WorldWideScience

Sample records for irradiated mcz detector

  1. Space charge sign inversion and electric field reconstruction in 24 GeV/c proton-irradiated MCZ Si p+-n(TD)-n+ detectors processed via thermal donor introduction

    International Nuclear Information System (INIS)

    Li, Z.; Verbitskaya, E.; Carini, G.; Chen, W.; Eremin, V.; Gul, R.; Haerkoenen, J.; Li, M.

    2009-01-01

    The aim of this study is the evaluation of radiation effects in detectors based on p-type magnetic czochralski (MCZ) Si that was converted to n-type by thermal donor (TD) introduction. As-processed p + -p-n + detectors were annealed at 430 deg. C resulting in p + -n(TD)-n + structures. The space charge sign and the electric field distribution E(x) in MCz Si p + -n(TD)-n + detectors irradiated by 24 GeV/c protons were analyzed using the data on the current pulse response and the Double Peak (DP) electric field distribution model for heavily irradiated detectors. The approach considers an irradiated detector as a structure with three regions in which the electric field depends on the coordinate, and the induced current pulse response arises from the drift process of free carriers in the detector with variable electric field. Reconstruction of the E(x) profile from the pulse response shapes is performed employing a new method for DP electric field reconstruction. This method includes: (a) a direct extraction of charge loss due to trapping and (b) the fitting of a simulated pulse response to the 'corrected' pulse by adjusting the electric field profiles in the three regions. Reconstruction of E(x) distribution showed that in the diodes irradiated by a proton fluence of (2-4)x10 14 p/cm 2 space charge sign inversion has occurred. This is the evidence that the influence of 24 GeV/c proton radiation on MCz Si p + -n(TD)-n + detectors is similar to that on p + -n-n + detectors based on FZ or diffusion oxygenated n-type Si.

  2. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  3. Depletion voltage studies on n-in-n MCz silicon diodes after irradiation with 70 MeV protons

    CERN Document Server

    Holmkvist, William

    2014-01-01

    Silicon detectors is the main component in the pixel detectors in the ATLAS experiment at CERN in order to detect the particles and recreate their tracks after a proton-proton collision. One criteria on these detectors is to be able to operate in the high radiation field close to the particle collision. The usual behavior of the silicon detectors is that they get type inverted and an increase in the depletion voltage can be seen after exposed to significant amounts of radiation. In contrast n-type Magnetic Czochralski (MCz) silicon doesn’t follow FZ silicons pattern of getting type inverted when it comes to high energy particle irradiation, in the range of GeV. However it was observed that MCz silicon diodes that had been irradiated with 23 MeV protons followed the FZ silicon behavior and did type invert. The aim of the project is to find out how the depletion voltage of MCz silicon changes after being irradiated by 70 MeV at fluencies of 1E13, 1E14 and 5E14 neq/cm2, to give a further insight of at what en...

  4. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  5. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)], E-mail: Gregor.Kramberger@ijs.si; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2009-10-11

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  6. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2009-01-01

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  7. Characterization of Czochralski Silicon Detectors

    OpenAIRE

    Luukka, Panja-Riina; Haerkoenen, Jaakko

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alter...

  8. Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2010-01-01

    A set of 44 pad detectors produced on p- and n-type MCz and Fz wafers was irradiated with 23 GeV protons, 200 MeV pions and reactor neutrons up to the equivalent fluences of Φ eq =3x10 15 cm -2 . The evolution of the full depletion voltage and the leakage current were monitored during short- and long-term annealing. At selected representative annealing steps, charge collection measurements were performed for all samples with LHC speed electronics. Measurements of full depletion voltage, leakage current and charge collection efficiency were compared for different irradiation particles and silicon materials.

  9. Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G., E-mail: Gregor.Kramberger@ijs.s [Jozef Stefan Institute and Department of Physics, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, SI-1000 Ljubljana (Slovenia)

    2010-01-01

    A set of 44 pad detectors produced on p- and n-type MCz and Fz wafers was irradiated with 23 GeV protons, 200 MeV pions and reactor neutrons up to the equivalent fluences of PHI{sub eq}=3x10{sup 15}cm{sup -2}. The evolution of the full depletion voltage and the leakage current were monitored during short- and long-term annealing. At selected representative annealing steps, charge collection measurements were performed for all samples with LHC speed electronics. Measurements of full depletion voltage, leakage current and charge collection efficiency were compared for different irradiation particles and silicon materials.

  10. Characterization of Czochralski silicon detectors

    OpenAIRE

    Luukka, Panja-Riina

    2006-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmented detectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It is shown that the radiation hardness (RH) of the protons of these detectors is higher than that of devices made of traditional materials such as Float Zone (FZ) silicon or Diffusion Oxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 × 1017 cm−3). The MCZ devices therefore present an interesting ...

  11. Processing and first characterization of detectors made with high resistivity n- and p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Bruzzi, M.; Bisello, D.; Borrello, L.; Borchi, E.; Boscardin, M.; Candelori, A.; Creanza, D.; Dalla Betta, G.-F.; DePalma, M.; Dittongo, S.; Focardi, E.; Khomenkov, V.; Litovchenko, A.; Macchiolo, A.; Manna, N.; Menichelli, D.; Messineo, A.; Miglio, S.; Petasecca, M.; Piemonte, C.; Pignatel, G.U.; Radicci, V.; Ronchin, S.; Scaringella, M.; Segneri, G.; Sentenac, D.; Tosi, C.; Zorzi, N.

    2005-01-01

    We report on the design, manufacturing and first characterisation of pad diodes, test structures and microstrip detectors processed with high resistivity magnetic Czochralski (MCz) p- and n-type Si. The pre-irradiation study on newly processed microstrip detectors and test structures show a good overall quality of the processed wafers. After irradiation with 24 GeV/c protons up to 4x10 14 cm -2 the characterisation of n-on-p and p-on-n MCz Si sensors with the C-V method show a decrease of the full depletion voltage and no space charge sign inversion. Microscopic characterisation has been performed to study the role of thermal donors in Czochralski Si. No evidence of thermal donor activation was observed in n-type MCz Si detectors if contact sintering was performed at a temperature lower than 380 deg. C and the final passivation oxide was omitted

  12. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  13. Performance of irradiated silicon microstrip detectors

    International Nuclear Information System (INIS)

    Catacchini, E.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, M.; Meschini, M.; Parrini, G.; Pieri, M.

    1999-01-01

    Silicon microstrip devices to be installed in Large Hadron Collider (LHC) tracking detectors will have to operate in a high radiation environment. We report on performance studies of silicon microstrip detectors irradiated with neutrons or protons, up to fluences comparable to the first ten years of running at LHC. Obtained results show that irradiated detectors can still be operated with satisfactory signal-to-noise ratio,and in the case of inhomogeneously type inverted detector a very good position resolution is achieved regardless of the zone crossed by the particle

  14. Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors

    International Nuclear Information System (INIS)

    Tosi, C.; Bruzzi, M.; Macchiolo, A.; Scaringella, M.; Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C.; Manna, N.; Creanza, D.; Boscardin, M.; Piemonte, C.; Zorzi, N.; Borrello, L.; Messineo, A.

    2007-01-01

    The charge collected from beta source particles in single pad detectors produced on p-type Magnetic Czochralski (MCz) silicon wafers has been measured before and after irradiation with 26 MeV protons. After a 1 MeV neutron equivalent fluence of 1x10 15 cm -2 the collected charge is reduced to 77% at bias voltages below 900 V. This result is compared with previous results from charge collection measurements

  15. Comparison between rad-hard standard float zone (FZ) and magnetic Czochralski (MCZ) silicon diodes in radiotherapy electron beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.C. dos; Goncalves, J.A.C.; Vasques, M.M.; Tobias, C.C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Neves-Junior, W.F.P.; Haddad, C.M.K. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Sociedade Beneficente de Senhoras; Harkonen, J. [Helsinki University of Technology (Denmark). Helsinki Inst. of Physics

    2010-07-01

    Full text. The use of semiconductor detectors has increased in radiotherapy practice since 1980s due to mainly their fast processing time, small sensitive volume and high relative sensitivity to ionizing radiation. Other major advantages of Si devices are excellent repeatability, good mechanical stability, high spatial resolution and the energy independence of mass collision stopping powers ratios (between silicon and water for electron beams with energy from 4 up to 20 MeV). However, ordinary silicon devices are very prone to radiation damage effects. In the last years, the development of radiation tolerant silicon detectors for High Energy Physics experiments has overcome this drawback. In this work we present the preliminary results obtained with a rad-hard epitaxial silicon diode as on-line clinical electron beam dosimeter. The diodes with 25 mm{sup 2} active area, were housed in a PMMA probe and connected, in a photovoltaic mode, to a Keithley 6517B electrometer. During all measurements, the diodes were held between PMMA plates, placed at Zref and centered in a radiation field of 10 cm x 10 cm, with the SSD kept at 100 cm. The devices dosimetric response was evaluated for 6, 9, 12, 15, 18 e 21 MeV electron beams from a Siemens KD 2 Radiotherapy Linear Accelerator, located at Sirio-Libanes Hospital. The radiation induced current in the diodes was registered as a function of the exposure time during 60 s for a fixed 300 MU. To study the short term repeatability, current signals were registered for the same radiation dose, for all energies. The dose-response of the diodes was achieved through the integration of the current signals as a function of the exposure time. The results obtained in the energy range of 6 up to 21 MeV evidenced that, for the same average dose rate of 5.0 cGy/s, the current signals are very stable and repeatable in both cases. For all energies, data shows good instantaneous repeatability with a percentage variation coefficient better than 2

  16. Spectral Irradiance Measurements Based on Detector

    International Nuclear Information System (INIS)

    Lima, M S; Menegotto, T; Duarte, I; Da Silva, T Ferreira; Alves, L C; Alvarenga, A D; Almeida, G B; Couceiro, I B; Teixeira, R N

    2015-01-01

    This paper presents the preliminary results of the realization of absolute spectral irradiance scale at INMETRO in the ultraviolet, visible and infrared regions using filter radiometers as secondary standards. In the construction of these instruments are used, at least, apertures, interference filters and a trap detector. In the assembly of the trap detectors it was necessary to characterize several photocells in spatial uniformity and shunt resistance. All components were calibrated and these results were analyzed to mount the filter radiometer

  17. MCNPX calculations for electron irradiated semiconductor detectors

    International Nuclear Information System (INIS)

    Sedlackova, K.; Necas, V.; Sagatova, A.; Zatko, B.

    2014-01-01

    This study aimed to treat some practical problems of (not only) semiconductor material irradiation by high energy electron beam using MCNPX simulation code. The relation between the absorbed dose and the fluency was found and the energy distribution of electron flux density was simulated on the top and back side of 270 μm thick GaAs, SiC and Si detectors. Furthermore, the dose depth profiles were calculated for GaAs, SiC and Si materials irradiated by 4 and 5 MeV electron beams. For the GaAs detector, a very good agreement with the experiment was shown. To match the absolute values of the absorbed dose with experimentally obtained values, the electron source emissivity has to be determined in relation to the electron beam setting parameters. (authors)

  18. Charge transport in non-irradiated and irradiated silicon detectors

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.L.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    A model describing the transport of the charge carriers generated in n-type silicon detectors by ionizing particles is presented. In order to reproduce the experimental current pulse responses induced by α and β particles in non-irradiated and irradiated detectors up to fluences (PHI) much beyond the n to p-type inversion, an n-type region 15 μm deep is introduced on the p + side of the diode. This model also gives mobilities which decrease linearly up to fluences of around 5x10 13 particles/cm 2 and beyond, converging to saturation values of about 1000 and 450 cm 2 /V s for electrons and holes, respectively. The charge carrier lifetime degradation with increased fluence, due to trapping, is responsible for a predicted charge collection deficit for β particles and for α particles which is found to agree with direct CCE measurements. (author)

  19. Evaluation of Irradiated Barrel Detector Modules for the Upgrade of the CMS Pixel Detector

    CERN Document Server

    Sibille, Jennifer Ann

    2013-01-01

    Prototype detector modules comprising sensors and the new readout chips were assembled and irradiated with protons at the CERN PS, and readout chips without sensors have been irradiated with protons at the Karls...

  20. Thermal Module Tests with Irradiated 070 Detectors.

    CERN Document Server

    HOWCROFT, C L F

    1998-01-01

    Four n-in-n detectors were irradiated at KEK to a fluence of 3*1014 protons cm-2. These were used to construct a thermal barrel module to 070 drawings with an A3-90 baseboard at the Rutherford Appleton Laboratory. Thermal testes were conducted on the module, examining the runaway point and the temperatures across the silicon. The results obtained were used to calculate the runaway point under ATLAS conditions. It was concluded that this module meets the specifications in the Technical Design Report, of 160 mW mm-2@ 0°C for runaway and less than 5°C across the silicon. The module was also compared to a Finite Element Analysis, and showed a good agreement.

  1. Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Casagrande, L.; Barnett, B.M.; Bartalina, P.

    1999-01-01

    In this work, the authors show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of ∼4 x 10 14 p/cm 2 , no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T < 120 K. Besides confirming the previously observed Lazarus effect in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments

  2. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  3. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  4. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T.

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  5. Response of Superheated Droplet Detector (SDD) and Bubble Detector (BD) to interrupted irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasanna Kumar, E-mail: prasanna_ind_82@yahoo.com; Sarkar, Rupa, E-mail: sarkar_rupa2003@yahoo.com; Chatterjee, Barun Kumar, E-mail: barun_k_chatterjee@yahoo.com

    2017-06-11

    Superheated droplet detectors (SDD) and bubble detectors (BD) are suspensions of micron-sized superheated liquid droplets in inert medium. The metastable droplets can vaporise upon interaction with ionising radiation generating visible bubbles. In this work, we investigated the response of SDD and BD to interrupted neutron irradiations. We observed that the droplet vaporisation rates for SDD and BD are different in nature. The unusual increase in droplet vaporisation rate observed when the SDD is exposed to neutrons after few minutes of radiation-off period is absent for BD. - Highlights: • Superheated droplet detectors (SDD) and bubble detectors (BD) are suspensions of superheated liquid droplets in inert medium. • The bubble nucleation in superheated droplets can be induced by ionising radiation. • The droplet vaporisation rate for SDD is non-monotonic when it is irradiated periodically to neutrons. • For BD the droplet vaporisation rate decrease monotonically when it is irradiated periodically to neutrons.

  6. Developing a fast simulator for irradiated silicon detectors

    CERN Document Server

    Diez Gonzalez-Pardo, Alvaro

    2015-01-01

    Simulation software for irradiated silicon detectors has been developed on the basis of an already existing C++ simulation software called TRACS[1]. This software has been already proven useful in understanding non-irradiated silicon diodes and microstrips. In addition a wide variety of user-focus features has been implemented to improve on TRACS flexibility. Such features include an interface to allow any program to leverage TRACS functionalities, a configuration file and improved documentation.

  7. Temperature detectors on irradiated silicon base

    International Nuclear Information System (INIS)

    Karimov, M.; Dzhalelov, M.A.; Kurbanov, A.O.

    2005-01-01

    It is well known, that the most suitable for thermal resistors production is compensated silicon with impurities forming deep lying in forbidden zone, having big negative resistance temperature coefficients (RTC). In the capacity of initial materials for thermal resistors with negative RTC the n-type monocrystalline silicon with specific resistance ∼30 Ω·cm at 300 K is applied. Before the irradiation the phosphorus diffusion is realizing at temperature ∼1000 deg. C for 10 min. Irradiation is putting into practise by WWR-SM reactor fast neutrons within the range (7-10)·10 13 cm -2 . The produced resistors have nominal resistance range (8-20)·10 3 Ω·cm, coefficient of the thermal sensitivity B=4000-6000 deg. C., RTC α 300K =4-6.6 %/grad. It is shown, that offered method allows to obtain same type resistors characteristics on the base of neutron-irradiated material

  8. Isotropic irradiation of detectors from point sources

    DEFF Research Database (Denmark)

    Aage, Helle Karina

    1997-01-01

    NaI(Tl) scintillator detectors have been exposed to gamma rays from 8 different point sources from different directions. Background and backscatter of gamma-rays from the surroundings have been subtracted in order to produce clean spectra. By adding spectra obtained from exposures from different ...

  9. Study of charge transport in silicon detectors: Non-irradiated and irradiated

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    The electrical characteristics of silicon detectors (standard planar float zone and MESA detectors) as a function of the particle fluence can be extracted by the application of a model describing the transport of charge carriers generated in the detectors by ionizing particles. The current pulse response induced by α and β particles in non-irradiated detectors and detectors irradiated up to fluences PHI ∼ 3 · 10 14 particles/cm 2 is reproduced via this model: i) by adding a small n-type region 15 μm deep on the p + side for the detectors at fluences beyond the n to p-type inversion and ii) for the MESA detectors, by considering one additional dead layer of 14 μm (observed experimentally) on each side of the detector, and introducing a second (delayed) component to the current pulse response. For both types of detectors, the model gives mobilities decreasing linearily up to fluences of about 5·10 13 particles/cm 2 and converging, beyond, to saturation values of about 1050 cm 2 /Vs and 450 cm 2 /Vs for electrons and holes, respectively. At a fluence PHI ∼ 10 14 particles/cm 2 (corresponding to about ten years of operation at the CERN-LHC), charge collection deficits of about 14% for β particles, 25% for α particles incident on the front and 35% for α particles incident on the back of the detector are found for both type of detectors

  10. UV-irradiation effects on polyester nuclear track detector

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Kalsi, P.C.

    2010-01-01

    The effects of UV irradiation (λ=254 nm) on polyester nuclear track detector have been investigated employing bulk-etch technique, UV-visible spectrophotometry and infra-red spectrometry (FTIR). The activation energy values for bulk-etching were found to decrease with the UV-irradiation time indicating the scission of the polymer. Not much shift in the absorption edge due to UV irradiation was seen in the UV-visible spectra. FTIR studies also indicate the scission of the chemical bonds, thereby further validating the bulk-etch rate results.

  11. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  12. Charge collection properties of heavily irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Fretwurst, E.; Lindstroem, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2005-01-01

    Detectors processed on epitaxial silicon seem to be a viable solution for the extreme radiation levels in the innermost layers of tracking detectors at upgraded LHC (SLHC). A set of epitaxial pad detectors of 50 and 75μm thicknesses (ρ=50Ωcm) was irradiated with 24GeV/c protons and reactor neutrons up to equivalent fluences of 10 16 cm -2 . Charge collection for minimum ionizing electrons from a 90 Sr source was measured using a charge sensitive preamplifier and a 25ns shaping circuit. The dependence of collected charge on annealing time and operation temperature was studied. Results were used to predict the performance of fine pitch pixel detectors proposed for SLHC

  13. Charge collection properties of heavily irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia)]. E-mail: Gregor.Kramberger@ijs.si; Cindro, V. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Dolenc, I. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Fretwurst, E. [University of Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany); Lindstroem, G. [University of Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany); Mandic, I. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Mikuz, M. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Zavrtanik, M. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia)

    2005-12-01

    Detectors processed on epitaxial silicon seem to be a viable solution for the extreme radiation levels in the innermost layers of tracking detectors at upgraded LHC (SLHC). A set of epitaxial pad detectors of 50 and 75{mu}m thicknesses ({rho}=50{omega}cm) was irradiated with 24GeV/c protons and reactor neutrons up to equivalent fluences of 10{sup 16}cm{sup -2}. Charge collection for minimum ionizing electrons from a {sup 90}Sr source was measured using a charge sensitive preamplifier and a 25ns shaping circuit. The dependence of collected charge on annealing time and operation temperature was studied. Results were used to predict the performance of fine pitch pixel detectors proposed for SLHC.

  14. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  15. TOSCA simulation of some effects observed in irradiated silicon detectors

    International Nuclear Information System (INIS)

    Moszczynski, A.S.

    2001-12-01

    TOSCA package has been used to simulate some effects observed recently in heavily irradiated silicon detectors. In particular, unexpected possibility of α-particle registration at p+ contact has been explained without presented elsewhere assumption that there was p-n junction of unknown origin beneath p+ layer. Performed simulations showed that assumption on relaxation-like character of irradiated silicon material is also not necessary to explain such effects like low-voltage capacitance peak in reverse bias and negative capacitance in forward bias. (author)

  16. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  17. 3D detectors at ITC-irst: first irradiation studies

    International Nuclear Information System (INIS)

    Ronchin, S.; Boscardin, M.; Bosisio, L.; Cindro, V.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Zoboli, A.; Zorzi, N.

    2007-01-01

    In the past two years, we have developed 3D detector technologies at ITC-irst (Trento, Italy). We have proposed a new 3D architecture, having columnar electrodes of one doping type only, allowing for a simplified fabrication process. In this paper, we report on preliminary results from the electrical characterization of devices irradiated with neutrons, showing that low depletion voltage values can be achieved even after very large fluences

  18. High irradiation and ageing properties of resistive Micromegas detectors at the new CERN Gamma Irradiation Facility

    CERN Document Server

    Andreou, Dimitra

    2016-01-01

    Resistive Micromegas have been developed in recent years with the aim of making this technology usable in HEP experiments where the high sparking rate of classical Micromegas is not tolerable. A resistive Micromegas with four layers and an active surface of 0.5 m2 each, has been designed and built at CERN as prototype of the detectors to be used for the upgrade of the ATLAS experiment. The detector has been exposed to an intense gamma source of 16 TBq in order to study the effects of ageing and evaluate the detector behavior under high irradiation.

  19. Suppression of irradiation effects in gold-doped silicon detectors

    International Nuclear Information System (INIS)

    McPherson, M.; Sloan, T.; Jones, B.K.

    1997-01-01

    Two sets of silicon detectors were irradiated with 1 MeV neutrons to different fluences and then characterized. The first batch were ordinary p-i-n photodiodes fabricated from high-resistivity (400 Ω cm) silicon, while the second batch were gold-doped powder diodes fabricated from silicon material initially of low resistivity (20 Ω cm). The increase in reverse leakage current after irradiation was found to be more in the former case than in the latter. The fluence dependence of the capacitance was much more pronounced in the p-i-n diodes than in the gold-doped diodes. Furthermore, photo current generation by optical means was less in the gold doped devices. All these results suggest that gold doping in silicon somewhat suppresses the effects of neutron irradiation. (author)

  20. A comprehensive analysis of irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Santocchia, A; Hall, G; MacEvoy, B; Moscatelli, F; Passeri, D; Pignatel, Giogrio Umberto

    2003-01-01

    The effect of particle irradiation on high-resistivity silicon detectors has been extensively studied with the goal of engineering devices able to survive the very challenging radiation environment at the CERN Large Hadron Collider (LHC). The main aspect under investigation has been the changes observed in detector effective doping concentration (N/sub eff/). We have previously proposed a mechanism to explain the evolution of N/sub eff/, whereby charge is exchanged directly between closely-spaced defect centres in the dense terminal clusters formed by hadron irradiation. This model has been implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. To control the risk of breakdown due to the high leakage currents foreseen during ten years of LHC operation, silicon detectors will be operated below room temperature (around -10 degrees C). This, and more general current interest in the field of cryogenic operation, has led us to inve...

  1. Simulation of medical irradiation and X-ray detector signals

    Energy Technology Data Exchange (ETDEWEB)

    Kreisler, Bjoern

    2010-02-08

    This thesis aims for an improved understanding of medical irradiation. Two major parts are investigated: the beam shaping components of a medical linear accelerator, i.e. the source of the radiation, and the signal generation inside semiconductor sensors, i.e. the detection of the radiation. The direct measurement of the spatial and spectral particle distribution in the irradiation beam is not possible with state of the art detectors due to the high particle flux. The development of new advanced detectors is the goal of the first part of this thesis. The focus is set on the signal generation inside the sensor volume of a semiconductor detector. Incoming particles interact with the sensor material and generate clouds of electron hole pairs. These pairs get separated by an applied bias voltage. The motion of the charge clouds is simulated with a finite element programme taking into account the drift and diffusion. Mirror charges are induced on the electrodes which move due to the motion of the charge cloud. The motion of the induced mirror charges leads to the signal that is detected. The transient calculation of the signals is based on Ramo's theorem. The efficient adjoint formulation of the induction solution is adjusted to doped materials, as for example the electric bias field and hence the motion of the charge cloud is changing with the doping level. The effect of the doping of the material on the signal shape is shown together with influences of different voltages and pixel geometries. Smaller pixels and higher bias voltages can lead to shorter signals which is preferable for high flux measurements. Possible count rate improvements are limited by electric break through, high dark current across the sensor layer and charge sharing. Another option to shorten the signals is the use of steering grid electrodes which modify the electric and the weighting field. This results in shorter signals and thus in a higher possible rate. The detailed Monte

  2. Simulation of medical irradiation and X-ray detector signals

    International Nuclear Information System (INIS)

    Kreisler, Bjoern

    2010-01-01

    This thesis aims for an improved understanding of medical irradiation. Two major parts are investigated: the beam shaping components of a medical linear accelerator, i.e. the source of the radiation, and the signal generation inside semiconductor sensors, i.e. the detection of the radiation. The direct measurement of the spatial and spectral particle distribution in the irradiation beam is not possible with state of the art detectors due to the high particle flux. The development of new advanced detectors is the goal of the first part of this thesis. The focus is set on the signal generation inside the sensor volume of a semiconductor detector. Incoming particles interact with the sensor material and generate clouds of electron hole pairs. These pairs get separated by an applied bias voltage. The motion of the charge clouds is simulated with a finite element programme taking into account the drift and diffusion. Mirror charges are induced on the electrodes which move due to the motion of the charge cloud. The motion of the induced mirror charges leads to the signal that is detected. The transient calculation of the signals is based on Ramo's theorem. The efficient adjoint formulation of the induction solution is adjusted to doped materials, as for example the electric bias field and hence the motion of the charge cloud is changing with the doping level. The effect of the doping of the material on the signal shape is shown together with influences of different voltages and pixel geometries. Smaller pixels and higher bias voltages can lead to shorter signals which is preferable for high flux measurements. Possible count rate improvements are limited by electric break through, high dark current across the sensor layer and charge sharing. Another option to shorten the signals is the use of steering grid electrodes which modify the electric and the weighting field. This results in shorter signals and thus in a higher possible rate. The detailed Monte-Carlo simulation of

  3. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  4. CR-39 as induced track detector in reactor: irradiation effect

    International Nuclear Information System (INIS)

    Zylberberg, H.

    1989-07-01

    A systematic study about reactor's neutrons radiation effect and gamma radiation effect on the properties of CR-39 that are significant for its use as induced fission track detector is showed. The following studies deserved attention: kinetics of the fission track chemical development; efficiency to register and to develop fission track; losses of developable tracks; variation in the number of developable tracks and variation in the visible and ultraviolet radiation spectrum. The dissertation is organized in seven specific chapters: solid state nuclear tracks (SSNT); CR-39 as SSNT; objectives and problems presentation; preparation and characterization of CR-39 as SSNT; gamma irradiation effect on the properties of CR-39 as SSNT; reactor neutron irradiation effect on the properties of CR-39 as SSNT and, results discussions and conclusions. The main work contributions are the use of CR-39 in the determination of fissionable nuclide as thorium and uranium in solid and liquid samples; gamma radiation damage on CR-39 as well as the reactor's neutron damage on CR-39. (B.C.A.) 62 refs, 53 figs, 21 tabs

  5. Study on effects of gamma-ray irradiation on TlBr semiconductor detectors

    International Nuclear Information System (INIS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    2016-01-01

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60 Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137 Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy. (author)

  6. Study of natural diamond detector spectrometric properties under neutron irradiation

    CERN Document Server

    Alekseyev, A B; Kaschuck, Y; Krasilnikov, A; Portnov, D; Tugarinov, S

    2002-01-01

    Natural diamond detector (NDD) performance was studied up to a neutron fluence of 10 sup 1 sup 5 neutron/cm sup 2. The variations of the NDD spectrometric response to incident alpha-particles from sup 2 sup 4 sup 1 Am source after exposure to fast neutron fluences up to 3x10 sup 1 sup 6 n/cm sup 2 were examined. No significant variations up to the level of 10 sup 1 sup 4 n/cm sup 2 were observed. Degradation of charge collection efficiency at higher fluences is reported. No remarkable increase of the NDD leakage current and count rate change had been observed up to a neutron fluence of 3x10 sup 1 sup 6 n/cm sup 2. The charge collection efficiency variations of neutron irradiated diamond spectrometer were studied ex situ under gamma-rays, beta-radiation and visible light excitation. Charge collection efficiency restoration up to 75% level and the NDD performance stabilization by extrinsic low-intensity visible light (550 nm

  7. Scanning transient current study of the I-V stabilization phenomena in silicon detectors irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Eremin, V.; Verbitskaya, E.; Sidorov, A.; Fretwurst, E.; Lindstrom, G.

    1996-03-01

    Investigation of the I-V stabilization phenomena in neutron irradiated silicon detectors has been carried out using scanning transient current technique (STCT) on non-irradiated PP + -p-n + detectors. The PP + -p-n + detectors were used to simulate the PP + -n-n + detectors irradiated beyond the space charge sign inversion (SCSI). Two mechanisms partially responsible for the I- V stabilization have been identified

  8. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    Science.gov (United States)

    Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.

