WorldWideScience

Sample records for irradiated leu u-mo

  1. Irradiation experiment conceptual design parameters for MURR LEU U-Mo fuel conversion

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.; Wilson, E.

    2013-03-01

    This report contains the results of reactor design and performance calculations for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the nominal steady-state irradiation conditions of a key set of plates containing peak irradiation parameters found in MURR cores fueled with the LEU monolithic U-Mo alloy fuel with 10 wt% Mo.

  2. Results of Microstructural Examinations of Irradiated LEU U-Mo Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organization (Australia)

    2009-06-15

    Introduction: The RERTR program is responsible for converting research reactors that use high-enriched uranium fuels to ones that use low-enriched uranium fuels [1]. As part of the development of LEU fuels, a variety of irradiation experiments are being conducted using the Advanced Test Reactor. Based on the results of initial fuel plate testing, adjustments have been made to the characteristics of fuel plates to improve the stability of the fuel microstructure. One improvement has been to add Si to the matrix of a dispersion fuel. This material is also being added at the fuel/cladding interface of a monolithic fuel. This paper will discuss the irradiation performance of these fuels, in terms of the stability of their microstructures during irradiation. Results and discussion: The post-irradiation examinations of fuel plates are performed at the Idaho National Laboratory. These examinations consist of visual examinations of fuel plates, gamma scanning, thickness measurements, oxide thickness measurements, and optical metallographic examinations of the fuel plate microstructures. Microstructural analysis is also performed using scanning electron microscopy. Overall, U-7Mo and U-10Mo alloy fuels have displayed the best irradiation performance, particularly, when a Si-containing Al alloy is used as the dispersion fuel matrix. The benefit of using this type of matrix is that the commonly observed fuel/cladding interaction that occurs during irradiation is reduced and the interaction layer that forms exhibit stable behavior during irradiation. Monolithic-type fuels, which consist of a U-Mo foil encased in Al alloy cladding, are also being developed. These types of fuels are also showing promise and will continue to be developed. One challenge with this type of fuel is in trying to maximize the bond strength at the foil/cladding interface. Fuel/cladding interactions can affect the quality of the boding at this interface. Si is being added to improve the characteristics

  3. Making of fission 99Mo from LEU silicide(s): A radiochemists' view

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Wolterbeek, H.Th.

    2005-01-01

    The present-day industrial scale production of 99 Mo is fission based and involves thermal-neutron irradiation in research reactors of highly enriched uranium (HEU, > 20 % 235 U) containing targets, followed by radiochemical processing of the irradiated targets resulting in the final product: a 99 Mo containing chemical compound of molybdenum. In 1978 a program (RERTR) was started to develop a substitute for HEU reactor fuel i.e. a low enriched uranium (LEU, 235 U) one. In the wake of that program studies were undertaken to convert HEU into LEU based 99 Mo production. Both new targets and radiochemical treatments leading to 99 Mo compounds were proposed. One of these targets is based on LEU silicide, U 3 Si 2 . Present paper aims at comparing LEU U 3 Si 2 and LEU U 3 Si with another LEU target i.e. target material and arriving at some preferences pertaining to 99 Mo production. (author)

  4. Manufacturing and investigation of U-Mo LEU fuel granules by hydride-dehydride processing

    International Nuclear Information System (INIS)

    Stetskiy, Y.A.; Trifonov, Y.I.; Mitrofanov, A.V.; Samarin, V.I.

    2002-01-01

    Investigations of hydride-dehydride processing for comminution of U-Mo alloys with Mo content in the range 1.9/9.2% have been performed. Some regularities of the process as a function of Mo content have been determined as well as some parameters elaborated. Hydride-dehydride processing has been shown to provide necessary phase and chemical compositions of U-Mo fuel granules to be used in disperse fuel elements for research reactors. Pin type disperse mini-fuel elements for irradiation tests in the loop of 'MIR' reactor (Dmitrovgrad) have been fabricated using U-Mo LEU fuel granules obtained by hydride-dehydride processing. Irradiation tests of these mini-fuel elements loaded to 4 g U tot /cm 3 are planned to start by the end of this year. (author)

  5. Development of production of {sup 99}Mo from LEU target

    Energy Technology Data Exchange (ETDEWEB)

    Adang, H G; Mutalib, A; Lubis, H [Radioisotope Production Centre, National Atomic Energy Agency, Kawasan Puspiptek, Serpong (Indonesia); and others

    1998-10-01

    {sup 99}TC, the most popular radioisotope in nuclear medicine, is daughter of {sup 99}Mo. {sup 99}Mo is produced in research reactor by irradiating of high enriched uranium (HEU). However, in recent year, strict regulation that has been implemented by USA DOE and NPT has led to the difficulty in getting HEU. Therefore, BATAN has tried to develop the production of {sup 99}Mo by using low enriched uranium (LEU). The research involves the use of LEU in the production of {sup 99}Mo. This research was started in 1994 by joint-research between BATAN and Argonne National Laboratory USA. This program is divided into three research groups. The first group emphasizes its research on fabrication of LEU foil that is going to be irradiated. The second group studies the irradiation`s aspects and physical characteristic of irradiated LEU foils. The third group studies the radiochemical separation process of fission product {sup 99}Mo from solution of irradiated LEU foils. There are five steps that are carried out in studying of radiochemical separation of {sup 99}Mo from irradiated LEU. First is designing a dissolver that is going to be used in dissolving of LEU foil and testing its reliability. Second is dissolving LEU in the new design dissolver. Third is evaluation the modified of Cintichem`s radiochemical separation process of {sup 99}Mo from LEU. Forth is modifying the Cintichem`s radiochemical separation process of {sup 99}Mo from the solution of irradiated LEU. And fifth is using the modified of Cintichem`s radiochemical separation process for separation {sup 99}Mo from solution of irradiated LEU. The first through the forth steps of experiments were already carried out and will be reported in this workshop, whereas the fifth step of experiment is going to be conducted in February 1998. (author)

  6. Neutronic feasibility studies using U-Mo dispersion fuel (9 Wt % Mo, 5.0 gU/cm3) for LEU conversion of the MARIA (Poland), IR-8 (Russia), and WWR-SM (Uzbekistan) research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, E.

    2000-01-01

    U-Mo alloys dispersed in an Al matrix offer the potential for high-density uranium fuels needed for the LEU conversion of many research reactors. On-going fuel qualification tests by the US RERTR Program show good irradiation properties of U-Mo alloy dispersion fuel containing 7-10 weight percent molybdenum. For the neutronic studies in this paper the alloy was assumed to contain 9 wt % Mo (U-9Mo) with a uranium density in the fuel meat of 5.00 gU/cm 3 which corresponds to 32.5 volume % U-9Mo. Fuels containing U-9Mo have been used in Russian reactors since the 1950's. For the three research reactors analyzed here, LEU fuel element thicknesses are the same as those for the Russian-fabricated HEU reference fuel elements. Relative to the reference fuels containing 80-90% enriched uranium, LEU U-9Mo Al-dispersion fuel with 5.00 gU/cm 3 doubles the cycle length of the MARIA reactor and increases the IR-8 cycle length by about 11%. For the WWR-SM reactor, the cycle length, and thus the number of fuel assemblies used per year, is nearly unchanged. To match the cycle length of the 36% enriched fuel currently used in the WWR-SM reactor will require a uranium density in the LEU U-9Mo Al-dispersion fuel of about 5.4 gU/cm 3 . The 5.00 gU/cm 3 LEU fuel causes thermal neutron fluxes in water holes near the edge of the core to decrease by (6-8)% for all three reactors. (author)

  7. RERTR progress in Mo-99 production from LEU

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Conner, C.; Aase, S.; Bakel, A.; Bowers, D.; Freiberg, E.; Gelis, A.; Quigley, K.J.; Snelgrove, J.L. [Argonne National Laboratory 9700 S. Cass Avenue, Argonne, IL (United States)

    2002-07-01

    The ANL RERTR program is performing R and D supporting conversion of {sup 99}Mo production from HEU to LEU targets. Irradiation and processing of LEU targets were demonstrated at the Argentine Ezeiza Atomic Center. Target irradiation and disassembly were flawless, but the processing is not fully developed. In addition to preparing for, assisting in, and analyzing results of the demonstration, we performed other R and D related to LEU conversion: (1) designing a prototype production dissolver for digesting irradiated LEU foils in alkaline solutions and developing means to simplify digestion, (2) modifying ion-exchange columns used in the CNEA recovery and purification of {sup 99}Mo to deal with the lower volumes generated from LEU-foil digestion, (3) measuring the performance of new inorganic sorbents that outperform alumina for recovering Mo(VI) from nitric acid solutions containing high concentrations of uranium nitrate, and (4) developing means to facilitate the concentration and calcination of waste nitric-acid/LEU-nitrate solutions from {sup 99} Mo production. (author)

  8. Development of Fission Mo-99 Process for LEU Dispersion Target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Su Seung; Hong, Soon Bog; Jang, Kyung Duk; Park, Ul Jae; Lee, Jun Sig [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. Overall cost for the production of the fission {sup 99}Mo increases significantly with the conversion of fission {sup 99}Mo targets from HEU to LEU. It is not only because the yield of LEU is only 50% of HEU, but also because radioactive waste production increases 200%. On the basis, worldwide efforts on the development of {sup 99}Mo production process that is optimized for the LEU target become an important issue. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016.

  9. Development of Fission Mo-99 Process for LEU Dispersion Target

    International Nuclear Information System (INIS)

    Lee, Seung Kon; Lee, Su Seung; Hong, Soon Bog; Jang, Kyung Duk; Park, Ul Jae; Lee, Jun Sig

    2016-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission 99 Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission 99 Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, 99 Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. Overall cost for the production of the fission 99 Mo increases significantly with the conversion of fission 99 Mo targets from HEU to LEU. It is not only because the yield of LEU is only 50% of HEU, but also because radioactive waste production increases 200%. On the basis, worldwide efforts on the development of 99 Mo production process that is optimized for the LEU target become an important issue. In this study, fission 99 Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission 99 Mo target will be done in 4th quarter of 2016

  10. Radioactive Waste Issues related to Production of Fission-based Mo-99 by using Low Enriched Uranium (LEU)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhmood ul; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In order to produce fission-based Mo-99 from research reactors, two types of targets are being used and they are highly enriched uranium (HEU) targets with {sup 235}U enrichment more than 90wt% of {sup 235}U and low enriched uranium (LEU) targets with {sup 235}U enrichment less than 20wt% of {sup 235}U. It is worth noting that medium enriched uranium i.e. 36wt% of {sup 235}U as being used in South Africa is also regarded as non-LEU from a nuclear security point of view. In order to cope with the proliferation issues, international nuclear security policy is promoting the use of LEU targets in order to minimize the civilian use of HEU. It is noteworthy that Mo-99 yield of the LEU target is less than 20% of the HEU target, which requires approximately five times more LEU targets to be irradiated and consequently results in increased volume of waste. The waste generated from fission Mo-99 production can be mainly due to: target fabrication, assembling of target, irradiation in reactor and processing of irradiated targets. During the fission of U-235 in a reactor, a large number of radionuclides with different chemical and physical properties are formed. The waste produced from these practices may be a combination of low level waste (LLW) and intermediate level waste (ILW) comprised of all three types, i.e., solid, liquid and gas. Handling and treatment of the generated waste are dependent on its form and activity. In case of the large production facility, waste storage facility should be constructed in order to limit the radiation exposures of the workers and the environment. In this study, we discuss and compare mainly the radioactive waste generated by alkaline digestion of both HEU and LEU targets to assist in planning and deciding the choice of the technology with better arrangements for proper handling and disposal of generated waste. With the use of the LEU targets in Mo-99 production facility, significant increase in liquid and solid waste has been expected.

  11. Conceptual designs parameters for MURR LEU U-Mo fuel conversion design demonstration experiment. Revision 1

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.

    2013-01-01

    The design parameters for the conceptual design of a fuel assembly containing U-10Mo fuel foils with low-enriched uranium (LEU) for the University of Missouri Research Reactor (MURR) are described. The Design Demonstration Experiment (MURR-DDE) will use a prototypic MURR-LEU element manufactured according to the parameters specified here. Also provided are calculated performance parameters for the LEU element in the MURR, and a set of goals for the MURR-DDE related to those parameters. The conversion objectives are to develop a fuel element design that will ensure safe reactor operations, as well as maintaining existing performance. The element was designed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. A set of manufacturing assumptions were provided by the Fuel Development (FD) and Fuel Fabrication Capability (FFC) pillars of the GTRI Reduced Enrichment for Research and Test Reactors (RERTR) program to reliably manufacture the fuel plates. The proposed LEU fuel element has an overall design and exterior dimensions that are similar to those of the current highly-enriched uranium (HEU) fuel elements. There are 23 fuel plates in the LEU design. The overall thickness of each plate is 44 mil, except for the exterior plate that is furthest from the center flux trap (plate 23), which is 49 mil thick. The proposed LEU fuel plates have U-10Mo monolithic fuel foils with a 235U enrichment of 19.75% varying from 9 mil to 20 mil thick, and clad with Al-6061 aluminum. A thin layer of zirconium exists between the fuel foils and the aluminum as a diffusion barrier. The thinnest nominal combined zirconium and aluminum clad thickness on each side of the fuel plates is 12 mil. The LEU U-10Mo monolithic fuel is not yet qualified as driver fuel in research reactors, but is under intense development under the auspices of the GTRI FD and FFC programs.

  12. Characterization of the Microstructure of Irradiated U-Mo Dispersion Fuel with a Matrix that Contains Si

    International Nuclear Information System (INIS)

    Keiser, Jr. D.D.; Robinson, A.B.; Jue, J.F.; Medvedev, P.; Finlay, M.R.

    2009-01-01

    RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with Al-2Si matrix after irradiation to around 50% LEU burnup. Si-rich layers were observed in many areas around the various U-7Mo fuel particles. In one local area of one of the samples, where the Si-rich layer had developed into a layer devoid of Si, relatively large fission gas bubbles were observed in the interaction phase. There may be a connection between the growth of these bubbles and the amount of Si present in the interaction layer. Overall, it was found that having Si-rich layers around the fuel particles after fuel plate fabrication positively impacted the overall performance of the fuel plate

  13. Production of MO-99 from LEU targets-base-side processing

    International Nuclear Information System (INIS)

    Vandegrift, George F.; Koma, Yoshikazu; Cols, Hector; Conner, Cliff; Aase, Scott; Peter, Magdalin; Walker, David; Leonard, Ralph A.; Snelgrove, James L.

    2000-01-01

    Argonne National Laboratory (ANL) is cooperating with the Argentine Comision Nacional de Energia Atomica (CNEA) to convert their 99 Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU). Progress discussed in this year's paper includes optimization of (1) the digestion of LEU foil by sodium hydroxide solution and (2) the primary recovery of molybdenum by anion exchange. Also discussed are ANL/CNEA plans for demonstrating the irradiation and digestion of LEU-foil targets and recovering 99 Mo in Argentina later this year. Our results show that, up to this point in our study, conversion of the CNEA process to LEU appears viable. (author)

  14. Thermal compatibility of U-2wt.%Mo and U-10wt.%Mo fuel prepared by centrifugal atomization for high density research reactor fuels

    International Nuclear Information System (INIS)

    Kim Ki Hwan; Lee Don Bae; Kim Chang Kyu; Kuk Il Hyun; Hofman, G.E.

    1997-01-01

    Research on the intermetallic compounds of uranium was revived in 1978 with the decision by the international research reactor community to develop proliferation-resistant fuels. The reduction of 93% 235 U (HEU) to 20% 235 U (LEU) necessitates the use of higher U-loading fuels to accommodate the addition 238 U in the LEU fuels. While the vast majority of reactors can be satisfied with U 3 Si 2 -Al dispersion fuel, several high performance reactors require high loadings of up to 8-9 g U cm -3 . Consequently, in the renewed fuel development program of the Reduced Enrichment for Research and Test Reactors (RERTR) Program, attention has shifted to high density uranium alloys. Early irradiation experiments with uranium alloys showed promise of acceptable irradiation behavior, if these alloys can be maintained in their cubic γ-U crystal structure. It has been reported that high density atomized U-Mo powders prepared by rapid cooling have metastable isotropic γ-U phase saturated with molybdenum, and good γ-U phase stability, especially in U-10wt.%Mo alloy fuel. If the alloy has good thermal compatibility with aluminium, and this metastable gamma phase can be maintained during irradiation, U-Mo alloy would be a prime candidate for dispersion fuel for research reactors. In this paper, U-2w.%Mo and U-10w.%Mo alloy powder which have high density (above 15 g-U/cm 3 ), are prepared by centrifugal atomization. The U-Mo alloy fuel meats are made into rods extruding the atomized powders. The characteristics related to the thermal compatibility of U-2w.%Mo and U-10w.%Mo alloy fuel meat at 400 o C for time up to 2000 hours are examined. (author)

  15. Development of LEU targets for 99Mo production and their chemical processing status 1989

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Chamberlain, D.B.; Hoh, J.C.; Streets, E.W.; Vogler, S.; Thresh, H.R.; Domagala, R.F.; Wiencek, T.C.; Matos, J.E.

    1991-01-01

    Most of the world's supply of Tc-99m for medical purposes is currently produced from Mo-99 derived from the fissioning of high enriched uranium (HEU). Substitution of low enriched uranium (LEU) silicide fuel for the HEU alloy and aluminide fuels used in current target designs will allow equivalent Mo-99 yields with no change in target geometries. Substitution of uranium metal will also allow the substitution of LEU for HEU. Efforts performed in 1989 focused on (1) fabrication of a uranium metal target by Hot Isostatic Pressing uranium metal foil to zirconium, (2) experimental investigation of the dissolution step for U 3 Si 2 targets, allowing us to present a conceptual design for the dissolution process and equipment, and (3) investigation of the procedures used to reclaim irradiated uranium from Mo-production targets, allowing us to further analyze the waste and by-product problems associated with the substitution of LEU for HEU. (orig.)

  16. Production of MO-99 from LEU targets - Acid-side processing

    International Nuclear Information System (INIS)

    Conner, C.; Sedlet, J.; Wiencek, T.C.

    2000-01-01

    During 2000, additional targets of the new annular design containing low enriched uranium (LEU) foils were irradiated in the Indonesian RSG-GAS reactor. This new design significantly decreases the target fabrication cost. This irradiation allowed us to compare the irradiation performance of several batches of LEU foil. We also processed one of the irradiated foils to recover 99 Mo using a slightly modified Cintichem process. Finally, we measured some important physical properties of uranyl nitrate solutions (i.e., density and solubility), which will be useful in future efforts to further increase the amount of uranium that can be processed by the Cintichem process. (author)

  17. The Microstructure of Multi-wire U-Mo Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Sang; Park, Eun Kee; Cho, Woo Hyoung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm {approx} 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix as shown. This multi-wire fuels showed very good fuel performance during the KOMO-3 irradiation test. At the KOMO-3 test, the specimen of the multi-wire fuels were U-7Mo/Al and U-7Mo-1Si/Al. In this study we investigate the microstructure change of the U-7Mo and U-7Mo-1Ti with some variation of annealing conditions. In addition to this, we want to check the effect of adding Ti element to U-7Mo on the gamma phase stability

  18. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R. [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); Buesch, C. [Oregon State University, 1500 SW Jefferson St., Corvallis, OR 97331 (United States); Keiser, D.D.; Williams, W.; Miller, B.D.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-07-15

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program. - Highlights: • Automated image processing is used to extract fission gas bubble data from irradiated U−Mo fuel samples. • Verification and validation tests are performed to ensure the algorithm's accuracy. • Fission bubble parameters are predictably difficult to compare across samples of varying compositions. • The 2-D results suggest the need for more homogenized fuel sampling in future studies. • The results also demonstrate the value of 3-D reconstruction techniques.

  19. Progress in chemical processing of LEU targets for 99Mo production - 1997

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G.; Wu, D.; Iskander, F.; Landsberger, S.

    1997-01-01

    Presented here are recent experimental results of our continuing development activities associated with converting current processes for producing fission-product 99 Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified 99 Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the U.S. Federal Drug Administration for production of 99 Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU. (author)

  20. SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/cladding interface, particularly the interaction zone that had developed during fabrication and irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-Mo powders of an irradiated dispersion fuel.

  1. SEM characterization of an irradiated monolithic U-10Mo fuel plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.; Finlay, M.R.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/AA6061 cladding interface, particularly the interaction zone that had developed during fabrication and any continued development during irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-7Mo powders of an irradiated dispersion fuel. (author)

  2. Swelling Estimation of Multi-wire U-Mo Monolithic Fuel for HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon-Sang; Ryu, Ho-Jin; Park, Jong-Man; Oh, Jong-Myeong; Kim, Chang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm - 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix. In this study temperature calculations and a swelling estimation of a multi-wire monolithic fuel were carried out. Also the results of a post irradiation analysis of this fuel will be introduced.

  3. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  4. Performance evaluation of large U-Mo particle dispersed fuel irradiated in HANARO

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Oh, Seok Jin; Jang, Se Jung; Yu, Byung Ok; Lee, Choong Seong; Seo, Chul Gyo; Chae, Hee Taek; Kim, Chang Kyu

    2008-01-01

    U-Mo/Al dispersion fuel is being developed as advanced fuel for research reactors. Irradiation behavior of U-Mo/Al dispersion fuel has been studied to evaluate its fuel performance. One of the performance limiting factors is a chemical interaction between the U-Mo particle and the Al matrix because the thermal conductivity of fuel meat is decreased with the interaction layer growth. In order to overcome the interaction problem, large-sized U-Mo particles were fabricated by controlling the centrifugal atomization conditions. The fuel performance behavior of U-Mo/Al dispersion fuel was estimated by using empirical models formulated based on the microstructural analyses of the post-irradiation examination (PIE) on U-Mo/Al dispersion fuel irradiated in HANARO reactor. Temperature histories of U-Mo/Al dispersion fuel during irradiation tests were estimated by considering the effect of an interaction layer growth on the thermal conductivity of the fuel meat. When the fuel performances of the dispersion fuel rods containing U-Mo particles with various sizes were compared, fuel temperature was decreased as the average U-Mo particle size was increases. It was found that the dispersion of a larger U-Mo particle was effective for mitigating the thermal degradation which is associated with an interaction layer growth. (author)

  5. Neutronic and thermal-hydraulic analysis of a device for irradiation of LEU UAlx-Al targets for 99Mo production in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Nishiyama, Pedro Julio Batista de Oliveira

    2012-01-01

    Technetium-99m ( 99m Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of 99 Mo per week. Due to the crisis and the shortage of 99 Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce 99 Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for 99 Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl x -Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm 3 . For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of 99 Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the 99 Mo will be five days after the irradiation, we have that the 99 Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'

  6. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    Science.gov (United States)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  7. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  8. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  9. Irradiation performance of U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  10. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  11. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  12. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ye, B., E-mail: bye@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States); Jamison, L.; Miao, Y. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States); Bhattacharya, S. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr. Evanston, IL 60208 (United States); Hofman, G.L.; Yacout, A.M. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States)

    2017-05-15

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Therefore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo. - Highlights: •Three distinct zones were observed along the ion traveling direction in U-7Mo irradiated with 84 MeV Xe ions at 350 °C. •The α-U particles within the Xe-implanted region were reverted to γ-U phase by irradiation. •High-density random intra-granular bubbles in a size of 4–5 nm were found in the irradiated region, coexisting with large inter-granular bubbles. •The high lattice stresses built up during the irradiation-induced phase reversal is probably the driving force for the small grain formation at cell boundaries.

  13. 2010 national progress report on R and D on LEU fuel and target technology in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Blaumann, H.; Cristini, P.; Gonzalez, A.G.; Gonzalez, R.; Hermida, J.D.; Lopez, M.; Mirandou, M.; Taboada, H.

    2010-01-01

    Since last RRFM meeting, CNEA has deployed several related tasks. The RA-6 MTR type reactor, converted its core from HEU to a new LEU silicide one is scaling up the power, according to a protocol requested by the national regulatory body, ARN. CNEA is deploying an intense R and D activity to fabricate both dispersed U-Mo (Al-Si matrix and Al cladding) and monolithic (Zry-4 cladding) miniplates to develop possible solutions to VHD dispersed and monolithic fuels technical problems. Some monolithic 58% enrichment U8%Mo and U10%Mo are being delivered to INL-DoE to be irradiated in ATR reactor core. A conscientious study on compound interphase formation in both cases is being carried out. CNEA, a worldwide leader on LEU technology for fission radioisotope production is providing Brazil with these radiopharmaceutical products and Egypt and Australia with the technology through INVAP SE. CNEA is also committed to improve the diffusion of LEU target and radiochemical technology for radioisotope production and target and process optimization. Future plans include: 1) Fabrication of a LEU dispersed U-Mo fuel prototype following the recommendations of the IAEA's Good Practices document, to be irradiated in a high flux reactor in the frame of the ARG/4/092 IAEA's Technical Cooperation project. 2) Development of LEU very high density monolithic and dispersed U-Mo fuel plates with Zry-4 or Al cladding as a part of the RERTR program. 3) Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  14. Main results and status of the development of LEU fuel for Russian research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Morozov, A.; Suprun, V.; Dobrikova, I.

    2005-01-01

    VNIINM develops low enrichment uranium (LEU) fuel on base U-Mo alloys and a novel design of pin-type fuel elements. The development is carried out both for existing reactors, and for new advanced designs of reactors. The work is carried on the following main directions: - irradiate LEU U-Mo dispersion fuel (the uranium density up to 6,0 g/cm 3 ) in two Russian research reactors: MIR (RIAR, Dimitrovgrad) as pin type fuel mini-elements and in WWR-M (PINP, Gatchina) within full-scaled fuel assembly (FA) with pin type fuel elements; - finalize development of design and fabrication process of IRT type FA with pin type fuel elements; - develop methods of reducing of U-Mo fuel --Al matrix interaction under irradiation; - develop fabricating methods of fuel elements on base of monolithic U-Mo fuel. The paper generally reviews the results of calculation, design and technology investigations accomplished by now. (author)

  15. Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Miller, Brandon D.; Madden, James W.; Robinson, Adam B.; Rabin, Barry H.

    2018-02-01

    Irradiated fuel plates were characterized by microscopy that focused on the interface between U-Mo and Zr. Before irradiation, there were three major sub-layers identified in the U-Mo/Zr interface, namely, UZr2, Mo2Zr, and U with low Mo. The typical total thickness of this U-Mo/Zr interaction is 2-3 μm. The UZr2 sub-layer formed during fuel plate fabrication remains stable after irradiation, without large bubbles/porosity accumulation. However, this sub-layer becomes increasingly discontinuous as burnup increases. The low-Mo sub-layer exhibits numerous sub-micron bubbles/porosity at low burnup. Larger, interconnected porosity in this sub-layer was observed in a medium-burnup fuel specimen. However, at higher burnup, regions with the extra-large bubbles/porosity (i.e., larger than 5 μm) were observed in the U-Mo fuel foil at least 5 μm away from the original location of this sub-layer. The mechanism for the formation of the extra-large bubbles/porosity is still unclear at this time. In general, the U-Mo/Zr interface in monolithic U-Mo fuels is relatively stable after irradiation. No large detrimental defects, such as large interfacial bubbles or cracks/delamination, were observed in the fuel plates characterized.

  16. ANL progress in developing a target and process for converting CNEA Mo-99 production to LEU

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Gelis, A.; Aase, S.; Bakel, A.; Freiberg, E.; Conner, C.

    2002-01-01

    The primary mission of the Reduced Enrichment in Research and Test Reactors (RERTR) Program is to facilitate the conversion of research and test reactor fuel and targets from high-enriched uranium (HEU) to low-enriched uranium (LEU). One of the current goals at Argonne National Laboratory (ANL) is to convert 99 Mo production at Argentine Commission Nacional de Energia Atomica (CNEA) from HEU to LEU targets. Specifically addressed in this paper is ANL R and D related to this conversion: (1) designing a prototype production vessel for digesting irradiated LEU foils in alkaline solutions, (2) developing means to improve digestion efficiency, and (3) modifying ion-exchange processes used in the CNEA recovery and purification of 99 Mo to deal with the lower volumes generated from LEU-foil digestion. (author)

  17. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    Directory of Open Access Journals (Sweden)

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  18. Reduced interaction layer growth of U-Mo dispersion in Al-Si

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2012-11-15

    Development of high U-density U-Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U-Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to {approx}50% burnup of initial 19.75% U-235 enrichment at {approx}200 Degree-Sign C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U-Mo/Al-Si dispersion samples with a Si addition in the range 0-8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL-matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  19. An investigation on the irradiation behavior of atomized U-Mo/Al dispersion rod fuels

    International Nuclear Information System (INIS)

    Park, J.M.; Ryu, H.J.; Lee, Y.S.; Lee, D.B.; Oh, S.J.; Yoo, B.O.; Jung, Y.H.; Sohn, D.S.; Kim, C.K.

    2005-01-01

    The second irradiation fuel experiment, KOMO-2, for the qualification test of atomized U-Mo dispersion rod fuels with U-loadings of 4-4.5 gU/cc at KAERI was finished after an irradiation up to 70 at% U 235 peak burn-up and subjected to the IMEF (Irradiation material Examination Facility) for a post-irradiation analysis in order to understand the fuel irradiation performance of the U-Mo dispersion fuel. Current results for PIE of KOMO-2 revealed that the U-Mo/Al dispersion fuel rods exhibited a sound performance without any break-away swelling, but most of the fuel rods irradiated at a high linear power showed an extensive formation of the interaction phase between the U-Mo particle and the Al matrix. In this paper, the analysis of the PIE results, which focused on the diffusion related microstructures obtained from the optical and EPMA (Electron Probe Micro Analysis) observations, will be presented in detail. And a thermal modeling will be carried out to calculate the temperature of the fuel rod during an irradiation. (author)

  20. TEM investigation of irradiated U-7 weight percent Mo dispersion fuel

    International Nuclear Information System (INIS)

    Van den Berghe, S.

