickness of the oxidized layer increases. At 500 0 C and below, the kinetics show a linear relation that indicates that the oxidized layer does not protect the ceramic. Dilatometric, microscopic, and high-temperature x-ray data suggest that fractures in the oxide layer at the lower temperatures are caused by the large volume decrease that accompanies the change in oxygen stoichiometry

  8. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  9. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  10. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  11. Coating system to permit direct brazing of ceramics

    Science.gov (United States)

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  12. Encapsulation of sacrificial silicon containing particles for SH oxide ceramics via a boehmite precursor route

    NARCIS (Netherlands)

    Carabat, A.L.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    Easy crack propagation in oxide ceramic coatings limits their application in high temperature environment (e.g. such as engines and gas turbine components) [1]. In order to overcome this problem, incorporation of sacrificial particles into an oxide ceramic coating may be a viable option. Particles

  13. Investigation of the thermophysical properties of oxide ceramic materials at liquid-helium temperatures

    International Nuclear Information System (INIS)

    Taranov, A. V.; Khazanov, E. N.

    2008-01-01

    The main regularities in the transport of thermal phonons in oxide ceramic materials are investigated at liquid-helium temperatures. The dependences of the thermophysical characteristics of ceramic materials on their structural parameters (such as the grain size R, the grain boundary thickness d, and the structure of grain boundaries) are analyzed. It is demonstrated that, in dense coarse-grained ceramic materials with qR>>1 (where q is the phonon wave vector), the grain boundaries and the grain size are the main factors responsible for the thermophysical characteristics of the material at liquid-helium temperatures. A comparative analysis of the thermophysical characteristics of optically transparent ceramic materials based on the Y 3 Al 5 O 12 (YAG) and Y 2 O 3 cubic oxides synthesized under different technological conditions is performed using the proposed criterion

  14. Thermally and optically stimulated luminescence of AlN-Y2O3 ceramics after ionising irradiation

    DEFF Research Database (Denmark)

    Trinkler, L.; Bos, A.J.J.; Winkelman, A.J.M.

    1999-01-01

    , an essential drawback of AlN-Y2O3 is its high fading rate. Special attention has been focused on understanding and improving the fading properties. In particular, the influence of the ceramics production conditions and the additive concentration on the fading rate have been studied. Experimental results......Thermally (TL) and optically stimulated luminescence (OSL) were studied in AlN-Y2O3 ceramics after irradiation with ionising radiation. The extremely high TL sensitivity (approximately 60 times the sensitivity of LiF:Mg,Tl (TLD-100)) makes AlN-Y2O3 ceramics attractive as a TLD material. However...... on spectral properties and thermal evolution of OSL are also presented. The stimulation spectrum covers the spectral range from green to infrared light. A combination of thermal and optical stimulation allowed a correlation to be found between parameters of OSL and TL after the same irradiation dose...

  15. Investigation of anisotropy in EPR spectra of radiation defects in irradiated beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O. V.; Bitenbaev, M.I.; Petukhov, Yu. V.

    2004-01-01

    Full text: In this work results of analysis of anisotropy and hyperfine structure in EPR spectra of paramagnetic defects in irradiated samples of beryllium ceramics are presented. To explain peculiarities in a shape and parameters of the EPR spectrum hyperfine structure in beryllium ceramics, we have analyzed several versions of model representations for the radiation-induced paramagnetic defects uniformly distributed in a sample as well as for cluster defects which hyperfine structure is determined by interactions between electrons and nuclei of impurity atoms (S=1/2) and which are characterized by anisotropy in the g factors. Calculations of a shape of the uniformly widened EPR spectra are carried out by the model of random interactions between electron spins. The EPR spectra, widened at the expense of anisotropy in the g factors, are calculated by the following equation: g(Δ)=[2(ω-ω 0 )+α] -1/2 , where ω 0 =γH 0 , α is the quantify proportional to the anisotropy shift. To describe wings of spectral lines, where the equation doesn't work, we use the Gaussian function. To determine the frequency of precession of electron spins packages with local concentration N loc , the following expression is used: ω=ω 0 +1/2α(3cos 2 θ-1), where θ is an angle between the symmetry axis and the direction of the external magnetic field. It is shown that the best agreement between the calculated and experimental EPR spectra is observed with the following computational model: paramagnetic radiation defects are distributed uniformly over a ceramics sample, and the g factors of its EPR spectra have the anisotropy typical for dipole-dipole interaction in powder samples. By results of the data we obtained, it's clear that in future we'll need in more detailed information than that published in scientific journals about formation of the paramagnetic defect EPR spectra structure in beryllium oxides and ceramics at the expense of resonance line hyperfine splitting on atoms of

  16. Investigation of anisotropy in EPR spectra of radiation defects in irradiated beryllium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Zashkvara, O V; Bitenbaev, M I; Petukhov, Yu V [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of analysis of anisotropy and hyperfine structure in EPR spectra of paramagnetic defects in irradiated samples of beryllium ceramics are presented. To explain peculiarities in a shape and parameters of the EPR spectrum hyperfine structure in beryllium ceramics, we have analyzed several versions of model representations for the radiation-induced paramagnetic defects uniformly distributed in a sample as well as for cluster defects which hyperfine structure is determined by interactions between electrons and nuclei of impurity atoms (S=1/2) and which are characterized by anisotropy in the g factors. Calculations of a shape of the uniformly widened EPR spectra are carried out by the model of random interactions between electron spins. The EPR spectra, widened at the expense of anisotropy in the g factors, are calculated by the following equation: g({delta})=[2({omega}-{omega}{sub 0})+{alpha}]{sup -1/2}, where {omega}{sub 0}={gamma}H{sub 0}, {alpha} is the quantify proportional to the anisotropy shift. To describe wings of spectral lines, where the equation doesn't work, we use the Gaussian function. To determine the frequency of precession of electron spins packages with local concentration N{sub loc}, the following expression is used: {omega}={omega}{sub 0}+1/2{alpha}(3cos{sup 2}{theta}-1), where {theta} is an angle between the symmetry axis and the direction of the external magnetic field. It is shown that the best agreement between the calculated and experimental EPR spectra is observed with the following computational model: paramagnetic radiation defects are distributed uniformly over a ceramics sample, and the g factors of its EPR spectra have the anisotropy typical for dipole-dipole interaction in powder samples. By results of the data we obtained, it's clear that in future we'll need in more detailed information than that published in scientific journals about formation of the paramagnetic defect EPR spectra structure in

  17. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  18. Effects of electron irradiation on the resistive behaviour of YBCO-type ceramics

    International Nuclear Information System (INIS)

    Galatanu, A.; Novac, A.; Mosteanu, T.; Magureanu, M.

    1998-01-01

    YBCO-123 ceramic samples were irradiated with electron beams (E=0.5 MeV), the particle fluxes ranging between 10 15 and 10 19 e - /cm 2 . The induced structure modifications are analyzed through X-ray diffraction and their effects on the resistive behaviour are estimated. It is shown that a direct correlation can be established between the irradiation effects, oxygen disorder and hence the modification of the sample resistivity. A particular attention is given to the effects on the fluctuation mechanism arising near the transition temperature. (authors)

  19. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    International Nuclear Information System (INIS)

    Jo, Cheo Run; Byun, Myung Woo

    2000-01-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7α- and 7β- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions

  20. Study of the mechanisms controlling the oxide growth under irradiation: characterization of irradiated zircaloy-4 and Zr-1 Nb-O oxide scales

    International Nuclear Information System (INIS)

    Bossis, Ph.; Thomazet, J.; Lefebvre, F.

    2002-01-01

    In PWRs, the Zr-1Nb-O alloy shows a marked enhancement in corrosion resistance in comparison with Zircaloy-4. The aim of this work is to analyze the reasons for these different behaviors and to determine the respective nature of the oxide growth controlling mechanisms under irradiation. Samples taken from Zircaloy-4 irradiated 1, 2, and 4 cycles and Zr-1Nb-O irradiated 1 and 3 cycles have been systematically characterized by optical microscopy, SEM coupled with image analysis, hydride distribution, and XRD. Specific TEM characterizations have been performed on the Zr-1Nb-O samples. A XPS analysis of a nonirradiated sample is also reported. It has been shown that under irradiation the slow oxidation kinetics of the Zr-1Nb-O alloy is associated with very regular metal-oxide interface and oxide layer. On the contrary, the accelerated oxidation kinetics of Zircaloy-4 is associated with highly perturbed metal-oxide interface and oxide layer. On both irradiated alloys, cracks are observed to initiate preferentially above the delayed parts of the oxidation front. Hydrogen intake during water oxidation in PWR environment is found to be much lower on the Zr-1Nb-O alloy than on Zircaloy-4. More β-ZrO 2 is found on the oxide layer formed on Zircaloy-4 than on Zr-1NbO after oxidation in PWR. Classical irradiation-induced microstructural evolution is observed in the Zr-1Nb-O metallic alloy after 3 cycles, i.e., a fine β-Nb precipitation. β-Nb precipitates are observed to undergo a delayed oxidation associated with a crystalline to amorphous transformation. After water oxidation in autoclave, a pronounced Nb segregation is detected on the oxide surface of a Zr-1Nb-O sample. These results suggest that the oxidation kinetics of Zircaloy-4 is controlled essentially by oxygen diffusion through the inner barrier layer, which is significantly accelerated under irradiation. The oxidation kinetics of Zr-1Nb-O is controlled by both oxygen diffusion through the inner barrier and by

  1. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  2. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  3. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  4. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  5. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  6. Magnetic, thermal and luminescence properties in room-temperature nanosecond electron-irradiated various metal oxide nanopowders

    Science.gov (United States)

    Sokovnin, S. Yu; Balezin, M. E.; Il’ves, V. G.

    2018-03-01

    By means of pulsed electron beam evaporation in vacuum of targets non-magnetic, in bulk state, Al2O3 and YSZ (ZrO2-8% Y2O3) oxides, magnetic nanopowders (NPs) with a high specific surface were produced. The NPs were subsequently irradiated in air by electrons with energy of 700 keV, using a URT-1 accelerator for 15 and 30 minutes. The magnetic, thermal, and pulsed cathodoluminescence (PCL) characteristics of NPs were measured before and after irradiation. It was established that the electron irradiation non-monotonically changes the magnetization of the pristine samples. To the contrary, a clear correlation between the intensity of PCL and the irradiation doses is found in the oxides. There was a decrease in the intensity of PCL after irradiation. Luminescent and thermal properties reflect the transformation of structural defects in NPs more strongly after the exposure to a pulsed electron beam in comparison with corresponding changes of the NPs magnetic response.

  7. Surface oxidation of porous ZrB2-SiC ceramic composites by continuous-wave ytterbium fibre laser

    International Nuclear Information System (INIS)

    Mahmod, Dayang Salyani Abang; Glandut, Nicolas; Khan, Amir Azam; Labbe, Jean-Claude

    2015-01-01

    Highlights: • Surface oxidation of ZrB 2 -SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO 2 -rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB 2 -SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB 2 -SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s 2 . The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO 2 -rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  8. Surface modification of ceramics and metals by ion implantation combined with plasma irradiation

    International Nuclear Information System (INIS)

    Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Ikeyama, Masami; Saitoh, Kazuo

    2000-01-01

    To develop a new surface modification technique using ion implantation combined with plasma irradiation, thin film formation by IBAD (Ion Beam Assisted Deposition) and atom relocation processes such as radiation enhanced diffusion and ion beam mixing under high dose implantation have been studied. It was confirmed that the computer simulation code, dynamic-SASAMAL (IBAD version) developed in this research, is quite useful to evaluate ballistic components in film formation by high dose implantation on ceramics and metals, by ion beam mixing of metal-ceramics bi-layer and by the IBAD method including hydrocarbon deposition. Surface modification process of SiC by simultaneous irradiation of ions with a radical beam has also been studied. A composite of SiC and β-Si 3 N 4 was found to be formed on a SiC surface by hot implantation of nitrogen. The amount of β- Si 3 N 4 crystallites increased with increasing the dosage of the hydrogen radical beam during nitrogen implantation. (author)

  9. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy

    2014-01-01

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  10. Surface modification of ceramic materials induced by irradiation of high power pulsed ICP

    International Nuclear Information System (INIS)

    Ishigaki, Takamasa; Okada, Nobuhiro; Ohashi, Naoki; Haneda, Hajime

    2003-01-01

    Newly developed pulse-modulated high-power inductively coupled plasma [ICP] is expected to offer the unique physico-chemical condition, such as the increased concentration of chemically reactive species, as well as the appropriate heat flux for materials processing. Two kinds of oxide materials, titanium and zinc oxide, were placed at the downstream of Ar-H 2 ICP and irradiated in the plasma of continuous [CN] and pulse-modulated [PM] modes. The CN-ICP irradiation at the position close to the plasma tail gave rise to the thermal reduction of oxides. In the PM-ICP irradiation, the degree of thermal reduction depended on the lower power level during pulse-off time, as well as the total electric power. Irradiation in PM-ICP led to the increased formation of oxygen vacancies in titanium dioxide. In the case of zinc oxide, the UV emission efficiency was improved by PM-ICP irradiation, while the green emission became predominant by CN-ICP irradiation at the appropriate position. Induced effects in the two oxides by PM-ICP would be related to the high concentration of hydrogen radicals in the plasma. (author)

  11. Highly porous ceramic oxide aerogels having improved flexibility

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor); Guo, Haiquan (Inventor)

    2012-01-01

    Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.

  12. Corrosion behaviour of porous chromium carbide/oxide based ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong, Z.; Xin, T.; Chen, W.; Zheng, W.; Guzonas, D.

    2011-01-01

    Porous chromium carbide with a high density of open pores was fabricated by a reactive sintering method. Chromium oxide ceramics were obtained by re-oxidizing the porous chromium carbides formed. Some samples were added with yttria at 5 wt. %, prior to reactive sintering to form porous structures. Corrosion tests in SCW were performed at temperatures ranging from 375 o C to 625 o C with a fixed pressure at around 25∼30 MPa. The results show that chromium carbide is stable in SCW environments at temperatures up to 425 o C, above which disintegration of carbides through oxidation occurs. Porous chromium oxide samples show better corrosion resistance than porous chromium carbide, but disintegrate in SCW at around 625 o C. Among all the samples tested, chromium oxide ceramics with added yttria exhibited much better corrosion resistance compared with the pure chromium carbide/oxides. No evidence of weight change or disintegration of porous chromium oxides with 5 wt % added yttria was observed after exposure at 625 o C in SCW for 600 hours. (author)

  13. Gamma-irradiation synthesis of silver nanoparticles fixing in porous ceramic for application in water treatment

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Quoc Hien; Nguyen Thuy Ai Trinh; Bui Duy Du

    2013-01-01

    The Ag nanoparticles in polyvinylpyrrolidone solution with concentration of 500 mg/L and their diameter of 10-15 nm were synthesized on a large scale up to 100 L/batch by gamma irradiation route. Porous ceramic candle samples were functionalized by treatment with a 3-amino-propyltriethoxysilane coupling agent and then impregnated in Ag nanoparticles solution for fixing Ag nanoparticles. The load Ag nanoparticles content on porous ceramic was of about 200-250 mg/kg. The average pore size of porous ceramic/Ag nanoparticles was about 48.2 Å. Owing to strong bonding of silver atoms to the wall of porous ceramic functionalized by 3-amino-propyltriethoxysilane, the contents of silver released from porous ceramic/Ag nanoparticles into filtrated water by test at a flow rate of about 5 L/h were less than 10 μg/L and was far below the required standard limit (<100 μg/L) for drinking water. Thus, porous ceramic/Ag nanoparticles candles can be potentially applied for point-of-use drinking water treatment. (author)

  14. Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polycarbomethylsilane containing precursors

    International Nuclear Information System (INIS)

    Xu Yunshu; Tanaka, Shigeru

    2003-01-01

    A modified gel-casting method was developed to form the ceramics precursor matrix by using polycarbomehylsilane (PCMS) and SiC powder. The polymer precursor was mixed with SiC powder in toluene, and then the slurry samples were cast into designed shapes. The pre-ceramic samples were then irradiated by 2.0 MeV electron beam generated by a Cockcroft-Walton type accelerator in He gas flow to about 15 MGy. The cured samples were pyrolyzed and sintered into SiC ceramics at 1300degC in Ar gas. The modified gel-casting method leaves almost no internal stress in the pre-ceramic samples, and the electron beam curing not only diminished the amount of pyrolysis gaseous products but also enhanced the interface binding of the polymer converted SiC and the grains of SiC powder. Optical microscope, AFM and SEM detected no visible internal or surface cracks in the final SiC ceramics matrix. A maximum value of 122 MPa of flexural strength of the final SiC ceramics was achieved. (author)

  15. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    International Nuclear Information System (INIS)

    Kundu, Subrata; Jayachandran, M.

    2013-01-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl 2 ·6H 2 O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.Graphical Abstract

  16. Irradiation creep of the mixed oxide UPuO2

    International Nuclear Information System (INIS)

    Combette, Patrick; Milet, Claude

    1976-01-01

    The irradiation creep under compression of the mixed oxide UO 2 -PuO 2 was studied up to fission yields of 6x10 13 fcm -3 s -1 , under stresses -2 , in the temperature range 700-900 deg C. The creep rate is proportional to the applied stress and fission yield, athermal in the studied temperature range and non-dependent of burnup (up to 30000MWjt -1 ). In a sample under compression, swelling is observed due to the formation of fission products during the irradiation and the swelling rate is of the same order that in a cladded fuel element [fr

  17. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  18. Study of aluminium oxide from high-alumina refractory ceramics by ...

    Indian Academy of Sciences (India)

    Wintec

    Keywords. Ceramics; aluminium oxide; X-ray diffraction; scanning electron microscopy; thermolumi- nescence. ... and ruby, consists of a slightly distorted hexagonal O. 2– .... a very complex structure consisting of a broad distribu- .... Imax (a.u.).

  19. Surface oxidation of porous ZrB{sub 2}-SiC ceramic composites by continuous-wave ytterbium fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Mahmod, Dayang Salyani Abang, E-mail: dygsalyani@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Glandut, Nicolas [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France); Khan, Amir Azam [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Labbe, Jean-Claude [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France)

    2015-12-01

    Highlights: • Surface oxidation of ZrB{sub 2}-SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO{sub 2}-rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB{sub 2}-SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB{sub 2}-SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s{sup 2}. The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO{sub 2}-rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  20. Technological parameters and oxidative stability of irradiated wheat and corn flour

    International Nuclear Information System (INIS)

    Silva, Roberta Claro da

    2003-01-01

    Cereals are susceptible to the attack of insects and microorganisms development during storage. Researches have demonstrated the viability of the use of the irradiation technology for the preservation and reduction of these losses. The objective of this work was to evaluate the effect of different irradiation doses (0; 3; 4,5 and 6 kGy) on wheat and corn flour oxidative stability and technological quality. Physicochemical and sensory analyses were performed on the flours. The technological parameters evaluated on the wheat flour were farinogram, alveogram, falling number, and a baking experiment. The packed samples were irradiated in a commercial irradiator and stored under ambient conditions. The oxidative quality of both flours was not affected in any of the treatments, within the commercial shelf life period guaranteed by the manufacturers for non irradiated products. However, flours acid value was the analytical parameter that reflected the irradiation effect. The higher flour initial acid values were the larger the increments with storage. The 4.5 and 6 kGy treatments ha a negative effect on the technological quality of the wheat flour. The irradiated flours had their viscoelastic properties affected the higher the irradiation dose, the stronger the effect. None of the treatments affected the sensorial quality of the samples, although a metallic odor was perceived by some tasters. (author)

  1. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  2. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  3. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  4. Reduction of Graphene Oxide to Graphene by Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Shamellia Sharin; Irman Abdul Rahman; Ainee Fatimah Ahmad

    2015-01-01

    This research aims to gauge the ability of gamma radiation to induce the reduction of graphene oxide to graphene. Graphene oxide powders were dispersed into a mixture of alcohol and deionized water, and the mixture was then irradiated with a "6"0Co source using a GammaCell 220 Excel irradiator at absorbed doses of 0, 5, 15, 20 and 35 kGy. According to characterization using Fourier Transformed Infrared Spectroscopy (FTIR), it can be seen that almost every oxygen-containing functional group has been removed after irradiation of the graphene oxide mixture. Reduction of graphene oxide was also proven from the characterization using UV-Vis Spectroscopy, in which the wavelength of graphene oxide at 237 nm was red-shifted to 277 nm after being irradiated and the peak at 292 nm, (indicating the carboxyl group) disappears in the UV-Vis spectrum of reduced graphene oxide. Morphology of graphene oxide also changed from a smooth and flat surface to crumpled. The ratio of carbon/ oxygen in the graphene oxide was lower than the carbon/ oxygen of reduced graphene oxide. At the end of the experiment, it can be deduced that graphene oxide underwent reduction, characterized before and after irradiation using Emission Scanned Electron Microscopy and Energy Dispersive X-ray, Fourier Transformed Infrared Spectroscopy and UV-Vis Spectroscopy. Therefore, we postulate that the irradiation technique that induces reduction, can be used to obtain reduced graphene oxide from graphene oxide. (author)

  5. CO sub 2 laser cutting of ceramics and metal-ceramic composites. CO sub 2 -Laserschneiden von Keramik und Metall-Keramik-Verbunden

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Drozak, J. (Dortmund Univ. (Germany, F.R.). Lehrstuhl fuer Werkstofftechnologie)

    1991-01-01

    Oxide and non-oxide ceramics as well as active brazed and APS-sprayed metal-ceramic composites are cut by means of a 1500 Watt CO{sub 2} laser. In this context, the experience from ceramics cutting applications is applied to laser cutting of composites. The process parameters, which are adjusted to the property profile and the thickness of the material, permit cutting of ceramics of a maximum thickness of 10 mm with optimal cut edge quality and minimum damage to the material. The parameter sets were also optimized in the case of laser-cut active brazed and plasma-sprayed composites. In terms of roughness, composition and structure of the cut edge, composites can be optimally cut using oxygen as process gas. (orig.).

  6. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  7. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxides with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of monotritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated

  9. Processing of non-oxide ceramics from sol-gel methods

    Science.gov (United States)

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  10. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  11. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  12. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  13. Oxidation resistant filler metals for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  14. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  15. CaO-Al2O3 glass-ceramic as a joining material for SiC based components: A microstructural study of the effect of Si-ion irradiation

    Science.gov (United States)

    Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica

    2018-04-01

    The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.

  16. Thermal shock testing of ceramics with pulsed laser irradiation

    International Nuclear Information System (INIS)

    Benz, R.; Naoumidis, A.; Nickel, H.

    1986-04-01

    Arguments are presented showing that the resistance to thermal stressing (''thermal shock'') under pulsed thermal energy deposition by various kinds of beam irradiations is approximately proportional to Φ a √tp, where Φ a is the absorbed power density and tp is the pulse length, under conditions of diffusivity controlled spreading of heat. In practical beam irradiation testing, incident power density, Φ, is reported. To evaluate the usefulness of Φ√tp as an approximation to Φ a √tp, damage threshold values are reviewed for different kinds of beams (electron, proton, and laser) for a range of tp values 5x10 -6 to 2 s. Ruby laser beam irradiation tests were made on the following ceramics: AlN, BN, graphite, αSiC, β-SiC coated graphites, (α+β)Si 3 N 4 , CVD (chemical vapor deposition) TiC coated graphite, CVD TiC coated Mo, and CVD TiN coated IN 625. The identified failure mechanisms are: 1. plastic flow followed by tensile and bend fracturing, 2. chemical decomposition, 3. melting, and 4. loss by thermal spallation. In view of the theoretical approximations and the neglect of reflection losses there is reasonable accord between the damage threshold Φ√tp values from the laser, electron, and proton beam tests. (orig./IHOE)

  17. Obtainment of zirconium oxide and partially stabilized zirconium oxide with yttrium and rare earth oxides, from Brazilian zirconite, for ceramic aim

    International Nuclear Information System (INIS)

    Ribeiro, S.

    1991-05-01

    This work presents experimental results for processing of brazilian zirconite in order to obtain zirconium oxide with Yttrium and Rare Earth oxide by mutual coprecipitation for ceramics purposes. Due to analysis of experimental results was possible to obtain the optimum conditions for each one of technological route stage, such as: alkaline fusion; acid leaching; sulfactation and coprecipitation. (author)

  18. Characterization of Irradiated and Non-Irradiated Rubber from Automotive Scrap Tires

    Science.gov (United States)

    Souza, Clécia Moura; Silva, Leonardo G.

    The aim of this work was to characterize the samples of irradiated and non-irradiated rubber from automotive scrap tires. Rubber samples from scrap tires were irradiated at irradiation doses of 200, 400 and 600kGy in an electron beam accelerator. Subsequently, both the irradiated and non-irradiated samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), tensile strength mechanical test, and Fourier transform infrared (FTIR) spectrophotometry.

  19. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  20. Oxidized zirconium: a potentially longer lasting hip implant

    International Nuclear Information System (INIS)

    Good, V.; Widding, K.; Hunter, G.; Heuer, D.

    2005-01-01

    Because younger, more active patients are receiving total hip replacements, it is necessary to develop materials, which would increase the life span of the implants and challenge their wear potential under adverse conditions. Oxidized zirconium (OxZr) is a metal with the surface transformed to ceramic by oxidation that offers low fracture risk and excellent abrasion resistance. This study compared wear of polyethylene (non-irradiated and highly crosslinked) with OxZr and CoCr heads under smooth and rough (clinically relevant) conditions. Wear was up to 15-fold less and up to 4-fold fewer particles were produced when coupled with OxZr than with CoCr, demonstrating that OxZr heads should increase clinical implant longevity

  1. Oxidative stability examination of irradiated swine for samples

    International Nuclear Information System (INIS)

    Formanek, Z.

    1995-01-01

    DSC (Differential Scanning Calorimetry), OBM (Oxygen Bomb Method) methods and POV (Peroxide Value) determination was applied to determine the oxidative stability of lard samples irradiated by a Co 60 gamma source at the dose of 0; 0.75; 2.5kGy. Both of the methods seem to be suitable to determine oxidative stability of fats, because in every case lowering oxidative stability was received with increasing irradiation dose. (R.P.). 8 refs., 7 figs., 1 tab

  2. Time series analysis of blood oxidative stress value in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Indirect effect of ionizing-radiation causes free radicals and reactive oxgen species (ROS). These ROS interact with DNA or other organella, and cause oxidative damage to nucleic acids, membrane lipoprotein, mitchondria and others. The purpose of this study is to evaluate oxidative damage by irradiation using d-ROMs test. Electron beam was irradiated to the thigh of Wistar strain female rats, and reactive oxygen metabolites in the blood from these rats were measured and analysed. From the results, 2 Gy group shows significantly higher oxidative stress level than those of 0 Gy group especially in day 3 after irradiation. This oxidative stress definitely seemed to be caused by exposure to ionizing-radiation. In contrast, the group of 30 Gy-irradiation showed no significant increase of oxidative stress level. It was thought that oxidative stress caused by radiation was neutralized by expression of stress-induced antioxidant enzymes. These data resulted that d-ROMs test is useful for measuring oxidative stress levels of irradiated mammalian animals. (author)

  3. The isothermal conductivity improvement in zirconia-based ceramics under 24 GHz microwave heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Teranishi, Takashi; Hayashi, Hidetaka

    2014-01-01

    Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect. - Highlights: • Under millimetre-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • It was up to 20 times higher than that of a conventionally heating condition. • The activation process was examined in relation to the non-thermal effects. • The operation temperature could be lowered while maintaining the ionic conductivity

  4. Effect of yttria addition on the stability of porous chromium oxide ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2013-01-01

    Porous chromium oxide (Cr 2 O 3 ) ceramics were prepared by oxidizing highly porous chromium carbides that were obtained by a reactive sintering method, and were evaluated at temperatures ranging from 375 °C to 625 °C in supercritical water (SCW) environments with a fixed pressure of 25–30 MPa. Reactive element yttrium was introduced to the porous oxide ceramic by adding various amounts of yttria of 5, 10 and 20 wt.%, respectively, prior to reactive sintering. The exposure in SCW shows that the porous chromium oxide is quite stable in SCW at 375 °C. However, the stability decreased with increasing temperature. It is well known that chromium oxide can be oxidized to soluble chromium (VI) species in SCW when oxygen is present. Adding yttria increases the stability of chromium oxide in SCW environments. However, adding yttria higher than 5 wt.% increased the weight loss of porous chromium oxide samples because of the direct dissociation of Y 2 O 3 in SCW.