  9. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  10. A normalization of the physical tests for external irradiation measuring detectors

    International Nuclear Information System (INIS)

    1977-05-01

    This report is the result of a normalization work, realized within the Radioprotection Services of the C.E.A., of the physical tests for detectors measuring external irradiation. Among the various tests mentionned are treated more in details, calibration and the establishment of the relative spectral response. As far as calibration is concerned, the normalization refers to: the reference detector, the reference radiation source, the installation and calibration procedure. As for the relative spectral response the normalization refers to: the reference detector, the radiation sources to be used. Finally, a chapter is consecrated to the high flux detectors and to those for pulsed electromagnetic radiations [fr

  11. Evidence for plasma effect on charge collection efficiency in proton irradiated GaAs detectors

    CERN Document Server

    Nava, F; Canali, C; Vittone, E; Polesello, P; Biggeri, U; Leroy, C

    1999-01-01

    The radiation damage in 100 mu m thick Schottky diodes made on semi-insulating undoped GaAs materials, were studied using alpha-, beta-, proton- and gamma-spectroscopy as well as I-V measurements. The results have been analysed within the framework of the Hecht model to investigate the influence of the plasma produced by short-range strongly ionising particles on the detector performance after 24 GeV proton irradiation. It has been found that with the mean free drift lengths for electrons and holes determined from alpha-spectra in overdepleted detectors, the charge collection efficiency for beta-particles, cce subbeta, is well predicted in the unirradiated detectors, while in the most irradiated ones, the cce subbeta is underestimated by more than 40%. The observed disagreement can be explained by assuming that the charge carrier recombination in the plasma region of such detectors, becomes significant.

  12. Beam test results of the irradiated Silicon Drift Detector for ALICE

    OpenAIRE

    Kushpil, S.; Crescio, E.; Giubellino, P.; Idzik, M.; Kolozhvari, A.; Kushpil, V.; Martinez, M. I.; Mazza, G.; Mazzoni, A.; Meddi, F.; Nouais, D.; Petracek, V.; Piemonte, C.; Rashevsky, A.; Riccati, L.

    2005-01-01

    The Silicon Drift Detectors will equip two of the six cylindrical layers of high precision position sensitive detectors in the ITS of the ALICE experiment at LHC. In this paper we report the beam test results of a SDD irradiated with 1 GeV electrons. The aim of this test was to verify the radiation tolerance of the device under an electron fluence equivalent to twice particle fluence expected during 10 years of ALICE operation.

  13. Charge collection efficiency of irradiated silicon detector operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Borer, K.; Janos, S.; Palmieri, V.G.; Dezillie, B.; Li, Z.; Collins, P.; Niinikoski, T.O.; Lourenco, C.; Sonderegger, P.; Borchi, E.; Bruzzi, M.; Pirollo, S.; Granata, V.; Pagano, S.; Chapuy, S.; Dimcovski, Z.; Grigoriev, E.; Bell, W.; Devine, S.R.H.; O'Shea, V.; Smith, K.; Berglund, P.; Boer, W. de; Hauler, F.; Heising, S.; Jungermann, L.; Casagrande, L.; Cindro, V.; Mikuz, M.; Zavartanik, M.; Via, C. da; Esposito, A.; Konorov, I.; Paul, S.; Schmitt, L.; Buontempo, S.; D'Ambrosio, N.; Pagano, S.; Ruggiero, G.; Eremin, V.; Verbitskaya, E.

    2000-01-01

    The charge collection efficiency (CCE) of heavily irradiated silicon diode detectors was investigated at temperatures between 77 and 200 K. The CCE was found to depend on the radiation dose, bias voltage value and history, temperature, and bias current generated by light. The detector irradiated to the highest fluence 2x10 15 n/cm 2 yields a MIP signal of at least 15000 e - both at 250 V forward bias voltage, and at 250 V reverse bias voltage in the presence of a light-generated current. The 'Lazarus effect' was thus shown to extend to fluences at least ten times higher than was previously studied

  14. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  15. Characterisation of an inhomogeneously irradiated microstrip detector using a fine spot infrared laser

    CERN Document Server

    Casse, G; Bowcock, T J V; Greenall, A; Phillips, JP; Turner, PR; Wright, V

    2001-01-01

    A prototype silicon microstrip detector for the LHCb vertex locator (VELO) has been partially irradiated using a 24 GeV/c proton beam at the CERN-PS accelerator. The detector possesses a radial strip geometry designed to measure the azimuthal coordinate (Phi) of tracks within the VELO. The peak fluence received by the detector was measured to be 4.6×10 14 p/cm 2 though the non-uniform nature of the exposure left part of the detector unirradiated. The inhomogeneous irradiation introduced a damage profile in the detector approximating to that expected in the VELO. High irradiation gradients are important to study as they can modify the electric field within the silicon. Of special interest are changes in the component of the electric field parallel to the strip plane but perpendicular to the strips which lead to systematic shifts in the reconstructed cluster position. If these (flux and position dependent) shifts are sufficiently large they could contribute to a degraded spatial resolution of the detector. In ...

  16. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  17. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  18. The influence of fast neutron irradiation on the noise properties of silicon surface-barrier detectors

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.

    1988-01-01

    The susceptibility to the fast neutron irradiation of silicon surface-barrier detectors has been investigated. It was shown that the 1/f-noise decreases substantially with increasing fluence in the range from 10 10 n/cm 2 to 10 11 n/cm 2 . The deterioration of the detector performance is caused mainly by the positively-charged defects induced by the radiation. The critical value of the neutron fluence, at which the detector performance begins to be worsened was also determined. 5 refs., 5 figs. (author)

  19. A standardization of the physical tests for external irradiation measuring detectors

    International Nuclear Information System (INIS)

    1977-05-01

    This report is the result of a standardization work, realized within the Radioprotection Services of the A.E.C., of the physical tests for dectors measuring external irradiations. Among the various tests mentionned, calibration and the establishment of the relative spectral response are treated in details. As far as calibration is concerned, the standardization refers to: the reference detector, the reference radiation source, the installation and calibration procedure. As for the relative spectral response the standardization refers to: the reference detector, the radiation sources to be used. High flux detectors and those for pulse electromagnetic radiations are also dealt with [fr

  20. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  1. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    International Nuclear Information System (INIS)

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V fd ), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V fd *, which is the full depletion voltage traditionally determined by the extrapolation of the fast component amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V fd ) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V fd for highly irradiated detectors

  2. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, Elena, E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Eremin, Vladimir; Zabrodskii, Andrei [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R. [CERN, CH-1211, Geneva 23 (Switzerland); Egorov, Nicolai [Research Institute of Material Science and Technology, 4 Passage 4806, Moscow, Zelenograd 124460 (Russian Federation); Härkönen, Jaakko [Helsinki Institute of Physics, P.O.Box 64 (Gustaf Hallströmin katu 2) FI-00014 University of Helsinki (Finland)

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×10{sup 16} p/cm{sup 2}. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment. - Highlights: • Si detectors irradiated in situ at 1.9 K by 23 GeV protons are further studied. • Trapping parameters are derived from the fits of collected charge vs. fluence data. • Acceptor-type defects are likely to be induced along with donor-type ones. • Trapping of holes has a dominating effect on the collected charge degradation. • New tests are planned to gain deeper insight

  3. ASTRO-H CdTe detectors proton irradiation at PIF

    International Nuclear Information System (INIS)

    Limousin, O.; Renaud, D.; Horeau, B.; Dubos, S.; Laurent, P.; Lebrun, F.; Chipaux, R.; Boatella Polo, C.; Marcinkowski, R.; Kawaharada, M.; Watanabe, S.; Ohta, M.; Sato, G.; Takahashi, T.

    2015-01-01

    Asbstract: The French Atomic Energy Commission (CEA), with the support of the European Space Agency (ESA), is partner of the Soft Gamma-Ray Detector (SGD) and the Hard X-ray Imager (HXI) onboard the 6th Japanese X-ray scientific satellite ASTRO-H (JAXA) initiated by the Institute of Space and Astronautical Science (ISAS). Both scientific instruments, one hosting a series of Compton Gamma Cameras and the other being a focal plane of a grazing incidence mirror telescope in the hard X-ray domain, are equipped with Cadmium Telluride based detectors. ASTRO-H will be operated in a Low Earth Orbit with a 31° inclination at ~550 km altitude, thus passing daily through the South Atlantic Anomaly radiation belt, a specially harsh environment where the detectors are suffering the effect of the interaction with trapped high energy protons. As CdTe detector performance might be affected by the irradiation, we investigate the effect of the accumulated proton fluence on their spectral response. To do so, we have characterized and irradiated representative samples of SGD and HXI detector under different conditions. The detectors in question, from ACRORAD, are single-pixels having a size of 2 mm by 2 mm and 750 µm thick. The Schottky contact is either made of an Indium or Aluminum for SGD and HXI respectively. We ran the irradiation test campaign at the Proton Irradiation Facility (PIF) at PSI, and ESA approved equipment to evaluate the radiation hardness of flight hardware. We simulated the proton flux expected on the sensors over the entire mission, and secondary neutrons flux due to primary proton interactions into the surrounding BGO active shielding. We eventually characterized the detector response evolution, emphasizing each detector spectral response as well as its stability by studying the so-called Polarization effect. The latter is provoking a spectral response degradation against time as a charge accumulation process occurs in Schottky type CdTe sensors. In this paper

  4. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations

    Energy Technology Data Exchange (ETDEWEB)

    BenMoussa, A., E-mail: ali.benmoussa@stce.be [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Soltani, A.; Gerbedoen, J.-C [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Saito, T. [Department of Environment and Energy, Tohoku Institute of Technology, 35-1, Yagiyama-Kasumi-cho, Taihaku-ku, Sendai, Miyagi 982-8577 (Japan); Averin, S. [Fryazino Branch of the Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 141190 Square Vvedenski 1, Fryazino, Moscow Region (Russian Federation); Gissot, S.; Giordanengo, B. [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Berger, G. [Catholic University of Louvain-la-Neuve, Chemin du Cyclotron 2, B-1348 Louvain la Neuve (Belgium); Kroth, U. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany); De Jaeger, J.-C. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Gottwald, A. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany)

    2013-10-01

    For next generation spaceborne solar ultraviolet radiometers, innovative metal–semiconductor–metal detectors based on wurtzite aluminum nitride are being developed and characterized. A set of measurement campaigns and proton irradiation damage tests was carried out to obtain their ultraviolet-to-visible characterization and degradation mechanisms. First results on large area prototypes up to 4.3 mm diameter are presented here. In the wavelength range of interest, this detector is reasonably sensitive and stable under brief irradiation with a negligible low dark current (3–6 pA/cm{sup 2}). No significant degradation of the detector performance was observed after exposure to protons of 14.4 MeV energy, showing a good radiation tolerance up to fluences of 1 × 10{sup 11} protons/cm{sup 2}.

  5. Signal generation in highly irradiated silicon microstrip detectors for the ATLAS experiment

    International Nuclear Information System (INIS)

    Ruggiero, Gennaro

    2003-01-01

    Silicon detectors are the most diffused tracking devices in High Energy Physics (HEP). The reason of such success can be found in the characteristics of the material together with the existing advanced technology for the fabrication of these devices. Nevertheless in many modem HEP experiments the observation of vary rare events require data taking at high luminosity with a consequent extremely intense hadron radiation field that damages the silicon and degrades the performance of these devices. In this thesis work a detailed study of the signal generation in microstrip detectors has been produced with a special care for the ATLAS semiconductor tracker geometry. This has required a development of an appropriate setup to perform measurements with Transient Current/ Charge Technique. This has allowed studying the evolution of the signal in several microstrips detector samples irradiated at fluences covering the range expected in the ATLAS Semiconductor Tracker. For a better understanding of these measurements a powerful software package that simulates the signal generation in these devices has been developed. Moreover in this thesis it has been also shown that the degradation due to radiation in silicon detectors can be strongly reduced if the data taking is done with detectors operated at 130 K. This makes low temperature operation that benefits of the recovery of the charge collection efficiency in highly irradiated silicon detectors (also known as Lazarus effect) an optimal option for future high luminosity experiments. (author)

  6. Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation

    Science.gov (United States)

    Khorsandi, Behrooz

    There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.

  7. Radiation damage in proton-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Lange, Joern

    2009-07-01

    In this work radiation hardness of 75 μm, 100 μm and 150 μm thick epitaxial silicon pad diodes of both standard and oxygenated material was investigated. Damage after 24 GeV/c proton irradiation in a 1MeV neutron equivalent fluence range between 10 14 cm -2 and 10 16 cm -2 was studied and isothermal annealing experiments at 80 C were carried out. Standard CV/IV measurements could be performed up to 4 x 10 15 cm -2 . The volume-normalised reverse current was found to increase linearly with fluence with a slope independent of the thickness and impurity concentration. However, due to large fluctuations the fluences had to be renormalised using the current-related damage parameter. Concerning the depletion voltage, nearly all materials remained at a moderate level up to 4 x 10 15 cm -2 . During short-term annealing acceptors annealed out, whereas others were introduced during the long-term annealing. The stable damage was characterised by donor removal at low fluences and fluence-proportional predominant donor introduction for highly irradiated diodes, depending on the oxygen level. No type inversion was observed. Time-resolved measurements with a new 670 nm laser-TCT setup made the determination of the trapping time constant with the charge correction method possible. The results agreed with expectations and showed a linear increase of trapping probability with fluence. The electric field exhibited a double peak structure in highly irradiated diodes. Charge collection efficiency measurements with α-particles were independent of oxygen concentration, but showed an improved efficiency for thinner diodes. A comparison to simulation revealed systematic discrepancies. A non-constant trapping time parameter was proposed as possible solution. (orig.)

  8. Radiation damage in proton-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joern

    2009-07-15

    In this work radiation hardness of 75 {mu}m, 100 {mu}m and 150 {mu}m thick epitaxial silicon pad diodes of both standard and oxygenated material was investigated. Damage after 24 GeV/c proton irradiation in a 1MeV neutron equivalent fluence range between 10{sup 14} cm{sup -2} and 10{sup 16} cm{sup -2} was studied and isothermal annealing experiments at 80 C were carried out. Standard CV/IV measurements could be performed up to 4 x 10{sup 15} cm{sup -2}. The volume-normalised reverse current was found to increase linearly with fluence with a slope independent of the thickness and impurity concentration. However, due to large fluctuations the fluences had to be renormalised using the current-related damage parameter. Concerning the depletion voltage, nearly all materials remained at a moderate level up to 4 x 10{sup 15} cm{sup -2}. During short-term annealing acceptors annealed out, whereas others were introduced during the long-term annealing. The stable damage was characterised by donor removal at low fluences and fluence-proportional predominant donor introduction for highly irradiated diodes, depending on the oxygen level. No type inversion was observed. Time-resolved measurements with a new 670 nm laser-TCT setup made the determination of the trapping time constant with the charge correction method possible. The results agreed with expectations and showed a linear increase of trapping probability with fluence. The electric field exhibited a double peak structure in highly irradiated diodes. Charge collection efficiency measurements with {alpha}-particles were independent of oxygen concentration, but showed an improved efficiency for thinner diodes. A comparison to simulation revealed systematic discrepancies. A non-constant trapping time parameter was proposed as possible solution. (orig.)

  9. Irradiation tests of optoelectronic components for LHC inner-detectors

    International Nuclear Information System (INIS)

    Dawson, I.; Oglesby, S.J.; Dowell, J.D.; Homer, R.J.; Kenyon, I.R.; Shaylor, H.R.; Wilson, J.A.

    1997-01-01

    Two kinds of optical-link technologies have been investigated for the readout of data at LHC experiments; one based on LEDs and the other on Multi-Quantum-Well modulators. Presented in this paper are the results of irradiating LEDs and MQW modulators with 1 MeV-equivalent neutrons and 24 GeV protons. The devices were biased and the performances of the optical links were monitored throughout the tests. The fluences achieved were ∝5 x 10 14 n cm -2 and ∝6 x 10 13 p cm -2 . (orig.)

  10. The results of the irradiations of microstrip detectors for the ATLAS tracker (SCT)

    International Nuclear Information System (INIS)

    Dervan, P.J.

    2003-01-01

    The SemiConductor Tracker (SCT) of ATLAS will operate in the Large Hadron Collider (LHC) at CERN, which will reach luminosities of 10 34 cm 2 s -1 . Silicon single-sided microstrip detectors will be used for particle tracking. Due to the proximity to the beam, the silicon detectors need to withstand damage from ionising radiation (10 Mrad total dose) and from non-ionising radiation such as neutrons (2x10 14 1 MeV equivalent neutrons/cm 2 total fluence). The final characteristics of the silicon SCT detectors which are needed to operate under LHC conditions and the conclusions reached after various years of test irradiation studies will be reported. The integration and performance of these detectors in complete SCT modules is also discussed

  11. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    Science.gov (United States)

    Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-04-01

    CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.

  12. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D. E-mail: dirk.meier@cern.ch.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Manfredi, P.F.; Marshall, R.D.; Mishina, M.; Le Normand, F.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-04-21

    CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/c and 500 Mev protons up to a fluence of 5x10{sup 15} p/cm{sup 2}. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1x10{sup 15} p/cm{sup 2} and decreases by {approx}40% at 5x10{sup 15} p/cm{sup 2}. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/c and 500 MeV protons up to at least 1x10{sup 15}p/cm{sup 2} without signal loss.

  13. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    International Nuclear Information System (INIS)

    Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Manfredi, P.F.; Marshall, R.D.; Mishina, M.; Le Normand, F.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1999-01-01

    CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/c and 500 Mev protons up to a fluence of 5x10 15 p/cm 2 . We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1x10 15 p/cm 2 and decreases by ∼40% at 5x10 15 p/cm 2 . Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/c and 500 MeV protons up to at least 1x10 15 p/cm 2 without signal loss

  14. Proton Irradiation of CVD Diamond Detectors for High Luminosity Experiments at the LHC

    CERN Document Server

    Meier, D; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jany, C; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Marshall, R D; Mishina, M; Le Normand, F; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/$c$ and 500~MeV protons up to a fluence of $5\\times 10^{15}~p/{\\rm cm^2}$. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to $1\\ times 10^{15}~p/{\\rm cm^2}$ and decreases by $\\approx$40~\\% at $5\\times 10^{15}~p/{\\rm cm^2}$. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radia...

  15. Planned studies of charge collection in non-uniformly irradiated Si and GaAs detectors

    International Nuclear Information System (INIS)

    Rosenfeld, A.; Reinhard, M.; Carolan, M.; Kaplan, G.; Lerch, M.; Alexiev, D.

    1995-01-01

    The aim of this project is to study the time and amplitude characteristics of silicon ion-implanted detectors non-uniformly irradiated with fast neutrons in order to predict their radiation behaviour in the LHC and space. It is expected in such detectors increases of the charge deficit due to trapping by large scale traps and transient time increases due to the reduction of the mobility. The theoretical model will be modified to describe the charge kinetics in the electrical field of the detector created by a non uniform space charge distribution. Experimental confirmation techniques are needed to develop non uniform predictable damage of silicon detectors using fast neutron sources (accelerators, reactors) and to study peculiarities of the charge transport in different parts of the detector. In parallel to experimental research will be started the theoretical development of the charge transport model for non-uniform distribution of space charge in the depletion layer (Neff). The model will include the linear distribution of Neff(y) along the detector as well as the change of sign of Neff (conversion from n to p type of silicon) inside the detector

  16. Testbeam and laboratory test results of irradiated 3D CMS pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bubna, Mayur [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907-1396 (United States); Alagoz, Enver, E-mail: enver.alagoz@cern.ch [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Cervantes, Mayra; Krzywda, Alex; Arndt, Kirk [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Obertino, Margherita; Solano, Ada [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino (Italy); Dalla Betta, Gian-Franco [INFN Padova (Gruppo Collegato di Trento) (Italy); Dipartimento di Ingegneria e Scienzadella Informazione, Universitá di Trento, I-38123 Povo di Trento (Italy); Menace, Dario; Moroni, Luigi [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Universitá degli Studi di Milano Bicocca, 20126 Milano (Italy); Uplegger, Lorenzo; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Osipenkov, Ilya [Texas A and M University, Department of Physics, College Station, TX 77843-4242 (United States); Andresen, Jeff [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Bolla, Gino; Bortoletto, Daniela [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Boscardin, Maurizio [Centro per i Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, I-38123 Povo di Trento (Italy); Marie Brom, Jean [Strasbourg IPHC, Institut Pluriedisciplinaire Hubert Curien, F-67037 Strasbourg Cedex (France); Brosius, Richard [State University of New York at Buffalo (SUNY), Department of Physics, Buffalo, NY 14260-1500 (United States); Chramowicz, John [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); and others

    2013-12-21

    The CMS silicon pixel detector is the tracking device closest to the LHC p–p collisions, which precisely reconstructs the charged particle trajectories. The planar technology used in the current innermost layer of the pixel detector will reach the design limit for radiation hardness at the end of Phase I upgrade and will need to be replaced before the Phase II upgrade in 2020. Due to its unprecedented performance in harsh radiation environments, 3D silicon technology is under consideration as a possible replacement of planar technology for the High Luminosity-LHC or HL-LHC. 3D silicon detectors are fabricated by the Deep Reactive-Ion-Etching (DRIE) technique which allows p- and n-type electrodes to be processed through the silicon substrate as opposed to being implanted through the silicon surface. The 3D CMS pixel devices presented in this paper were processed at FBK. They were bump bonded to the current CMS pixel readout chip, tested in the laboratory, and testbeams carried out at FNAL with the proton beam of 120 GeV/c. In this paper we present the laboratory and beam test results for the irradiated 3D CMS pixel devices. -- Highlights: •Pre-irradiation and post-irradiation electrical properties of 3D sensors and 3D diodes from various FBK production batches were measured and analyzed. •I–T measurements of gamma irradiated diodes were analyzed to understand leakage current generation mechanism in 3D diodes. •Laboratory measurements: signal to noise ratio and charge collection efficiency of 3D sensors before and after irradiation. •Testbeam measurements: pre- and post-irradiation pixel cell efficiency and position resolution of 3D sensors.

  17. Fast neutron irradiation effects on CR-39 nuclear track detector for dosimetric applications

    International Nuclear Information System (INIS)

    Kader, M.H.

    2005-01-01

    The effect of neutron irradiation on the dosimetric properties of CR-39 solid-state nuclear track detector have been investigated. CR-39 samples were irradiated with neutrons of energies follow a Maxwellian distribution centered about 2 MeV. These samples were irradiated with different doses in the range 0.1-1 Sv. The background and track density were measured as a function of etching time. In addition, the dependence of sensitivity of CR-39 detector on the neutrons dose has been investigated. The results show that the Sensitivity started to increase at 0.4 Sv neutrons dose, so this sample were chosen to be a subject for further study to investigate the effect of gamma dose on its properties. The sample irradiated with 0.4 Sv were exposed to different doses of gamma rays at levels between 10 and 80 kGy. The effect of gamma doses on the bulk etching rate VB, the track diameter and the sensitivity of the CR-39 samples was investigated. The results show that the dosimetric properties of CR-39 SSNTD are greatly affected by both neutron and gamma irradiation

  18. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    OpenAIRE

    Kim Myong-Seop; Park Byung-Gun; Kang Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affe...

  19. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  20. The effect of charge collection recovery in silicon p-n junction detectors irradiated by different particles

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Abreu, M.; Anbinderis, P.; Anbinderis, T.; D'Ambrosio, N.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chen, W.; Cindro, V.; Dezillie, B.; Dierlamm, A.; Eremin, V.; Gaubas, E.; Gorbatenko, V.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Haerkoenen, J.; Ilyashenko, I.; Janos, S.; Jungermann, L.; Kalesinskas, V.; Kapturauskas, J.; Laiho, R.; Li, Z.; Mandic, I.; De Masi, Rita; Menichelli, D.; Mikuz, M.; Militaru, O.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Perea Solano, B.; Piotrzkowski, K.; Pirollo, S.; Pretzl, K.; Rato Mendes, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Tuominen, E.; Vaitkus, J.; Da Via, C.; Wobst, E.; Zavrtanik, M.

    2003-01-01

    The recovery of the charge collection efficiency (CCE) at low temperatures, the so-called 'Lazarus effect', was studied in Si detectors irradiated by fast reactor neutrons, by protons of medium and high energy, by pions and by gamma-rays. The experimental results show that the Lazarus effect is observed: (a) after all types of irradiation; (b) before and after space charge sign inversion; (c) only in detectors that are biased at voltages resulting in partial depletion at room temperature. The experimental temperature dependence of the CCE for proton-irradiated detectors shows non-monotonic behaviour with a maximum at a temperature defined as the CCE recovery temperature. The model of the effect for proton-irradiated detectors agrees well with that developed earlier for detectors irradiated by neutrons. The same midgap acceptor-type and donor-type levels are responsible for the Lazarus effect in detectors irradiated by neutrons and by protons. A new, abnormal 'zigzag'-shaped temperature dependence of the CCE was observed for detectors irradiated by all particles (neutrons, protons and pions) and by an ultra-high dose of γ-rays, when operating at low bias voltages. This effect is explained in the framework of the double-peak electric field distribution model for heavily irradiated detectors. The redistribution of the space charge region depth between the depleted regions adjacent to p + and n + contacts is responsible for the 'zigzag'- shaped curves. It is shown that the CCE recovery temperature increases with reverse bias in all detectors, regardless of the type of radiation

  1. An X-Ray facility to perform irradiation tests and TID studies on electronics and detectors

    CERN Document Server

    Brundu, Davide; Cadeddu, Sandro; Wyllie, Ken; Ciambrone, Paolo

    2018-01-01

    The X-Ray irradiation system of the LHCb group, installed in Cagliari, is presented; with a particular focus on the setup configuration and dose rate calibration. The system can be used to perform Total Ionizing Dose (TID) studies for detectors, readout and front-end electronics. It was already used to test the nSYNC chip, an ASIC for the readout of the LHCb upgraded muon system.

  2. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Directory of Open Access Journals (Sweden)

    Kim Myong-Seop

    2018-01-01

    Full Text Available A calibration technology of the self-powered neutron detectors (SPNDs using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  3. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Science.gov (United States)

    Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  4. ATLAS irradiation studies of n-in-n and p-in-n silicon microstrip detectors

    CERN Document Server

    Allport, P P; Buttar, C M; Carter, J; Drage, L M; Ferrère, D; Morgan, D; Riedler, P; Robinson, D

    1999-01-01

    Prior to the module production of the ATLAS silicon microstrip tracker for the barrel and the forward wheels, the characterisation of full-size prototype silicon detectors after radiation to fluences corresponding to 10 years of ATLAS operation is required. The behaviour of p-in-n and n-in-n detectors produced by several manufacturers before and after irradiation to a fluence of 3*10/sup 14/ protons/cm/sup 2/ at the CERN PS facility is discussed. This article summarises some recent results from the ATLAS SCT collaboration. The measurements of leakage current, full depletion voltage, signal-to-noise ratio and charge collection efficiency are presented. Despite the better efficiency performance of n-in-n detectors below depletion, the collaboration chose the p-in-n technology due to its simpler and less costly production since good charge collection efficiencies were achieved at the desired maximum bias voltage. (14 refs).

  5. Opto-structural characterization of gamma irradiated Bayfol polymer track detector

    Energy Technology Data Exchange (ETDEWEB)

    Tayel, A. [Physics Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Zaki, M.F., E-mail: moha1016@yahoo.com [Experimental Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Abu Zaabal, Cairo (Egypt); El Basaty, A.B. [Physics Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Hegazy, Tarek M. [Physics Department, College of Women for Arts, Science and Education, Ain Shams University, Cairo (Egypt)

    2013-11-15

    Bayfol CR 1-4 is one of polymeric solid state nuclear track detector which has numerous applications due to its outstanding optical, mechanical, thermal and electrical properties. In the present study, Bayfol polymer is irradiated with different doses of gamma rays ranging from 0 to 1000 KGy. The effects of gamma irradiations on the optical, structural and chemical properties of Bayfol were studied using Ultraviolet and visible (UV/Vis) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The UV–Vis spectra of irradiated samples show that the absorption edge is shifted towards longer wavelength comparing to pristine sample spectrum. This behavior indicates that there is a decrease in the band gap after irradiation. The maximum decrease in the band gap is about 0.8 eV. The XRD patterns of amorphous halo of pristine and irradiated samples show a fluctuation of integrated intensity of amorphous halo. This indicates a change in the structure due to gamma irradiation. In order to understand that structure change mechanism, we used the FTIR spectroscopy.

  6. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, M.; Bolton, T.; Carnes, K.; /Kansas State U.; Demarteau, M.; /Fermilab; Demina, R.; /Rochester U.; Gray, T.; /Kansas State U.; Korjenevski, S.; /Rochester U.; Lehner, F.; /Zurich U.; Lipton, R.; Mao, H.S.; /Fermilab; McCarthy, R.; /SUNY, Stony Brook /Kansas State U. /Fermilab

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10{sup 14} p/cm{sup 2} at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  7. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    International Nuclear Information System (INIS)

    Ahsan, M.; Bolton, T.; Carnes, K.; Demarteau, M.; Demina, R.; Gray, T.; Korjenevski, S.; Lehner, F.; Lipton, R.; Mao, H.S.; McCarthy, R.

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10 14 p/cm 2 at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  8. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors

    International Nuclear Information System (INIS)

    Muller, O.