    2009-01-01

    In the FUTURE experiment, fuel plates containing U-7 weight percent Mo atomized powder were irradiated in the BR2 reactor. At a burn-up of approximately 33 percent 235 U (6.5 percent FIMA or 1.41 10 21 fissions/cm 3 meat), the fuel plates showed an important deformation and the irradiation was stopped. The plates were submitted to detailed PIE at the Laboratory for High and Medium level Activity. The results of these examinations were reported in the scientific report of last year and published in open literature. Since then, the microstructural aspects of the FUTURE fuel were studied in more detail using transmission electron microscopy (TEM), in an attempt to understand the nature of the interaction phase and the fission gas behavior in the atomized U(Mo) fuel. The FUTURE experiment is regarded as the definitive proof that the classical atomized U(Mo) dispersion fuel is not stable under irradiation, at least in the conditions required for normal operation of plate-type fuel. The main cause for the instability was identified to be the irradiation behavior of the U(Mo)-Al interaction phase which is formed between the U(Mo) particles and the pure aluminum matrix during irradiation. It is assumed to become amorphous under irradiation and as such cannot retain the fission gas in stable bubbles. As a consequence, gas filled voids are generated between the interaction layer and the matrix, resulting in fuel plate pillowing and failure. The objective of the TEM investigation was the confirmation of this assumption of the amorphisation of the interaction phase. A deeper understanding of the actual nature of this layer and the fission gas behaviour in these fuels in general can allow a more oriented search for a solution to the fuel failures

  1. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch

    2017-05-01

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  2. Waste Treatment of Acidic Solutions from the Dissolution of Irradiated LEU Targets for 99-Mo Production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-01

    One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is the calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.

  3. Development, irradiation testing and PIE of UMo fuel at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.

    2005-01-01

    This paper reviews recent U-Mo dispersion fuel development, irradiation testing and postirradiation examination (PIE) activities at AECL. Low-enriched uranium fuel alloys and powders have been fabricated at Chalk River Labs, with compositions ranging from U-7Mo to U-10Mo. The bulk alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, X-ray diffraction and neutron diffraction analysis. The analyses confirmed that the powders were of high quality, and in the desired gamma phase. Subsequently, kilogram quantities of DU-Mo and LEU-Mo powder have been manufactured for commercial customers. Mini-elements have been fabricated with LEU-7Mo and LEU-10Mo dispersed in aluminum, with a nominal loading of 4.5 gU/cm 3 . These have been irradiated in the NRU reactor at linear powers up to 100 kW/m. The mini-elements achieved 60 atom% 235 U burnup in 2004 March, and the irradiation is continuing to a planned discharge burnup of 80 atom% 235 U. Interim PIE has been conducted on mini-elements that were removed after 20 atom% 235 U burnup. The PIE results are presented in this paper. (author)

  4. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: dennis.keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia); Moore, Glenn; Medvedev, Pavel; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States)

    2017-05-15

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  5. POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

    Directory of Open Access Journals (Sweden)

    H.J. RYU

    2013-12-01

    Full Text Available Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr, additional protective coatings (silicide or nitride, and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

  6. Processing of LEU targets for 99Mo production--testing and modification of the Cintichem process

    International Nuclear Information System (INIS)

    Wu, D.; Landsberger, S.; Buchholz, B.

    1995-09-01

    Recent experimental results on testing and modification of the Cintichem process to allow substitution of low enriched uranium (LEU) for high enriched uranium (HEU) targets are presented in this report. The main focus is on 99 Mo recovery and purification by its precipitation with α-benzoin oxime. Parameters that were studied include concentrations of nitric and sulfuric acids, partial neutralization of the acids, molybdenum and uranium concentrations, and the ratio of α-benzoin oxime to molybdenum. Decontamination factors for uranium, neptunium, and various fission products were measured. Experiments with tracer levels of irradiated LEU were conducted for testing the 99 Mo recovery and purification during each step of the Cintichem process. Improving the process with additional processing steps was also attempted. The results indicate that the conversion of molybdenum chemical processing from HEU to LEU targets is possible

  7. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  8. Neutronic and thermal-hydraulic analysis of a device for irradiation of LEU UAl{sub x}-Al targets for {sup 99}Mo production in the IEA-R1 reactor; Analises neutronica e termo-hidraulica de um dispositivo para irradiacao de alvos tipo LEU de UAl{sub x}-Al para producao de {sup 99}MO no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Pedro Julio Batista de Oliveira

    2012-07-01

    Technetium-99m ({sup 99m}Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of {sup 99}Mo per week. Due to the crisis and the shortage of {sup 99}Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce {sup 99}Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for {sup 99}Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl{sub x}-Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm{sup 3}. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of {sup 99}Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the {sup 99}Mo will be five days after the irradiation, we have that the {sup 99}Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'.

  9. Thermal conductivity of fresh and irradiated U-Mo fuels

    Science.gov (United States)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  10. Future U.S. supply of Mo-99 production through fission based LEU/LEU technology

    International Nuclear Information System (INIS)

    James Welsh; Bigles, C.I.; Alejandro Valderrabano

    2015-01-01

    Coqui RadioPharmaceuticals Corp. (Coqui) has the goal of establishing a medical isotope production facility for securing a continuous domestic supply of the radioisotope molybdenum-99 for U.S. citizens. Coqui will use an LEU/LEU proven and implemented open pool, light-water, 10 MW, reactor design. The facility is being designed with twin reactors for reliability an on-site hot lab chemical processing and a waste conditioning area and a possible generator producing radio-chemistry lab. Coqui identified a 25 acre site adjacent to an existing industrial park in northern central Florida. This land was gifted and transferred to Coqui by the University of Florida Foundation. We are in the process of developing licensing documents related to the facility. The construction permit application for submission to the U.S. Nuclear Regulatory Commission is currently being prepared. Submission is scheduled for mid to late 2015. Community reaction to the proposed development has been positive. We expect to create 220 permanent jobs and we have an anticipated to be operational by 2020. (author)

  11. Future U.S. supply of Mo-99 production through fission based LEU/LEU technology.

    Science.gov (United States)

    Welsh, James; Bigles, Carmen I; Valderrabano, Alejandro

    Coquí RadioPharmaceuticals Corp. (Coquí) has the goal of establishing a medical isotope production facility for securing a continuous domestic supply of the radioisotope molybdenum-99 for U.S. citizens. Coquí will use an LEU/LEU proven and implemented open pool, light-water, 10 MW, reactor design. The facility is being designed with twin reactors for reliability an on-site hot lab chemical processing and a waste conditioning area and a possible generator producing radio-chemistry lab. Coquí identified a 25 acre site adjacent to an existing industrial park in northern central Florida. This land was gifted and transferred to Coquí by the University of Florida Foundation. We are in the process of developing licensing documents related to the facility. The construction permit application for submission to the U.S. Nuclear Regulatory Commission is currently being prepared. Submission is scheduled for mid to late 2015. Community reaction to the proposed development has been positive. We expect to create 220 permanent jobs and we have an anticipated to be operational by 2020.

  12. Progress on LEU very high density fuel and target development in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Cabot, P.; Calzetta, O.; Duran, A.; Garces, J.; Hermida, J.D.; Manzini, A.; Pasqualini, E.; Taboada, H.

    2006-01-01

    Since last RRFM meeting, CNEA has continued on new LEU fuel and target development activities. Main goals are the plan to convert our RA-6 reactor from HEU to a new LEU core, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, to optimize techniques to recover U from silicide scrap samples as cold test for radiowaste separation for final conditioning of silicide spent fuels. and to improve the diffusion of LEU target and radiochemical technology for radioisotope production. Future plans include: - Completion of the RA-6 reactor conversion to LEU; - Improvement on fuel development and production facilities to implement new technologies, including NDT techniques to assess bonding quality; - Irradiation of miniplates and full scale fuel assembly at RA-3 and plans to perform irradiation on higher power and temperature regime reactors; - Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  13. ANL progress in developing an LEU target and process for Mo-99 production: Cooperation with CNEA

    International Nuclear Information System (INIS)

    Gelis, A.V.; Vandegrift, G.F.; Aase, S.B.; Bakel, A.J.; Falkenberg, J.R.; Regalbuto, M.C.; Quigley, K.J.

    2003-01-01

    The primary mission of the Reduced Enrichment in Research and Test Reactors (RERTR) Program is to facilitate the conversion of research and test-reactor fuel and targets from high-enriched uranium (HEU) to low-enriched uranium (LEU). One of the current goals at Argonne National Laboratory (ANL) is to assist the Argentine Comision Nacional de Energia Atomica (CNEA) in developing an LEU foil target and a process for 99 Mo production. Specifically addressed in this paper is ANL R and D related to this conversion: (1) designing a prototype production vessel for digesting irradiated LEU foils in alkaline solutions and (2) developing a new digestion method to address all issues related to HEU to LEU conversion. (author)

  14. Low enrichment Mo-99 target development program at ANSTO

    International Nuclear Information System (INIS)

    Donlevy, Therese M.; Anderson, Peter J.; Beattie, David; Braddock, Ben; Fulton, Scott; Godfrey, Robert; Law, Russell; McNiven, Scott; Sirkka, Pertti; Storr, Greg; Wassink, David; Wong, Alan; Yeoh, Guan

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO, formerly AAEC) has been producing fission product Mo-99 in HIFAR, from the irradiation of Low Enrichment Uranium (LEU) UO 2 targets, for nearly thirty years. Over this period, the U-235 enrichment has been increased in stages, from natural to 1.8% to 2.2%. The decision to provide Australia with a replacement research reactor (RRR) for HIFAR has created an ideal opportunity to review and improve the current Mo-99 production process from target design through to chemical processing and waste management options. ANSTO has entered into a collaboration with Argonne National Laboratory (RERTR) to develop a target using uranium metal foil with U-235 enrichment of less than 20% The initial focus has been to demonstrate use of LEU foil targets in HIFAR, using existing irradiation methodology. The current effort focussed on designing a target assembly with optimised thermohydraulic characteristics to accommodate larger LEU foils to meet Mo-99 production needs. The ultimate goal is to produce an LEU target suitable for use in the Replacement Research Reactor when it is commissioned in 2005. This paper reports our activities on: - The regulatory approval processes required in order to undertake irradiation of this new target; -Supporting calculations (neutronics, computational fluid dynamics) for safety submission; - Design challenges and changes to prototype irradiation; - Trial irradiation of LEU foil target in HIFAR; - Future target and rig development program at ANSTO. (author)

  15. Production of annular blanks for Mo-99 using natural uranium, LEU uranium, nickel and structural Al-3003 plates

    International Nuclear Information System (INIS)

    Lisboa, J.R.; Barrera, M.E.; Marin, J.

    2010-01-01

    The Tc-99m radioisotope for medical use is the one most used in nuclear medicine worldwide. In Chile the Tc-99m is applied in more than 90% of nuclear medicine studies. In order to supply the whole country with this radioisotope, in 2005-2007 the CCHEN developed its own production of Tc-99m generators from Mo-99 imported from Canada, which are prepared with the activity needed by the Chilean hospitals and clinics. As of 2007 Mo-99 was no longer imported, and since then the Tc-99m is produced only by neutron activation of the Mo. The present challenge is to produce Mo-99 by irradiating blanks that contain enriched uranium foils, with locally produced LEU. The annular blank consists of 2 concentric tubes of A1-3003 structural aluminum that, in an interior annular space, contain a LEU foil, covered on both sides by a nickel foil. This work presents the development of the production technology for annular blanks using natural uranium and U-325 enriched uranium. The structural components are made with A1-3003 aluminum alloy, the foils are 13 grams of uranium measuring 100 x 50 mm and 120-150 μ thick. The blank was assembled using a methodology to control, adapt and assemble the blank's different internal components. A foil of natural uranium and LEU uranium, and a nickel foil are included, used as a barrier for the escape of fission products. During the blank's expansion, for analysis alcohol as lubricant was used, allowing the expander to move smoothly through the inside of the blank. The blank was sealed by TIG welding with a pulsed AC current and a mixture of Ar-5% He gases. Two methods were used for the water tightness test; for high escape levels the temperature was used as a promoter of the ΔP provided by hot water and liquid nitrogen, for low escape levels high vacuum technology was used where the ΔP is provided by a high pressure helium atmosphere. The technology for the production of annular LEU blanks was achieved by applying innovations to technologies

  16. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  17. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We in-pile tested U-Mo dispersion in Al matrix. Black-Right-Pointing-Pointer We observed interaction layer growth between U-Mo and Al and pore formation there. Black-Right-Pointing-Pointer Pores degrades thermal conductivity and structural integrity of the fueled zone. Black-Right-Pointing-Pointer The amorphous behavior of interaction layers is thought to be the main reason for unstable large pore growth. Black-Right-Pointing-Pointer A mechanism for pore formation and possible remedy to prevent it are proposed. - Abstract: Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  18. Transmission electron microscopy characterization of irradiated U-7Mo/Al-2Si dispersion fuel

    International Nuclear Information System (INIS)

    Gan, J.; Keiser, D.D.; Wachs, D.M.; Robinson, A.B.; Miller, B.D.; Allen, T.R.

    2010-01-01

    The plate-type dispersion fuels, with the atomized U(Mo) fuel particles dispersed in the Al or Al alloy matrix, are being developed for use in research and test reactors worldwide. It is found that the irradiation performance of a plate-type dispersion fuel depends on the radiation stability of the various phases in a fuel plate. Transmission electron microscopy was performed on a sample (peak fuel mid-plane temperature ∼109 deg. C and fission density ∼4.5 x 10 27 f m -3 ) taken from an irradiated U-7Mo dispersion fuel plate with Al-2Si alloy matrix to investigate the role of Si addition in the matrix on the radiation stability of the phase(s) in the U-7Mo fuel/matrix interaction layer. A similar interaction layer that forms in irradiated U-7Mo dispersion fuels with pure Al matrix has been found to exhibit poor irradiation stability, likely as a result of poor fission gas retention. The interaction layer for both U-7Mo/Al-2Si and U-7Mo/Al fuels is observed to be amorphous. However, unlike the latter, the amorphous layer for the former was found to effectively retain fission gases in areas with high Si concentration. When the Si concentration becomes relatively low, the fission gas bubbles agglomerate into fewer large pores. Within the U-7Mo fuel particles, a bubble superlattice ordered as fcc structure and oriented parallel to the bcc metal lattice was observed where the average bubble size and the superlattice constant are 3.5 nm and 11.5 nm, respectively. The estimated fission gas inventory in the bubble superlattice correlates well with the fission density in the fuel.

  19. Study of relationships between microstructures and service properties, of U(Mo) fissile alloys particles

    International Nuclear Information System (INIS)

    Champion, G.

    2013-01-01

    This thesis enters in the Material and Testing Reactors (MTRs) framework where the necessity to use a Low- Enriched Uranium (LEU) fuel has led to the development of a dense fissile material based on U(Mo) alloys. The designed fuel is a composite material, made of dispersed U(Mo) particles embedded in an Al based matrix. Post- Irradiation Examinations of these LEU fuel plates showed that the irradiation behaviour of the fuel is not fit for purpose yet. This is mainly due to the growth of an interaction layer between the fuel and the matrix and to the bad gas retention efficiency of the fuel particles. This thesis had for purpose the development of several solutions in order to modify and/or decrease or even inhibit the fuel/matrix interaction and to increase the gas retention capacities of the fuel. In order to achieve so, two solutions have been tested during this thesis, (i) optimization of the U(Mo) alloy intrinsic microstructural properties and (ii) modification of the fuel meat/matrix interface, through the deposition of a layer acting as a 'diffusion barrier'. Concerning the first axis of study, a characterization campaign of the reference powders has been performed, as a first step, in order to identify the key parameters for the development of products showing an 'optimized' microstructure. Two novel products have then been developed: one based on a combined process associating 'atomization + grinding' and another, which consists in a magnesiothermy process. These products were subjected to characterization: X-Ray and neutron diffraction, electron backscattered diffraction and transmission electron microscopy have been performed in particular. We managed to show that these powders can be an advantage concerning the issue with the gas retention capacities of the fuel. Concerning the growth of the interaction layer, a third product has been developed: an U(Mo) atomized powder, coated with an alumina layer. We managed to show that a thickness between 100 and

  20. Observation on the irradiation behavior of U-Mo alloy dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Park, Jong-Man

    2000-01-01

    Initial results from the postirradiation examination of high-density dispersion fuel test RERTR-3 are discussed. The U-Mo alloy fuels in this test were irradiated to 40% U-235 burnup at temperature ranging from 140 0 C to 240 0 C. Temperature has a significant effect on overall swelling of the test plates. The magnitude of the swelling appears acceptable and no unstable irradiation behavior is evident. (author)

  1. An Effort to Improve U Foil Fabrication Technology of Roll-casting for Fission Mo Target

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Woo, Yun Myeong; Kim, Ki Hwan; Oh, Jong Myeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Moon Soo [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of)

    2010-10-15

    Mo-99 isotope has been produced mainly by extracting fission products of {sup 235}U. The targets for irradiating in reactor have used as stainless tube coated with highly enriched UO{sub 2} at the inside surface and highly enriched UAlx plate cladded with aluminum. In connection with non-proliferation policy the RERTR program developed a new process of Mo-99 using low enriched uranium (LEU) instead of highly enriched uranium (HEU). LEU should be put about five times more quantity than HEU because the {sup 235}U contents of LEU and HEU are 20% and higher than 90%, respectively. Accordingly pure uranium metal foil target was adopted as a promising target material due to high uranium density. ANL and BATAN developed a Cintichem process using uranium metal foil target of 130 {mu}m in thickness jointly and the RERTR program is trying to disseminate the new process world-widely. However, uranium foil is made by lots of times rolling work on uranium plate, which is laborious and tedious. In order to avoid this difficulty KAERI developed a new process of making foil directly from uranium melt by roll casting. This process is very much simple, productive, and cost-effective. But the outside surface of foil is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect (1) target fabrication, where the U foil, or the Ni foil might be damaged during drawing, and (2) irradiation behavior, where gaps between the target walls and the U metal might affect cooling of the target

  2. Development of annular targets for 99Mo production

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E.F.; Snelgrove, J.L.; Liberatore, M.W.; Walker, D.E.; Wiencek, T.C.; McGann, D.J.; Hofman, G.L.; Vandegrift, G.F.

    1999-01-01

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99 Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99 Mo from the fissioning of 235 U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  3. Miniplates irradiation in the ATR (Idaho, USA)

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.

    2007-01-01

    High density U Mo alloys are promising for its utilization in the reconversion of HEU fuels to LEU for research nuclear reactors. Ought to the thermomechanical properties of the alloy U Mo and its interaction with aluminium it is necessary to develop new technologies and fabrication procedures to qualify this material as a nuclear fuel. In this work a review is made about the evolution of the idea and PIE experiments of monolithic LEU U 7 Mo fuel with Zr-4 cladding. The irradiation took place in the frame of international qualification efforts of dispersed and monolithic U Mo fuels. Dispersed and monolithic fuels, elaborated and in intermediate steps of development, are discussed. (author) [es

  4. DART-TM: A thermomechanical version of DART for LEU VHD dispersed and monolithic fuel analysis

    International Nuclear Information System (INIS)

    Saliba, Roberto; Taboada, Horacio; Moscarda, Ma.Virginia; Rest, Jeff

    2003-01-01

    A collaboration agreement between ANL/USDOE and CNEA Argentina, in the area of Low Enriched Uranium Advanced Fuels has been in place since October 16, 1997 under the 'Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy'. An annex concerning DART code optimization has been operative since February 8, 1999. Previously, as a part of this annex a visual thermal FASTDART version was developed that includes mechanistic models for the calculation of the fission-gas-bubble and fuel particle size distribution, reaction layer thickness, and meat thermal conductivity. FASTDART was presented at the last RERTR Meeting that included validation against RERTR 3 irradiation data. The thermal FASTDART version was assessed as an adequate tool for modeling the behavior of LEU U-Mo dispersed fuels under irradiation against PIE RERTR irradiation data. During this past year the development of a 3-D thermo-mechanical version of the code for modeling the irradiation behavior of LEU U-Mo monolithic and dispersion fuel was initiated. Some preliminary results of this work will be shown during RERTR-2003 meeting. (author)

  5. Safety analysis of an irradiation device for 99Mo production in RA-3 reactor

    International Nuclear Information System (INIS)

    Lerner, Ana Maria; Madariaga, Marcelo; Waldman, Ricardo

    2000-01-01

    The Argentine RA-3 research reactor (5 MW) has been converted to LEU fuel more than nine years ago. Since then, it has been operating with LEU fuel, which has been designed and fabricated at the National Atomic Energy Commission (CNEA). The Nuclear Regulatory Authority (ARN) is the institution in charge of the installation safety control. It is under this framework that the ARN has elaborated a neutronic calculation model for the RA-3 core, paying special attention to the device presently used for the irradiation of (HEU) 235 U targets required to obtain 9 '9Mo as a fission product. A regulatory analysis of results is carried out in the framework of ARN standards for fixed experiments. For such purpose, calculated reactivity values associated with such device are compared with recently measured values at the installation. Finally, and according to guidelines established in the first part of this work, a calculation model for a new device proposed by CNEA for the irradiation of metallic (LEU) uranium targets and still at its design stage, is here analysed. (author)

  6. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J. F.; Robinson, A. B.; Madden, J.

    2017-10-01

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 1021 f/cm3, 7.4 × 1014 f/cm3/s and 123 °C, and 5.5 × 1021 f/cm3, 11.0 × 1014 f/cm3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al3Mg2 and Al12Mg17 along with precipitates of MgO, Mg2Si and FeAl5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.

  7. Post-irradiation analysis of low enriched U-Mo/Al dispersions fuel miniplate tests, RERTR 4 and 5

    International Nuclear Information System (INIS)

    Hofman, G.L.; Finlay, M.R.; Kim, Y.S.

    2005-01-01

    Interpretation of the post irradiation data of U-Mo/Al dispersion fuel mini plates irradiated in the Advanced Test Reactor to a maximum U-235 burn up of 80% are presented. The analyses addresses fuel swelling and porosity formation as these fuel performance issues relate to fuel fabrication and irradiation parameters. Specifically, mechanisms involved in the formation of porosity observed in the U-Mo/Al interaction phase are discussed and, means of mitigating or eliminating this irradiation phenomenon are offered. (author)

  8. Irradiation of diffusion couples U-Mo/Al. Thermal calculation

    International Nuclear Information System (INIS)

    Fortis, Ana M.; Mirandou, Monica; Denis, Alicia C.

    2004-01-01

    The development of new low enrichment fuel elements for research reactors has lead to obtaining a number of compounds and alloys where the decrease in the enrichment is compensated by a higher uranium density in the fuel material. This has been achieved in particular with the uranium silicides dispersed in an aluminum matrix, where uranium densities about 4.8 g/cm 3 have been reached. Among the diverse candidate alloys, those of U-Mo with molybdenum content in the range 6 to 10 w % can yield, upon dispersion, to uranium densities of about 8 g/cm 3 . The first irradiation experiments employing these alloys in fuel plates, either dispersed in Al or monolithic revealed certain phenomena which are worthy of further studies. Failures have been detected apparently due to the formation of reaction products between the fissile material and the aluminum matrix, which exhibit a poor irradiation behavior. An experiment was designed which final purpose is to irradiate diffusion couples U-Mo/Al in the RA-3 reactor and to analyze the interaction zone at the working temperatures of the fuel elements. A simple device was built consisting of two Al 6063 blocks which press the U-Mo sample in between, located in an Al capsule. The ensemble is placed in a tube, which can be filled with different gases and introduced in the reactor. For safety reasons temperature predictions are necessary before performing the experiment. To this end, the COSMOS code was used. As a preliminary step and in order to test to exactness of the numerical estimations, two irradiations were performed in the RA-1 reactor with He and N 2 as transference gases. The agreement between the measured and calculated temperatures was good, particularly in the case of He and, along with the numerical predictions for the RA-3 reactor, provides a reliable basis to proceed with the following steps. (author)

  9. Analyses on the U-Mo/Al Chemical Interaction and the Effects of Diffusion Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Kim, Woo Jeong; Cho, Woo Hyung; Jeong, Yong Jin; Lee, Yoon Sang; Park, Jong Man; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    While many HEU-fueled research reactors have been converted by adopting LEU U{sub 3}Si{sub 2} fuel in harmony with the Reduced Enrichment for Research and Test Reactors (RERTR) program, some high performance research reactors still need the development of advanced fuels with higher uranium densities. Currently, gamma-phase U-Mo alloys are considered promising candidates to be used as high uranium density fuel for the high performance reactors. For the production of UMo alloy powder, the centrifugal atomization technology developed by KAERI has been considered the most promising way because of high yield production and excellent powder quality when compared with other possible methods such as grinding, machining or hydriding-dehydriding. However, severe pore formation associated with an extensive interaction between the U-Mo and Al matrix, although the irradiation performance of U-Mo itself showed most stable, delay the fuel qualification of UMo fuel for high performance research reactors. Because the reaction products, i.e. uranium aluminides (UAlx), is less dense than the mixed reactants, the volume of the fuel meat increases after formation of interaction layer(IL). In addition to the impact on the swelling performance, the reaction layers between the U-Mo and Al matrix induces a degradation of the thermal conductivities of the U-Mo/Al dispersion fuels. The chemical interaction between the U-Mo and Al matrix are analyzed in this study to find remedies to reduce the growth of the interaction layers during irradiation. In addition, various coating technologies for the formation of diffusion barriers on U-Mo particles are proposed as a result of the analyses

  10. Thermal behavior analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  11. Thermal behavior analysis of U-Mo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu

    2004-01-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  12. A novel monolithic LEU foil target based on a PVD manufacturing process for 99Mo production via fission.

    Science.gov (United States)

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    99 Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the 99 Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Elaboration of mini plates with U-Mo for irradiation in a high flux reactor

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.

    2005-01-01

    Full text: International new efforts for the reconversion of HEU in research, testing and radioisotopes production reactors, have greatly incremented U-Mo fuels qualification activities. These qualifications require the resolution of undesired interaction at high fluxes between UMo particles and the aluminum matrix in the case of dispersed fuels and the development of U-Mo monolithic fuels. These efforts are being manifested in the planning and execution of additional series of irradiation tests of mini plates and full size plates. Recently, CNEA has elaborated mini plates with different proposals for the irradiation at the ATR reactor (250 MWTH, maximum thermal neutron flux 10 15 n.cm -2 .seg -1 ) at Idaho National Laboratory, USA. Uranium 7% (w/w) molybdenum (U-7Mo) particles were coated with silicon. Chemical vapour deposition (CVD) of silane and high temperature diffusion of silicon were used. Hydrided, milled and dehydrated (HMD) particles heat treated at 1000 C degrees during four hours and centrifugal atomized powder were coated and the results compared. Mini plates were elaborated with both kinds of particles. Mini plates were also elaborated with U-7Mo and silicon particles dispersed in the aluminium matrix. Monolithic mini plates were also developed by co lamination of U-7Mo with a Zircaloy-4 cladding. The different steps of this process are detailed and the method is shown to be versatile, can be easily scaled up and is performed with small modifications of usual equipment in fuel plants. The irradiation experiment is called RERTR-7A, includes a total of 32 mini plates and it is planed to finalize by mid 2006. (author) [es

  14. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  15. Mo-99 production on a LEU solution reactor

    International Nuclear Information System (INIS)

    Brown, R.W.; Thome, L.A.; Khvostionov, V.Y.

    2005-01-01

    A pilot homogenous reactor utilizing LEU has been developed by the Kurchatov Institute in Moscow along with their commercial partner TCI Medical. This solution reactor operates at levels up to 50 kilowatts and has successfully produced high quality Mo-99 and Sr-89. Radiochemical extraction of medical radionuclides from the reactor solution is performed by passing the solution across a series of inorganic sorbents. This reactor has commercial potential for medical radionuclide production using LEU UO 2 SO 4 fuel. Additional development work is needed to optimize multiple 50 kilowatt cores while at the same time, optimizing production efficiency and capital expenditure. (author)

  16. U-Mo fuel qualification program in HANARO

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Kim, H.R.; Kuk, I.H.; Kim, C.K.

    2000-01-01

    Atomized U-Mo fuel has shown good performance from the results of previous out-of-pile tests and post-irradiation examinations. A qualification program of rod type U-Mo fuel is in progress and the fuel will be irradiated in HANARO. 6 gU/cm 3 U-7Mo, U-8Mo and U-9Mo are considered in this program. The laboratory test results of porosity, mechanical property, thermal conductivity, and thermal compatibility test are discussed in this paper. In parallel with this qualification program, the feasibility study on the core conversion from the present U 3 Si fuel to U-Mo in HANARO will be initiated to provide technical bases for the policy making. Several options of core conversion for HANARO are proposed and each option will be addressed briefly in terms of the operation policy, fuel management, and licensing of HANARO. (author)

  17. Physical properties of monolithic U8 wt.%-Mo

    Science.gov (United States)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  18. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Science.gov (United States)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  19. Fission gas behaviour and interdiffusion layer growth in in-pile and out-of-pile irradiated U-Mo/Al nuclear fuels

    International Nuclear Information System (INIS)

    Zweifel, Tobias

    2014-01-01

    Worldwide, research and test reactors are to convert their fuel from highly towards lower enriched uranium, among them the FRM II. One prospective fuel is an alloy of uranium and molybdenum (abbr. U-Mo). Test irradiations showed an insufficient irradiation behavior of this new fuel due to the growth of an interdiffusion layer (abbr. IDL) between the U-Mo fuel and the surrounding Al matrix. Furthermore, this layer accumulates fission gases. In this work, heavy ion irradiated U-Mo/Al layer systems were studied and compared to in-reactor irradiated fuel to study the fission gas dynamics. It is demonstrated that the gas behavior is identical for both in-reactor and out-of-reactor approaches.