  5. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  6. Pilot-scale equipment development for lithium-based reduction of spent oxide fuel

    International Nuclear Information System (INIS)

    Herrmann, S. D.

    1998-01-01

    An integral function of the electrometallurgical conditioning of DOE spent nuclear fuel is the standardization of waste forms. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic waste, and metal waste forms. Engineering studies are underway at ANL in support of pilot-scale equipment development, which would precondition irradiated oxide fuel and likewise demonstrate the application of electrometallurgical conditioning to such non-metallic fuels. This paper highlights the integration of proposed spent oxide fuel conditioning with existing electrometallurgical processes. Additionally, technical bases for engineering activities to support a scale up of an oxide reduction process are described

  7. Experimental Investigations on the Influence of Adhesive Oxides on the Metal-Ceramic Bond

    Directory of Open Access Journals (Sweden)

    Susanne Enghardt

    2015-01-01

    Full Text Available The objective of this study was to test the influence of selected base metals, which act as oxide formers, on the metal-ceramic bond of dental veneer systems. Using ion implantation techniques, ions of Al, In and Cu were introduced into near-surface layers of a noble metal alloy containing no base metals. A noble metal alloy with base metals added for oxide formation was used as a reference. Both alloys were coated with a low-temperature fusing dental ceramic. Specimens without ion implantation or with Al2O3 air abrasion were used as controls. The test procedures comprised the Schwickerath shear bond strength test (ISO 9693-1, profile height (surface roughness measurements (ISO 4287; ISO 4288; ISO 25178, scanning electron microscopy (SEM imaging, auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX. Ion implantation resulted in no increase in bond strength. The highest shear bond strengths were achieved after oxidation in air and air abrasion with Al2O3 (41.5 MPa and 47.8 MPa respectively. There was a positive correlation between shear bond strength and profile height. After air abrasion, a pronounced structuring of the surface occurred compared to ion implantation. The established concentration shifts in alloy and ceramic could be reproduced. However, their positive effects on shear bond strength were not confirmed. The mechanical bond appears to be of greater importance for metal-ceramic bonding.

  8. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  9. Fracture mechanical investigations about crack resistance behaviour in non-transforming ceramics in particular aluminum oxide

    International Nuclear Information System (INIS)

    Baer, K.K.O.; Kleist, G.; Nickel, H.

    1991-03-01

    The aim of this work is the clearification of R-curve behaviour of non-transforming ceramics, in particular aluminum oxide exhibiting incrystalline fracture. Investigations of crack growth in controlled bending experiments were performed using 3-Pt- and 4-Pt-bending samples of differing sizes under inert conditions. The fracture experiments were realized using several loading techniques, for example constant and varying displacement rates, load rupture (P = 0) and relaxation tests (v = 0). In addition unloading and reloading experiments were performed to investigate hysteresis curves and residual displacements in accordance with R-curve behaviour. During the crack-growth experiments, the crack extension was measured in situ using a high resolution immersion microscope. With this technique, the fracture processes near the crack tip (crack activity zone) was observed as well. The crack resistance as a function of crack extension (R-curve) was determined using differing calculation methods. All of the methods used resulted in approximately identical R-curves, within the statistical error band. The crack resistance at initiation R 0 was 20 N/m. The crack resistance increased during approximately 3 mm of growth to a maximum of 90 N/m. A decrease in the crack resistance was determined for large a/W (crack length normalized with sample height) values, independant of the calculation methods. The R-curve behaviour was interpreted as due to a functional resistance behind the observed crack tip, which arises from a volume dilatation in the crack activity zone while the crack proceeds. (orig.) [de

  10. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  11. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  12. Dose distribution of non-coplanar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiharu; Wada, Yoichi; Takenaka, Eiichi

    1987-02-01

    Non-coplanar irradiations were applied to the treatment of brain tumor. The dose distribution around the target area due to non-coplanar irradiation was half less than the dose when coplanar irradiation used. Integral volume dose due to this irradiation was not always less than that due to conventional opposing or rotational irradiation. This irradiation has the better application to the following;as a boost therapy, glioblastoma multiforme;as a radical therapy, recurrent brain tumor, well differentiated brain tumor such as craniopharyngioma, hypophyseal tumor etc and AV-malformation.

  13. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  14. Synthesis of silver nanoparticles deposited in porous ceramic by γ-irradiation

    International Nuclear Information System (INIS)

    Nguyen Thuy Ai Trinh; Ngo Manh Thang; Nguyen Thi Kim Lan; Dang Van Phu; Nguyen Quoc Hien; Bui Duy Du

    2015-01-01

    Silver nanoparticles (Ag nano) were deposited in porous ceramic (PC) that was functionalized with aminosilane (AS) agent (PC-AS-Ag nano) by gamma Co-60 irradiation of the PC-AS/Ag"+ mixture using polyvinylpyrrolidone (PVP) as stabilizer. Effect of dose on the formation of Ag nano was investigated. Characteristics of the nanocomposite material (PC-AS-Ag nano) were determined by ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Results indicated that Ag nano size was ⁓ 9 nm and the Ag nano content in PC-AS-Ag nano material was about of 341 ± 51 mg/kg at dose of 14-20 kGy. Thus, gamma Co-60 irradiation method has the advantage of creation of small Ag nanoparticles with fairly homogenous distribution in PC material. (author)

  15. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    Science.gov (United States)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  16. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  17. EDXRF study of Tupi-guarani archaeological ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, Fernando R. Espinoza [Universidade Estadual do Oeste do Parana, Toledo, PR (Brazil). Centro de Engenharia e Ciencias Exatas; Appoloni, Carlos R.; Aragao, Pedro H.; Santos, Adenilson O. dos; Silva, Luzeli M.; Barbieri, Paulo F.; Coimbra, Melayne M. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica; Nascimento Filho, Virgilio F. do [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Fisica e Meteorologia]|[Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    2000-07-01

    A set of indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by an archaeometric non-destructive technique. The pottery fragments were accidentally discovered in the Santa Dalmacia farm, sited near Cambe city at the north of Parana brazilian state. Each one of these fragments came from different ceramic recipients and their physical characteristics are very similar. The EDXRF measurements were performed employing both an X-ray tube and three radioisotope sources (Fe, Cd and Pu). The compositional data of the ceramics paste and pigments is investigated. For detection of the elements within the ceramic paste, the fragments were irradiated at the center of the lateral section. While several superficial areas with remaining plastic decoration were also chosen and irradiated at the convex and concave sides of each fragment. A paste-subtracted compositional data of the remaining pigments was statically extracted from the XRF analysis of each area. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. (author)

  18. EDXRF study of Tupi-guarani archaeological ceramics

    International Nuclear Information System (INIS)

    Quinones, Fernando R. Espinoza

    2000-01-01

    A set of indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by an archaeometric non-destructive technique. The pottery fragments were accidentally discovered in the Santa Dalmacia farm, sited near Cambe city at the north of Parana brazilian state. Each one of these fragments came from different ceramic recipients and their physical characteristics are very similar. The EDXRF measurements were performed employing both an X-ray tube and three radioisotope sources (Fe, Cd and Pu). The compositional data of the ceramics paste and pigments is investigated. For detection of the elements within the ceramic paste, the fragments were irradiated at the center of the lateral section. While several superficial areas with remaining plastic decoration were also chosen and irradiated at the convex and concave sides of each fragment. A paste-subtracted compositional data of the remaining pigments was statically extracted from the XRF analysis of each area. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. (author)

  19. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  20. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  1. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  2. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    International Nuclear Information System (INIS)

    Jona, R.; Fronda, A.

    1990-01-01

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30 0 C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers. (author)

  3. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation

    International Nuclear Information System (INIS)

    Yamashita, S.; Oka, K.; Ohnuki, S.; Akasaka, N.; Ukai, S.

    2002-01-01

    Oxide dispersion-strengthened ferritic steels were irradiated by neutrons up to 21 dpa and studied by microstructural observation and microchemical analysis. The original high dislocation density did not change after neutron irradiation, indicating that the dispersed oxide particles have high stability under neutron irradiation. However, there is potential for recoil resolution of the oxide particles due to ballistic ejection at high dose. From the microchemical analysis, it was implied that some of the complex oxides have a double-layer structure, such that TiO 2 occupied the core region and Y 2 O 3 the outer layer. Such a structure may be more stable than the simple mono-oxides. Under high-temperature irradiation, Laves phase was the predominant precipitate occurring at grain boundaries α phase and χ phase were not observed in this study

  4. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  5. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Deo, M.N. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-03-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO{sub 2}-50CaO-15P{sub 2}O{sub 5}-(10 - x)Fe{sub 2}O{sub 3}-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca{sub 3}Si{sub 2}O{sub 7}) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  6. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath; Deo, M.N.; Kothiyal, G.P.

    2010-01-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO 2 -50CaO-15P 2 O 5 -(10 - x)Fe 2 O 3 -xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca 3 Si 2 O 7 ) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  7. Comparison of the tritium residence times of various ceramic breeder materials irradiated in EXOTIC experiments 4 and 5

    International Nuclear Information System (INIS)

    Kwast, H.; Elen, J.D.; Conrad, R.; Casadio, S.; Werle, H.; Verstappen, G.

    1990-09-01

    Tritium residence times have been determined for various ceramic tritium breeding materials from in-situ release measurements. The irradiations, codenamed EXOTIC (EXtraction Of Tritium In Ceramics), were carried out in the High Flux Reactor (HFR) Petten. During the irradiation more than 450 transients were performed and the corresponding tritium release measured. Materials supplied by SCK/CEN (Li 2 ZrO 3 ), CEA (Li 2 ZrO 3 and LiAlO 2 ), ENEA (LiAlO 2 ), KfK (Li 4 SiO 4 ), NRL (Li 6 Zr 2 O 7 ) and ECN (Li 8 ZrO 6 ) were irradiated in EXOTIC-5 to compare the tritium residence times obtained under equal conditions. Apart from differences in density, grain size, pore size and OPV it appeared that the tritium residence times of the lithium zirconates (pellets) were shorter than those of the Li 4 SiO 4 pebbles. The tritium residence times of the Li 4 SiO 4 pebbles were shorter than those of the LiAlO 2 pellets. (author). 7 refs.; 5 figs.; 3 tabs

  8. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  9. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  10. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  11. Effect of heavy ion irradiation and α+β phase heat treatment on oxide of Zr-2.5Nb pressure tube material

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Gargi, E-mail: gargi@barc.gov.in [Quality Assurance Division, BARC, Mumbai, 400085 (India); Mukherjee, P.; Gayathri, N. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Kain, V.; Kiran Kumar, M.; Srivastava, D. [Material Science Division, BARC, Mumbai, 400085 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 400085 (India); Mukherjee, D. [Quality Assurance Division, BARC, Mumbai, 400085 (India); Dey, G.K. [Material Science Division, BARC, Mumbai, 400085 (India)

    2017-06-15

    Effect of heavy-ion irradiation on the crystalline phase transformation of oxide of Zr-2.5Nb alloys has been studied. The steam-autoclaved oxide of pressure tube is irradiated with 306 KeV Ar{sup +9} ions at a dose of 3 × 10{sup 19} Ar{sup +9}/m{sup 2}. The damage profile has been estimated using “Stopping and Range of Ions in Matter” computer program. The variation of the crystal structure along the depth of the irradiated oxide have been characterized non-destructively by Grazing Incidence X-ray Diffraction technique and compared with unirradiated-oxide. The effect of different base metal microstructures on the characteristic of oxide has also been studied. Base metal microstructure as well as the cross-sectional oxide have been characterized using transmission electron microscope. Heavy ion irradiation can significantly alter the distribution of phases in the oxide of the alloy. The difference in chemical state of alloying element has also been found between unirradiated-oxide with that of irradiated-oxide using X-ray photo electron spectroscopy. Chemical state of Nb in steam autoclaved oxide is also altered when the base metal is α + β heat treated.

  12. Effects of irradiation on color and lipid oxidation of prosciutto

    International Nuclear Information System (INIS)

    Kong Qiulian; Qi Wenyuan; Yue Ling; Chen Zhijun; Bao Yingzi; Dai Xudong; Xu Yun

    2011-01-01

    This study dealt with the effect of irradiation on the color, ordor and lipid oxidation of prosciutto crudo. The hams were irradiated by γ-ray and electronic beam (EB). Changes of color, ordor, TBA value (TBARS), peroxide value (POV), carbonyl value and conjugated diene value were analyzed and compared with nonirradiated hams. Results showed that color index (a * ) of control, γ-ray irradiated and EB irradiated were 14.39, 9.45 and 11.71 respectively. γ-ray irradiation had been shown to have apparently detrimental effect on the color and ordor of hams, while EB irradiation had little detrimental effect. Irradiation increased POV and conjugated diene value, but the amounts of lipid oxidation products (TBARS, carbonyl value) were less than nonirradiated hams. (authors)

  13. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype, was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxide with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of mono-tritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated. Large single crystals of lithium oxide were fabricated by the vacuum fusion technique. The release rate of tritium from the large single crystals was found to be controlled by diffusion, and the mixed diffusion-desorption controlled release regime

  14. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  15. Development of iron oxide and titania treated fly ash based ceramic and its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, Parveen [Physics Department, Jadavpur University, Kolkata-700 032 (India); Das, Sukhen, E-mail: das_sukhen@yahoo.com [Physics Department, Jadavpur University, Kolkata-700 032 (India); Bhattacharya, Alakananda [Physics Department, West Bengal State University, Barasat (India); Basu, Ruma [Physics Department, Jogamaya Devi College, Kolkata-700026 (India); Nandy, Papiya [Centre for Interdisciplinary Research and Education, Kolkata-700 068 (India)

    2012-08-01

    The increasing accumulation of fly ash from thermal power plants poses a major problem to the environment. The present work reflects the novel utilization of this profusely available industrial waste in the form of an antibacterial hard ceramic material by treating fly ash with ferric oxide (Fe{sub 2}O{sub 3}) and titania (TiO{sub 2}) during sintering process at 1600 Degree-Sign C. The developed material shows more than 90% bacterial reduction against both Gram-positive and Gram-negative bacteria. The mechanism of their antibacterial action was studied by transmission electron microscopy (TEM) image analysis of the bacterial cross-section. The developed ceramic material acquires hardness due to the enhancement of the natural mullite content in the matrix. The mullite content and the crystallinity of mullite have shown their increasing trend with increasing concentration of the metal oxide during sintering process. A maximum of {approx} 37% increase in mullite was obtained for 7% w/w Fe{sub 2}O{sub 3} and TiO{sub 2}. Metal oxide lowered the activation energy of the reaction and enhanced the reaction rate of alumina (Al{sub 2}O{sub 3})-silica (SiO{sub 2}) to form mullite which increases the hardness. The study highlights novel utilization of fly ash as a hard ceramic antibacterial product (bioceramics) for both structural and hygiene applications in an eco-friendly way. - Highlights: Black-Right-Pointing-Pointer A novel antibacterial hard ceramic material by treating fly ash with metal oxide. Black-Right-Pointing-Pointer The material shows excellent antibacterial activity (> 90%) against pathogenic bacteria. Black-Right-Pointing-Pointer Mechanism of antibacterial action by TEM analysis. Black-Right-Pointing-Pointer Enhancement of the concentration of 'natural mullite content' in the material. Black-Right-Pointing-Pointer Hardness induced by enhanced mullite content is an added advantage for prolonged product life.

  16. Study of bixin oxidation by ionizing irradiation

    International Nuclear Information System (INIS)

    Fonseca, Thais N.; Teixeira, Paula S.; Moura, Eduardo de; Geraldo, Áurea Beatriz C.

    2017-01-01

    Brazil is the world's largest producer of anatto, followed by Kenya and Peru. The fruit of the annatto tree is constituted by a capsule containing external spines and internal seeds with reddish coloration, providing a natural pigment which is environmentally efficient, being able to replace synthetic pigments and dyes. The active substance of the pigment is Bixin, which is a type of carotenoid which constitutes a greater percentage of pigment in these seeds and has a lipo soluble character. Bixin reacts with NaOH in a saponification reaction giving norbixin, which is water soluble. It is known that the destination of the dye extracted from the fruit is intended for industry, especially the food industry. The culture of annatto tree brings prospects of development in agricultural programs for medium and small producers, which are able to use decadent areas of other crops. In addition to the food sector, new applications for the pigment helps the development of family farming. The pigment extracted from annatto undergoes a natural oxidation; this work aims to evaluate this phenomenon and also the oxidation of the pigment after the irradiation process. This work also evaluates of the how the oxidation process is affected by irradiation and the modifications introduced to irradiated pigments. Irradiated and nonirradiated samples were characterized by thermogravimetry, UV-vis spectrophotometry and infrared spectroscopy (FTIR). The results are then discussed. (author)

  17. Oxide glass structure evolution under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Mendoza, C.; Peuget, S.; Charpentier, T.; Moskura, M.; Caraballo, R.; Bouty, O.; Mir, A.H.; Monnet, I.; Grygiel, C.; Jegou, C.

    2014-01-01

    Highlights: • Structure of SHI irradiated glass is similar to the one of a hyper quenched glass. • D2 Raman band associated to 3 members ring is only observed in irradiated glass. • Irradiated state seems slightly different to an equilibrated liquid quenched rapidly. - Abstract: The effects of ion tracks on the structure of oxide glasses were examined by irradiating a silica glass and two borosilicate glass specimens containing 3 and 6 oxides with krypton ions (74 MeV) and xenon ions (92 MeV). Structural changes in the glass were observed by Raman and nuclear magnetic resonance spectroscopy using a multinuclear approach ( 11 B, 23 Na, 27 Al and 29 Si). The structure of irradiated silica glass resembles a structure quenched at very high temperature. Both borosilicate glass specimens exhibited depolymerization of the borosilicate network, a lower boron coordination number, and a change in the role of a fraction of the sodium atoms after irradiation, suggesting that the final borosilicate glass structures were quenched from a high temperature state. In addition, a sharp increase in the concentration of three membered silica rings and the presence of large amounts of penta- and hexacoordinate aluminum in the irradiated 6-oxide glass suggest that the irradiated glass is different from a liquid quenched at equilibrium, but it is rather obtained from a nonequilibrium liquid that is partially relaxed by very rapid quenching within the ion tracks

  18. Compatibility of sodium with ceramic oxides employed in nuclear reactors

    International Nuclear Information System (INIS)

    Acena, V.

    1981-01-01

    A review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors, is presented. The results of a thermo-dynamic/liquid sodium reactions are included. The exercise has been conducted with a view to effecting experimental studies in the future. (author) [es

  19. Compatibility of sodium with ceramic oxides employed in nuclear reactors

    International Nuclear Information System (INIS)

    Acena Moreno, V.

    1981-01-01

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  20. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  1. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO_2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10"2"5through 1.4 × 10"2"5 (/m"2, E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  2. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  3. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  4. EPR in non-doped irradiated polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.; Stasko, A.; Foeldesova, M.

    1993-01-01

    The influence of γ-irradiation on the paramagnetic properties of non-doped polyacetylene at low and high radiation doses has been studied and summarized. The dependence of the EPR spectra on the radiation dose in irradiated polyacetylene has been measured. No essential changes of the spin mobility as a consequence of irradiation were observed. The measurements of spin concentration confirm the high resistivity of non-doped polyacetylene to radiation. (author) 9 refs

  5. Storage tests with irradiated and non-irradiated onions

    International Nuclear Information System (INIS)

    Gruenewald, T.; Rumpf, G.; Troemel, I.; Bundesforschungsanstalt fuer Ernaehrung, Karlsruhe

    1978-07-01

    The results of several test series on the storage of irradiated and non-irradiated German grown onion are reported. Investigated was the influence of the irradiation conditions such as time and dose and of the storage conditions on sprouting, spoilage, browning of the vegetation centres, composition of the onions, strength and sensorial properties of seven different onion varieties. If the onions were irradiated during the dormancy period following harvest, a dose of 50 Gy (krad) was sufficient to prevent sprouting. Regarding the irradiated onions, it was not possible by variation of the storage conditions within the limits set by practical requirements to extend the dormancy period or to prevent browning of the vegetation centres, however. (orig.) 891 MG 892 RSW [de

  6. Establishment of evaluation system for oxidation/anti-oxidation in living organisms using radiation irradiation and its practical application

    International Nuclear Information System (INIS)

    Umegaki, Keizo

    2000-01-01

    Basic study on the degree of oxidation damages after X-ray irradiation and changes in the anti-oxidative defense action was made using the rat. In addition, amplification of trace DNA damages by X-ray irradiation was investigated with human lymphocytes. Wistar rats were exposed to X-ray at 3 Gy under no anesthetization and killed after various time after the irradiation. The content of vitamin C, an anti-oxidant vitamin C in the bone marrow was markedly reduced by X-ray irradiation and the content after 24 hours from the irradiation was about 2% of that of the unexposed group. The content of vitamin E in the bone marrow was ca. 43% of that of the unexposed group. However, the contents of these anti-oxidant vitamins gradually recovered from 3-4 days after the irradiation. On the other hand, the content of 4-hydroxynonenal among the aldehydes that were tested as the indicator for oxidation damage of lipid was significantly increased one day after the irradiation and the contents of hexanal and TBARS reached the maximum level 3 days after. However, daily administration of about 100-fold larger amount of vitamin E (α-tocopherol at 460 mg/kg) for 3 days before the irradiation resulted in an increase in its content in the bone marrow, but significant decreases in the vitamin E and C levels in the bone marrow 24 hours after X-ray irradiation and aldehyde contents were increased, suggesting that pre-irradiation administration of vitamin E has no effects on the damages of bone marrow cells. As an indicator of DNA damages, the rate of appearance for lymphocytes having micronuclei was determined. The number of such lymphocytes was not significantly changed by exercise, but the number after irradiation at 1.5 Gy was dose dependently increased. These results suggested that trace DNA oxidation damages produced by severe exercise were markedly amplified by X-ray irradiation in not-trained subjects. (M.N.)

  7. Oxidation kinetic changes of UO2 by additive addition and irradiation

    International Nuclear Information System (INIS)

    You, Gil-Sung; Kim, Keon-Sik; Min, Duck-Kee; Ro, Seung-Gy

    2000-01-01

    The kinetic changes of air-oxidation of UO 2 by additive addition and irradiation were investigated. Several kinds of specimens, such as unirradiated-UO 2 , simulated-UO 2 for spent PWR fuel (SIMFUEL), unirradiated-Gd-doped UO 2 , irradiated-UO 2 and -Gd-doped UO 2 , were used for these experiments. The oxidation results represented that the kinetic patterns among those samples are remarkably different. It was also revealed that the oxidation kinetics of irradiated-UO 2 seems to be more similar to that of unirradiated-Gd-doped UO 2 than that of SIMFUEL

  8. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  9. Synthesis and characterization of ceramic pigments based on oxides of chromium and iron, on TiO2

    International Nuclear Information System (INIS)

    Silva, E.M. da; Galvao, S.B.; Paskocimas, C.A.

    2011-01-01

    This work used oxides of chromium and iron, as precursors of the synthesis of ceramic pigments. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through pre-calcination, breakdown, calcination at different temperatures (900 and 1100 ° C), resulting in pigments: green for pigment chrome deposited on TiO 2 and orange for iron on TiO 2 . Noticing an increase in the opacity with increasing temperature. The thermal analysis (TG and DTA), evaluated their thermal behavior, the XRD revealed the formation of crystalline phases as Iron Titanate and Chrome Titanate; SEM showed the formation of hexagonal particles for both oxides. Thus, the synthesized oxides were within the requirements for application as ceramic pigments. (author)

  10. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  11. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  12. Applications of advanced electron microscopy techniques to the studies of radiation effects in ceramic materials

    International Nuclear Information System (INIS)

    Wang, L.M.

    1998-01-01

    This paper summarizes some recent results from the application of several advanced transmission electron microscopy (TEM) techniques to the studies of radiation effects in insulators with the main focus on radiation-induced amorphization. These techniques include in situ TEM during ion-beam irradiation at cryogenic and elevated temperatures, cross-sectional TEM, high-resolution TEM, and image simulation on partially damaged materials, as well as digital TEM with image processing and analysis. The combination of these techniques may often provide very detailed information about the microstructure evolution during energetic particle irradiation, especially at the early stages, which is unobtainable with any other analytical methods. These techniques have been successfully applied to the analysis of a large group of ion-beam-irradiated ceramics, including quartz, silicon carbides, uranium oxide, apatite, spinel and other complex mineral phases. The advantages and limitations of each technique, as well as some important technical details for the analysis of radiation damage in ceramics are presented. (orig.)

  13. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (pzirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Electrical and mechanical properties of 0.5Ba (Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 (BZT-BCT) lead free ferroelectric ceramics reinforced with Al2O3 nano-oxide

    International Nuclear Information System (INIS)

    Adhikari, Prativa; Mazumder, R.

    2014-01-01

    Piezoelectric ceramics are widely used as actuator, resonator, and spark igniter. Recently, much attention has been paid to prepare 0.5Ba (Zr 0.2 Ti 0.8 )O 3 -0.5 (Ba 0.7 Ca 0.3 )TiO 3 (BZT-BCT) piezoelectric ceramics because of its good dielectric, piezoelectric properties and environment friendly nature. However, piezoelectric ceramics based on BaTiO 3 suffer from low reliability and poor mechanical properties such as strength and toughness. For practical application improvement of the mechanical properties of BaTiO 3 -based ceramics is strongly required. A novel method has been used to improve the mechanical properties of structural ceramics by reinforcement of oxide (Al 2 O 3 , MgO, ZrO 2 and Stabilized-ZrO 2 ) or non-oxide (SiC) particles. It is well known that electrical properties of ferroelectric ceramics generally degrade with non-ferroelectric additives and decrease in sinterability usually encountered with refractory oxide additives. Use of nano-oxide additives may drastically reduce the amount of additive and electrical property may not degrade much. In this report we would show the electrical and mechanical properties of BZT-BCT with Al 2 O 3 nano oxide additive. Modified BZT-BCT nanocomposites were prepared by mixing and sintering of solid state synthesized Zr, Ca modified barium titanate powder and small amount (0.1-2.0 vol %) of nano-oxides, i.e. Al 2 O 3 . Effect of sintering temperature, time, particle size of the nano-oxide additives on electrical (dielectric constant, loss factor, Curie temperature, d 33 ) and mechanical (flexural strength, fracture toughness, hardness) properties were studied. We obtained ∼ 94% dense BZT-BCT reinforced with Al 2 O 3 nano-oxide at 1300℃ without degrading electrical properties (dielectric constant (4850), low dissipation factor (0.0242)) and superior mechanical properties (flexural strength - 60.3 MPa, Vickers hardness-750-800 MPa). (author)

  15. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Silvestre

    2015-01-01

    Full Text Available Due to their prominent properties (mechanical, stiffness, strength, thermal stability, ceramic composite materials (CMC have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMCs can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMCs are now changing from classical reinforcement (e.g., microscale fibres to new types of reinforcement at nanoscale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMCs: Ceramics Nanocomposites (CNCs.