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO 2 /Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix

  9. Charge collection efficiency recovery in heavily irradiated silicon detectors operated at cryogenic temperatures

    CERN Document Server

    Da Vià, C; Berglund, P; Borchi, E; Borer, K; Bruzzi, Mara; Buontempo, S; Casagrande, L; Chapuy, S; Cindro, V; Dimcovski, Zlatomir; D'Ambrosio, N; de Boer, Wim; Dezillie, B; Esposito, A P; Granat, V; Grigoriev, E; Heijne, Erik H M; Heising, S; Janos, S; Koivuniemi, J H; Konotov, I; Li, Z; Lourenço, C; Mikuz, M; Niinikoski, T O; Pagano, S; Palmieri, V G; Paul, S; Pirollo, S; Pretzl, Klaus P; Ropotar, I; Ruggiero, G; Salmi, J; Seppä, H; Suni, I; Smith, K; Sonderegger, P; Valtonen, M J; Zavrtanik, M

    1998-01-01

    The charge collection efficiency (CCE) of high resistivity silicon detectors, previously neutron irradiated up to 2*10/sup 15/ n/cm/sup 2/, was measured at different cryogenic temperatures and different bias voltages. In order to $9 study reverse annealing (RA) effects, a few samples were heated to 80 degrees C and kept at room temperature for several months after irradiation. For comparison other samples (NRA) where kept at -10 C after irradiation. The RA and $9 NRA samples, measured at 250 V forward and reverse bias voltage, present a common temperature threshold at 150 K. Below 120 K the CCE is constant and ranges between 55and 65 0.000000or the RA and NRA sample respectively. Similar CCE $9 was measured for a device processed with low resistivity contacts (OHMIC), opening the prospect for a consistent reduction of the cost of large area particle tracking. (7 refs).

  10. Is the Spencer-Attix cavity equation applicable for solid-state detectors irradiated in megavoltage electron beams?

    International Nuclear Information System (INIS)

    Mobit, P.N.; Sandison, G.A.; Calgary Univ., AB

    2001-01-01

    The applicability of the Spencer-Attix cavity equation in determining absorbed doses in water using solid state detectors irradiated by megavoltage electron beams have been examined. The calculations were performed using the EGSnrc Monte Carlo code. This work is an extension of a recently published article examining the perturbation of dose by solid state detectors in megavoltage electron beams. (orig.)

  11. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    Directory of Open Access Journals (Sweden)

    A. Tayel

    2015-03-01

    Full Text Available The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications.

  12. Electron dosimetry in irradiation processing with rad-hard diodes

    International Nuclear Information System (INIS)

    Santos, Thais Cavalheri dos

    2012-01-01

    This work had the aim of the development of dosimetric systems based on Si special diodes, resistant to radiation damage to online monitoring of irradiation processing using 1.5 MeV electrons energy and for relative dosimetry and clinical electron beam scanning within an energy range of 6 MeV up to 21 MeV. The diodes used were produced by Float Zone standard (FZ), Magnetic Czochralski (MCz) and epitaxy growth (EPI) methods. In order to use the diodes as detectors, they were fixed on alumina base to allow the connection of the polarization electrodes and the signals extraction. After the diode assembly on the base, each one was housed in a black acrylic probe with aluminized Mylar® window and LEMO® connector. With the devices operating in photovoltaic mode, the integration of the current signals as a function of irradiation time allowed obtain the charge produced in the sensitive volume of each diode irradiated. The electron accelerator used for high doses irradiation was the DC 1500/25/4 JOB 188 of the 1.5 MeV installed at the Radiation Technology Center of the IPEN/CNEN-SP. The current profile as function of exposure time, the response repeatability, the sensitivity as function of absorbed dose and the dose response curve were studied for each device. In comparison to FZ diode, we observed a greater decrease in the sensitivity for MCz diode, and good repeatability in both cases. Also, the increasing of the charge with the absorbed dose was well fitted by a second order polynomial function. In the EPI diode characterization, this one exhibited repeatability better than CTA dosimeters applied routinely in radiation processing. The above results indicate the potential use of these radiation hardness Si diodes in online dosimetry to high doses applications. For low doses irradiation were used the linear accelerators KD2 and Primus, both manufactured by Siemens and located at Sirio-Libanes Hospital. The diodes responses were evaluated for electron beams within the

  13. Radiation Response of Forward Biased Float Zone and Magnetic Czochralski Silicon Detectors of Different Geometry for 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Mekki, J; Dusseau, Laurent; Roche, Nicolas Jean-Henri; Saigne, Frederic; Mekki, Julien; Glaser, Maurice

    2010-01-01

    Aiming at evaluating new options for radiation monitoring sensors in LHC/SLHC experiments, the radiation responses of FZ and MCz custom made silicon detectors of different geometry have been studied up to about 4 x 10(14) n(eq)/cm(2). The radiation response of the devices under investigation is discussed in terms of material type, thickness and active area influence.

  14. Influence for high intensity irradiation on characteristics of silicon strip-detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Pugatch, V.M.; Zinets, O.S.

    1995-01-01

    Full text: Silicon strip detectors (SSD) are widely used for the coordinate determination of short-range as well as minimum ionizing particles with high spatial resolution. Submicron position sensitivity of strip-detectors for short-range particles has been studied by means of two dimensional analyses of charges collected by neighboring strips as well as by measurement of charge collection times [1]. Silicon strip detectors was also used for testing high energy electron beam [2]. Under large fluences the radiation defects are stored and such characteristics of strip-detectors as an accuracy of the coordinate determination and the registration efficiency are significantly changed. Radiation defects lead to a decrease of the lifetime and mobility of charge carriers and therefore to changes of conditions for the charge collection in detectors. The inhomogeneity in spatial distribution if defects and electrical field plays an important role in the charge collection. In this report the role of the diffusion and drift in the charge collection in silicon strip-detectors under irradiation up to 10 Mrad has been studied. The electric field distribution and its dependence on the radiation dose in the detector have been calculated. It is shown that for particles incident between adjacent strips the coordinate determination precision depends strongly on the detector geometry and the electric field distribution, particularly in the vicinity of strips. Measuring simultaneously the collected charges and collection times on adjacent strips one can essentially improve reliability of the coordinate determination for short-range particles. Usually SSD are fabricated on n-type wafers. It is well known that under high intensity irradiation n-Si material converts into p-Si as far as p-type silicon is more radiative hard than n-type silicon [3] it is reasonable to fabricate SSD using high resistivity p-Si. Characteristics of SSD in basis n-and P-Si have been compared and higher

  15. Characterization of 150μm thick epitaxial silicon detectors from different producers after proton irradiation

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Moll, M.; Haerkoenen, J.; Kronberger, M.; Trummer, J.; Rodeghiero, P.

    2007-01-01

    Epitaxial (EPI) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of 150μm thick EPI silicon diodes irradiated with 24GeV/c protons up to a fluence of 3x10 15 p/cm 2 has been performed by means of Charge Collection Efficiency (CCE) measurements, investigations with the Transient Current Technique (TCT) and standard CV/IV characterizations. The aim of the work was to investigate the impact of radiation damage as well as the influence of the wafer processing on the material performance by comparing diodes from different manufacturers. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. While the generation of leakage current due to irradiation is similar in all investigated series of detectors, a difference in the effective doping concentration can be observed after irradiation. In the CCE measurements an anomalous drop in performance was found even for diodes exposed to very low fluences (5x10 13 p/cm 2 ) in all measured series. This result was confirmed for one series of diodes in TCT measurements with an infrared laser. TCT measurements with a red laser showed no type inversion up to fluences of 3x10 15 p/cm 2 for n-type devices whereas p-type diodes undergo type inversion from p- to n-type for fluences higher than ∼2x10 14 p/cm 2

  16. Characterization of 150 $\\mu$m thick epitaxial silicon detectors from different producers after proton irradiation

    CERN Document Server

    Hoedlmoser, H; Haerkoenen, J; Kronberger, M; Trummer, J; Rodeghiero, P

    2007-01-01

    Epitaxial (EPI) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of 150 mm thick EPI silicon diodes irradiated with 24GeV=c protons up to a fluence of 3 1015 p=cm2 has been performed by means of Charge Collection Efficiency (CCE) measurements, investigations with the Transient Current Technique (TCT) and standard CV=IV characterizations. The aim of the work was to investigate the impact of radiation damage as well as the influence of the wafer processing on the material performance by comparing diodes from different manufacturers. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. While the generation of leakage current due to irradiation is similar in all investigated series of detectors, a difference in the effective doping concentration can be observed after irradiation. In the CCE measurements an anomalous drop in performance was found even for diodes exposed to ...

  17. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gallrapp, Christian

    2015-07-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  18. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    Gallrapp, Christian

    2015-01-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  19. Studies of frequency dependent C-V characteristics of neutron irradiated p+-n silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Kraner, H.W.

    1990-10-01

    Frequency-dependent capacitance-voltage fluence (C-V) characteristics of neutron irradiated high resistivity silicon p + -n detectors have been observed up to a fluence of 8.0 x 10 12 n/cm 2 . It has been found that frequency dependence of the deviation of the C-V characteristic (from its normal V -1/2 dependence), is strongly dependent on the ratio of the defect density and the effective doping density N t /N' d . As the defect density approaches the effective dopant density, or N t /N' d → 1, the junction capacitance eventually assumes the value of the detector geometry capacitance at high frequencies (f ≤ 10 5 Hz), independent of voltage. A two-trap-level model using the concept of quasi-fermi levels has been developed, which predicts both the effects of C-V frequency dependence and dopant compensation observed in this study

  20. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  1. Characterization of hybrid self-powered neutron detector under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, M. E-mail: masaru@oarai.jaeri.go.jp; Nagao, Y.; Yamamura, C.; Nakazawa, M.; Kawamura, H

    2000-11-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%R000.

  2. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  3. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    International Nuclear Information System (INIS)

    Krzywda, A.; Alagoz, E.; Bubna, M.; Obertino, M.; Solano, A.; Arndt, K.; Uplegger, L.; Betta, G.F. Dalla; Boscardin, M.; Ngadiuba, J.; Rivera, R.; Menasce, D.; Moroni, L.; Terzo, S.; Bortoletto, D.; Prosser, A.; Adreson, J.; Kwan, S.; Osipenkov, I.; Bolla, G.

    2014-01-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10 15 n eq /cm 2

  4. Signal height in silicon pixel detectors irradiated with pions and protons

    International Nuclear Information System (INIS)

    Rohe, T.; Acosta, J.; Bean, A.; Dambach, S.; Erdmann, W.; Langenegger, U.; Martin, C.; Meier, B.; Radicci, V.; Sibille, J.; Trueb, P.

    2010-01-01

    Pixel detectors are used in the innermost part of multi-purpose experiments at the Large Hadron Collider (LHC) and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of the detectors has been tested thoroughly up to the fluences expected at the LHC. In case of an LHC upgrade the fluence will be much higher and it is not yet clear up to which radii the present pixel technology can be used. To establish such a limit, pixel sensors of the size of one CMS pixel readout chip (PSI46V2.1) have been bump bonded and irradiated with positive pions up to 6x10 14 n eq /cm 2 at PSI and with protons up to 5x10 15 n eq /cm 2 . The sensors were taken from production wafers of the CMS barrel pixel detector. They use n-type DOFZ material with a resistance of about 3.7kΩcm and an n-side read out. As the performance of silicon sensors is limited by trapping, the response to a Sr-90 source was investigated. The highly energetic beta-particles represent a good approximation to minimum ionising particles. The bias dependence of the signal for a wide range of fluences will be presented.

  5. Lorentz angle measurements in irradiated silicon detectors between 77 K and 300 K

    International Nuclear Information System (INIS)

    Bartsch, V.; Boer, W. de; Bol, J.

    2001-01-01

    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures below 180 K. However, at low temperatures the mobility increases, which leads to larger deflections of the charge carriers by the Lorentz force. We present measurements of the Lorentz angle between 77 K and 300 K before and after irradiation with a primary beam of 21 MeV protons to a flux of 10 13 /cm 2 . (author)

  6. Investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL Preshower

    International Nuclear Information System (INIS)

    Bloch, Ph.; Peisert, A.; Chang, Y.H.; Chen, A.E.; Hou, S.; Lin, W.T.; Cheremukhin, A.E.; Golutvin, I.A.; Urkinbaev, A.R.; Zamyatin, N.I.; Loukas, D.

    2001-01-01

    Strongly irradiated (2.3·10 14 n/cm 2 ) silicon strip detectors of different size, thickness and different design options were tested in a muon beam at CERN in 1999. A charge collection efficiency in excess of 85% and a signal-to-noise ratio of about 6 are obtained in all cases at high enough bias voltage. Details of the charge collection in the interstrip and the guard ring region and cross-talk between strips were also studied. We find that the charge collection efficiency and the cross-talk between strips depend on the interstrip distance

  7. Irradiation of 4H-SiC UV detectors with heavy ions

    International Nuclear Information System (INIS)

    Kalinina, E. V.; Lebedev, A. A.; Bogdanova, E.; Berenquier, B.; Ottaviani, L.; Violina, G. N.; Skuratov, V. A.

    2015-01-01

    Ultraviolet (UV) photodetectors based on Schottky barriers to 4H-SiC are formed on lightly doped n-type epitaxial layers grown by the chemical vapor deposition method on commercial substrates. The diode structures are irradiated at 25°C by 167-MeV Xe ions with a mass of 131 amu at a fluence of 6 × 10 9 cm −2 . Comparative studies of the optical and electrical properties of as-grown and irradiated structures with Schottky barriers are carried out in the temperature range 23–180°C. The specific features of changes in the photosensitivity and electrical characteristics of the detector structures are accounted for by the capture of photogenerated carriers into traps formed due to fluctuations of the conduction-band bottom and valence-band top, with subsequent thermal dissociation

  8. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  9. Noise behaviour of semiinsulating GaAs particle detectors at various temperatures before and after irradiation

    International Nuclear Information System (INIS)

    Tenbusch, F.; Braunschweig, W.; Chu, Z.; Krais, R.; Kubicki, T.; Luebelsmeyer, K.; Pandoulas, D.; Rente, C.; Syben, O.; Toporowski, M.; Wittmer, B.; Xiao, W.J.

    1998-01-01

    We investigated the noise behaviour of surface barrier detectors (double sided Schottky contact) made of semiinsulating GaAs. Two types of measurements were performed: equivalent noise charge (ENC) and noise power density spectra in a frequency range from 10 Hz to 500 kHz. The shape of the density spectra are a powerful tool to examine the physical origin of the noise, before irradiation it is dominated by generation-recombination processes caused by deep levels. Temperature dependent noise measurements reveal the deep level parameters like activation energy and cross section, which are also extracted by analyzing the time transients of the charge pulse from α-particles. After irradiation with protons, neutrons and pions the influence of the deep levels being originally responsible for the noise is found to decrease and a reduction of the noise over the entire frequency range with increasing fluence is observed. (orig.)

  10. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  11. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  12. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  13. Study of the response of a silicon detector irradiated with 1 MeV neutrons; Etude de la reponse d`un detecteur Si irradie par des neutrons de 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P [Montreal Univ., PQ (Canada). Lab. de Physique Nucleaire

    1994-12-31

    The author studied the response of an n-type silicon detector irradiated with 1 MeV neutrons at fluences ranging from 0.26x10{sup 13} to 11.19x10{sup 13} neutrons/cm{sup 2}. The response of the irradiated detector to {sup 241}Am alpha particles was measured. 13 refs., 7 figs.

  14. Study etching characteristics of a track detector CR-39 with ultraviolet laser irradiation

    International Nuclear Information System (INIS)

    Dwaikat, Nidal; Iida, Toshiyuki; Sato, Fuminobu; Kato, Yushi; Ishikawa, Ippei; Kada, Wataru; Kishi, Atsuya; Sakai, Makoto; Ihara, Yohei

    2007-01-01

    The effect of pulsed ultraviolet Indium-doped Yttrium Aluminum Garnet (UV-In:YAG) laser of λ=266 nm, pulse energy 42 mJ/pulse at repetition rate10 Hz on the etching characteristics of Japanese CR-39 was studied at various energy intensities. Fifteen detectors were divided into two sets, each of seven samples and one sample was kept as a reference.The first set (post-exposed) was first exposed to alpha radiation with close contact to 241 Am and then treated in air with laser in the energy intensity range from 40 to160 J/cm 2 , 20 J/cm 2 in step. The second set (pre-exposed) was irradiated in reverse process (laser+alpha) with the same sources as the first set and under the same condition. The laser energy intensities ranged between 20 and 140 J/cm 2 , 20 J/cm 2 in step. For post-exposed samples (alpha+laser) bulk etch rate decreases up to 60 J/cm 2 and increases thereafter, while for pre-exposed samples (laser+alpha) the bulk etch rate oscillates without showing any precise periodicity. The bulk etch rate for both sets was found to be the same at 60≤energy intensity≤80 J/cm 2 and this may indicate that the same structural changes have happened. The track etch rate was found to be equal to the bulk etch rate for both sets, so the sensitivity is constant. In both sets several changes on the detector surfaces: tracks of different sizes and shapes and high density within the laser spot were observed. Out of the laser spot, the tracks become larger and lower density, indicating cross-linking and scission have happened, simultaneously, on the same surface as a result of UV-laser irradiation

  15. Degradation of charge sharing after neutron irradiation in strip silicon detectors with different geometries

    International Nuclear Information System (INIS)

    Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Huse, T.; Tsurin, I.; Wormald, M.

    2013-01-01

    The aim of the CERN/RD50 collaboration is the improvement of the radiation tolerance of semiconductor detectors for future experiments at high-luminosity colliders. In the RD50 framework, evidence of enhanced signal charge in severely irradiated silicon detectors (diodes, segmented planar and 3D devices) was found. The underlying mechanism was labelled charge multiplication. This has been one of the most exciting results from the research activity of RD50 because it could allow for a greatly extended radiation tolerance, if the mechanism is to be found controllable and tuneable. The charge multiplication mechanism is governed by impact ionisation from electrons drifting in high electric field. The electric field profile is influenced by the geometry of the implanted electrodes. In order to investigate the influence of the diode implantation geometry on charge multiplication, the RD50 collaboration has commissioned the production of miniature microstrip silicon sensors with various choices of strip pitch and strip width over pitch (w/p) ratios. Moreover, some of the sensors were produced interleaving readout strips with dummy intermediate ones in order to modify the electric field profile. These geometrical solutions can influence both charge multiplication and charge sharing between adjacent strips. The initial results of this study are here presented

  16. The origin of double peak electric field distribution in heavily irradiated silicon detectors

    CERN Document Server

    Eremin, V; Li, Z

    2002-01-01

    The first observation of double peak (DP) electric field distribution in heavily neutron irradiated (>10 sup 1 sup 4 n/cm sup 2) semiconductor detectors has been published about 6 yr ago. However, this effect was not quantitatively analyzed up to now. The explanation of the DP electric field distribution presented in this paper is based on the properties of radiation induced deep levels in silicon, which act as deep traps, and on the distribution of the thermally generated free carrier concentration in the detector bulk. In the frame of this model, the earlier published considerations on the so-called 'double junction (DJ) effect' are discussed as well. The comparison of the calculated electric field profiles at different temperatures with the experimental ones allows one to determine a set of deep levels. This set of deep levels, and their charge filling status are essential to the value and the distribution of space charge in the space charge region in the range of 305-240 K, which is actual temperature ran...

  17. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  18. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  19. The effect of ArF laser irradiation (193 nm) on the photodegradation and etching properties of alpha-irradiated CR-39 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Jooybari, B. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute (NSRT), Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Ghergherehchi, M. [College of Information and Technology/ school of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Lamehi-Rachti, M. [Nuclear Science and Technology Research Institute (NSRT), Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-01-01

    The effects of ArF laser irradiation (λ=193nm) at various fluences (energy dose or energy density) on the etching properties of pre-exposed (laser + alpha) CR-39 detectors were studied. First, UV–Vis and Fourier transform infrared (FTIR) spectra were acquired for non-laser-irradiated and laser-irradiated samples to detect the influence of the ArF laser on the chemical modification of the CR-39. Changes observed in the spectra indicated that the predominant process that occurred upon ArF laser irradiation was a bond-scission process. Thereafter, the mean track and bulk etching parameters were experimentally measured in ArF-laser-irradiated CR-39 detectors exposed to an alpha source ({sup 241}Am, E = 5.49 MeV). Inhomogeneous regions in the laser-irradiated side of the CR-39 demonstrated a variable etching rate on only the front side of the CR-39 detector. New equations are also presented for the average bulk etching rate for these inhomogeneous regions (front side). The mean bulk and track etching rates and the mean track dimensions increased in a fluence range of 0–37.03 mJ/cm{sup 2} because of photodegradation and the scission of chemical bonds, which are the predominant processes in this range. When the fluence was increased from 37.03 to 123.45 mJ/cm{sup 2}, the bulk and track etching rates and the track dimensions slowly decreased because of the formation of cross-linked structures on the CR-39 surface. The behavior of the bulk and track etching rates and the track dimensions appears to be proportional to the dose absorbed on the detector surface. It was observed that as the etching time was increased, the bulk and track etching rates and the track dimensions of the laser-irradiated samples decreased because of the shallow penetration depth of the 193 nm laser and the reduction in the oxygen penetration depth.

  20. Irradiation induced effects in the FE-I4 front-end chip of the ATLAS IBL detector

    CERN Document Server

    La Rosa, Alessandro; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) detector was installed into the ATLAS experiment in 2014 and has been in operation since 2015. During the first year of IBL data taking an increase of the low voltage currents produced by the FE-I4 front-end chip was observed and this increase was traced back to the radiation damage in the chip. The dependence of the current on the total-ionising dose and temperature has been tested with Xray and proton irradiations and will be presented in this paper together with the detector operation guidelines.

  1. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  2. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Ruddy, Frank H.; Seidel, John G.

    2007-01-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 deg. C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137 Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress

  3. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  4. Electron dosimetry in irradiation processing with rad-hard diodes; Dosimetria de eletrons em processos de irradiacao com diodos resistentes a danos de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thais Cavalheri dos

    2012-07-01

    This work had the aim of the development of dosimetric systems based on Si special diodes, resistant to radiation damage to online monitoring of irradiation processing using 1.5 MeV electrons energy and for relative dosimetry and clinical electron beam scanning within an energy range of 6 MeV up to 21 MeV. The diodes used were produced by Float Zone standard (FZ), Magnetic Czochralski (MCz) and epitaxy growth (EPI) methods. In order to use the diodes as detectors, they were fixed on alumina base to allow the connection of the polarization electrodes and the signals extraction. After the diode assembly on the base, each one was housed in a black acrylic probe with aluminized Mylar Registered-Sign window and LEMO Registered-Sign connector. With the devices operating in photovoltaic mode, the integration of the current signals as a function of irradiation time allowed obtain the charge produced in the sensitive volume of each diode irradiated. The electron accelerator used for high doses irradiation was the DC 1500/25/4 JOB 188 of the 1.5 MeV installed at the Radiation Technology Center of the IPEN/CNEN-SP. The current profile as function of exposure time, the response repeatability, the sensitivity as function of absorbed dose and the dose response curve were studied for each device. In comparison to FZ diode, we observed a greater decrease in the sensitivity for MCz diode, and good repeatability in both cases. Also, the increasing of the charge with the absorbed dose was well fitted by a second order polynomial function. In the EPI diode characterization, this one exhibited repeatability better than CTA dosimeters applied routinely in radiation processing. The above results indicate the potential use of these radiation hardness Si diodes in online dosimetry to high doses applications. For low doses irradiation were used the linear accelerators KD2 and Primus, both manufactured by Siemens and located at Sirio-Libanes Hospital. The diodes responses were evaluated for

  5. Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    International Nuclear Information System (INIS)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p + ) and back (n + ) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N eff . The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N eff distortions among various detectors irradiated by different neutron fluences are compared

  6. Investigation of the effectiveness of standard materials used to the performance evaluation of the PSL detectors for irradiated foods

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Nakagawa, Seiko; Goto, Michiko; Yamazaki, Masao

    2009-01-01

    Six different minerals (dolomite, bentonite, montmorillonite, kaolin, talc, activated clay), gloss sheets for laser(LP) and ink-Jet printer(IP), and four types of glass fiber filters (GA-100, GB-100R, GD-120, GF/C) have been investigated for availability as the standard material for maintenance and calibration of photostimulated luminescence (PSL) detectors for irradiated foods. Montmorillonite applied to a paper disc had an adequate PSL intensity caused by natural radiation in comparison with other minerals, but the stability of the PSL was affected by light exposure in the manufacturing process. The PSL intensity of IP was drastically decreased one day after irradiation but LP had an adequate PSL intensity with the exception of high level background counts just after irradiation. The glass fiber filters, except for GF/C, differed little in PSL intensities between the upper and under side, but compression in the filter caused fluctuation in the PSL intensity. Changes in PSL intensities of LP and GA-100 with time differences after irradiation were further studied. The cumulate photon counts were markedly decreased in the first two months for GA-100, and in the first month for LP after irradiation. GA-100 showed relatively less variation in cumulate photon counts compared with LP and the paprika standard in a series of studies. (author)

  7. Heavy-ion irradiation effects on passivated implanted planar silicon detectors

    International Nuclear Information System (INIS)

    Coster, W. de; Brijs, B.; Vandervorst, W.; Burger, P.

    1992-01-01

    Commercially available p + nn + passivated implanted planar silicon detectors have been shown to be very performing for standard RBS-analysis with 4 He beams. Lifetimes are found to range up till >10 9 particles. The end of lifetime occurs concurrent with internal breakdown of the detector. Inverted n + np + detectors where the junction is located well outside the damage region, are expected to be less sensitive to the radiation damage and to have a higher lifetime. In the present paper the characteristics for heavy-ion detection of both types of detector are investigated and discussed upon. (orig.)

  8. Charge collection efficiency and resolution of an irradiated double-sided silicon microstrip detector operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Borer, K.; Janos, S.; Palmieri, V.G.; Buytaert, J.; Chabaud, V.; Chochula, P.; Collins, P.; Dijkstra, H.; Niinikoski, T.O.; Lourenco, C.; Parkes, C.; Saladino, S.; Ruf, T.; Granata, V.; Pagano, S.; Vitobello, F.; Bell, W.; Bartalini, P.; Dormond, O.; Frei, R.; Casagrande, L.; Bowcock, T.; Barnett, I.B.M.; Da Via, C.; Konorov, I.; Paul, S.; Schmitt, L.; Ruggiero, G.; Stavitski, I.; Esposito, A.

    2000-01-01

    This paper presents results on the measurement of the cluster shapes, resolution and charge collection efficiency of a double-sided silicon microstrip detector after irradiation with 24 GeV protons to a fluence of 3.5x10 14 p/cm 2 and operated at cryogenic temperatures. An empirical model is presented which describes the expected cluster shapes as a function of depletion depth, and is shown to agree with the data. It is observed that the clusters on the p-side broaden if the detector is under-depleted, leading to a degradation of resolution and efficiency. The model is used to make predictions for detector types envisaged for the LHC experiments. The results also show that at cryogenic temperature the charge collection efficiency varies depending on the operating conditions of the detector and can reach values of 100% at unexpectedly low bias voltage. By analysing the cluster shapes it is shown that these variations are due to changes in depletion depth. This phenomenon, known as the 'Lazarus effect', can be related to similar recent observations on diode behaviour

  9. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  10. Comparison of relevant parameters of multi-pixel sensors for tracker detectors after irradiation with high proton and neutron fluences

    International Nuclear Information System (INIS)

    Bergholz, Matthias

    2016-03-01

    The further increase of the luminosity of the Large Hadron Collider (LHC) at CERN requires new sensors for the tracking detector of the Compact Muon Soleniod (CMS) experiment. These sensors must be more radiation hard and of a finer granularity to lower the occupancy. In addition the new sensor modules must have a lower material budget and have to be self triggering. Sensor prototypes, the so called ''MPix''-sensors, produced on different materials were investigated for their radiation hardness. These sensors were fully characterized before and after irradiation. Of particular interest was the comparison of different bias methods, different materials and the influence of various geometries. The degeneration rate differs for the different sensor materials. The increase of the dark current of Float-Zone-Silicon is stronger for thicker sensors and less than for Magnetic-Czochralski-Silicon sensors. Both tested bias structures are damaged by the irradiation. The poly silicon resistance increases after irradiation by fifty percent. The Punch-Through-Structure is more effected by irradiation. The punch-through voltage increase by a factor of two. Due to the higher pixel current, the working point of the sensor is shifted to smaller differential resistances.

  11. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    AUTHOR|(CDS)2079748; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  12. Measurements of possible type inversion in silicon junction detectors by fast neutron irradiation

    International Nuclear Information System (INIS)

    Li, Z.; Kraner, H.W.

    1991-05-01

    The successful application of silicon position sensitive detectors in experiments at the SSC or LHC depends on an accurate assessment of the radiation tolerance of this detector species. In particular, fast neutrons (E av = 1 MeV) produce bulk displacement damage that is projected, from estimated fluences, to cause increased generation (leakage) current, charge collection deficiencies, resistivity changes and possibly semiconductor type change or inversion. Whereas the leakage current increase was believed to be the major concern for estimated fluences of 10 12 n/cm 2 experiment year at the initial SSC luminosity of 10 33 /cm 2 -sec, increased luminosity and exposure time has raised the possible exposure to 10 14 n/cm 2 , which opens the door for the several other radiation effects suggested above to play observable and significant roles in detector degradation or change. 17 refs., 19 figs

  13. Current problems in semiconductor detectors for high energy physics after particle irradiations

    International Nuclear Information System (INIS)

    Lazanu, Ionel

    2002-01-01

    The use of semiconductor materials as detectors in high radiation environments, as expected in future high energy accelerators or in space missions, poses severe problems in long-time operations, due to changes in the properties of the material, and consequently in the performances of detectors. This talk presents the major theoretical areas of current problems, reviews the works in this field and the stage of their understanding, including author's contributions The mechanisms of interaction of the projectile with the semiconductor, the production of primary defects, the physical quantities and the equations able to characterise and describe the radiation effects, and the equations of kinetics of defects are considered. Correlation between microscopic damage and detector performances and the possible ways to optimise the radiation hardness of materials are discussed. (author)

  14. Changes in the long-term delayed response of platinum self-powered detector with irradiation

    International Nuclear Information System (INIS)

    Parent, G.; Serdula, K.J.; Eng, P.