  20. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-12

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  1. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  2. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  3. Scalability of the LEU-Modified Cintichem Process: 3-MeV Van de Graaff and 35-MeV Electron Linear Accelerator Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brossard, Tom [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Roussin, Ethan [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jonah, Charles [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krebs, John [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABO were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.

  4. The conversion of NRU from HEU to LEU fuel

    International Nuclear Information System (INIS)

    Sears, D.F.; Atfield, M.D.; Kennedy, I.C.

    1990-01-01

    The program at Chalk River Nuclear Laboratories (CRNL) to develop and test low-enriched uranium fuel (LEU, 3 Si, USiAl, USi Al and U 3 Si 2 (U-3.96 wt% Si; U-3.5 wt% Si-1.5 wt% AL; U-3.2 wt%; Si-3 wt% Al; U-7.3 wt% Si, respectively). Fuel elements were fabricated with uranium loadings suitable for NRU, 3.15 gU/cm 3 , and for NRX, 4.5 gU/cm 3 , and were irradiated under normal fuel-operating conditions. Eight experimental irradiations involving 100 mini-elements and 84 full-length elements (7X12-element rods) were completed to qualify the LEU fuel and the fabrication technology. Post irradiation examinations confirmed that the performance of the LEU fuel, and that of a medium enrichment uranium (MEU, 45% U-235) alloy fuel tested as a back-up, was comparable to the HEU fuel. The uranium silicide dispersion fuel swelling was approximately linear up to burnups exceeding NRU's design terminal burnup (80 at%). NRU was partially converted to LEU fuel when the first 31 prototype fuel rods manufactured with industrial scale production equipment were installed in the reactor. The rods were loaded in NRU at a fuelling rate of about two rods per week over the period 1988 September to December. This partial LEU core (one third of a full NRU core) has allowed the reactor engineers and physicists to evaluate the bulk effects of the LEU conversion on NRU operations. As expected, the irradiation is proceeding without incident

  5. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.

  6. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Science.gov (United States)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  7. Preliminary investigation of the use of monolithic U-Mo fuel in the MIT reactor

    International Nuclear Information System (INIS)

    Newton, Thomas H. Jr.; Kazimi, Mujid S.; Pilat, Edward E.; Xu Zhiwen

    2003-01-01

    Studies have begun on the use of monolithic LEU U-Mo fuel in the MIT Nuclear Research Reactor (MITR-II) using the Monte Carlo Transport code MCNP. These studies have included model benchmarking, LEU fuel optimization, burnup evaluation, in-core facility design, and determination of safety attributes. Benchmarking studies on the initial core have shown favorable agreement between the calculated and measured reactivity worths of the six control blades. In addition, optimization studies on LEU U7Mo MITR-II fuel have shown that an arrangement of ten to twelve plates per fuel element would have initial reactivity values and thermal neutron fluxes comparable to the current HEU core. Burnup studies which have been made using the MCODE depletion program will be presented. Safety attributes such as temperature coefficients, shutdown margins, and coolant subcooled margin are under evaluation. (author)

  8. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    CERN Document Server

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  9. Development of U-Mo/Al dispersion fuel for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Man; Ryu, Ho Jin; Yang, Jae Ho; Jeong, Yong Jin; Lee, Yoon Sang [Korea Atomic Energy Research Inst., Research Reactor Fuel Development Division, Daejeon (Korea, Republic of)

    2012-03-15

    Currently, the KOMO-5 irradiation test for full size U-Mo/Al dispersion fuel rods has been underway since May 23, 2011. The purpose of the KOMO-5 test includes an investigation of the irradiation behaviors of silicide or nitride coated U-7Mo/Al(-Si) dispersion fuels and the effects of pre-formed interaction layers on U-Mo particles. It is expected that the irradiation test will be finished after attaining 60 at% U-235 burnup in May 2012, and the first PIE results of the KOMO-5 will be obtained in September 2012. In addition, an international cooperation program on the qualification of U-Mo dispersion fuels for small and medium size research reactors is going to be proposed in cooperation with the IAEA. Conversion from silicide fuel to U-Mo fuel will increase the cycle length with a smaller number of fuel assemblies and allow more flexible back-end options for spent fuel due to of the reprocessibility of U-Mo. (author)

  10. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  11. Progress in development of low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.

    2002-01-01

    Results from post irradiation examinations and analyses of U-Mo/Al dispersion mini plates are presented. Irradiation test RERTR-5 contained mini- fuel plates with fuel loadings of 6 and 8 g U cm -3 . The fuel material consisted of 6, 7 and 10 wt. % Mo-uranium-alloy powders in atomized and machined form. The swelling behavior of the various fuel types is analyzed, indicating athermal swelling of the U-Mo alloy and temperature-dependent swelling owing to U-Mo/Al interdiffusion. (author)

  12. Fabrication and irradiation testing of LEU [low enriched uranium] fuels at CRNL status as of 1987 September

    International Nuclear Information System (INIS)

    Sears, D.F.; Berthiaume, L.C.; Herbert, L.N.

    1987-01-01

    The current status of Chalk River Nuclear Laboratories' (CRNL) program to develop and test low-enriched uranium (LEU), proliferation-resistant fuels for use in research reactors is reviewed. CRNL's fuel manufacturing process has been qualified by the successful demonstration irradiation of 7 full-size rods in the NRU reactor. Now industrial-scale production equipment has been commissioned, and a fuel-fabrication campaign for 30 NRU rods and a MAPLE-X core is underway. Excess capacity could be used for commercial fuel fabrication. In the irradiation testing program, mini-elements with deliberately included core surface defects performed well in-reactor, swelling by only 7 to 8 vol% at 93 atomic percent burnup of the original U-235. The additional restraint provided by the aluminium cladding which flowed into the defects during extrusion contributed to this good performance. Mini-elements containing a variety of particle size distributions were also successfully irradiated to 93 at% burnup in NRU, as part of a study to establish the optimum particle size distribution. Swelling was found to be proportional to the percentage of fines (<44μm particles) contained in the cores. The mini-elements containing the composition normally used at CRNL had swollen by 5.8 vol%, and mini-elements with a much higher percentage of fines had swollen by 6.8 vol%, at 93 at% burnup. Also, a program to develop LEU targets for Mo-99 production, via the technology developed to fabricate dispersed silicide fuel, has started, and preliminary scoping studies are underway. (Author)

  13. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.; Buck, Edgar C.

    2017-09-01

    Irradiated U-10Mo fuel samples were prepared with traditional mechanical potting and polishing methods with in a hot cell. They were then removed and imaged with an SEM located outside of a hot cell. The images were then processed with basic imaging techniques from 3 separate software packages. The results were compared and a baseline method for characterization of fission gas bubbles in the samples is proposed. It is hoped that through adoption of or comparison to this baseline method that sample characterization can be somewhat standardized across the field of post irradiated examination of metal fuels.

  14. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  15. Evolution of microstructure of U-Mo alloys in as cast and sintered forms

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Kamath, H.S.; Dey, G.K.

    2009-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been successfully used as potential Low Enriched Uranium (LEU 235 ) base dispersion fuel in new research and test reactors and also for converting High Enriched Uranium (HEU > 85% U 235 ) cores to LEU in most of the existing research and test reactors. The maximum density achievable with U 3 Si 2 -AI dispersion fuel is around 4.8 g U cm -3 . To achieve a uranium density of 8.0 to 9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Metallic Fuels Division, R and D efforts are on to develop these high density uranium alloys. Molybdenum plays a crucial role in metastabilising the γ-phase of uranium at room temperature which is very much evident when we see the microstructures of different U-Mo alloys with varying molybdenum concentration as solute atom. The paper describes the role of molybdenum in imparting metastability in U-Mo alloys from their microstructures in as cast and sintered forms. The paper also covers the role of tailored microstructure in U-Mo alloy for the purpose of hydriding and dehydriding treatment to generate alloy powders. (author)

  16. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-12-15

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%{sup 235}U; the mini-rods were irradiated to an average burnup of ∼ 85%{sup 235}U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  17. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    International Nuclear Information System (INIS)

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60% 235 U; the mini-rods were irradiated to an average burnup of ∼ 85% 235 U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%

  18. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched Uranium] targets

    International Nuclear Information System (INIS)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99 Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved

  19. Gas generation during waste treatment of acidic solutions from the dissolution of irradiated LEU targets for 99Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States); Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    The goal of the Reduced Enrichment for Research and Test Reactors Program is to limit the use of high-enriched uranium (HEU) in research and test reactors by substituting low-enriched uranium (LEU) wherever possible. The work reported here documents our work to develop the calcining technologies and processes that will be needed for 99Mo production using LEU foil targets and the Modified Cintichem Process. The primary concern with the conversion to LEU from HEU targets is that it would result in a five- to six-fold increase in the total uranium. This increase results in more liquid waste from the process. We have been working to minimize the increase in liquid waste and to minimize the impact of any change in liquid waste. Direct calcination of uranium-rich nitric acid solutions generates NO2 gas and UO3 solid. We have proposed two processes for treating the liquid waste from a Modified Cintichem Process with a LEU foil. One is an optimized direct calcination process that is similar to the process currently in use. The other is a uranyl oxalate precipitation process. The specific goal of the work reported here was to characterize and compare the chemical reactions that occur during these two processes. In particular, the amounts and compositions of the gaseous and solid products were of interest. A series of experiments was carried out to show the effects of temperature and the redox potential of the reaction atmosphere. The primary products of the direct calcination process were mixtures of U3O8 and UO3 solids and NO2 gas. The primary products of the oxalate precipitation process were mixtures of U3O8 and UO2 solid and CO2 gas. Higher temperature and a reducing atmosphere tended to favor quadrivalent over hexavalent uranium in the solid product. These data will help producers to decide between the two processes. In addition, the data can be used

  20. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  1. Annealing tests of in-pile irradiated oxide coated U-Mo/Al-Si dispersed nuclear fuel

    Science.gov (United States)

    Zweifel, T.; Valot, Ch.; Pontillon, Y.; Lamontagne, J.; Vermersch, A.; Barrallier, L.; Blay, T.; Petry, W.; Palancher, H.

    2014-09-01

    U-Mo/Al based nuclear fuels have been worldwide considered as a promising high density fuel for the conversion of high flux research reactors from highly enriched uranium to lower enrichment. In this paper, we present the annealing test up to 1800 °C of in-pile irradiated U-Mo/Al-Si fuel plate samples. More than 70% of the fission gases (FGs) are released during two major FG release peaks around 500 °C and 670 °C. Additional characterisations of the samples by XRD, EPMA and SEM suggest that up to 500 °C FGs are released from IDL/matrix interfaces. The second peak at 670 °C representing the main release of FGs originates from the interaction between U-Mo and matrix in the vicinity of the cladding.

  2. LEU{sub b}ased Fission Mo-99 Process with Reduced Solid Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungkon; Lee, Suseung; Jung, Sunghee; Hong, Soonbog; Jang, Kyungduk; Choi, Sang Mu; Lee, Jun Sig; Lim, Incheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 99m} Tc emits 140 keV of very low gamma-ray radiation energy, as low as conventional diagnostic X-ray, and has short half-life of 6.0058 hours. Therefore, as radioactive tracer, {sup 99m} Tc provides high quality diagnostic images but keeps total patient radiation exposure low. Depending on the tagging pharmaceuticals and procedures, {sup 99m} Tc can be applied for the diagnostics of various target organs and diseases: brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and tumors. More than 95% of {sup 99}Mo is produced through fission of {sup 235}U worldwide because, {sup 99m}o generated from the fission (fission {sup 99}Mo) exhibits very high specific activity (<100 Ci/g). Over 90% of fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, the IAEA recommends the use of low enriched uranium (LEU) to the {sup 99}Mo producers for nonproliferation reason. These days, worldwide {sup 99}Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are about 50 years old and suffered from frequent and unscheduled shutdown. Planned weekly productivity of 2000 Ci fission {sup 99}Mo, in a 6-day reference, will cover 100% domestic demand of Korea, as well as 20% of international market. It is expected to replace 4.3 million USD ($800/Ci) of {sup 99}Mo import for domestic market while exporting 82.8 million USD for world market, annually.

  3. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  4. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: Dennis.Keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia)

    2012-06-15

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  5. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  6. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  7. A neutronic feasibility study for LEU conversion of the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Pond, R.B.; Hanan, N.A.; Matos, J.E.; Ball, G.

    2000-01-01

    A neutronic feasibility study to convert the SAFARI-1 reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with NECSA. Comparisons were made of the reactor performance with the current 90% enriched HEU fuel type (UAl) and two 19.75% enriched LEU fuel types (U 3 Si 2 and U7Mo). The thermal fluxes with the LEU fuels were 3 - 9% lower than with the current HEU fuel. For the same fuel assembly design, a uranium density of approximately 4.5 g/cm 3 was required with U 3 Si 2 -Al fuel and a uranium density of about 4.6 g/cm 3 was required with U7Mo-Al fuel to match the 24.6-day cycle of the UAl-alloy fuel with 0.92 gU/cm 3 . The selection of a suitable LEU fuel and the decision to convert SAFARI-1 will be an economic matter that depends upon the fuel type, fuel assembly design, experiment performance and fuel cycle costs. (author)

  8. The Effect of Uncertainties on the Operating Temperature of U-Mo/Al Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sweidana, Faris B.; Mistarihia, Qusai M.; Ryu Ho Jin [KAIST, Daejeon (Korea, Republic of); Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, uncertainty and combined uncertainty studies have been carried out to evaluate the uncertainty of the parameters affecting the operational temperature of U-Mo/Al fuel. The uncertainties related to the thermal conductivity of fuel meat, which consists of the effects of thermal diffusivity, density and specific heat capacity, the interaction layer (IL) that forms between the dispersed fuel and the matrix, fuel plate dimensions, heat flux, heat transfer coefficient and the outer cladding temperature were considered. As the development of low-enriched uranium (LEU) fuels has been pursued for research reactors to replace the use of highly-enriched uranium (HEU) for the improvement of proliferation resistance of fuels and fuel cycle, U-Mo particles dispersed in an Al matrix (UMo/Al) is a promising fuel for conversion of the research reactors that currently use HEU fuels to LEUfueled reactors due to its high density and good irradiation stability. Several models have been developed for the estimation of the thermal conductivity of U–Mo fuel, mainly based on the best fit of the very few measured data without providing uncertainty ranges. The purpose of this study is to provide a reasonable estimation of the upper bounds and lower bounds of fuel temperatures with burnup through the evaluation of the uncertainties in the thermal conductivity of irradiated U-Mo/Al dispersion fuel. The combined uncertainty study using RSS method evaluated the effect of applying all the uncertainty values of all the parameters on the operational temperature of U-Mo/Al fuel. The overall influence on the value of the operational temperature is 16.58 .deg. C at the beginning of life and it increases as the burnup increases to reach 18.74 .deg. C at a fuel meat fission density of 3.50E+21 fission/cm{sup 3}. Further studies are needed to evaluate the behavior more accurately by including other parameters uncertainties such as the interaction layer thermal conductivity.

  9. Progress in the neutronic core conversion (HEU-LEU) analysis of Ghana research reactor-1.

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Maakuu, B. T.; Akaho, E. H. K.; Andam, A.; Liaw, J. J. R.; Matos, J. E.; Nuclear Engineering Division; Ghana Atomic Energy Commission; Kwame Nkrumah Univ. of Science and Technology

    2006-01-01

    The Ghana Research Reactor-1 (GHARR-1) is a commercial version of the Miniature Neutron Source Reactor (MNSR) and has operated at different power levels since its commissioning in March 1995. As required for all nuclear reactors, neutronic and thermal hydraulic analysis are being performed for the HEU-LEU core conversion studies of the Ghana Research Reactor-1 (GHARR-1) facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR). Stochastic Monte Carlo particle transport methods and tools (MCNP4c/MCNP5) were used to fine-tune a previously developed 3-D MCNP model of the GHARR-1 facility and perform neutronic analysis of the 90.2% HEU reference and candidate LEU (UO{sub 2}, U{sub 3}Si{sub 2}, U-9Mo) fresh cores with varying enrichments from 12.6%-19.75%. In this paper, the results of the progress made in the Monte Carlo neutronic analysis of the HEU reference and candidate LEU fuels are presented. In particular, a comparative performance assessment of the LEU with respect to neutron flux variations in the fission chamber and experimental irradiation channels are highlighted.

  10. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    Directory of Open Access Journals (Sweden)

    ALEKSEY. L. IZHUTOV

    2013-12-01

    The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; the mini-rods were irradiated to an average burnup of ∼ 85%235U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  11. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  12. Key considerations in the conversion to LEU of a Mo-99 commercially producing reactor: SAFARI-1 of South Africa

    International Nuclear Information System (INIS)

    Stumpf, W.E.; Vermaak, A.P.; Ball, G.

    2000-01-01

    Apart from the technological demands and considerations associated with the conversion of a Mo-99 commercially producing reactor to LEU, a number of commercial challenges also need to be addressed. This is particularly the case when the reactor is primarily used as a source for the production, on an uninterrupted basis, of significant quantities of Mo-99 to satisfy long term commitments to a range of global customers. This paper highlights key business considerations which are applicable in the conversion process of firstly, reactor fuel to LEU and secondly target plates for Mo-99, also to LEU, using the SAFARI-1 reactor in South Africa as a typical example of such a commercially utilized reactor. (author)

  13. Key considerations in the conversion to LEU of a Mo-99 commercially producing reactor: SAFARI-1 of South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, W E; Vermaak, A P; Ball, G [NECSA, PO Box 582, Pretoria (South Africa)

    2000-10-01

    Apart from the technological demands and considerations associated with the conversion of a Mo-99 commercially producing reactor to LEU, a number of commercial challenges also need to be addressed. This is particularly the case when the reactor is primarily used as a source for the production, on an uninterrupted basis, of significant quantities of Mo-99 to satisfy long term commitments to a range of global customers. This paper highlights key business considerations which are applicable in the conversion process of firstly, reactor fuel to LEU and secondly target plates for Mo-99, also to LEU, using the SAFARI-1 reactor in South Africa as a typical example of such a commercially utilized reactor. (author)

  14. Irradiation of MEU and LEU test fuel elements in DR 3

    International Nuclear Information System (INIS)

    Haack, K.

    1984-01-01

    Irradiation of three MEU and three LEU fuel elements in the Danish reactor DR 3. Thermal and fast neutron flux density scans of the core have been made and the results, related to the U235-content of each fuel element, are compared with the values from HEU fuel elements. The test elements were taken to burn-up percentages of 50-60%. Reactivity values of the test elements at charge and at discharge have been measured and the values are compared with those of HEU fuel elements. (author)

  15. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UALx-Al and U-Ni to production of 99Mo in reactor IEA-R1 and RMB

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2014-01-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl 2 -Al, U-Ni cylindrical and U-Ni plate) used for the production of 99 Mo by fission of 235 U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of 99 Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl 2 -Al (10 mini plates). Analyses have shown that the total activity obtained for 99 Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl 2 -Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental results. (author)

  16. Report on the Synchrotron Characterization of U-Mo and U-Zr Alloys and the Modeling Results

    Energy Technology Data Exchange (ETDEWEB)

    Okuniewski, Maria A. [Purdue Univ., West Lafayette, IN (United States); Ganapathy, Varsha [Purdue Univ., West Lafayette, IN (United States); Hamilton, Brenden [Purdue Univ., West Lafayette, IN (United States); Cassutt, Paul [Purdue Univ., West Lafayette, IN (United States); Zhang, Fan [Purdue Univ., West Lafayette, IN (United States); Velaquez, Daniel [Illinois Inst. of Technology, Chicago, IL (United States); Seibert, Rachel [Illinois Inst. of Technology, Chicago, IL (United States); Terry, Jeff [Illinois Inst. of Technology, Chicago, IL (United States); Sprouster, David [Brookhaven National Lab. (BNL), Upton, NY (United States); Ecker, Lynne [Brookhaven National Lab. (BNL), Upton, NY (United States); Elbakhshwan, Mohamed [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-09-01

    ABSTRACT Uranium-molybdenum (U-Mo) and uranium-zirconium (U-Zr) are two promising fuel candidates for nuclear transmutation reactors which burn long-lived minor actinides and fission products within fast spectrum reactors. The objectives of this research are centered on understanding the early stages of fuel performance through the examination of the irradiation induced microstructural changes in U-Zr and U-Mo alloys subjected to low neutron fluences. Specimens that were analyzed include those that were previously irradiated in the Advanced Test Reactor at INL. This most recent work has focused on a sub-set of the irradiated specimens, specifically U-Zr and U-Mo alloys that were irradiated to 0.01 dpa at temperatures ranging from (150-800oC). These specimens were analyzed with two types of synchrotron techniques, including X-ray absorption fine structure and X-ray diffraction. These techniques provide non-destructive microstructural analysis, including phase identification and quantitation, lattice parameters, crystallite sizes, as well as bonding, structure, and chemistry. Preliminary research has shown changes in the phase fractions, crystallite sizes, and lattice parameters as a function of irradiation and temperature. Future data analyses will continue to explore these microstructural changes.

  17. Interaction Layer Characteristics in U-xMo Dispersion/Monolithic Fuels

    International Nuclear Information System (INIS)

    Porter, D.L.

    2010-01-01

    Published data concerning the interaction layer (IL) formed between U-xMo fuel alloy and aluminum (Al)-based matrix or cladding materials was reviewed, including the effects of silicon (Si) content in the matrix/cladding, molybdenum (Mo) content in the fuel, pre irradiation thermal treatments, irradiation, and test temperature. The review revealed that tests conducted in the laboratory produce results different from those conducted in an irradiation environment. However, the laboratory testing relates well to thermal treatments performed prior to irradiation and helps in understanding the effects that these pre irradiation treatments have on in reactor performance. A pre-formed, Si-enriched IL seems to be important in delaying the onset of rapid growth of fission gas bubbles at low irradiation temperatures. Several other conclusions can be drawn: (1) An IL with phases akin to UAl3 is desired for optimum fuel performance, but at low temperatures, and especially in an irradiation atmosphere, the desired (Al+Si)/(U+Mo) ratio of three is difficult to produce. When the fuel operating temperature is low, it is important to create a pre-irradiation IL, enriched in Si. This pre-formed IL is relatively stable, performs well in terms of swelling resistance, and prevents rapid IL growth during irradiation. (2) At higher operating temperatures (>150-170 C), IL formation in reactor may not be so dependent on pre-irradiation IL formation, especially at high burnup; a pre-fabricated IL seems to be less stable at high burnup and high operating temperature. Moreover, the (Al+SI)/(U+Mo) ratio of three occurs more often at higher temperature. For these two reasons, it is important at high operating temperature to also have a matrix with significant Si content to create an IL in reactor with the right characteristics. (3) Out-of-reactor testing seems to indicate that Si in the matrix material is required in some concentration (2%, 5%, ?) to provide for a thin, Si-enriched IL formed

  18. Interdiffusion between U-Mo alloys and Al or Al alloys at 340 deg. C. Irradiation plan

    International Nuclear Information System (INIS)

    Fortis, A.M.; Mirandou, M.; Ortiz, M.; Balart, S.; Denis, A.; Moglioni, A.; Cabot, P.

    2005-01-01

    Out of reactor interdiffusion experiments between U-Mo alloys and Al alloys made close to fuel operation temperature are needed to validate the results obtained above 500 deg. C. A study of interdiffusion between U-Mo and Al or Al alloys, out and in reactor, has been initiated. The objective is to characterize the interdiffusion layer around 250 deg. C and study the influence of neutron irradiation. Irradiation experiments will be performed in the Argentine RA3 reactor and chemical diffusion couples will be fabricated by Friction Stir Welding (FSW) technique. In this work out-of-pile diffusion experiments performed at 340 deg. C are presented. Friction Stir Welding (FSW) was used to fabricate some of the samples. One of the results is the presence of Si, in the interaction layer, coming from the Al alloy. This is promising in the sense that the absence of Al rich phases may also be expected at low temperature. (author)

  19. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  20. Interaction Layer Characteristics in U-xMo Dispersion/Monolithic Fuels

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Porter

    2010-11-01

    Published data concerning the interaction layer (IL) formed between U-xMo fuel alloy and aluminum (Al)-based matrix or cladding materials was reviewed, including the effects of silicon (Si) content in the matrix/cladding, molybdenum (Mo) content in the fuel, pre irradiation thermal treatments, irradiation, and test temperature. The review revealed that tests conducted in the laboratory produce results different from those conducted in an irradiation environment. However, the laboratory testing relates well to thermal treatments performed prior to irradiation and helps in understanding the effects that these pre irradiation treatments have on in reactor performance. A pre-formed, Si-enriched IL seems to be important in delaying the onset of rapid growth of fission gas bubbles at low irradaiiation temperatures. Several other conclusions can be drawn: 1. An IL with phases akin to UAl3 is desired for optimum fuel performance, but at low temperatures, and especially in an irradiation atmosphere, the desired (Al+Si)/(U+Mo) ratio of three is difficult to produce. When the fuel operating temperature is low, it is important to create a pre-irradiation IL, enriched in Si. This pre-formed IL is relatively stable, performs well in terms of swelling resistance, and prevents rapid IL growth during irradiation. 2. At higher operating temperatures (>150–170°C), IL formation in reactor may not be so dependent on pre-irradiation IL formation, especially at high burnup; a pre-fabricated IL seems to be less stable at high burnup and high operating temperature. Moreover, the (Al+SI)/(U+Mo) ratio of three occurs more often at higher temperature. For these two reasons, it is important at high operating temperature to also have a matrix with significant Si content to create an IL in reactor with the right characteristics. 3. Out-of-reactor testing seems to indicate that Si in the matrix material is required in some concentration (2%, 5%, ?) to provide for a thin, Si-enriched IL formed

  1. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed. - Highlights: •Complementary fission gas release events are reported for U-Mo fuel with and without cladding. •Exothermic reaction between Zr diffusion layer and cladding influences fission gas release. •Mechanisms responsible for fission gas release are similar, but with varying timing and magnitude. •Behavior of samples is similar after 800 °C signaling the onset of superlattice destabilization.

  2. Analyses of Interaction Phases of U Mo Dispersion Fuel by Synchrotron X ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong; Nam, Ji Min; Ryu, Ho Jin; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Herve, Palancher; Charollais, Francois [Saint Paul Lez Durance Cedex, Rhone (France); Bonnin, Anne; Honkimaeki, Veijo [Grenoble Cedex, Grenoble (France); Patrick Lemoined [Gif sur Yvette, Paris (France)

    2012-10-15

    Gamma phase U Mo alloys are one of the promising candidates to be used as advanced high uranium density fuel for high power research reactors due to their excellent irradiation performance. However, formation of interaction layers between the U Mo particles and Al matrix degrades the irradiation performance of U Mo dispersion fuel. One of the remedies to the interaction problem is a Si addition to the Al matrix. Recent irradiation tests have shown that the use of Al (2{approx}5wt%)Si matrices retarded the growth of interaction layers effectively during irradiation. Recently, KAERI has proposed silicide or nitride coated U Mo fuel for the minimization of the interaction layer growth. The silicide or nitride coatings are expected to act as interdiffusion barriers and their out of pile tests showed the improved diffusion barrier performances of the silicide and nitride layers. In order to characterize constituent phases in the coated layers on U Mo particles and the interaction layers of coated U Mo particle dispersed fuel, synchrotron X ray diffraction experiments have been performed at the ESRF (European Synchrotron Radiation Facility), France as a KAERI CEA cooperation program.

  3. Characterization of intergranular fission gas bubbles in U-Mo fuel

    International Nuclear Information System (INIS)

    Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.

    2008-01-01

    This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of ∼0 at% U-235 (LEU) or a fission density of ∼3 x 10 21 fissions/cm 3 . Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed that the site of

  4. Development of U-Mo Research Reactor Fuel for Next Generation

    International Nuclear Information System (INIS)

    Park, Jong Man; Lee, Y. S.; Yang, J. H.; Ryu, H. J.; Kim, C. K.; Chae, H. T.; Seo, C. G.

    2010-08-01

    - Exportation of centrifugal atomized U-Mo powder - Completion of post irradiation examination for KOMO-3 irradiated fuel rods. - Select the dispersion fuel rod candidates for KOMO-4 irradiation test. - Irradiation test to solve the problems of interaction layer formation (KOMO-4) - Set the post irradiation examination of KOMO-4 irradiated fuel rods. - Development and characterization of innovative high U density fuel rods - Obtain and analyze foreign new irradiation test D

  5. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  6. Reaction layer between U-7WT%Mo and Al alloys in chemical diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.; Granovsky, M.; Ortiz, M.; Balart, S.; Arico, S.; Gribaudo, L.