  16. Compatibility behavior of beryllium with LiAlO2 and Li2ZrO3 ceramics, with 316L and 1.4914 steels in Sibelius

    International Nuclear Information System (INIS)

    Flament, T.; Roux, N.; Abassin, J.J.; Briec, M.; Cruz, D.; Schuster, I.

    1991-01-01

    The compatibility under irradiation of beryllium with Li 2 O, LiAlO 2 , Li 4 SiO 4 and Li 2 ZrO 3 ceramics and with 316L and 1.4914 steels was investigated in SIBELIUS. The irradiation was performed in the SILOE reactor at 550 deg C for 1690 hours in He + 0.1%H 2 purge pas. Examinations of the LiAlO 2 /Be and Li 2 ZrO 3 /Be couples show a weak oxidation of beryllium and the presence of cavities near the interface with ceramics. Examinations of the 316L/Be and 1.4914/Be couples show the formation of an oxide layer on all beryllium and steel surfaces suggesting that corrosion arises from a species (most likely T 2 O and/or H 2 O) present in the environmental atmosphere. Post-irradiation annealing tests of beryllium indicate that the major part of helium is released during irradiation whereas the major part of tritium is released above 700 deg C

  17. Processing, Structure and High Temperature Oxidation Properties of Polymer-Derived and Hafnium Oxide Based Ceramic Systems

    Science.gov (United States)

    Terauds, Kalvis

    Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.

  18. Equilibrium and non-equilibrium metal-ceramic interfaces

    International Nuclear Information System (INIS)

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  19. The characterization of an oxide interfacial coating for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Coons, Timothy P., E-mail: tpcoons@gmail.com [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Reutenauer, Justin W.; Mercado, Andrew [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Kmetz, Michael A. [Pratt and Whitney, 400 Main Street M/S 114-43, East Hartford, CT 06108 (United States); Suib, Steven L. [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States)

    2013-06-20

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon{sup ™}, Hi-Nicalon{sup ™}, and Hi-Nicalon{sup ™} Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO{sub 2} coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO{sub 2} duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon{sup ™} Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  20. Evolution of zirconium-based precipitates during oxidation and irradiation of Zr alloys (impact on the oxidation kinetics of Zr alloys)

    International Nuclear Information System (INIS)

    Pecheur, Dominique

    1993-01-01

    As the oxidation of the zircaloy sheath is one of the factors which limit the lifetime of nuclear fuel rods, this research thesis aims at a better knowledge of the involved oxidation mechanisms and to improve the oxidation resistance in order to increase rod lifetime. Oxidation test performed in autoclave to study zirconium alloy oxidation without irradiation showed that oxidation kinetics is significantly higher under irradiation. This difference is attributed to a different evolution of the sheath material under irradiation. Thus, this research focused on the role of precipitates in the oxidation process of zirconium alloys, and on the impact of their amorphization on this oxidation. After a detailed description of the context and of the various implemented experimental means, the author presents the results obtained on a reference material on the one hand, and on a material irradiated by ions or neutrons on the other hand. More particularly, the author studied in these both cases the introduction of precipitates in the oxide layer by transmission electronic microscopy, and oxidation kinetics obtained in autoclave on these two types of material. He reports the analysis of the introduction of precipitates in the oxide layer formed on the reference material. He proposes interpretations for the evolutions of structure and of chemical compositions of precipitates in the oxide layer. These observations are then correlated with oxidation kinetics in these alloys. Finally, the author discusses results of oxidation tests obtained on materials irradiated by ions and by neutrons [fr

  1. Radiation Effect on Secondary Cancerization by Tumour Cell Grafts. Take of Irradiated Tumour Cells in Irradiated and Non-Irradiated Animals

    Energy Technology Data Exchange (ETDEWEB)

    Costachel, O.; Sandru, Gh.; Kitzulescu, I. [Oncological Institute, Bucharest (Romania)

    1969-11-15

    This study was designed to determine the ability of haemocytoblastoma, SME and Jensen tumours, which had been irradiated in vitro, to take in C{sub 57}BL/6 mice or Wistar rats that were whole-body irradiated at 0.4 kR and 0.6 kR respectively. It was found-that the take of tumour cell grafts irradiated in vitro increased in whole-body irradiated mice and rats but not in non-irradiated ones. When Wistar rats, that had been whole-body irradiated with 0.7 and 0.8 kR 1 - 7 months earlier and survived after treatment, were grafted with Jensen tumour cells irradiated in vitro with 3 kR they were found to develop tumours and lung metastases (in contrast to non-irradiated rats). A cross resistance against non-irradiated Jensen tumour cells was obtained in non- irradiated Wistar rats by grafting irradiated Jensen tumour cells. Chromosomal analysis showed two supplementary giant markers in the Jensen tumour cells that had been irradiated in vitro before grafting. (author)

  2. Non destructive evaluation of ceramics

    International Nuclear Information System (INIS)

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  3. Pilot-scale equipment development for pyrochemical treatment of spent oxide fuel

    International Nuclear Information System (INIS)

    Herrmann, S. D.

    1999-01-01

    Fundamental objectives regarding spent nuclear fuel treatment technologies include, first, the effective distribution of spent fuel constituents among product and stable waste forms and, second, the minimization and standardization of waste form types and volumes. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical treatment of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in an uranium product and two stable waste forms, i.e. ceramic and metallic. Engineering efforts are underway at ANL to develop pilot-scale equipment which would precondition irradiated oxide fuel via pyrochemical processing and subsequently allow for electrometallurgical treatment of such non-metallic fuels into standard product and waste forms. This paper highlights the integration of proposed spent oxide fuel treatment with existing electrometallurgical processes. System designs and technical bases for development of pilot-scale oxide reduction equipment are also described

  4. Fundamental studies of ceramic/metal interfacial reactions at elevated temperatures.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-12-14

    This work characterizes the interfaces resulting from exposing oxide and non-oxide ceramic substrates to zirconium metal and stainless steel-zirconium containing alloys. The ceramic/metal systems together were preheated at about 600 C and then the temperatures were increased to the test maximum temperature, which exceeded 1800 C, in an atmosphere of high purity argon. Metal samples were placed onto ceramic substrates, and the system was heated to elevated temperatures past the melting point of the metallic specimen. After a short stay at the peak temperature, the system was cooled to room temperature and examined. The chemical changes across the interface and other microstructural developments were analyzed with energy dispersive spectroscopy (EDS). This paper reports on the condition of the interfaces in the different systems studied and describes possible mechanisms influencing the microstructure.

  5. Polymer-Derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys

    Science.gov (United States)

    Hasemann, Georg; Baumann, Torben; Dieck, Sebastian; Rannabauer, Stefan; Krüger, Manja

    2015-04-01

    A preceramic polymer precursor, perhydropolysilazane, is used to investigate its function as a new type of oxidation barrier coating on Mo-Si-B alloys. After dip-coating and pyrolysis at 1073 K (800 °C), dense and well-adhering SiON ceramic coatings could be achieved, which were investigated by SEM and cyclic oxidation tests at 1073 K and 1373 K (800 °C and 1100 °C). The coating is promising in reducing the mass loss during the initial stage of oxidation exposure at 1373 K (1100 °C) significantly.

  6. Experimental studies on anti-oxidants reducing lipid peroxidation of irradiated mice

    International Nuclear Information System (INIS)

    Du Zeji; Liu Keliang; Su Liaoyuan

    1993-08-01

    The free radical plays an important role in the irradiation damage. The irradiation damage would be reduced if anti-oxidants is used, because anti-oxidants can scavenge free radicals and suppress lipid peroxidation. In the study, a fluoro-spectrophotometer was used to determine the changes of MDA levels in mice tissues and serum after irradiation and the protective effect of anti-oxidants of Vit E and DMSO on damage caused by free radicals. The results are as follows: (1) The highest MDA level was at 12 to 24 hours after irradiation dose of 3.0 Gy. (2) The MDA level is increasing with the increasing of irradiation dose. It means the MDA level can indicate the extent of irradiation damage. (3) Both Vit E and DMSO had a powerful effect on reducing MDA level, but the effect of DMSO was stronger than Vit E. The optimum doses of them were 0.25 mg/g body weight and 10 mg/g body weight respectively. (4) The best effect obtained was to use Vit E and DMSO simultaneously

  7. A New Approach to Joining Dissimilar Ceramic Oxides for Chemical Sensors

    International Nuclear Information System (INIS)

    Zhuiykov, Serge

    2009-01-01

    Conventional joining of dissimilar oxides for sensing electrodes (SE) of chemical sensors has been pivotal to the development of various sensors and is vital to their further development. However, it is shown that the uncertainty (of a fundamental nature) in the properties of dissimilar oxides in SE causes the determination of their sensing characteristics to be ambiguous. Characteristics are different for such controlled parameters as pyrolysis temperature, crystal structure, particle's morphology and size, chemical and phase composition, the coefficient of thermal expansion (CTE), surface architecture, the bulk and surface stoichiometry and type and conductivity of additives. Here, we provide an alternative approach for joining dissimilar metal-oxides for chemical sensors SE. The approach relies on the development of at least one transient liquid oxide phase on the ceramic-SE interface. These results constitute key points relevant to selection oxides for joining, sintering temperatures and heating/cooling temperature rates.

  8. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  9. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  10. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1997-05-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  11. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  12. Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module

    Czech Academy of Sciences Publication Activity Database

    Tomeš, P.; Robert, R.; Trottmann, M.; Bocher, L.; Aguirre, M.H.; Bitschi, A.; Hejtmánek, Jiří; Weidenkaff, A.

    2010-01-01

    Roč. 39, č. 9 (2010), 1696-1703 ISSN 0361-5235 Institutional research plan: CEZ:AV0Z10100521 Keywords : thermoelectric materials * perovskites * power generation * oxide ceramics * micro-IR camera measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.421, year: 2010

  13. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  14. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  15. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  16. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  17. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  18. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  19. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  20. TL response to quartz and aluminum oxide grain for α-irradiation

    International Nuclear Information System (INIS)

    Pan Baolin; Wei Mingjian; Li Dongxu; Liu Zhaowen; Liu Chao; Zhao Shiyuan

    2009-01-01

    Thermoluminescence (TL) response for an α-ray irradiation system ( 241 Am) was examined with quartz grains of 11-40 μm. Quartz grains of different sizes, i.e. 137 Cs), before they were irradiated to different doses by the α-ray irradiation system. TL response to the quartz grain samples was measured. TL response of the quartz grains smaller than 4 μm and 11-40 μm to α-ray irradiation is the best, as the α-rays cannot penetrate quartz larger than 40 μm. The TL response characteristic is related with quartz grain surface area. TL responses to α-irradiation of 11-40 μm quartz and aluminum oxide grains were compared. The α-irradiation TL response of aluminum oxide (330 degree C) is better than the quartz (375 degree C). (authors)

  1. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  2. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  3. Fracture mechanics of ceramics. Vol. 8. Microstructure, methods, design, and fatigue

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.H.; Lange, F.F.

    1986-01-01

    This paper presents information on the following topics: fracture mechanics and microstructures; non-lubricated sliding wear of Al 2 O 3 , PSZ and SiC; mixed-mode fracture of ceramics; some fracture properties of alumina-containing electrical porcelains; transformation toughening in the Al 2 O 3 -Cr 2 O 3 /ZrO 2 -HfO 2 system; strength toughness relationships for transformation toughened ceramics; tensile strength and notch sensitivity of Mg-PSZ; fracture mechanisms in lead zirconate titanate ceramics; loading-unloading techniques for determining fracture parameters of brittle materials utilizing four-point bend, chevron-notched specimens; application of the potential drop technique to the fracture mechanics of ceramics; ceramics-to-metal bonding from a fracture mechanics perspective; observed changes in fracture strength following laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC; crack growth in single-crystal silicon; a fracture mechanics and non-destructive evaluation investigation of the subcritical-fracture process in rock; slow crack growth in sintered silicon nitride; uniaxial tensile fatigue testing of sintered silicon carbide under cyclic temperature change; and effect of surface corrosion on glass fracture

  4. Non-activated high surface area expanded graphite oxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.E.; Boukos, N.; Giannouri, M. [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece); Lei, C.; Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece)

    2015-12-15

    Graphical abstract: - Highlights: • One-step exfoliation and reduction of graphite oxide via microwave irradiation. • Effect of pristine graphite (type, flake size) on the microwave expanded material. • Effect of pretreatment and oxidation cycles on the produced expanded material. • Expanded graphene materials with high BET surface areas (940 m{sup 2}/g–2490 m{sup 2}/g). • Non-activated graphene based materials suitable for supercapacitors. - Abstract: Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m{sup 2}/g to 2490 m{sup 2}/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  5. Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes. Pt. 1: Conversion mechanism

    International Nuclear Information System (INIS)

    Pivin, J.C.; Colombo, P.

    1997-01-01

    Changes of composition and structure of various types of polysiloxanes and polycarbosilanes when submitted to irradiation with ions of increasing mass, were analysed by means of several ion-beam analytical techniques, Raman and Fourier transform-infrared spectroscopes. Ion irradiations is as efficient as annealing at temperatures above 1000 o C for releasing hydrogen from these organic-inorganic polymers, and the radiolytic evolution of hydrogen is selective, whereas methane, silanes and carbon monoxide are also evolved during heat treatments. The kinetics of the polymer conversion into amorphous ceramics depends strongly on the linear density of energy transferred by ions to electron shells of target atoms, according to the ion energy per nucleon and to the nature of the side groups. Some of the carbon atoms segregate in clusters exhibiting a diamond-like hybridization state, in contrast to the clusters of turbostatic graphite formed in pyrolysed films. (Author)

  6. Isolation of chlamydia in irradiated and non-irradiated McCoy cells

    International Nuclear Information System (INIS)

    Johnson, L.; Harper, I.A.

    1975-01-01

    Specimens from eye and genital tract were cultured in parallel in irradiated and non-irradiated McCoy cells and the frequency of isolation of chlamydia using these culture methods was compared. There was a significant difference between the frequencies of isolation; irradiated McCoy cells produced a greater number of positive results. (author)

  7. Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans

  8. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  9. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  10. Structural, Optical, and Dielectric Investigations of the Relaxor PLZT 9,75/65/35 Ceramics Irradiated by High-Current Pulsed Electron Beam

    CERN Document Server

    Efimov, V V; Kalmikov, A V; Klevtsova, E A; Minashkin, V F; Novikova, N N; Sikolenko, V V; Skripnik, A V; Sternberg, A; Tiutiunnikov, S I; Yakovlev, V A

    2002-01-01

    First time comprehensive study of high-current pulsed electron irradiation effects on the structural, optical and dielectric properties of relaxor (Pb_{(1-x)}La^{x}(Zr_{0.65}Ti_{0.35})_{1-x/4}O_{3} ceramics with x=9.75% has been provided. The electron beam had the following parameters: energy E_{e}=250 keV, current density J_{e}=1000 A/cm^{2}, pulse duration tau = 300 ns, density 10^{15} electrons/cm^{2} per pulse. Infrared reflectivity spectra in the region of 100-2000 cm^{-1} were obtained in virgin, irradiated by 1500 pulses and annealed up to t=500^{circ}C ceramics. The reconstruction of perovskite ABO_{3} structure in irradiated samples has been studied by complex use of X-ray and neutron scattering and IR spectroscopy techniques revealing the changes in transverse and longitudinal phonon modes, oscillators strength and damping of modes. Radiation effects on temperature behaviour of dielectric permittivity in the region of phase transition were studied. The possible mechanisms of pulsed electron irradiat...

  11. Effects of diet, packaging, and irradiation on protein oxidation, lipid oxidation, and color of raw broiler thigh meat during refrigerated storage.

    Science.gov (United States)

    Xiao, S; Zhang, W G; Lee, E J; Ma, C W; Ahn, D U

    2011-06-01

    This study was designed to evaluate the effects of dietary treatment, packaging, and irradiation singly or in combination on the oxidative stability of broiler chicken thigh meat. A total of 120 four-week-old chickens were divided into 12 pens (10 birds/pen), and 4 pens of broilers were randomly assigned to a control oxidized diet (5% oxidized oil) or an antioxidant-added diet [500 IU of vitamin E + 200 mg/kg of butylated hydroxyanisole (BHA)] and fed for 2 wk. After slaughter, thigh meats were separated, ground, packaged in either oxygen-permeable or oxygen-impermeable vacuum bags, and irradiated at 0 or 3 kGy. Lipid oxidation (TBA-reactive substances), protein oxidation (carbonyl), and color of the meat were measured at 1, 4, and 7 d of refrigerated storage. The lipid and protein oxidation of thigh meats from birds fed the diet supplemented with antioxidants (vitamin E + BHA) was significantly lower than the lipid and protein oxidation of birds fed the control diet, whereas the lipid and protein oxidation of broilers fed the oxidized oil diet was higher than that of birds fed the control diet. Vacuum packaging slowed, but irradiation accelerated, the lipid and protein oxidation of thigh meat during storage. Dietary antioxidants (vitamin E + BHA) and irradiation treatments showed a stronger effect on lipid oxidation than on protein oxidation. A significant correlation between lipid and protein oxidation in meat was found during storage. Dietary supplementation of vitamin E + BHA and the irradiation treatment increased the lightness and redness of thigh meat, respectively. It is suggested that appropriate use of dietary antioxidants in combination with packaging could be effective in minimizing oxidative changes in irradiated raw chicken thigh meat.

  12. Synthesis of ZrB{sub 2}-SiC ceramic composites from a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Arish, Dasan, E-mail: arishd@rediffmail.com [Université of Limoges, SPCTS-CNRS, UMR 7315, Centre Européen de la Céramique (CEC), 12 Rue Atlantis, F-87068, Limoges Cedex (France); Shiju, Chellan [Synthetic Products Division, Corporate R & D Center (CRDC), HLL Lifecare Limited, Thiruvananthapuram, Kerala (India); Joseyphus, Raphael Selwin, E-mail: rsjoseyphus@gmail.com [PG & Research, Department of Chemistry, Mar Ivanios College (Autonomous), Thiruvananthapuram, 695015, Kerala (India); Pushparajan, Joseph [Travancore Titanium Products Ltd., Kochuveli, Thiruvananthapuram, 695021, Kerala (India)

    2017-06-15

    Preceramic polymer zirconoborosiloxane was synthesized from the reaction with boric acid, diphenyldiethoxysilane and zirconium (IV) propoxide via solventless process. The thermogravimetric analysis of the polymer showed that ceramic yield as decomposition product at 900 °C was 71%. The pyrolysis of zirconoborosiloxane in an argon gas environment was investigated as standard pyrolytic process up to 1650 °C. Microstructure evolution of ceramic phases was made by means of Fourier transform infrared, Raman spectroscopy, X-ray diffraction and scanning electron microscope analysis. The results clearly demonstrated the pyrolysis products at 1650 °C consist of totally non-oxide ceramic phases of β-SiC, ZrB{sub 2} and free carbon. - Highlights: • Preceramic polymer zirconoborosiloxane was synthesized by non-aqueous solventless process. • Non-oxide ZrB{sub 2}-SiC composites could be obtained from the pyrolysed products at 1650 °C. • Free carbon content was identified by Raman spectroscopy.

  13. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  14. UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense

    Science.gov (United States)

    Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

    2012-01-01

    UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638

  15. Identification of equilibrium and irradiation-induced defects in nuclear ceramics: electronic structure calculations of defect properties and positron annihilation characteristics

    International Nuclear Information System (INIS)

    Wiktor, Julia

    2015-01-01

    During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO 2 ). (author) [fr

  16. Characterization of sugarcane bagasse ash for use in ceramic bodies

    Energy Technology Data Exchange (ETDEWEB)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F., E-mail: katiacpf@terra.com.br, E-mail: rfguenf2009@hotmail.com, E-mail: holanda@uenf.br [Universidade Estadual do Norte Fluminense (LAMAV/GMCer/UENF), Campos dos Goytacazes-RJ (Brazil)

    2009-07-01

    The objective of this work is to characterization of sugarcane bagasse ash waste aiming the use it in red ceramic industry. The characterization was done in terms of chemical composition, X-ray diffraction, particle size distribution, morphology, and plasticity. The results show that the cane bagasse ash waste is a non plastic material, which contains high content of silica and minor amounts of Al, Fe, Ca, Mg, and K oxides. Thus, the sugar cane bagasse ash waste presents high potential for application in the manufacture of ceramic products such as bricks, roofing tiles, and ceramic tiles. (author)

  17. Characterization of sugarcane bagasse ash for use in ceramic bodies

    International Nuclear Information System (INIS)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F.

    2009-01-01

    The objective of this work is to characterization of sugarcane bagasse ash waste aiming the use it in red ceramic industry. The characterization was done in terms of chemical composition, X-ray diffraction, particle size distribution, morphology, and plasticity. The results show that the cane bagasse ash waste is a non plastic material, which contains high content of silica and minor amounts of Al, Fe, Ca, Mg, and K oxides. Thus, the sugar cane bagasse ash waste presents high potential for application in the manufacture of ceramic products such as bricks, roofing tiles, and ceramic tiles. (author)

  18. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  19. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix

    International Nuclear Information System (INIS)

    Monnet, I.

    1999-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO 2 +Y 2 O 3 ) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide ( 2 O 3 , Y 2 O 3 , MgO or MgAl 2 O 4 . These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel pairs only) shows the importance of free point defects in the dissolution phenomena. For all the irradiations (ions or electrons) the spinel MgAl 2 O 4 seems more resistant than Y 2 O 3 to dissolution, and MgO and Al 2 O 3 are even less resistant. This is the order of stability under irradiation of bulk oxides. (author)

  20. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, Kulathuiyer; van de Velde, G.M.H.; de Vries, K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow

  1. Interaction phenomena at reactive metal/ceramic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-11-03

    The objective of this study was to understand the interface chemical reactions between stable ceramics and reactive liquid metals, and developing microstructure. Experiments were conducted at elevated temperatures where small metal samples of Zr and Zr-alloy were placed on top of selected oxide and non-oxide ceramic substrates (Y{sub 2}O{sub 3}, ZrN, ZrC, and HfC). The sample stage was heated in high-purity argon to about 2000 C, held in most cases for five minutes at the peak temperature, and then cooled to room temperature at {approximately}20 c/min. An external video camera was used to monitor the in-situ wetting and interface reactions. Post-test examinations of the systems were conducted by scanning electron microscopy and energy dispersive spectroscopy. It was determined that the Zr and the Zr-alloy are very active in the wetting of stable ceramics at elevated temperatures. In addition, in some systems, such as Zr/ZrN, a reactive transition phase formed between the ceramic and the metal. In other systems, such as Zr/Y{sub 2}O{sub 3}, Zr/ZrC and Zr/HfC, no reaction products formed, but a continuous and strong joint developed under these circumstances also.

  2. The effect of electron beam irradiation on lipid oxidation in sausages

    Directory of Open Access Journals (Sweden)

    atefeh yousefi

    2017-09-01

    Full Text Available Introduction: Irradiation treatment is one of the best techniques to extend the shelf-life of meat, without emerging the nutritional properties and sensory quality of irradiated meat products.  However electron -beam  may cause transformations in foods but has been known as to the most easily-applied irradiation technique in food industries. Electron-beam irradiation is an environment friendly, low cost and time effective alternative to other decontamination technologies. Lipid oxidation could produce of irradiated meat. This study aimed at evaluating the state of lipid oxidation of irradiated sausages. Its findings could help the control, improve food safety and quality properties to food industries. Methods: Sausages were purchased in a local supermarket, minced sausages blended for thiobarbituric acid reactive substances (TBARS analysis and divided into 25 g pieces. The samples including one control group and four case groups. Packaged sausage were exposed at doses of 0 (control, 1, 2, 3 and 5 kGy and analyzed on various days 0, 5, 10 and 30. Results: Thiobarbituric acid reactive substances (TBARS has increased as time goes on (P<0.05. A significant relationship was observed on different Doses. But, the maximum of TBARS was observed in 3 kGy. Conclusion: Utilizing of Electron-beam irradiation in low doses does not have significant difference on lipid oxidation. Irradiating of meat products by addition of antioxidants can minimize or avoid the development of rancidity.

  3. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.; Bicer, A.; Pamuk, V.

    1997-01-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy (Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15,20 and 25 kGy at 20 o C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirradiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 μmol/kg kGy, and a maximum attainable concentration of 15.853 μmol/kg which may be used for process control and dosimetry. (author)

  4. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  5. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  6. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  7. LYCOPENE EFFICIENCY IN THE MODULATION OF OXIDATIVE DAMAGE IN DIFFERENT TISSUES OF GAMMA IRRADIATED RATS

    International Nuclear Information System (INIS)

    EL-TAHAWY, N.A.; NADA, A.S.; REZK, R.G.

    2008-01-01

    Exposure to ionizing radiation induces oxidative stress that has been recognized as an important etiological factor in the causation of several chronic diseases. Lycopene, a carotenoid almost exclusively present in tomatoes and tomatoes products, is a lipid soluble antioxidant claimed to possess cardio protective and anticancer properties. The present study was designed to determine the possible modulator effects of lycopene on radiation-induced oxidative damage to liver, spleen and lung tissues. Animals were supplemented with lycopene (5 mg/kg body weight/ day) by gavages for two weeks before whole body exposure to gamma rays and within the period of irradiation (3 successive doses, each of 3 Gy at 72 hours intervals). Animals were sacrificed on the 3 r d day post the last irradiation session.The results obtained in the present study showed that whole body gamma irradiation produced oxidative stress manifested by significant elevation in lipid peroxides levels measured as thiobarbituric acid reactive substances (TBARS) associated with significant decrease of nitric oxide (NO) content. Non-significant change in total cupper (Cu) in the three tissues was recorded while significant increase of total iron (Fe) was observed in liver and spleen tissues only. Liver tissue of irradiated rats showed significant decrease in the activities of the antioxidant enzymes as superoxide dismutase (SOD) and catalase (CAT). In spleen tissues, there was a significant increase of SOD and significant decrease of CAT activities while in lung tissues, both SOD and CAT activities showed significant increase.Histological observations of photomicrograph of liver sections showed that radiation-induced sever damage obvious by dilated portal vein, ruptured hepatocytes, necrotic, pyknotic, karyolitic nuclei and vacuolated cytoplasm. In spleen tissue, radiation was induced degeneration of lymphatic nodules, dilation follicular artery and marked hemorrhage. In lung tissue, radiation- induces ill

  8. An In Vivo Evaluation of the Fit of Zirconium-Oxide Based, Ceramic Single Crowns with Vertical and Horizontal Finish Line Preparations.