    1989-01-01

    Two long-term delayed response characteristics have been observed for platinum, Pt, detectors in the Gentilly-2 600 MW(e) CANDU PHWR reactor. The first effect is a dip in the signal two to three hours after a shutdown, due to the (n,beta) interactions of Mn-55 and Ni-64 which exist as impurities in the detector assembly. The second effect is an increase of the delayed fraction of the signal. The low neutron absorption cross-section of Pt-196 combined with the conversion of the Pt-194 and Pt-195 results in build-up of the Pt-196. The long half-lives associated with the beta-emission in the transmutation of Pt-196 to Hg-198 or Hg-199 give rise to the observed long-term delayed response

  15. Study of the effects of neutron irradiation on silicon strip detectors

    International Nuclear Information System (INIS)

    Giubellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H.J.; Ferguson, P.; Sommer, W.F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.

    1992-01-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to Φ=6.1x10 14 n/cm 2 , using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ∝2.0x10 13 n/cm 2 , a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.)

  16. Study of the effects of neutron irradiation on silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Giubellino, P.; Panizza, G. (INFN Torino (Italy)); Hall, G.; Sotthibandhu, S. (Imperial Coll., London (United Kingdom)); Ziock, H.J.; Ferguson, P.; Sommer, W.F. (Los Alamos National Lab., NM (United States)); Edwards, M. (Rutherford Appleton Lab., Chilton (United Kingdom)); Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O' Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. (Santa Cruz Inst. for Particle Physics, Univ. California, CA (United States))

    1992-05-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to {Phi}=6.1x10{sup 14} n/cm{sup 2}, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of {proportional to}2.0x10{sup 13} n/cm{sup 2}, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.).

  17. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  18. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    Science.gov (United States)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  19. Radiation hard detectors from silicon enriched with both oxygen and thermal donors improvements in donor removal and long-term stability with regard to neutron irradiation

    CERN Document Server

    Li, Z; Eremin, V; Dezillie, B; Chen, W; Bruzzi, M

    2002-01-01

    Detectors made on the silicon wafers with high concentration of thermal donors (TD), which were introduced during the high temperature long time (HTLT) oxygenation procedure, have been investigated in the study of radiation hardness with regard to neutron irradiation and donor removal problems in irradiated high resistivity Si detectors. Two facts have been established as the evidence of radiation hardness improvement of HTLT(TD) Si detectors irradiated below approx 10 sup 1 sup 4 n/cm sup 2 compared to detectors made on standard silicon wafers: the increase of space charge sign inversion fluence (of 1 MeV neutrons) due to lower initial Si resistivity dominated by TD, and the gain in the reverse annealing time constant tau favourable for this material. Coupled with extremely high radiation tolerance to protons observed earlier ('beta zero' behaviour in a wide range of fluence), detectors from HTLT(TD) Si may be unique for application in the experiments with multiple radiations. The changes in the effective sp...

  20. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  1. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  2. Precision rectifier detectors for ac resistance bridge measurements with application to temperature control systems for irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M. G.

    1977-05-01

    The suitability of several temperature measurement schemes for an irradiation creep experiment is examined. It is found that the specimen resistance can be used to measure and control the sample temperature if compensated for resistance drift due to radiation and annealing effects. A modified Kelvin bridge is presented that allows compensation for resistance drift by periodically checking the sample resistance at a controlled ambient temperature. A new phase-insensitive method for detecting the bridge error signals is presented. The phase-insensitive detector is formed by averaging the magnitude of two bridge voltages. Although this method is substantially less sensitive to stray reactances in the bridge than conventional phase-sensitive detectors, it is sensitive to gain stability and linearity of the rectifier circuits. Accuracy limitations of rectifier circuits are examined both theoretically and experimentally in great detail. Both hand analyses and computer simulations of rectifier errors are presented. Finally, the design of a temperature control system based on sample resistance measurement is presented. The prototype is shown to control a 316 stainless steel sample to within a 0.15/sup 0/C short term (10 sec) and a 0.03/sup 0/C long term (10 min) standard deviation at temperatures between 150 and 700/sup 0/C. The phase-insensitive detector typically contributes less than 10 ppM peak resistance measurement error (0.04/sup 0/C at 700/sup 0/C for 316 stainless steel or 0.005/sup 0/C at 150/sup 0/C for zirconium).

  3. Deep defect levels in standard and oxygen enriched silicon detectors before and after **6**0Co-gamma-irradiation

    CERN Document Server

    Stahl, J; Lindström, G; Pintilie, I

    2003-01-01

    Capacitance Deep Level Transient Spectroscopy (C-DLTS) measurements have been performed on standard and oxygen-doped silicon detectors manufactured from high-resistivity n-type float zone material with left angle bracket 111 right angle bracket and left angle bracket 100 right angle bracket orientation. Three different oxygen concentrations were achieved by the so-called diffusion oxygenated float zone (DOFZ) process initiated by the CERN-RD48 (ROSE) collaboration. Before the irradiation a material characterization has been performed. In contrast to radiation damage by neutrons or high- energy charged hadrons, were the bulk damage is dominated by a mixture of clusters and point defects, the bulk damage caused by **6**0Co-gamma-radiation is only due to the introduction of point defects. The dominant electrically active defects which have been detected after **6**0Co-gamma-irradiation by C-DLTS are the electron traps VO//i, C//iC//s, V//2( = /-), V //2(-/0) and the hole trap C//i O//i. The main difference betwe...

  4. The target theory applied to the analysis of irradiation damages in organic detectors

    International Nuclear Information System (INIS)

    Mesquita, Carlos Henrique de

    2005-01-01

    The Target Theory was used to explain the radiation damage in samples containing 1% (g//L) of 2,5-diphenyl-oxazolyl (PPO) diluted in toluene and irradiated with 60 Co (1.8 Gy/s). The survival molecules of irradiated PPO obeys the bi-exponential mathematical model [74.3 x exp(-D/104.3) + 25.7 x exp(-D/800,0)]. It indicates that 74.3% of the molecules decay with D37=104.3 kGy and 25.7% decay with D37=800 kGy. From the Target Theory it was inferred the energies involved in the irradiation damages which were 0.239 ± 0.031 eV (G=418.4 ± 54.1. damages/100 eV) and 1.83 ± 0.30 eV (54.5 ± 8.9 damages/100 eV). The diameter of PPO molecule estimated from the Target Theory is in the interval of 45.5 to 64.9 angstrom. (author)

  5. Comprehensive device Simulation modeling of heavily irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Moscatelli, F; MacEvoy, B; Hall, G; Passeri, D; Petasecca, M; Pignatel, Giogrio Umberto

    2004-01-01

    Radiation hardness is a critical design concern for present and future silicon detectors in high energy physics. Tracking systems at the CERN Large Hadron Collider (LHC) are expected to operate for ten years and to receive fast hadron fluences equivalent to 10/sup 15/cm /sup -2/ 1-MeV neutrons. Recently, low temperature operating conditions have been suggested as a means of suppressing the negative effects of radiation damage on detector charge collection properties. To investigate this effect, simulations have been carried out using the ISE-TCAD DESSIS device simulator. The so-called "three-level model" has been used. A comprehensive analysis of the influence of the V/sub 2/, C/sub i/O/sub i/ and V/sub 2/O capture cross sections on the effective doping concentration (N/sub eff/) as a function of temperature and fluence has been carried out. The capture cross sections have been varied in the range 10/sup -18/-10/sup -12/ cm/sup 2/. The simulated results are compared with charge collection spectra obtained wit...

  6. A Monte Carlo based development of a cavity theory for solid state detectors irradiated in electron beams

    International Nuclear Information System (INIS)

    Mobit, P.

    2002-01-01

    Recent Monte Carlo simulations have shown that the assumption in the small cavity theory (and the extension of the small cavity theory by Spencer-Attix) that the cavity does not perturb the electron fluence is seriously flawed. For depths beyond d max not only is there a significant difference between the energy spectra in the medium and in the solid cavity materials but there is also a significant difference in the number of low-energy electrons which cannot travel across the solid cavity and hence deposit their dose in it (i.e. stopper electrons whose residual range is less than the cavity thickness). The number of these low-energy electrons that are not able to travel across the solid state cavity increases with depth and effective thickness of the detector. This also invalidates the assumption in the small cavity theory that most of the dose deposited in a small cavity is delivered by crossers. Based on Monte Carlo simulations, a new cavity theory for solid state detectors irradiated in electron beams has been proposed as: D med (p)=D det (p) x s S-A med.det x gamma(p) e x S T , where D med (p) is the dose to the medium at point, p, D det (p) is the average detector dose to the same point, s S-A med.det is the Spencer-Attix mass collision stopping power ratio of the medium to the detector material, gamma(p) e is the electron fluence perturbation correction factor and S T is a stopper-to-crosser correction factor to correct for the dependence of the stopper-to-crosser ratio on depth and the effective cavity size. Monte Carlo simulations have been computed for all the terms in this equation. The new cavity theory has been tested against the Spencer-Attix cavity equation as the small cavity limiting case and also Monte Carlo simulations. The agreement between this new cavity theory and Monte Carlo simulations is within 0.3%. (author)

  7. Study of gamma irradiation effects on the etching and optical properties of CR-39 solid state nuclear track detector and its application to uranium assay in soil samples

    International Nuclear Information System (INIS)

    Amol Mhatre; Kalsi, P.C.

    2011-01-01

    The gamma irradiation effects in the dose range of 2.5-43.0 Mrad on the etching and optical characteristics of CR-39 solid state nuclear track detector (SSNTD) have been studied by using etching and UV-Visible spectroscopic techniques. From the measured bulk etch rates at different temperatures, the activation energies for bulk etching at different doses have also been determined. It is seen that the bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. The optical band gaps of the unirradiated and the gamma -irradiated detectors determined from the UV-Visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation. The present studies can be used for the estimation of gamma dose in the range of 2.5-43.0 Mrad and can also be used for estimating track registration efficiency in the presence of gamma dose. The CR-39 detector has also been applied for the assay of uranium in some soil samples of Jammu city. (author)

  8. Effect of neutron irradiation on etching, optical and structural properties of microscopic glass slide used as a solid state nuclear track detector

    International Nuclear Information System (INIS)

    Singh, Surinder; Kaur Sandhu, Amanpreet; Prasher, Sangeeta; Prakash Pandey, Om

    2007-01-01

    Microscopic glass slides are soda-lime glasses which are readily available and are easy to manufacture with low production cost. The application of these glasses as nuclear track detector will help us to make use of these glasses as solid-state nuclear track detector. The present paper describes the variation in the etching, optical and structural properties of the soda-lime microscopic glass slides due to neutron irradiation of different fluences. The color transformation and an increase in the optical absorption with neutron irradiation are observed. Both the bulk and track etch rates are found to increase with neutron fluence, thus showing a similar dependence on neutron fluence, but the sensitivity remains almost constant

  9. Utilization of plastic detector for pool water radioactivity control of IEA-R1 reactor. Examination of fuel element irradiation behaviour fabricated at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Berretta, J.R.; Mesquita, C.H. de; Madi Filho, T.

    1989-01-01

    For the examination of fuel element irradiation behavior that were fabricated at IPEN/CNEN/SP Metalurgical Departament, it was provided a detection system for pool water radioactivity measurements. This system uses a plastic scintillator detector produced at IPEN/CNEN-SP Health Physics Department, with dimensions and shape apropriated for such work. The detection system shows a sensibility of 4.125x10 -2 dps/cm 3 and 20% of efficiency for 131 I radiations. (author) [pt

  10. Operation of Silicon, Diamond and liquid Helium Detectors in the range of Room Temperature to 1.9 K and after an Irradiation Dose of several Mega Gray

    CERN Document Server

    Kurfuerst, C; Dehning, B; Eisel, T; Sapinski, M; Eremin, V

    2013-01-01

    At the triplet magnets, close to the interaction regions of the Large Hadron Collider (LHC), the current Beam Loss Monitoring (BLM) system is sensitive to the debris from the collision points. For future beams, with higher energy and intensity the expected increase in luminosity implicate an increase of the debris from interaction products covering the quench-provoking beam losses from the primary proton beams. The investigated option is to locate the detectors as close as possible to the superconducting coil, where the signal ratio of both is optimal. Therefore the detectors have to be located inside the cold mass of the superconducting magnets in superfluid helium at 1.9 Kelvin. Past measurements have shown that a liquid helium ionisation chamber, diamond and silicon detectors are promising candidates for cryogenic beam loss monitors. The carrier parameter, drift velocity, and the leakage current changes will be shown as a function of temperature. New high irradiation test beam measurements at room temperat...

  11. High-rate irradiation of 15 mm muon drift tubes and development of an ATLAS compatible readout driver for micromegas detectors

    International Nuclear Information System (INIS)

    Zibell, Andre

    2014-01-01

    The upcoming luminosity upgrades of the LHC accelerator at CERN demand several upgrades to the detectors of the ATLAS muon spectrometer, mainly due to the proportionally increasing rate of uncorrelated background irradiation. This concerns also the ''Small Wheel'' tracking stations of the ATLAS muon spectrometer, where precise muon track reconstruction will no longer be assured when around 2020 the LHC luminosity is expected to reach values 2 to 5 times the design luminosity of 1 x 10 34 cm -2 s -1 , and when background hit rates will exceed 10 kHz/cm 2 . This, together with the need of an additional triggering station in this area with an angular resolution of 1 mrad, requires the construction of ''New Small Wheel'' detectors for a complete replacement during the long maintenance period in 2018 and 2019. As possible technology for these New Small Wheels, high-rate capable sMDT drift tubes have been investigated, based on the ATLAS 30 mm Monitored Drift Tube technology, but with a smaller diameter of 15 mm. In this work, a prototype sMDT chamber has been tested under the influence of high-rate irradiation with protons, neutrons and photons at the Munich tandem accelerator, simulating the conditions within a high luminosity LHC experiment. Tracking resolution and detection efficiency for minimum ionizing muons are presented as a function of irradiation rate. The experimental muon trigger geometry allows to distinguish between efficiency degradation due to deadtime effects and space charge in the detectors. Using modified readout electronics the analog pulse shape of the detector has been investigated for gain reduction and potential irregularities due to the high irradiation rates and ionization doses. This study shows that the sMDT detectors would fulfill all requirements for successful use in the ATLAS New Small Wheel endcap detector array, with an average spatial resolution of 140 μm and a track reconstruction efficiency

  12. High-rate irradiation of 15 mm muon drift tubes and development of an ATLAS compatible readout driver for micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zibell, Andre

    2014-06-06

    The upcoming luminosity upgrades of the LHC accelerator at CERN demand several upgrades to the detectors of the ATLAS muon spectrometer, mainly due to the proportionally increasing rate of uncorrelated background irradiation. This concerns also the ''Small Wheel'' tracking stations of the ATLAS muon spectrometer, where precise muon track reconstruction will no longer be assured when around 2020 the LHC luminosity is expected to reach values 2 to 5 times the design luminosity of 1 x 10{sup 34} cm{sup -2}s{sup -1}, and when background hit rates will exceed 10 kHz/cm{sup 2}. This, together with the need of an additional triggering station in this area with an angular resolution of 1 mrad, requires the construction of ''New Small Wheel'' detectors for a complete replacement during the long maintenance period in 2018 and 2019. As possible technology for these New Small Wheels, high-rate capable sMDT drift tubes have been investigated, based on the ATLAS 30 mm Monitored Drift Tube technology, but with a smaller diameter of 15 mm. In this work, a prototype sMDT chamber has been tested under the influence of high-rate irradiation with protons, neutrons and photons at the Munich tandem accelerator, simulating the conditions within a high luminosity LHC experiment. Tracking resolution and detection efficiency for minimum ionizing muons are presented as a function of irradiation rate. The experimental muon trigger geometry allows to distinguish between efficiency degradation due to deadtime effects and space charge in the detectors. Using modified readout electronics the analog pulse shape of the detector has been investigated for gain reduction and potential irregularities due to the high irradiation rates and ionization doses. This study shows that the sMDT detectors would fulfill all requirements for successful use in the ATLAS New Small Wheel endcap detector array, with an average spatial resolution of 140 μm and a track

  13. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors; Etude des effets d`irradiations pulsees intenses sur des cibles de silicium considere en tant que materiau de base pour detecteurs optiques

    Energy Technology Data Exchange (ETDEWEB)

    Muller, O

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO{sub 2}/Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix.

  14. Performance of p-type micro-strip detectors after irradiation to $7.5x10^{15} p/cm^{2}$

    CERN Document Server

    Allport, Philip P; Lozano-Fantoba, Manuel; Sutcliffe, Peter; Velthuis, J J; Vossebeld, Joost Herman

    2004-01-01

    Exploiting the advantages of reading out segmented silicon from the n-side, we have produced test detectors with LHC pitch but 1 cm long strips which even after proton irradiation at the CERN PS to 7.5*10 /sup 15/ cm/sup -2/ show signal to noise greater than 8:1 using LHC speed electronics. This dose exceeds by a factor of 2 that required for a replacement of the ATLAS semiconductor tracker to cope with an upgrade of the LHC to a Super-LHC with 10 times greater luminosity. These detectors were processed on p-type starting material of resistivity ~ 2 k Omega cm and, unlike n-in-n designs, only required single-sided processing. Such technology should therefore provide a relatively inexpensive route to replacing the central tracking at both ATLAS and CMS for Super-LHC. The shorter strip length is required to limit the noise. Even at these extreme doses 30% of the non-irradiated signal is seen. This 7000e/sup -/ signal (in 280 mu m thick sensors) is very competitive with the post irradiation performance of other,...

  15. Primary and aggregate color centers in proton irradiated LiF crystals and thin films for luminescent solid state detectors

    International Nuclear Information System (INIS)

    Piccinini, M; Ambrosini, F; Ampollini, A; Bonfigli, F; Libera, S; Picardi, L; Ronsivalle, C; Vincenti, M A; Montereali, R M

    2015-01-01

    Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 10 11 -10 15 protons/cm 2 . The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F 2 and F 3 + photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences. (paper)

  16. Primary and aggregate color centers in proton irradiated LiF crystals and thin films for luminescent solid state detectors

    Science.gov (United States)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.

    2015-04-01

    Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.

  17. Performance of n-in-p pixel detectors irradiated at fluences up to $5x10^{15} n_{eq}/cm^{2}$ for the future ATLAS upgrades

    CERN Document Server

    INSPIRE-00219560; La Rosa, A.; Nisius, R.; Pernegger, H.; Richter, R.H.; Weigell, P.

    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x10**15 neq /cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first result...

  18. Detection of irradiated foods with the photo-stimulated luminescence technique. Selection of a glass fiber filter for evaluating the performance of the PSL detectors

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Yamazaki, Masao; Goto, Michiko

    2008-01-01

    The PSL method is useful as a screening technique of irradiated foods to support efficient uses of TL analysis. Recently, there has been the growing need for the system check or calibration using the standard materials with spread of domestically -produced PSL detector. In this research, we characterized the PSL of several types of glass fiber filters and compared the cumulate photon counts of a selected filter of them (GA-100) with those of the SUERC paprika standard for PSL measurements. GA-100 filter showed a linear relationship between cumulate photon counts and irradiation doses, and the cumulate photon counts in the first 2 months after gamma rays irradiation (261Gy) were markedly decreased and reduced to about 5000 counts (the upper threshold of PSL) after 4 months. However, further long-term storage and dose increase was necessary to produce the filter with more adequate PSI property as a standard material. Light exposure (630Lux) within 3 minutes to GA-100 had little effect on the cumulate photon counts. GA-100 showed relatively less variation in cumulate photon counts compared with the paprika standard in a series of studies. (author)

  19. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Förster, F.; Grinstein, S.; Carulla, M.; Flores, D.; Hidalgo, S.; Merlos, A.; Pellegrini, G.; Quirion, D.; Chytka, L.; Komarek, T.; Nozka, L.; Davis, P.M.; Kramberger, G.; Mandić, I.; Sykora, T.

    2017-01-01

    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μm were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 10 15 n eq /cm 2 . The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10 14 n eq /cm 2 , similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 10 15 n eq /cm 2 , the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.

  20. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x10 sup 1 sup 4 n/cm sup 2

    CERN Document Server

    Li Zheng; Eremin, V; Li, C J; Verbitskaya, E

    1999-01-01

    Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm sup 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k OMEGA cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 sup 1 sup 4 n/cm sup 2) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k OMEGA cm (300 mu m thick) can be fully depleted before and after an irradiation of 2x10 sup 1 sup 4 n/cm sup 2. For a 500 mu m pitch strip detector made of 2.7 k OMEGA cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7x10 sup 1 sup 3 n/cm sup 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We als...

  1. THERMAL, STRUCTURAL AND OPTICAL INVESTIGATION OF THE EFFECT OF GAMMA IRRADIATION IN PM-355 NUCLEAR TRACK DETECTOR

    International Nuclear Information System (INIS)

    ABUTALIB, M.M.

    2009-01-01

    Samples from PM-355 sheets were irradiated with gamma doses at levels between 10 and 120 kGy. The modifications in the irradiated samples have been studied as a function of dose using different characterization techniques such as thermogravimetric analysis, differential thermal analysis, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and colour difference studies. The gamma irradiation of PM-355 in the dose range 20-80 kGy resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The melting temperature (T m ) of the PM-355 polymer was found to be a probe of the crystalline domains of the polymer. At the dose range 20-80 kGy, the generated defects destroyed the crystalline structure and so, reducing the melting temperature.In addition, structural property studies using X-ray diffraction and Fourier transform infrared spectroscopy were performed on irradiated and non-irradiated PM-355 samples. The results indicated that both the degree of ordering and the absorbance of the PM-355 polymer are dependent on the gamma dose. Further, the transmission of these samples in the wavelength range 200-2500 nm, as well as any colour changes, was studied. The colour difference ( δE) was greatly increased with increasing the gamma dose accompanied by a significant increase in the whiteness and yellow colour components.

  2. Experimental data from irradiation of physical detectors disclose weaknesses in basic assumptions of the δ ray theory of track structure

    DEFF Research Database (Denmark)

    Olsen, K. J.; Hansen, Jørgen-Walther

    1985-01-01

    The applicability of track structure theory has been tested by comparing predictions based on the theory with experimental high-LET dose-response data for an amino acid alanine and a nylon based radiochromic dye film radiation detector. The linear energy transfer LET, has been varied from 28...

  3. Implementation of the k0 technique using multi-detectors on diverse irradiation facilities of TRIGA Reactor

    International Nuclear Information System (INIS)

    Caldera C, M. de G.

    2013-01-01

    The k 0 method with the technique of neutron activation analysis allows obtaining important characteristics parameters that describe a nuclear reactor. Among these parameters are the form factor of epithermal neutron flux, α and the ratio of thermal neutron flux with respect to the epithermal neutron flux, f. These parameters were obtained by irradiation of two different monitors, one of Au-Zr and the other of Au-Mo-Cr, where the last one was made and implemented for the first time. Both monitors were irradiated in different positions in the TRIGA Mark III Reactor at the National Institute of Nuclear Research. (Author)

  4. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231,13397 Marseille Cedex 20, (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344, (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol, (Belgium); Saenger, Richard [Schlumberger, Clamart, (France); Lyoussi, Abadallah [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  5. High-rate irradiation of 15mm muon drift tubes and development of an ATLAS compatible readout driver for micromegas detectors

    CERN Document Server

    Zibell, Andre

    The upcoming luminosity upgrades of the LHC accelerator at CERN demand several upgrades to the detectors of the ATLAS muon spectrometer, mainly due to the proportionally increasing rate of uncorrelated background irradiation. This concerns also the "Small Wheel" tracking stations of the ATLAS muon spectrometer, where precise muon track reconstruction will no longer be assured when around 2020 the LHC luminosity is expected to reach values 2 to 5 times the design luminosity of $1 \\times 10^{34} \\text{cm}^{-2}\\text{s}^{-1}$, and when background hit rates will exceed 10 kHz/cm$^2$. This, together with the need of an additional triggering station in this area with an angular resolution of 1 mrad, requires the construction of "New Small Wheel" detectors for a complete replacement during the long maintenance period in 2018 and 2019. As possible technology for these New Small Wheels, high-rate capable sMDT drift tubes have been investigated, based on the ATLAS 30 mm Monitored Drift Tube technology, but with a smalle...

  6. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mori, R., E-mail: riccardo.mori@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Arratia-Munoz, M.I.; Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M.; Fleta, C.; Fernandez-Tejero, J. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hambrug (Germany); and others

    2016-09-21

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  7. Estimation of track registration efficiency in solution medium and study of gamma irradiation effects on the bulk-etch rate and the activation energy for bulk etching of CR-39 (DOP) Solid State Nuclear Track Detector

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2010-01-01

    The fission track registration efficiency of diethylene glycol bis allyl carbonate (dioctyl phthalate doped) (CR-39 (DOP)) solid state nuclear track detector (SSNTD) in solution medium (K wet ) has been experimentally determined and is found to be (9.7 ± 0.5).10 -4 cm. This is in good agreement with the values of other SSNTDs. The gamma irradiation effects in the dose range of 50.0-220.0 kGy on the bulk etch rate, V b and the activation energy for bulk etching, E of this solid state nuclear track detector (SSNTD) have also been studied. It is observed that the bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation

  8. Effect of gamma-ray and electron irradiation on the response of solid-state track detectors

    International Nuclear Information System (INIS)

    Fukuda, Kyue

    1980-01-01

    Specimens of muscovite mica were first exposed to fission fragments and then to various gamma-ray fields from a 60 Co source ranging from 1.9 x 10 3 to 1.6 x 10 4 Mrad dose. The results show that the average etched width of fission-fragment tracks decreases with increasing gamma-ray dose. Shallow pits were observed in etched specimens when the gamma-ray dose exceeded 5 x 10 3 Mrad. Numerous shallow etch pits caused by the gamma-ray irradiation interfered with the observation of fission tracks in the specimens. No shallow etch pits were observed in the specimen annealed for 100 min at 600 0 C before the gamma-ray irradiation. Pre-annealing extends the ''safety limits'' of gamma background below which muscovite mica can be used to observe fission tracks without any gamma-ray interference. Gamma-ray and electron irradiation caused significant increase of the resistance to thermal decomposition of muscovite mica. The resistance increased markedly in the dose range from 5 x 10 3 to 8 x 10 3 Mrad. These phenomena suggest the use of mica to assess radiation doses of gamma rays and electrons up to several thousand megarads. (author)

  9. Comparison and limitations of three different bulk etch rate measurement methods used for gamma irradiated PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Abu-Jarad, F.; Al-Jarallah, M.I.; Farhat, M

    2001-06-01

    Samples of Nuclear Track Detectors (PM-355) were exposed to high gamma doses from 1x10{sup 5} Gy (10 Mrad) up to 1.2x10{sup 6} Gy (120 Mrad) at an incremental dose of 1x10{sup 5} Gy (10 Mrad). The gamma source was a 9.03 PBq (244 kCi) Co-60 source used for sterilization of medical syringes. The bulk etch rate (V{sub b}) was measured for various high gamma doses by three different methods: 1--thickness change method; 2--mass change method; 3--fission track diametric method. The study gives a comparison and limitations of these three methods used for bulk etch rate measurements in the detectors as a function of high gamma doses. The track etch rate (V{sub t}) and the sensitivity (V) of the detector were also measured using the fission track diametric method. It was observed that V{sub b} increases with the increase of the gamma absorbed dose at a fixed etching time in each bulk etch measuring method. The bulk etch rate decreases exponentially with the etching time at a fixed gamma absorbed dose in all three methods. The thickness change and mass change methods have successfully been applied to measure V{sub b} at higher gamma doses up to 1.2x10{sup 6} Gy (120 Mrad). The bulk etch rate determined by the mass change and thickness change methods was almost the same at a certain gamma dose and etching time whereas it was quite low in the case of the fission track diametric method due to its limitations at higher doses. Also in this method it was not possible to measure the fission fragment track diameters at higher doses due to the quick disappearance of the fission tracks and therefore the V{sub b} could not be estimated at higher gamma doses.

  10. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x1014 n/cm2

    International Nuclear Information System (INIS)

    Li Zheng; Dezillie, B.; Eremin, V.; Li, C.J.; Verbitskaya, E.