    2005-01-01

    Several failures in U-Mo dispersion fuel plates like pillowing and large porosities have been reported during irradiation experiments. These failures have been assigned to the formation of a large (U-Mo)/Al interaction product under high operating conditions. The modification of the matrix by alloying Al to change the interaction layer and improve its irradiation behavior, has been proposed. This paper reports diffusion experiments performed between U-7wt%Mo and various Al alloys containing Mg and / or Si. By the use of Optical Microscopy, SEM and X-Ray diffraction, it was found that with a concentration of 5.2wt% or 7.1 wt%Si the interaction layer is constituted mainly by (U,Mo)(Si,Al) 3 and no (U,Mo)Al 4 is detected. As part of the studies of properties of the U-Mo alloys the time for isothermal transformation start at different temperatures of the γ phase is being evaluated for the present U-7wt%Mo alloy. These results are used to plan the future diffusion program that will include diffusion under irradiation at CNEA RA3 reactor. (author)

  7. Progress in qualifying low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Hayes, S.L.; Meyer, M.K.

    2001-01-01

    The U.S. Reduced Enrichment for Research and Test Reactors program is working to qualify dispersions of U-Mo alloys in aluminum with fuel-meat densities of 8 to 9 gU cm -3 . Post irradiation examinations of the small fuel plates irradiated in the Advanced Test Reactor during the high-temperature RERTR-3 tests are virtually complete, and analysis of the large quantity of data obtained is underway. We have observed that the swelling of the fuel plates is stable and modest and that the swelling is dominated by the temperature-dependent interaction of the U-Mo fuel and the aluminum matrix. In order to extract detailed information about the behavior of these fuels from the data, a complex fuel-plate thermal model is being developed to account for the effects of the changing fission rate and thermal conductivity of the fuel meat during irradiation. This paper summarizes the empirical results of the post irradiation examinations and the preliminary results of the model development. In addition, the schedule for irradiation of full-sized elements in the HFR-Petten is briefly discussed. (author)

  8. Development of Techniques for Small Scale Indigenous 99Mo Production Using LEU Targets at ICN Pitesti-Romania [Country report: Romania

    International Nuclear Information System (INIS)

    2015-01-01

    Initiation of the IAEA Coordinated Research Project (CRP) “Development Techniques for Small Scale Indigenous 99 Mo Production Using LEU Fission or Neutron Activation” during 2005 allowed Member States to participate through their research organization on contractor arrangement to accomplish the CRP objectives. Among these, the participating research organization Institute for Nuclear Research Pitesti Romania (ICN), was the beneficiary of financial support and Argonne National Laboratory assistance provided by US Department of Energy to the CRP for development of techniques for fission 99 Mo production based on LEU modified CINTICHEM process. The Agency’s role in this field was to assist in the transfer and adaptation of existing technology in order to disseminate a technique, which advances international non-proliferation objectives and promotes sustainable development needs, while also contributing to extend the production capacity for addressing supply shortages from the latest years. The Institute for Nuclear Research, considering the existing good conditions of infrastructure of the research reactor with suitable irradiation conditions for radioisotopes, a post irradiation laboratory with direct transfer of irradiated targets from the reactor and handling of high radioactive sources, and simultaneously the existence of an expanding internal market, decided to undertake the necessary steps in order to produce fission molybdenum. The Institute intends to develop the capability to respond to the domestic needs in cooperation with the IFINN–HH from Bucharest, which is able to perform the last step consisting in the loading of fission molybdenum on chromatography generators and dispensing to the final client. The primary scope of the project is the development of the necessary technological steps and chemical processing steps in order to be able to cover the entire process for fission molybdenum production at the required standard of purity

  9. Thermal analysis of LEU modified Cintichem target irradiated in TRIGA reactor

    International Nuclear Information System (INIS)

    Catana, A; Toma, C.

    2009-01-01

    Actions conceived during last years at international level for conversion of Molybdenum fabrication process from HEU to LEU targets utilization created opportunities for INR to get access to information and participating to international discussions under IAEA auspices. Concrete steps for developing fission Molybdenum technology were facilitated. Institute of Nuclear Research bringing together a number of conditions like suitable irradiation possibilities, direct communication between reactor and hot cell facility, handling capacity of high radioactive sources, and simultaneously the existence of an expanding internal market, decided to undertake the necessary steps in order to produce fission molybdenum. Over the course of last years of efforts in this direction we developed the steps for fission Molybdenum technology development based on modified Cintichem process in accordance with the Argonne National Laboratory proved methodology. Progress made by INR to heat transfer computations of annular target using is presented. An advanced thermal-hydraulic analysis was performed to estimate the heat removal capability for an enriched uranium (LEU) foil annular target irradiated in TRIGA reactor core. As a result, the present analysis provides an upper limit estimate of the LEU-foil and external target surface temperatures during irradiation in TRIGA 14 MW reactor. (authors)

  10. 2011 Progress Report on HEU Minimization Activities in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bonini, A.; Cristini, P.; Lio, L. De; Dell' Occhio, L.; Gil, D.; Gonzalez, A.G.; Gonzalez, R.; Varela, C. Komar; Lopez, M.; Novara, O.; Taboada, H. [Comision Nacional de Energia Atomica, Av. Del Libertador 8250 (1429) Buenos Aires (Argentina)

    2011-07-01

    After the core conversion of the RA-6 reactor finished in March 2008, an extension of the original CNEA-NNSA DoE contract was signed to enhance the final national HEU inventories minimization. Before this process, CNEA reserved a small inventory of HEU for R and D uses in fission chambers, neutronic probes and standards. This minimization comprises that all fresh and irradiated HEU remnant inventories coming from fuels and Mo99 irradiation targets fabrication and irradiated HEU-oxides retained in production filters and solutions will be recovered, down-blended into LEU and purified or dispose as waste whenever its recovery would not be advisable due to cost-benefit consideration. CNEA has a R and D program to develop the fabrication technology of both dispersed U-Mo (Al-Si matrix and Al cladding) and monolithic (Zry-4 cladding) miniplates to support the qualification activities of the RERTR program. Some monolithic 58% enrichment and LEU 8%Mo and U10%Mo miniplates and plates were and are being delivered to INL-DoE to be irradiated in the ATR reactor core. CNEA, a worldwide leader on LEU technology for fission radioisotope production is providing Brazil with 1/3 of the national requirements on Mo99 by weekly deliveries. Australia has started the fission radioisotope production through several batches by week, based on CNEA's LEU technology provided by INVAP SE. CNEA is also committed to improve the diffusion of LEU target and radiochemical technology for radioisotope production and target and process optimization. Future plans include: 1. Plans to recover and purify the LEU based inventories in Mo99 production filters, once the HEU to LEU campaign is over. 2. Fabrication and delivering to INL to be irradiated in the ATR core of U-8%Mo and U-10%Mo monolithic miniplates and development and fabrication of LEU very high density monolithic and dispersed U-Mo fuel plates with Zr cladding for the FUTURE-MONO experiment in the frame of the RERTR program. 3

  11. ON-GOING STATUS OF KJRR FUEL (U-7MO) QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Yim, J. S.; Tahk, Y. W.; Oh, J. Y.; Kim, H. J.; Kong, E. H.; Lee, B. H.; Park, J. M.; Jeong, Y. J.; Lee, K. H.; Kim, S. H.; Lee, C. T.; Beasley, A. A.; Choi, Y. J.; Crawford, D. S.; Nielsen, J. W.; Woolstenhulme, N. E.

    2017-03-01

    In order to cope with global shortage of Mo-99 supplies and with growing demand of neutron transmutation doping, KJRR construction plan has been launched since April 2012 to provide self-sufficiency of domestic RI demand, and to extend Si doping capacity for power device market growth. Through comprehensive surveillance of the fuels in-reactor behavior, KAERI has selected the fuel meat of U-7%Mo dispersion in an aluminum matrix with 5wt%Si for the KJRR fuel. As part of the efforts for fuel licensing and qualification of the KJRR fuel, an LTA irradiation test at the ATR started from November 2015 was successfully completed by reaching at 219 EFPD in the end of February 2017. Together with the results of HAMP-1 already completed irradiation and PIE, the successful irradiation of the LTA also demonstrates the fuel integrity under more rigorous conditions than the KJRR operation conditions. This paper updates the current status of the KJRR U7Mo (8 g-U/cm3) LTA irradiation and PIE plan up to date as of February 2017.

  12. Scanning electron microscopy analysis of fuel/matrix interaction layers in highly-irradiated U-Mo dispersion fuel plates with Al and Al-Si alloy matrices

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D. Jr; Jue, Jan Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adom B.; Medvedev, Pavel; Madden, James; Wachs, Dan; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory (United States)

    2014-04-15

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifically, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (-4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

  13. Status of LEU fuel development and conversion of NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Herbert, L.N.; Vaillancourt, K.D.

    1989-11-01

    The status of the low-enrichment uranium (LEU) fuel development and NRU conversion program at Chalk River Nuclear Laboratories is reviewed. Construction of a new fuel fabrication facility is essentially completed and installation of LEW fuel manufacturing equipment has begun. The irradiation of 31 prototype Al-61 wt% U 3 Si dispersion fuel rods, approximately one third of a full NRU core, is continuing without incident. Recent post-irradiation examination of spent fuel rods revealed that the prototype LEU fuel achieved the design burnup (80 at%) in excellent condition, confirming that the Al-U 3 Si 2 dispersion fuel to complement out Al-U 3 Si capability. Three full-size NRU rods containing Al-U 3 Si 2 dispersion fuel have been fabricated for a qualification irradiation in NRU. Post-irradiation examinations of mini-elements containing Al-U 3 Si 2 fuel revealed that the U 3 Si 2 behaved similarly to U 3 Si 2 fuel revealed that the U 3 Si 2 particles and the aluminum matrix, and fission gas bubbles up to 10 μm in diameter, could be seen in the particles after 60 at% and 80 at% burnup. The mini-elements contained a variety of silicide particle sizes; however, no significant swelling dependence on particle size distribution was observed

  14. The University of Missouri Research Reactor HEU to LEU conversion project status

    Energy Technology Data Exchange (ETDEWEB)

    McKibben, James C; Kutikkad, Kiratadas; Foyto, Leslie P; Peters, Nickie J; Solbrekken, Gary L; Kennedy, John [University of Missouri Research Reactor, Missouri (United States); Stillman, John A; Feldman, Earl E; Tzanos, Constantine P; Stevens, John G [Argonne National Laboratory, Argonne, Illinois (United States)

    2012-03-15

    The University of Missouri Research Reactor (MURR) is one of five U.S. high performance research and test reactors that are actively collaborating with the U.S. Department of Energy (DOE) to find a suitable low-enriched uranium (LEU) fuel replacement for the currently required highly-enriched uranium (HEU) fuel. A conversion feasibility study based on U-10Mo monolithic LEU fuel was completed in 2009. It was concluded that the proposed LEU fuel assembly design, in conjunction with an increase in power level from 10 to 12 MWth, will (1) maintain safety margins during operation, (2) allow operating fuel cycle lengths to be maintained for efficient and effective use of the facility, and (3) preserve an acceptable level and spectrum of key neutron fluxes to meet the scientific mission of the facility. The MURR and Argonne National Laboratory (ANL) team is continuing to work toward realization of the conversion. The 'Preliminary Safety Analysis Report Methodologies and Scenarios for LEU Conversion of MURR' was completed in June 2011. This report documents design parameter values critical to the Fuel Development (FD), Fuel Fabrication Capability (FFC) and Hydromechanical Fuel Test Facility (HMFTF) projects. The report also provides a preliminary evaluation of safety analysis techniques and data that will be needed to complete the fuel conversion Safety Analysis Report (SAR), especially those related to the U-10Mo monolithic LEU fuel. Specific studies are underway to validate the proposed path to an LEU fuel conversion. Coupled fluid-structure simulations and experiments are being conducted to understand the hydrodynamic plate deformation risk for 0.965 mm (38 mil) thick fuel plates. Methodologies that were recently developed to answer the U.S. Nuclear Regulatory Commission (NRC) Request for Additional Information (RAI) regarding the MURR 2006 relicensing submittal will be used in the LEU conversion effort. Transition LEU fuel elements that will have a minimal impact on

  15. Development of a PVD-based manufacturing process of monolithic LEU irradiation targets for {sup 99}Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Hollmer, Tobias

    2015-08-03

    {sup 99}Mo is the most important radioisotope in nuclear medicine. It is produced by fission of uranium in irradiation targets. The usage of cylindrical monolithic targets can ensure a safe supply of {sup 99}Mo and at the same reduce the amount of highly radioactive waste generated during production. To manufacture these targets, a novel PVD-based technique was developed. Both the feasibility and the high efficiency of this process were demonstrated in a prototype apparatus.

  16. Pore growth in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y.; Sohn, D.-S. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-09-15

    U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  17. US Progress on Property Characterization to Support LEU U-10 Mo Monolithic Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Laboratory; Rabin, Barry H [Idaho National Laboratory; Smith, James Arthur [Idaho National Laboratory; Scott, Clark Landon [Idaho National Laboratory; Benefiel, Bradley Curtis [Idaho National Laboratory; Larsen, Eric David [Idaho National Laboratory; Lind, Robert Paul [Idaho National Laboratory; Sell, David Alan [Idaho National Laboratory

    2016-03-01

    The US High Performance Research Reactor program is pursuing development and qualification of a new high density monolithic LEU fuel to facilitate conversion of five higher power research reactors located in the US (ATR, HFIR, NBSR, MIT and MURR). In order to support fabrication development and fuel performance evaluations, new testing capabilities are being developed to evaluate the properties of fuel specimens. Residual stress and fuel-cladding bond strength are two characteristics related to fuel performance that are being investigated. In this overview, new measurement capabilities being developed to assess these characteristics in both fresh and irradiated fuel are described. Progress on fresh fuel testing is summarized and on-going hot-cell implementation efforts to support future PIE campaigns are detailed. It is anticipated that benchmarking of as-fabricated fuel characteristics will be critical to establishing technical bases for specifications that optimize fuel fabrication and ensure acceptable in-reactor fuel performance.

  18. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  19. A study of HANARO core conversion using high density U-Mo fuel

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Lee, B.C.; Park, S.J.; Kim, H.; Kim, C.K.

    2002-01-01

    Currently, HANARO is using 3.15gU/cc U3Si/Al as a driver fuel. HANARO has seven vertical irradiation holes in the core region. Three of them including a central trap are located in the inner region of the core and mainly being used for material irradiation tests. Four of them are located in the reflector tank but cooled by primary coolant. They are used for fuel irradiation tests or radioisotope development tests. For minimum core modification using high density U-Mo fuels, no dimension change is assumed in the current fuel rods and the cladding thickness remains the same in this study. The high density U-Mo fuel will have up to about twice the linear uranium loading of a current HANARO driver fuel. Using this high density fuel 8 fuel sites can be replaced with irradiation sites. Three kinds of conceptual cores are considered using 5 gU/cc U-7Mo/Al and 16 gU/cc U-7Mo. The increase of the linear heat generation rate due to the decrease of total fuel length can be overcome by more uniform radial and axial power distribution using different uranium densities and different fuel meat diameters are introduced into those cores. The new core has 4.54 times larger surface-to-volume ratio than the reference core. The core uranium loading, linear heat generation rate, excess reactivity, and control rod worth as well as the neutron spectra are analysed for each core. (author)

  20. Reduced interaction layer growth of U–Mo dispersion in Al–Si

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong; Hofman, G.L.

    2012-01-01

    Development of high U-density U–Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U–Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to ∼50% burnup of initial 19.75% U-235 enrichment at ∼200 °C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U–Mo/Al–Si dispersion samples with a Si addition in the range 0–8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL–matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  1. First-principles study of the surface properties of U-Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2018-02-01

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo and gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.

  2. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    OpenAIRE

    ALEKSEY. L. IZHUTOV; VALERIY. V. IAKOVLEV; ANDREY. E. NOVOSELOV; VLADIMIR. A. STARKOV; ALEKSEY. A. SHELDYAKOV; VALERIY. YU. SHISHIN; VLADIMIR. M. KOSENKOV; ALEKSANDR. V. VATULIN; IRINA. V. DOBRIKOVA; VLADIMIR. B. SUPRUN; GENNADIY. V. KULAKOV

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; th...

  3. Present status of the use of LEU in aqueous reactors to produce Mo-99

    International Nuclear Information System (INIS)

    Ball, Russell M.; Pavshook, V.A.; Khvostionov, V.Ye.

    1998-01-01

    An operating aqueous homogeneous reactor, the ARGUS at Kurchatov Institute, has been used to produce fission product molybdenum-99 (Mo-99), widely used in nuclear medicine to produce technetium-99m (Tc-99m). The Mo-99 has been extracted from the sulfate solution using an organic sorbent after operation at 1 kW/liter. after purification, the material has been assayed and the result is well within required specification of the USPharmacopaeia. Operation calculation are presented to show the sources and quantity of alpha activity when LEU is used. (author)

  4. The French UMo group contribution to new LEU fuel development

    International Nuclear Information System (INIS)

    Hamy, J.M.; Lemoine, P.; Huet, F.; Jarousse, C.; Emin, J.L.

    2005-01-01

    The French UMo Group was based on a close collaboration between CEA and AREVA's companies strongly involved in the MTR field. The aim of this program was to deliver industrially a high performance LEU UMo fuel able to be reprocessed, and suitable for a wide range of Research Reactor, covering the expected needs for MTR next generation. Since 1999, the program has been focused on industrial aspects with the intention to deal with the whole fuel cycle: manufacturing, irradiation behaviour, fuel characterisation, code development and reprocessing validation. It has been based on the fabrication of full-sized U-7%Mo fuel plates with a density up to 8 gU/cm 3 . The dedicated and advanced R and D means provided by the CEA have been used intensively with the contribution of HFR and BR2 facilities in Europe. This paper presents a synthesis of the program and the corresponding significant results obtained. These results have played a major role as regards the UMo dispersion fuel qualification route by issuing, for the first time, evidence of severe performance limitations. Consequently, the global international effort to develop and qualify a high density LEU UMo fuel has been definitively re-routed and forced to overcome these discrepancies by exploring new technical solutions. A French extended program sustained by a CEA and CERCA collaboration has been launched in 2004 in order to develop a suitable UMo fuel solution. UMo dispersion and monolithic fuel are both investigated through three new full-sized plate irradiations planned in OSIRIS. (author)

  5. INFLUENCE OF FUEL-MATRIX INTERACTION ON THE BREAKAWAY SWELLING OF U-MO DISPERSION FUEL IN AL

    OpenAIRE

    HO JIN RYU; YEON SOO KIM

    2014-01-01

    In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model prediction...

  6. Developing Techniques for Small Scale Indigenous Molybdenum-99 Production Using LEU Fission at Tajoura Research Center-Libya [Country report: Libya

    International Nuclear Information System (INIS)

    Alwaer, Sami M.

    2015-01-01

    The object of this work was to assist the IAEA by providing the Libyan country report about the Coordination Research Project (CRP), on the subject of “Developing techniques for small scale indigenous Mo-99 production using LEU-foil” which took place over five years and four RCMs. A CRP on this subject was approved in early 2005. The objectives of this CRP are to: transfer know-how in the area of 99 Mo production using LEU targets based on reference technologies from leading laboratories in the field to the participating laboratories in the CRP; develop national work plans based on various stages of technical development and objectives in this field; establish the procedures and protocols to be employed, including quality control and assurance procedures; establish the coordinated activities and programme for preparation, irradiation, and processing of LEU targets [a]; and to compare results obtained in the implementation of the technique in order to provide follow up advice and assistance. Technetium-99m ( 99m Tc), the daughter product of molybdenum-99 ( 99 Mo), is the most commonly utilized medical radioisotope in the world, used for approximately 20-25 million medical diagnostic procedures annually, comprising some 80% of all diagnostic nuclear medicine procedures. National and international efforts are underway to shift the production of medical isotopes from highly enriched uranium (HEU) to low enriched uranium (LEU) targets. A small but growing amount of the current global 99 Mo production is derived from the irradiation of LEU targets. The IAEA became aware of the interest of a number of developing Member States that are seeking to become small scale, indigenous producers of 99 Mo to meet local nuclear medicine requirements. The IAEA initiated Coordinated Research Project (CRP) T.1.20.18 “Developing techniques for small-scale indigenous production of Mo-99 using LEU or neutron activation” in order to assist countries in this field. The more

  7. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UAL{sub x}-Al and U-Ni to production of {sup 99}Mo in reactor IEA-R1 and RMB; Analises neutronicas e termo-hidraulica de dispositivos para irradiacao de alvos tipo LEU de UAL{sub x}-Al e U-Ni para producao de {sup 99}Mo nos reatores IEA-R1 e RMB

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges

    2014-07-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl{sub 2}-Al, U-Ni cylindrical and U-Ni plate) used for the production of {sup 99}Mo by fission of {sup 235}U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of {sup 99}Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl{sub 2}-Al (10 mini plates). Analyses have shown that the total activity obtained for {sup 99}Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl{sub 2}-Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental

  8. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  9. A Study on Silicide Coatings as Diffusion barrier for U-7Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Kim, Sung Hwan; Lee, Kyu Hong; Jeong, Yong Jin; Kim, Ki Nam; Park, Jong Man; Lee, Chong Tak [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma phase U-Mo alloys are regarded as one of the promising candidates for advanced research reactor fuel when it comes to the irradiation performance. However, it has been reported that interaction layer formation between the UMo alloys and Al matrix degrades the irradiation performance of U-Mo dispersion fuel. The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at 900 .deg. C for 1hr. U-Mo alloy powder was mixed with MoSi{sub 2}, Si and ZrSi{sub 2} powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. Silicide coated U-Mo powders and characterized using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and X-ray diffractometer (XRD). The ZrSi{sub 2} coating layers has a thickness of about 1∼ 2μm. The surface of a silicide coated particle was very rough and silicide powder attached to the surface of the coating layer. 3. The XRD analysis of the coating layers showed that, they consisted of compounds such as U3Si{sub 2}, USi{sub 2}.

  10. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  11. U-Mo fuels handbook. Version 1.0

    International Nuclear Information System (INIS)

    Rest, Jeffrey; Kim, Yeon Soo; Hofman, Gerard L.; Meyer, Mitchell K.; Hayes, Steven L.

    2006-01-01

    This handbook provides an overview of property data and fuel performance topics with an emphasis on data available for U-Mo alloys. These data often exist only in report format and have not been widely disseminated in the journal literature. For some topics there is more than one source of data, which are sometimes inconsistent. In this situation, the authors have attempted to select the best dataset to provide a standard for fuel designers and reactor operators. Following the section on unirradiated and irradiated materials properties for the monolithic U-Mo alloy, property data for cladding and matrix aluminum are presented. Property data for cladding aluminum are more widely available, and are not presented in great depth. Finally, some properties of (U-Mo)/Al dispersions are also included in this document. Where no data are available, best estimate correlations are provided. Best fits to the data are presented in order to facilitate use by fuel designers and reactor operators.

  12. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  13. U-Mo/Al-Si interaction: Influence of Si concentration

    International Nuclear Information System (INIS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M.C.; Lemoine, P.

    2010-01-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 deg. C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 , when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6 Mo 4 Al 43 . For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3 (Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 . On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  14. Influence of fuel-matrix interaction on the breakaway swelling of U-Mo dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Yeon Soo [Nuclear Engineering Division, Argonne National Laboratory, Arogonne (United States)

    2014-04-15

    In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model predictions, advantageous fuel design parameters are recommended to prevent breakaway swelling.

  15. Status of LEU conversion program at CRNL

    International Nuclear Information System (INIS)

    Kennedy, I.C.

    1991-01-01

    After briefly reviewing the salient features of the NRU Reactor at Chalk River Nuclear Laboratories (CRNL), the progress of our LEU fuel development and testing program is described. The results (to date) of full-size prototype fuel-rod irradiations are reviewed, and the status of the new fuel-fabrication facility on the site is updated. Although development work is proceeding on U 3 Si 2 dispersions, all indications so far are that CRNL's U 3 Si fuel is fully acceptable for reactor operation. Fuel rods from the new fabrication shop will be installed in NRU in 1990, and the complete core conversion of NRU to LEU driver fuel is expected by 1991. (orig.)

  16. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Energy Technology Data Exchange (ETDEWEB)

    Leenaers, A., E-mail: aleenaer@sckcen.be [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van den Berghe, S.; Koonen, E.; Kuzminov, V. [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium)

    2015-03-15

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK• CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% {sup 235}U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL–matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium–Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)–matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  17. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Science.gov (United States)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2015-03-01

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  18. Mo-99 production by fission and future projections

    International Nuclear Information System (INIS)

    Carranza, E.C.; Novello, A.; Bronca, M.; Cestau, D.; Bavaro, R.; Centurion, R.; Bravo, C.; Bronca, P.; Gualda, E.; Fraguas, F.; Giomi, A.; Ivaldi, L.

    2012-01-01

    Description of the I-131 and Mo-99 production process: The process starts with the irradiation of uranium-aluminum mini plates in the RA-3, Argentinean Reactor No.3, Ezeiza Atomic Center. In a nuclear reactor there is a constant flow of neutrons and when a neutron with proper energy impacts on a nucleus of U-235, it is absorbed at the same time generate an unstable configuration nuclear. For this reason, the nucleus formed is fission, getting two different atoms. Approximately 6% of the fissions produce Mo-99 and 3% produce I-131; the percentage remaining corresponds to formation of atoms without interest for use in medicine. In conclusion, the objective of the process developed in the Fission Plant, is starting from uranium mini plates, separate the Mo-99 and I-131 generated, the remaining elements formed. - Evolution of Mo-99 Production in the last 10 years: The Fission Mo-99 Plant Production begins routine production of Mo-99 in 1985, using targets made of uranium enriched at 90% U-235. In the 1990s, global concern regarding the use of highly enriched uranium, due to non-proliferation issues, caused the interruption of supply of nuclear material (HEU enriched at 90% of U-235). Following this, Argentina developed target based on low-enriched uranium (less than 20% U-235), becoming in 2002 the first country in the world to produce Mo-99 with LEU targets. From 2002 to date, the activity produced of Mo-99 has been tripled annually (author)

  19. UMo nuclear fuels behaviour under heavy ion irradiation: a μ-XAS study

    International Nuclear Information System (INIS)

    Palancher, H.; Martin, P.; Dubois, S.; Valot, C.; Sabathier, C.; Palancher, H.; Nassif, V.; Proux, O.; Hazemann, J.L.; Wieschalla, N.; Petry, W.; Jarousse, C.

    2007-01-01

    Full text of publication follows. A worldwide program encourages the use of low enriched uranium (LEU, 235 U 235 U concentration up to 93 wt. %). Due to the decrease in 235 U enrichment for the conversion to LEU, the total density of uranium atoms in the fuel must be increased accordingly. To preserve the neutron flux, metallic uranium alloys could be the best fuel material. The fuel, which consists of UMo alloy spherical particles surrounded by an Al matrix (cf. Figure 1-A), is rolled between two aluminium claddings. Post-irradiation examinations of U-7 wt%Mo demonstrated its strong potentialities as fuel but they also pointed out its interaction with aluminium (cf. Figure 1-B). In certain cases this interaction can cause a break-away swelling of the plate. The aim of this project is the understanding of: - the phenomena driving the growth of the interaction layer. - the influence on interaction layer composition of limited adjunction of elements (silicon...) to the Al matrix. To overcome the difficulties inherent to the in-pile irradiated samples, an out-of-pile methodology (collaboration between CEA, FRM II and CERCA) has been developed based on heavy ion irradiation. This methodology enables to simulate the fission fragment damages using a 80 MeV iodine beam at the Maier Leibnitz laboratory (Garching, Germany). After irradiation, samples are characterised at micrometer scale by microscopy (SEM coupled with EDX) and X-Ray techniques (XRD and XAS). The irradiation (final dose: 2 x 10 17 at/cm 2 ) of undoped U-7 wt%Mo fuel plates leads to the formation of an interaction layer surrounding each fuel particles (cf. Figure 1-C). μ-XRD analysis performed at the ESRF (ID18f) showed only the presence of UAl 3 phase in the interaction layer. Same results have been obtained on in-pile irradiated fuel by Sears et al using neutron diffraction confirming the interest of the developed methodology. However the behaviour of the Mo atoms in the interaction layer could not be

  20. Status of LEU fuel development and conversion of NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Herbert, L.N.; Vaillancourt, K.D.

    1991-01-01

    This paper reviews the status of the LEU conversion program and the progress made in the fuel development program over the last year. The results from post-irradiation examinations of prototype NRU fuel rods containing Al-U 3 Si dispersion fuel, and of mini-elements containing Al-U 3 Si 2 dispersion fuel, are presented. (orig.)

  1. Origin and development of the new U-Mo nuclear fuel

    International Nuclear Information System (INIS)

    Boyard, M.; Languille, A.; Thomasson, J.; Hamy, J.M.

    2002-01-01

    Historically most research reactors have used highly enriched nuclear fuels (enrichment > 90 %). Since 1977 the non-proliferation policy has imposed to convert these reactors to far less enriched fuels (< 20 %). An international consensus has evolved towards a nuclear fuel with an enrichment factor of 19,75 %, this fuel is made of a powdered U-Mo alloy scattered in an aluminium die. The external dimensions and the cladding materials of the fuel plate are unchanged in order to minimize development and qualification costs. The U-Mo fuel is expected to maintain or even to increase the performance of reactors and to allow the processing of spent fuels in the same installations as those used for fuels issuing from power plants. Cea, Cogema, Cerca, Framatome, and Technicatome have shared their technical means, their know-how and their financial resources to develop this new nuclear fuel. 2006 is the contract date by which American authorities will stop repatriating the ancient spent fuel (uranium silicide) from research reactors so it is imperative to make available by this date a new nuclear fuel with a satisfactory end of cycle. This article also presents the French program of qualification of the U-Mo fuel. 2 series of irradiation have already been performed, one (Isis-1) in Osiris reactor (Saclay, France) and the second (Umus) in HFR (Petten, Netherlands). A clad failure has led to stop the Umus experiment. 2 new series of irradiation are scheduled to start in 2002. In a parallel way, in the framework of the design of the RJH (Jules Horowitz reactor) Cea will soon perform irradiation of U-Mo fuel plates in BR2 (Mol, Belgium). (A.C.)