    Science.gov (United States)

    Vigolo, Paolo; Mutinelli, Sabrina; Biscaro, Leonello; Stellini, Edoardo

    2015-12-01

    Different types of tooth preparations influence the marginal precision of zirconium-oxide based ceramic single crowns. In this in vivo study, the marginal fits of zirconium-oxide based ceramic single crowns with vertical and horizontal finish lines were compared. Forty-six teeth were chosen in eight patients indicated for extraction for implant placement. CAD/CAM technology was used for the production of 46 zirconium-oxide-based ceramic single crowns: 23 teeth were prepared with vertical finishing lines, 23 with horizontal finishing lines. One operator accomplished all clinical procedures. The zirconia crowns were cemented with glass ionomer cement. The teeth were extracted 1 month later. Marginal gaps along vertical planes were measured for each crown, using a total of four landmarks for each tooth by means of a microscope at 50× magnification. On conclusion of microscopic assessment, ESEM evaluation was completed on all specimens. The comparison of the gap between the two types of preparation was performed with a nonparametric test (two-sample Wilcoxon rank-sum test) with a level of significance fixed at p zirconium-oxide-based ceramic CAD/CAM crowns with vertical and horizontal finish line preparations were not different. © 2015 by the American College of Prosthodontists.

  9. A Non-Heme Iron Photocatalyst for Light-Driven Aerobic Oxidation of Methanol

    NARCIS (Netherlands)

    Chen, Juan; Stepanovic, Stepan; Draksharapu, Apparao; Gruden, Maja; Browne, Wesley R

    2018-01-01

    Non-heme (L)FeIIIand (L)FeIII-O-FeIII(L) complexes (L=1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine) underwent reduction under irradiation to the FeIIstate with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT

  10. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    International Nuclear Information System (INIS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-01-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al 2 O 3 (sapphire) and TiO 2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO 2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al 2 O 3 . Results for MgO and α-Al 2 O 3 show steep negative gradients from 10 to 370 K, whereas that for TiO 2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al 2 O 3 , this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO 2 , in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization

  11. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 5900494 (Japan)]. E-mail: okada@rri.kyoto-u.ac.jp; Atobe, Kozo [Faculty of Science, Naruto University of Education, Naruto, Tokushima 7728502 (Japan); Nakagawa, Masuo [Faculty of Education, Kagawa University, Takamatsu, Kagawa 7608522 (Japan)

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, {alpha}-Al{sub 2}O{sub 3} (sapphire) and TiO{sub 2} (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature ({approx}370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 {mu}m band in TiO{sub 2} differs greatly from that of anion vacancy (F-type centers) in MgO and {alpha}-Al{sub 2}O{sub 3}. Results for MgO and {alpha}-Al{sub 2}O{sub 3} show steep negative gradients from 10 to 370 K, whereas that for TiO{sub 2} includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and {alpha}-Al{sub 2}O{sub 3}, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO{sub 2}, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 {mu}m band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  12. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  13. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    International Nuclear Information System (INIS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C.T.; Haraveen, K.J.S.; Tee, Tiam-Ting; Rahmat, A.R.

    2015-01-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  14. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  15. Design and In-Situ Processing of Metal-Ceramic and Ceramic-Ceramic Microstructures

    National Research Council Canada - National Science Library

    Sass, Stephen

    1997-01-01

    .... Metal-ceramic microstructures have been synthesized in situ by a variety of novel processing techniques, including the partial reduction of oxide compounds and displacement reactions and sol-gel...

  16. Viability of oxide fiber coatings in ceramic composites for accommodation of misfit stresses

    International Nuclear Information System (INIS)

    Kerans, R.J.

    1996-01-01

    The C and BN fiber coatings used in most ceramic composites perform a less obvious but equally essential function, in addition to crack deflection; they accommodate misfit stresses due to interfacial fracture surface roughness. Coatings substituted for them must also perform that function to be effective. However, in general, oxides are much less compliant materials than C and BN, which raises the question of the feasibility of oxide substitutes. The viability of oxide coatings for accommodating misfit stresses in Nicalon fiber/SiC composites was investigated by calculating the maximum misfit stresses as functions of coating properties and geometries. Control of interfacial fracture path was also briefly considered. The implications regarding composite properties were examined by calculating properties for composites with mechanically viable oxide coatings

  17. Dense cermets containing fine grained ceramics and their manufacture

    International Nuclear Information System (INIS)

    King, H.L.

    1986-01-01

    This patent describes a method of producing a ceramic-metal composite (cermet) containing boride-oxide ceramic having components of a first metal boride and a second metal oxide, which ceramic is in mixture in the cermet with elemental metal of the second metal, wherein the cermet is produced by sintering a reaction mixture of the first metal oxide, boron oxide and the elemental second metal. The improvement consists of: combining for the reaction mixture; A. (a) first metal oxide; (b) boron oxide; (c) ceramic component in very finely divided form; and (d) elemental second metal in very finely divided form and in an amount of at least a 100 percent molar excess beyond that amount stoichiometrically required to produce the second metal oxide during sintering; and B. sintering the reaction mixture in inert gas atmosphere

  18. Re-oxidation phenomena during the filtration of steel by means of ceramic filters

    Czech Academy of Sciences Publication Activity Database

    Stránský, K.; Bažant, J.; Dobrovská, J.; Rek, Antonín; Horáková, D.

    2009-01-01

    Roč. 43, č. 5 (2009), s. 261-265 ISSN 1580-2949 Institutional research plan: CEZ:AV0Z20650511 Keywords : filtration of steel * ceramic filters * capillary tube re-oxidation * micro-cleanliness of steel Subject RIV: JG - Metallurgy Impact factor: 0.143, year: 2009 http://www.imt.si/Revija/izvodi/mit095/stransky.pdf

  19. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  20. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  1. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  2. Irradiation effects in superconductor oxides. Effets d'irradiation dans les oxydes supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Rullier-Albenque, F; Konczykowski, M [CEA-Ecole Polytechnique, 91 - Palaiseau (France). Lab. d' Etudes des Solides Irradies

    1993-01-01

    Several effects of irradiation on the 92 K - oxide superconductor YBa[sub 2]Cu[sub 3]O[sub 7] are reported. Whatever irradiation type, the critical temperature T[sub c] is found to decrease and the resistivity to increase. At sufficiently high damage levels, YBa[sub 2]Cu[sub 3]O[sub 7] is no longer superconducting and even displays a semiconducting-like behaviour. The alterations of superconducting properties are clearly related to oxygen defects - in the CuO[sub 2] planes or CuO chains... but we have shown experimentally that copper defects are also important. Magnetic properties of YBa[sub 2]Cu[sub 3]O[sub 7] in mixed state are also very sensitive to irradiation. By pinning the flux lines, irradiation defects can considerably increase the critical current density j[sub c]. At present, irradiations by highly energetic heavy ions (6 GeV Pb for instance), which produce cylindrical tubes of amorphous material (latent tracks) throughout the whole thickness of the samples, are probably the most efficient way to enhance j[sub c]. (Author). 18 refs., 7 figs.

  3. Ceramic to metal joining by using 1064 nm pulsed and CW laser energy source

    International Nuclear Information System (INIS)

    Lee, Young Min; Kim, Soo Won; Choi, Hae Woon; Kim, Joo Han

    2013-01-01

    A novel joining method for ceramic and metallic layers is proposed using laser drilling and surface tension driven liquid metal filling. A high intensity laser beam irradiated a 500 µm thick ceramic filter, and the irradiated laser drilled the ceramic layer. The pulsed or CW laser transmitted through the ceramic layer irradiated the bottom metallic layer; the molten metallic layer then filled the drilled ceramic holes by the capillary force between the liquid metal and ceramic layer. As process variables, average laser power, pulse duration, and the number of pulses were used. The scattering optical properties were also studied for both green and red lasers. There was no significant difference between the colors and the estimated extinction coefficients were -26.94 1/mm and -28.42 1/mm for the green and red lasers, respectively.

  4. Color and oxidative stability of nitrite-free cured meat after gamma irradiation

    International Nuclear Information System (INIS)

    Shahidi, F.; Pegg, R.B.; Shamsuzzaman, K.

    1991-01-01

    The effects of 5 and 10 kGy irradiation on the color and oxidative stability of meats treated with nitrite or a nitrite-free curing system were investigated. The nitrite-free curing system consisted of the preformed cooked cured-meat pigment, sodium ascorbate and sodium tripolyphosphate with or without sodium acid pyrophosphate. Irradiation had no detrimental effects on the color or flavor of either cured samples. Polyphosphates had a beneficial effect on oxidative stability but had a slight detrimental effect on color stability of irradiated samples

  5. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  6. Behavior of the dynamic magnetic susceptibility in ybco bula ceramics irradiated with gamma rays

    International Nuclear Information System (INIS)

    Leyva Fabelo, A.; Bouza Dominguez, J.; Cruz Inclan, Carlos M.

    2001-01-01

    Using measurements of the ac susceptibility, the behavior with the irradiation dose of YBa2Cu3O7- bulk ceramics synthesized by the classic reaction method in solid state, was studied. A Co60 gamma chamber model MPX-G-25M and a Cs137 source were employed as gamma ray sources. The behavior of the beginning temperature of the normal - superconducting state transition with the exposition dose show, independently of the incident gamma energy, a monotonous growth until reaching a threshold dose, after which, observe a fall, more abrupt in the case of the Co60. This behavior can be explained using the model that postulates the ability of the gamma radiation, in certain dose intervals, to stimulate the structural reordering in the oxygen sublattice. When the irradiation process takes place in the Co60 gamma chamber, the behavior of the superconducting volume fraction of the sample characterizes by the initial sharp fall with the dose, followed with an attenuation of the decrement. In the case of Cs137 irradiation, the behavior of the superconducting volume fraction is similar to the behavior of the Ton with the dose

  7. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  8. Gamma-ray irradiation and post-irradiation at room and elevated temperature response of pMOS dosimeters with thick gate oxides

    Directory of Open Access Journals (Sweden)

    Pejović Momčilo M.

    2011-01-01

    Full Text Available Gamma-ray irradiation and post-irradiation response at room and elevated temperature have been studied for radiation sensitive pMOS transistors with gate oxide thickness of 100 and 400 nm, respectively. Their response was followed based on the changes in the threshold voltage shift which was estimated on the basis of transfer characteristics in saturation. The presence of radiation-induced fixed oxide traps and switching traps - which lead to a change in the threshold voltage - was estimated from the sub-threshold I-V curves, using the midgap technique. It was shown that fixed oxide traps have a dominant influence on the change in the threshold voltage shift during gamma-ray irradiation and annealing.

  9. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  10. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments.

    Science.gov (United States)

    Ural, Çağrı; Duran, İbrahim; Evmek, Betül; Kavut, İdris; Cengiz, Seda; Yuzbasioglu, Emir

    2016-07-15

    The aim of the present study was to determine the effect of different surface treatments on light transmission of aesthetic feldspathic ceramics used in CAD-CAM chairside restorations. Forty eight feldspatic ceramic test specimens were prepared from prefabricated CAD-CAM blocks by using a slow speed diamond saw. Test specimens were prepared and divided into 4 groups (n = 12). In the control group, no surface treatments were applied on the feldspathic ceramic surfaces. In the hydrofluoric acid group, the bonding surfaces of feldspathic ceramics were etched with 9.5 % hydrofluoric acid. In the sandblasting group the feldspathic ceramic surfaces were air-abraded with 30-μm alumium oxide (Al2O3) particles and Er:YAG laser was used to irradiate the ceramic surfaces. The incident light power given by the LED device and the transmitted light power through each ceramic sample was registered using a digital LED radiometer device. Each polymerization light had a light guide with 8-mm-diameter tips. Light transmission of feldspathic ceramic samples was determined by placing it on the radiometer and irradiating the specimen for 10 s at the highest setting for each light polymerization. All specimens were coated with gold using a sputter coater and examined under a field emission scanning electron microscope. Surface roughness measurement each group were evaluated with 3D optical surface and tactile profilometers. One-way ANOVA test results revealed that both surface conditioning method significantly affect the light transmittance (F:412.437; p ceramic material below the value of 400 mW/cm(2) which is critical limit for safe polymerization.

  11. Development of ionization effects on oxidative stability of spices and its enhancement in the detection of irradiated foods

    International Nuclear Information System (INIS)

    Mekni, Mouna

    2010-01-01

    Physico-chemical properties and anti oxidative stability were released on extracts from untreated (non irradiated) caraway (carum carvi) and oregano leaves (origanum vulgare) samples, as well as from those γ irradiated by Co 6 0 source at doses from 0,5 to 15 kGy were studied by EPR and UV-Vis Spectroscopy, and expressed as DPPH radical scavenging ability, antioxidant index which was determined by β carotene/linoleic acid co-oxidation and total phenolic compounds content (TPC) of each extract were characterized. Respecting the fact that the application of γ radiation on spices leads to the production of paramagnetic species, character of radicals formed upon γ irradiation in solid phase was studied by mean of EPR spectroscopy and the stability of the obtained EPR signal of irradiated samples was studied over a storage period of 3 months. Irradiation was found to nonsignificantly increase and/or maintain all antioxidant parameters, TPC and the EPR signal intensity was found to be increased in studied spices with the radiation doses. The EPR measurements performed during storage period after radiation process showed a significant decrease of free radicals signal intensity until their stability.

  12. Irradiation behavior evaluation of oxide dispersion strengthened ferritic steel cladding tubes irradiated in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shinichiro, E-mail: yamashita.shinichiro@jaea.go.jp; Yano, Yasuhide; Ohtsuka, Satoshi; Yoshitake, Tsunemitsu; Kaito, Takeji; Koyama, Shin-ichi; Tanaka, Kenya

    2013-11-15

    Irradiation behavior of ODS steel cladding tubes was evaluated for the further progress in understanding of the neutron-irradiation effects on ODS steel. Two types of ODS (9Cr–ODS{sub F}/M, 12Cr–ODS{sub F}) steel cladding tubes with differences in basic compositions and matrix phases were irradiated in JOYO. Post-irradiation examination data concerning hardness, ring tensile property, and microstructure were obtained. Hardness measurement after irradiation showed that there was an apparent irradiation temperature dependence on hardness for 9Cr–ODS{sub F}/M steel whereas no distinct temperature dependence for 12Cr–ODS{sub F} steel. Also, there was no significant change in tensile strengths after irradiation below 923 K, but those above 1023 K up to 6.6 × 10{sup 26} n/m{sup 2} (E > 0.1 MeV) were decreased by about 20%. TEM observations showed that the radiation-induced defect cluster formation during irradiation was suppressed because of high density sink site for defect such as initially-existed dislocation, and precipitate interfaces. In addition, oxide particles were stable up to the maximum doses of this irradiation test.

  13. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  14. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); School of Dentistry, The University of Western Australia, WA 6009 (Australia); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Hu, Xiaozhi, E-mail: xiao.zhi.hu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Ichim, Paul [School of Dentistry, The University of Western Australia, WA 6009 (Australia); Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic-matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic-matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  15. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics

    International Nuclear Information System (INIS)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2011-01-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m 2 / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  16. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Science.gov (United States)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  17. Evaluation of spaghetti prepared from irradiated and non-irradiated semolina flour, defatted soybean and wheat germ

    International Nuclear Information System (INIS)

    Nassef, A.E.; Assem, N.H.

    2005-01-01

    The aim of the present investigation was to produce spaghetti from semolina flour supplemented with 5, 7.5 and 10% wheat germ and 5, 7.5 and 10% defatted soybean flours and gamma irradiated at 5 and 10 KGy to improve its nutritive value. Part of the blend was left without irradiation to serve as control. All samples of spaghetti were analyzed for chemical composition, color, cooking properties, sensory evaluation and amino acids contents. The results of chemical composition showed high protein and fat contents by increasing the percentage of addition for wheat germ and defatted soybean, which irradiated and non-irradiated, in spaghetti. Sensory evaluation and cooking properties for spaghetti supplemented with 5 and 7.5% non-irradiated or irradiated (5 KGy) defatted soybean gave the best values comparing with supplementation by 10% non-irradiated and irradiated with 10 KGy. The best treatments, based on sensory evaluation results, were analyzed for amino acids. Essential and non-essential amino acid levels were found to be higher in samples supplemented with wheat germ and defatted soybean when compared with control, which was prepared from semolina only

  18. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  19. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  20. The Y2BaCuO5 oxide as green pigment in ceramics

    International Nuclear Information System (INIS)

    Fernandez, F.; Colon, C.; Duran, A.; Barajas, R.; Llopis, J.; Paje, S.E.; Saez-Puche, R.; Julian, I.

    1998-01-01

    Fine particles of green yttrium-barium-copper-oxide pigments Y 2 BaCuO 5 have been prepared using two different synthesis methods. The process of combustion of mixed nitrates and urea needs a maximal temperature of 900 C and provides samples formed by aggregates of homogeneous small particles with a size of about 0.3 μm. However, the ceramic method requires 1050 C as synthesis temperature, and yields rather higher particle sizes. Even after grinding, these samples are formed by heterogeneous particles with mean sizes of about 3 μm. Diffuse reflectance spectra reveal that the samples obtained using the former method present a higher brilliancy, so they have been selected to be tested as green pigment in ceramics with good results. (orig.)

  1. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    International Nuclear Information System (INIS)

    Chen Fei; Zhou Hai; Chen Qiang; Ge Yuanjing; Lv Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na 2 SiO 3 -NaB 4 O 7 -(NaPO 3 ) 6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel

  2. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Tg Ahbrizal Farizal Tg Ahmad; Norimah Yusof; Kamarudin Bahari; Kamaruddin Hashim

    2006-01-01

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  3. Titanate ceramics for immobilisation of uranium-rich radioactive wastes arising from {sup 99}Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.L.; Li, H. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, Sydney, NSW 2232 (Australia); Zhang, Y. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, Sydney, NSW 2232 (Australia)], E-mail: yzx@ansto.gov.au; Vance, E.R.; Mitchell, D.R.G. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, Sydney, NSW 2232 (Australia)

    2009-02-28

    Uranium-rich liquid wastes arising from UO{sub 2} targets which have been neutron-irradiated to generate medical radioisotopes such as {sup 99m}Tc require immobilisation. A pyrochlore-rich hot isostatically pressed titanate ceramic can accommodate at least 40 wt% of such waste expressed on an oxide basis. In this paper, the baseline waste form composition (containing 40 wt% UO{sub 2}) was adjusted in two ways: (a) varying the UO{sub 2} loading with constant precursor oxide materials, (b) varying the precursor composition with constant waste loading of UO{sub 2}. This resulted in the samples having a similar phase assemblage but the amounts of each phase varied. The oxidation states of U in selected samples were determined using diffuse reflection spectroscopy (DRS) and electron energy loss spectroscopy (EELS). Leaching studies showed that there was no significant difference in the normalised elemental release rates and the normalised release rates are comparable with those from synroc-C. This demonstrates that waste forms based on titanate ceramics are robust and flexible for the immobilisation of U-rich waste streams from radioisotope processing.

  4. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  5. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  6. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  7. 17O NMR investigation of oxidative degradation in polymers under γ-irradiation

    International Nuclear Information System (INIS)

    ALAM, TODD M.; CELINA, MATHIAS C.; ASSINK, ROGER A.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    2000-01-01

    The γ-irradiated-oxidation of pentacontane (C 50 H 102 ) and the polymer polyisoprene was investigated as a function of oxidation level using 17 O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17 O labeled O 2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17 O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17 O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches

  8. Bubble formation in irradiated Li2O

    International Nuclear Information System (INIS)

    Verrall, R.A.; Rose, D.H.; Miller, J.M.; Hastings, I.J.; MacDonald, D.S.

    1991-01-01

    Lithium oxide, irradiated to a burnup of 1 at% (total lithium) at temperatures between 400 and 850deg C with on-line tritium recovery and measurement, has been examined out-reactor. Residual tritium content ranged from 2.4 to 16 mCi/g, but, conservatively, averaged less than 10 mCi/g or 1 wppm. Scanning electron microscopy showed bubble formation in the ceramic which is thought to be due to helium formed from the in-reactor 6 Li(n, α) 3 H reaction. (orig.)

  9. Quantitative measurements of oxidative stress in mouse skin induced by X-ray irradiation

    International Nuclear Information System (INIS)

    Chi, Cuiping; Tanaka, Ryoko; Okuda, Yohei; Ikota, Nobuo; Ozawa, Toshihiko; Anzai, Kazunori; Yamamoto, Haruhiko; Urano, Shiro

    2005-01-01

    To find efficient methods to evaluate oxidative stress in mouse skin caused by X-ray irradiation, several markers and methodologies were examined. Hairless mice were irradiated with 50 Gy X-rays and skin homogenates or skin strips were prepared. Lipid peroxidation was measured using the skin homogenate as the level of thiobarbituric acid reactive substances. The level of lipid peroxidation increased with time after irradiation and was twice that of the control at 78 h. Electron spin resonance (ESR) spectra of skin strips showed a clear signal for the ascorbyl radical, which increased with time after irradiation in a manner similar to that of lipid peroxidation. To measure levels of glutathione (GSH) and its oxidized forms (GSSG) simultaneously, two high performance liquid chromatography (HPLC) methods, sample derivatization with 1-fluoro-2,4-dinitrobenzene and detection with a UV detector (method A) and no derivatization and detection with an electrochemical detector (method B), were compared and the latter was found to be better. No significant change was observed within 24 h after irradiation in the levels of GSH and GSSG measured by method B. The GSH/GSSG ratio may be a less sensitive parameter for the evaluation of acute oxidative stress caused by X-ray irradiation in the skin. Monitoring the ascorbyl radical seems to be a good way to evaluate oxidative stress in skin in vivo. (author)

  10. Study on the efficiency of ceramic coating for avoiding oxidation in carbon refractories

    International Nuclear Information System (INIS)

    Santos, I.M.G.; Cruz Junior, F.; Paskocimas, C.A.; Leite, E.R.; Longo, Elson; Varela, J.A.

    1997-01-01

    A ceramic coating made of sodium phosphossilicate and clay was developed to the protection of refractories against carbon oxidation during the pre-heating of siderurgical equipment. This search has the objective of comparing the refractory behaviour with and without coating, according to temperature, time and atmosphere. The results show that the coating is more efficient at higher temperatures. An important point is that the efficiency is smaller after long thermal is that the efficiency is smaller after long thermal treatments and at very aggressive conditions. In spite of this the oxidation is still smaller than in refractory without coating. (author)

  11. Nano-oxides to improve the surface properties of ceramic tiles

    Directory of Open Access Journals (Sweden)

    Timellini, G.

    2010-10-01

    Full Text Available The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers’ hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles.

    La finalidad de este trabajo es la de realizar baldosas con mejores características mecánicas superficiales, al incorporar óxidos de partículas nanométricas, como la circona y la alúmina, ya que se sabe que estos óxidos confieren unas propiedades mecánicas excelentes además de una buena resistencia al ataque químico. Para evitar cualquier peligro, las partículas nanométricas se usaron en forma de suspensión acuosa y se pulverizaron, por medio de un aerógrafo, directamente sobre el soporte cerámico seco, antes de la cocción. Para observar la distribución de las partículas nanométricas y para optimizar el tratamiento de la superficie, se realizó unos análisis por MEB-EDS sobre las muestras cocidas. Se llevó a cabo un análisis de difracción de rayos X (DRX para evaluar la evolución de las fases de los distintos materiales durante

  12. Fabrication of ceramic oxide-coated SWNT composites by sol–gel process with a polymer glue

    International Nuclear Information System (INIS)

    Zhang Cheng; Gao Lei; Chen Yongming

    2011-01-01

    The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]-co-[(1-pyrene-methyl) methacrylate] (TEPM 13 -co-PyMMA 3 ), was synthesized via atom transfer radical polymerization. Attributing the π–π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol–gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.

  13. Fabrication of ceramic oxide-coated SWNT composites by sol-gel process with a polymer glue

    Science.gov (United States)

    Zhang, Cheng; Gao, Lei; Chen, Yongming

    2011-09-01

    The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]- co-[(1-pyrene-methyl) methacrylate] (TEPM13- co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π-π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol-gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.

  14. Biocompatibility study of lithium disilicate and zirconium oxide ceramics for esthetic dental abutments

    Science.gov (United States)

    2016-01-01

    Purpose The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate (LS2) and zirconium oxide (ZrO2) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. Methods Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). Results The best cell migration was observed on ZrO2 ceramic. Cell adhesion was also drastically lower on the polished ZrO2 ceramic than on both the raw and polished LS2. Evaluating various surface topographies of LS2 showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. Conclusions Our results demonstrate that a biomaterial, here LS2, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of LS2 and ZrO2 ceramic showed that LS2 was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical

  15. Quercetin oxidation by horseradish peroxidase: The effect of UV-B irradiation

    Directory of Open Access Journals (Sweden)

    Savić Saša R.

    2013-01-01

    Full Text Available Horseradish peroxidase (HRP, a highly-investigated member of the peroxidase family has been known, among many other biological activities, to catalyze the oxidation of flavonoids and phenolic substrates overall, including quercetin. On the other hand, quercetin is very well known for its antioxidant activities, which in the case of UV external radiation is exibited partly in a preventive manner since it is an excellent UV-absorber. Therefore the aim of this investigation is to study quercetin oxidation by HRP in phosphate buffer under the conditions of UV-stress, i.e. continuous, prolonged UV-B irradiation. The results show that while UV-B irradiation affects the activity of HRP, and the overal rate of quercetin oxidation by HRP, it probably has very little effect on it for longer UV-B-irradiation periods (>30 min. [Acknowledgements. This work was supported by the Ministry of Education and Science of the Republic of Serbia under Project No.TR-34012 and OI-172044

  16. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  17. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crack growth in non-homogeneous transformable ceramics. Part II : Crack deflection

    NARCIS (Netherlands)

    Stam, Geert; Giessen, Erik van der

    1996-01-01

    Crack growth in transformation toughened ceramics is studied using a micromechanics based continuum model which accounts for both dilatant and shear transformation strain components. In the computations, the transformable phase is taken to be distributed non-homogeneously in order to model Zirconia

  20. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  1. EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans

  2. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  3. Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation.

    Science.gov (United States)

    Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan

    2015-02-01

    In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.

  4. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  6. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  7. Physical properties of beryllium oxide - Irradiation effects

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author) [fr

  8. Enabling new sensor applications for (V)HTRS by laser hybrid brazing of oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F.; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Development; Herrmann, M.; Lippmann, W.; Hurtado, A. [Univ. of Technology, Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2008-07-01

    The use of (very) high temperature reactors ((V)HTRs) requires a sensor technology suitable to withstand thermal loads both in normal operation mode and under incident conditions which may appear during service. Especially ceramic sensors are ideal to suit this purpose. A special sensor type that is based upon oxide ceramics is the high temperature oxygen sensor. Base material for this application is yttria-doped zirconia. At elevated temperatures (above 450 C) the activation energy of oxygen ions is sufficient to migrate in the ZrO{sub 2} lattice following an oxygen partial pressure gradient. This diffusion process is facilitated by the trivalent yttrium ions which give rise to a high concentration of oxygen vacancies. The macroscopical effect of the migration of the oxygen ions can be detected as a Nernst voltage or, alternatively, as an electrical current. Thus it is possible to compare the oxygen content of measured media with that of a known reference gas. To be able to produce such sensors both efficiently and in the desired quality, joining technologies adapted to ceramics are necessary. Laser-based technologies for brazing with glass or glass-ceramic solders are especially suitable, as they combine high precision with high throughput. They thus enable cost efficient production processes both for large and small lot sizes. (orig.)