    1999-01-01

    Test strip detectors of 125 μm, 500 μm, and 1 mm pitches with about 1 cm 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 kΩ cm). Detectors of 500 μm pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 14 n/cm 2 ) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 kΩ cm (300 μm thick) can be fully depleted before and after an irradiation of 2x10 14 n/cm 2 . For a 500 μm pitch strip detector made of 2.7 kΩ cm tested with an 1030 nm laser light with 200 μm spot size, the position reconstruction error is about 14 μm before irradiation, and 17 μm after about 1.7x10 13 n/cm 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 μm absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction

  11. SUPPLEMENTARY COMPARISON: Final report on APMP.PR-S1.1: Bilateral comparison of irradiance responsivity of UVA detectors

    Science.gov (United States)

    Huang, Xuebo

    2009-01-01

    In order to assess the performance of the standards and techniques used for calibration and measurement of UVA irradiance responsivity of photodetectors in NMISA, South Africa, a new comparison was decided as a follow-up to comparison APMP.PR-S1. It is registered in the Key Comparison Data Base (KCDB) of BIPM as a bilateral supplementary comparison, with the identifier APMP.PR-S1.1. The comparison was carried out following the same technical protocol as that of supplementary comparison APMP PR-S1. The principle, organization and method of the comparison, as well as the preliminary measurements at the pilot laboratory NMC-A*STAR Singapore, were described in the Final Report of the APMP.PR-S1 comparison. The results of this bilateral comparison show that the NMISA's results lie within ±2% against the comparison reference values of APMP.PR-S1, which is a great improvement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  13. Measurements of Silicon Detector Thermal Runaway

    CERN Document Server

    Heusch, C A; Moser, H G

    1999-01-01

    We measured thermal runaway properties of previously irradiated silicon detectors cooled by TPG bars. We simulated their expected behaviour to measure the energy gap in the detector material and to test the validity of various underlying assumptions.

  14. The signal shape from the LHCb vertex locator prototype detectors

    International Nuclear Information System (INIS)

    Charles, M.

    2003-01-01

    Measurements of the SCT128A ASIC pulse shape, when reading out non-irradiated and irradiated prototype detectors for the LHCb VELO, are presented. The detectors studied were two n-on-n prototype detectors fabricated by Hamamatsu, and a p-on-n prototype detector fabricated by MICRON

  15. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  16. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  17. Investigation of the oxygen-vacancy (A-center) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Kraner, H.W.; Verbitskaya, E.; Eremin, V.; Ivanov, A.; Rubinelli, F.A.; Fonash, S.J.

    1992-02-01

    Distributions of the A-center (oxygen-vacancy) in neutron silicon detectors have been studied using Deep Level Transient Spectroscopy. A-centers have been found to be nearly uniformly distributed in the silicon water depth for medium resistivity (0.1 - 0.2 kΩ-cm) silicon detectors. A positive filling pulse was needed to detect the A-centers in high resistivity (>4 kΩ-cm) silicon detectors, and this effect was found to be dependent on the oxidation temperature. A discussion of this effect is presented. 16 refs

  18. Characterization and spice simulation of a single-sided, p+ on n silicon microstrip detector before and after low-energy photon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaguo; Klanner, Robert; Fretwurst, Eckhart [Institute for Experimental Physics, Detector Laboratory, University of Hamburg, Hamburg 22761 (Germany)

    2010-07-01

    As preparation for the development of silicon detectors for the harsh radiation environment at the European XFEL (up to 1 GGY 12 keV X-rays) p{sup +} on n silicon microstrip detectors were characterized as function of dose. The measurements, which include dark current, coupling capacitance, interstrip capacitance and interstrip resistance, are compared to a detailed SPICE model, so that the performance for particle detection can be estimated.

  19. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  20. Progress towards vertical transport study of proton-irradiated InAs/GaSb type-II strained-layer superlattice materials for space-based infrared detectors using magnetoresistance measurements

    Science.gov (United States)

    Malone, Mitchell C.; Morath, Christian P.; Fahey, Stephen; Klein, Brianna; Cowan, Vincent M.; Krishna, Sanjay

    2015-09-01

    InAs/GaSb type-II strained-layer superlattice (T2SLS) materials are being considered for space-based infrared detector applications. However, an inadequate understanding of the role of carrier transport, specifically the vertical mobility, in the radiation tolerance of T2SLS detectors remains. Here, progress towards a vertical transport study of proton-irradiated, p-type InAs/GaSb T2SLS materials using magnetoresistance measurements is reported. Measurements in the growth direction of square mesas formed from InAs/GaSb superlattice material were performed using two distinct contact geometries in a Kelvin mode setup at variable magnetic fields, ranging from -9 T to 9 T, and temperatures, ranging from 5 K and 300 K. The results here suggested multi-carrier conduction and a field-dependent series resistance from the contact layer were present. The implications of these results and the plans for future magnetoresistance measurements on proton-irradiated T2SLS materials are discussed.

  1. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  2. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  3. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    CERN Document Server

    Lange, J; Cavallaro, E; Chytka, L; Davis, P.M; Flores, D; Förster, F; Grinstein, S; Hidalgo, S; Komarek, T; Kramberger, G; Mandić, I; Merlos, A; Nozka, L; Pellegrini, G; Quirion, D; Sykora, T; Physics

    2018-01-01

    The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3 × 1014 neq/cm2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain...

  4. Characterisation of a pre-cell hit detector to be used in single cell irradiation experiments at the Lund Nuclear Microprobe

    International Nuclear Information System (INIS)

    Nilsson, Charlotta; Pallon, Jan; Thungstroem, Goeran; Marrero, Natalia Arteaga; Elfman, Mikael; Kristiansson, Per; Nilsson, Christer; Wegden, Marie

    2008-01-01

    This paper describes the characterisation of an ultra-thin silicon semiconductor ΔE detector to be used as a pre-cell ion hit detector in single ion experiments on individual, living cells. The characteristics of interest for this specific application are the hit detection efficiency, which has to be close to 100% to enable bombardment with either a single ion or a counted number of ions, the beam spreading, which should be as small as possible to maintain the targeting accuracy, and the vacuum tightness, since the detector is intended, if possible, to be used simultaneously as vacuum window. The hit detection efficiency was shown to be above 99% when detecting alpha particles or 2 MeV protons, the increase in beam size was about 1 μm and the vacuum tightness was comparable to that of the Si 3 N 4 wafer which is normally used as vacuum window, thus the ΔE detector fulfils the main criteria to function properly as a single ion hit detector.

  5. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  6. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  7. Detector on wheel system (flying spot)

    International Nuclear Information System (INIS)

    Annis, M.

    1980-01-01

    An arc-shaped x-ray beam penetrates an arcual cross-sectional area of a body and the attentuated transmitted beam irradiates a portion of a circular array of detectors on a rotating disc. The detectors operate to generate signals proportional to the intensity of the incident transmitted radiation. The beam and detectors are moved along the axis of the body during rotation of the disc to irradiate adjacent cross-sectional areas of the body. A computer operated crt receives the detector signals and displays an image of the radiation attentuation characteristics of the scanned arcual areas

  8. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  9. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  10. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  11. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  12. Fiscal 2000 achievement report on the venture business assisting type regional consortium-Core industry creation type. Development of radiation detector utilizing surface reforming effect of irradiation; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Hoshasen shosha ni yoru hyomen kaishitsu koka wo mochiita hoshasen kenshutsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    It has been clarified that the use of some kinds of semiconductor films, such as a rutile type titanium oxide film or a zirconium oxide film, results in a stable photocatalytic reaction in an intensive radioactivity region. In this effort, the effect is applied for the development of a FET (field effect transistor) type radiation detector capable of stable operation under high dose irradiation circumstances. Semiconductor materials such as a rutile type titanium oxide were subjected to irradiation tests on the ground, in which changes in their physical properties such as wettability or conductance were examined and the mechanism of surface reforming under irradiation was elucidated, and proper materials were selected. A prototype high radiation detector was fabricated that covers a 1mGy/hr-4kGy/hr region. For the establishment of a technology for growing spherical semiconductor crystals under microgravity, basic experiments were conducted using a free-fall facility at the Japan Microgravity Center. Basic experiments were conducted for the fabrication of a prototype radiation detector to operate in a high radiation region from 0.1kGy/hr to 2kGy/hr and beyond, and a prototype spherical semiconductor radiation detector was fabricated. Achievements of the effort are mentioned above. (NEDO)

  13. TSC measurements on proton-irradiated p-type Si-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donegani, Elena; Fretwurst, Eckhart; Garutti, Erika; Junkes, Alexandra [University of Hamburg (Germany)

    2016-07-01

    Thin n{sup +}p Si sensors are potential candidates for coping with neutron equivalent fluences up to 2.10{sup 16} n{sub eq}/cm{sup 2} and an ionizing dose in the order of a few MGy, which are expected e.g. for the HL-LHC upgrade. The aim of the present work is to provide experimental data on radiation-induced defects in order to: firstly, get a deeper understanding of the properties of hadron induced defects, and secondly develop a radiation damage model based on microscopic measurements. Therefore, the outcomes of Thermally Stimulated Current measurements on 200 μm thick Float-Zone (FZ) and Magnetic Czochralski (MCz) diodes will be shown, as a results of irradiation with 23 MeV protons and isothermal annealing. The samples were irradiated in the fluence range (0.3-1).10{sup 14} n{sub eq}/cm{sup 2}, so that the maximal temperature at which the TSC signal is still sharply distinguishable from the dark current is 200 K. In particular, special focus will be given to the defect introduction rate and to the issue of boron removal in p-type silicon. Annealing studies allow to distinguish which defects mainly contribute to the leakage current and which to the space charge, and thus correlate microscopic defects properties with macroscopic sensor properties.

  14. Experimental investigation of the suitability of the track structure theory in describing the relative effectiveness of high-let irradiation of physical radiation detectors

    International Nuclear Information System (INIS)

    Hansen, J.W.

    1984-11-01

    The radiation effectiveness of heavy charged particles relative to radiations of fast electrons, x-rays, and gamma rays has been studied experimentally as well as theoretically for detectors of a thin nylon-based radiation-sensitive film and for the amino acid alanine. Experimental data have been compared with calculated data derived from a theoretical model describing the track structure of heavy charged particles. The experimental work comprises dose-response characteristics from 60 Co γ-rays, 4- and 16-MV x-rays, 6-,10-, and 20-MeV electrons, and 3-, 6-, and 16-MeV protons, 10- and 20-MeV α-particles, 21-MeV 7 Li ions, 42-MeV 14 N ions, 64-MeV 16 O ions, and 80-MeV 32 S ions. The theoretical work presented here concerns an investigation and modification of parameters involved in the calculations, based on results obtained through the present experiments and published results from other investigators. This report summarizes results already published or accepted for publication, attaches an appendix, and includes results not previously presented. (author)

  15. TCAD simulation of Low Gain Avalanche Detectors

    Science.gov (United States)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  16. TCAD simulation of Low Gain Avalanche Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh, E-mail: ashutosh.bhardwaj@cern.ch; Ranjan, Kirti

    2016-11-11

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  17. TCAD simulation of Low Gain Avalanche Detectors

    International Nuclear Information System (INIS)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-01-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  18. Ion smoke detector

    International Nuclear Information System (INIS)

    Basset, Georges.

    1976-01-01

    This invention covers an ion smoke detector in which the capacity that the smoke will cross, in the event of an accident, is irradiated by a very low energy radioactive source. The gas in the containment is thus partially ionised. Smoke in this containment reduces the mobility of the ions, thereby increasing the impedance of the measuring chamber. A leak tight reference chamber that therefore receives no smoke is added to the measuring chamber. This chamber is filled with the same gas as that present in the measuring chamber and undergoes the same irradiation. It is of course subjected to the same conditions of temperature, atmospheric pressure and hygrometry as the measuring chamber. This makes it possible to break free from the fluctuations of the impedance of the chamber which would seem to be due to these interferences. One only radioactive source irradiates the measuring chamber and the reference chamber. The measuring chamber is in the shape of a cylinder open at one end and the reference chamber is annular and encompasses the measuring chamber. Provision is made for detecting an increase in the potential across the terminals of the measuring chamber in relation to the reference chamber, which is characteristic of the presence of smoke and other provisions separate from the former for dectecting a reduction in potential between the electrodes of the first ionisation chamber, which is characteristic of a change in the detector [fr

  19. Effect of radiation on the electrical properties of plastic detector CR-39

    International Nuclear Information System (INIS)

    Mahmoud, S.A.; Hamed, A.E.; Abou El-Kier, A.A.; Mousse, M.G.; Kassem, M.E.; El-Shafey, E.M.

    1994-01-01

    The effect of high alpha-particle fluence on plastic detector CR-39 was studied by measuring the electrical properties of the detector as a function of irradiation dose and frequency using an impedance meter in the frequency range 0.005-500 kHz. When the plastic detector CR-39 is exposed to high irradiation doses, it loses its advantage as a track detector, because of the overlapping of the tracks occurring in the detector at high irradiation fluence. Through the present measurements of dielectric permittivity and conductivity at different frequencies and temperatures, CR-39 could be used as a dosimeter for high irradiation doses

  20. Effect of radiation on the electrical properties of plastic detector CR-39

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, S.A.; Hamed, A.E.; Abou El-Kier, A.A.; Mousse, M.G.; Kassem, M.E.; El-Shafey, E.M. (Physics Department Faculty of Science, Alexandria University, Alexandria (Egypt))

    1994-10-15

    The effect of high alpha-particle fluence on plastic detector CR-39 was studied by measuring the electrical properties of the detector as a function of irradiation dose and frequency using an impedance meter in the frequency range 0.005-500 kHz. When the plastic detector CR-39 is exposed to high irradiation doses, it loses its advantage as a track detector, because of the overlapping of the tracks occurring in the detector at high irradiation fluence. Through the present measurements of dielectric permittivity and conductivity at different frequencies and temperatures, CR-39 could be used as a dosimeter for high irradiation doses.

  1. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  2. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  3. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  4. Diamond Detector Technology: Status and Perspectives

    CERN Document Server

    Reichmann, M; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H; Bellini, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; Dauvergne, D; de Boer, W; Dorfer, C; Dünser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gallin-Martel, L; Gallin-Martel, M L; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kagan, H; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Konovalov, V; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Riley, G; Roe, S; Sanz-Becerra, D A; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Smith, S; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Tannenwald, B; Taylor, A; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, S; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2018-01-01

    The planned upgrade of the LHC to the High-Luminosity-LHC will push the luminosity limits above the original design values. Since the current detectors will not be able to cope with this environment ATLAS and CMS are doing research to find more radiation tolerant technologies for their innermost tracking layers. Chemical Vapour Deposition (CVD) diamond is an excellent candidate for this purpose. Detectors out of this material are already established in the highest irradiation regimes for the beam condition monitors at LHC. The RD42 collaboration is leading an effort to use CVD diamonds also as sensor material for the future tracking detectors. The signal behaviour of highly irradiated diamonds is presented as well as the recent study of the signal dependence on incident particle flux. There is also a recent development towards 3D detectors and especially 3D detectors with a pixel readout based on diamond sensors.

  5. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  6. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  7. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  8. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  9. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  10. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  11. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  12. Aging tests of MSGC detectors

    CERN Document Server

    Boulogne, I; Defontaines, F; Grard, Fernand

    2003-01-01

    MSGC aging effects have been systematically studied to determine optimal performance in the design framework of the CMS forward tracker. Tests were conducted on prototypes under various operating conditions (glass substrates, Cr or Au strips, Ar-DME or Ne-DME gas mixtures, gas set-up purity, and others), using an X-ray generator for irradiation. The different steps of our investigations are summarized. They demonstrate the complexity of the aging phenomenon as well as the difficulty of getting stable behavior of MSGC detectors under high rates of irradiation.

  13. BES detector

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, Q.; Chen, G.M.; Chen, L.J.; Chen, S.N.; Chen, Y.Q.; Chen, Z.Q.; Chi, Y.K.; Cui, H.C.; Cui, X.Z.; Deng, S.S.; Deng, Y.W.; Ding, H.L.; Dong, B.Z.; Dong, X.S.; Du, X.; Du, Z.Z.; Feng, C.; Feng, Z.; Fu, Z.S.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gao, Y.N.; Gu, S.D.; Gu, W.X.; Guan, Y.Z.; Guo, H.F.; Guo, Y.N.; Guo, Y.Y.; Han, S.W.; Han, Y.; Hao, W.; He, J.; He, K.R.; He, M.J.; Hou, X.J.; Hu, G.Y.; Hu, J.S.; Hu, J.W.; Huang, D.Q.; Huang, Y.Z.; Jia, Q.P.; Jiang, C.H.; Ju, Q.; Lai, Y.F.; Lang, P.F.; Li, D.S.; Li, F.; Li, H.; Li Jia; Li, J.T.; Li Jin; Li, L.L.; Li, P.Q.; Li, Q.M.; Li, R.B.; Li, S.Q.; Li, W.; Li, W.G.; Li, Z.X.; Liang, G.N.; Lin, F.C.; Lin, S.Z.; Lin, W.; Liu, Q.; Liu, R.G.; Liu, W.; Liu, X.; Liu, Z.A.; Liu, Z.Y.; Lu, C.G.; Lu, W.D.; Lu, Z.Y.; Lu, J.G.; Ma, D.H.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Nie, Z.D.; Niu, W.P.; Pan, L.J.; Qi, N.D.; Qian, J.J.; Qu, Y.H.; Que, Y.K.; Rong, G.; Ruan, T.Z.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, J.; Sheng, H.Y.; Sheng, J.P.; Shi, H.Z.; Song, X.F.; Sun, H.S.; Tang, F.K.; Tang, S.Q.; Tian, W.H.; Wang, F.; Wang, G.Y.; Wang, J.G.; Wang, J.Y.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, S.Q.; Wang, T.J.; Wang, X.W.; Wang, Y.Y.; Wang, Z.H.; Wang, Z.J.; Wei, C.L.; Wei, Z.Z.; Wu, J.W.; Wu, S.H.; Wu, S.Q.; Wu, W.M.; Wu, X.D.; Wu, Z.D.; Xi, D.M.; Xia, X.M.; Xiao, J.; Xie, P.P.; Xie, X.X.; Xu, J.G.; Xu, R.S.; Xu, Z.Q.; Xuan, B.C.; Xue, S.T.; Yan, J.; Yan, S.P.; Yan, W.G.; Yang, C.Z.; Yang, C.M.; Yang, C.Y.; Yang, X.F.; Yang, X.R.; Ye, M.H.; Yu, C.H.; Yu, C.S.; Yu, Z.Q.; Zhang, B.Y.; Zhang, C.D.; Zhang, C.C.; Zhang, C.Y.; Zhang, D.H.; Zhang, G.; Zhang, H.Y.; Zhang, H.L.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.P.; Zhang, Y.; Zhang, Y.M.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zhao, Z.Q.; Zheng, J.P.; Zheng, L.S.; Zheng, M.; Zheng, W.S.; Zheng, Z.P.; Zhong, G.P.; Zhou, G.P.; Zhou, H.S.; Zhou, J.; Zhou Li; Zhou Lin; Zhou, M.; Zhou, Y.S.; Zhou, Y.H.; Zhu, G.S.; Zhu, Q.M.; Zhu, S.G.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.

    1994-01-01

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e + e - annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  14. CdTe/CZT under high flux irradiation

    International Nuclear Information System (INIS)

    Strassburg, Matthias; Schroeter, Christian; Hackenschmied, Peter

    2011-01-01

    Direct converting quantum counting detectors based on cadmium telluride and cadmium zinc telluride have been investigated with respect to their properties under intense X-ray irradiation. To derive a detailed picture of the performance of such detectors, the influence of the electric field, the detector thickness, the temperature and the intensity of the X-ray irradiation was studied. The results are discussed in terms of the ''polarization'' phenomenon, a reduction of the electric field strength inside the detector due to immobile charge carriers accumulating during irradiation. Furthermore, the impact of Te-inclusions and -precipitates is presented.

  15. Food irradiation

    International Nuclear Information System (INIS)

    Soothill, R.

    1987-01-01

    The issue of food irradiation has become important in Australia and overseas. This article discusses the results of the Australian Consumers' Association's (ACA) Inquiry into food irradiation, commissioned by the Federal Government. Issues discussed include: what is food irradiation; why irradiate food; how much food is consumer rights; and national regulations

  16. Gamma radiation detectors for safeguards applications

    International Nuclear Information System (INIS)

    Carchon, R.; Moeslinger, M.; Bourva, L.; Bass, C.; Zendel, M.

    2007-01-01

    The IAEA uses extensively a variety of gamma radiation detectors to verify nuclear material. These detectors are part of standardized spectrometry systems: germanium detectors for High-Resolution Gamma Spectrometry (HRGS); Cadmium Zinc Telluride (CZT) detectors for Room Temperature Gamma Spectrometry (RTGS); and NaI(Tl) detectors for Low Resolution Gamma Spectrometry (LRGS). HRGS with high-purity Germanium (HpGe) detectors cooled by liquid nitrogen is widely used in nuclear safeguards to verify the isotopic composition of plutonium or uranium in non-irradiated material. Alternative cooling systems have been evaluated and electrically cooled HpGe detectors show a potential added value, especially for unattended measurements. The spectrometric performance of CZT detectors, their robustness and simplicity are key to the successful verification of irradiated materials. Further development, such as limiting the charge trapping effects in CZT to provide improved sensitivity and energy resolution are discussed. NaI(Tl) detectors have many applications-specifically in hand-held radioisotope identification devices (RID) which are used to detect the presence of radioactive material where a lower resolution is sufficient, as they benefit from a generally higher sensitivity. The Agency is also continuously involved in the review and evaluation of new and emerging technologies in the field of radiation detection such as: Peltier-cooled CdTe detectors; semiconductor detectors operating at room temperature such as HgI 2 and GaAs; and, scintillator detectors using glass fibres or LaBr 3 . A final conclusion, proposing recommendations for future action, is made

  17. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  18. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  19. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  20. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Food irradiation

    International Nuclear Information System (INIS)

    Lindqvist, H.

    1996-01-01

    This paper is a review of food irradiation and lists plants for food irradiation in the world. Possible applications for irradiation are discussed, and changes induced in food from radiation, nutritional as well as organoleptic, are reviewed. Possible toxicological risks with irradiated food and risks from alternative methods for treatment are also brought up. Ways to analyze weather food has been irradiated or not are presented. 8 refs

  2. Heavy ion measurement by chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1979-02-01

    In testing the applicability of the threshold system polyvinyl alcohol/methyl orange/chloral hydrate/sodium tetraborate to the quantitative detection of single particles, the chemical detector was irradiated with 4 He, 12 C, 18 O, 22 He ions of different LET. Detectors with 4 different borax concentrations (chloral hydrate concentration kept constant) have been irradiated. The dose causing the colour change increased linearly with the borax concentration. For equal borax concentrations this dose increases with increasing LET due to the decreasing G value of the HCl. The fluence ranges measurable with the various detector compositions are given. 4 He and 18 O ion ranges have been determined. The measured depth dose curves have been corrected because the dose is LET-dependent. The experimentally determined ranges are in good agreement with values calculated for the detector material

  3. Scanner and irradiation: optimization of protocols

    International Nuclear Information System (INIS)

    Duchemin, J.; Martine-Rollet, B.; Lienart, S.; Mobailly, M.; Florin, J.P.; Beregi, J.P.; Puech, N.

    2006-01-01

    The irradiation of the patient or the personnel increased with the arrival of the multi-detector scanners. The objective of this work is to realize a didactic poster to inform and make sensitive on the irradiation with scan so that to propose solutions of protection. (N.C.)

  4. Kit with track detectors aiming at didactic

    International Nuclear Information System (INIS)

    Cesar, M.F.; Koskinas, M.F.

    1988-01-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics Laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and uneteched sheets; an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  5. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gruenewald, T

    1985-01-01

    Food irradiation has become a matter of topical interest also in the Federal Republic of Germany following applications for exemptions concerning irradiation tests of spices. After risks to human health by irradiation doses up to a level sufficient for product pasteurization were excluded, irradiation now offers a method suitable primarily for the disinfestation of fruit and decontamination of frozen and dried food. Codex Alimentarius standards which refer also to supervision and dosimetry have been established; they should be adopted as national law. However, in the majority of cases where individual countries including EC member-countries so far permitted food irradiation, these standards were not yet used. Approved irradiation technique for industrial use is available. Several industrial food irradiation plants, partly working also on a contractual basis, are already in operation in various countries. Consumer response still is largely unknown; since irradiated food is labelled, consumption of irradiated food will be decided upon by consumers.

  6. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. Ionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E E

    1976-02-27

    This invention concerns a fire detection system making use of a beta source. The ionisation detector includes a first and second chamber respectively comprising a first and second electrode, preferably a plate, with a common electrode separating the first and second chamber. Communication is provided between these chambers through a set of orifices and each chamber also has a set of orifices for communication with the ambient atmosphere. One or both chambers can comprise a particle source, preferably beta. The detector also has an adjustable electrode housed in one of the chambers to regulate the voltage between the fixed electrode of this chamber and the common electrode located between the chambers. The electrodes of the structure are connected to a detection circuit that spots a change in the ionisation current when a fire alarm condition arises. The detection circuit of a new type includes a relaxation oscillator with a programmable unijunction transistor and a light emitting diode.

  8. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  9. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  10. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Passe, J.; Petitcolas, H.; Verdant, R.

    1975-01-01

    The self-powered neutron detectors (SPND) enable to measure continuously high fluxes of thermal neutrons. They are particularly suitable for power reactor cores because of their robustness. Description of two kinds of SPND's characterized by the electrical current production way is given here: the first SPND's which present a V, Ag or Rh emitter are sensitive enough but they offer a few minute delay time: the second SPND's which are depending on the gamma activation have a short delay time. The emitter is made of Co or Pt. In any case, the signal is linear with reaction rates. Finally, the applications are briefly repeated here: irradiation facility monitor in research reactors, and flux map and space instability control in power reactors [fr

  11. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  12. Food irradiation

    International Nuclear Information System (INIS)

    Sato, Tomotaro; Aoki, Shohei

    1976-01-01

    Definition and significance of food irradiation were described. The details of its development and present state were also described. The effect of the irradiation on Irish potatoes, onions, wiener sausages, kamaboko (boiled fish-paste), and mandarin oranges was evaluated; and healthiness of food irradiation was discussed. Studies of the irradiation equipment for Irish potatoes in a large-sized container, and the silo-typed irradiation equipment for rice and wheat were mentioned. Shihoro RI center in Hokkaido which was put to practical use for the irradiation of Irish potatoes was introduced. The state of permission of food irradiation in foreign countries in 1975 was introduced. As a view of the food irradiation in the future, its utilization for the prevention of epidemics due to imported foods was mentioned. (Serizawa, K.)

  13. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  14. Food irradiation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The article explains what radiation does to food to preserve it. Food irradiation is of economic importance to Canada because Atomic Energy of Canada Limited is the leading world supplier of industrial irradiators. Progress is being made towards changing regulations which have restricted the irradiation of food in the United States and Canada. Examples are given of applications in other countries. Opposition to food irradiation by antinuclear groups is addressed

  15. Food irradiation

    International Nuclear Information System (INIS)

    Beyers, M.

    1977-01-01

    The objectives of food irradiation are outlined. The interaction of irradiation with matter is then discussed with special reference to the major constituents of foods. The application of chemical analysis in the evaluation of the wholesomeness of irradiated foods is summarized [af

  16. Smoke detectors

    International Nuclear Information System (INIS)

    Fung, C.K.

    1981-01-01

    This describes a smoke detector comprising a self-luminous light source and a photosensitive device which is so arranged that the light source is changed by the presence of smoke in a detecting region. A gaseous tritium light source is used. This consists of a borosilicate glass bulb with an internal phosphor coating, filled with tritium gas. The tritium emits low energy beta particles which cause the phosphor to glow. This is a reliable light source which needs no external power source. The photosensitive device may be a phototransistor and may drive a warning device through a directly coupled transistor amplifier. (U.K.)

  17. Radiation damage studies for the D0 silicon detector

    International Nuclear Information System (INIS)

    Lehner, F.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  18. Radiation damage studies for the DOe silicon detector

    International Nuclear Information System (INIS)

    Lehner, Frank

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current DOe silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalisation techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  19. Nuclear radiation detectors using high resistivity neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Gessner, T.; Irmer, K.

    1983-01-01

    A method for the production of semiconductor detectors based on high resistivity n-type silicon is described. The n-type silicon is produced by neutron irradiation of p-type silicon. The detectors are produced by planar technique. They are suitable for the spectrometry of alpha particles and for the pulse count measurement of beta particles at room temperature. (author)

  20. Detector Control System for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon groupbuilt several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  1. Recent progress in low-temperature silicon detectors

    International Nuclear Information System (INIS)

    Abreu, M.; D'Ambrosio, N.; Bell, W.; Berglund, P.; Borchi, E.; Boer, W. de; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; Devine, S.R.H.; Dezillie, B.; Dierlamm, A.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Haerkoenen, J.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; De Masi, R.; Menichelli, D.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Pretzl, K.; Smith, K.; Solano, B. Pere; Sousa, P.; Pirollo, S.; Rato Mendes, P.; Ruggiero, G.; Sonderegger, P.; Tuominen, E.; Verbitskaya, E.; Da Via, C.; Watts, S.; Wobst, E.; Zavrtanik, M.

    2003-01-01

    The CERN RD39 Collaboration studies the possibility to extend the detector lifetime in a hostile radiation environment by operating them at low temperatures. The outstanding illustration is the Lazarus effect, which showed a broad operational temperature range around 130 K for neutron irradiated silicon detectors

  2. A detector for use in high energy bremsstrahlung shielding studies

    International Nuclear Information System (INIS)

    Wilson, O.J.; Thomson, J.E.M.

    1983-01-01

    The design, development and calibration of a detector based on the principle of the Moxon-Rae detector is discussed. It is ideally suited to the measurement of the energy fluence of photons transmitted through a thick shield which has been irradiated with high energy bremsstrahlung. The detection sensitivity is 10 4 to 10 5 times that of the P2 ion chamber

  3. Trapping effect on the resolution of Ge(Li) detectors

    International Nuclear Information System (INIS)

    Venturini, L.; Suarez, A.A.