  2. TEM and XAS investigation of fission gas behaviors in U-Mo alloy fuels through ion beam irradiation

    Science.gov (United States)

    Zang, Hang; Yun, Di; Mo, Kun; Wang, Kunpeng; Mohamed, Walid; Kirk, Marquis A.; Velázquez, Daniel; Seibert, Rachel; Logan, Kevin; Terry, Jeffrey; Baldo, Peter; Yacout, Abdellatif M.; Liu, Wenbo; Zhang, Bo; Gao, Yedong; Du, Yang; Liu, Jing

    2017-10-01

    In this study, smaller-grained (hundred nano-meter size grain) and larger-grained (micro-meter size grain) U-10Mo specimens have been irradiated (implanted) with 250 keV Xe+ beam and were in situ characterized by TEM. Xe bubbles were not seen in the specimen after an implantation fluence of 2 × 1020 ions/m2 at room temperature. Nucleation of Xe bubbles happened during heating of the specimen to a final temperature of 300 °C. By comparing measured Xe bubble statistics, the nucleation and growth behaviors of Xe bubbles were investigated in smaller-grained and larger-grained U-10Mo specimens. A multi-atom kind of nucleation mechanism has been observed in both specimens. X-ray Absorption spectroscopy showed the edge position in the bubbles to be the same as that of Xe gas. The size of Xe bubbles has been shown to be bigger in larger-grained specimens than in smaller-grained specimens at the same implantation conditions.

  3. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  4. Detecting the Extent of Eutectoid Transformation in U-10Mo

    International Nuclear Information System (INIS)

    Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.; Lombardo, Nicholas J.; Joshi, Vineet V.; Sweet, Lucas E.; Manandhar, Sandeep; Lavender, Curt A.

    2016-01-01

    During eutectoid transformation of U-10Mo alloy, uniform metastable ? UMo phase is expected to transform to a mixture of ?-U and ?'-U_2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the ? phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the ? phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only ? phase and no ?' was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise ? phase with close to 0 at% Mo and ? phase with 28-32 at% Mo, and the Mo concentration was highest at the ?/? interface.

  5. LEU fuel cycle analyses for the Belgian BR2 Research Reactor

    International Nuclear Information System (INIS)

    Deen, J.R.; Snelgrove, J.L.

    1988-01-01

    Equilibrium fuel cycle characteristics were calculated for reference HEU and two proposed LEU fuel cycles using an 11-group diffusion-theory neutron flux solution in hexagonal-Z geometry. The diffusion theory model was benchmarked with a detailed Monte Carlo core model. The two proposed LEU fuel designs increased the 235 U loading 20% and the fuel meat volume 51%. The first LEU design used 10 B as a burnable absorber. Either proposed LEU fuel element would provide equilibrium fuel cycle characteristics similar to those of the HEU fuel cycle. Irradiation rates of Co control followers and Ir disks in the center of the core were reduced 6 ± 1% in the LEU equilibrium core compared to reference HEU core. 11 refs., 4 figs., 5 tabs

  6. Interdiffusion between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 alloy

    International Nuclear Information System (INIS)

    Komar Varela, C.; Mirandou, M.; Arico, S.; Balart, S.; Gribaudo, L.

    2009-01-01

    Solid state reactions in chemical diffusion couples U-7 wt.%Mo-0.9 wt.%Pt/Al at 580 deg. C and U-7 wt.%Mo-0.9 wt.%Pt/Al A356 alloy, U-7 wt.%Mo-1 wt.%Zr/Al and U-7 wt.%Mo-1 wt.%Zr/Al A356 alloy at 550 deg. C were characterized. Results were obtained from optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The UAl 3, UAl 4 and Al 20 Mo 2 U phases were identified in the interaction layers of γU(Mo,Pt)/Al and γU(Mo,Zr)/Al diffusion couples. Al 43 Mo 4 U 6 ternary compound was also identified in γU(Mo,Zr)/Al due to the decomposition of γU(Mo,Zr) phase. The U(Al,Si) 3 and U 3 Si 5 phases were identified in the interaction layers of γU(Mo,Pt)/Al A356 and γU(Mo,Zr)/Al A356 diffusion couples. These phases are formed due to the migration of Si to the interaction layer. In the diffusion couple U(Mo,Zr)/Al A356, Zr 5 Al 3 phase was also identified in the interaction layer. The use of synchrotron radiation at Brazilian Synchrotron Light Laboratory (LNLS, CNPq, Campinas, Brazil) was necessary to achieve a complete crystallographic characterization.

  7. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  8. Mechanical Calculations on U-Mo Dispersion fuel plates with MAIA

    International Nuclear Information System (INIS)

    Marelle, V.; Huet, F.; Lemoine, P.

    2005-01-01

    CEA has developed a 2D thermo-mechanical code, called MAIA, for modelling the behaviour of U-Mo dispersion fuel. MAIA uses a finite element method for the resolution of the thermal and mechanical problems. Physical models, issued of the DOE-ANL code PLATE, evaluate the fission products swelling and the volume fraction of the interaction between U-Mo and Al. They allow establishing strains in the meat imposed as loading for the mechanical calculation. MAIA has been validated on the irradiations IRIS 1 and RERTR-3 and a rather good agreement is obtained with post irradiation examinations. MAIA is used to calculate the last irradiation of the French UMo group, IRIS 2. MAIA predicts a maximum temperature of 112 deg. C and meat swelling of 16%. Mechanical calculations are finally performed to evaluate the sensitivity to some mechanical hypotheses such as constitutive laws and the way the meat swelling is applied. (author)

  9. Detecting the Extent of Eutectoid Transformation in U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnis, Colleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sweet, Lucas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the

  10. Performance of Nb protective diffusion coating on U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Sunghwan; Nam, Ji Min; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To achieve this aim, it is necessary to increase the volume fraction of fuel particles inside the meat. However, the technical limit is reached at approximately 55 vol.% of fuel particles in the aluminum matrix. As a solution, an uranium compound with an higher uranium density than existing U3Si2 fuel has to be selected. Also alloying the uranium must stabilize γ-phase of uranium at room temperature because adequate properties of the γ -phase of uranium showed a good irradiation behavior in the past. Hence, U-Mo alloys were selected as the best candidates. The formation of interaction phase is a critical problem to apply U-Mo alloys to the high performance research reactor. Different means have been proposed to reduce the interaction between U-Mo fuel and Al matrix. There are three means. : 1. Addition of a diffusion limiting element to the matrix 2. Insertion of a diffusion barrier at the interface between the U-Mo and the Al 3. Alloying of the U-Mo with a third element Here we present the effect of Nb coating as diffusion barrier on formation of interaction layers between UMo powders and Al matrix. We present the effect of Nb coating on formation of interaction layers between U-Mo powders and Al matrix. Centrifugally atomized U-7 wt.% Mo powders were used, and Nb was coated on the surface of U-7 wt.% Mo by sputtering. Subsequently, the Nb-coated U-7 wt.% Mo powders were mixed with pure Al powders, and were made into compacts. The compacts were annealed at 550 .deg. C for 1, 3, 5 hours, respectively, and the result showed that the Nb coating on U-7 wt.% Mo effectively suppressed the growth of interaction layers between U-7 wt.% Mo and Al matrix.

  11. Progress in chemical treatment of LEU targets by the modified Cintichem process

    International Nuclear Information System (INIS)

    Wu, D.; Landsberger, S.; Vandegrift, G.F.

    1996-01-01

    Presented here are recent experimental results on tests of a modified Cintichem process for producing 99 Mo from low enriched uranium (LEU). Studies were focused in three areas: (1) testing the effects on 99 Mo recovery and purity of dissolving LEU foil in nitric acid alone, rather than in the sulfuric/nitric acid mixture currently used, (2) measuring decontamination factors for radionuclide impurities in each purification step, and (3) testing the effects on processing of adding barrier materials to the LEU metal-foil target. The experimental results show that switching from dissolving the target in the sulfuric/nitric mixture to using nitric acid alone should cause no significant difference in 99 Mo product yield or purity. Further, the results show that overall decontamination factors for gamma emitters in the LEU-target processing are high enough to meet the purity requirements for the 99 Mo product. The results also show that the selected barrier materials, Cu, Fe, and Ni, do not interfere with 99 Mo recovery and can be removed during chemical processing of the LEU target

  12. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Directory of Open Access Journals (Sweden)

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  13. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  14. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  15. Modeling a failure criterion for U-Mo/Al dispersion fuel

    Science.gov (United States)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  16. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    Energy Technology Data Exchange (ETDEWEB)

    Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.

    2018-02-01

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Sicoated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, is temperature and fission-rate dependent. In order to simulate the U-Mo/Al inter-diffusion layer (IL) growth behavior in full-size dispersion fuel plates, the existing IL growth correlation was modified with a temperaturedependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the intermixing rate in ion-irradiated bi-layer systems.

  17. Feasibility study for LEU conversion of the WWR-K reactor at the Institute of Nuclear Physics in Kazakhstan using a 5-tube fuel assembly

    International Nuclear Information System (INIS)

    Hanan, N.A.; Liaw, J.R.; Matos, J.E.

    2005-01-01

    A feasibility study by the RERTR program for possible LEU conversion of the 6 MW WWR-K reactor concludes that conversion is feasible using an LEU 5-tube Russian fuel assembly design. This 5-tube design is one of several LEU fuel assembly designs being studied (Ref. 1) for possible use in this reactor. The 5-tube assembly contains 200 g 235 U with an enrichment of 19.7% in four cylindrical inner tubes and an outer hexagonal tube with the same external dimensions as the current HEU (36%) 5-tube fuel assembly, which contains 112.5 g 235 U. The fuel meat material, LEU UO 2 -Al dispersion fuel with ∼ 2.5 g U/cm 3 , has been extensively irradiation tested in a number of reactors with uranium enrichments of 36% and 19.7%. Since the 235 U loading of the LEU assemblies is much larger than the HEU assemblies, a smaller LEU core with five rows of fuel assemblies is possible (instead of six rows of fuel assemblies in the HEU core). This smaller LEU core would consume about 60% as many fuel assemblies per year as the current HEU core and provide thermal neutron fluxes in the inner irradiation channels that are ∼ 17% larger than with the present HEU core. The current 21 day cycle length would be maintained and the average discharge burnup would be ∼ 42%. Neutron fluxes in the five outer irradiation channels would be smaller in the LEU core unless these channels can be moved closer to the LEU fuel assemblies. Results show that the smaller LEU core would meet the reactor's shutdown margin requirements and would have an adequate thermal-hydraulic safety margin to onset of nucleate boiling. (author)

  18. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  19. LEU fuel fabrication in Argentina

    International Nuclear Information System (INIS)

    Giorsetti, D.R.; Gomez, J.O.; Marajofsky, A.; Kohut, C.

    1985-01-01

    As an Institution, aiming to meet with its own needs, CNEA has been intensively developing reduced enriched fuel to use in its own research and test reactors. Development of the fabrication technology as well as the design, installation and operation of the manufacturing plant, have been carried out with its own funds. Irradiation and post-irradiation of test miniplates have been taking place within the framework of the RERTR program. During the last years, CNEA has developed three LEU fuel types. In the previous RERTR meetings, we presented the technological results obtained with these fuel types. This paper focuses on CNEA LEU fuel element manufacturing status and the trained personnel we can offer in design and manufacture fuel capability. CNEA has its own fuel manufacturing technology; the necessary facilities to start the fuel fabrication; qualified technicians and professionals for: fuel design and behaviour analysis; fuel manufacturing and QA; international recognition of its fuel development and manufacturing capability through its ORR miniplate irradiation; its own natural uranium and the future possibility to enrich up to 20% U 235 ; the probability to offer a competitive fuel manufacturing cost in the international market; the disposition to cooperate with all countries that wish to take part and aim to reach an self-sufficiency in their own fuel supply needs

  20. Progress of the RERTR program in 2001

    International Nuclear Information System (INIS)

    Travelli, A.

    2002-01-01

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of mini plates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm 3 range. Qualification of the U-Mo dispersion fuels has been declared by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm 3 are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid 2005. U-Mo fuel with uranium density of 8-9 g/cm 3 is expected to be qualified by mid 2007. Final irradiation tests of LEU 99 Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/ AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO 2 dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIJNM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4'562 spent fuel assemblies from foreign research

  1. Progress of the RERTR program in 2001

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A. [Technology Development Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4841 (United States)

    2002-07-01

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of mini plates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualification of the U-Mo dispersion fuels has been declared by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid 2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid 2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/ AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIJNM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4'562 spent fuel

  2. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  3. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Perez, E.; Yao, B. [Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Keiser, D.D. [Nuclear Fuels and Materials Division, Idaho National Laboratory, Scoville, ID 83415 (United States); Sohn, Y.H., E-mail: ysohn@mail.ucf.ed [Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr{sub 2}, {gamma}-UZr, Zr solid-solution and Mo{sub 2}Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si){sub 2}Zr, (Al, Si)Zr{sub 3} (Al, Si){sub 3}Zr, and AlSi{sub 4}Zr{sub 5}. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  4. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    Science.gov (United States)

    Perez, E.; Yao, B.; Keiser, D. D., Jr.; Sohn, Y. H.

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr 2, γ-UZr, Zr solid-solution and Mo 2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si) 2Zr, (Al, Si)Zr 3 (Al, Si) 3Zr, and AlSi 4Zr 5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  5. Investigation of the microstructure influence in the thermo-physical properties of U-Mo alloys through the laser flash method

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Alves, Fabio F.; Kelmer, Paula F.; Santos, Ana Maria M.; Camarano, Denise das M.; Ferraz, Wilmar B., E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The U-Mo alloys are the most investigated and promising nuclear fuel material to be used in research and test reactors, according to the premises of the RERTR program, whose objective is to minimize the threats of nuclear weapons proliferation through the conversion of the nuclear fuels of research and test reactors form a high enrichment grade, HEU (235U>90%, to a low enrichment grade, LEU ({sup 235}U<20%). The high density of the U-Mo alloys associated with its ability to keep the gamma phase metastable at room temperature are the main advantages of these alloys, with Mo contents of 5, 7 and 10 wt% were induction melted and ageing heat treated at 300 and 500 deg C for 72, 120 and 240 h. Microstructural characterization was carried out in the as-cast and aged conditions through XRD and OM techniques. The laser Flash Method at environmental temperature was employed to investigate the variation of the thermal diffusivity as a function of the microstructure obtained in the as-cast and aged conditions. (author)

  6. Investigation of the microstructure influence in the thermo-physical properties of U-Mo alloys through the laser flash method

    International Nuclear Information System (INIS)

    Pedrosa, Tercio A.; Alves, Fabio F.; Kelmer, Paula F.; Santos, Ana Maria M.; Camarano, Denise das M.; Ferraz, Wilmar B.

    2013-01-01

    The U-Mo alloys are the most investigated and promising nuclear fuel material to be used in research and test reactors, according to the premises of the RERTR program, whose objective is to minimize the threats of nuclear weapons proliferation through the conversion of the nuclear fuels of research and test reactors form a high enrichment grade, HEU (235U>90%, to a low enrichment grade, LEU ( 235 U<20%). The high density of the U-Mo alloys associated with its ability to keep the gamma phase metastable at room temperature are the main advantages of these alloys, with Mo contents of 5, 7 and 10 wt% were induction melted and ageing heat treated at 300 and 500 deg C for 72, 120 and 240 h. Microstructural characterization was carried out in the as-cast and aged conditions through XRD and OM techniques. The laser Flash Method at environmental temperature was employed to investigate the variation of the thermal diffusivity as a function of the microstructure obtained in the as-cast and aged conditions. (author)

  7. Using molybdenum depleted in 95Mo in UMo fuel

    International Nuclear Information System (INIS)

    Bakker, K.; Wijtsma, F.; Bos, A.; Mol, C.; Rakhorst, H.; Bretscher, M.; Hofman, G.; Snelgrove, J.

    2002-01-01

    In recent years significant interest was gained in UMo fuel to be used in Material Test Reactors. This interest was induced by the fact that UMo fuel is mechanically stable, even at high uranium concentrations and high U-burnup. These properties are required in order to use Low Enriched Uranium (LEU) and still be able to achieve high flux and burnup values and, thus, to facilitate the conversion from High Enriched Uranium (HEU) to LEU. Neutronics computations have shown that, although the Mo concentration in UMo fuel is not very high (about 5 - 10w%), the neutron absorption cross sections of natural Mo are sufficiently high to have a considerable negative impact on the reactivity of this UMo fuel. In the present research the neutron absorption cross sections of natural Mo are discussed and the option to reduce the cross section of molybdenum by depleting the Mo in 95 Mo is described. Finally the economic consequences of using Mo depleted in 95 Mo are briefly discussed

  8. Studies of the effect of irradiation in a nuclear reactor, of targets containing Mo used for the preparation of 99Mo gel, material that constitutes the 99Mo - 99mTc generators

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    2004-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, obtained in the 99 Mo - 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in Cyclotron and Reactor. The production in Cyclotron is not technically and commercially feasible. The production in Nuclear Reactor can be made in two ways: 235 U fission and 99 Mo (n,γ) 99 Mo reaction. A project aiming the production of 99 Mo by activation of Mo is under way at IPEN, producing a gel type MoZr generator. There are two ways of preparing the gel and the generators: by irradiating MoO 3 and preparing the gel or by the preparation of the gel and further irradiation. This work consists in the study of the irradiation effects in several targets containing Mo for the production of 99 Mo by the 98 Mo (n,γ) 99 Mo reaction and further preparation of the gel for use as a gel type 99 Mo - 99m Tc generator. Three rinds of gel were studied: zirconium, titanium and cerium molybdate, and their morphology, infrared structure and elution yield of 99m Tc were analysed. The best results were achieved with the generators prepared with MoZr post formed gel, with amorphous structure and better elution yields. The pre formed gel induced crystallinity and worst performance of the generators. (author)

  9. Major results on the development of high density U-Mo fuel and pin-type fuel elements executed under the Russian RERTR program and in cooperation with ANL (USA)

    International Nuclear Information System (INIS)

    Vatulin, A.; Morozov, A.; Stetsky, Y.; Suprun, V.; Dobrikova, I.; Trifonov, Y.; Mishunin, V.; Sorokin, V.

    2003-01-01

    VNIINM is active participant of 'Russian program on Reduced Enrichment for Research and Test Reactors'. Institute Works in two main directions: 1) development of new high-density fuels (HDF) and 2) development of new design of fuel elements with LEU. The development of the new type fuel element is carried out both for existing reactors, and for developing new advanced reactors. The 'TVEL' concern is coordinator of works of this program. The majority enterprises of branch (NIIAR, PIYaF, RRC KI, NZChK) take part in this work. Since 2000 these works are being conducted in cooperation with Argonne National Laboratory (USA) within the RERTR program under VNIINM with ANL contract. At the present, a large set of pre-pile investigations has been completed. All necessary fabrication procedures have been developed for utilization of U-Mo dispersion fuel in Russian-designed research reactors. For irradiation tests the pin-type mini-fuel elements with HDF dispersion fuel with LEU and the uranium density equaled to 4,0 and 6,0 g/cm 3 (up to 40 vol.%) have been manufactured. Their irradiation began in August 2003 in the MIR reactor (NIIAR, Dimitrovgrad). A large set of works for preparation of lifetime tests (WWR-M reactor in Gatchina) of two full-scale fuel assemblies with new pin-type fuel elements on basis LEU UO 2 -Al and UMo-Al fuels has been completed. The in-pile tests of fuel assemblies began in September 2003. The summary of important results of performed works and their near-term future are presented in paper. (author)

  10. A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, N. A.

    1998-01-14

    A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

  11. Detailed measurements of local thickness changes for U-7Mo dispersion fuel plates with Al-3.5Si matrix after irradiation at different powers in the RERTR-9B experiment

    Science.gov (United States)

    Keiser, Dennis D.; Williams, Walter; Robinson, Adam; Wachs, Dan; Moore, Glenn; Crawford, Doug

    2017-10-01

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. Swelling is an important irradiation behavior that needs to be well understood. Data from high resolution thickness measurements performed on U-7Mo dispersion fuel plates with Al-Si alloy matrices that were irradiated at high power is sparse. This paper reports the results of detailed thickness measurements performed on two dispersion fuel plates that were irradiated at relatively high power to high fission densities in the Advanced Test Reactor in the same RERTR-9B experiment. Both plates were irradiated to similar fission densities, but one was irradiated at a higher power than the other. The goal of this work is to identify any differences in the swelling behavior when fuel plates are irradiated at different powers to the same fission densities. Based on the results of detailed thickness measurments, more swelling occurs when a U-7Mo dispersion fuel with Al-3.5Si matrix is irradiated to a high fission density at high power compared to one irradiated at a lower power to high fission density.

  12. Analysis of Mo99 production irradiating 20% U targets

    International Nuclear Information System (INIS)

    Calabrese, C. Ruben; Grant, Carlos R.; Marajofsky, Andres; Parkansky, David G.

    1999-01-01

    At present time, the National Atomic Energy Commission is producing about 800 Ci of Mo99 per week irradiating 90% enriched uranium-aluminum alloy plate targets in the RA-3 reactor, a 5 MW. Mtr type one. In order to change to 20% enriched uranium, and to increase the production to about 3000 Ci per week some configurations were studied with rod and plate geometry with uranium (20% enriched) -aluminum targets. The first case was the irradiation of a plate target element in the normal reactor configuration. Results showed a good efficiency, but both reactivity value and power density were too high. An element with rods was also analyzed, but results showed a poor efficiency, too much aluminum involved in the process, although a low reactivity and an acceptable rod power density. Finally, a solution consisting of plate elements with a Zircaloy cladding was adopted, which has shown not only a good efficiency, but it is also acceptable from the viewpoint of safety, heat transference criteria and feasibility

  13. Measurements of the HEU and LEU in-core spectra at the Ford Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wehe, D K [Oak Ridge National Laboratory, Oak Ridge, TN (United States); King, J S; Lee, J C; Martin, W R [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1985-07-01

    The Ford Nuclear Reactor (FNR) at the University of Michigan has been serving as the test site for a low-enriched uranium (LEU) fuel whole-core demonstration. As part of the experimental program, the differential neutron spectrum has been measured in a high-enriched uranium (HEU) core and an LEU core. The HEU and LEU spectra were determined by unfolding the measured activities of foils that were irradiated in the reactor. When the HEU and LEU spectra are compared from meV to 10 MeV, significant differences between the two spectra are apparent below 10 eV. These are probably caused by the additional {sup 238}U resonance absorption in the LEU fuel. No measurable difference occurs in the shape of the spectra above MeV. (author)

  14. Safety assessment of U–Mo fuel mini plates irradiated in HANARO reactor

    International Nuclear Information System (INIS)

    Jo, Daeseong; Kim, Haksung

    2015-01-01

    Highlights: • Neutronic and thermal-hydraulic analyses of U–Mo fuel irradiated in HANARO reactor. • A mock-up irradiation target was designed and tested to measure the flow rate. • During normal operation, boiling does not occur. • During limiting accidents, boiling occurs. However, fuel integrity is maintained. - Abstract: Neutronic and thermal hydraulic characteristics of U–Mo fuel mini plates irradiated in the HANARO reactor were analyzed for the safety assessment of these plates. A total of eight fuel plates were double-stacked; each stack contained three 8.0 gU/cc U–7Mo fuel plates and one 6.5 gU/cc U–7Mo fuel plate. The neutronic and thermal hydraulic analyses were carried out using the MCNP code and TMAP code, respectively. The core status used in the study was the equilibrium core, and four Control Absorber Rod (CAR) locations were considered: 350 mm, 450 mm, 550 mm, and 650 mm away from the bottom of the core. For the fuels in the lower stack, the maximum heat flux was found at the CAR located at 450 mm. For the fuels in the upper stack, the maximum heat flux was found at the CAR located at 650 mm. The axial power distributions for the upper and lower stacks were selected on the basis of thermal margin analyses. A mock-up irradiation target assembly was designed and tested at the out-of-pile test facility to measure the flow rate through the irradiation site, given that the maximum flow rate through the irradiation site at the HANARO reactor is limited to 12.7 kg/s. For conservative analyses, measurement and correlation uncertainties and engineering hot channel factors were considered. During normal operation, the minimum ONB temperature margins for the lower and upper stacks are 41.6 °C and 31.8 °C, respectively. This means that boiling does not occur. However, boiling occurs during the limiting accidents. Nevertheless, the fuel integrity is maintained since the minimum DNBR are 1.96 for the Reactivity Insertion Accident (RIA) and 2

  15. The recovery of 99Mo from solutions of irradiated Uranium using a column with nanoparticles of Titanium Dioxide

    International Nuclear Information System (INIS)

    Androne, G. E.; Petre, M.; Lazar, C. G.

    2016-01-01

    Molyibdenum-99 (T½ = 66.02 h) decays by beta emission to 99 Tcm (T½ = 6.02 h). The latter nuclide is used in many nuclear medicine applications. The 99 Mo is produced from irradiated high (HEU) or low (LEU) enriched uranium. In this work a sensitive and selective method for recovering Mo from uranium solution, using a column with titanium dioxide nanoparticles, is developed. The titanium dioxide (TiO 2 ) nanoparticles were synthesized via sol-gel method using titanium tetra-chloride as starting material and urea as a reacting medium. A 40 ml uranium solution containing 450 g/L uranyl nitrate, 1 M HNO 3 , and 4 mg Mo was loaded on a column containing 6 g of TiO 2 sorbent at 75°C. After loading, the column was washed with 1 M HNO 3 and H 2 O. Mo was stripped from the column with 0.1 M NaOH at 25°C. The ICP-MS results indicate that 80-95% of the initial mass of Mo was loaded on the column, and 90-94% of this quantity was recovered in the strip fraction. (authors)

  16. Status and progress of the RERTR program in the year 2000

    International Nuclear Information System (INIS)

    Travelli, A.

    2000-01-01

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000 and discusses the main activities planned for the year 2001. The past year was characterized by important accomplishments and events for the RERTR program. Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. Postirradiation examinations of three batches of microplates have continued to reveal excellent irradiation behavior of U-MO dispersion fuels in a variety of compositions and irradiating conditions. h-radiation of two new batches of miniplates of greater sizes is in progress in the ATR to investigate me swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm 3 range. Qualification of the U-MO dispersion fuels is proceeding on schedule. Test fuel elements with 6 gU/cm 3 are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo with 8-9 gU/cm 3 is planned to be qualified by the end of 2005. Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1. Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission 99 Mo. Irradiations in the RAS-GAS reactor showed that these targets can formed from aluminum tubes, and that the yield and purity of their product from the acidic process were at least as good as those from the HEU Cintichem targets. Progress was made on irradiation testing of LEU UO 2 dispersion fuel and on

  17. Fission product release from TRIGA-LEU reactor fuels

    International Nuclear Information System (INIS)

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-01-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  18. Status and progress of the RERTR program in the year 2000

    International Nuclear Information System (INIS)

    Travelli, Armando

    2000-01-01

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000 and discusses the main activities planned for the year 2001. The past year was held by important accomplishments and events for the RERTR program: Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy; Postirradiation examinations of three batches of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes is in progress in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm 3 range; Qualification of the U-Mo dispersion fuels is proceeding on schedule. Test fuel elements with uranium density of 6 g/cm 3 are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo fuel with uranium density of 8-9 g/cm 3 is planned to be qualified by the end of 2005; Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1; Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission 99 Mo. Irradiations in the RAS-GAS reactor showed that these targets can formed from aluminum tubes, and that the yield and purity of their product from the acidic process were at least as good as those from the HEU Cintichem targets; Progress was made on irradiation testing of

  19. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  20. Parametric study of fission-induced U-Mo fuel creep and structural analysis of fuel plates in view of implications for microstructure evolution

    International Nuclear Information System (INIS)

    Kim, Y.S.; Hofman, G.L.; Choo, Y.S.; Robinson, A.B.

    2010-01-01

    U-Mo fuel deformation during irradiation in U-Mo/Al dispersion plates is investigated by using the irradiation data from the RERTR-3 through -9 tests. The observation of fuel particle sintering during irradiation is also presented and its influence for fuel performance is discussed. Structural analysis was also performed to examine the relationship between the stress distribution in the plate and the location of matrix-pore formation in the plate. (author)

  1. SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Yao, B.; Perez, E.; Sohn, Y.H.

    2009-01-01

    The starting microstructure of a dispersion fuel plate can have a dramatic impact on the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of dispersion fuel plates, SEM and TEM analysis have been performed on RERTR-9A archive fuel plates, which went through an additional hot isostatic procsssing (HIP) step during fabrication. The fuel plates had depleted U-7Mo fuel particles dispersed in either Al-2Si or 4043 Al alloy matrix. For the characterized samples, it was observed that a large fraction of the ?-phase U-7Mo alloy particles had decomposed during fabrication, and in areas near the fuel/matrix interface where the transformation products were present significant fuel/matrix interaction had occurred. Relatively thin Si-rich interaction layers were also observed around the U-7Mo particles. In the thick interaction layers, (U)(Al,Si)3 and U6Mo4Al43 were identified, and in the thin interaction layers U(Al,Si)3, U3Si3Al2, U3Si5, and USi1.88-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this work, exposure of dispersion fuel plates to relatively high temperatures during fabrication impacts the overall microstructure, particularly the nature of the interaction layers around the fuel particles. The time and temperature of fabrication should be carefully controlled in order to produce the most uniform Si-rich layers around the U-7Mo particles.

  2. Converting targets and processes for fission-product molybdenum-99 from high- to low-enriched uranium

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Snelgrove, J.L.; Aase, S.