  9. In situ MeV ion beam analysis of ceramic surfaces modified by 100-400 keV ion irradiation

    International Nuclear Information System (INIS)

    Weber, W.J.; Yu, N.; Sickafus, K.E.

    1995-05-01

    This paper describes use of the in situ ion beam analysis facility developed at Los Alamos National Laboratory for the study of irradiation effects in ceramic materials. In this facility, an analytical beamline of 3 MV tandem accelerator and an irradiation bean-dine of 200 kV ion implanter are connected at 60 degrees to a common target chamber. This facility provides a fast, efficient, and quantitative measurement tool to monitor changes of composition and crystallinity of materials irradiated by 100-400 keV ions, through sequential measurement of backscattering events of MeV ions combined with ion channeling techniques. We will describe the details of the in situ ion beam analysis and ion irradiation and discuss some of the important issues and their solutions associated with the in situ experiment. These issues include (1) the selection of axial ion channeling direction for the measurement of radiation damage; (2) surface charging and charge collection for data acquisition; (3) surface sputtering during ion irradiation; (4) the effects of MeV analytical beam on the materials; and (5) the sample heating effect on ion beam analysis

  10. Structural changes in graphene oxide thin film by electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Chetna, E-mail: tchetna91@gmail.com [Materials Science Group, Inter University Accelerator Centre, New Delhi 67 (India); Lakshmi, G.B.V.S.; Kumar, Sunil; Tripathi, Ambuj [Materials Science Group, Inter University Accelerator Centre, New Delhi 67 (India); Avasthi, D.K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Although we have a whole class of 2D materials, graphene has drawn much attention for its excellent electronic, optical, thermal and mechanical properties. Recent researches have shown its large scale production by the reduction of graphene oxide either thermally, chemically or electrochemically. Although the structure of graphene oxide is inhomogeneous and hence complicated due to the presence of organic moieties e.g. epoxy, carboxylic acid, hydroxyl groups etc., its properties can be tuned by reduction according to desired application. The aim of this work is to synthesize continuous thin film of graphene oxide using commercially available graphene oxide solution and to study its reduction by 25 keV electron beam irradiation at fluences varying from 2 × 10{sup 11} to 2 × 10{sup 13} e{sup −}/cm{sup 2}. Our studies using X-ray diffraction, Raman microscopy and UV–Vis spectroscopy showed that electron-beam irradiation is an effective tool for reduction of graphene oxide and for tuning its band gap.

  11. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors

    OpenAIRE

    Konegger, Thomas; Patidar, Rajesh; Bordia, Rajendra K.

    2015-01-01

    In this contribution, a low-pressure/low-temperature casting technique for the preparation of novel free-standing macrocellular polymer-derived ceramic support structures is presented. Preceramic polymers (polycarbosilane and poly(vinyl)silazane) are combined with sacrificial porogens (ultra-high molecular weight polyethylene microbeads) to yield porous ceramic materials in the Si?C or Si?C?N systems, exhibiting well-defined pore structures after thermal conversion. The planar-disc-type speci...

  12. Effects of gamma irradiation in graphene/poly (ethylene oxide) nanocomposites

    International Nuclear Information System (INIS)

    Braz, Elton P.; Goncalves, Natercia Antunes; Araujo, Patricia L.B.; Araujo, Elmo S.

    2013-01-01

    Nanotechnology is the understanding and control of matter in dimensions between 1 and 100nm. In such small matter portions, improved or even new properties may arise, as a direct consequence of reduced size. Thus, the development of multifunctional nanomaterials is nowadays one of the main goals of the materials research field. In this context, we produced graphene sheets through ultrasound exfoliation of graphite oxide, followed by chemical reduction. Composite nanofibers of these graphene sheets with biocompatible polymer poly (ethylene oxide) (PEO) were obtained by electrospinning technique, and irradiated up to 75kGy dose to assess the effects of gamma irradiation in the molecular structure of these composite nanomaterial. Our findings showed that PEO is quite resistant to radiation damage and that the incorporation of graphene oxide has no significant influence on its radiostability. (author)

  13. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  14. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    Science.gov (United States)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  15. Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shunkai; Liao, Fan, E-mail: fliao@suda.edu.cn; Wang, Tao; Zhu, Lili; Shao, Mingwang, E-mail: mwshao@suda.edu.cn

    2016-07-15

    Gamma-ray irradiation was employed to tune surface properties of graphene oxide quantum dots (GOQDs), such as functional groups and defect density. The GOQDs were first oxidized under γ-ray irradiation with doses ranging from 0 to 200 kGy, and then reduced under larger irradiation doses from 200 to 400 kGy. In other words, both the defect density and the number of surface functional groups increased first and then decreased along with the increasing irradiation dose. This process was confirmed with UV–visible absorption, X-ray photoelectron spectroscopy, Raman spectra and Fourier transform infrared spectra. In order to estimate their π-conjugated content, the GOQDs were served to quench the fluorescence of Rhodamine 6 G. The results showed that there existed a positive relationship between the π-conjugated content and the static quenching coefficient V{sub q}Na, which might have a potential value. - Highlights: • The conjugate extent and hydrophily of GOQDs decreased along with irradiation dose. • Gamma-ray irradiation weakens the quenching effect of GOQDs. • Quenching mechanism is a combination of dynamic and static quenching.

  16. Study of the stability of the nanometer-sized oxides dispersed in ODS steels under ion irradiations

    International Nuclear Information System (INIS)

    Lescoat, M.-L.

    2012-01-01

    Oxide Dispersion Strengthened (ODS) Ferritic-Martensitic (FM) alloys are expected to play an important role as cladding materials in Generation IV sodium fast reactors operating in extreme temperature (400-500 C) and irradiation conditions (up to 200 dpa). Since nano-oxides give ODS steels their high temperature strength, the stability of these particles is an important issue. The present study evaluates the radiation response of nano-oxides by the use of in-situ and ex-situ ion irradiations performed on both Fe18Cr1W0,4Ti +0,3 Y 2 O 3 and Fe18Cr1W0,4Ti + 0.3 MgO ODS steels. In particular, the results showed that Y-Ti-O nano-oxides are quite stable under very high irradiation dose, namely 219 dpa at 500 C, and that the oxide interfacial structures are likely playing an important role on the behavior under irradiation (oxide stability and point defect recombination. (author) [fr

  17. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  18. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-01-01

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl 2 O 4 , α-Al 2 O 3 , and γ-Al 2 O 3. By controlling the working parameters, the distribution of the CoAl 2 O 4 phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  19. Packaging and irradiation effects on lipid oxidation and volatiles in pork patties

    International Nuclear Information System (INIS)

    Ahn, D.U.; Olson, D.G.; Lee, J.I.; Jo, C.; Wu, C.; Chen, X.

    1998-01-01

    Raw-meat patties were prepared from three pork muscles, irradiated in different packaging environments, and stored for 0 or 3 days before cooking. Lipid oxidation by-products were formed in the raw meat during storage and the baseline lipid oxidation data of raw meat was used to measure the progression of lipid oxidation after cooking. Thiobarbituric acid-reactive substances (TBARS) and volatiles data indicated that preventing oxygen exposure after cooking was more important for cooked meat quality than packaging, irradiation, or storage conditions of raw meat. Propanal, pentanal, hexanal, 1-pentanol, and total volatiles correlated highly (P 0.01) with TBARS values of cooked meat. Hexanal and total volatiles represented the lipid oxidation status better than any other individual volatile components

  20. Sub-ablative Er,Cr:YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength.

    Science.gov (United States)

    Bağlar, Serdar

    2018-01-01

    This study evaluated the caries resistant effects of sub-ablative Er,Cr:YSGG laser irradiation alone and combined with fluoride in comparison with fluoride application alone on enamel prepared for veneer restorations. And also, evaluated these treatments' effects on the shear bond strength of all-ceramic veneer restorations. One hundred and thirty-five human maxillary central teeth were assigned to groups of 1a-control, 1b-laser treated, 1c-fluoride treated, 1d-laser + fluoride treated for shear bond testing and to groups of 2a-positive control(non-demineralised), 2b-laser treated, 2c-fluoride treated, 2d-laser + fluoride treated, 2e-negative control (demineralised) for microhardness testing (n = 15, N = 135). Demineralisation solutions of microhardness measurements were used for the ICP-OES elemental analysis. The parameters for laser irradiation were as follows: power output, 0.25 W; total energy density, 62.5 J/cm 2 and energy density per pulse, 4.48 J/cm 2 with an irradiation time of 20 s and with no water cooling. Five percent NaF varnish was used as fluoride preparate. ANOVA and Tukey HSD tests were performed (α = 5%). Surface treatments showed no significant effects on shear bond strength values (p = 0.579). However, significant differences were found in microhardness measurements and in elemental analysis of Ca and P amounts (p < 0.01). Surface-treated groups showed significantly high VNH values and significantly low ICP-OES values when compared with non-treated (-control) group while there were no significance among surface-treated groups regarding VHN and ICP-OES values. Sub-ablative Er,Cr:YSGG treatment alone or combined with fluoride is as an effective method as at least fluoride alone for preventing the prepared enamel to demineralization with no negative effect on shear bond strength.

  1. Particle-induced amorphization of complex ceramics. Final report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by α-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  2. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Prabhakar Rao, P.; Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter

    2009-01-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce 3+ , which remains in the reduced state without being oxidized to Ce 4+ by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  3. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, M. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Prabhakar Rao, P., E-mail: padala_rao@yahoo.com [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India)

    2009-07-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce{sup 3+}, which remains in the reduced state without being oxidized to Ce{sup 4+} by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  4. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix; Stabilite sous irradiation de particules d'oxydes finement dispersees dans des alliages ferritiques

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, I

    1999-07-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO{sub 2}+Y{sub 2}O{sub 3}) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide (< 20 nm) disappear, the modification of oxide composition, and a halo of fine oxides appear around the larger oxides. The use of such a material requires a study of oxide stability under irradiation, since the oxide particles provide the desired mechanical properties. The study is based on two types of alloys, the DY and four ferritic steels Fe-9Cr-1Mo reinforced by Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, MgO or MgAl{sub 2}O{sub 4}. These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel

  5. Bakery products from irradiated and non-irradiated eggs - analytical problems associated with the detection of irradiation in processed foods

    International Nuclear Information System (INIS)

    Grabowski, H.U. von; Pfordt, J.

    1993-01-01

    In spring and early summer 1992, a number of irradiated egg products were illegally imported into Germay. To prove the irradiation of these egg products, mainly combined gas chromatography-mass spectrometry was applied. With this present study we wanted to answer the question if we were also able to detect the use of irradiated eggs in processed foods. The processed food we chose to produce and to investigate was a tart layer. For this product, dilution effects are of minor importance as no extra fat was added. Thus, the layers' fat almost exclusively came from the eggs. To study the influence of emulsifiers, we produced batters both with and without adding an emulsifer. The unsaturted hydrocarbons C14:1, C16:3, C16:2, C17:2, and C17:1 served as markers for an irradiation. In the non-irradiated egg samples and in the tart layers produced from them, these compounds could not be detected (or in some cases only in small amounts). They were, however, detectable in all irradiated samples. DCB could be found in all irradiated egg samples and in the tart layers that were baked from irradiated eggs. It was not present in non-irradiated eggs and in tart layers produced from them. (orig./Vhe)

  6. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  7. Non-destructive tests of capsules for JMTR irradiation examination

    International Nuclear Information System (INIS)

    Tanaka, Hidetaka; Nagao, Yoshiharu; Sato, Masashi; Osawa, Kenji

    2007-03-01

    Irradiation examination are increasing in advanced irradiation research for accurate prediction control and evaluation of irradiation parameter such as neutron fluence, etc. by using JMTR. Irradiation capsule internals are therefore structurally complicated recently. This report described the procedure of non destructive tests such as radiographic test, penetrant test, ultrasonic test, etc. for inspection of irradiation capsules in JMTR, and the result of Test-case of confirmation procedure for internal parts of irradiation capsules. (author)

  8. Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure

    International Nuclear Information System (INIS)

    Baranwal, R.; Burke, M.G.

    2003-01-01

    Oxide dispersion strengthened (ODS) molybdenum has been characterized using transmission electron microscopy (TEM) to determine the effects of irradiation on material microstructure. This work describes the results-to-date from TEM characterization of unirradiated and irradiated ODS molybdenum. The general microstructure of the unirradiated material consists of fine molybdenum grains (< 5 (micro)m average grain size) with numerous low angle boundaries and isolated dislocation networks. 'Ribbon'-like lanthanum oxides are aligned along the working direction of the product form and are frequently associated with grain boundaries, serving to inhibit grain boundary and dislocation movement. In addition to the 'ribbons', discrete lanthanum oxide particles have also been detected. After irradiation, the material is characterized by the presence of nonuniformly distributed large (∼ 20 to 100 nm in diameter), multi-faceted voids, while the molybdenum grain size and oxide morphology appear to be unaffected by irradiation

  9. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  10. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation

    Science.gov (United States)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.

  11. Improvement of microstructure and mechanical properties of high dense SiC ceramics manufactured by high-speed hot pressing

    International Nuclear Information System (INIS)

    Voyevodin, V.; Sayenko, S.; Lobach, K.; Tarasov, R.; Zykova, A.; Svitlychnyi, Ye.; Surkov, A.; Abelentsev, V.; Ghaemi, H.; Szkodo, M.; Gajowiec, G.; Kmiec, M.; Antoszkiewicz, M.

    2017-01-01

    Non-oxide ceramics possess high physical-mechanical properties, corrosion and radiation resistance, which can be used as a protective materials for radioactive wastes disposal. The aim of the present study was the manufacturing of high density SiC ceramics with advanced physical and mechanical parameters. The high performance on the properties of produced ceramics was determined by the dense and monolithic structure. The densified silicon carbide samples possessed good mechanical strength, with a high Vickers micro hardness up to 28.5 GPa.

  12. Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells

    Science.gov (United States)

    Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.

    2013-11-01

    The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.

  13. Needs of in-situ materials testing under neutron irradiation

    International Nuclear Information System (INIS)

    Noda, K.; Hishinuma, A.; Kiuchi, K.

    1989-01-01

    Under neutron irradiation, the component atoms of materials are displaced as primary knock-on atoms, and the energy of the primary knock-on atoms is consumed by electron excitation and nuclear collision. Elementary irradiation defects accumulate to form damage structure including voids and bubbles. In situ test under neutron irradiation is necessary for investigating into the effect of irradiation on creep behavior, the electric properties of ceramics, transport phenomena and so on. The in situ test is also important to investigate into the phenomena related to the chemical reaction with environment during irradiation. Accelerator type high energy neutron sources are preferable to fission reactors. In this paper, the needs and the research items of in situ test under neutron irradiation using a D-Li stripping type high energy neutron source on metallic and ceramic materials are described. Creep behavior is one of the most important mechanical properties, and depends strongly on irradiation environment, also it is closely related to microstructure. Irradiation affects the electric conductibity of ceramics and also their creep behavior. In this way, in situ test is necessary. (K.I.)

  14. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  16. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  17. Electrically conductive ceramics and new joining technology for applications in HTR engineering

    International Nuclear Information System (INIS)

    Hille, Carmen; Lippmann, Wolfgang; Hurtado, Antonio

    2012-01-01

    Ceramic constructional components are quite extensively required for operation of high-temperature nuclear reactors. Functional ceramics, in addition to constructional ceramics, are increasingly coming into the focus of research. Ceramic materials are predestined for use at high temperatures and in corrosive atmospheres. Modification of silicon carbide (SiC) by targeted doping, for instance, produces a suitable material for the production of heating conductors and thermoelectric generators. As a construction material, silicon carbide (SiC) is especially interesting due to its very good thermal, mechanical and radiological properties. SiC, furthermore, performs well when activated by neutron irradiation, with the induced activation subsiding after only a few hours (). This property vector makes it an ideal starting material for use in a wide range of functional elements in high-temperature power engineering, particularly in high-temperature nuclear reactor engineering (e.g. V/HTR) including thermochemical plants for hydrogen generation or Synfuel production. In principle, it is possible to produce all-ceramic assemblies consisting of a thermoelectric generator and a sensor that can provide reliable measurement signals under extreme conditions in the high-temperature range without external power supply. This paper explains the feasibility of laser-joining such modified non-oxide ceramics, how to make electrically conductive joints, and thus, how to design complex assemblies. The parameters required for an optimal laser process to join ceramic materials were determined in extensive preliminary experiments. These investigations focused on the specific electrical resistances and optical properties. Specifically developed brazing fillers were fine-tuned so that the joints of the ceramics improved in terms of their physical interactions, chemical reactions and ability to bond or key chemically and mechanically with the ceramic surfaces. Thereby, the electrical

  18. Electrically conductive ceramics and new joining technology for applications in HTR engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Carmen, E-mail: carmen.hille@ilkdresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany); Lippmann, Wolfgang, E-mail: wolfgang.lippmann@tu-dresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany); Hurtado, Antonio, E-mail: antonio.hurtado@tu-dresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany)

    2012-10-15

    Ceramic constructional components are quite extensively required for operation of high-temperature nuclear reactors. Functional ceramics, in addition to constructional ceramics, are increasingly coming into the focus of research. Ceramic materials are predestined for use at high temperatures and in corrosive atmospheres. Modification of silicon carbide (SiC) by targeted doping, for instance, produces a suitable material for the production of heating conductors and thermoelectric generators. As a construction material, silicon carbide (SiC) is especially interesting due to its very good thermal, mechanical and radiological properties. SiC, furthermore, performs well when activated by neutron irradiation, with the induced activation subsiding after only a few hours (). This property vector makes it an ideal starting material for use in a wide range of functional elements in high-temperature power engineering, particularly in high-temperature nuclear reactor engineering (e.g. V/HTR) including thermochemical plants for hydrogen generation or Synfuel production. In principle, it is possible to produce all-ceramic assemblies consisting of a thermoelectric generator and a sensor that can provide reliable measurement signals under extreme conditions in the high-temperature range without external power supply. This paper explains the feasibility of laser-joining such modified non-oxide ceramics, how to make electrically conductive joints, and thus, how to design complex assemblies. The parameters required for an optimal laser process to join ceramic materials were determined in extensive preliminary experiments. These investigations focused on the specific electrical resistances and optical properties. Specifically developed brazing fillers were fine-tuned so that the joints of the ceramics improved in terms of their physical interactions, chemical reactions and ability to bond or key chemically and mechanically with the ceramic surfaces. Thereby, the electrical

  19. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  20. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  1. Low-temperature formation of high-quality gate oxide by ultraviolet irradiation on spin-on-glass

    International Nuclear Information System (INIS)

    Usuda, R.; Uchida, K.; Nozaki, S.

    2015-01-01

    Although a UV cure was found to effectively convert a perhydropolysilazane (PHPS) spin-on-glass film into a dense SiO x film at low temperature, the electrical characteristics were never reported in order to recommend the use of PHPS as a gate-oxide material that can be formed at low temperature. We have formed a high-quality gate oxide by UV irradiation on the PHPS film, and obtained an interface midgap trap density of 3.4 × 10 11  cm −2 eV −1 by the UV wet oxidation and UV post-metallization annealing (PMA), at a temperature as low as 160 °C. In contrast to the UV irradiation using short-wavelength UV light, which is well known to enhance oxidation by the production of the excited states of oxygen, the UV irradiation was carried out using longer-wavelength UV light from a metal halide lamp. The UV irradiation during the wet oxidation of the PHPS film generates electron-hole pairs. The electrons ionize the H 2 O molecules and facilitate dissociation of the molecules into H and OH − . The OH − ions are highly reactive with Si and improve the stoichiometry of the oxide. The UV irradiation during the PMA excites the electrons from the accumulation layer, and the built-in electric field makes the electron injection into the oxide much easier. The electrons injected into the oxide recombine with the trapped holes, which have caused a large negative flat band voltage shift after the UV wet oxidation, and also ionize the H 2 O molecules. The ionization results in the electron stimulated dissociation of H 2 O molecules and the decreased interface trap density

  2. Low-temperature formation of high-quality gate oxide by ultraviolet irradiation on spin-on-glass

    Energy Technology Data Exchange (ETDEWEB)

    Usuda, R.; Uchida, K.; Nozaki, S., E-mail: nozaki@ee.uec.ac.jp [Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-1515 (Japan)

    2015-11-02

    Although a UV cure was found to effectively convert a perhydropolysilazane (PHPS) spin-on-glass film into a dense SiO{sub x} film at low temperature, the electrical characteristics were never reported in order to recommend the use of PHPS as a gate-oxide material that can be formed at low temperature. We have formed a high-quality gate oxide by UV irradiation on the PHPS film, and obtained an interface midgap trap density of 3.4 × 10{sup 11 }cm{sup −2} eV{sup −1} by the UV wet oxidation and UV post-metallization annealing (PMA), at a temperature as low as 160 °C. In contrast to the UV irradiation using short-wavelength UV light, which is well known to enhance oxidation by the production of the excited states of oxygen, the UV irradiation was carried out using longer-wavelength UV light from a metal halide lamp. The UV irradiation during the wet oxidation of the PHPS film generates electron-hole pairs. The electrons ionize the H{sub 2}O molecules and facilitate dissociation of the molecules into H and OH{sup −}. The OH{sup −} ions are highly reactive with Si and improve the stoichiometry of the oxide. The UV irradiation during the PMA excites the electrons from the accumulation layer, and the built-in electric field makes the electron injection into the oxide much easier. The electrons injected into the oxide recombine with the trapped holes, which have caused a large negative flat band voltage shift after the UV wet oxidation, and also ionize the H{sub 2}O molecules. The ionization results in the electron stimulated dissociation of H{sub 2}O molecules and the decreased interface trap density.

  3. Spectroscopic properties of Er/Nd co-doped yttrium lanthanum oxide transparent ceramics pumped at 980 nm

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yingjie; Yang, Qiuhong, E-mail: yangqiuhong@shu.edu.cn; Gui, Yan; Yuan, Ye; Lu, Qing

    2016-05-15

    (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} (x = 0, 0.001, 0.002, 0.005, 0.01) transparent ceramics were prepared by conventional ceramic processing. The Nd{sup 3+} content dependencies of mid-infrared, near infrared and up-conversion emission of Er{sup 3+} pumped at 980 nm were fully presented. Mechanism of energy transfer between Er{sup 3+} and Nd{sup 3+} was also demonstrated. The results showed that co-doping 0.1 at% Nd{sup 3+} into 1 at% Er{sup 3+} doped yttrium lanthanum oxide transparent ceramic enhanced the 2.7 μm emission significantly and meanwhile suppressed the 1.5 μm emission effectively which indicated an improvement in population inversion between Er:{sup 4}I{sub 11/2} and Er:{sup 4}I{sub 13/2}. Moreover, green up-conversion emission of Er{sup 3+} ion also showed a great improvement by co-doping 0.1 at% Nd{sup 3+}. Those great results were attributed to energy recycle from Er:{sup 4}I{sub 13/2} to Er:{sup 4}I{sub 11/2}. The energy recycle was mainly built by the two energy transfer between Er{sup 3+} and Nd{sup 3+} (one is from Er to Nd, another is in opposite way). So, Er/Nd co-doped yttrium lanthanum oxide transparent ceramic with Nd in low concentration can be considered as a promising laser material for ∼3 μm and up-conversion laser application. - Highlights: • (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} transparent ceramics were prepared. • The emission of 2.7 μm of Er{sup 3+} ion was significantly enhanced as x was 0.001. • The emission of 1.5 μm of Er{sup 3+} ion was suppressed greatly by co-doping Nd{sup 3+} ion. • Mechanism of Er–Nd energy transfer was discussed by the energy sketch.

  4. Cationic hetero diffusion and mechanical properties of yttria-stabilized zirconia: influence of irradiation; Heterodiffusion cationique et proprietes mecaniques de la zircone stabilisee a l'oxyde d'yttrium: influence de l'irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Menvie Bekale, V

    2007-12-15

    Cubic yttria-stabilized zirconia (YSZ) is a promising material as target for the transmutation of radioactive waste. In this context, the present work is dedicated to the study of the atomic transport and the mechanical properties of this ceramic, as well as the influence of irradiation on these properties. The preliminary step concerns the synthesis of YSZ cubic zirconia ceramic undoped and doped with rare earths to form homogeneous Ce-YSZ or Gd-YSZ solid solutions with the highest density. The diffusion experiments of Ce and Gd in YSZ or Ce-YSZ were performed in air from 900 to 1400 C, and the depth profiles were established by SIMS. The bulk diffusion decreases when the ionic radius of diffusing element increases. The comparison with literature data of activation energies for bulk diffusion suggests that the cationic diffusion occurs via a vacancy mechanism. The diffusion results of Ce in YSZ irradiated with 4 or 20 MeV Au ions show a bulk diffusion slowing-down at 1000 and 1100 C when the radiation damage becomes important (30 dpa). The mechanical properties of YSZ ceramics irradiated with 944 MeV Pb ions and non irradiated samples were studied by Vickers micro indentation and Berkovitch nano indentation techniques. The hardness of the material increases when the average grain size decreases. Furthermore, the hardness and the toughness increase with irradiation fluence owing to the occurrence of compressive residual stresses in the irradiated area. (author)

  5. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  6. Spectroscopy study of ceramic pigments based on Ce(IV)-Pr(IV) oxide

    International Nuclear Information System (INIS)

    Furtado, L.; Toma, H.E.

    1991-01-01

    The synthesis and spectroscopic properties of a series of cerium(IV)-praseodimium(IV) oxide pigments are reported. The pigments exhibit brick-red colours and are suitable for ceramic applications because of their high temperature stability. Electronic absorption spectra of the pigments suspended in a gel matrix of polyvinyl alcohol-sodium tetradecaborate mixture, consists of broad band with gaussian components at 372 and 472nm. These bands are described to charge -transfer transitions from the occupied oxygen p-orbitals to the empty f levels of the lanthanides. (author)

  7. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review.

    Science.gov (United States)

    Gallo, Jiri; Goodman, Stuart Barry; Lostak, Jiri; Janout, Martin

    2012-09-01

    Ceramic on ceramic (COC) total hip arthroplasty (THA) was developed to reduce wear debris and accordingly, the occurrence of osteolysis and aseptic loosening especially in younger patients. Based on the excellent tribological behavior of current COC bearings and the relatively low biological activity of ceramic particles, significant improvement in survivorship of these implants is expected. We used manual search to identify all relevant studies reporting clinical data on COC THAs in PubMed. The objective was to determine whether current COC THA offers a better clinical outcome and survivorship than non-COC THA. Studies with early generation ceramic bearings yielded 68% to 84% mean survivorship at 20 years follow-up which is comparable with the survivorship of non-COC THAs. Studies on current ceramic bearings report a 10-year revision-free interval of 92% to 99%. These outcomes are comparable to the survivorship of the best non-COC THAs. However, there are still concerns regarding fracture of sandwich ceramic liners, squeaking, and impingement of the femoral neck on the rim of the ceramic liner leading to chipping, especially in younger and physically active patients. Current COC THA leads to equivalent but not improved survivorship at 10 years follow-up in comparison to the best non-COC THA. Based on this review, we recommend that surgeons weigh the potential advantages and disadvantages of current COC THA in comparison to other bearing surfaces when considering young very active patients who are candidates for THA.