    1980-01-01

    This work describes the measurement of the resolution variation of a Ge(Li) detector as a function of irradiation position by a collimated gamma-ray beam. Also the resolution dependence has been measured as a function of the detector applied voltage, using collimated and non-collimated gamma-ray beam. (A.C.A.S.) [pt

  4. Food irradiation

    International Nuclear Information System (INIS)

    Macklin, M.

    1987-01-01

    The Queensland Government has given its support the establishment of a food irradiation plant in Queensland. The decision to press ahead with a food irradiation plant is astonishing given that there are two independent inquiries being carried out into food irradiation - a Parliamentary Committee inquiry and an inquiry by the Australian Consumers Association, both of which have still to table their Reports. It is fair to assume from the Queensland Government's response to date, therefore, that the Government will proceed with its food irradiation proposals regardless of the outcomes of the various federal inquiries. The reasons for the Australian Democrats' opposition to food irradiation which are also those of concerned citizens are outlined

  5. Food irradiation

    International Nuclear Information System (INIS)

    Duchacek, V.

    1989-01-01

    The ranges of doses used for food irradiation and their effect on the processed foods are outlined. The wholesomeness of irradiated foods is discussed. The present food irradiation technology development in the world is described. A review of the irradiated foods permitted for public consumption, the purposes of food irradiaton, the doses used and a review of the commercial-scale food irradiators are tabulated. The history and the present state of food processing in Czechoslovakia are described. (author). 1 fig., 3 tabs., 13 refs

  6. Irradiated foods

    International Nuclear Information System (INIS)

    Darrington, Hugh

    1988-06-01

    This special edition of 'Food Manufacture' presents papers on the following aspects of the use of irradiation in the food industry:- 1) an outline view of current technology and its potential. 2) Safety and wholesomeness of irradiated and non-irradiated foods. 3) A review of the known effects of irradiation on packaging. 4) The problems of regulating the use of irradiation and consumer protection against abuse. 5) The detection problem - current procedures. 6) Description of the Gammaster BV plant in Holland. 7) World outline review. 8) Current and future commercial activities in Europe. (U.K.)

  7. Silicon microstrip detectors for the ATLAS SCT

    Czech Academy of Sciences Publication Activity Database

    Robinson, D.; Allport, P.; Andricek, L.; Böhm, Jan; Buttar, C.; Carter, J. R.; Chilingarov, A.; Clark, A. G.; Feriere, D.; Fuster, J.

    2002-01-01

    Roč. 485, 1-2 (2002), s. 84-88 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : ATLAS SCT * silicon microstrip detectors * irradiation * quality control Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  8. Radiation hardness of silicon detectors manufactured on wafers from various sources

    International Nuclear Information System (INIS)

    Dezillie, B.; Bates, S.; Glaser, M.; Lemeilleur, F.; Leroy, C.

    1997-01-01

    Impurity concentrations in the initial silicon material are expected to play an important role for the radiation hardness of silicon detectors, during their irradiation and for their evolution with time after irradiation. This work reports on the experimental results obtained with detectors manufactured using various float-zone (FZ) and epitaxial-grown material. Preliminary results comparing the changes in leakage current and full depletion voltage of FZ and epitaxial detectors as a function of fluence and of time after 10 14 cm -2 proton irradiation are given. The measurement of charge collection efficiency for epitaxial detectors is also presented. (orig.)

  9. Radiation damage in barium fluoride detector materials

    International Nuclear Information System (INIS)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF 2 , both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF 2 they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with 60 C0 gamma rays. Doses of 10 6 rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF 2 develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials

  10. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  11. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  12. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  13. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  14. Development of cryogenic tracking detectors for very high luminosity experiments

    CERN Document Server

    Härkönen, J; Anbinderis, T; Bates, R; de Boer, W; Borchi, E; Bruzzi, M; Buttar, C; Chen, W; Cindro, V; Czellar, S; Eremin, V; Furgeri, A; Gaubas, E; Heijne, E; Ilyashenko, I; Kalesinskas, V; Krause, M; Li, Z; Luukka, P; Mandic, I; Menichelli, D; Mikuz, M; Militaru, O; Mueller, S; Niinikoski, T O; O’Shea, V; Parkes, C; Piotrzkowski, K; Pirollo, S; Pusa, P; Räisänen, J; Rouby, X; Tuominen, E; Tuovinen, E; Vaitkus, J; Verbitskaya, E; Väyrynen, S; Zavrtanik, M

    2009-01-01

    Experimental results and simulations of Charge Collection Efficiency (CCE) of Current Injected Detectors (CIDs) are focused. CID is a concept where the current is limited by the space charge. The injected carriers will be trapped by the deep levels. This induces a stable electric field through the entire bulk regardless of the irradiation fluence the detector has been exposed. Our results show that the CCE of CIDs is about two times higher than of regular detectors when irradiated up to 1×1016 cm−2. The higher CCE is achieved already at −50 °C temperatures.

  15. Characterisation of Silicon Timing Detectors for the RD50 Collaboration

    CERN Document Server

    Immig, David Maximilian

    2017-01-01

    Increasing pile-up and irradiation following with the high luminosity upgrade of the LHC, demands the development of improved semiconductor detectors. The former problem can be reduced by more precise time information, which can be obtained using a future detector based on the low gain avalanche diode (LGAD). LGADs are studied by the RD50-Collaboration, which studies the characteristics of semiconductor devices to improve these for future requirements of high energy physics. This reports is engaged with the process to characterise semiconductor detectors, specially LGADs, with capacitance-voltage and current-voltage measurements as well as transient current techniques of un- and irradiated semiconductor devices.

  16. Foodstuff irradiation

    International Nuclear Information System (INIS)

    1982-01-01

    Report written on behalf of the Danish Food Institute summarizes national and international rules and developments within food irradiation technology, chemical changes in irradiated foodstuffs, microbiological and health-related aspects of irradiation and finally technological prospects of this conservation form. Food irradiatin has not been hitherto applied in Denmark. Radiation sources and secondary radiation doses in processed food are characterized. Chemical changes due to irradiation are compared to those due to p.ex. food heating. Toxicological and microbiological tests and their results give no unequivocal answer to the problem whether a foodstuff has been irradiated. The most likely application fields in Denmark are for low radiation dosis inhibition of germination, riping delay and insecticide. Medium dosis (1-10 kGy) can reduce bacteria number while high dosis (10-50 kGy) will enable total elimination of microorganisms and viruses. Food irradiation can be acceptable as technological possibility with reservation, that further studies follow. (EG)

  17. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  18. Implementation of the k{sub 0} technique using multi-detectors on diverse irradiation facilities of TRIGA Reactor; Implementacion de la tecnica k{sub 0} usando multidetectores en diferentes instalaciones de irradiacion del Reactor TRIGA

    Energy Technology Data Exchange (ETDEWEB)

    Caldera C, M. de G.

    2013-07-01

    The k{sub 0} method with the technique of neutron activation analysis allows obtaining important characteristics parameters that describe a nuclear reactor. Among these parameters are the form factor of epithermal neutron flux, α and the ratio of thermal neutron flux with respect to the epithermal neutron flux, f. These parameters were obtained by irradiation of two different monitors, one of Au-Zr and the other of Au-Mo-Cr, where the last one was made and implemented for the first time. Both monitors were irradiated in different positions in the TRIGA Mark III Reactor at the National Institute of Nuclear Research. (Author)

  19. Hemibody irradiation

    International Nuclear Information System (INIS)

    Schen, B.C.; Mella, O.; Dahl, O.

    1992-01-01

    In a large number of cancer patients, extensive skeletal metastases or myelomatosis induce vast suffering, such as intolerable pain and local complications of neoplastic bone destruction. Analgetic drugs frequently do not yield sufficient palliation. Irradiation of local fields often has to be repeated, because of tumour growth outside previously irradiated volumes. Wide field irradiation of the lower or upper half of the body causes significant relief of pain in most patients. Adequate pretreatment handling of patients, method of irradiation, and follow-up are of importance to reduce side effects, and are described as they are carried out at the Department of Oncology, Haukeland Hospital, Norway. 16 refs., 2 figs

  20. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  1. Supralinear detectors in neutron dosimetry

    International Nuclear Information System (INIS)

    Larsson, L.; Roth, R.A.; Katz, R.

    1977-01-01

    Dose-response curves for nuclear emulsions exposed to x-rays and neutrons are presented and discussed. Ilford K.5 plates were used to mimic an initial slope model of biological cell survival curves, and Ilford K-2.5 plates were used to mimic the multi-target survival model after gamma-ray irradiation. The plates were exposed to x-rays from a Torrex-150 x-ray unit and fission neutrons at the 18 kW Triga Mark I reactor. Representative calculations for the response of model detectors to 14 MeV neutrons were made for comparison with experimental findings. Results are presented and discussed

  2. General gamma-radiation test of TGC detectors

    CERN Document Server

    Smakhtin, V P

    2004-01-01

    The TGC detectors are expected to provide the Muon trigger for the ATLAS detector in the forward region of the ATLAS Muon Spectrometer. The TGC detectors have to provide a trigger signal within 25 ns of the LHC accelerator bunch spacing, with an efficiency exceeding 95%, while exposed to an effective)photon and neutron background ranging from 30 to 150 Hz/cm/sup 2/. In order to test TGC detectors in high rate environment every detector was irradiated at 2500 Cu Co-60 source in Radiation Facility of Weizmann Institute of Science at nominal operating voltage and at photon rate several times above the expected background. This radiation test was succeeded in diagnostics of the hot spots inside detectors. The present publication refers to the test results of 800 TGC detectors produced in the Weizmann Institute of Science. (1 refs).

  3. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  4. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  5. Depth sensitivity of Lexan polycarbonate detector

    CERN Document Server

    Awad, E M

    1999-01-01

    The dependence of the registration sensitivity of Lexan polycarbonate with depth inside the detector was studied. Samples of Lexan from General Electric were irradiated to two long range ions. These were Ni and Au ions with a projectile energy of 0.3 and 1 GeV/n. Two independent techniques, the track-diameter technique (TDT) and the track profile technique (TPT), were used. The registration sensitivity was measured at depths of 7, 10, 15, 18, 20, 28, 35 and 40 mu m inside the detector. The results of the two techniques show that the detector sensitivity decreases gradually with the depth inside the detector. It reaches 20 % less compared to sensitivity at the surface after 40 mu m have been removed.

  6. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  7. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  8. CVD diamond detectors for ionizing radiation

    Science.gov (United States)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  9. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  10. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  11. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  12. Multicomponent activation detector measurements of reactor neutron spectra

    International Nuclear Information System (INIS)

    Sandberg, J.; Aarnio, P. A.; Routti, J. T.

    1984-01-01

    Information on the neutron flux is required in many applications of research reactors, such as activation analysis or radiation damage measurements. Flux spectrum measurements are commonly carried out with activation foils. The reaction types used are threshold reactions in the fast energy region, resonance reactions in the intermediate region and neutron capture reactions with l/v-cross section in the thermal region. It has been shown that it is possible to combine several detector elements into homogeneous multicomponent detectors. The activities of all detector reaction products can be determined with a single gamma spectrum measurement. The multicomponent principle sets some restrictions on the choice of detector reactions, for example, each product nuclide may be produced in one reaction only. Separate multicomponent threshold and resonance detectors were designed for the fast and intermediate regions, respectively. The detectors were fabricated in polyethylene irradiation capsules or quartz glass ampoules, and they were irradiated in a cadmium cover. The detectors were succesfully used in the irradiation ring and in the core of a Triga reactor. The intermediate and fast neutron spectrum was unfolded with the least-squares unfolding program LOUHI. According to the preliminary results multicomponent activation detectors might constitute a convenient means for carrying out routine neutron spectrum measurements in research reactors. (orig.)

  13. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  14. Studies on nitrogen mapping by various CR-39 track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Varga, Zs.; Hunyadi, I.; Freyer, K.; Treutler, H.Ch.

    1986-01-01

    The use of CR-39 track detectors for nitrogen distribution measurements via the /sup 14/N(n,p)/sup 14/C reaction is studied. The proton detection properties of different CR-39 products have been analyzed. The variation of background track density induced in the bulk of detectors is examined under different conditions of neutron irradiation. Analysis of our experimental data has led to the conclusion that the sources of proton background tracks are the fast neutron component of the neutron source, chlorine impurities in the detector and nitrogen diffused from the air into the upper layer of the detector. Efforts have been made to decrease the nitrogen content of diffusion origin by removing the upper detector layer and by outgassing the CR-39 sheet in vacuum before irradiation. Finally the ''signal/noise'' ratio for a steel specimen and the sensitivity of nitrogen determination are given.

  15. Food irradiation

    International Nuclear Information System (INIS)

    Mercader, J.P.; Emily Leong

    1985-01-01

    The paper discusses the need for effective and efficient technologies in improving the food handling system. It defines the basic premises for the development of food handling. The application of food irradiation technology is briefly discussed. The paper points out key considerations for the adoption of food irradiation technology in the ASEAN region (author)

  16. Food irradiation

    International Nuclear Information System (INIS)

    Matsuyama, Akira

    1990-01-01

    This paper reviews researches, commentaries, and conference and public records of food irradiation, published mainly during the period 1987-1989, focusing on the current conditions of food irradiation that may pose not only scientific or technologic problems but also political issues or consumerism. Approximately 50 kinds of food, although not enough to fill economic benefit, are now permitted for food irradiation in the world. Consumerism is pointed out as the major factor that precludes the feasibility of food irradiation in the world. In the United States, irradiation is feasible only for spices. Food irradiation has already been feasible in France, Hollands, Belgium, and the Soviet Union; has under consideration in the Great Britain, and has been rejected in the West Germany. Although the feasibility of food irradiation is projected to increase gradually in the future, commercial success or failure depends on the final selection of consumers. In this respect, the role of education and public information are stressed. Meat radicidation and recent progress in the method for detecting irradiated food are referred to. (N.K.) 128 refs

  17. Irradiation proctitis

    International Nuclear Information System (INIS)

    Minami, Akira

    1977-01-01

    Literatures on late rectal injuries are discussed, referring to two patients with uterine cervical cancer in whom irradiation proctitis occurred after telecobalt irradiation following uterine extirpation. To one patients, a total of 5000 rads was irradiated, dividing into 250 rads at one time, and after 3 months, irradiation with a total of 2000 rads, dividing into 200 rads at one time, was further given. In another one patient, two parallel opposing portal irradiation with a total of 6000 rads was given. About a year after the irradiation, rectal injuries and cystitis, accompanying with hemorrhage, were found in both of the patients. Rectal amputation and proctotoreusis were performed. Cystitis was treated by cystic irradiation in the urological department. Pathohistological studies of the rectal specimen revealed atrophic mucosa, and dilatation of the blood vessels and edema in the colonic submucosa. Incidence of this disease, term when the disease occurs, irradiation dose, type of the disease, treatment and prevention are described on the basis of the literatures. (Kanao, N.)

  18. Irradiation proctitis

    Energy Technology Data Exchange (ETDEWEB)

    Minami, A [Osaka Kita Tsishin Hospital (Japan)

    1977-06-01

    Literatures on late rectal injuries are discussed, referring to two patients with uterine cervical cancer in whom irradiation proctitis occurred after telecobalt irradiation following uterine extirpation. To one patients, a total of 5000 rads was irradiated, dividing into 250 rads at one time, and after 3 months, irradiation with a total of 2000 rads, dividing into 200 rads at one time, was further given. In another one patient, two parallel opposing portal irradiation with a total of 6000 rads was given. About a year after the irradiation, rectal injuries and cystitis, accompanying with hemorrhage, were found in both of the patients. Rectal amputation and proctotoreusis were performed. Cystitis was treated by cystic irradiation in the urological department. Pathohistological studies of the rectal specimen revealed atrophic mucosa, and dilatation of the blood vessels and edema in the colonic submucosa. Incidence of this disease, term when the disease occurs, irradiation dose, type of the disease, treatment and prevention are described on the basis of the literatures.

  19. Food irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko; Kikuchi, Masahiro

    2009-01-01

    Food irradiation can have a number of beneficial effects, including prevention of sprouting; control of insects, parasites, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored for long periods. It is most unlikely that all these potential applications will prove commercially acceptable; the extend to which such acceptance is eventually achieved will be determined by practical and economic considerations. A review of the available scientific literature indicates that food irradiation is a thoroughly tested food technology. Safety studies have so far shown no deleterious effects. Irradiation will help to ensure a safer and more plentiful food supply by extending shelf-life and by inactivating pests and pathogens. As long as requirement for good manufacturing practice are implemented, food irradiation is safe and effective. Possible risks of food irradiation are not basically different from those resulting from misuse of other processing methods, such as canning, freezing and pasteurization. (author)

  20. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  1. Irradiation damage

    International Nuclear Information System (INIS)

    Howe, L.M.

    2000-01-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization

  2. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  3. RD50 recent results: Development of radiation hard sensors for SLHC

    CERN Document Server

    Macchiolo, Anna

    2009-01-01

    The need for radiation hard semiconductor detectors for the tracker regions in high energy physics experiments at a future high luminosity hadron collider, like the proposed LHC upgrade, has led to the formation of the CERN RD50 collaboration. The R&D directions of RD50 follow two paths: the optimization of radiation hard bulk materials (Material Engineering) and the development of new detector designs (Device Engineering) as 3D sensors, thin sensors and n-in-p sensors. Some of the RD50 most recent results about silicon detectors are reported in this paper, with special reference to: (i) identification of defects responsible for long term annealing, (ii) charge collection efficiency of irradiated planar devices, in particular n-in-p microstrip detectors and epitaxial diodes, (iii) charge collection efficiency of double-type column 3D detectors, (iv) comparison of the performances of FZ and MCZ structures under mixed irradiation.

  4. Irradiation facilities at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Sandberg, V.

    1990-01-01

    The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs

  5. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  6. Recent test results on the ATLAS SCT detector

    International Nuclear Information System (INIS)

    Pernegger, H.

    2003-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT, which is currently under construction, will consist of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. After an overview of the SCT and the detector module layout, the paper will summarize recent test results obtained from silicon detector modules, which have been extensively tested before starting their large series production. The tests presented here cover electrical performance of individual modules, their performance after irradiation, as well as system tests in a multi-module setup

  7. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  8. Defect kinetics in novel detector materials

    CERN Document Server

    MacEvoy, B C

    2000-01-01

    Silicon particle detectors will be used extensively in experiments at the CERN Large Hadron Collider, where unprecedented particle fluences will cause significant atomic displacement damage. We present a model of the evolution of defect concentrations and consequent electrical behaviour in "novel" detector materials with various oxygen and carbon impurity concentrations. The divacancy-oxygen (V/sub 2/O) defect is identified as the cause of changes in device characteristics during /sup 60/Co gamma irradiation. In the case of hadron irradiation changes in detector doping concentration (N/sub eff/) are dominated by cluster defects, in particular the divacancy (V/sub 2/), which exchange charge directly via a non-Shockley-Read- Hall mechanism. The V/sub 2/O defect also contributes to Ne/sub eff/. This defect is more copiously produced during 24 GeV/c proton irradiation than during 1 MeV neutron irradiation on account of the higher vacancy introduction rate, hence the radiation hardness of materials is more sensiti...

  9. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  10. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  11. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  12. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  13. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  14. Food irradiation

    International Nuclear Information System (INIS)

    Hetherington, M.

    1989-01-01

    This popular-level article emphasizes that the ultimate health effects of irradiated food products are unknown. They may include vitamin loss, contamination of food by botulism bacteria, mutations in bacteria, increased production of aflatoxins, changes in food, carcinogenesis from unknown causes, presence of miscellaneous harmful chemicals, and the lack of a way of for a consumer to detect irradiated food. It is claimed that the nuclear industry is applying pressure on the Canadian government to relax labeling requirements on packages of irradiated food in order to find a market for its otherwise unnecessary products

  15. Food irradiation

    International Nuclear Information System (INIS)

    Luecher, O.

    1979-01-01

    Limitations of existing preserving methods and possibilities of improved food preservation by application of nuclear energy are explained. The latest state-of-the-art in irradiation technology in individual countries is described and corresponding recommendations of FAO, WHO and IAEA specialists are presented. The Sulzer irradiation equipment for potato sprout blocking is described, the same equipment being suitable also for the treatment of onions, garlic, rice, maize and other cereals. Systems with a higher power degree are needed for fodder preserving irradiation. (author)

  16. Aging measurements on triple-GEM detectors operated with $CF_{4}$- based gas mixtures

    CERN Document Server

    Alfonsi, M; Bencivenni, G; Bonivento, W; Cardini, A; Lener, M P; Murtas, F; Pinci, D; Raspino, D; Saitta, B; De Simone, P

    2004-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV gamma from a /sup 60/Co source. After the irradiation test the detectors performances have been measured with X-rays and with a 3 GeV pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in the GEM detector during the strong irradiation.

  17. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  18. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  19. NEUTRON SPECTRUM MEASUREMENTS USING MULTIPLE THRESHOLD DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, William W.; Duffey, Dick

    1963-11-15

    From American Nuclear Society Meeting, New York, Nov. 1963. The use of threshold detectors, which simultaneously undergo reactions with thermal neutrons and two or more fast neutron threshold reactions, was applied to measurements of the neutron spectrum in a reactor. A number of different materials were irradiated to determine the most practical ones for use as multiple threshold detectors. These results, as well as counting techniques and corrections, are presented. Some materials used include aluminum, alloys of Al -Ni, aluminum-- nickel oxides, and magesium orthophosphates. (auth)

  20. Food irradiation

    International Nuclear Information System (INIS)

    Paganini, M.C.

    1991-06-01

    Food treatment by means of ionizing energy, or irradiation, is an innovative method for its preservation. In order to treat important volumes of food, it is necessary to have industrial irradiation installations. The effect of radiations on food is analyzed in the present special work and a calculus scheme for an Irradiation Plant is proposed, discussing different aspects related to its project and design: ionizing radiation sources, adequate civil work, security and auxiliary systems to the installations, dosimetric methods and financing evaluation methods of the project. Finally, the conceptual design and calculus of an irradiation industrial plant of tubercles is made, based on the actual needs of a specific agricultural zone of our country. (Author) [es

  1. Food irradiation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Food preservation by irradiation is one part of Eisenhower's Atoms for Peace program that is enjoying renewed interest. Classified as a food additive by the Food, Drug, and Cosmetic Act of 1958 instead of a processing technique, irradiation lost public acceptance. Experiments have not been done to prove that there are no health hazards from gamma radiation, but there are new pressures to get Food and Drug Administration approval for testing in order to make commercial use of some radioactive wastes. Irradiation causes chemical reactions and nutritional changes, including the destruction of several vitamins, as well as the production of radiolytic products not normally found in food that could have adverse effects. The author concludes that, lacking epidemiological evidence, willing buyers should be able to purchase irradiated food as long as it is properly labeled

  2. Radiation tolerance of oxygenated n-strip read-out detectors

    CERN Document Server

    Allport, P P; Greenall, A

    2003-01-01

    Following earlier work on 'oxygenated' detectors in terms of charge collection efficiencies after proton irradiation, full-size detectors for the LHC have been processed with n-side read-out on oxygen enhanced n-type silicon substrates. Two hundred-micron-thick detectors have been inhomogeneously irradiated up to doses of 7 multiplied by 10**1**4p/cm**2 using 24 GeV protons from the CERN PS. Results are presented on the charge collection efficiencies as a function of operating voltage for regions of the detectors irradiated to different doses, using LHC speed analogue read-out electronics. The measurements confirm the expectations which led to our original proposal of such detectors which are now being envisaged for the silicon-based detector systems at the LHC designed to withstand the greatest doses. The possibilities for survival at an upgraded luminosity LHC (Super-LHC) are also briefly discussed.

  3. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  4. Fruit irradiation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Food spoilage is a common problem when marketing agricultural products. Promising results have already been obtained on a number of food irradiating applications. A process is described in this paper where irradiation of sub-tropical fruits, especially mangoes and papayas, combined with conventional heat treatment results in effective insect and fungal control, delays ripening and greatly improves the quality of fruit at both export and internal markets

  5. Development of irradiation rig in HTTR and dosimetry method. I-I type irradiation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Kikuchi, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Miyamoto, Satoshi; Ogura, Kazutomo [Japan Atomic Power Co., Tokyo (Japan)

    2002-12-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated, helium gas-cooled test reactor with a maximum power of 30 MW. The HTTR aims not only to establish and upgrade the technological basis for the HTGRs but also to perform the innovative basic research on high temperature engineering with high temperature irradiation fields. It is planned that the HTTR is used to perform various engineering tests such as the safety demonstration test, high temperature test operation and irradiation test with large irradiation fields at high temperatures. This paper describes the design of the I-I type irradiation equipment developed as the first irradiation rig for the HTTR and does the planned dosimetry method at the first irradiation test. It was developed to perform in-pile creep test on a stainless steel with large standard size specimens in the HTTR. It can give great loads on the specimens stably and can control the irradiation temperature precisely. The in-core creep properties on the specimens are measured by newly developed differential transformers and the irradiation condition in the core is monitored by thermocouples and self-powered neutron detectors (SPNDs), continuously. The irradiated neutron fluence is assessed by neutron fluence monitors of small metallic wires after the irradiation. The obtained data at the first irradiation test can strongly be contributed to upgrade the technological basis for the HTGRs, since it is the first direct measurement of the in-core irradiation environments of the HTTR. (author)

  6. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  7. Blood irradiation

    International Nuclear Information System (INIS)

    Chandy, Mammen

    1998-01-01

    Viable lymphocytes are present in blood and cellular blood components used for transfusion. If the patient who receives a blood transfusion is immunocompetent these lymphocytes are destroyed immediately. However if the patient is immunodefficient or immunosuppressed the transfused lymphocytes survive, recognize the recipient as foreign and react producing a devastating and most often fatal syndrome of transfusion graft versus host disease [T-GVHD]. Even immunocompetent individuals can develop T-GVHD if the donor is a first degree relative since like the Trojan horse the transfused lymphocytes escape detection by the recipient's immune system, multiply and attack recipient tissues. T-GVHD can be prevented by irradiating the blood and different centers use doses ranging from 1.5 to 4.5 Gy. All transfusions where the donor is a first degree relative and transfusions to neonates, immunosuppressed patients and bone marrow transplant recipients need to be irradiated. Commercial irradiators specifically designed for irradiation of blood and cellular blood components are available: however they are expensive. India needs to have blood irradiation facilities available in all large tertiary institutions where immunosuppressed patients are treated. The Atomic Energy Commission of India needs to develop a blood irradiator which meets international standards for use in tertiary medical institutions in the country. (author)

  8. Food irradiation

    International Nuclear Information System (INIS)

    Migdal, W.

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author)

  9. Food irradiation

    International Nuclear Information System (INIS)

    1991-01-01

    Processing of food with low levels of radiation has the potential to contribute to reducing both spoilage of food during storage - a particular problem in developing countries - and the high incidence of food-borne disease currently seen in all countries. Approval has been granted for the treatment of more than 30 products with radiation in over 30 countries but, in general, governments have been slow to authorize the use of this new technique. One reason for this slowness is a lack of understanding of what food irradiation entails. This book aims to increase understanding by providing information on the process of food irradiation in simple, non-technical language. It describes the effects that irradiation has on food, and the plant and equipment that are necessary to carry it out safely. The legislation and control mechanisms required to ensure the safety of food irradiation facilities are also discussed. Education is seen as the key to gaining the confidence of the consumers in the safety of irradiated food, and to promoting understanding of the benefits that irradiation can provide. (orig.) With 4 figs., 1 tab [de

  10. The Life Span of the BD-PND Bubble Detector

    International Nuclear Information System (INIS)

    Vanhavere, F.; Loos, M.; Thierens, H.

    1999-01-01

    BD-PND bubble detectors from Bubble Technology Industries (BTI) were used to conduct a study of the life span of these detectors. The manufacturer guarantees an optimum detector performance for three months after receipt. Nevertheless, it is important to know the evolution of their characteristics with time, also after those three months. On a standard set-up with a 252 Cf source the bubble detectors were irradiated until they reached the end of their life span. During this period, the evolution in sensitivity was monitored. The temperature compensating system seems to be the limiting factor with time for the use of the BTI bubble detectors. The change in temperature dependence with age was determined. The same parameters were also checked with several batches of detectors that were used in practice. (author)

  11. Infrared LED Array For Silicon Strip Detector Qualification

    CERN Document Server

    Dirkes, Guido; Hartmann, Frank; Heier, Stefan; Schwerdtfeger, Wolfgang; Waldschmitt, M; Weiler, K W; Weseler, Siegfried

    2003-01-01

    The enormous amount of silicon strip detector modules for the CMS tracker requires a test-sytem to allow qualification of each individual detector module and its front-end electronics within minutes. The objective is to test the detector with a physical signal. Signals are generated in the detector by illumination with lightpulses emitted by a LED at 950~nm and with a rise time of 10~ns. In order to avoid a detector moving, an array of 64 LEDs is used, overlaping the complete detector width. The total length of an array is 15~cm. The spot size of an individual LED is controlled by apertures to illuminate about 25 strips. Furthermore it is possible to simulate the high leakage current of irradiated sensors by constant illumination of the sensor. This provides an effective mean to identfy pinholes on a sensor.

  12. Diamond detector technology: status and perspectives

    CERN Document Server

    Kagan, Harris; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H P; Bellini,, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; De Boer, W; Dehning, B; Dorfer, C; Dunser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Mcfadden, N; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Reichmann, M; Riley, G; Roe, S; Sanz, D; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Schreiner, T; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Taylor, Aaron; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, Stephen; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2017-01-01

    The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident par-ticle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout elec-tronics is shown.