    1999-01-01

    Most of the world's supply of 99 Mo is produced by the fissioning of 235 U in high-enriched uranium targets (HEU, generally 93% 235 U). To reduce nuclear-proliferation concerns, the U.S. Reduced Enrichment for Research and Test Reactor Program is working to convert the current HEU targets to low-enriched uranium (LEU, 235 U). Switching to LEU targets also requires modifying the separation processes. Current HEU processes can be classified into two main groups based on whether the irradiated target is dissolved in acid or base. Our program has been working on both fronts, with development of targets for acid-side processes being the furthest along. However, using an LEU metal foil target may allow the facile replacement of HEU for both acid and basic dissolution processes. Demonstration of the irradiation and 99 Mo separation processes for the LEU metal-foil targets is being done in cooperation with researchers at the Indonesian PUSPIPTEK facility. We are also developing LEU UO 2 /Al dispersion plates as substitutes for HEU UA1 x /A1 dispersion plates for base-side processes. Results show that conversion to LEU is technically feasible; working with producers is essential to lowering any economic penalty associated with conversion. (author)

  3. Modeling of interaction layer growth between U-Mo particles and an Al matrix

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Horman, G. L.; Ryu, Ho Jin; Park, Jong Man; Robinson, A. B.; Wachs, D. M.

    2013-01-01

    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 .deg. C, and for Mo content in the range of 6 - 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed

  4. MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN Al MATRIX

    Directory of Open Access Journals (Sweden)

    YEON SOO KIM

    2013-12-01

    Full Text Available Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 °C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  5. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    Science.gov (United States)

    Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.

    2018-02-01

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Si- coated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, transited at a threshold temperature/fission rate. The existing inter-diffusion layer (IL) growth correlation, which does not describe the transition behavior of IL growth, was modified by applying a temperature-dependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the inter-mixing rate in ion-irradiated bi-layer systems.

  6. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  7. PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al

    Directory of Open Access Journals (Sweden)

    Supardjo Supardjo

    2015-07-01

    Full Text Available PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al. Penelitian bahan bakar U-7Mo/Al tipe pelat dilakukan dalam rangka pengembangan bahan bakar U3Si2/Al untuk mendapatkan bahan bakar baru yang memiliki densitas uranium lebih tinggi, stabil selama digunakan sebagai bahan bakar di dalam reaktor dan mudah dilakukan proses olah ulangnya. Lingkup penelitian meliputi pembuatan: paduan U-7Mo dengan teknik peleburan, pembuatan serbuk U-7Mo dengan dikikir dan hydride - dehydride - grinding mill, IEB U-7Mo/Al dengan teknik kompaksi pada tekanan 20 bar, dan PEB U-7Mo/Al dengan teknik pengerolan panas pada temperatur 425oC. Paduan U-7Mo hasil proses peleburan cukup homogen, berat jenis 16,34 g/cm3 dan bersifat ulet, kemudian dibuat menjadi serbuk dengan cara dikikir dan hydride - dehydride - grinding mill. Serbuk U-7Mo hasil proses kikir berbentuk pipih, kontaminan Fe cukup tinggi, sedangkan serbuk hasil proses hydride - dehydride - grinding mill, cenderung equiaxial dengan kontaminan yang rendah. Kedua jenis serbuk U-7Mo tersebut digunakan sebagai bahan baku pembuatan IEB U-7Mo/Al dan PEB U-7Mo/Al dengan densitas uranium 7 gU/cm3 dan diperoleh produk dengan kualitas yang hampir sama. Hasil uji IEB U-7Mo/Al berukuran 25 x 15 x 3,15±0,05 mm, tidak terdapat cacat/retak, distribusi U-7Mo di dalam matriks cukup homogen dan tidak terdapat pengelompokan/aglomerasi U-7Mo yang berdimensi >1 mm. PEB U-7Mo/Al hasil pengerolan dengan tebal akhir 1,45 mm, memiliki ketebalan meat rerata 0,60 mm dan tebal kelongsong 0,4 mm dan terdapat 1 titik pengukuran kelongsong dengan ketebalan 0,15 mm. Dengan membandingkan penggunaan kedua jenis serbuk U-7Mo tersebut, IEB U-7Mo/Al dan PEB U-7Mo/Al yang dihasilkan memiliki kualitas hampir sama. Namun demikian penggunaan serbuk U- 7Mo hasil proses hydride - dehydride - grinding mill lebih baik karena proses pengerjaannya lebih cepat dan impuritas dalam

  8. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  9. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  10. Thermal and x-ray studies on Tl2U(MoO4)3 and Tl4U(MoO4)4

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Kulkarni, N.K.; Singh Mudher, K.D.

    2006-01-01

    In the quaternary Tl-U(IV)-Mo-O system, two new compounds namely Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were prepared and characterized by powder X-ray diffraction and thermal methods. These compounds were prepared by solid state reactions of Tl 2 MoO 4 , UMoO 5 and MoO 3 in the required stoichiometric ratio at 500 deg C in evacuated sealed quartz ampoule. The XRD data of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were indexed on orthorhombic cell. TG curves of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 did not show any weight change up to 700 deg C in an inert atmosphere. During heating in an inert atmosphere, Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 showed endothermic Dta peaks due to melting of the compounds at 519 and 565 deg C, respectively. (author)

  11. Irradiation behaviour of UO2/Mo porous cermets for thermionic converters

    International Nuclear Information System (INIS)

    Stora, J.P.; Kauffmann, Y.

    1975-01-01

    Two types of UO 2 Mo porous cernets have been fabricated and irradiated in a Cythere irradiation device. The first cermet is constituted by little bits of dense fuel in which the two constituants are finely dispersed. The whole open porosity is located between the granules. This type of cermet is called breche (33.4vol%UO 2 , 51vol%Mo, 14.8vol%porosity). At the end of the irradiation the burn up was 19000MWd/t(U) and neither swelling of the cermet nor deformation of the can were noted. On the contrary, a shrinkage of the emitter was observed attributed to a fuel densification under irradiation. The second type of cermet is called macrogranule (36vol%UO 2 , 49vol%Mo 15vol%porosity). UO 2 granules of 0.07cm mean diameter are dispersed in the molybdenum matrix. The porosity is regularly distributed all around the UO 2 kernels. The post irradiation metrology shows that the emitter is fairly stable. Only a slight ovalisation of about 0.5% was noted, but the granules of UO 2 were redistributed inside the molybdenum matrix, overlapping the metallic cavity by a condensation-evaporation process. The matrix has crept into the central void and consequently the volume has grown and the whole porosity has increased from about 15% to about 23%. This creeping is due to the fission gas pressure in the molybdenum cavities after 3000 hours of irradiation. In conclusion two types of cermets have shown good behaviour under irradiation and should allow lifetimes of several thousand hours of operation for thermionic fuel elements [fr

  12. Rupture of Al matrix in U-Mo/Al dispersion fuel by fission induced creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [UNIST, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonnge (United States); Lee, Kyu Hong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This phenomenon was found specifically in the dispersion fuel plate with Si addition in the Al matrix to suppress interaction layer (IL) formation between UMo and Al. It is known that the stresses induced by fission induced swelling in U-Mo fuel particles are relieved by creep deformation of the IL, surrounding the fuel particles, that has a much higher creep rate than the Al matrix. Thus, when IL growth is suppressed, the stress is instead exerted on the Al matrix. The observed rupture in the Al matrix is believed to be caused when the stress exceeded the rupture strength of the Al matrix. In this study, the possibility of creep rupture of the Al matrix between the neighboring U-Mo fuel particles was examined using the ABAQUS finite element analysis (FEA) tool. The predicted rupture time for a plate was much shorter than its irradiation life indicating a rupture during the irradiation. The higher stress leads Al matrix to early creep rupture in this plate for which the Al matrix with lower creep strain rate does not effectively relieve the stress caused by the swelling of the U-Mo fuel particles. For the other plate, no rupture was predicted for the given irradiation condition. The effect of creeping of the continuous phase on the state of stress is significant.

  13. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    Science.gov (United States)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  14. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  15. U-target irradiation at FRM II aiming the production of Mo-99 - A feasibility study

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Mueller, C.; Neuhaus, I.; Roehrmoser, A.

    2010-01-01

    Following the shortage in radioisotope availability the Technische Unversitaet Muenchen and the Belgian Institut National des Radioelements conducted a common study on the suitability of the FRM II reactor for the generation of Mo-99 as a fission product. A suitable irradiation channel was determined and neutronic calculations resulted in sufficiently high neutron flux densities to make FRM II a promising candidate for Mo-99 production. In addition the feasibility study provides thermohydraulic calculations as input for the design and integration of the additional cooling circuit into the existing heat removal systems of FRM II. The required in-house processes for a regular uranium target irradiation programme have been defined and necessary upgrades identified. Finally the required investment cost was estimated and a possible time schedule was given. (author)

  16. Phase development in a U-7 wt.% Mo vs. Al-7 wt.% Ge diffusion couple

    Science.gov (United States)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2013-10-01

    Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)3 phase.

  17. Interdiffusion among U-Mo-Zr and alloys of Al to 550oC

    International Nuclear Information System (INIS)

    Komar Varela, C.L; Arico, S.F; Gribaudo, L.M

    2006-01-01

    The international community, by means of the project 'Reduced Enrichment for Research and Test Reactors' is interested in the development of a new nuclear fuel of very high density of uranium and low enrichment (≤ 20% de U 235 ) for reactors of investigation and production of radioisotopes, that permit to reach greater neutron flows, with good capacity to be reprocessed One of these assemblies are the alloys of U with Mo contents between 7 and 10% in weight. In the fuels 'dispersed type plate' the particles of U-Mo are mixed with dust of aluminum and are co - laminated between two plates of an alloy of the same material. The existing contact among the particles permits the interdiffusion of the materials with the consequent apparition of new phases. Studies pursuit-irradiation have shown a badly behavior of these new phases. It is for this that is necessary to control the presence of these products of interaction. The aggregate of a third element to the alloys U - Mo has begun to be practiced with this purpose. In this work the modification of the start of the disorder of the phase γU in the alloy U-7%Mo-1%Zr was studied and the interdiffusion between pure aluminum and the same alloy to 550 o C. The results obtained are compared with other obtained for peers U-Mo/Al. The techniques of characterization utilized were: optical microscopy, analysis by diffraction of X-rays and microanalysis quantitative by microprobe electronic. It was observed that the aggregate of Zr refines the grain for a processing of homogenized in composition of Mo to 1000 o C and accelerates the start of the disorder of the phase γU to 550 o C. As for the zone of interaction, was found that the composed identifying do not they differ to them reported in the in peers U-Mo/Al. These are: (U,Mo)Al 4 y UAl 3 (AG)

  18. Irradiation testing of LEU fuels in the SILOE Reactor - Progress report

    International Nuclear Information System (INIS)

    Merchie, Francis; Baas, Claude; Martel, Patrick

    1985-01-01

    Irradiation of uranium-silicide fuels has continued in the SILOE reactor during the past year. Thickness vs. fission density data from four U 3 Si plates containing 5.5 and 6.0 g U/cm 3 have been analyzed, and the results are presented. The irradiation of a full 60 g U/cm 3 U 3 Si element has begun. In addition, four U 3 Si 2 plates containing 20 to 54 g U/cm 3 are now being irradiated. These irradiations and future plans are discussed in the paper. (author)

  19. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  20. Progress in converting 99Mo production from high-to-low-enriched uranium - 1999

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Vandegrift, G.F.; Conner, C.; Wiencek, T.C.; Hofman, G.L.

    1999-01-01

    Over this past year, extraordinary progress has been made in executing our charter to assist in converting Mo-99 production worldwide from HEU to LEU. Building on the successful development of the experimental LEU-foil target, we have designed a new, economical irradiation target. We have also successfully demonstrated, in collaboration with BATAN in Indonesia, that LEU can be substituted for HEU in the Cintichem target without loss of product yield or purity; in fact, conversion may make economic sense. We are interacting with a number of commercial producers - we have begun active collaborations with the CNEA and ANSTO; we are working to define the scope of collaborations with MDS Nordion and Mallinckrodt; and IRE has offered its services to irradiate and test a target at the appropriate time. Conversion of the CNEA process is on schedule. Other papers presented at this meeting will present specific results on the demonstration of the LEU-modified Cintichem process, the development of the new target, and progress in converting the CNEA process. (author)

  1. LEU-plate irradiation at FRJ-2 (DIDO) under the German AF-programme

    Energy Technology Data Exchange (ETDEWEB)

    Groos, E; Krug, W; Seferiadis, J; Thamm, G

    1985-07-01

    10 LEU fuel plates (8 with uranium silicides max. U-density 6.1 g/cm{sup 3}) have been irradiated at FRJ-2 (DIDO) of KFA-Juelich till end of October 1984 during 321 full power days up to max. burnup of 2.41x10{sup 27} fissions/m{sup 3} without major interruptions and troubles. PIE began recently in KFA hot cells. Visual inspections revealed no damage or greater deformation for the majority of the plates, but red/brown coloured layers (partially peeled off) on the cladding over the fuel. Aluminium (oxide) is the chief constituent of the layer with smaller portions of Ni and Fe the latter causing the red/brown colour. The major part of the layer ({approx}50 {mu}m) most probably has been formed during 20 h immediately after experiment start-up under abnormal conditions of the coolant water. Gamma scanning has been completed. Dimensional measurements are under way confirming first observations of severe swelling (pillowing) of 1 plate. Density and blister testing as well as metallography and burnup analysis remain to be accomplished end of 1985/beginning of 1986. (author)

  2. Fuel performance of rod-type research reactor fuel using a centrifugally atomized U-Mo powder

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Lee, Yoon Sang; Kim, Chang Kyu

    2009-01-01

    A low enriched uranium nuclear fuel for research reactors has been developed in order to replace a highly enriched uranium fuel according to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program. In KAERI, a rod-type U 3 Si dispersion fuel has been developed for a localization of the HANARO fuel and a U 3 Si/Al dispersion fuel of 3.15 gU/cc has been used at HANARO as a driver fuel since 2005. Although uranium silicide dispersion fuels such as U 3 Si 2 /Al and U 3 Si/Al are being used widely, high uranium density dispersion fuels (8-9 g/cm 3 ) are required for some high performance research reactors. U-Mo alloys have been considered as one of the most promising uranium alloys for a dispersion fuel due to their good irradiation performance. An international qualification program on U-Mo fuel to replace a uranium silicide dispersion fuel with a U-Mo dispersion fuel has been carried out

  3. Progress of the RERTR programme in 1999

    International Nuclear Information System (INIS)

    Travelli, A.

    1999-01-01

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during 1999 and discusses planned activities for the coming year. The past year was characterized by exceptionally important accomplishments and events for the RERTR program. - Three additional shipments containing 1,006 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,237 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. - Postirradiation examinations of the first two batches of microplates revealed good irradiation behavior of U-6Mo, and excellent irradiation behavior of U-Mo alloys with higher Mo content or with small Ru additions. Irradiation of a new batch of microplates to investigate the behavior of these fuels at high temperatures is scheduled to begin in October 1999. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm 3 range. - Progress on irradiation testing and safety analyses was made in the Russian RERTR program, which aims to develop and demonstrate the technical means needed to convert Russian supplied research reactors to LEU fuels. - The U.S. Government has decided to aggressively pursue, in cooperation with the Russian Government, eventual conversion of three Russian plutonium production reactors to the use of low-enriched UO 2 -Al dispersion fuel. This effort is now proceeding, with assistance from RERTR personnel. - At the request of the German government, the RERTR program has addressed the performance of a new alternative LEU FRM-II core design that could be installed in the same building structure erected for the current 20 MW HEU design with the same 50-day fuel life. The results have been favorable. - Significant improvements were made in the design of an LEU metal-foil target

  4. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, G.Y. [Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Kim, Yeon Soo; Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lee, K.H. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Dong-Seong, E-mail: dssohn@unist.ac.kr [Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2017-04-15

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes including deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling resulting from a combination of fuel particle swelling and interaction layer (IL) growth. In some cases, pore growth in the interaction layers also contributed to meat swelling. The main objective of this work was to determine the stress distribution within the fuel meat that caused these phenomena. A mechanical equilibrium between the stress generated by fuel meat swelling and the stress relieved by fission-induced creep in the meat constituents (U-Mo particles, Al matrix, and IL) was considered. Test plates with well-recorded fabrication data and irradiation conditions were used, and their post-irradiation examination (PIE) data was obtained. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. The simulation results allowed for the determination of effective stress and hydrostatic stress exerted on the meat constituents. The effects of fabrication and irradiation parameters on the stress distribution that drives microstructural evolutions, such as pore growth in the IL and Al matrix rupture, were investigated. - Highlights: •Post-irradiation data for irradiated miniplates were analyzed by using their optical microscopy images. •ABAQUS finite element analysis (FEA) package was utilized to simulate the microstructural evolution of the selected plates. •Stresses were assessed to analyze their effects on microstructural changes during irradiation.

  5. Status and progress of the RERTR program in the year 2004

    International Nuclear Information System (INIS)

    Travelli, A.

    2005-01-01

    The overall status of the RERTR program at the time of the last RERTR meeting is reviewed and the progress achieved since that meeting is described. In the fuel area, unexpected failures of LEU U-Mo dispersion plates and tubes under irradiation testing have prompted a revision of the plans to qualify these fuels. While potential solutions to the difficulties with U-Mo dispersion fuels are being explored in collaboration with our international partners, greater emphasis has been placed on accelerating development of monolithic LEU U-Mo fuel. The feasibility of converting several Russian-designed research reactors to LEU fuels has been addressed, and progress has been made in the development of LEU based 99 Mo production processes. The Russian RERTR program has made significant advances. A very important event of 2004 was the US DOE establishment of the Global Threat Reduction Initiative (GTRI). This new program accelerates and combines under the same US DOE management several programs, including RERTR, which aim to secure, remove, or dispose of, nuclear and other radioactive materials throughout the world that are vulnerable to theft by terrorists. (author)

  6. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H2O2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K2MoO4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H2O2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  7. Preliminary Accident Analyses for Conversion of the Massachusetts Institute of Technology Reactor (MITR) from Highly Enriched to Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, Erik H. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Kaichao S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newton, Jr., Thomas H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. This report presents the preliminary accident analyses for MITR cores fueled with LEU monolithic U-Mo alloy fuel with 10 wt% Mo. Preliminary results demonstrate adequate performance, including thermal margin to expected safety limits, for the LEU accident scenarios analyzed.

  8. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  9. Characterization of the interaction layer in diffusion couples U-Mo-Zr/Al and U-Mo-Zr/Al-A356 at 550 C degrees; Caracterizacion de la zona de interaccion en pares de difusion a 550 grados C U-Mo-Zr/Al y U-Mo-Zr/Al-A356

    Energy Technology Data Exchange (ETDEWEB)

    Komar Varela, Carolina; Arico, Sergio; Mirandou, Marcela; Balart, Silvia; Gribaudo, Luis [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; com, carolinakomar@gmail

    2007-07-01

    Out-of-pile diffusion experiments were performed between U-7 wt.% Mo-1 wt.% Zr and Al or Al A356 (7,1 wt.% Si) at 550 C degrees. In this work morphological characterization and phase identification on both interaction layers are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-ray diffraction and WDS microanalysis. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. Similar results in the interaction layer of the U-7 % Mo/Al at 580 C degrees were previously obtained. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al A356, the phases U(Al,Si){sub 3} with 25 at.% Si and Si{sub 5}U{sub 3} were identified. This last phase, with a higher Si concentration, was identified with X-ray diffraction synchrotron radiation performed at the National Synchrotron Light Laboratory, Campinas, Brazil. (author) [Spanish] Se realizaron experiencias fuera de reactor en pares de difusion quimica U-7 % Mo-1 % Zr/Al y U-7 % Mo-1 % Zr/Al A356. En este trabajo se presentan los resultados de la caracterizacion morfologica e identificacion de fases presentes en la zona de interaccion que se forma al ser sometidos a un tratamiento isotermico de 1,5 h a 550 grados C. Las tecnicas utilizadas fueron: microscopia optica y electronica de barrido, difraccion de rayos X y microanalisis cuantitativo por sonda electronica. En la zona de interaccion correspondiente al par U-7 % Mo-1 % Zr/Al se identificaron las fases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U y Al{sub 43}Mo{sub 4}U{sub 6}. Estas cuatro fases fueron identificadas en pares U-7 % Mo/Al a 580 grados C en trabajos anteriores. En la zona de interaccion correspondiente al par U-7 % Mo-1 % Zr/Al A356 se identificaron las fases U(Al,Si){sub 3} (con una concentracion de 25 %at.Si) y Si{sub 5}U{sub 3}. Este compuesto rico en Si solo pudo ser identificado mediante la utilizacion de

  10. Influence of Fuel-Matrix Interaction on the Deformation of U-Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Chicago (United States)

    2014-05-15

    In order to predict the fuel plate failure leading to breakaway swelling in the meat, an understanding of the effects of the fuel-matrix interaction behavior on the deformation of fuel meat is necessary. However, the effects of IL formation on the development of breakaway swelling have not been studied thoroughly. A mechanism that explains large pore growth that leads to breakaway swelling has not been included in the existing fuel performance models. In this study, the effect of the fuel-matrix interaction on large interfacial porosity development at the IL-Al interface is analyzed using both mechanistic correlations and observations from the post-irradiation examination results of U-Mo Dispersion fuels. The effects of fuel-matrix interaction on the fuel performance of U-Mo/Al Dispersion fuel were investigated. Fuel-matrix interaction bears the causes for breakaway swelling that can lead to a fuel failure under a high-power irradiation condition. Fission gas atoms are released from U-Mo particles to the interaction layer via diffusion and recoil. The fission gases released from the U-Mo and produced in the ILs are further released to the IL-Al interface by diffusion in the IL and recoil. Large pore formation at the IL-Al interface is attributed to the active diffusion of fission gas atoms in the ILs and coalescence between the small bubbles there. A model calculation showed that IL growth increases the probability of forming a breakaway swelling condition. ILs are connected to each other and the Al matrix decreases as ILs grow. When more ILs are interconnected, breakaway swelling can occur when the effective stress from the fission gas pressure in the IL-Al interfacial pore becomes larger than the yield strength of the Al matrix.

  11. Abstracts and papers of the 2000 International RERTR Meeting

    International Nuclear Information System (INIS)

    2000-10-01

    This meeting was devoted to progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000. The main activities planned for the year 2001 were discussed. Year 2000 was held by important accomplishments and events for the RERTR program. Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. Qualification of the U-Mo dispersion fuels is proceeding on schedule. Test fuel elements with uranium density of 6 g/cm3 are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo fuel with uranium density of 8-9 g/cm3 is planned to be qualified by the end of 2005. Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1. Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission 99Mo. Progress was made on irradiation testing of LEU UO 2 dispersion fuel and on LEU conversion feasibility studies in the Russian RERTR program. Conversion of the BER-II reactor in Germany, was completed and conversion of the La Reina reactor in Chile, began. In the fuel development area, the RERTR program is pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the FRR SNF Acceptance Program. The 99Mo effort has reached the point where it appears feasible for all the 99Mo producers of the world to agree jointly to a common course of action leading to the elimination of HEU use in their processes. It was concluded

  12. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  13. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  14. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y S; Hofman, G L [Nuclear Engineering Division

    2011-06-01

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  15. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  16. DENSITY-FUNCTIONAL STUDY OF U-Mo AND U-Zr ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Turchi, P A

    2010-11-01

    Density-functional theory previously used to describe phase equilibria in U-Zr alloys [A. Landa, P. Soederlind, P.E.A. Turchi, J. Alloys Comp. 478 (2009) 103-110] is extended to investigate the ground-state properties of U-Mo solid solutions. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components, and how the specific behavior of the density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. Our calculations prove that, due to the existence of a single {gamma}-phase over the typical fuel operation temperatures, {gamma}-U-Mo alloys should indeed have much lower constituent redistribution than {gamma}-U-Zr alloys for which binodal decomposition causes a high degree of constituent redistribution.

  17. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  18. Development of post-irradiation test facility for domestic production of 99Mo

    International Nuclear Information System (INIS)

    Taguchi, Taketoshi; Yonekawa, Minoru; Kato, Yoshiaki; Kurosawa, Makoto; Nishikata, Kaori; Ishida, Takuya; Kawamata, Kazuo

    2013-01-01

    JMTR focus on the activation method. By carrying out the preliminary tests using irradiation facilities existing, and verification tests using the irradiation facility that has developed in the cutting-edge research and development strategic strengthening business, as irradiation tests towards the production of 99 Mo, we have been conducting research and development that can contribute to supply about 25% for 99 Mo demand in Japan and the stable supply of radiopharmaceutical. This report describes a summary of the status of the preliminary tests for the production of 99 Mo: Maintenance of test equipment in the facility in JMTR hot laboratory in preparation for research and development for the production of 99 Mo in JMTR and using MoO 3 pellet irradiated at Kyoto University Research Reactor Institute (KUR). (author)

  19. LEU fuel development at CERCA

    International Nuclear Information System (INIS)

    Durand, Jean Pierre; Ottone, J.C.; Mahe, M.; Ferraz, G.

    1998-01-01

    The aim of this paper is to detail the recent progress on both U 3 Si 2 high loaded fuels and new γ phase fuels. Concerning high density density silicide plates up to 6 g Ut/cm 3 , the CEA irradiation programme is completed. Data are still under analysis but one can state that the behaviour was globally similar to conventional fuels known in SILOE and OSIRIS reactors. From the new γ fuel point of view, after demonstration feasibility in 1997 of U Mo thermally stable plates loaded up to 8.3 g Ut/cm3, CERCA has analysed the technical ability of quality inspection means assuming that is of an utmost interest for the insurance of a proper use of high performances fuel in reactors. There are mainly two differences between U Mo fuels (and more generally γ fuels) and conventional ones. Firstly, X-ray diffraction analysis on the fuel powder are needed because the chemical analysis is not sufficient to characterise the γ structure requested. Secondly, the physical limits of the Ultrasonic inspection have been reached due to transitory effect between the meat and the edges. Therefore this technic can not applied in the transitory areas. From that knowledge, the manufacture specifications for a plate dedicated to an irradiation plan can be discussed with a clearer view of the main differences with the U 3 Si 2 fuel reference. (author)

  20. Postirradiation tensile properties of Mo and Mo alloys irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Mueller, G.V.; Gavillet, D.; Victoria, M.; Martin, J.L.

    1994-01-01

    Tensile specimens of pure Mo and Mo-5 Re, Mo-41 Re and TZM alloys have been irradiated with 600 MeV protons in the PIREX facility at 300 and 660 K to 0.5 dpa. Results of the postirradiation tensile testing show a strong radiation hardening and a severe loss of ductility for all the materials tested at room temperature. ((orig.))

  1. Characterization of interaction between U-Mo alloy and Al diffusion-couple

    International Nuclear Information System (INIS)

    Liu Yunming; Yin Changgeng; Sun Changlong; Chen Jiangang; Sun Xudong

    2011-01-01

    In this paper, the interaction behavior of U-Mo/Al was studied with the diffusion-couple method, and the couple was continuously jointed by hot-pressing with special device. Annealing experiments were accomplished in a vacuum hot-pressing furnace, and at 550∼570℃ for 5∼21 hours. The results show that the morphology and composition of interaction Layer depend on the interaction layer thickness. The content of U (Mo) and Al is mutational at the interface of U-Mo/interaction layer/Al. The layer close to U-Mo side is mainly composed of product (U, Mo)Al 3 , while the Al side is composed of (U, Mo)Al 4 and UMO 2 Al 20 . Diffusion process of U-Mo/Al is Al immigrating over the Al/U-Mo original interface into U-Mo side and reacting with U-Mo, subsequently the interaction layer is growing into Al. (authors)

  2. Optimum nuclear design of target fuel rod for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyung Hee University, Seoul (Korea)

    1998-04-01

    Nuclear target design for Mo-99 production in HANARO was performed, KAERI proposed target design was analyzed and its feasibility was shown. Three commercial target designs of Cintichem, ANL and KAERI were tested for the HANARO irradiation an d they all satisfied with design specification. A parametric study was done for target design options and Mo-99 yields ratio and surface heat flux were compared. Tested parameters were target fuel thickness, irradiation location, target axial length, packing density of powder fuel, size of target radius, target geometry, fuel enrichment, fuel composition, and cladding material. Optimized target fuel was designed for both LEU and HEU options. (author). 17 refs., 33 figs., 42 tabs.

  3. MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN Al MATRIX

    OpenAIRE

    YEON SOO KIM; G.L. HOFMAN; HO JIN RYU; JONG MAN PARK; A.B. ROBINSON; D.M. WACHS

    2013-01-01

    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication an...

  4. Interdiffusion between U-Mo alloys and Al

    International Nuclear Information System (INIS)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S.; Hofman, G.L.

    2002-01-01

    During the fabrication and/or irradiation of the dispersion fuel elements, the fuel particles react with the surrounding Al matrix. This reaction results in the formation of a zone consisting of intermetallic compounds. The low thermal conductivity of these compounds has a major effect on the fuel temperature as well as on the swelling of the fuel. Interdiffusion between U-Mo/Al is being investigated using chemical diffusion couples. In this paper the first results obtained with optical and scanning electron microscope, electron microprobe and X-Ray diffraction are presented. Investigation of the effect on the formation of the interdiffusion zone of small additions of Mg to Al is the primary purpose of this study. (author)

  5. Post-irradiation characterization of PH13-8Mo martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.; Schmalz, F.; Rensman, J.W. [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Wouters, O.; Hegeman, J.B.J.; Laan, J.G. van der [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-10-01

    The irradiation response of PH13-8Mo stainless steel was measured up to 2.5 dpa at 200 and 300 deg. C irradiation temperatures. The PH13-8Mo, a martensitic precipitation-hardened steel, was produced by Hot Isostatic Pressing at 1030 deg. C. The fatigue tests (high cycle fatigue and fatigue crack propagation) showed a test temperature dependency but no irradiation effects. Tensile tests showed irradiation hardening (yield stress increase) of approximately 37% for 200 deg. C irradiated material tested at 60 deg. C and approximately 32% for 300 deg. C irradiated material tested at 60 deg. C. This contradicts the shift in reference temperature (T{sub 0}) measured in toughness tests (Master Curve approach), where the {Delta}T{sub 0} for 300 deg. C irradiated is approximately 170 deg. C and the {Delta}T{sub 0} for the 200 deg. C irradiated is approximately 160 deg. C. This means that the irradiation hardening of PH13-8Mo steel is not suitable to predict the shift in the reference temperature for the Master Curve approach.