  8. Development of an apparatus for measuring the thermal conductivity of irradiated or non-irradiated graphite; Realisation d'un appareil de mesure de la conductibilite thermique du graphite irradie ou non irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, M; Micaud, G

    1962-07-01

    An apparatus was developed for measuring the thermal conductivity coefficient K of irradiated or non-irradiated graphite. The measurement of K at around room temperature with an accuracy of about 6% is possible. The study specimen is placed in a vacuum between a hot and a cold source which create a temperature gradient {delta}{theta}/ {delta}x in the steady state. The amount of heat transferred, Q, is deduced from the electrical power dissipated at the hot source, after allowing for heat losses. The thermal conductivity coefficient is defined as: K = Q/S. {delta}x/{delta}{theta}, S being the cross section of the sample. Systematic studies have made it possible to determine the mean values of the thermal conductivity. (authors) [French] Un appareil de mesure du coefficient de conductibilite thermique K du graphite irradie ou non irradie a ete realise. Utilisant le principe du transfert de chaleur, il permet de mesurer K au voisinage de la temperature ambiante avec une precision de 6 pour cent environ. L'echantillon de graphite etudie est place sous vide entre une source chaude et une source froide qui creent en regime permanent un gradient de temperature {delta}{theta}/{delta}x La quantite de chaleur transferee Q est deduite de la puissance electrique dissipee dans la source chaude en deduisant les pertes thermiques. Le coefficient de conductibilite thermique est defini par: K = Q/S. {delta}x/{delta}{theta} S designant la section de l'echantillon. Des etudes systematiques ont permis de determiner pour differents graphites non irradies les valeurs moyennes des coefficients de conductibilite thermique. Ces etudes ont mis en evidence pour un type de graphite donne, l'influence de la densite apparente sur le coefficient de conductibilite thermique. A partir de mesures effectuees sur des echantillons de graphite irradies preleves par carottage dans les empilements des reacteurs a moderateur de graphite les variations du rapport K0/Ki en fonction de la dose et de la

  9. Inhibition effect on lipid oxidation of irradiated pork by adding hawthorn flavonoid extract

    International Nuclear Information System (INIS)

    Wang Xiaoming; Liu Chao; Cao Lei; Li Kexi

    2011-01-01

    The antioxidant activity of hawthorn flavonoid extract and its inhibition effect on irradiated pork lipid oxidant were investigated. The results showed that hawthorn flavonoids had efficient scavenging effect on DPPH free radicals (DPPH ·), and the scavenging rate reached 56% while 2 ml of 0.035 mg/ml hawthorn flavonoid extract was added. Hawthorn flavonoid extract can inhibition the lipid oxidation of irradiated pork effectively and it showed a stronger inhibition ability while the hawthorn flavonoid extract were used together with Vc. It is concluded that can decrease the lipid oxidation of pork, hawthorn flavonoid extract is a remarkable natural antioxidant. (authors)

  10. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    International Nuclear Information System (INIS)

    Yi, Wei; Hu, Xiaozhi; Ichim, Paul; Sun, Xudong

    2012-01-01

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic–matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic–matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  11. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p < 0.05). Also, a significant increase in bond strength values was noted in group 6 (p < 0.05). All surface treatment methods enhanced the repair bond strength of the composite to zirconia; however, there were no significant differences between treatment methods. The results revealed that Nd:YAG laser irradiation along with the combination of sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. © Wiley Periodicals, Inc.

  12. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  13. Development of carbon-ceramic composites

    International Nuclear Information System (INIS)

    Raman, V.; Bhatia, G.; Mishra, A.; Sengupta, P.R.; Saha, M.; Rashmi

    2005-01-01

    Carbon-ceramic composites (C-SiC-B 4 C) were developed through in situ formation of silicon carbide by mixing coal-tar based green coke and silicon as silicon carbide (SiC) precursor, boron carbide (B 4 C) and heat-treatment to 2200 deg. C. These composites were characterised for their physical, mechanical and oxidation resistance properties. The formation of protective coatings during oxidation of the composites was confirmed by using X-ray diffraction, energy-dispersive X-ray spectrometry, scanning electron microscopy and porosity measurement. Carbon-ceramic composites, which could withstand oxidation at 800-1200 deg. C for about 10 h in air have been developed

  14. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 g U/cm 3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼63% 235 U burnup). (author)

  15. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼ 63% 235 U burnup)

  16. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.

    Science.gov (United States)

    Sasse, Martin; Kern, Matthias

    2014-06-01

    This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.

    1985-01-01

    Onset of melting is an important performance limit for irradiated UO 2 and UO 2 -based nuclear reactor fuels. Melting (solidus) temperatures are reasonably well known for starting fuel materials such as UO 2 and (U,PU)O 2 , however the influence of burnup on oxide fuel melting behavior continues to represent an area of considerable uncertainty. In this paper we report the results of a variety of melting temperature measurements on pseudo-binary fuel-fissia mixtures such as UO 2 -PUO 2 , UO 2 -CeO 2 , UO 2 -BaO, UO 2 -SrO, UO 2 -BaZrO 3 and UO 2 -SrZrO 3 . These measurements were performed using the thermal arrest technique on tungsten-encapsulated specimens. Several low melting eutectics, the existence of which had previously been inferred from post-irradiation examinations of high burnup mixed oxide fuels, were characterized in the course of the investigation. Also, an assessment of melting temperature changes in irradiated oxide fuels due to the production and incorporation of soluble oxidic fission products was performed by application of solution theory to the available pseudo-binary phase diagram data. The results of this assessment suggest that depression of oxide fuel solidus temperatures by dissolved fission products is substantially less than that indicated by earlier experimental studies. (orig.)

  18. Chemiluminescence ELISA for the detection of oxidative DNA base damage using anti-8-hydroxy-2'-deoxyguanosine antibody. Application to the detection of irradiated foods

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Funayama, Tomoo; Sakashita, Tetsuya; Satoh, Katsuya; Narumi, Issay; Kobayashi, Yashihiko; Gunawardane, Chaminda R.; Alam, Md. Khorshed; Dzomir, A. Zainuri Mohd.; Pitipanaarachchi, Ramya C.; Hamada, Nobuyuki; Wada, Seiichi

    2007-01-01

    Since ionizing radiation is used for sterilizing or lowering the microbial content of foods as a means of reducing food losses and securing food safety, the development of versatile detection methods of irradiated foods is necessary for appropriate management. In an effort to distinguish between irradiated and non-irradiated food, a method based on the detection of oxidative DNA base damage using the chemiluminescence enzyme-linked immunosorbent assay (ELISA) with anti-8-hydroxy-2'-deoxyguanosine antibody was developed. In the course of optimizing the reaction conditions for the ELISA, a 30-mer synthetic oligonucleotide containing 8-hydroxyguanine (8-oxoG) was used. Under the optimized conditions, the correlation between chemiluminescence intensity and 8-oxoG content in oligonucleotides was obtained. It was shown that this chemiluminescence ELISA method could be applied to chicken, beef and pork that were irradiated with over 3 kGy. Twenty milligrams of a loaf of meat was sufficient to distinguish between irradiated and non-irradiated meat by this method. (author)

  19. Rare earth oxide reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Yoggendra Prasad; Rego, Sheila Alves Bezerra da Costa; Ferreira, Ricardo Artur Sanguinetti [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2012-07-01

    Recent findings of largest known pre-salt petroleum reservoir in Brazil have created an intense demand for new materials capable of withstanding direct contact with the crude petroleum as it is a highly corrosive and chemically reactive fluid. Petroleum drilling equipment, storage tanks and transportation systems suffer from constant physical stress caused by chemical attack of crude petroleum on its structure. Ceramics are materials with high chemical stability in hostile environment and therefore can be used as an inert coating material to resolve such problems. To date, ceramics based on alumina are most widely used in practice where there is demand for high mechanical strength and high fracture toughness. However intrinsic fragility of ceramics is still a fatal factor for their use in mechanical structures. To improve these characteristics, usually ceramics are reinforced with one or more ceramic additives. Mechanical properties of alumina based ceramics improve considerably with the addition of TiO{sub 2}, TiN, ZrO{sub 2} etc. ceramic additives. Nucleation and propagation of cracks is a major problem for ceramic coating applications. Initial studies show that addition of small percentages of rare earth oxides can increase the toughness of the alumina based ceramics. In the present work, we have produced rare-earth oxide (CeO{sub 2}) reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics in proportions of 5-20 wt% TiO{sub 2} and 2%wt% CeO{sub 2} through thermomechanical processing and sintering techniques and studied there microstructural characteristics and mechanical properties. To evaluate the potential of these ceramics as inert coatings for crude petroleum extraction, storage and transportation systems, we have studied the physic-chemical and mechanical stability of these ceramics in crude petroleum environment. Our studies presented satisfactory results in terms of physic-chemical and mechanical stability of these materials for the use of 2wt% of CeO{sub 2

  20. Thermoluminescent response of aluminium oxide thin films subject to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, A.; Escobar A, L.; Camps, E.; Villagran, E.; Gonzalez, P.R

    2006-07-01

    The thermoluminescent (TL) properties of amorphous aluminium oxide thin films (thicknesses as low as 0.3 {mu}m) subjected to gamma (Co-60) irradiation are reported. Aluminium oxide thin films were prepared by laser ablation from an Al{sub 2}O{sub 3} target using a Nd: YAG laser with emission at the fundamental line. The films were exposed to gamma radiation (Co-60) in order to study their TL response. Thermoluminescence glow curves exhibited two peaks at 110 and 176 C. The high temperature peak shows good stability and 30% fading in the first 5 days after irradiation. A linear relationship between absorbed dose and the thermoluminescent response for doses span from 150 mGy to 100 Gy was observed. These results suggest that aluminium oxide thin films are suitable for detection and monitoring of gamma radiation. (Author)

  1. Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone

    International Nuclear Information System (INIS)

    Vidales, María J. Martín de; Barba, Silvia; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A.

    2014-01-01

    Highlights: • Single sonolysis and photolysis technologies entail a slight progesterone removal and nil mineralization. • Synergistic effects of irradiating UV light and US are clearly observed in the oxidation rate. • The energy required by CDSEO and CDSPEO prevents against their application. • CDSEO mainly favors the mass transfer of organics to the conductive-diamond surface. • CDPEO promotes the formation of radicals in the bulk solution. - Abstract: This work focusses on the improvement of the efficiency of Conductive Diamond Electrochemical Oxidation (CDEO) by coupling US and UV irradiation in the degradation of progesterone from wastewater. Results show that CDEO is a promising technology for the degradation of progesterone, just the opposite of that observed for single sonolysis and photolysis technologies, which only entail a slight removal of progesterone and nil mineralization. Coupling UV light and US irradiations with CDEO seems to have a very positive effect, improving results obtained by single CDEO very significantly. Conductive Diamond Sono Electrochemical Oxidation (CDSEO) mainly seems to improve the transfer of pollutants to the conductive-diamond surface, while Conductive Diamond Photo Electrochemical Oxidation (CDPEO) seems to promote the formation of radicals from oxidants produced electrochemically. Soft oxidation conditions are obtained with the single application of both irradiation technologies, whereas an efficient mineralization is attained with CDEO, CDSEO, CDPEO and Conductive Diamond Sono-Photo Electrochemical Oxidation (CDSPEO). However, the high energy demands of US irradiation technologies advices against the use of CDSEO and CDSPEO

  2. Strawberry or blueberry supplementation may protect against increased oxidative stress vulnerability from both irradiation and aging

    Science.gov (United States)

    Joseph, J. A.; Shukitt-Hale, B.; Carey, A.; Rabin, B. M.

    In several studies we have now shown that there are some interesting parallels between aging and the effects of heavy particle irradiation (56Fe) in a rat model. Interestingly this research also has shown that, much as has been seen in aged animals, dietary supplementation with high antioxidant-strawberry (SB) or blueberry (BB) extracts (2% of the diet) reversed many of the age-related changes. Similarly, supplementing the diets of young rats with SBs or BBs (2% of diet as in the aged animals) for 8 weeks prior to being exposed to 56Fe (1 GeV/n), using the AGS or NSRL at Brookhaven National Laboratory, prevented the deleterious effects of the radiation exposure on the motor, cognitive and neuronal parameters described above. In the present experiment we examined whether striatal tissue obtained from BB- or SB-supplemented or control-fed, irradiated or non-radiated, young rats would show differential sensitivity (as assessed via decrements in mAChR stimulation of dopamine release) to hydrogen peroxide, a reactive oxygen species (ROS) generating agent. The results indicated that, just as we had seen previously with respect to radiation protection in the parameters described above, the tissue from the SB or BB-supplemented irradiated or non-radiated animals showed increased mAChR-stimulated DA release from the striatal tissue following hydrogen peroxide exposure compared to that seen in non-supplemented irradiated or non-radiated animals (e.g., DA rels. p moles/mg protein, rad + H202 non-supplemented = 90, SB = 260, BB = 360). These results show that aging and irradiation may produce similar decrements in dopamine release and that, much as we have seen previously with age, radiation enhances the vulnerability to oxidative stressors, but these are reduced with SB or BB supplementation. They are discussed in-terms of protection against the effects of exposure to heavy particles and aging via nutritional supplementation with foods that are high in antioxidant activity

  3. Ceramic Foams from Pre-Ceramic Polymer Routes for Reusable Acreage Thermal Protection System Applications

    Science.gov (United States)

    Stackpoole, Mairead; Chien, Jennifer; Schaeffler, Michelle

    2004-01-01

    Contents include the following: Motivation. Current light weight insulation. Advantages of preceramic-polymer-derived ceramic foams. Rigid insulation materials. Tailor foam microstructures. Experimental approach. Results: sacrificial materials, sacrificial fillers. Comparison of foam microstructures. Density of ceramic foams. Phase evolution and properties: oxidation behavior. mechanical properties, aerothermal performance. Impact damage of microcellular foams. Conclusions.

  4. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  5. In-pile irradiation of rock-like oxide fuels

    International Nuclear Information System (INIS)

    Nitani, N.; Kuramoto, K.; Yamashita, T.; Nakano, Y.; Akie, H.

    2001-01-01

    Five kinds of ROX fuels were prepared and irradiated using 20% enriched U instead of Pu. Non-destructive and destructive post-irradiation examinations were carried out. FP gas release rates of the particle-dispersed type fuels and homogeneously-blended type fuels were larger than that of the Yttria-stabilized zirconia containing UO 2 single phase fuel. From results of SEM and EPMA, decomposition of the spinel was observed. The decomposition of the spinel is probably avoided by lowering the irradiation temperature, less than 1700 K. The regions suffering the irradiation damage of the particle dispersed type fuels were less than those of the homogeneously-blended type fuels. (author)

  6. In-pile irradiation of rock-like oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nitani, N.; Kuramoto, K.; Yamashita, T.; Nakano, Y.; Akie, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Five kinds of ROX fuels were prepared and irradiated using 20% enriched U instead of Pu. Non-destructive and destructive post-irradiation examinations were carried out. FP gas release rates of the particle-dispersed type fuels and homogeneously-blended type fuels were larger than that of the Yttria-stabilized zirconia containing UO{sub 2} single phase fuel. From results of SEM and EPMA, decomposition of the spinel was observed. The decomposition of the spinel is probably avoided by lowering the irradiation temperature, less than 1700 K. The regions suffering the irradiation damage of the particle dispersed type fuels were less than those of the homogeneously-blended type fuels. (author)

  7. Hole centers in γ-irradiated, oxidized Al2O3

    International Nuclear Information System (INIS)

    Lee, K.H.; Holmberg, G.E.; Crawford, J.H. Jr.

    1976-01-01

    ESR observations of centers with S = 1/2, g approximately equal to 2, S = 1, g approximately equal to 2 have been made at 77 K on oxidized Al 2 O 3 after γ-irradiation at 30 0 C. From the radiation growth data, it is shown that the S = 1/2 centers are precursors of the S = 1 centers. In addition, when the S = 1 centers anneal out at about 110 0 C, the S = 1/2 centers reappear and eventually anneal out at about 260 0 C. Previously Gamble (Gamble, F.T.; Ph.D. Thesis, U. of Connecticut (1963)) and Cox (Cox, R.T.; Ph.D. Thesis, U. of Grenoble (1972) unpublished), respectively, observed S = 1/2 and S = 1 paramagnetic centers in electron-irradiated nominally pure Al 2 O 3 and γ-irradiated, oxidized, titanium-doped Al 2 O 3 . The models proposed for these centers were one hole and two holes trapped on oxygen ions adjacent to Al 3+ vacancies. Our results further substantiate these models. (author)

  8. Fabrication, characterization and radiation damage stability of hollandite based ceramics devoted to radioactive immobilisation; Synthese, caracterisation et etude du comportement sous irradiation electronique de matrices de type hollandite destinees au confinement du cesium radioactif

    Energy Technology Data Exchange (ETDEWEB)

    Aubin-Chevaldonnet, V. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DETCD/SCDV), Dept. d' Etudes du Traitement et du Conditionnement des Dechets, Service de Conditionnement des Dechets et Vitrification, 30 - Marcoule (France)

    2004-11-01

    Research on treating specifically the long-lived and high level nuclear wastes, notably cesium, is currently carried out in France. Cesium immobilization in host matrices of high chemical durability constitutes the favoured option. Hollandite matrix is a good candidate because of its high cesium incorporation ability and its excellent chemical stability. During this study, different compositions of hollandite ceramics Ba{sub x}Cs{sub y}C{sub z}Ti{sub 8-z}O{sub 16} (C = Al{sup 3+}, Cr{sup 3+}, Ga{sup 3+}, Fe{sup 3+}, Mg{sup 2+}, Sc{sup 3+}), synthesized by oxide route, were characterized in terms of structure, microstructure and physical and chemical properties. Iron ions seems to be the most suitable of the studied C cations to get high-performance hollandites. The stability of these ceramics under external electron irradiation, simulating the {beta} particles emitted by radioactive cesium, were also estimated, at the macroscopic and atomic scale. The point defects creation and their thermal stability were followed by electron paramagnetic resonance. (author)

  9. Facility for continuous CVD coating of ceramic fibers

    International Nuclear Information System (INIS)

    Moore, A.W.

    1992-01-01

    The development of new and improved ceramic fibers has spurred the development and application of ceramic composites with improved strength, strength/weight ratio, toughness, and durability at increasingly high temperatures. For many systems, the ceramic fibers can be used without modification because their properties are adequate for the chosen application. However, in order to take maximum advantage of the fiber properties, it is often necessary to coat the ceramic fibers with materials of different composition and properties. Examples include (1) boron nitride coatings on a ceramic fiber, such as Nicalon silicon carbide, to prevent reaction with the ceramic matrix during fabrication and to enhance fiber pullout and increase toughness when the ceramic composite is subjected to stress; (2) boron nitride coatings on ceramic yarns, such as Nicalon for use as thermal insulation panels in an aerodynamic environment, to reduce abrasion of the Nicalon and to inhibit the oxidation of free carbon contained within the Nicalon; and (3) ceramic coatings on carbon yarns and carbon-carbon composites to permit use of these high-strength, high-temperature materials in oxidizing environments at very high temperatures. This paper describes a pilot-plant-sized CVD facility for continuous coating of ceramic fibers and some of the results obtained so far with this equipment

  10. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  11. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  12. Formation of tungsten oxide nanowires by ion irradiation and vacuum annealing

    Science.gov (United States)

    Zheng, Xu-Dong; Ren, Feng; Wu, Heng-Yi; Qin, Wen-Jing; Jiang, Chang-Zhong

    2018-04-01

    Here we reported the fabrication of tungsten oxide (WO3-x ) nanowires by Ar+ ion irradiation of WO3 thin films followed by annealing in vacuum. The nanowire length increases with increasing irradiation fluence and with decreasing ion energy. We propose that the stress-driven diffusion of the irradiation-induced W interstitial atoms is responsible for the formation of the nanowires. Comparing to the pristine film, the fabricated nanowire film shows a 106-fold enhancement in electrical conductivity, resulting from the high-density irradiation-induced vacancies on the oxygen sublattice. The nanostructure exhibits largely enhanced surface-enhanced Raman scattering effect due to the oxygen vacancy. Thus, ion irradiation provides a powerful approach for fabricating and tailoring the surface nanostructures of semiconductors.

  13. Tribology of selected ceramics at temperatures to 900 C

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1986-01-01

    Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.

  14. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  15. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  17. Molecular diagnosis for the silk worm Bombyx Mori L. Viral and bacterial diseases in the irradiated and non-irradiated individuals

    International Nuclear Information System (INIS)

    Abulyazid, I.; Elshafei, A.; El-Said, E.; Mousa, S.; Taha, R.

    2007-01-01

    Genetic maps for the Bombyx Mori infectious flacherrie virus (BmlFV) causing flacherrie (Fl) disease and nuclear polyhedrosis virus (BmNPV) causing grasserie (Gr) disease were built up in an attempt to diagnose diseases early in young larval stages. For the non-irradiated and irradiated viral RNA of IFV, no amplification was obtained by using RT-PCR and RAPD-PCR techniques. HcoRI, EcoRV, BamHI, Hind III and BamHI restriction enzymes were used to digest the non-irradiated and irradiated viral DNA of BmNPV. It was found that, the two viral DNA samples were genetically different; the similarity indexes were 0.14, 0, 0, 0.18 and 0.15, respectively. At the biochemical level, native protein electrophoresis showed 4 and 3 new proteins in non-irradiated and irradiated Fl diseased larvae, respectively, while Gr diseased larvae showed 1 and 3 new protein types. The similarity index (S.I) between all the tested samples was not exceeded 44%. For lipoprotein pattern, 2 and 3 new lipoprotein types were appeared due to Fl disease in the non-irradiated and irradiated haemolymph samples, respectively, while Gr disease showed 3 new lipoproteins in the non-irradiated samples only. The highest S.I recorded was 56%. Glycoprotein pattern revealed 3 and 5 new glycoprotein types appeared due to Fl disease while Gr disease showed 4 and 6 new types in the non-irradiated and irradiated samples, respectively. The highest S.I was 77%. Fractionated protein with SDS revealed 2 common bands shared between the tested samples with R f values 0.28 and 0.71. Fl disease increased the number of protein bands with the appearance of 5 and 4 new proteins types. Gr disease reduced the total number of proteins with the appearance of 2 and 3 new types. The highest S.I was 59%. Both diseases and irradiation may be mutagenic through the epigenetic level in silkworm larvae leading to death. Thus, the results of the biochemical and genetic characterization of IFV and BmNPV enable us to conclude that the

  18. Effective suppression of bystander effects by DMSO treatment of irradiated CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Prise, K.M.; Suzuki, Keiji

    2007-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population via a bystander effect. Here, we examined whether dimethyl sulfoxide (DMSO) is effective in suppressing radiation induced bystander effects in Chinese hamster ovary (CHO) and repair deficient xrs5 cells. When 1 Gy-irradiated CHO cells were treated with 0.5% DMSO for 1 hr before irradiation, the induction of micronuclei in irradiated cells was suppressed to 80% of that in non-treated irradiated cells. The suppressive effect of DMSO on the formation of bystander signals was examined and the results demonstrated that 0.5% DMSO treatment of irradiated cells completely suppressed the induction of micronuclei by the bystander effect in non-irradiated cells. It is suggested that irradiated cells ceased signal formation for bystander effects by the action of DMSO. To determine the involvement of reactive oxygen species on the formation of bystander signals, we examined oxidative stress levels using the 2',7'-dichlorofluorescein (DCFH) staining method in irradiated populations. The results showed that the treatment of irradiated cells with 0.5% DMSO did not suppress oxidative stress levels. These results suggest that the prevention of oxidative stress is independent of the suppressive effect of DMSO on the formation of the bystander signal in irradiated cells. It is suggested that increased reactive oxygen species (ROS) in irradiated cells is not a substantial trigger of a bystander signal. (author)

  19. Mechanical properties of irradiated and non-irradiated Zr1%Nb and Zircaloy claddings

    International Nuclear Information System (INIS)

    Griger, Agnes

    2004-01-01

    The mechanical properties of irradiated and non-irradiated Zr1%Nb were determined and they were compared with the analogous properties of Zircaloy-4 to establish connections between the evolution of mechanical parameters of Zr1%Nb and Zircaloy-4 cladding materials and the measure of irradiation. Samples were irradiated in the vertical channels of the Budapest Research Reactor for different time periods at 50-65 C temperature. The measure of irradiation (fluent) for different samples was estimated by means of flux measurement and using the effective irradiation time. Post irradiation uniaxial tension tests in transverse direction were carried out on ring specimens. The mechanical parameters of the Zr1%Nb alloy significantly improve due to the effect of irradiation. However, the values of mechanical parameters do not further increase when the fluent increases above 10 20 n/cm 2 . These results are in good accordance with the Russian ones [1]. Contrary to the behaviour of Zr1%Nb alloy, the mechanical parameters of the Zircaloy practically do not change on the effect of irradiation. The originally high values of ultimate tensile strength and yield stress change only slightly with the increasing fluent in the investigated fluent-region. (Author)

  20. Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Lheureux, E. (Universite des Sciences et Techniques, Lille (France). Lab. de Morphogenese Animale)

    1983-08-01

    An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump was carried out on animals entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop.

  1. Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration

    International Nuclear Information System (INIS)

    Lheureux, E.

    1983-01-01

    An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump was carried out on animals entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop. (author)

  2. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  3. Comparative effects of gamma irradiation and ethylene oxide fumigation on some chemical quality of white ginseng powder

    International Nuclear Information System (INIS)

    Kwon, J.H.; Byun, M.W.; Cho, H.O.; Han, B.H.

    1994-01-01

    Ginseng saponins and proximate components were considerably resistant to both gamma irradiation at less than 10 kGy and commercial ethylene oxide cycle, while sulfur-containing amino acids, reducing sugar, pH, and acidity of white ginseng powder were significantly changed by EO fumigation. The contents of saponins, reducing sugar, pH and acidity were relatively liable to change under the higher relative humidity (90%), especially in the non-treated control sample. However, irradiated samples at optimum-dose range (5 to 10 kGy) depending on the microbial load following airtight packaging showed a good chemical quality for 7 months of storage at 30 pm 2 deg. C irrespective of relative humidity

  4. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  5. Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Jegatheesan, Veeriah; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2018-02-01

    The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO 2 /UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO 2 /UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO 2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO 2 /UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.

  6. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants.

    Science.gov (United States)

    Turger, Anke; Köhler, Jens; Denkena, Berend; Correa, Tomas A; Becher, Christoph; Hurschler, Christof

    2013-08-29

    Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.

  7. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  8. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  9. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  10. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine.