  13. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  14. Measurement with self-powered cobalt and cadmium detectors

    International Nuclear Information System (INIS)

    Azzoni, A.

    The principle of function is described and the characteristics are given of self-powered cobalt and cadmium neutron detectors. Requirements are summed up for the material used for these detectors, and the specific properties of used detectors are given. The calibration of developed self-powered detectors was carried out using the L 54 CESNEF reactor channels with a maximum output of 40 kW and a neutron flux of 10 10 to 10 12 n.cm -2 s -1 . The absolute measurement of neutron flux and gamma radiation doses in the channel were carried out at an output of 10 kW. The objective of calibration measurements with cadmium and cobalt detectors was to ascertain the promptness of detector response, to determine their sensitivity to neutrons and to gamma radiation, the effects of radiation on the material of the detectors and the contribution thereof on the resulting signal. Inside the CART irradiation channel of the ESSOR reactor three such detectors were used for the measurement of neutron flux and its fluctuations effected by coolant density fluctuations. The behaviour of the detectors was studied in a high neutron flux (10 14 n.cm -2 s -1 ) and at long-term irradiation. It was found that cobalt detectors may be used to advantage for measuring the neutron flux if prompt response is required. The high sensitivity to gamma radiation does, however, limit their uses. Cadmium detectors are sensitive to the neutron flux (currents of several mA with a neutron flux of approximately 10 14 n.cm -2 s -1 ) while response to gamma radiation is considerably limited. These detectors are advantageous for short-term use, such as neutron flux mapping and measuring fluctuations. (B.S.)

  15. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  16. Response of cellulose nitrate track detectors to electron doses

    CERN Document Server

    Segovia, N; Moreno, A; Vazquez-Polo, G; Santamaría, T; Aranda, P; Hernández, A

    1999-01-01

    In order to study alternative dose determination methods, the bulk etching velocity and the latent track annealing of LR 115 track detectors was studied during electron irradiation runs from a Pelletron accelerator. For this purpose alpha irradiated and blank detectors were exposed to increasing electron doses from 10.5 to 317.5 kGy. After the irradiation with electrons the detectors were etched under routine conditions, except for the etching time, that was varied for each electron dose in order to reach a fixed residual thickness. The variation of the bulk etching velocity as a function of each one of the electron doses supplied, was interpolated in order to obtain dosimetric response curves. The observed annealing effect on the latent tracks is discussed as a function of the total electron doses supplied and the temperature.

  17. Alpha-particle radiobiological experiments using thin CR-39 detectors

    International Nuclear Information System (INIS)

    Chan, K. F.; Siu, S. Y. M.; McClella, K. E.; Tse, A. K. W.; Lau, B. M. F.; Nikezic, D.; Richardson, B. J.; Lam, P. K. S.; Fong, W. F.; Yu, K. N.

    2006-01-01

    The present paper studied the feasibility of applying comet assay to evaluate the DNA damage in individual HeLa cervix cancer cells after alpha-particle irradiation. We prepared thin CR-39 detectors (<20 μm) as cell-culture substrates, with UV irradiation to shorten the track formation time. After irradiation of the HeLa cells by alpha particles, the tracks on the underside of the CR-39 detector were developed by chemical etching in (while floating on) a 14 N KOH solution at 37 deg. C. Comet assay was then applied. Diffusion of DNA out of the cells could be generally observed from the images of stained DNA. The alpha-particle tracks corresponding to the comets developed on the underside of the CR-39 detectors could also be observed by just changing the focal plane of the confocal microscope. (authors)

  18. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  19. The two sides of silicon detectors

    International Nuclear Information System (INIS)

    Devine, S.R.

    2001-10-01

    Results are presented on in situ irradiation of silicon detector's at cryogenic temperature. The results show that irradiation at cryogenic temperatures does not detrimentally effect a silicon detectors performance when compared to its irradiation at room temperature. Operation of silicon devices at cryogenic temperatures offers the advantage of reducing radiation-induced leakage current to levels of a few pA, while at 130K the Lazarus Effect plays an important role i.e. minimum voltage required for full depletion. Performing voltage scans on a 'standard' silicon pad detector pre- and post annealing, the charge collection efficiency was found to be 60% at 200V and 95% at 200V respectively. Time dependence measurements are presented, showing that for a dose of 6.5x10 14 p/cm 2 (450GeV protons) the time dependence of the charge collection efficiency is negligible. However, for higher doses, 1.2x10 15 p/cm 2 , the charge collection efficiency drops from an initial measured value of 67% to a stable value of 58% over a period of 15 minutes for reversed biased diodes. An analysis of the 'double junction' effect is also presented. A comparison between the Transient Current Technique and an X-ray technique is presented. The double junction has been observed in p + /n/n + silicon detectors after irradiation beyond 'type inversion', corresponding to a fluence equivalent to ∼3x10 13 cm -2 1MeV neutrons, producing p + /p/n + and essentially two p-n junctions within one device. With increasing bias voltage, as the electric field is extending into the detector bulk from opposite sides of the silicon detector, there are two distinct depletion regions that collect charge signal independently. Summing the signal charge from the two regions, one is able to reconstruct the initial energy of the incident particle. From Transient Current measurements it is apparent that E-field manipulation is possible by excess carrier injection, enabling a high enough E-field to extend across the

  20. Silicon detectors for the sLHC

    Czech Academy of Sciences Publication Activity Database

    Affolder, A.; Aleev, A.; Allport, P.P.; Böhm, Jan; Mikeštíková, Marcela; Popule, Jiří; Šícho, Petr; Tomášek, Michal; Vrba, Václav

    2011-01-01

    Roč. 658, č. 1 (2011), s. 11-16 ISSN 0168-9002 R&D Projects: GA MŠk LA08032; GA ČR GA202/05/0653; GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : silicon particle detectors * radiation damage * irradiation * charge collection efficiency Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011

  1. Irradiation device

    International Nuclear Information System (INIS)

    Suzuki, Toshimitsu.

    1989-01-01

    In an irradiation device for irradiating radiation rays such as electron beams to pharmaceuticals, etc., since the distribution of scanned electron rays was not monitored, the electron beam intensity could be determined only indirectly and irradiation reliability was not satisfactory. In view of the above, a plurality of monitor wires emitting secondary electrons are disposed in the scanning direction near a beam take-out window of a scanning duct, signals from the monitor wires are inputted into a display device such as a cathode ray tube, as well as signals from the monitor wires at the central portion are inputted into counting rate meters to measure the radiation dose as well. Since secondary electrons are emitted when electron beams pass through the monitor wires and the intensity thereof is in proportion with the intensity of incident electron beams, the distribution of the radiation dose can be monitored by measuring the intensity of the emitted secondary electrons. Further, uneven irradiation, etc. can also be monitored to make the radiation of irradiation rays reliable. (N.H.)

  2. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  3. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  4. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  5. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  6. Food irradiation

    International Nuclear Information System (INIS)

    Beishon, J.

    1991-01-01

    Food irradiation has been the subject of concern and controversy for many years. The advantages of food irradiation include the reduction or elimination of dangerous bacterial organisms, the control of pests and insects which destroy certain foods, the extension of the shelf-life of many products, for example fruit, and its ability to treat products such as seafood which may be eaten raw. It can also replace existing methods of treatment which are believed to have hazardous side-effects. However, after examining the evidence produced by the proponents of food irradiation, the author questions whether it has any major contribution to make to the problems of foodborne diseases or world food shortages. More acceptable solutions, he suggests, may be found in educating food handlers to ensure that hygienic conditions prevail in the production, storage and serving of food. (author)

  7. Vinca irradiator

    International Nuclear Information System (INIS)

    Eymery, R.

    1976-10-01

    The development programme of the VINCA radiosterilisation centre involves plans for an irradiator capable of working in several ways. Discontinuous operation. The irradiator is loaded for a certain period then runs automatically until the moment of unloading. This method is suitable as long as the treatment capacity is relatively small. Continuous operation with permanent batch loading and unloading carried out either manually or automatically (by means of equipment to be installed later). Otherwise the design of the apparatus is highly conventional. The source is a vertical panel submersible in a pool. The conveyor is of the 'bucket' type, with 4 tiers to each bucket. The batches pass successively through all possible irradiation positions. Transfert into and out of the cell take place through a maze, which also provides access to the cell when the sources are in storage at the bottom of the pool [fr

  8. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  9. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  10. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  11. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  12. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  13. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  14. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  15. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  16. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  17. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  18. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  19. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  20. Irradiance gradients

    International Nuclear Information System (INIS)

    Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques

  1. Spallation products induced by energetic neutrons in plastic detector material

    CERN Document Server

    Grabisch, K; Enge, W; Scherzer, R

    1977-01-01

    Cellulose nitrate plastic detector sheets were irradiated with secondary neutrons of the 22 GeV/c proton beam at the CERN accelerator. He, Li and Be particles which are produced in nuclear interactions of the neutrons with the target elements C, N and O of the plastic detector material are measured. Preliminary angle and range distributions and isotropic abundances of the secondary particles are discussed. (6 refs).

  2. Radiation hardness of silicon detectors for collider experiments

    International Nuclear Information System (INIS)

    Golutvin, I.; Cheremukhin, A.; Fefelova, E.

    1995-01-01

    The silicon planar detectors before and after fast neutron irradiation ( n o> = 1.35 MeV) at room temperature have been investigated. Maximal neutron fluence has been 8 · 10 13 cm -2 . The detectors have been manufactured of the high resistivity (1 : 10 k Ohm · cm) n-type float-zone silicon (FZ-Si) with the orientation supplied by two different producers: WACKER CHEMITRONIC and Zaporojie Titanium-Magnesium Factory (ZTMF). The influence of fast neutron irradiation of the main parameters of the starting silicon before the technological high temperature treatment has been investigated as well. 30 refs., 17 figs., 5 tabs

  3. Dosimetry in radiotherapy with natural diamond detectors

    International Nuclear Information System (INIS)

    De Angelis, C.; Onori, S.; Pacilio, M.; Cirrone, G.A.P.; Cuttone, G.; Raffaele, L.; Bucciolini, M.; Mazzocchi, S.

    2002-01-01

    There is wide interest in the use of diamond detectors for dosimetry in radiotherapy mainly because of the small dimensions, radiation hardness, nearly tissue equivalence of sensitive material and capability to deliver the dosimetric response 'on line'. In order to assess the dosimetric properties of PTW Riga diamond detectors type 60003, experiments were performed in conventional (high energy photon and electron) therapy beams as well as in proton therapy beams. The main detector features investigated were reproducibility of response, dose-signal relationship, temperature dependence, dose-rate dependence, energy dependence and angular dependence. High energy photons (6-25 MV) and electrons (6-22 MeV), available at the Radiotherapy Department of the Florence University, were used for investigating the general properties. Two different PTW diamond detectors of the same type were used to evidence inter-sample differences. The beam quality dependence of the detector response is probably the most critical point and this statement is of particular relevance for proton dosimetry since the proton LET changes with depth in the medium. Mainly because of the little information available on detector sensitivity variations with beam energy, the use of diamonds for clinical proton dosimetry is not widespread. In two recent papers a sensitivity dependence on proton energy of a natural PTW diamond detector has been reported. Due to the necessity to characterise each diamond detector individually the PTW Riga natural diamond detector in operation at the LNS-INFN, Catania, Italy was tested with the local proton beam line. This experiment is of main concern because this proton beam, produced by a superconducting cyclotron and used for ocular melanoma treatment, is available only since 2001 (CATANA beam). The first patient has been treated in February 2002. Proton irradiations were performed with non modulated and modulated 62 MeV beams. Attention was focused on diamond sensitivity

  4. Calibration and alignment of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    Stoye, M.

    2007-07-01

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  5. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  6. Performance studies under high irradiation and ageing properties of resistive bulk Micromegas chambers at the new CERN Gamma Irradiation Facility

    International Nuclear Information System (INIS)

    Sidiropoulou, O.; Gonzalez, B. Alvarez; Bianco, M.; Farina, E.M.; Iengo, P.; Longo, L.; Pfeiffer, D.; Wotschack, J.

    2017-01-01

    Resistive bulk Micromegas chambers, produced at CERN, have been installed at the new CERN Gamma Irradiation Facility (GIF++) in order to study the effects of ageing and to evaluate the detector behaviour under high irradiation. The chambers have an active area of 10×10 cm 2 , strip pitch of 400 μm and an amplification gap of 128 μm. We present the detector performance as a function of the background rate of up to 20 MHz/cm 2 . - Highlights: • Small-size resistive bulk Micromegas detectors have been exposed to the new GIF++. • 9 months irradiation to γ up to 20 Mhz/cm 2 . 0.09 C/cm 2 collected integrated charge. • Νo degradation of the detector performance was observed. • Muon tracks successfully reconstructed up to 68 kHz/cm 2 gamma background. • Higher background rates will be studied in the coming months.

  7. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  8. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  9. ion irradiation

    Indian Academy of Sciences (India)

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in ...

  10. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  11. Output characteristics of piezoelectric lead zirconate titanate detector using high-energy heavy-ion beam

    International Nuclear Information System (INIS)

    Takechi, Seiji; Sekiguchi, Masahiro; Miyachi, Takashi; Kobayashi, Masanori; Hattori, Maki; Okudaira, Osamu; Shibata, Hiromi; Fujii, Masayuki; Okada, Nagaya; Murakami, Takeshi; Uchihori, Yukio

    2014-01-01

    A radiation detector fabricated using piezoelectric lead zirconate titanate (PZT) has been studied by irradiating it with a 400 MeV/n xenon (Xe) beam. The beam diameter was controlled to change the irradiation conditions. It was found that the magnitude of the output observed from the PZT detector may be related to the number of Xe ions per unit area per unit time within the limits of the experimental conditions. -- Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • The beam diameter was controlled to change the irradiation conditions. • By the control, the number of Xe ions per one pulse was changed from ∼500 to ∼1500. • The output of the PZT detector was not always larger with more intense beam. • The energy of Xe ions per unit area per unit time may determine the output

  12. Fish irradiation

    International Nuclear Information System (INIS)

    Kovacs, J.; Tengumnuay, C.; Juangbhanich, C.

    1970-01-01

    Chub-mackerel was chosen for the study because they are the most common fish in Thailand. Preliminary investigations were conducted to determine the maximum radiation dose of gamma-rays by organoleptic tests. The samples were subjected to radiation at various doses up to 4 Mrad. Many experiments were conducted using other kinds of fish. The results showed that 1 Mrad would be the maximum acceptable dose for fish. Later, the influence of the radiation dose from 0.1-1 Mrad was studied in order to find the optimum acceptable dose for preservation of fish without off-flavour. For this purpose, the Hedonic scale was used. It was found that 0.2 and 0.5 Mrad gave the best result on Chub mackerel. The determinations of optimum dose, organoleptic, microbiological and trimethylamine content changes were done. The results showed that Chub mackerel irradiated at 0.2, 0.5 and 1 Mrad stored at 3 0 C for 71 days were still acceptable, on the contrary the untreated samples were found unacceptable at 14 days. The trimethylamine increment was significantly higher in the untreated samples. At 15 days storage, trimethylamine in the non-irradiated Chub-mackerel was about 10 times higher than the irradiated ones. At 51 and 79 days storage, about 13 times higher in the control samples than the irradiated samples except 0.1 Mrad. Only 2 times higher was found for the 0.1 Mrad. The microbiological results showed that the irradiation above 0.2 Mrad gave favorable extension of shelf-life of fish

  13. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  14. Chapter 2: Irradiators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    The chapter 2 presents the subjects: 1) gamma irradiators which includes: Category-I gamma irradiators (self-contained); Category-II gamma irradiators (panoramic and dry storage); Category-III gamma irradiators (self-contained in water); Category-IV gamma irradiators (panoramic and wet storage); source rack for Category-IV gamma irradiators; product transport system for Category-IV gamma irradiators; radiation shield for gamma irradiators; 2) accelerators which includes: Category-I Accelerators (shielded irradiator); Category-II Accelerators (irradiator inside a shielded room); Irradiation application examples.

  15. Aging measurements on triple-GEM detectors operated with $CF_{4}$-based gas mixtures

    CERN Document Server

    Alfonsi, M; De Simone, P; Murtas, F; Poli Lener, M P; Bonivento, W; Cardini, A; Raspino, D; Saitta, B; Pinci, D; Baccaro, S; 10.1016/j.nuclphysbps.2005.03.054

    2006-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV detectors performances have been measured with X-rays and with a 3 Ge V pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in a GEM detector during a strong irradiation.

  16. UV sensitivity of various solid state detectors

    International Nuclear Information System (INIS)

    Knezevic, Zeljka; Ranogajec-Komor, Maria; Miljanic, Saveta

    2008-01-01

    Full text: The light sensitivity is an important characteristic of solid state passive dosimeters used in individual, clinical and environmental dosimetry. Light sensitivity stands for the response directly induced by visible or UV light in a fully annealed material. For the above mentioned applications a negligible light sensitivity is an advantage. However, high light sensitivity and linear response allows the use of detectors as UV dosimeters. For this purpose various TL detectors and the glass element of the RPL dosemeter type SC-1 were systematically investigated after exposure to UV light (254 and 366 nm) as a function of time. The following solid state detectors were investigated relative to TLD-100: Li 2 B 4 O 7 :Cu,Ag,P LiF:Mg,Cu,P, LiF:Mg,Cu,Si, Al 2 O 3 :C and the glass element of RPL dosimeter. UV irradiations were performed with Camag UV lamp at 254 nm and at 366 nm. The illumination times were 5, 10 and 20 minutes. Day light illumination was also carried out at room temperature over time period of several hours up to 2 weeks. The UV light response of each detector was compared to the response obtained after irradiation with 137 Cs. Al 2 O 3 :C, showed high light sensitivity; after 10 minutes illumination with 254 nm UV light the response was equivalent to 130 mGy 137 Cs gamma irradiation. The 254 nm UV response of LiF:Mg,Cu,P (GR-200 A), as well as TLD-700H and Li 2 B 4 O 7 :Cu,Ag,P were proportional to the time of illumination. The responses after 10 min UV illumination were equivalent to 0.001 mGy, 0.01 mGy and 0.1 mGy 137 Cs gamma irradiation, respectively. The complete SC-1 RPL dosimeter is insensitive to light because the glass element is encapsulated in light protected holder throughout the automatic evaluation process following the annealing (irradiation, preheat, readout). The responses of the previously annealed glass element after 20 min illumination with 254 nm and 366 nm UV light were equivalent to 45μSv and 3 μSv of 137 Cs gamma

  17. Submicron position-sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Pugatch, V M; Rosenfeld, A B; Litovchenko, P G; Barabash, L I; Nemets, O F; Pavlenko, Yu N; Vasiliev, Yu O [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Nuclear Research

    1992-08-01

    A method has been developed to measure precisely the coordinates of charged particles incident between adjacent strips of a strip detector. The position sensitivity of an inter-strip gap has been studied by means of a pulsed laser beam and irradiation by [alpha]-particles of a [sup 226]Ra-source. The capacitive division of charge generated by the incident particle depends on the position of its track. Its coordinates were determined by two-dimensional amplitude analysis of the charges collected by neighbouring strips. This method of coordinate determination applied to studies of spatial and energy distributions of electromagnetic as well as charged particle beams (including radioactive ion beams) of low intensity could provide the highest level of the precision limited by the track dimensions of charged particles, i.e. percents of a micrometer. (orig.).

  18. Status of the Silicon Strip Detector at CMS

    CERN Document Server

    Simonis, H J

    2008-01-01

    The CMS Tracker is the world's largest silicon detector. It has only recently been moved underground and installed in the 4T solenoid. Prior to this there has been an intensive testing on the surface, which confirms that the detector system fully meets the design specifications. Irradiation studies with the sensor material shows that the system will survive for at least 10 years in the harsh radiation environment prevailing within the Tracker volume. The planning phase for SLHC as the successor of LHC, with a ten times higher luminosity at the same energy has already begun. First R\\&D studies for more robust detector materials and a new Tracker layout have started.

  19. Food irradiation: An update

    International Nuclear Information System (INIS)

    Morrison, Rosanna M.

    1984-01-01

    Recent regulatory and commercial activity regarding food irradiation is highlighted. The effects of irradiation, used to kill insects and microorganisms which cause food spoilage, are discussed. Special attention is given to the current regulatory status of food irradiation in the USA; proposed FDA regulation regarding the use of irradiation; pending irradiation legislation in the US Congress; and industrial applications of irradiation

  20. Industrial irradiation

    International Nuclear Information System (INIS)

    Stirling, Andrew

    1995-01-01

    Production lines for rubber gloves would not appear to have much in common with particle physics laboratories, but they both use accelerators. Electron beam irradiation is often used in industry to improve the quality of manufactured goods or to reduce production cost. Products range from computer disks, shrink packaging, tyres, cables, and plastics to hot water pipes. Some products, such as medical goods, cosmetics and certain foodstuffs, are sterilized in this way. In electron beam irradiation, electrons penetrate materials creating showers of low energy electrons. After many collisions these electrons have the correct energy to create chemically active sites. They may either break molecular bonds or activate a site which promotes a new chemical linkage. This industrial irradiation can be exploited in three ways: breaking down a biological molecule usually renders it useless and kills the organism; breaking an organic molecule can change its toxicity or function; and crosslinking a polymer can strengthen it. In addition to traditional gamma irradiation using isotopes, industrial irradiation uses three accelerator configurations, each type defining an energy range, and consequently the electron penetration depth. For energies up to 750 kV, the accelerator consists of a DC potential applied to a simple wire anode and the electrons extracted through a slot in a coaxially mounted cylindrical cathode. In the 1-5 MeV range, the Cockcroft-Walton or Dynamitron( R ) accelerators are normally used. To achieve the high potentials in these DC accelerators, insulating SF6 gas and large dimension vessels separate the anode and cathode; proprietary techniques distinguish the various commercial models available. Above 5 MeV, the size of DC accelerators render them impractical, and more compact radiofrequency-driven linear accelerators are used. Irradiation electron beams are actually 'sprayed' over the product using a magnetic deflection system. Lower energy beams of

  1. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  2. Performance of irradiated CVD diamond micro-strip sensors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S.V.; Thomson, G.B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15 /cm 2 ) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2x10 15 p/cm 2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9x10 15 π/cm 2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations

  3. Performance of irradiated CVD diamond micro-strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D. E-mail: dirk.meier@cern.ch; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S.V.; Thomson, G.B

    2002-01-11

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a {beta}-source and the performance before and after intense (>10{sup 15}/cm{sup 2}) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2x10{sup 15} p/cm{sup 2} lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9x10{sup 15} {pi}/cm{sup 2} lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  4. Performance of irradiated CVD diamond micro-strip sensors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a $\\beta$-source and the performance before and after intense ($>10^{15}/{\\rm cm^2}$) proton- and pion-irradiations. We find that low dose irradiations increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiations with protons ($2.2\\times 10^{15}~p/{\\rm cm^2}$) lowers the signal-to-noise ratio slightly. Intense irradiation with pions ($2.9\\times 10^{15}~\\pi/{\\rm cm^2}$) lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  5. Performance of irradiated CVD diamond micro-strip sensors

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S. V.; Thomson, G. B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15/cm 2) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p/ cm2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π/ cm2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  6. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Beerens, H [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France); Saint-Lebe, L

    1979-01-01

    Various aspects of food treatment by cobalt 60 or caesium 137 gamma radiation are reviewed. One of the main applications of irradiation on foodstuffs lies in its ability to kill micro-organisms, lethal doses being all the lower as the organism concerned is more complex. The effect on parasites is also spectacular. Doses of 200 to 300 krad are recommended to destroy all parasites with no survival period and no resistance phenomenon has ever been observed. The action of gamma radiation on macromolecules was also investigated, the bactericide treatment giving rise to side effects by transformation of food components. Three examples were studied: starch, nucleic acids and a whole food, the egg. The organoleptic aspect of irradiation was examined for different treated foods, then the physical transformations of unpasteurized, heat-pasteurized and radio-pasteurized eggs were compared. The report ends with a brief analysis of the toxicity and conditions of application of the treatment.

  7. Irradiation device

    International Nuclear Information System (INIS)

    Ransohoff, J.A.

    1984-01-01

    Carriers, after being loaded with product to be irradiated, are transported by an input-output conveyor system into an irradiation chamber where they are received in a horizontal arrangement on racks which may support different sizes and numbers of carriers. The racks are moved by a chamber conveyor system in an endless rectangular path about a radiation source. Packers shift the carriers on the racks to maintain nearest proximity to the radiation source. The carriers are shifted in position on each rack during successive rack cycles to produce even radiation exposure. The carriers may be loaded singly onto successive racks during a first cycle of movement thereof about the source, with loading of additional carriers, and/or unloading of carriers, onto each rack occurring on subsequent rack cycles of movement

  8. Food irradiation

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1997-01-01

    Food can be provided with extra beneficial properties by physical processing. These benefits include a reduced possibility of food poisoning, or an increased life of the food. We are familiar with pasteurisation of milk, drying of vegetables, and canning of fruit. These physical processes work because the food absorbs energy during treatment which brings about the changes needed. The energy absorbed in these examples is heat energy. Food irradiation is a less familiar process. It produces similar benefits to other processes and it can sometimes be applied with additional advantages over conventional processing. For example, because irradiation causes little heating, foods may look and taste more natural. Also, treatment can take place with the food in its final plastic wrappers, reducing the risk of re-contamination. (author). 1 ref., 4 figs., 1 tab

  9. Food irradiation

    International Nuclear Information System (INIS)

    Beerens, H.; Saint-Lebe, L.

    1979-01-01

    Various aspects of food treatment by cobalt 60 or caesium 137 gamma radiation are reviewed. One of the main applications of irradiation on foodstuffs lies in its ability to kill micro-organisms, lethal doses being all the lower as the organism concerned is more complex. The effect on parasites is also spectacular. Doses of 200 to 300 krad are recommended to destroy all parasites with no survival period and no resistance phenomenon has ever been observed. The action of gamma radiation on macromolecules was also investigated, the bactericide treatment giving rise to side effects by transformation of food components. Three examples were studied: starch, nucleic acids and a whole food, the egg. The organoleptic aspect of irradiation was examined for different treated foods, then the physical transformations of unpasteurized, heat-pasteurized and radio-pasteurized eggs were compared. The report ends with a brief analysis of the toxicity and conditions of application of the treatment [fr

  10. Endolymphatic irradiation

    International Nuclear Information System (INIS)

    Galvao, M.M.; Ianhez, L.E.; Sabbaga, E.

    1982-01-01

    The authors analysed the clinical evolution and the result of renal transplantation some years after irradiation in 24 patients (group I) who received endolymphatic 131 I as a pre-transplantation immunesuppresive measure. The control group (group II) consisted of 24 non-irradiated patients comparable to group I in age, sex, primary disease, type of donor and immunesuppressive therapy. Significant differences were observed between the two groups regarding such factors a incidence and reversibility of rejection crises in the first 60 post-transplantation days, loss of kidney due to rejection, and dosage of azathioprine. The authors conclude that this method, besides being harmless, has prolonged immunesuppressive action, its administration being advised for receptores of cadaver kidneys, mainly those who show positive cross-match against HLA antigens for painel. (Author) [pt

  11. Recent Advances in Diamond Detectors

    CERN Document Server

    Trischuk, W.

    2008-01-01

    With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2012, ATLAS and CMS are planning for detector upgrades for their innermost layers requiring radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is now planned for all LHC experiments. This material is now being considered as an alternate sensor for use very close to the interaction region of the super LHC where the most extreme radiation conditions will exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences available. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10^16 protons/cm^2 showing that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one t...

  12. Degradation of silicon AC-coupled microstrip detectors induced by radiation

    Science.gov (United States)

    Bacchetta, N.; Bisello, D.; Canali, C.; Fuochi, P. G.; Gotra, Y.; Paccagnella, A.; Verzellesi, G.

    1993-12-01

    Results are presented showing the radiation response of AC-coupled FOXFET biased microstrip detectors and related test patterns to be used in the microvertex detector of the CDF experiment at Fermi National Laboratory. Radiation tolerance of detectors to gamma and proton irradiation has been tested, and the radiation-induced variations of the DC electrical parameters have been analyzed. The long-term postirradiation behavior of detector characteristics has been studied, and the relevant room-temperature annealing phenomena have been examined. The main radiation damage effects after gamma or proton irradiation of FOXFET biased microstrip detectors consist of an increase in the total leakage current, while both the detector dynamic resistance and FOXFET switching voltage decrease.

  13. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  14. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  15. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  16. Development of a 3D CZT detector prototype for Laue Lens telescope

    DEFF Research Database (Denmark)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano

    2010-01-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode...

  17. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    International Nuclear Information System (INIS)

    Bacchetta, N.; Bisello, D.; Candelori, A.; Rold, M. Da; Descovich, M.; Kaminski, A.; Messineo, A.; Rizzo, F.; Verzellesi, G.