  6. Whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worths, cycle length, fuel discharge burnup, gamma heating rates, β/sub eff/l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed

  7. Effect of Silicon in U-10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, Elizabeth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showed that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.

  8. Interdiffusion studies on hot rolled U-10Mo/AA1050

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, A.M.; Martins, I.C.; Carvalho, E.U.; Durazzo, M.; Riella, H.G. [Instituto de Pesquisas Energeticas e Nucleares (CCN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustivel Nuclear], e-mail: saliba@ipen.br

    2010-07-01

    The U-Mo alloys are investigated with the goal of becoming nuclear material to fabricate high-density fuel elements for high performance research reactors. This enrichment level suggests that the U-Mo alloys should be between 6 to 10wt%, which can give up to 9gU/cm{sup 3} as fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperature (150 degree C and 550 degree C) with three soaking times (5h, 40h and 80h). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 degree C during 15 min, reaching 8 at%Al in a range of 200 {mu}m towards U-10Mo. Longer time (5, 40, 80h) at 550 degree C maintain this level of Al-content up to 1000 {mu}m inside U-10Mo. A minor depth ({approx}1 {mu}m) near the interdiffusion contact had higher Al-content, but not sufficient to form identifiable (U,Mo)Al{sub x} structures. Probably, residual elements reduced drastically the interdiffusion phenomena between U-10Mo and AA1050, maybe due to silicon presence. (author)

  9. Characterization of the interaction layer in diffusion couples U-Mo-Zr/Al and U-Mo-Zr/Al-A356 at 550 C degrees

    International Nuclear Information System (INIS)

    Komar Varela, Carolina; Arico, Sergio; Mirandou, Marcela; Balart, Silvia; Gribaudo, Luis

    2007-01-01

    Out-of-pile diffusion experiments were performed between U-7 wt.% Mo-1 wt.% Zr and Al or Al A356 (7,1 wt.% Si) at 550 C degrees. In this work morphological characterization and phase identification on both interaction layers are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-ray diffraction and WDS microanalysis. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al, the phases UAl 3 , UAl 4 , Al 20 Mo 2 U and Al 43 Mo 4 U 6 were identified. Similar results in the interaction layer of the U-7 % Mo/Al at 580 C degrees were previously obtained. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al A356, the phases U(Al,Si) 3 with 25 at.% Si and Si 5 U 3 were identified. This last phase, with a higher Si concentration, was identified with X-ray diffraction synchrotron radiation performed at the National Synchrotron Light Laboratory, Campinas, Brazil. (author) [es

  10. Application of laser ablation inductivly coupled plasma mass spectrometry for characterization of U-7Mo/Al-55i dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Park, Jai Il; Youn, Young Sang; Ha, Yeong Keong; Kim, Jong Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-04-15

    This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U–7Mo/Al–5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured {sup 98}Mo/{sup 238}U ratios in fuel particles from spot analysis, and 3.4% RSD for {sup 98}Mo/{sup 238}U ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U–7Mo fuel particles from the Al–5Si matrix. Each mass spectrum peak indicates the presence of U–7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for {sup 98}Mo by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U–Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

  11. High temperature interdiffusion and phase equilibria in U-Mo

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1988-01-01

    Experimental data for interdiffusion and phase equilibria in the U-Mo system have been obtained over the temperature range 1400 to 1525 K as a fallout from compatibility experiments in which UO 2 was decomposed by lithium in closed molybdenum capsules. Composition-position, x-ray diffraction and microstructural data from the interdiffusion zones indicate that the intermediate phase U 2 Mo is found in this temperature range, contrary to the currently accepted equilibrium U-Mo phase diagram. The U-Mo interdiffusion data are in good agreement with published values. Inclusion of the U 2 Mo phase in a theoretical correlation of interdiffusion and phase equilibria data using Darken's equation indicate that high temperature interdiffusion of uranium and molybdenum follows the usual thermodynamic rules. Significant changes in the value of the thermodynamic based Darken factor near the U 2 Mo phase boundary on the high uranium side are indicated from both the new and published interdiffusion data. 9 refs., 10 figs., 3 tabs

  12. Performance of PARR-1 with LEU Fuel

    International Nuclear Information System (INIS)

    Pervez, S.; Latif, M.; Bokhari, I.H.; Bakhtyar, S.

    2005-01-01

    Pakistan Research Reactor (PARR-1) went critical in 1965 with HEU fuel. The reactor core was converted to LEU fuel with power upgradation from 5 MW to 10 MW in 1992. The reactor has been operated with LEU fuel for about 10,000 hours and has produced about 66,000 MWh energy up to now. Average burn up of the irradiated fuel is about 42 %. The fuel performance during the last 12 years has been excellent. Post irradiation visual inspection of the fuel has revealed no abnormality. During operation there have been no signs of releases in the pool water establishing the full integrity of this fuel. The reactor has been mainly utilized for radioisotope production, beam tube experiments including neutron diffraction studies, neutron radiography etc. Studies have been completed to operate the reactor with a mixed core (HEU + LEU) to utilize the less burned HEU fuel elements. A major project of production of fission Moly using PARR-1 is in the final stages. (author)

  13. The ORR Whole-Core LEU Fuel Demonstration

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.

    1990-01-01

    The ORR Whole-Core LEU Fuel Demonstration, conducted as part of the US Reduced Enrichment Research and Test Reactor Program, has been successfully completed. Using commercially-fabricated U 3 Si 2 -Al 20%-enriched fuel elements (4.8 g U/cc) and fuel followers (3.5 g U/cc), the 30-MW Oak Ridge Research Reactor was safely converted from an all-HEU core, through a series of HEU/LEU mixed transition cores, to an all-LEU core. There were no fuel element failures and average discharge burnups were measured to be as high as 50% for the standard elements and 75% for the fuel followers. Experimental results for burnup-dependent critical configurations, cycle-averaged fuel element powers, and fuel-element-averaged 235 U burnups validated predictions based on three-dimensional depletion calculations. Calculated values for plutonium production and isotopic mass ratios as functions of 235 U burnup support the corresponding measured quantities. In general, calculations for reaction rate distributions, control rod worths, prompt neutron decay constants, and isothermal temperature coefficients were found to agree with corresponding measured values. Experimentally determined critical configurations for fresh HEU and LEU cores radially reflected with water and with beryllium are well-predicted by both Monte Carlo and diffusion calculations. 17 refs

  14. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  15. Uranium briquettes for irradiation target

    International Nuclear Information System (INIS)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo

    2011-01-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl x dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of 235 U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  16. CNEA developments in U-Mo-ZrY-4 mini plates and plates fabrication process

    International Nuclear Information System (INIS)

    López, M.; Picchetti, B.; Gonzalez, A.; Taboada, H.

    2013-01-01

    The Uranium Molybdenum alloy was the material chosen to develop the fabrication of high density nuclear fuel, due to its excellent behaviour under irradiation –a consequence of the metastable bcc crystalline structure-. At present, the study is focused on the application of this alloy to monolithic fuel plate development, which fuel core is a thin U-Mo layer. The Zircalloy-4 (Zry-4) alloy used as cladding material is extensively known in the nuclear industry due to its low neutron capture section efficiency and excellent mechanical and corrosion resistance properties. Miniplates fabrication process involves a welded compact made of two Zry-4 covers and a frame surrounding a monolithic U-Mo core, which is co rolled under high temperature. Molybdenum contains of 7% to 10% (mass) in U Mo alloys guarantees the presence of meta-stable bcc gamma phase and, at the same time, does not penalize the neutron economy due to Mo98 presence. In the case of U Mo monolithic miniplates relevant parameters of fabrication, considering the behaviour of the U-Mo alloys reported in many work and in order to optimize the o-rolling process, have been revised: co-rolling temperature, compressive stress and presence of gap. Under this experimental conditions can be studied the the interdiffusion layer, the binding between materials and the Dog Bone. The experimental results shows that 650ºC is an optimal co-rolling temperature; at higher temperatures not only a bigger interdiffusion layer is observed –this phenomenon can lead to a region enriched in Molybdenum- but also a bigger Dog Bone is obtained. Working at higher compressive stress has the same effect in relation to the interdiffusion layer. In addition, the absence of gases in the core is essential for the correct binding of the materials. Concerning the monolithic U-Mo plates fabrication, involved in the ALT FUTURE experiment a new workshop has been conditioned. The aim is to use all the valuable information collected during

  17. Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Setyawan, Wahyu; Joshi, Vineet V.; Lavender, Curt A.

    2017-07-15

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble superlattice formation are not well known. In this work, the molecular dynamics (MD) method is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the MD simulations, the embedded-atom method (EAM) potential of U10Mo-Xe [1] is employed. Initial gas bubbles with a low Xe concentration (underpressured) are generated in a body-centered cubic (bcc) U10Mo single crystal. Then Xe atoms are sequentially added into the bubbles one by one, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that an overpressured gas bubble emits partial dislocations with a Burgers vector along the <111> direction and a slip plane of (11-2). Meanwhile, dislocation loop punch out was not observed. The overpressured bubble also induces an anisotropic stress field. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in bcc U10Mo fuels.

  18. Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels

    Science.gov (United States)

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.; Lavender, Curt A.

    2017-07-01

    Xe gas bubble superlattice formation is observed in irradiated uranium-10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble superlattice formation are not well known. In this work, the molecular dynamics (MD) method is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the MD simulations, the embedded-atom method (EAM) potential of U10Mo-Xe [1] is employed. Initial gas bubbles with a low Xe concentration (underpressured) are generated in a body-centered cubic (bcc) U10Mo single crystal. Then Xe atoms are sequentially added into the bubbles one by one, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that an overpressured gas bubble emits partial dislocations with a Burgers vector along the direction and a slip plane of (11-2). Meanwhile, dislocation loop punch out was not observed. The overpressured bubble also induces an anisotropic stress field. A tensile stress was found along directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in bcc U10Mo fuels.

  19. Structure and thermal properties of as-fabricated U-7Mo/Mg and U-10Mo/Mg low-enriched uranium research reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kulakov, Mykola, E-mail: mykola.kulakov@cnl.ca [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Saoudi, Mouna [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Piro, Markus H.A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Donaberger, Ronald L. [Canadian Neutron Beam Centre, Chalk River, ON K0J 1J0 Canada (Canada)

    2017-02-15

    Aluminum-clad U-7Mo/Mg and U-10Mo/Mg pin-type mini-elements (with a core uranium loading of 4.5 gU/cm{sup 3}) have been fabricated at the Canadian Nuclear Laboratories for experimental tests and ultimately for use in research and test reactors. In this study, the microstructure and phase composition of unirradiated U-7Mo/Mg and U-10Mo/Mg fuel cores were analyzed using optical and scanning electron microscopy, and neutron powder diffraction. Thermal properties were characterized using a combination of experimental measurements and thermodynamic calculations. The thermal diffusivity was measured using the laser flash method. The temperature-dependent specific heat capacities were calculated based on the linear rule of mixture using the weight fraction of different crystalline phases and their specific heat capacity values taken from the literature. The thermal conductivity was then calculated using the measured thermal diffusivity, the measured density and the calculated specific heat capacity. The resulting thermal conductivity is practically identical for both types of fuel. The in-reactor temperatures were predicted using conjugate heat transfer simulations. - Highlights: • Neutron diffraction analysis shows that most of the γ-U(Mo) phase was retained in as-fabricated U-7Mo/Mg and U-10Mo/Mg fuel cores. • The experimental thermal conductivity of both types of fuel is practically identical. • Based on conjugate heat transfer simulations, under normal operating conditions, the in-reactor fuel centreline temperature is about 510 K.

  20. Fabrication Method of the Mo-99 Target with Advanced Planar Flow Casting

    International Nuclear Information System (INIS)

    Sim, M. S.; Lee, J. H.; Kim, C. K.; Kim, W. J.

    2011-01-01

    Mo-99 is a parent isotope of Tc-99m for medical diagnosis and very significant owing to its large fraction over 80% of the whole demand of medical radioisotopes in the all countries. Mo-99 isotope has been produced mainly by 235 U which is extracting fission products. All the major providers of fission Mo have used HEU as a target material. But RERTR program that is nonproliferation policy encourages using HEU to LEU. KAERI has developed a processing to be able to produce a uranium foil continuously at one go. This processing gave an opportunity for LEU target using uranium foil to be commercialized. It correspond RERTR program. KAERI developed a new process of making foil directly from uranium melt by PFC. This process is simple, productive, and cost-effective. But the foil's air-side surface is generally very rough. A typical transverse cross section had a minimum thickness of 65 μm and a maximum thickness of 205 μm. This roughness could affect target fabrication and irradiation behavior. After issuing this problem KAERI launched a further effort since 2008. A new equipment was designed and manufactured in the industry in 2009. While the new equipment being test-operating, some occurrence of appearing problems appeared. Since 2010, Equipment was moved to KAERI, we performed many experiments using depleted uranium, and go get satisfied some results. We have got interesting results and manufactured uranium foil. A typical transverse cross section had a minimum thickness of 87 μm and a maximum thickness of 194 μm. The average thickness is 120 μm as a result of calculation

  1. Reaction layer in U-7WT%MO/Al diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S.

    2003-01-01

    New results of the reaction layer characterization between γ (U-7wt%Mo) alloy and Al, in chemical diffusion couples, are presented. The analysis was performed using optical and scanning electron microscopy with EDAX and X-ray diffraction techniques. Besides the main components (U, Mo)Al 3 and (U, Mo)Al 4 , already reported, two ternary compounds of high Al content have been identified in the reaction layer when it grew in retained or decomposed γ (U, Mo) phase, respectively. The drastic consequence on the interdiffusion behavior due to the thermal instability of the retained γ (U, Mo) phase is discussed. (author)

  2. Isothermal section of diagram of U-Mo-B and U-Re-B systems

    International Nuclear Information System (INIS)

    Val'ovka, I.P.; Kuz'ma, Yu.B.

    1986-01-01

    The methods of X-ray analysis are used to study the U-Mo-B and U-Re-B systems and to plot phase equilibrium diagrams at 1000 and 800 deg C, respectively. A formation of boride UMoB 4 (structure of the ThMoB 4 type) is confirmed in the U-Mo-B system and new compounds are found: U 2 MoB 6 (rhombic structure of the Y 2 ReB 6 type, a=0.9301(9), b=1.1434(11), c=0.3678(4) nm), ∼UMo 2 B 6 and ∼ UMo 4 B 4 with unknown structures. In the U-Re-B system besides previously known boride UReB 4 (the ThMoB 4 structure type), new ones are obtained: U 2 ReB 6 (Y 2 ReB 6 type, a=0.9373(9), b=1.1529(13), c0.3653(4) nm) and UReB 3 (hexagonal structure of the proper type, a=0.5083(1), c=0.5095(1) nm)

  3. Irradiation hardening of Mod.9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Ryu, Woo-Seog; Kim, Sung-Ho; Choo, Kee-Nam; Kim, Do-Sik

    2009-01-01

    An irradiation test of Mod.9Cr-1Mo steel was carried out in the OR5 test hole of HANARO of a 30 MW thermal power at 390±10degC up to a fast neutron fluence of 4.4x10 19 (n/cm 2 ) (E > 1.0 MeV). The dpa of the irradiated specimens was evaluated to be 0.034 - 0.07. Tensile and impact tests of the irradiated Mod.9Cr-1Mo were done in the hot cell of the IMEF. The change of the tensile strength by irradiation was similar to the change of the yield strength. The increase of the yield and tensile strengths was up to 18% and 10% respectively. The elongation reduction of the weldment was up to 65%. (author)

  4. Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, Paul J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Slonecker, Bruce D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steen, Franciska H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-15

    The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 on four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal

  5. Evaluation of alkaline dissolution of Al 6061 and Al 1050 for the production of Mo-99 from LEU targets

    International Nuclear Information System (INIS)

    Mindrisz, Ana C.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2013-01-01

    Since 2008, due to the global crisis in the production of radioisotope 99 Mo, which product of decay, 99m Tc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo. Studies on the alkaline dissolution to obtain 9 9M o from irradiated UAl x -Al LEU targets are under development. Processing time should be minimized, considering the short half-life of 99 Mo and 99m Tc, about 66 h and 6 h, respectively. This makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of 'scraps' of Al 6061 and 1050, used to simulate the dissolution process of UAl x -Al targets. Dissolution time and gas releasing were evaluated using the following alkaline solutions: a) NaOH 3 mol.L -1 and NaNO 3 2 mol.L -1 , b) NaOH 3 mol.L -1 and NaNO 3 4 mol.L -1 . The initial temperature of dissolution was 85 deg C in all cases. Al 6061 showed values of dissolution time greater than that for Al 1050, 25% for NaNO 3 2 mol.L -1 and 104.55% for NaNO 3 4 mol.L -1 . The dissolution with NaNO 3 2 mol.L -1 showed that the gas releasing for Al 6061 was 2.7% greater than for Al 1050. However Al 1050 showed that gas releasing 9.92% greater than for Al 6061 during the dissolution with NaNO 3 4 mol.L -1 . The decision about what type of alloy has to be used, Al 1050 or Al 6061, it will be upto the group that will manufacture the targets for the RMB. (author)

  6. Microstructural studies on chemical interactions in U-Mo with Al

    International Nuclear Information System (INIS)

    Martins, Ilson Carlos

    2010-01-01

    This research refers to the study of U-Mo alloy as an alternative material for producing nuclear fuel elements with high density of uranium, for research reactors of high performance. The international non-proliferation of nuclear weapons has enrichment level limited to 20% U 23 '5. U-Mo alloys with 6-10 wt% Mo can lead to a density up to 9 gU/cm 3 , inside the fuel core. The MTR fuel element plates are made from briquettes (U-Mo powder + Al) encapsulated in Al plates, then welded and rolled However, the U-Mo alloy is very reactive in the presence of Al. The reaction products of this interaction are undesirable from the standpoint of nuclear usage, since they cause a chemical interaction layer (IL) formed during thermal cycling and exposure to nuclear fission neutrons. As the IL has low thermal conductivity, they may cause structural failure in the fuel element during operation. The present study provides a new preparation technique for interdiffusion pairs made by hot rolling. The U-Mo alloy, in tablet format, is involved by matrix Al-plates, which is sealed and then hot rolled. This way to prepare the diffusion couples is an ideal condition to avoid the oxidation at the contact interface at U-Mo/Al. The hot rolling preparation also simulates the first reduction pass during MTR fuel plate manufacture. We chose to work with a Mo content of 10 wt% in U-Mo alloy to ensure greater phase formation, since this level favors a greater chemical stability in this phase. The Al alloy matrix was used as the AA1050 since it contains small impurity amounts. The interdiffusion couples U-10Mo/AA1050 were thermally treated in two temperature ranges (1500C and 5500C) and three soaking times (5h, 40h and 80h) to simulate the interdiffusion process and formation of chemical interaction layer. The analysis of the interaction layer U-10Mo/AA1050 was made by SEM/EDS and X-ray diffraction. It revealed a general trend of low interdiffusion of Al (about 8 atomic %) inside U-Mo. There was

  7. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation – Non-destructive analysis of the AFIP-1 fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M., E-mail: daniel.wachs@inl.gov [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Robinson, A.B.; Rice, F.J. [Idaho National Laboratory, Characterization and Advanced PIE Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Kraft, N.C.; Taylor, S.C. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lillo, M. [Idaho National Laboratory, Nuclear Systems Design and Analysis Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Woolstenhulme, N.; Roth, G.A. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008–2009. The irradiation conditions were: ∼250 W/cm{sup 2} peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm{sup 3} peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  8. Post-irradiation examination of Al-61 wt% U3Si fuel rods from the NRU reactor

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    1997-01-01

    This paper describes the post-irradiation examination of 4 intact low enrichment uranium (LEU) fuel rods from the national research universal (NRU) reactor at the Chalk River Laboratories of AECL. The rods were irradiated during the period 1993 through 1995, under typical driver fuel operating conditions in NRU, i.e., nominal D 2 O coolant inlet temperature 37E C, inlet pressure 654 kPa and mass flow 12.4 L/s. Irradiation exposures ranged from 147 to 251 full-power days, corresponding to 40 to 84 atom % 235 U burnup. The maximum rod power was ∼2 MW, with element linear power ratings up to 68 kW/m. Post-irradiation examinations, conducted in 1997, focused on optical metallography to measure cladding oxide thickness and fuel core and cladding microstructural examinations. The cladding oxide was approximately 24 : m thick at the mid-plane of fuel rods irradiated to 251 full-power days, with small areas up to 34 : m thick on the fins. The cladding retained significant ductility after irradiation, and its microstructure appeared unchanged. Fuel core diametral increases were small (up to 4%) and within the range previously observed on Al-61 wt% U 3 Si fuel irradiated in the NRU reactor. (author)

  9. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  10. Radioactive decay pattern of actinides present in waste from Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Goro; Dellamano, José Claudio, E-mail: hiromoto@ipen.br, E-mail: jcdellam@ipen.br [Instituto de PesquisasEnergéticas e Nucleares (GRR/IPEN/CNEN-SP), São Paulo, SP (Brazil). Gerência de Rejeitos Radioativos

    2017-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of LEU targets to meet the present national demand of {sup 99m}Tc. The {sup 99}Mo activity planned at the end of irradiation is 5000 Ci (185 TBq) per weekly cycle, in order to meet the present demand of 1000 Ci (37 TBq) per week, after target cooling and processing. To predict the activities that will be handled in the waste treatment facility, the computational code SCALE 6.0 was used to simulate the irradiation of the uranium targets and the decay of radioactive products. This study presents the findings of this research, mainly focused on the actinides activity that will be present in the waste and the respective radioactive decay pattern over a period of one hundred thousand years. (author)

  11. Microstructural study on gamma phase stability in U-9 wt% Mo alloy system

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Hussain, M.M.; Singh, R.P.; Neogy, S.; Srivastava, D.; Dey, G.K.

    2009-01-01

    Uranium exists in three polymorphic forms viz., orthorhombic α phase - stable up to 667 deg C, tetragonal β phase - stable between 667 deg C and 771 deg C and bcc γ phase - stable above 771 deg C. When alloying of uranium is done, the alloying additions alter the temperature ranges over which the α, β and γ phases are stable. In addition, they frequently retard the rates at which phase transformations occur. As a result, a number of metastable phases can be obtained in uranium alloys. It has been well known among reactor designers that a pure uranium metal is not suitable for power reactor fuel mainly because of (i) phase changes occurring at lower temperatures and (ii) poor irradiation behavior of α phase. γ phase uranium alloys containing small amount of another metal to stabilize the γ-U solid solution provides good prospects in this respect. U-Mo alloy is one of the prospective materials for low enrichment uranium fuel with high U loading because a solid solution of Mo in the γ-U phase possesses acceptable irradiation and mechanical properties and is formed over a wide range of Mo concentration. In the present work vacuum induction melted and cast U-9 wt% Mo alloy was subjected to different thermo mechanical processing to investigate the stability of the γ phase. The as cast alloy was rolled at 550 deg C and then homogenized at 1000 deg C in the γ phase field for 24 hours followed by (i) water quenching and (ii) furnace cooling to generate two different starting conditions. Two of the water-quenched samples were aged at 500 deg C for 5 days and 14 days and one as-rolled sample was aged at 500 deg C for 5 days. The as-cast, as-rolled, homogenized and aged samples were subjected to optical microscopy and X-ray Diffraction (XRD) investigations. All the samples were also subjected to microhardness measurements. The as cast sample contained predominantly the gamma phase along with inclusions. After homogenizing the alloy at 1000 deg C and quenching in

  12. Effect of the Zr elements with thermal properties changes of U-7Mo-xZr/Al dispersion fuel

    International Nuclear Information System (INIS)

    Supardjo; Agoeng Kadarjono; Boybul; Aslina Br Ginting

    2016-01-01

    Thermal properties data of nuclear fuel is required as input data to predict material properties change phenomenon during the fabrication process and irradiated in a nuclear reactor. Study the influence of Zr element in the U-7Mo-xZr/Al (x = 1%, 2% and 3%) fuel dispersion to changes in the thermal properties at various temperatures have been stiffened. Thermal analysis includes determining the melting temperature, enthalpy, and phase changes made using Differential Thermal Analysis (DTA) in the temperature range between 30 °C up to 1400 °C, while the heat capacity of U-7Mo-xZr alloy and U-7Mo-xZr/Al dispersion fuel using Differential Scanning Calorimeter (DSC) at room temperature up to 450 °C. Thermal analyst data DTA shows that Zr levels of all three compositions showed a similar phenomenon. At temperatures between 565.60 °C - 584.98 °C change becomes α + δ to α + γ phase and at 649.22 °C – 650.13 °C happen smelting Al matrix Occur followed by a reaction between Al matrix with U-7Mo-xZr on 670.38 °C - 673.38 °C form U (Al, Mo)x Zr. Furthermore a phase change α + β becomes β + γ Occurs at temperatures 762.08 °C - 776.33 °C and diffusion between the matrix by U-7Mo-xZr/Al on 853.55 °C - 875.20 °C. Every phenomenon that Occurs, enthalpy posed a relative stable. Consolidation of uranium Occur in 1052.42 °C - 1104.99 °C and decomposition reaction of U (Al, Mo)x and U (Al, Zr)_x becomes (UAl_4, UAl_3, UAl_2), U-Mo, and UZr on 1328,34 °C - 1332,06 °C , The existence of Zr in U-Mo alloy increases the heat capacity of the U-7Mo-xZr/Al, dispersion fuel and the higher heat capacity of Zr levels increased due to interactions between the atoms of Zr with Al matrix so that the heat absorbed by the fuel increase. (author)

  13. Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; Arey, Bruce; Jana, Saumyadeep; Lavender, Curt; Joshi, Vineet

    2018-06-01

    Grain boundaries in metallic alloys often play a crucial role, not only in determining the mechanical properties or thermal stability of alloys, but also in dictating the phase transformation kinetics during thermomechanical processing. We demonstrate that locally stabilized structure and compositional segregation at grain boundaries—“grain boundary complexions”—in a complex multicomponent alloy can be modified to influence the kinetics of cellular transformation during subsequent thermomechanical processing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography analysis of a metallic nuclear fuel highly relevant to worldwide nuclear non-proliferation efforts —uranium-10 wt% molybdenum (U-10Mo) alloy, new evidence for the existence of grain boundary complexion is provided. We then modified the concentration of impurities dissolved in Υ-UMo grain interiors and/or segregated to Υ-UMo grain boundaries by changing the homogenization treatment, and these effects were used used to retard the kinetics of cellular transformation during subsequent sub-eutectoid annealing in this U-10-Mo alloy during sub-eutectoid annealing. Thus, this work provided insights on tailoring the final microstructure of the U-10Mo alloy, which can potentially improve the irradiation performance of this important class of alloy fuels.

  14. The whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worth, cycle length, fuel discharge burn-up, gamma heating rate, β eff /l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed. Key issues being addressed in the safety assessment are fuel performance, radiological consequences, margin to burnout and transient behavior. The LEU core is comparable in all safety aspects to the HEU core and the transition core is only marginally worse owing to higher power seeking factors. (author)

  15. Study on HANARO core conversion using U-Mo fuel

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Seo, C.G.; Park, S.J.; Kim, H.; Kim, C.K.

    2002-01-01

    Two types of fuel rods with different fuel meat diameter and uranium density are considered for HANARO core conversion with high density U-Mo fuel. Arranging standard fuels of 5.0 g U/cc and 6.35 mm in diameter at the inner ring of an assembly and reduced fuels of 4.3 g U/cc and 5.49 mm in diameter at the outer ring of an assembly flattens the assembly power distribution and avoids the increase of linear heat generation rate due to using higher uranium density and less number of fuel rods. The maximum linear heat generation rate is similar with the current reference core and four fuel sites at the outer core in the reflector tank is converted to the irradiation sites to suit more demand on fuel tests and radioisotope production at outer core sites. This new core has 32% longer fuel cycle than the current reference core. (author)

  16. Characterization of U-Mo Foils for AFIP-7

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  17. Preparation of U-Si/U-Me (Me = Fe, Ni, Mn) aluminum-dispersion plate-type fuel (miniplates) for capsule irradiation

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Itoh, Akinori; Akabori, Mitsuo

    1993-06-01

    Details of equipment installed, method adopted and final products were described on the preparation of uranium silicides and other fuels for capsule irradiation. Main emphasis was placed on the preparation of laboratory-scale aluminum-dispersion plate-type fuel (miniplates) loaded to the first and second JMTR silicide capsules. Fuels contained in the capsules are as follows: (A) uranium-silicide base alloys U 3 Si 2 , Mo- added U 3 Si 2 , U 3 Si 2 +U 3 Si, U 3 Si 2 +USi, U 3 Si, U 3 (Si 0.8 Ge 0.2 ), U 3 (Si 0.6 Ge 0.4 ) (B) U 6 Me-type alloys with higher uranium density U 6 Mn, U 6 Ni, U 6 (Fe 0.4 Ni 0.6 ), U 6 (Fe 0.6 Mn 0.4 ) The powder-metallurgical picture-frame method was adopted and laboratory-scale technique was established for the preparation of miniplates. As a result of inspection for capsule irradiation, miniplates were prepared to meet the requirements of specification. (author)

  18. The manufacture of LEU fuel elements at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  19. Ultra-thin MoS{sub 2} irradiated with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hopster, J.; Kozubek, R.; Krämer, J.; Sokolovsky, V.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2013-12-15

    Single MoS{sub 2} layers exfoliated on KBr have been irradiated with highly charged Xe ions, i.e. with Xe{sup 35+} and Xe{sup 40+}. By atomic force microscopy (AFM) we identified pits and hillocks induced by single ion impacts. The latter ones appear on single layer and bulk-like MoS{sub 2} after both irradiations, whereas their diameter and height apparently depend on the charge state q and layer number. By comparison of contact mode and tapping mode AFM measurements we deduce that these ion induced defects are topographical hillocks accompanied by an enhanced friction. In contrast to this, pit-like structures were only observed on single layer MoS{sub 2} irradiated with q = 40. Taking into account the well known ion induced pit formation on KBr due to defect mediated sputtering, we deduce that pit formation takes place in the substrate and not in the MoS{sub 2} layer.