    Science.gov (United States)

    Guney, Y; Hicsonmez, A; Uluoglu, C; Guney, H Z; Ozel Turkcu, U; Take, G; Yucel, B; Caglar, G; Bilgihan, A; Erdogan, D; Nalca Andrieu, M; Kurtman, C; Zengil, H

    2007-10-01

    We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset) or evening (activity span - 13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  11. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine

    Directory of Open Access Journals (Sweden)

    Y. Guney

    2007-10-01

    Full Text Available We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB or abdominopelvic (AP irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset or evening (activity span - 13 h after light onset. Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively to the irradiated rats. AP (P < 0.05 and TB (P < 0.05 irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS levels. Melatonin treatment in the morning (P < 0.05 or evening (P < 0.05 decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05. Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  12. Concentration of T3 and T4 in blood of non-irradiated and irradiated different doses rats non-fed for two days before being sacrificed

    International Nuclear Information System (INIS)

    Shkumatov, L.M.; Krylova, I.I.

    1999-01-01

    The possibilities of changing T 3 and T 4 concentration in blood of non-irradiated and irradiated males with doses of 8, 6, 4, 2, 1 and 0.5 Gy non-fed for two days before being sacrificed over 2, 7, 10, 14, 21 and 28 days after irradiation are studied. The irradiation was conducted at the Ingur facility with the 137 Cs-source by the exposure dose rates of 2.4 x 10 -5 A/kg which provided for the absorbed dose rate of 8.6 x 10 -4 Gy/s. It is shown that the blood of rats irradiated with the doses of 0.5, 1, 2, 4 and 6 Gy no regular changes in the T 3 and T 4 concentration as compared to the non-irradiated rats were noticed, if they were not fed for two days before decapitation. This testifies to the fact, that the effect of ionizing radiation on thyroid function is mediated by anorexia syndrome. The decrease in the T 4 concentration after 8 Gy is most likely connected with enterotoxemy developed in difficult cases of acute radiation sickness [ru

  13. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors.

    Science.gov (United States)

    Konegger, Thomas; Patidar, Rajesh; Bordia, Rajendra K

    2015-09-01

    In this contribution, a low-pressure/low-temperature casting technique for the preparation of novel free-standing macrocellular polymer-derived ceramic support structures is presented. Preceramic polymers (polycarbosilane and poly(vinyl)silazane) are combined with sacrificial porogens (ultra-high molecular weight polyethylene microbeads) to yield porous ceramic materials in the Si-C or Si-C-N systems, exhibiting well-defined pore structures after thermal conversion. The planar-disc-type specimens were found to exhibit biaxial flexural strengths of up to 60 MPa. In combination with their observed permeability characteristics, the prepared structures were found to be suitable for potential applications in filtration, catalysis, or membrane science.

  14. Irradiation Effect on Oxidative Condition and Tocopherol Content of Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Konstantinos Sflomos

    2007-06-01

    Full Text Available The effect on induction period and tocopherol content after γ-irradiation onsamples of olive oil and seed oils (sunflower and soybean was determined. In seed oilsamples 0, 100, 200 and 300 ppm of δ-tocopherol were added before irradiation with 1, 2and 3kGy. The results of induction period showed that, after irradiation, all samplespresented a significant decreased in resistance to oxidation. However, this decrease wasminimized when δ-tocopherol was added. Irradiation significantly decreased the level oftocopherols. δ-Tocopherol appeared more sensitive in irradiation process than α- andγ-tocopherol. The addition of δ-tocopherol significantly reduced, in most cases, thedepletion of the other tocopherols.

  15. Achievement report for fiscal 1998 on research and development of industrial science technologies. Research and development on synergy ceramics (research and development of ultra-high temperature gas turbines for electric power generation); 1998 nendo shinaji ceramics no kenkyu kaihatsu. Hatsuden'yo koon gas turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper describes development of synergy ceramics. In developing a technology to design property fusion processes, studies were made on control of nano-structures by using a high-order nano-structure process, and on evaluation of micro region properties. Such nanocomposite bodies were selected for the object as piezoelectric ceramics PZT group (which increases mechanical characteristics and durability without impeding electric characteristics) and alumina-group YAG (which enhances high-temperature strength). Three-dimensional analyses were performed on particle morphology and crack structures by using focusing ion beams as a study on destruction behavior by means of microscopic and macroscopic particle morphology control. This paper reports the achievements of research and development on control of continuous small pore morphology (uni-directionally pierced pores on a new-type low expansion material used as matrix), intra-particle interface (discusses methods to micronize silicon nitride ceramics tissues), intra-layer interface (oxide-based ceramics are laminated on surface to improve oxidation and heat resistance without impeding high-temperature mechanical properties of non-oxide-based ceramics), intra-layer boundary (Pb-based double composition piezoelectric body having stable layer interface), and boundaries between inorganic and organic matters. (NEDO)

  16. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  17. Contribution to the development of the MARS beamline to study oxide dispersion strengthened steels (ODS) irradiated with neutrons using synchrotron source: secondary phases evolution under irradiation

    International Nuclear Information System (INIS)

    Menut, Denis

    2016-01-01

    X-Ray Diffraction (XRD) coupled with X-ray Absorption Fine Structure (XAFS) analyses at the MARS beamline of the synchrotron SOLEIL facility were used to study the microstructural evolution of oxides phases found in oxide dispersion strengthened steels (ODS) irradiated in Material Testing Reactors. Two hold generations of ODS steel grades (DY and MA957) irradiated up to high fluencies (∼75 dpa) were studied. These experiments have required specific developments, in particular a dedicated sample holder. An important milestone was overcome integrating the MARS beamline to the nuclearized facilities accessible for CEA. First, XRD analysis provide new results concerning intermediate sizes of precipitates (around 100 nm) essentially from crystallographic point of view, the nano-sized oxides (from 1 to 10 nm) being not detected, due to the material itself, sample preparation as thin foil and experimental set-up calibration. Secondly, XAFS analysis is not a discriminating technique as soon as the absorber atom is involved in the chemical composition of various precipitates found in ODS. Nevertheless, the stability of the Ti with a coordination number of 5 is evidenced whatever the irradiation conditions. As our experimental study was not able to detect the nano-sized oxides, an alternative way is to perform modeling approach of the behavior of massive oxides under irradiation, compared to experimental analyses under ion irradiations. We have shown that the defect fluorite is an intermediate phase of the crystal-to-amorphous phase transition of the pyrochlore oxide structure, whatever the irradiation conditions and the ratio of the cationic radii, the Ti coordination number remaining around 5 in the amorphous state. (author) [fr

  18. Optical, luminescence and scintillation characteristics of non-stoichiometric LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Feng, X.; Mareš, Jiří A.; Babin, Vladimir; Nikl, Martin; Beitlerová, Alena; Shi, Y.; Zeng, Y.; Pan, Y.; D'Ambrosio, C.; Huang, Y.

    2016-01-01

    Roč. 169, Jan (2016), s. 72-77 ISSN 0022-2313 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : non-stoichimetric LuAG:Ce ceramic s * radioluminescence * scintillation response * anti-site defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  19. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  20. Leakage current characterization for estimating the conditions of non-ceramic insulators' surfaces

    Energy Technology Data Exchange (ETDEWEB)

    El-Hag, Ayman H. [Electrical Engineering Department, American University of Sharjah, Sharjah (United Arab Emirate)

    2007-03-15

    In this work both detection of the beginning of dry-band arcing and correlating the average value of leakage current (LC) with non-ceramic insulator surface damage have been investigated. Silicone rubber insulators were tested in salt-fog under different voltage and conductivity levels. The autocorrelation function (ACF) was calculated for both the fundamental and third harmonic components of LC during the early aging period (EAP). It has been observed that distinct differences exist in the behavior of both the fundamental and that of the third harmonic components of the LC during EAP. Although the fundamental component of the LC begins to grow immediately after starting the test, the third harmonic requires a much longer period of time to begin. Dry-band arcing is highly correlated with distortion in the LC and hence to its third harmonic component. But it has been observed that the level of the fundamental component of LC at which the third harmonic component started to increase is different from one case to another. As such, it is more appropriate to use the ACF of the third harmonic component of LC as an indication of dry-band arcing rather than a simple threshold value. Moreover, the average value of LC during late aging period (LAP) was correlated with the damage of non-ceramic insulators. It has been found that the average level of both the fundamental and third harmonic component of LC is well correlated with the different degrees of damage of non-ceramic insulators' surface. (author)

  1. Thermal Response of Whipox-Type All-Oxide Ceramic Matrix Composites during Reentry Simulation in the Dlr-Lbk Arc-Heated Facility

    Science.gov (United States)

    Mechnich, P.; Braue, W.; Schneider, H.; Koch, U.; Esser, B.; Gülhan, A.

    2005-02-01

    All-oxide ceramic matrix composites (CMCs) such as WHIPOXTM (wound highly porous oxide) exhibit excellent damage tolerance and thermal stability up to 1400°C. Due to their low density and thermal conductivity these new ceramic materials are considered promising candidates for thermal protection systems (TPS) of spacecrafts. The performance of WHIPOX-type CMCs was evaluated during reentry simulations in the L2K leg of the arc-heated LBK facility of DLR, Cologne. The application of reaction-bonded alumina (RBAO) coatings provides significant CMC surface protection and decreased gas permeability, which are key issues for reentry applications. Since emittance and catalycity of the RBAO-coatings limit the performance of CMCs in a reentry environment, binary SiC/RBAO coatings providing higher emittance and/or lower catalycity proved to be a promising approach.

  2. In-Pile Assemblies for Investigation of Tritium Release from Li2TiO3 Lithium Ceramic

    International Nuclear Information System (INIS)

    Shestakov, V.; Tazhibayeva, I.; Kawamura, H.; Kenzhin, Y.; Kulsartov, T.; Chikhray, Y.; Kolbaenkov, A.; Arinkin, F.; Gizatulin, Sh.; Chakrov, P.

    2005-01-01

    The description of algorithm to design in-pipe experimental ampoule devices (IPAD) is presented here, including description of IPAD design for irradiation tests of highly enriched lithium ceramics at WWR-K reactor. The description of the system for registration of tritium release from ceramics during irradiation is presented as well. Typical curve of tritium release from the IPAD during irradiation under various temperatures of the samples is shown here

  3. Dynamic behavior of protium and deuterium implanted into an oxide ceramic studied by means of ERD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Emi; Horikawa, Tomoaki; Tsuchiya, Bun; Soda, Kazuo; Morita, Kenji; Iwahara,; Hiroyasu, [Nagoya Univ. (Japan)

    1998-03-01

    We have investigated exchange of deuterium (or protium) implanted into an oxide ceramic, SrCe{sub 0.95}Yb{sub 0.05}O{sub 3-{delta}}, for protium (or deuterium) due to exposure to H{sub 2}O (or D{sub 2}O) vapor at room temperature by means of the elastic recoil detection (ERD) technique. It is found that D is completely exchanged for H by expose to H{sub 2}O vapor, while H is hardly exchanged for D by expose to D{sub 2}O vapor, namely there exists a great isotope difference between the exchange of D for H and that of H for D. This result suggests that the exchanges do not take place on a conventional model of following subsequent reactions; dissociative absorption at the surface, diffusion (H), replacement of D by H, diffusion (D), and release due to surface recombination, but on a new model of following reactions; dissociative absorption at the surface, diffusion and release through bulk recombination due to mixed molecule formation. In order to clarify the reaction leading to the great isotope difference, the experiments on the retention of H and D by simultaneous H{sup +}, D{sup +} implantation and the release of 5 keV D{sub 2}{sup +} implants by 0.5 keV H{sub 2}{sup +} irradiation and 5 keV H{sub 2}{sup +} implants by 0.5 keV D{sub 2}{sup +} irradiation have been done. The retention experiment shows that the D/H ratio of the saturation implantation concentration is 1.3. Competition among H-H, H-D and D-D bulk recombination prefers to enrich D, which is opposite to the isotope difference observed. The release experiment shows that the slow and continuous decay of 5 keV D{sub 2}{sup +} implants is induced by 0.5 keV H{sub 2}{sup +} irradiation for long term, while that of 5 keV H{sub 2}{sup +} implants is hardly induced by 0.5 keV D{sub 2}{sup +} irradiation for long term. The latter result suggests that the diffusion may play a major rule in the great isotope difference. (author)

  4. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  5. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    International Nuclear Information System (INIS)

    Xiao, Chengjian; Gao, Xiaoling; Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke; Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming; Wang, Xiaolin; Oya, Yasuhisa; Okuno, Kenji

    2013-01-01

    Tritium release kinetics in lithium orthosilicate (Li 4 SiO 4 ) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li 4 SiO 4 pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10 −7.0 exp (−40.3 × 10 3 /RT) cm 2 s −1

  6. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  7. Non-conventional synthesis of ceramic pigments

    International Nuclear Information System (INIS)

    Dziubak, C.; Rutkowski, R.; Gebel, R.

    2003-01-01

    A short characterization of traditional methods of homogenization of components, used to produce ceramic pigments, was presented. Efficient and economic methods are searched to prepare raw material sets for ceramic pigments as alternative methods for the traditional way of wet mixing in ball mill or of dry mixing in the mixer of 'Z' type. The results of research of the use of sol-gel method to achieve these aims are presented. At the present stage of research, carried out on the yellow praseodymium and coral-pink iron-zirconium pigments show that traditional methods are better. (author)

  8. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  9. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas

    2008-01-01

    The subject of this thesis is ceramic mixed ionic and electronic conductors (MIECs). MIECs have potential uses, such as solid oxygen permeation membranes, as catalysts, and as components in fuel cells. The MIECs examined in this thesis are all oxide ion conducting materials. This thesis describes...

  10. Thermally induced outdiffusion studies of deuterium in ceramic breeder blanket materials after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    González, Maria, E-mail: maria.gonzalez@ciemat.es [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Carella, Elisabetta; Moroño, Alejandro [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), Karlsruhe (Germany)

    2015-10-15

    Highlights: • Surface defects in Lithium-based ceramics are acting as trapping centres for deuterium. • Ionizing radiation affects the deuterium sorption and desorption processes. • By extension, the release of the tritium produced in a fusion breeder will be effective. - Abstract: Based on a KIT–CIEMAT collaboration on the radiation damage effects of light ions sorption/desorption in ceramic breeder materials, candidate materials for the ITER EU TBM were tested for their outgassing behavior as a function of temperature and radiation. Lithium orthosilicate based pebbles with different metatitanate contents and pellets of the individual oxide components were exposed to a deuterium atmosphere at room temperature. Then the thermally induced release of deuterium gas was registered up to 800 °C. This as-received behavior was studied in comparison with that after exposing the deuterium-treated samples to 4 MGy total dose of gamma radiation. The thermal desorption spectra reveal differences in deuterium sorption/desorption behavior depending on the composition and the induced ionizing damage. In these breeder candidates, strong desorption rate at approx. 300 °C takes place, which slightly increases with increasing amount of the titanate second phase. For all studied materials, ionizing radiation induces electronic changes disabling a number of trapping centers for D{sub 2} adsorption.

  11. Acid-base properties of ceramic powders

    International Nuclear Information System (INIS)

    Bleier, A.

    1983-01-01

    This chapter addresses the fundamental aspects of potentiometric titration, electrokinetics, and conductometric titration in evaluating surface and interfacial thermodynamic behavior. Emphasizes the characterization of aqueous systems which are pertinent to the processing of ceramic powders. Attempts to clarify the role of novel analytical techniques that will increasingly contribute to the advanced characterization of ceramic powders. Evaluates recently developed acid-base and complexation concepts and their applications to the processing of oxide ceramics

  12. Effect of different antioxidants on lipid oxidation of irradiated cooked streaky pork

    International Nuclear Information System (INIS)

    Guo Shuzhen; Ha Yiming; Zhang Haiwei; Wang Feng; Liu Shuliang

    2008-01-01

    The effects of antioxidants on lipid oxidation of vacuum packaged irradiated cooked streaky pork were studied. The cooked streaky pork were added with 0.02% TeaPolyphenols (TP), rosemary, Tertiary butylhydroquinone (TBHQ), Butylated hydroxytoluene (BHT) and vitamin E separately, then were irradiated with 6 kGy, and stored at 4 degree C. The results showed that antioxidants can reduce the value of TBA, POV value of irradiated cooked streaky pork, and the effects of TBHQ and TP were better, than other antiatidins. (authors)

  13. Detection of low amount of irradiated ingredients in non-irradiated precooked meals

    Science.gov (United States)

    Marchioni, Eric; Horvatovich, Peter; Ndiaye, Bara; Miesch, Michel; Hasselmann, Claude

    2002-03-01

    The application of the European Standards for the detection of irradiated food by thermoluminescence of silicates, electron-spin resonance spectroscopy of bones or gas chromatography-mass spectrometry of 2-alkylcyclobutanones does not allow the detection of irradiated ingredients included in small quantity in the matrix of a food which has not been irradiated, but which could be subjected to various processing technologies such as cooking, freezing or storage. The use of an enzymatic food hydrolysis carried out at moderated temperature, for the extraction of the food-contaminating silicate minerals and bone fragments, followed by a purification of the extracts by a high-density aqueous solution of sodium polytungstate, allows a simultaneous detection of weak inclusions (0.1% m:m) of irradiated spices and mechanically deboned turkey meat (MRM) included in various precooked foods. Moreover, the use of a supercritical fluid extraction procedure for the 2-alkylcyclobutanones or an additional purification step of the lipid extracts made it possible to lower the detection limit of the 2-alkylcyclobutanones radiation-induced from triglycerides. Using gas chromatography-mass spectrometry, down to 0.5% (m:m) of irradiated MRM included in non-irradiated chicken quenelles could be detected.

  14. Detection of low amount of irradiated ingredients in non-irradiated precooked meals

    International Nuclear Information System (INIS)

    Marchioni, Eric; Horvatovich, Peter; Ndiaye, Bara; Miesch, Michel; Hasselmann, Claude

    2002-01-01

    The application of the European Standards for the detection of irradiated food by thermoluminescence of silicates, electron-spin resonance spectroscopy of bones or gas chromatography-mass spectrometry of 2-alkylcyclobutanones does not allow the detection of irradiated ingredients included in small quantity in the matrix of a food which has not been irradiated, but which could be subjected to various processing technologies such as cooking, freezing or storage. The use of an enzymatic food hydrolysis carried out at moderated temperature, for the extraction of the food-contaminating silicate minerals and bone fragments, followed by a purification of the extracts by a high-density aqueous solution of sodium polytungstate, allows a simultaneous detection of weak inclusions (0.1% m:m) of irradiated spices and mechanically deboned turkey meat (MRM) included in various precooked foods. Moreover, the use of a supercritical fluid extraction procedure for the 2-alkylcyclobutanones or an additional purification step of the lipid extracts made it possible to lower the detection limit of the 2-alkylcyclobutanones radiation-induced from triglycerides. Using gas chromatography-mass spectrometry, down to 0.5% (m:m) of irradiated MRM included in non-irradiated chicken quenelles could be detected

  15. Automated AC Electrical Impedance Measurement of Ceramic Oxides by means of a Lock-in Amplifier

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Al-Sous, M. B.; Nasrallah, F.

    2009-06-01

    In this study, the electrical impedance of some ceramic oxides has been investigated employing the Perkin Elmer DSP 7280 Lock-in amplifier, while recording the electric response versus frequency and temperature at constant amplitude. Via integral automation of this lock-in with other delicate electrical measuring devices, a control program has been developed to accurately and swiftly acquire the frequency response of the sample, in order to lately infer the resulting samples' impedance in volt and ampere. Two maxima peaks characterising the impedance, in the curve of the doped molybdenum oxide have been observed discerning two phases in the sample (doped with 40% of niobium oxide), which shows a remarkable relaxation related to improvement in its ionic conductivity within the solid phase, with respect to increasing frequency. (author)

  16. Detection of irradiated components in flavour blends composed of non-irradiated species herbs and vegetable seasonings by thermoluminescence method

    International Nuclear Information System (INIS)

    Malec-Czechowska, K.; Stachowicz, W.

    2003-01-01

    The results of experiments on the detection of irradiated component in commercial flavour blends composed of a mixture of non-irradiated spices, herbs and seasonings are presented. A method based on the thermoluminescence measurements on silicate materials isolated from blends has been adapted. It has been proved that by applying of this technique it is possible to detect 0.95% by weight of paprika, irradiated with a dose of 7 kGy, which was a minor component of non-irradiated flavour blends. (author)

  17. Vitamin C affects the antioxidative/oxidative status in rats irradiated with ultraviolet (UV) and infrared (IR) light

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2006-01-01

    Four grups of twenty growing Wistar rats were irradiated with either UV, IR, UV+IR light or were not irradiated (control). Ten rats from each group received a diet supplemented with 0.6% of L-ascorbic acid. The effects of the mega-dose of vitamin C were evaluated by changes in the antioxidative....../oxidative status. UV and IR radiation promoted oxidative DNA degradation in rat livers and supplementation with ascorbic acid strengthened the prooxidative effects on DNA oxidation in rats irradiated with UV or IR light. Vitamin C also increased the tiobarbituric acid reactive substances (TBARS) concentration...

  18. Formation and corrosion of a 410 SS/ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X., E-mail: xin.chen@anl.gov [Civil and Materials Engineering Department, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607 (United States); Nuclear Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Ebert, W.L. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Indacochea, J.E. [Civil and Materials Engineering Department, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607 (United States)

    2016-11-15

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. - Highlights: • An alloy/ceramic composite was made to evaluate corrosion at phase boundaries. • Lanthanide oxides and Zr added to 410 steel reacted to form durable zirconates. • Corrosion behavior was evaluated using electrochemical tests and SEM analyses. • Regions of active, passive, galvanic, sensitized, and chemical corrosion observed. • The corrosion current was proportional to relative areas of active alloy phases.

  19. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Flipot, A.J.; Kennedy, P.; Conrad, R.

    1989-03-01

    As part of the joint European Programme on fusion blanket technology three laboratories, Northern Research Laboratories (NRL), Springfields in the UK, SCK/CEN-Mol in Belgium and ECN-Petten in conjunction with JRC-Petten in the Netherlands have worked closely together since 1983 on the development of ceramic breeder materials, the programme being codenamed EXOTIC. Lithium oxides, aluminates, silicates and zirconates have been produced, characterised and irradiated in the HFR-Petten in experiments EXOTIC-1, -2 and -3. EXOTIC-4 is in preparation. In this fourth annual progress report the work achieved in 1987 is reported. For EXOTIC-1 to -3 mainly post irradiation examinations have been carried out like: visual inspection, puncturing of closed capsules, tritium retention measurements and material characterisation. Moreover, tritium release experiments on small specimens have started. SCK/CEN performed a general study on lithium silicates, in particular on the thermal stability. Finally, the fabrication and the characterisation of the materials to be irradiated in experiment EXOTIC-4 are presented. The eight capsules of EXOTIC-4 will be loaed with samples of Li 2 SiO 3 , Li 2 O, Li 2 ZrO 3 , Li 6 Zr 2 O 7 and Li 8 ZrO 6 . The irradiation will last 4 reactor cycles or about 100, Full Power Day, FPD. The main objective is to determine the tritium residence time of the various lithium zirconates. 18 figs., 8 refs., 15 tabs

  20. Influence of packaging atmosphere on the formation of cholesterol oxides in [gamma]-irradiated egg powder

    Energy Technology Data Exchange (ETDEWEB)

    Lebovics, V.K.; Gaal, O. (National Inst. of Food Hygiene and Nutrition, Budapest (Hungary)); Farkas, J.; Somogyi, L. (University of Horticulture and Food Industry, Budapest (Hungary))

    1993-09-01

    In the present work the influence of aerobic and anoxic conditions have been comparatively investigated to study the chemical changes of cholesterol in [gamma]-irradiated egg powder. The irradiation treatment was carried out with powdered egg packed under air and also under vacuum in polyethylene (PE) bags and in laminated, oxygen impermeable three-layer (polyester-aluminium-polyethylene) foil to dosage levels 2 and 4 kGy at room temperature. The cholesterol oxidation is demonstrated by thin-layer chromatograms. In the egg powder wrapped in Pe bags the predominant cholesterol derivatives -7-hydroxycholesterol isomers ([alpha] and [beta]) - accumulated in significant amounts (increasing with dose) while vacuum-packaging in laminated foil considerably suppressed the quantity of these products and prevented the formation of cholesterol 5[alpha], 6[alpha]-epoxide as well as 7-ketocholesterol. Little or no change was observed in non-irradiated (control) vacuum-packed egg powder stored at approximately 22[sup o]C for up to 5 months. Peroxide values showed changes parallel to the formation of COPs. (author).

  1. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  2. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  3. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    International Nuclear Information System (INIS)

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  4. Self irradiation effects on the thorium phosphate diphosphate dissolution (TPD): simulation by external irradiations

    International Nuclear Information System (INIS)

    Tamain, C.; Ozgumus, A.; Dacheux, N.; Garrido, F.; Thome, L.; Corbel, C.; Genet, M.

    2004-01-01

    The Thorium Phosphate Diphosphate (TPD), proposed as a ceramic for the long term immobilization of actinides, was externally irradiated with several ions and energies (but also with gamma rays) in order to simulate the self-irradiation. The influence of the electronic energy loss was first investigated. Thus, the XRD measurements have shown a complete amorphization of the material under 10 13 ions of Kr.cm -2 , while no significant structural change occurred after 5.10 13 S.cm -2 , 2.10 16 He.cm -2 or 320 kGy of dose of gamma rays. The dissolution of the raw and irradiated pellets was studied versus several parameters such as amorphized fraction, energy loss of incident ions, radiolytic species produced in situ in the leachate during irradiation (such as H 2 O 2 ), temperature and acidity. The results reveal an important increase of the dissolution kinetics for amorphized pellets compared to raw ceramic. (authors)

  5. Investigation of TLD properties of metal alloy oxides, glass, ceramics and various papers

    International Nuclear Information System (INIS)

    Erkol, A.Y.; Yasar, S.; Karakelle, B.; Yasar, D.

    1995-01-01

    A large number of materials exhibit radiothermoluminescence and they are extensively used for radiation process control. In this work, the thermoluminescence (TL) properties of metal alloy oxides, glass, ceramics and various papers are investigated in order to evaluate their possible usage as TL detectors or indicators in dose measurement. TL glow curves and the effect of absorbed dose on TL response are measured for materials locally available. The fading effect are also examined. The use of these materials as a dose indicator are shown to be promising. (author)

  6. Investigation of TLD properties of metal alloy oxides, glass, ceramics and various papers

    International Nuclear Information System (INIS)

    Erkol, A.Y.; Yasar, S.; Karakelle, B.; Yasar, D.

    1995-01-01

    A large number of materials exhibit radiothermoluminescence and they are extensively used for radiation process control. In this work, the thermoluminescence (TL) properties of metal alloy oxides, glass, ceramics and various papers are investigated in order to evaluate their possible usage as TL detectors or indicators in dose measurement. TL glow curves and the effect of absorbed dose on TL response are measured for materials locally available. The fading effect is also examined. The use of these materials as a dose indicator is shown to be promising. (author)

  7. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  8. Irradiation of mixed UO2-PuO2 oxide samples for fast neutron reactor fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.; Bloch, J.; Conte, M.; Hayet, L.; Lauthier, J.C.; Leclere, J.