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC

  18. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  19. Detector Control System and Efficiency Performance for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad; Cimmino, A; Crucy, S; Fagot, A; Rios, A A O; Tytgat, M; Zaganidis, N; Aly, S; Assran, Y; Radi, A; Sayed, A; Singh, G; Abbrescia, M; Iaselli, G; Maggi, M; Pugliese, G; Verwilligen, P; Doninck, W V; Colafranceschi, S; Sharma, A; Benussi, L; Bianco, S; Piccolo, D; Primavera, F; Bhatnagar, V; Kumari, R; Mehta, A; Singh, J; Ahmad, A; Asghar, M I; Muhammad, S; Awan, I A; Hoorani, H R; Ahmed, W; Shahzad, H; Shah, M A; Cho, S W; Choi, S Y; Hong, B; Kang, M H; Lee, K S; Lim, J H; Park, S K; Kim, M; Goutzvitz, M; Grenier, G; Lagarde, F; Estrada, C U; Pedraza, I; Severiano, C B; Carrillo Moreno, S; Vazquez Valencia, F; Pant, L M; Buontempo, S; Cavallo, N; Esposito, M; Fabozzi, F; Lanza, G; Lista, L; Meola, S; Merola, M; Orso, I; Paolucci, P; Thyssen, F; Braghieri, A; Magnani, A; Montagna, P; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Ban, Y; Qian, S J; Choi, M; Choi, Y; Goh, J; Kim, D; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Lomidze, D; Bagaturia, I; Avila, C; Cabrera, A; Sanabria, J C; Crotty, I; Vaitkus, J

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon group built several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  20. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  1. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  2. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  3. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  4. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  5. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  6. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  7. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  8. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  9. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  10. ESR investigataions of electron-beam irradiated cellulose nitrate

    International Nuclear Information System (INIS)

    Chipara, M.I.; Catana, D.; Grecu, V.; Romero, J.R.; Chipara, D.

    1994-01-01

    Electron spin resonance investigations on an electron-beam irradiated solid state nuclear track detector, based on cellulose nitrate (KODAK LR-311) are reported. The nature of free radicals induced in polymers by irradiation is discussed. The dependence of resonance spectral parameters on irradiation times, as well as on storage time and temperature, is studied. The experimental results are related to the stability of latent tracks and its is concluded that the free radicals induced by irradiation are located within the latent tracks. We have shown that both latent track and free radical thermal fading obey an Arrhenius-like dependence, with the same activation energy. (Author)

  11. ESR investigataions of electron-beam irradiated cellulose nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Catana, D. [Institute of Atomic Physics, Bucharest (Romania); Grecu, V.; Romero, J.R. [Bucharest Univ. (Romania). Faculty of Physics; Coca, S. [Chemical Research Inst., Bucharest (Romania); Chipara, D. [Research Inst. for Electrotechnics, Bucharest (Romania)

    1994-10-01

    Electron spin resonance investigations on an electron-beam irradiated solid state nuclear track detector, based on cellulose nitrate (KODAK LR-311) are reported. The nature of free radicals induced in polymers by irradiation is discussed. The dependence of resonance spectral parameters on irradiation times, as well as on storage time and temperature, is studied. The experimental results are related to the stability of latent tracks and its is concluded that the free radicals induced by irradiation are located within the latent tracks. We have shown that both latent track and free radical thermal fading obey an Arrhenius-like dependence, with the same activation energy. (Author).

  12. ESR investigations of electron-beam irradiated cellulose nitrate

    International Nuclear Information System (INIS)

    Chipara, M.I.; Grecu, V.; Catana, D.; Romero, J.R.; Coca, S.; Chipara, M.D.

    1994-01-01

    Electron spin resonance investigations on an electron-beam irradiated solid state nuclear track detector, based on cellulose nitrate (KODAK LR-311), are reported. The nature of free radicals induced in polymers by irradiation is discussed. The dependence of resonance spectral parameters on irradiation times, as well as on storage time and temperature, is studied. The experimental results are related to the stability of latent tracks and it is concluded that the free radicals induced by irradiation are located within the latent tracks. We have shown that both latent track and free radical thermal fading obey an Arrhenius-like dependence, with the same activation energy. (Author)

  13. Critical angles for fission fragment registrations in some solid state track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A D; Bahromi, I I; Beresina, N V [AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki; and others

    1980-03-01

    In studies of the registration efficiency of various solid state track detectors (polycarbonate, polyethyleneterephthalate, cellulose nitrate and muscovite) the detectors were irradiated with spontaneous fission fragments from /sup 252/Cf and with fission fragments from /sup 235/U separated according to mass and energy. Experimental details are given. Critical angles for the registration of fission fragments in the various detectors are given for specified energies and masses.

  14. Operation of a hemispherical detector for LET measurements

    International Nuclear Information System (INIS)

    Schell, M.C.; DeLuca, P.M. Jr.; Pearson, D.W.

    1982-01-01

    A hemispherical ΔE/E detector has been constructed and tested for the measurement of linear-energy-transfer distributions of charged particles induced by fast neutrons. The initial performance test results and LET distributions from 14.8-MeV monoenergetic neutron irradiation in free space of carbon, lead, and Al50-plastic are presented

  15. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  16. Development of floating strip micromegas detectors

    International Nuclear Information System (INIS)

    Bortfeldt, Jonathan

    2014-01-01

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single

  17. Research on the measurement of the ultraviolet irradiance in the xenon lamp aging test chamber

    Science.gov (United States)

    Ji, Muyao; Li, Tiecheng; Lin, Fangsheng; Yin, Dejin; Cheng, Weihai; Huang, Biyong; Lai, Lei; Xia, Ming

    2018-01-01

    This paper briefly introduces the methods of calibrating the irradiance in the Xenon lamp aging test chamber. And the irradiance under ultraviolet region is mainly researched. Three different detectors whose response wave range are respectively UVA (320 400nm), UVB (275 330nm) and UVA+B (280 400nm) are used in the experiment. Through comparing the measuring results with different detectors under the same xenon lamp source, we discuss the difference between UVA, UVB and UVA+B on the basis of the spectrum of the xenon lamp and the response curve of the detectors. We also point out the possible error source, when use these detectors to calibrate the chamber.

  18. Application of Faraday cup array detector in measurement of electron-beam distribution homogeneity

    International Nuclear Information System (INIS)

    Xu Zhiguo; Wang Jinchuan; Xiao Guoqing; Guo Zhongyan; Wu Lijie; Mao Ruishi; Zhang Li

    2005-01-01

    It is described that a kind of Faraday cup array detector, which consists of Faraday cup, suppressor electrode insulation PCB board, Base etc. The homogeneity of electron-beam distribution is measured and the absorbed dose for the irradiated sample is calculated. The results above provide the important parameters for the irradiation experiment and the improvement for the quality of electron beam. (authors)

  19. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  20. Nuclear track detector kit for use in teaching

    International Nuclear Information System (INIS)

    Medveczky, L.; Somogyi, G.

    1986-01-01

    By the use of solid state nuclear track detectors (SSNTDs) one may carry out several useful and impressive educational experiments and demonstrations to illustrate different phenomena when teaching of nuclear physics. Realizing this situation the authors have published, since 1970, reports on several experiments for teaching demonstrations. Based on the authors instructions, a factory in Hungary (TANFRT, National Manufacturers and Suppliers of School Equipment, Budapest) constructed a kit for the use of nuclear track detectors in teaching. The portable kit contains the following items: alpha-emitting weak sources, solid state nuclear track detectors (unirradiated, irradiated, unetched and etched sheets), simple tools for carrying out experiments (facilities for irradiation and etching, etc.), slides showing photos of typical etch-tracks of light and heavy nuclei, user manual. By the help of the kit both pupils and teachers can perform various useful experiments and/or demonstrations. (author)

  1. Heavy ion measurements by use of chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1980-01-01

    In order to test whether the threshold system polyvinyl alcohol/methyl organe/chloral hydrate/sodium tetraborate permits quantitative detection of individual particles, the chemical detector was irradiated at the JINR U-200 cyclotron with 4 He, 12 C, 18 O, 22 Ne ions having different LET. Irradiations were performed with detectors of four different borax concentrations (the chloral hydrate concentration being constant). The colour change dose Dsub(u) increases linearly with increasing borax concentration and at constant borax concentration with increasing LET. Hence it follows that the G value of dehydrochlorination decreases with increasing LET. Fluence ranges measurable with detectors of different composition are given for the heavy ions studied. (author)

  2. Nuclear track detector kit for use in teaching

    Energy Technology Data Exchange (ETDEWEB)

    Medveczky, L.; Somogyi, G.; Nagy, M.

    1986-01-01

    By the use of solid state nuclear track detectors (SSNTDs) one may carry out several useful and impressive educational experiments and demonstrations to illustrate different phenomena when teaching of nuclear physics. Realizing this situation the authors have published, since 1970, reports on several experiments for teaching demonstrations. Based on the authors instructions, a factory in Hungary (TANFRT, National Manufacturers and Suppliers of School Equipment, Budapest) constructed a kit for the use of nuclear track detectors in teaching. The portable kit contains the following items: alpha-emitting weak sources, solid state nuclear track detectors (unirradiated, irradiated, unetched and etched sheets), simple tools for carrying out experiments (facilities for irradiation and etching, etc.), slides showing photos of typical etch-tracks of light and heavy nuclei, user manual. By the help of the kit both pupils and teachers can perform various useful experiments and/or demonstrations.

  3. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    International Nuclear Information System (INIS)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro; Nakai, Katsuhiko

    1998-01-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  4. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Nakai, Katsuhiko

    1998-08-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  5. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  6. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  7. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  8. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  9. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  10. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  11. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  12. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  13. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Onderwater, C. J. G.; Pellegrino, A.; Wilschut, H. W.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are

  14. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  15. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  16. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  17. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  18. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  19. Radiation resistance of γ-detector modules at the labelling station of labelled neutrino complex

    International Nuclear Information System (INIS)

    Pishchal'nikov, Yu.M.

    1986-01-01

    The data on efficiency and transparency decrease of various types of lightpipe-spectrum (LSS) and scintillation plates on the basis of PMMA and polystyrene under the dose irradiation ranging from 10 4 to 3x10 6 rad have been obtained. Sample irradiation was carried out in a wide muon beam and with the intensive radioactie source 60 Co. The deterioration in the γ-detector (TNF) energy resolution due to the radiation damage of scintillators and (LSS) is discussed. Radiation damage of the lead glass detectors (the GAMS detector) and ''sandwich'' type modules have been compared

  20. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  1. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  2. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  3. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  4. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  5. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  6. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  7. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  8. Double-sided FoxFET biased microstrip detectors

    International Nuclear Information System (INIS)

    Allport, P.P.; Carter, J.R.; Dunwoody, U.C.; Gibson, V.; Goodrick, M.J.; Beck, G.A.; Carter, A.A.; Martin, A.J.; Pritchard, T.W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Wilburn, C.D.

    1994-01-01

    The use of the field effect transistor, integrated onto AC-coupled silicon detectors, as a novel technique for biasing the implanted p + strips [P.P. Allport et al., Nucl. Instr. and Meth. A 310 (1991) 155], was first employed for the OPAL microvertex detector. The detector has proved very successful, with ladders of three single-sided detectors showing signal/noise of 22 : 1 with MX5 readout electronics [P.P. Allport et al., Nucl. Instr. and Meth. A 324 (1993) 34; Nucl. Phys. B (Proc. Suppl.) 32 (1993) 208]. This technique has been extended to bias also the n + strips and p strips on the ohmic side of a double-sided detector [P.P. Allport et al., Nucl. Instr. and Meth. A, to be submitted]. Full-size detectors with orthogonal readout have been fabricated by Micron and tested with MX7 readout on both sides. Both the junction and ohmic sides of these detectors have similar signal/noise values to those for single-sided wafers [P.P. Allport et al., Nucl. Instr. and Meth. A, to be submitted]. Test structures have been irradiated with beta particles to study the radiation hardness of the devices, and probe station electrical measurements of the detectors and test structures are presented. ((orig.))

  9. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  10. HVCMOS 35v1 Detector Characterization Using an IR eTCT Setup

    CERN Document Server

    Laroche, Stewart

    2015-01-01

    Silicon detectors are exposed to very high fluences (in excess of 1E16 particles*cm-2) in experiments like ATLAS and CMS, so it is paramount that their behavior is understood even after irradiation. To that end, irradiated prototype HVCMOS detectors were characterized using eTCT and IV curves. It was found that acceptor removal via irradiation increased the size of the charge collection region. At sufficient fluences, trap introduction became the dominant effect, and the charge collection region shrinks again.

  11. Clinical dosimeter based on diamond detector

    International Nuclear Information System (INIS)

    Chervjakov, A.M.; Ljalina, L.I.; Ljutina, G.J.; Khrunov, V.S.; Martynov, S.S.; Popov, S.A.

    2002-01-01

    Full text: Diamond detectors have found application in the relative dosimetry and their parameters have been described elsewhere. Today, the exclusive producer of the diamond detector is the Institute of Physical and Technical Problems, Russia, and exclusive dealer is the PTW-Freiburg. The main features of the diamond detector are good long time stability, suitable range of the energy dependence for photon and electron beams in clinical use, independence of the measured date from temperature and pressure. The high sensitivity per volume unit of the diamond detector (1500 times higher than ionization chamber) allowed using detectors with very small volume (1-5 mm 3 ) and rather simple electronics for ionization current registration. The new dosimeter consists of the diamond detector itself, 40 m registration cable, pre-amplifier, micro-processor block for data handling and absorbed dose calculation using the calibration factor of diamond detector in terms of absorbed dose to water. Dosimeter has the possibility to work with PC using standard RS-232 interface. The main features of the dosimeter are as follows: the range of dose rate measurements for photon, electron and proton beams is within 0.01-1.0 Gy/s; the energy ranges for photons are 0.08-25 MeV, and 4-25 MeV for electrons, with energy dependence no more than ±2%; the main uncertainty of the dose measurements is within ±2%; the pre-irradiation dose for diamond detector is no more than 10 Gy; the sensitive volume of the used diamond detectors is within 1-5 mm 3 ; the weight of the dosimeter no more than 2 kg. The new dosimeter was evaluated at the Central Research Institute of Roentgenology and Radiology, St. Petersburg, Russia to verify its performance. The dosimeter was used as a reference instrument for dose measurements at Cobalt-60 unit, SL75-5 and SL-20 linear accelerators and the test results have shown that the device have met the specifications. It is planned to produce dosimeter as serial device by

  12. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  13. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    Science.gov (United States)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9-4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9-4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  14. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  15. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  16. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  17. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  18. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  19. Biology of food irradiation

    International Nuclear Information System (INIS)

    Murray, D.R.

    1990-01-01

    The author presents his arguments for food scientists and biologists that the hazards of food irradiation outweigh the benefits. The subject is discussed in the following sections: introduction (units, mutagenesis, seed viability), history of food irradiation, effects of irradiation on organoleptic qualities of staple foods, radiolytic products and selective destruction of nutrients, production of microbial toxins in stored irradiated foods and loss of quality in wheat, deleterious consequences of eating irradiated foods, misrepresentation of the facts about food irradiation. (author)

  20. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  1. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  2. Silicon strip detectors for the ATLAS upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The Large Hadron Collider at CERN will extend its current physics program by increasing the peak luminosity by one order of magnitude. For ATLAS, one of the two general-purpose experiments of the LHC, an upgrade scenario will imply the complete replacement of its internal tracker due to the harsh conditions in terms of particle rates and radiation doses. New radiation-hard prototype n-in-p silicon sensors have been produced for the short-strip region of the future ATLAS tracker. The sensors have been irradiated up to the fluences expected in the high-luminous LHC collider. This paper summarizes recent results on the performance of the irradiated n-in-p detectors.

  3. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  4. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  5. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  6. The AGILE anticoincidence detector

    International Nuclear Information System (INIS)

    Perotti, F.; Fiorini, M.; Incorvaia, S.; Mattaini, E.; Sant'Ambrogio, E.

    2006-01-01

    AGILE is a γ-ray astrophysics space mission which will operate, starting from 2006, in the 30 MeV-50 GeV energy range with imaging capability also in the 15-45 keV energy band. In order to achieve the required detection sensitivity, all AGILE detectors are surrounded by an anticoincidence detector aimed at charged particle background rejection with an inefficiency as low as 10 -4 . In this work, the design and the structure of this anticoincidence detector are presented, as well as its performances in terms of charged particles detection inefficiency as derived from extensive calibrations performed at CERN PS

  7. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  8. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  9. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  10. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  11. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  12. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  13. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  14. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  15. Neutron irradiation of RPCs for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2003-01-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10**8 n cm**-**2 s**- **1), integrating values of dose and fluence equivalent to 10 LHC- years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  16. Neutron irradiation of RPCs for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-08-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10{sup 8} n cm{sup -2} s{sup -1}), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  17. Dynamic Efficiency Measurements for Irradiated ATLAS Pixel Single Chip Modules

    CERN Document Server

    Pfaff, Mike; Grosse-Knetter, Jorn

    2011-01-01

    The ATLAS pixel detector is the innermost subdetector of the ATLAS experiment. Due to this, the pixel detector has to be particularly radiation hard. In this diploma thesis effects on the sensor and the electronics which are caused by irradiation are examined. It is shown how the behaviour changes between an unirradiated sample and a irradiated sample, which was treated with the same radiation dose that is expected at the end of the lifetime of ATLAS. For this study a laser system, which is used for dynamic efficiency measurements was constructed. Furthermore, the behaviour of the noise during the detection of a particle was evaluated studied.

  18. Thermal Properties of the Silicon Microstrip Endcap Detector

    CERN Document Server

    Feld, Lutz; Hammarström, R

    1998-01-01

    Irradiated silicon detectors must be cooled in order to guarantee stable short and long term operation. Using the SiF1 milestone prototype we have performed a detailed analysis of the thermal properties of the silicon microstrip endcap detector. The strongest constraint on the cooling system is shown to be set by the need to avoid thermal runaway of the silicon detectors. We show that, taking into account the radiation damage to the silicon after 10 years of LHC operation and including some safety margin, the detector will need a cooling fluid temperature of around -20 C. The highest temperature on the silicon will then be in the range -15 C to -10 C. This sets an upper limit on the ambient temperature in the tracker volume.

  19. Spent-fuel characterization with small CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, R. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: Reinhard.Berndt@jrc.it; Mortreau, P. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Va) (Italy)

    2006-08-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections.

  20. Spent-fuel characterization with small CZT detectors

    International Nuclear Information System (INIS)

    Berndt, R.; Mortreau, P.

    2006-01-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections

  1. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  2. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  3. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  4. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    International Nuclear Information System (INIS)

    Johansen, Lars Gimmestad

    2005-06-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  5. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  6. Training detector as simulator of alpha detector

    International Nuclear Information System (INIS)

    Tirosh, D.; Duvniz, E.; Assido, H.; Barak, D.; Paran, J.

    1997-01-01

    Alpha contamination is a common phenomena in radiation research laboratories and other sites. Training staff to properly detect and control alpha contamination, present special problems. In order to train health physics personnel, while using alpha sources, both the trainers and the trainees are inevitably exposed to alpha contamination. This fact of course, comes in conflict with safety principles. In order to overcome these difficulties, a training detector was developed, built and successfully tested. (authors)

  7. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  8. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  9. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  10. Sensitive detectors in HPLC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Detection of sample components in HPLC is difficult for many reasons; the key difficulty is the mobile phase which usually has properties similar to the solute. A variety of detectors have been developed for use in HPLC based on one of the above approaches; however, the search is still continuing for an ideal or universal detector. A universal detector should have the following characteristics: (1) responds to all solutes or has predictable specificity; (2) high detectability and the same predictable response; (3) fast response; (4) wide range of linearity; (5) unaffected by changes in temperature and mobile-phase flow; (6) responds independently of the mobile phase; (7) makes no contribution to extracolumn band broadening; (8) reliable and convenient to use; (9) nondestructive to the solute; (10) provides qualitative information on the detected peak. Unfortunately, no available HPLC detector possesses all these properties. 145 refs

  11. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  12. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  13. New detector techniques

    CERN Document Server

    Iarocci, Enzo

    1994-03-14

    The intense R&D effort being carried out in view of LHC has given rise in a relatively short time to a wide spectrum of new detector concepts and technologies. Subject of the lectures will be some of the most interesting new ideas and developments, in the field of noble liquid, crystal and scintillating fiber trackers. The emphasis will be on the basic aspects of detector operation.

  14. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  15. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  16. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Thorndike, A.

    1976-01-01

    The study group met from June 7 to 11, 1976, with the dual purpose of reviewing an earlier Lepton Detector report in order to resolve some of the remaining design problems and of considering possible alternatives. Since the role of this group was primarily that of providing a critique of the earlier work, the reader is referred to that earlier paper for the general motivation and design of the detector. Problems studied at this session are described

  17. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  18. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity measurements in ATLAS. Most changes were motivated by the number of interactions per bunch-crossing and the 25 ns bunch-spacing expected in LHC RUN II (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2

  19. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  20. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  1. Performances and ageing study of resistive-anodes Micromegas detectors for HL-LHC environment

    CERN Document Server

    Jeanneau, F; Attié, D; Boyer, M; Derré, J; Fanourakis, G; Ferrer-Ribas, E; Galán, J; Gazis, E; Geralis, T; Giganon, A; Giomataris, I; Herlant, S; Manjarrés, J; Ntomari, E; Schune, Ph; Titov, M; Tsipolitis, G

    2012-01-01

    With the tenfold luminosity increase envisaged at the HL-LHC, the background (photons, neutrons, ...) and the event pile-up probability are expected to increase in proportion in the different experiments, especially in the forward regions like, for instance, the muons chambers of the ATLAS detector. Detectors based on the Micromegas principle should be good alternatives for the detector upgrade in the HL-LHC framework because of a good spatial ( 98%) can be achieved with resistive-anode micromegas detector. An X-rays irradiation has been also performed, showing no ageing effect after more than 21 days exposure and an integrated charge of almost 1C.

  2. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  3. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  4. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  5. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  6. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  7. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  8. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  9. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  10. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  11. The Impact of Different Control Techniques of Industrial Irradiation Processing Units (Cobalt 60 Irradiator) on Maintaining Safety for Radiation and Environment

    International Nuclear Information System (INIS)

    Keshek, A. B.

    2010-01-01

    Negative results were caused by fire events inside and outside the industrial irradiation facilities by Co 60 irradiators. It included bad effects on equipment cables, electrical components, product boxes, products, fire detectors radiation detectors various radiation concrete shielding and big volumes of smoke. Big volumes of water and water spray were used to resist and to cool fire inside irradiation facilities. Flooded water was collected on the floor of the irradiation room, it tranced through maze legs to outside the main door and through the electrical tunnels casing big damage outside irradiation unit. The work show two different designs, the first system is the cleaner agent fire suppression by carbon dioxide. CO 2 containers are located outside irradiation concrete facility, and attached by special metallic pipes system. By fire detector and automatic control valves maintain CO 2 to suppress fire inside irradiation room and maintain clean agent fire suppression. The second system depend on Nuclear Regulatory commission C.F.R 10 of 2005 to prevent flooding and trance. The need to design a new system which trances the excessive water from inside irradiation room and to prevent it from escaping to outside irradiation facility during resisting fire by water curtion the excessive water is escaped from the storage pool by electrical pump; the second line will trance the excessive water outside the main building to store inside separated tank

  12. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  13. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  14. Implantation of total body irradiation in radiotherapy

    International Nuclear Information System (INIS)

    Habitzreuter, Angela Beatriz

    2010-01-01

    Before implementing a treatment technique, the characteristics of the beam under irradiation conditions must be well acknowledged and studied. Each one of the parameters used to calculate the dose has to be measured and validated before its utilization in clinical practice. This is particularly necessary when dealing with special techniques. In this work, all necessary parameters and measurements are described for the total body irradiation implementation in facilities designed for conventional treatments that make use of unconventional geometries to generate desired enlarged field sizes. Furthermore, this work presents commissioning data of this modality at Hospital das Clinicas of Sao Paulo using comparison of three detectors types for measurements of entrance dose during total body irradiation treatment. (author)

  15. Silicon carbide and its use as a radiation detector material

    International Nuclear Information System (INIS)

    Nava, F; Bertuccio, G; Cavallini, A; Vittone, E

    2008-01-01

    We present a comprehensive review of the properties of the epitaxial 4H silicon carbide polytype (4H–SiC). Particular emphasis is placed on those aspects of this material related to room, high-temperature and harsh environment ionizing radiation detector operation. A review of the characterization methods and electrical contacting issues and how these are related to detector performance is presented. The most recent data on charge transport parameters across the Schottky barrier and how these are related to radiation spectrometer performance are presented. Experimental results on pixel detectors having equivalent noise energies of 144 eV FWHM (7.8 electrons rms) and 196 eV FWHM at +27 °C and +100 °C, respectively, are reported. Results of studying the radiation resistance of 4H–SiC are analysed. The data on the ionization energies, capture cross section, deep-level centre concentrations and their plausible structures formed in SiC as a result of irradiation with various particles are reviewed. The emphasis is placed on the study of the 1 MeV neutron irradiation, since these thermal particles seem to play the main role in the detector degradation. An accurate electrical characterization of the induced deep-level centres by means of PICTS technique has allowed one to identify which play the main role in the detector degradation. (topical review)

  16. Self-powered in-core detectors of cobalt type

    International Nuclear Information System (INIS)

    Jonsson, Georg

    1975-01-01

    Testing and development of self-powered neutron detectors with a cobalt emitter is described. Long term irradiation at 400 deg C is expected to indicate insulation quality, change in calibration and 60 Co build-up. Dynamic tests to investigate possible transient effects due to temperature changes are being performed on a number of detectors up to about 600 deg C. A long term irradiation at low temperature has been terminated after 4.5 years. On completion, neutron dose was estimated to be 5.6 x 10 21 nvt and the 60 Co background was 9.3 % of the full flux signal. A recently introduced long term test is expected to provide data on instability effects due to 61 Co. For a BWR in-core detector installation, the main advantage of cobalt detectors, apart from the small size, appears to be long life. Development work is being done on detectors with vanadium-cobalt emitters, electronic separation of fast and delayed signals and reduction of gamma sensitivity. (O.T.)

  17. Radiation hardness of thin Low Gain Avalanche Detectors

    Science.gov (United States)

    Kramberger, G.; Carulla, M.; Cavallaro, E.; Cindro, V.; Flores, D.; Galloway, Z.; Grinstein, S.; Hidalgo, S.; Fadeyev, V.; Lange, J.; Mandić, I.; Medin, G.; Merlos, A.; McKinney-Martinez, F.; Mikuž, M.; Quirion, D.; Pellegrini, G.; Petek, M.; Sadrozinski, H. F.-W.; Seiden, A.; Zavrtanik, M.

    2018-05-01

    Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 μm). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5 ṡ 1015 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (∼300 μm) and offer larger charge collection with respect to detectors without gain layer for fluences gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors.

  18. Perspective on food irradiation

    International Nuclear Information System (INIS)

    Newsome, R.L.

    1987-01-01

    A brief review summarizes current scientific information on the safety and efficacy of irradiation processing of foods. Attention is focused on: specifics of the irradiation process and its effectiveness in food preservation; the historical development of food irradiation technology in the US; the response of the Institute of Food Technologists to proposed FDA guidelines for food irradiation; the potential uses of irradiation in the US food industry; and the findings of the absence of toxins and of unaltered nutrient density (except possibly for fats) in irradiated foods. The misconceptions of consumers concerning perceived hazards associated with food irradiation, as related to consumer acceptance, also are addressed

  19. Effect of SiO$_{2}$ passivating layer in segmented silicon planar detectors on the detector response

    CERN Document Server

    Verbitskaya, Elena; Eremin, Vladimir; Golubkov, S; Konkov, K; Roe, Shaun; Ruggiero, G; Sidorov, A; Weilhammer, Peter

    2004-01-01

    Silicon detectors with a fine segmentation (micropixel and microstrip) are the main type of detectors used in the inner trackers of LHC experiments. Due to the high luminosity of the LHC machines they are required to have a fast response to fit the short shaping time of 25 ns and to be radiation hard. Evaluation of silicon microstrip detectors developed for the ATLAS silicon tracker and carried out under collaboration of CERN and PTI has shown the reversal of the pulse polarity in the detector response to short- range radiation. Since the negative signal is of about 30% of the normal positive one, the effect strongly reduces the charge collection efficiency in irradiated detectors. The investigation presents the consideration on the origin of a negative response in Si microstrip detectors and the experimental proof of the model. The study of the effect has been carried out using "baby" strip detectors with a special design: each strip has a window in a metallization, which covers the p/sup +/ implant. The sca...

  20. The 3rd irradiation test plan of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Park, J. H. and others

    2001-05-01

    The objective of the 3rd irradiation test of DUPIC fuel at the HANARO is to estimate the in-core behaviour of a DUPIC pellet that is irradiated up to more than average burnup of CANDU fuel. The irradiation of DUPIC fuel is planned to start at May 21, 2001, and will be continued at least for 8 months. The burnup of DUPIC fuel through this irradiation test is thought to be more than 7,000 MWd/tHE. The DUPIC irradiation rig instrumented with three SPN detectors will be used to accumulate the experience for the instrumented irradiation and to estimate the burnup of irradiated DUPIC fuel more accurately. Under normal operating condition, the maximum linear power of DUPIC fuel was estimated as 55.06 kW/m, and the centerline temperature of a pellet was calculated as 2510 deg C. In order to assess the integrity of DUPIC fuel under the accident condition postulated at the HANARO, safety analyses on the locked rotor and reactivity insertion accidents were carried out. The maximum centerline temperature of DUPIC fuel was estimated 2590 deg C and 2094 deg C for each accident, respectively. From the results of the safety analysis, the integrity of DUPIC fuel during the HANARO irradiation test will be secured. The irradiated DUPIC fuel will be transported to the IMEF. The post-irradiation examinations are planned to be performed at the PIEF and IMEF.