    1968-01-01

    Thermal flux irradiation testings of small mixed oxide pellets UPuO 2 fuel elements were performed in support of the fuel reference design for the Phenix fast reactor. The effects of different parameters (stoichiometry, pellet density, pellet clad gap). on the behaviour of the oxide (temperature distribution, microstructural changes, fission gas release) were investigated in various irradiation conditions. In particular, the effect of fuel density decrease and power rate increase on thermal performances were determined on short term irradiations of porous fuels. (authors) [fr

  9. A new effect on the dependence of Tc on the number of Cu-O layers in the non-rare-earth ceramic superconductors

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Martin, P.; Rodriguez-Nunez, J.J.

    1988-08-01

    We argue from the experimental evidence that the superconductivity in the non-rare-earth compounds is confined to two inequivalent layers of Cu-O planes where electron pairing occurs. This conjecture leads us to a set of phenomenological equations in terms of two order parameters that correctly describe the characteristic lengths of the copper oxide ceramics. The formalism developed indicates that samples with a larger number of Cu-O layers may have higher transition temperatures. The formalism suggests that in a multilayered Cu-O compound increments of T c as a function of the doping parameter will be more pronounced the larger the number of layers. (author). 12 refs

  10. Dense ceramic membranes for methane conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Henny J.M. [Laboratory for Inorganic Materials Science, Department of Science and Technology and MESA Research Institute, University of Twente, 7500 AE Enschede (Netherlands)

    2003-07-30

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor, this technology is expected to significantly reduce the capital costs of conversion of natural gas to liquid added-value products. The present survey is mainly concerned with the material properties that govern the performance of the mixed-conducting membranes in real operating conditions and highlights significant developments in the field.

  11. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  12. Effects of non-steady irradiation conditions on fusion materials performance

    International Nuclear Information System (INIS)

    Matsui, H.; Fukumoto, K.; Nagumo, T.; Nita, N.

    2001-01-01

    During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)

  13. Ceramic membrane as a pretreatment for reverse osmosis: Interaction between marine organic matter and metal oxides

    KAUST Repository

    Dramas, Laure

    2013-02-01

    Scaling and (bio)fouling phenomena can severely alter the performance of the reverse osmosis process during desalination of seawater. Pretreatments must be applied to efficiently remove particles, colloids, and also precursors of the organic fouling and biofouling. Ceramic membranes offer a lot of advantages for micro and ultrafiltration pretreatments because their initial properties can be recovered using more severe cleaning procedure. The study focuses on the interaction between metal oxides and marine organic matter. Experiments were performed at laboratory scale. The first series of experiments focus on the filtration of different fractions of natural organic matter and model compounds solutions on flat disk ceramic membranes (47 mm of diameter) characterized with different pore size and composition. Direct filtration experiments were conducted at 0.7 bar or 2 bars and at room temperature (20 ± 0.5 °C). The efficiency of backflush and alkaline cleaning were eval, and titanium oxides. Each metal oxide corresponds to a specific pore size for the disk ceramic membranes: 80, 60, and 30 nm. Different sizes of metal oxide particles are used to measure the impact of the surface area on the adsorption of the organic matter. Seawaters from the Arabian Gulf and from the Red Sea were collected during algal blooms. Cultures of algae were also performed in the laboratory and in cooperation with woods hole oceanographic institute. Solutions of algal exudates were obtained after a couple of weeks of cultivation followed by sonication. Solutions were successively filtered through GFF (0.7 lm) and 0.45 lm membrane filters before use. The dissolved organic carbon (DOC) concentration of final solution was between 1 and 4 mg/L and showed strong hydrophilic character. These various solutions were prepared with the objective to mimic the dissolved organic matter composition of seawater subjected to algal bloom. Characterization of the solutions of filtration experiments (feed

  14. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  15. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    Han Xianglong; Liu Xiaolin; Bai Ding; Meng Yao; Huang Lan

    2008-01-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  16. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  17. Study by electronic microscopy of corrosion features of graphite after hot oxidation (air, 620 C)

    International Nuclear Information System (INIS)

    Jodon de Villeroche, Suzanne

    1968-01-01

    The author reports the study of corrosion features of graphite after hot oxidation in the air at 620 C. It is based on observations made by electronic microscopy. This study comes after another one dedicated to oxidation features obtained by hot corrosion of natural graphite, and aims at comparing pyrolytic graphite before and after irradiation in an atomic pile, and at performing tests on a graphite processed with ozone. After a recall of generalities about natural graphite and of some issues related to hot corrosion of natural graphite, the author presents some characteristics and features of irradiated and non-irradiated pyrolytic graphite. He reports the study of the oxidation of samples of pyrolytic graphite: production of thin lamellae, production of glaze-carbon replicates, oxidation of irradiated and of non-irradiated graphite, healing of irradiation defects, and oxidation of ozone-processed natural graphite [fr

  18. Assessing Nutrients Availability of Irradiated and Non-Irradiated Biosolids for the Agriculture Re-use

    Energy Technology Data Exchange (ETDEWEB)

    Magnavacca, Cecilia; Sanchez, Monica

    2003-07-01

    Irradiation provides a fast and reliable means to disinfect biosolids generated by municipal wastewater treatment processes. The chemical integrity of some substances may be altered thus change the availability of plant nutrients. Chemical analyses on the biosolids showed a release of mineral forms of Nitrogen while Phosphorus chemical forms were not altered. Higher amounts of mineralized N were indirectly demonstrated in soils with irradiated biosolids by a respiration experiment, and higher nitrate concentrations were measured in the irradiated biosolids amended soils at field experiments. Crop field experiments (lettuce and sugarcane) confirmed that irradiated biosolids have higher fertilizing capability than equal amounts of non-irradiated biosolids. Maximum dose rate had no additive effect but a depleted result, thus marking the importance of the use of moderate biosolids rates. (author)

  19. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  20. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  1. Non-proliferation issues with weapons-usable plutonium

    International Nuclear Information System (INIS)

    Gray, L.W.

    2000-01-01

    In this paper author deals with the plutonium produced in power reactors and with their using. Excess plutonium, mineralized in a ceramic matrix and incised in HLW glass, is a less attractive target for terrorist groups than either aged, irradiated weapons grade MOX fuel, or aged, U oxide spent fuel. This is especially true after the Russian and United States' Pu Disposition Programs have been completed, until the material (spent MOX fuel or the immobilized form) is stored in a sealed, repository. (authors)

  2. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-01-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation. - Highlights: • Soy sauce (SS) could inhibit volatiles cooked irradiated beef patties. • Vacuum packaging and SS treatment is effective to prevent lipid oxidation. • Hexanal content was highly correlated with TBA value of the irradiated beef patties

  3. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  4. Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties

    International Nuclear Information System (INIS)

    Zhang Yanfei; Li Jiayan; Li Qin; Zhu Ling; Liu Xiangdong; Zhong Xinghua; Meng Jian; Cao Xueqiang

    2007-01-01

    Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO 3 ) 3 .412H 2 O. Upon firing the composite fibers at 800 deg. C, In 2 O 3 fibers with diameters ranging from 200 to 400nm were synthesized. This indium oxide calcined at 800 deg. C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In 2 O 3 nanofibers were investigated. The In 2 O 3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation

  5. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    Science.gov (United States)

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  7. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  8. Metabolic changes after non-lethal X-irradiation of rats. II

    International Nuclear Information System (INIS)

    Ahlers, I.; Ahlersova, E.; Sedlakova, A.; Praslicka, M.

    1981-01-01

    Male rats of the Wistar strain were subjected to whole-body X-irradiation with 2.39 Gy (250 R) and after irradiation they were pair-fed with the sham-irradiated control group. One, 6 and 24 h, 2, 3, 7, 14, 21, 28, and 38 days after exposure the animals were sacrificed and examined for serum and some tissue lipids. In the first hours an increase in lipolysis in the white adipose tissue and accumulation of non-esterified fatty acids and triacylglycerols (TG) in the liver predominated; phospholipid level increased in serum and liver and decreased in bone marrow and thymus. The later phase was characterized by hypertriacylglycerolaemia and a transient hypercholesterolaemia; accumulation of TG in bone marrow was the most important change, however. Changes in the lipid composition of the serum and tissues, except for an increase in TG level in thymus, returned to normal levels at the end of the observation period. Pair-feeding provided an equivalent nutritional situation in irradiated and sham-irradiated animals and thus eliminated the non-specific changes caused by different levels of food intake in both groups of animals, especially in the initial period. A sufficiently long observation period is necessary for estimating the kinetics of metabolic changes in rats exposed to non-lethal doses of X-irradiation. (author)

  9. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  10. Protein aggregation in food models: effect of γ-irradiation and lipid oxidation

    International Nuclear Information System (INIS)

    Delincee, H.; Paul, P.

    1981-01-01

    Myoglobin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, and the yield of protein aggregates has been determined by gel filtration. With myoglobin the formation of aggregates evolving from the reaction with oxidizing lipids was observed, which was not found for serum albumin. The production of protein-lipid complexes, in which lipid material was occluded in the high-molecular aggregates by physical forces was demonstrated. Gel filtration and gel electrophoresis, both in the presence of SDS, and thin-layer isoelectric focusing revealed distinct structural differenes between the protein aggregates induced by irradiation and the aggregates formed by interaction with oxidizing lipids

  11. Dissolution behavior of irradiated mixed oxide fuel with short stroke shearing for fast reactor reprocessing

    International Nuclear Information System (INIS)

    Ikeuchi, Hirotomo; Sano, Yuichi; Shibata, Atsuhiro; Koizumi, Tsutomu; Washiya, Tadahiro

    2013-01-01

    An efficient dissolution process was established for future reprocessing in which mixed-oxide (MOX) fuels with high plutonium contents and dissolver solution with high heavy-metal (HM) concentrations (more than 500 g dm -3 ) will be treated. This dissolution process involves short stroke shearing of fuels (∼10 mm in length). The dissolution kinetics of irradiated MOX fuels and the effects of the Pu content, HM concentration, and fuel form on the dissolution rate were investigated. Irradiated fuel was found to dissolve as 10 2 -10 3 times fast as non-irradiated fuel, but the rate decreased with increasing Pu content. Kinetic analysis based on the fragmentation model, which considers the penetration and diffusion of nitric acid through fuel matrices prior to chemical reaction, indicated that the dissolution rate of irradiated fuel was affected not only by the volume ratio of liquid to solid (L/S ratio) but also by the exposed surface area per unit mole of nitric acid (A/m ratio). The penetration rate of nitric acid is expected to be decreased at high HM concentrations by a reduction in the L/S ratio, but enhanced by shearing the fuel pieces with short strokes and thus enlarging the A/m ratio. (author)

  12. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chengjian; Gao, Xiaoling [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Wang, Xiaolin, E-mail: xlwang@caep.ac.cn [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Oya, Yasuhisa; Okuno, Kenji [Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2013-07-15

    Tritium release kinetics in lithium orthosilicate (Li{sub 4}SiO{sub 4}) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li{sub 4}SiO{sub 4} pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10{sup −7.0} exp (−40.3 × 10{sup 3}/RT) cm{sup 2} s{sup −1}.

  13. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.; Bosch, P.; Bulbulian, S.

    1992-01-01

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O( 3 H, n) 18 F . In the present work was studied the LiAlO 2 and the Li 2 O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  14. Charge accumulation in the buried oxide of SOI structures with the bonded Si/SiO2 interface under γ-irradiation: effect of preliminary ion implantation

    International Nuclear Information System (INIS)

    Naumova, O V; Fomin, B I; Ilnitsky, M A; Popov, V P

    2012-01-01

    In this study, we examined the effect of preliminary boron or phosphorous implantation on charge accumulation in the buried oxide of SOI-MOSFETs irradiated with γ-rays in the total dose range (D) of 10 5 –5 × 10 7 rad. The buried oxide was obtained by high-temperature thermal oxidation of Si, and it was not subjected to any implantation during the fabrication process of SOI structures. It was found that implantation with boron or phosphorous ions, used in fabrication technologies of SOI-MOSFETs, increases the concentration of precursor traps in the buried oxide of SOI structures. Unlike in the case of boron implantation, phosphorous implantation leads to an increased density of states at the Si/buried SiO 2 interface during subsequent γ-irradiation. In the γ-irradiated SOI-MOSFETs, the accumulated charge density and the density of surface states in the Si/buried oxide layer systems both vary in proportion to k i ln D. The coefficients k i for as-fabricated and ion-implanted Si/buried SiO 2 systems were evaluated. From the data obtained, it was concluded that a low density of precursor hole traps was a factor limiting the positive charge accumulation in the buried oxide of as-fabricated (non-implanted) SOI structures with the bonded Si/buried SiO 2 interface. (paper)

  15. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation

    International Nuclear Information System (INIS)

    Edin, Nina Jeppesen; Sandvik, Joe Alexander; Pettersen, Erik Olai; Vollan, Hilde Synnove; Reger, Katharina; Görlach, Agnes

    2013-01-01

    In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2 - 0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. (author)

  16. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  17. Transient effects of ionizing and displacive radiation on the dielectric properties of ceramics

    Science.gov (United States)

    Goulding, R. H.; Zinkle, S. J.; Rasmussen, D. A.; Stoller, R. E.

    1996-03-01

    A resonant cavity technique was used to measure the dielectric constant and loss tangent of ceramic insulators at a frequency near 100 MHz during pulsed fission reactor irradiation near room temperature. Tests were performed on single crystal and several different grades of polycrystalline Al2O3, MgAl2O4, AlN, and Si3N4. Lead shielding experiments were performed for some of the irradiations in order to examine the importance of gamma ray versus neutron irradiation effects. With the exception of AlN, the dielectric constant of all of the ceramics decreased slightly (irradiation. The dielectric constant of AlN was observed to slightly increase during irradiation. Significant transient increases in the loss tangent to values as high as 6×10-3 occurred during pulsed reactor irradiation with peak ionizing and displacements per atom (dpa) radiation fields of 4.2×104 Gy/s and 2.4×10-6 dpa/s, respectively. The loss tangent measured during irradiation for the different ceramics did not show any correlation with the preirradiation or postirradiation values. Analysis of the results indicates that the transient increases in loss tangent are due to radiation induced increases in the electrical conductivity. The loss tangent increases were proportional to the ionizing dose rate in all materials except for AlN, which exhibited a dose rate exponent of ˜1.6.

  18. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  19. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  20. Pathfinder irradiation of advanced fuel (Th/U mixed oxide) in a power reactor

    International Nuclear Information System (INIS)

    Brant Pinheiro, R.

    1993-01-01

    Within the joint Brazilian-German cooperative R and D Program on Thorium Utilization in Pressurized Water Reactors carried out from 1979 to 1988 by Nuclebras/CDTN, KFA-Juelich, Siemens/KWU and NUKEM, a pathfinder irradiation of Th/U mixed oxide fuel in the Angra 1 nuclear power reactor was planned. The objectives of this irradiation testing, the irradiation strategy, the work performed and the status achieved at the end of the joint Program are presented. (author)

  1. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    International Nuclear Information System (INIS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-01-01

    This study investigated the effects of irradiation on N ε -carboxymethyl-lysine (CML) and N ε -carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810–0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage. - Highlights: • The effect of irradiation on CML and CEL formation in meat products is investigated. • CML and CEL contents in irradiated meat products exhibit a higher growth rate than non-irradiated samples. • PUFAs oxidation induced by irradiation promotes CML and CEL formation. • Lipid oxidation pathways are an important pathway for CML and CEL accumulation in irradiated samples during storage.

  2. Nature of radiation damage in ceramics

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    Efforts to determine the equivalence between different sources of radiation damage in ceramics are reviewed. The ways in which ceramics differ from metals are examined and proposed mechanisms for creation and stabilization of defects in insulators are outlined. Work on radiation damage in crystalline oxides is summarized and suggestions for further research are offered

  3. Obtaining of ceria - samaria - gadolinia ceramics for application as solid oxide fuel cell (SOFC) electrolyte

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo

    2010-01-01

    Cerium oxide (CeO 2 ) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700 degree C. The most effective additives or dopants for ionic conductivity improvement are (samarium oxide - Sm 2 O 3 ) and gadolinia (gadolinium oxide - Gd 2 O 3 ), fixing the concentration between 10 and 20 molar%. In this work, Ce 0,8 (SmGd) 0,2 O 1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO 2 and other containing 51% of Sm 2 O 3 and 30% of Gd 2 O 3 , both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800 degree C presented high specific surface area (90 - 150 m 2 .g -1 ) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350 degree C. High densification values (>95% TD) was obtained at temperatures above 1400 degree C. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nano powders at low temperatures (200 degree C). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m 2 .g -1

  4. Effect of different surface treatments on roughness of IPS Empress 2 ceramic.

    Science.gov (United States)

    Kara, Haluk Baris; Dilber, Erhan; Koc, Ozlem; Ozturk, A Nilgun; Bulbul, Mehmet

    2012-03-01

    The aim of this study was to evaluate the influence of different surface treatments (air abrasion, acid etching, laser irradiation) on the surface roughness of a lithium-disilicate-based core ceramic. A total of 40 discs of lithium disilicate-based core ceramic (IPS Empress 2; Ivoclar Vivadent, Schaan, Liechtenstein) were prepared (10 mm in diameter and 1 mm in thickness) according to the manufacturer's instructions. Specimens were divided into four groups (n = 10), and the following treatments were applied: air abrasion with alumina particles (50 μm), acid etching with 5% hydrofluoric acid, Nd:YAG laser irradiation (1 mm distance, 100 mJ, 20 Hz, 2 W) and Er:YAG laser irradiation (1 mm distance, 500 mJ, 20 Hz, 10 W). Following determination of surface roughness (R(a)) by profilometry, specimens were examined with atomic force microscopy. The data were analysed by one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). One-way ANOVA indicated that surface roughness following air abrasion was significantly different from the surface roughness following laser irradiation and acid etching (P 0.05). Air abrasion increased surface roughness of lithium disilicate-based core ceramic surfaces more effectively than acid-etching and laser irradiation.

  5. Present status of irradiation tests on tritium breeding blanket for fusion reactor

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Sagawa, Hisashi; Shimakawa, Satoshi; Tsuchiya, Kunihiko; Kuroda, Toshimasa; Kawamura, Hiroshi.

    1994-01-01

    To develop a tritium breeding blanket for a fusion reactor, irradiation tests in fission reactors are indispensable for obtaining data on irradiation effects on materials, and neutronics/thermal characteristics and tritium production/recovery performance of the blanket. Various irradiation tests have been conducted in the world, especially to investigate tritium release characteristics from tritium breeding and neutron multiplier materials, and materials integrity under irradiation. In Japan, VOM experiments at JRR-2 for ceramic breeders and experiments at JMTR for ceramic breeders and beryllium as a neutron multiplier have been performed. Several universities have also investigated ceramic breeders. In the EC, the EXOTIC experiments at HFR in the Netherlands and the SIBELIUS, the LILA, the LISA and the MOZART experiments for ceramic breeders have carried out. In Canada, NRU has been used for the CRITIC experiments. The TRIO experiments at ORR(ORNL), experiments at RTNS-II, FUBR and ATR have been conducted in the USA. The last two are experiments with high neutron fluence aiming at investigating materials integrity under irradiation. The BEATRIX-I and -II experiments have proceeded under international collaboration of Japan, Canada, the EC and the USA. This report shows the present status of these irradiation tests following a review of the blanket design in the ITER CDA(Conceptual Design Activity). (author)

  6. Modulator Effect of Turmeric on Oxidative Damage in Whole Body Gamma Irradiated rats

    International Nuclear Information System (INIS)

    Amin, H.H.; Abdou, M.I.

    2012-01-01

    Because of its penetrating power and its ability to travel great distances, gamma rays are considered the primary hazard to the population during most radiological emergencies. So, there is a need to develop medical countermeasures to protect the first responders and remediation workers from biomedical effect of ionizing radiation. Turmeric has been reported to have many beneficial health effects, including a strong anti-oxidant effect, anti-inflammatory and anti-microbial properties. In the present study, turmeric was investigated as a therapeutic agent against hazards induced by ionizing radiation on kidney, liver, urinary and serum calcium levels and blood counts. A daily dose of 0.5 g/kg body weight was used in whole body gamma irradiated female rats with 3 Gy. Radiation effects were followed up for four weeks post irradiation. The results revealed that the administration of turmeric post-irradiation resulted in a significant inhibition in the frequency of radiation induced oxidative damage. It could be concluded that definite turmeric dose exerts a vital modulator role against gamma irradiation hazard

  7. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  8. Data compilation for radiation effects on ceramic insulators

    International Nuclear Information System (INIS)

    Fukuya, Koji; Terasawa, Mititaka; Nakahigashi, Shigeo; Ozawa, Kunio.

    1986-08-01

    Data of radiation effects on ceramic insulators were compiled from the literatures and summarized from the viewpoint of fast neutron irradiation effects. The data were classified according to the properties and ceramics. The properties are dimensional stability, mechanical property, thermal property and electrical and dielectric properties. The data sheets for each table or graph in the literatures were made. The characteristic feature of the data base was briefly described. (author)

  9. Use of sludge as ceramic materials

    International Nuclear Information System (INIS)

    Morais, L.C.; Vianna, R.S.C.; Campos, V.; Rosa, A.H.; Buechler, P.M.

    2009-01-01

    Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves. (author)

  10. Enhancing Lipid Stability in Irradiated Beef Mince by Oleoresins and/ or Ascorbic Acid during Chilling Storage

    International Nuclear Information System (INIS)

    Zahran, D.A.

    2008-01-01

    Lipid Oxidation, fatty acids profile and sensory properties of irradiated beef mince (2.5 kGy) treated with oleoresins (rosemary or ginger), ascorbic acid, or combination of ascorbic acid and oleoresins were investigated during 30 days of chilled storage. Thiobarbituric acid reactive substances (TBARS) as an indication of lipid oxidation, of irradiated control samples were significantly higher than those of non irradiated control and samples treated with rosemary and ginger oleoresins. By GC-MS analysis, it was found that the relative percentage of total saturated fatty acids (TSFA) increased in all treatments. However, the highest increase was recorded in irradiated control samples compared to non irradiated control samples. Beef mince samples treated with oleoresins (rosemary or ginger) had the best scores for discoloration and off odour. Thus, the addition of oleoresins (rosemary or ginger) to beef mince before irradiation could be an easily applied method to minimize oxidative degradation of irradiated meat

  11. Metabolic changes after non-lethal X-irradiation of rats. I

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Slavkovska, E.; Praslicka, M.

    1981-01-01

    Male rats of the Wistar strain were fasted overnight prior to exposure to single whole-body X-ray dose of 2.39 Gy (250 R). Irradiated and sham-irradiated rats were pair-fed for 5 days, in the following period they were fed ad libitum. The levels of corticosterone and immunoreactive insulin in serum, glucose in blood, glycogen in liver, heart and skeletal muscle were determined 1 and 6 h, 1, 2, 3, 7, 14, 21, 28, and 38 days after irradiation and sham-irradiation. Irradiation of rats resulted, in one hour, in a decrease and, in two days, in an increase in blood glucose level. A marked increase in liver glycogen persisted from 6 h to 21 days after irradiation. The level of glycogen in the skeletal muscle was reduced after 6 h and increased on days 3 and 14. Heart muscle glycogen declined within the first 24 h and rose at 14 days after exposure. The kinetics of changes in the heart and skeletal muscle glycogen following non-lethal irradiation was similar and indicated an overlap of changes produced by fasting with those brought about by irradiation, particularly during the first week. Corticosterone in serum was markedly increased in rats 24 and 72 h after irradiation compared to pair-fed controls. The serum insulin concentration did not change after irradiation, except for a single increase on day 21. Irradiation with non-lethal doses produced changes in the parameters of the carbohydrate metabolism studied, except for serum insulin which reflected the changes in the nutrition regimen upon pair-feeding rather than the effect of ionizing irradiation. (author)

  12. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  13. Examination of Greek neolithic ceramic shards by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Ochsenkuehn, K.M.; Zouridakis, N.; Inst. of Physical Chemistry, Athens; Ochsenkuehn-Petropulu, M.

    1999-01-01

    At the reactor of the NCSR 'Demokritos' epithermal irradiation was used in connection with a loss-free counting technique to investigate rare Neolithic ceramic shards, about 4000 years old, from the Alepotrypa Cave of Diros, Greece. The application of an irradiation time of 30 minutes, the measurements of the samples after less then 24 hours and a counting time of 20 minutes in connection with a loss-free counting unit allowed the determination of 12 elements per sample. The comparison of these rare fine ceramic shards with those of primitive shape showed that both were produced from the same raw materials. Small differences could be explained by a raw material pretreatment. The Neolithic potters were obviously aware of separation techniques in order to obtain fine clay fractions to produce those rare ceramics. (author)

  14. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation

    Science.gov (United States)

    Barshishat-Kupper, Michal; McCart, Elizabeth A.; Freedy, James G.; Tipton, Ashlee J.; Nagy, Vitaly; Kim, Sung-Yop; Landauer, Michael R.; Mueller, Gregory P.; Day, Regina M.

    2015-01-01

    Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127–189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure. PMID:28248270

  15. Activity and selectivity of manganese oxides in alcohols Conversion as influenced by gamma-irradiation

    International Nuclear Information System (INIS)

    Doheim, M.M.; Ahmed, A.S.; El-Shobaky, G.A.

    2002-01-01

    Manganese oxide samples obtained from thermal decomposition of manganese carbonate at 400 and 600 deg C were subjected to different doses of g-irradiation within the range 0.2 to 1.6 MGy. The surface and catalytic properties of the above samples were studied using nitrogen adsorption isotherms measured at -196 deg C and catalytic conversion of ethanol and isopropanol at 300-400 deg C using micropulse technique. The results obtained revealed that manganese oxides obtained at 400 deg C consisted of a mixture of Mn 2 O 3 and MnO 2 while the samples calcined at 600 deg C composed entirely of Mn 2 O 3 . Gamma-irradiation resulted in a decrease in the particle size of manganese oxide phases with subsequent increase in their specific surface areas. Gamma-irradiation with 0.2 and 0.8 MGy effected a measurable progressive decrease in the catalytic activity in dehydration and dehydrogenation of both alcohols. However, the treated catalyst retained their initial activity upon exposure to a dose of 1.6 MGy. Also, g-irradiation increased the selectivities of the investigated solids towards dehydrogenation of both alcohols. The catalyst samples precalcined at 600 deg C exhibited higher catalytic activities than those precalcined at 400 deg C. (author)

  16. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  17. Charge transport in non-irradiated and irradiated silicon detectors

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.L.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    A model describing the transport of the charge carriers generated in n-type silicon detectors by ionizing particles is presented. In order to reproduce the experimental current pulse responses induced by α and β particles in non-irradiated and irradiated detectors up to fluences (PHI) much beyond the n to p-type inversion, an n-type region 15 μm deep is introduced on the p + side of the diode. This model also gives mobilities which decrease linearly up to fluences of around 5x10 13 particles/cm 2 and beyond, converging to saturation values of about 1000 and 450 cm 2 /V s for electrons and holes, respectively. The charge carrier lifetime degradation with increased fluence, due to trapping, is responsible for a predicted charge collection deficit for β particles and for α particles which is found to agree with direct CCE measurements. (author)

  18. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  19. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  20. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.