  20. Status of HEU-LEU conversion of FRJ-2

    International Nuclear Information System (INIS)

    Damm, G.; Nabbi, R.

    2002-01-01

    The operator of the German FRJ-2 research reactor, 'Research Center Juelich', has participated from the beginning in the RERTR programme and made comprehensive contributions to the test and use of LEU fuel for HEU-LEU-conversion measures. The originally planned time scale for the conversion of FRJ-2 was significantly delayed because of a change of the manufacturer of the LEU fuel elements and a 4 years shutdown of the reactor for refurbishment purposes. In the meantime the new LEU fuel elements are qualified and tested in the reactor. In the moment calculations for the safety report are made and it is planned to apply for the license of FRJ-2 operation with LEU fuel at the beginning of 2003. In order to get most reliable results a sophisticated computational method based on a MCNP model coupled with the depletion code BURN was developed for reactor physical calculations, core conversion studies and fuel element performance analysis and applied to the mixed and LEU core. The licensing schedule and results of latest calculations for the conversion study will be presented. The simulations shows that the thermal flux in the LEU core is about 19% resulting in a lower burnup rate. But in the reflector area around the core and in the center of the cold n source the neutron flux reduction remains limited to 6%. Due to a harder neutron spectrum in the LEU core the kinetic and safety related parameters are slightly reduced. Using the ORIGEN code it could be shown that the increase of the total fission products inventory amounts to about 6% compared to a HEU core. As a consequence of the high amount of U-238, the amount of U-235 in the LEU core has to be about 27% higher than in the HEU core but the U-235 burnup is approx. 5% lower due to the contribution of fissile plutonium. (author)

  1. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  2. Thermal expansion studies on UMoO5, UMoO6, Na2U(MoO4)3 and Na4U(MoO4)4

    International Nuclear Information System (INIS)

    Keskar, Meera; Dahale, N.D.; Krishnan, K.

    2009-01-01

    In the present work, thermal expansion behavior of lower valent sodium uranium molybdates, i.e., Na 2 U(MoO 4 ) 3 and Na 4 U(MoO 4 ) 4 were studied under vacuum in the temperature range of 298-873 K using high temperature X-ray diffractometry (HTXRD). Expansion behaviors of UMoO 5 and UMoO 6 were also studied in vacuum from 298 to 873 K and 773 K, respectively. UMoO 5 was synthesized by reacting UO 2 with MoO 3 in equi-molar proportion in evacuated sealed quartz ampoule at 1173 K for 14 h. Na 2 U(MoO 4 ) 3 and Na 4 U(MoO 4 ) 4 were prepared by reacting UMoO 5 and MoO 3 with 1 and 2 moles of Na 2 MoO 4 , respectively, at 873 K in evacuated sealed quartz ampoule. XRD data of UMoO 5 and UMoO 6 were indexed on orthorhombic and monoclinic systems, respectively, whereas, the data of Na 2 U(MoO 4 ) 3 and Na 4 U(MoO 4 ) 4 were indexed on tetragonal system. The lattice parameters and cell volume of all the four compounds, fit into polynomial expression with respect to temperature, showed positive thermal expansion (PTE) up to 873 K.

  3. Post-irradiation examination of A1-61 wt % U3Si fuel rods from the NRU reactor

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    1997-09-01

    This paper describes the post-irradiation examination of 4 intact low-enrichment uranium (LEU) fuel rods from the national research universal (NRU) reactor at the Chalk River Laboratories of AECL. The rods were irradiated during the period 1993 through 1995, under typical driver fuel operating conditions in NRU, i.e., nominal D 2 0 coolant inlet temperature 37 degrees C, inlet pressure 654 kPa and mass flow 12.4 L/s. Irradiation exposures ranged from 147 to 251 full-power days, corresponding to 40 to 84 atom % 235 U burnup. The maximum rod power was ∼2 MW, with element linear power ratings up to 68 kW/m. Post-irradiation examinations, conducted in 1997, focused on optical metallography to measure cladding oxide thickness and fuel core and cladding microstructural examinations. The cladding oxide was approximately 24 μm thick at the mid-plane of fuel rods irradiated to 251 full-power days, with small areas up to 34 μm thick on the fins. The cladding retained significant ductility after irradiation, and its microstructure appeared unchanged. Fuel core diametral increases were small (up to 4%) and within the range previously observed on A1-61 wt % U 3 Si fuel irradiated in the NRU reactor. (author)

  4. Development of annular targets for 99MO production-1999

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-01-01

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99 Mo

  5. Fabrication Method of the Mo-99 Target with Advanced Planar Flow Casting

    Energy Technology Data Exchange (ETDEWEB)

    Sim, M. S.; Lee, J. H. [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of); Kim, C. K.; Woo, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Mo-99 is a parent isotope of Tc-99m for medical diagnosis and very significant owing to its large fraction over 80% of the whole demand of medical radioisotopes in the all countries. Mo-99 isotope has been produced mainly by {sup 235}U which is extracting fission products. All the major providers of fission Mo have used HEU as a target material. But RERTR program that is non-proliferation policy encourages using HEU to LEU. KAERI has developed a processing to be able to produce a uranium foil continuously at one go. This processing gave an opportunity for LEU target using uranium foil to be commercialized. It correspond RERTR program. KAERI developed a new process of making foil directly from uranium melt by PFC. This process is simple, productive, and cost-effective. But the foil{center_dot}{center_dot}{center_dot}s air-side surface is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect target fabrication and irradiation behavior. After issuing this problem KAERI launched a further effort since 2008. A new equipment was designed and manufactured in the industry in 2009. While the new equipment being test-operating, some occurrence of appearing problems appeared. Since 2010, Equipment was moved to KAERI, we performed many experiments using depleted uranium, and go get satisfied some results. We have got interesting results and manufactured uranium foil. A typical transverse cross section had a minimum thickness of 87 {mu}m and a maximum thickness of 194 {mu}m. However, the average thickness is 130 {mu}m as a result of measurement by a micrometer

  6. Thermomechanical DART code improvements for LEU VHD dispersion and monolithic fuel element analysis

    International Nuclear Information System (INIS)

    Taboada, H.; Saliba, R.; Moscarda, M.V.; Rest, J.

    2005-01-01

    A collaboration agreement between ANL/US DOE and CNEA Argentina in the area of Low Enriched Uranium Advanced Fuels has been in place since October 16, 1997 under the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy. An annex concerning DART code optimization has been operative since February 8, 1999. Previously, as a part of this annex a visual FASTDART version and also a DART THERMAL version were presented during RERTR 2000, 2002 and RERTR 2003 Meetings. During this past year the following activities were completed: Optimization of DART TM code Al diffusion parameters by testing predictions against reliable data from RERTR experiments. Improvements on the 3-D thermo-mechanical version of the code for modeling the irradiation behavior of LEU U-Mo monolithic fuel. Concerning the first point, by means of an optimization of parameters of the Al diffusion through the interaction product theoretical expression, a reasonable agreement between DART temperature calculations with reliable RERTR PIE data was reached. The 3-D thermomechanical code complex is based upon a finite element thermal-elastic code named TERMELAS, and irradiation behavior provided by the DART code. An adequate and progressive process of coupling calculations of both codes at each time step is currently developed. Compatible thermal calculation between both codes was reached. This is the first stage to benchmark and validate against RERTR PIE data the coupling process. (author)

  7. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Pond, R.; Hanan, N.; Matos, J.

    1995-01-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions

  8. Supply of low enriched (LEU) and highly enriched uranium (HEU) for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Enriched uranium for research reactors in the form of LEU /= low enriched uranium at 19.75% U-235) and HEU (= highly enriched uranium at 90 to 93% U-235) was and is - due to its high U-235 enrichment - a political fuel other than enriched uranium for power reactors. The sufficient availability of LEU and HEU is a vital question for research reactors, especially in Europe, in order to perform their peaceful research reactor programs. In the past the USA were in the Western hemisphere sole supplier of LEU and HEU. Today the USA have de facto stopped the supply of LEU and HEU, for HEU mainly due to political reasons. This paper deals, among others, with the present availability of LEU and HEU for European research reactors and touches the following topics: - historical US supplies, - influence of the RERTR-program, - characteristics of LEU and HEU, - military HEU enters the civil market, -what is the supply situation for LEU and HEU today? - outlook for safe supplies of LEU and HEU. (author)

  9. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Science.gov (United States)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  10. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, J.M.; Lee, K.H.; Yoo, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ryu, H.J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ye, B. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-11-15

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  11. Characterization of the reaction layer in U-7wt%Mo/Al diffusion couples

    Energy Technology Data Exchange (ETDEWEB)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S. E-mail: granovsk@cnea.gov.ar

    2003-11-15

    The reaction layer in chemical diffusion couples U-7wt%Mo/Al was investigated using optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction (XRD) techniques. When the U-7wt%Mo alloy was previously homogenized and the {gamma}(U, Mo) phase was retained, the formation of (U, Mo)Al{sub 3} and (U, Mo)Al{sub 4} was observed at 580 deg. C. Also a very thin band was detected close to the Al side, the structure of the ternary compound Al{sub 20}UMo{sub 2} might be assigned to it. When the decomposition of the {gamma}(U, Mo) took place, a drastic change in the diffusion behavior was observed. In this case, XRD indicated the presence of phases with the structures of (U, Mo)Al{sub 3}, Al{sub 43}U{sub 6}Mo{sub 4}, {gamma}(U, Mo) and {alpha}(U) in the reaction layer.

  12. Progress of Indonesia RERTR related programs

    International Nuclear Information System (INIS)

    Soentono, S.; Arbie, B.; Surpto, A.

    2004-01-01

    In Indonesia, there are two main activities covering study, research ad development which can be related to reduced enrichment for research and test reactors (RERTR) program. The first activity is the attempt to improve the G.A. Siwabessy multi-purpose reactor (RSG-GAS) performance following the successful RERTR program on the development of low-enriched uranium (LEU) with high uranium loading density. This activity consists of manufacturing technology development and fabrication of LEU fuel in the form Of U 3 Si 2 -Al with high U loading density being capable to reach high burn-up, study oil the core conversion of the RSG- GAS from using oxide LEU fuel with loading density of ∼3 gU/cc into using LEU silicide fuel of higher U loading density to improve the in-core fuel management, the fuel utilization, and the cycle length, while keeping the neutron flux in the irradiation facilities remaining satisfactory and the power of the reactor remaining the same without resulting any serious penalty on the reactor safety. The second RERTR related activity is the attempt to use LEU, instead of HEU, as the target or fission product 99 Mo production to supply 99 mTc for medical purposes. This second activity is expected to consist of experiments covering irradiation of various forms of LEU targets in the RSG-GAS, dissolution processes of the irradiated targets, separation and purification processes to meet the radiopharmaceutical requirements and recovery of 235 U from the waste as well as treatment of the emerged wastes. (author)

  13. LEU WWR-M2 fuel assemblies burnable test

    International Nuclear Information System (INIS)

    Kirsanov, G.A.; Konoplev, K.A.; Pikulik, R.G.; Sajkov, Yu. P.; Tchmshkyan, D.V.; Tedoradze, L.V.; Zakharov, A.S.

    2000-01-01

    The results of in-pile irradiation tests of LEU WWR-M2 fuel assemblies with reduced enrichment of fuel are submitted in the report. The tests are made according to the Russian Program on Reduced Enrichment for Research and Test Reactors (RERTR). United States Department of Energy and the Ministry of Atomic Energy of Russian Federation jointly fund this Program. The irradiation tests of 5 WWR-M2 experimental assemblies are carried out at WWR-M reactor of the Petersburg Nuclear Physics Institute (PNPI). The information on assembly design and technique of irradiation tests is presented. In the irradiation tests the integrity of fuel assemblies is periodically measured. The report presents the data for the integrity maintained during the burnup of 5 fuel assemblies up to 45%. These results demonstrate the high reliability of the experimental fuel assemblies within the guaranteed burnup limits specified by the manufacturer. The tests are still in progress; it is planned to test and analyze the change in integrity for burnup of up to 70% - 75% or more. LEU WWR-M2 fuel assemblies are to be offered for export by their Novosibirsk manufacturer. Currently, HEU WWR-M2 fuel assemblies are used in Hungary, Ukraine and Vietnam. LEU WWR-M2 fuel assemblies were designed as a possible replacement for the HEU WWR-M2 fuel assemblies in those countries, but their use can be extended to other research reactors. (author)

  14. Solid state reactions of MoO3 and Na2MoO4 with (U.85,Ce.15)O2x

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Singh Mudher, K.D.; Chawla, K.L.

    1999-01-01

    (U .85 ,Ce .15 )MoO 6-x was prepared by the solid state reactions of (U .85 ,Ce .15 )O 2±x with MoO 3 in air at 600 deg C. Solid state reactions of Na 2 MoO 4 with (U .85 ,Ce .15 )MoO 6.x up to 550 deg C in air led to the formation of Na 2 (U .85 ,Ce .15 )Mo 2 O 10-x and Na 2 (U .85 , Ce .15 ) 2 Mo 3 O 16-x . These compounds were characterised by x-ray and thermal methods. The x-ray powder data of (U .85 , Ce .15 ) MoO 6-x were indexed on monoclinic system whereas, data of Na 2 (U .85 ,Ce .15 ) Mo 2 O 10-x and Na 2 (U .85 ,Ce .15 ) 2 Mo 3 O 16-x were indexed on orthorhombic and monoclinic system respectively. (author)

  15. Characterization of an irradiated RERTR-7 fuel plate using transmission electron microscopy

    International Nuclear Information System (INIS)

    Gan, J.; Keiser, D.D. Jr.; Miller, B.D.; Robinson, A.B.; Medvedev, P.

    2010-01-01

    Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the Reduced Enrichment Research and Test Reactor RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper will discuss the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization. (author)

  16. Recent observations at the post-irradiation examination of low-enriched U-Mo miniplates irradiated to high burn-up

    International Nuclear Information System (INIS)

    Hofman, G.L.; Kim, Y.S.; Finlay, M.R.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.; Clark, C.R.

    2003-01-01

    High-density dispersion fuel experiment, RERTR-4, was removed from the Advanced Test Reactor (ATR) after reaching a peak U-235 burnup of ∼80% and is presently undergoing postirradiation examination at the ANL Alpha-Gamma Hot Cell Facility. This test consists of 32 mini fuel plates of which 27 were fabricated with nominally 6 and 8 g cm -3 atomized and machined uranium alloy powders containing 6.5 wt% to 10 wt% molybdenum. In addition, two miniplates contained solid U-10wt%Mo foils. Recent results of the postirradiation examination and analysis of RERTR-4 in conjunction with data from a companion test performed to 50% burnup, RERTR-5, are presented. (author)

  17. Status of fuel irradiation tests in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  18. Simulation of the irradiation-induced thermo-mechanical behaviors evolution in monolithic U–Mo/Zr fuel plates under a heterogeneous irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunmei; Gong, Xin; Ding, Shurong, E-mail: dsr1971@163.com

    2015-04-15

    Highlights: • The three-dimensional stress update algorithms in a co-rotational framework are developed for U–Mo and Zircalloy with the irradiation effects. • An effective method for three-dimensional modeling of the in-pile behaviors in heterogeneously irradiated monolithic fuel plates is established and validated. • The effects of the fission-induced creep effects in the U–Mo foil are investigated in detail. • A deformation phenomenon similar to the irradiation experimental results is obtained. - Abstract: For monolithic fuel plates with U–Mo foil and Zircalloy cladding, the three-dimensional large deformation incremental constitutive relations and stress update algorithms in the co-rotational coordinate framework are developed for the fuel and cladding with their respective irradiation effects involved. Three-dimensional finite element simulation of their in-pile thermo-mechanical coupling behaviors under a location-dependent irradiation condition is implemented via the validated user-defined subroutines UMATHT and UMAT in ABAQUS. Comparison of the simulation results for two cases with or without creep considered in the U–Mo foil indicates that with the irradiation creep included (1) considerable stress-relaxation appears in the U–Mo foil, and the mechanical interaction between fuel and cladding is weakened; (2) approximately identical thickness increments in the plate and fuel foil exist and become comparably larger; (3) plastic deformation in the cladding is significantly diminished.

  19. Evidence of amorphous interdiffusion layer in heavy ion irradiated U–8wt%Mo/Al interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H-Y. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany); Zweifel, T. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany); CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Palancher, H., E-mail: herve.palancher@cea.fr [CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Bonnin, A. [ESRF, 6 rue Jules Horowitz, 38042 Grenoble (France); Beck, L. [Tandembeschleuniger des Maier-Leibnitz-Labors (MLL), Am Coulombwall 6, D-85747 Garching (Germany); Weiser, P. [Walther Schottky Institut, Technische Universität München, Am Coulombwall 4, D-85747 Garching (Germany); Döblinger, M. [Department Chemie, Ludwig-Maximilians-Universität München (LMU), Butenandstr. 11, D-81377 München (Germany); Sabathier, C. [CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Jungwirth, R.; Petry, W. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany)

    2013-09-15

    U–Mo/Al based nuclear fuels are worldwide considered as the most promising high density fuel for the conversion of high flux research and test reactors from highly enriched uranium to lower enrichment. However in-pile growth of an amorphous interdiffusion layer at the U–Mo/Al interfaces strongly limits the performances of this fuel. Several in-pile tests have been performed to optimize the composition. In this paper, a breakthrough in simulating the U–8wt%Mo/Al behavior under out-of-pile irradiation is reported. It is shown that an amorphous U–8wt%Mo/Al interdiffusion layer (IDL) is obtained by heavy ion irradiation ({sup 127}I) in a U–Mo/Al diffusion couple under controlled temperature conditions. The properties of this IDL coincide with the results obtained from in-pile tests. This methodological work clearly indicates that heavy ion irradiations could be routinely applied for optimizing composition of U–Mo/Al nuclear fuels. In other words these out-of-pile tests using ion beams could become a representative, efficient and economic step before in-pile irradiation.

  20. Evidence of amorphous interdiffusion layer in heavy ion irradiated U–8wt%Mo/Al interfaces

    International Nuclear Information System (INIS)

    Chiang, H-Y.; Zweifel, T.; Palancher, H.; Bonnin, A.; Beck, L.; Weiser, P.; Döblinger, M.; Sabathier, C.; Jungwirth, R.; Petry, W.

    2013-01-01

    U–Mo/Al based nuclear fuels are worldwide considered as the most promising high density fuel for the conversion of high flux research and test reactors from highly enriched uranium to lower enrichment. However in-pile growth of an amorphous interdiffusion layer at the U–Mo/Al interfaces strongly limits the performances of this fuel. Several in-pile tests have been performed to optimize the composition. In this paper, a breakthrough in simulating the U–8wt%Mo/Al behavior under out-of-pile irradiation is reported. It is shown that an amorphous U–8wt%Mo/Al interdiffusion layer (IDL) is obtained by heavy ion irradiation ( 127 I) in a U–Mo/Al diffusion couple under controlled temperature conditions. The properties of this IDL coincide with the results obtained from in-pile tests. This methodological work clearly indicates that heavy ion irradiations could be routinely applied for optimizing composition of U–Mo/Al nuclear fuels. In other words these out-of-pile tests using ion beams could become a representative, efficient and economic step before in-pile irradiation

  1. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys; Comparaison des alliages U-Pu-Mo, U-Pu-Nb, U-Pu-Ti, U-Pu-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, R; Barthelemy, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [French] On rappelle brievement les connaissances acquises sur les alliages U-Pu, U-Pu-Mo et U-Pu-Nb. On presente les resultats obtenus avec les alliages U-Pu-Ti et U-Pu-Zr pour des teneurs de 15 a 20 pour cent de plutonium et 10 pour cent en poids d'element ternaire. On a determine les temperatures de transformation, les coefficients de dilatation, la nature des phases, la conductibilite thermique a 20 deg. C, la tenue au cyclage thermique et diverses autres proprietes. Un tableau resume les principales proprietes des divers alliages. On considere les possibilites d'emploi de ces alliages comme combustibles de reacteur rapide. Les alliages U-Pu-Ti paraissent particulierement interessants: facilite d'elaboration, stabilite thermique etendue, tenue dans l'air excellente, faible quantite de la phase U-Pu zeta, temperature de fusion commencante superieure a 1100 deg. C. (auteurs)

  2. Small-scale Specimen Testing of Monolithic U-Mo Fuel Foils

    Energy Technology Data Exchange (ETDEWEB)

    Ramprashad Prabhakaran; Douglas E. Burkes; James I. Cole; Indrajit Charit; Daniel M. Wachs

    2008-10-01

    The objective of this investigation is to develop a shear punch testing (SPT) procedure and standardize it to evaluate the mechanical properties of irradiated fuels in a hot-cell so that the tensile behavior can be predicted using small volumes of material and at greatly reduced irradiation costs. This is highly important in the development of low-enriched uranium fuels for nuclear research and test reactors. The load-displacement data obtained using SPT can be interpreted in terms of and correlated with uniaxial mechanical properties. In order to establish a correlation between SPT and tensile data, sub-size tensile and microhardness testing were performed on U-Mo alloys. In addition, efforts are ongoing to understand the effect of test parameters (such as specimen thickness, surface finish, punch-die clearance, crosshead velocity and carbon content) on the measured mechanical properties, in order to rationalize the technique, prior to employing it on a material of unknown strength.

  3. Small-scale Specimen Testing of Monolithic U-Mo Fuel Foils

    International Nuclear Information System (INIS)

    Ramprashad Prabhakaran; Douglas E. Burkes; James I. Cole; Indrajit Charit; Daniel M. Wachs

    2008-01-01

    The objective of this investigation is to develop a shear punch testing (SPT) procedure and standardize it to evaluate the mechanical properties of irradiated fuels in a hot-cell so that the tensile behavior can be predicted using small volumes of material and at greatly reduced irradiation costs. This is highly important in the development of low-enriched uranium fuels for nuclear research and test reactors. The load-displacement data obtained using SPT can be interpreted in terms of and correlated with uniaxial mechanical properties. In order to establish a correlation between SPT and tensile data, sub-size tensile and microhardness testing were performed on U-Mo alloys. In addition, efforts are ongoing to understand the effect of test parameters (such as specimen thickness, surface finish, punch-die clearance, crosshead velocity and carbon content) on the measured mechanical properties, in order to rationalize the technique, prior to employing it on a material of unknown strength

  4. Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Li, Meimei; Snead, L.L.

    2008-01-01

    Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 +/- 10 degrees C. Neutron fluences ranged from 2 x 10(21) to 8 x 10(......, as predicted by molecular dynamics simulations. (C) 2008 Elsevier B.V. All rights reserved....... at a very low-dose of similar to 10(-4) dpa. The average size of the cavities did not change significantly with dose, in contrast to neutron-irradiated bcc Fe where cavity sizes increased with increasing dose. It is suggested that the in-cascade vacancy clustering may be significant in neutron-irradiated Mo...

  5. Kinetics of the U-1% Mo alloy transformation during continual cooling; Kinetika transformacije legura U-1% Mo pri kontinuiranom hladjenju

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A; Djuric, B; Tepavac, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    Study of continuous cooling of the U-1% Mo alloy is significant if it could be used as fuel in the nuclear reactor. Previous studies were dealing with relatively low cooling rate up to 3 deg C/s{sup 1}, which produced alpha + gamma structure. This task was devoted to testing the U-1% Mo alloy properties at higher cooling rates in order to discover whether bainite reaction and favourable alpha grain could be achieved under certain conditions.

  6. Corrosion report for the U-Mo fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bennett, Wendy D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fuller, E. S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hardy, John S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  7. Full core operation in JRR-3 with LEU fuels

    International Nuclear Information System (INIS)

    Murayama, Y.; Issiki, M.

    1995-01-01

    The new JRR-3 a 20MWT swimming pool type research reactor, is made up of plate type LEU fuel elements with U-Al x fuel at 2.2 gU/cm 3 . Reconstruction work for the new JR-3 was a good success, and common operation started in November 1990, and 7 cycles (26 days operation/cycle) have passed. We have no experience in using such a high uranium density fuel element with aluminide fuel. So we plan to examine the condition of the irradiated fuel elements with three methods, that is, measurement of the value of FFD in operation, observation of external view of the fuels in refueling work and postirradiation examination after maximum burn-up will be established. In the results of the first two methods, the fuel elements of JRR-3 is burned up normally and have no evidence of failure. (author)

  8. Status and progress of the RERTR program in the year 2003

    International Nuclear Information System (INIS)

    Travelli, Armando

    2003-01-01

    One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expected to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm 3 and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to

  9. Status of development and irradiation performance of advanced proliferation resistant MTR fuel at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.; Hassel, H.-W.; Wehner, E.

    1985-01-01

    This paper describes the current status of development and irradiation performance of fuel elements for Material Test and Research (MTR) Reactors with Medium Enriched Uranium (MEU, ≤ 45 % 235-U) and Low Enriched Uranium (LEU, ≤ 20 % 235-U). (author)

  10. Microchemistry of neutron irradiated 12%CrMoVNb martensitic steel

    International Nuclear Information System (INIS)

    Little, E.A.; Morgan, T.S.; Faulkner, R.G.

    1992-01-01

    Non-equilibrium solute segregation has been studied in a 12%CrMoVNb martensitic steel following fast reactor irradiation at 465 C and correlated with the development of M 6 X η-phase. Cr, Ni, Si, Mo, P and Mn are all shown to exhibit positive segregation to lath boundaries and are subsequently incorporated into M 6 X precipitates. The co-segregation of a combination of these elements which include P and Si, and possibly Cr or Mo, appears to promote M 6 X formation

  11. Feasibility neutronic conceptual design for the core configuration of a 75 kWth Aqueous Homogeneous Reactor for 99Mo production

    International Nuclear Information System (INIS)

    Milian, D.; Milian, D. E.; Rodriguez, L. P.; Salomon, J.; Cadavid, N.

    2015-01-01

    99m Tc is a very useful radioisotope, which is used in nearly 80% of all nuclear medicine procedures. 99m Tc is produced from 99 Mo decay. Since 2007 the medical community has been plagued by 99 Mo shortages due to aging reactors, such as the National Research Universal reactor in Canada and the High Flux Reactor in Petten, The Netherlands. At present, most of the world's supply of 99 Mo for medical isotope production involves the neutron fission of 235 U in multipurpose research reactors. 99 Mo mostly results from the fission reaction of 235 U targets with a fission yield about 6.1%. After irradiation in the reactor, the target is digested in acid or alkaline solutions and 99 Mo is recovered through a series of extraction (separation) and purification steps. 99 Mo production system in an Aqueous Homogeneous Reactor (AHR) offers a better method, because all of the 99 Mo can be extracted from the fuel solution. Over 30 AHRs has been built and operated around the world with 149 years of combined experience. In this paper, an AHR conceptual design using LEU (Low Enriched Uranium) is optimized to meet the South American demand for 99 Mo for the coming years. Aspect related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotope production and others are evaluated. The neutronic calculations have been performed with the well-known MCNPX computational code. A benchmarking experiments performed at the Russian Research Center 'Kurchatov Institute' in order to validate that the developed models of AHRs with MCNPX code and the available library in XSDIR, ENDF/B VI.2, are adequate for studies of aqueous fuel solutions. (Author)

  12. Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets

    Science.gov (United States)

    Lopes, Denise Adorno; Benarosch, Anna; Middleburgh, Simon; Johnson, Kyle D.

    2017-12-01

    U3Si2 has been considered as an alternative fuel for Light Water Reactors (LWRs) within the Accident Tolerant Fuels (ATF) initiative, begun after the Fukushima-Daiichi Nuclear accidents. Its main advantages are high thermal conductivity and high heavy metal density. Despite these benefits, U3Si2 presents an anisotropic crystallographic structure and low solubility of fission products, which can result in undesirable effects under irradiation conditions. In this paper, spark plasma sintering (SPS) of U3Si2 pellets is studied, with evaluation of the resulting microstructure. Additionally, exploiting the short sintering time in SPS, a molybdenum doped pellet was produced to investigate the early stages of the Mo-U3Si2 interaction, and analyze how this fission product is accommodated in the fuel matrix. The results show that pellets of U3Si2 with high density (>95% TD) can be obtained with SPS in the temperature range of 1200°C-1300 °C. Moreover, the short time employed in this technique was found to generate a unique microstructure for this fuel, composed mainly of closed nano-pores (uranium with small quantities of dissolved Si and Mo at the front of the reaction.

  13. Preliminary LEU fuel cycle analyses for the Belgian BR2 reactor

    International Nuclear Information System (INIS)

    Deen, J.R.; Snelgrove, J.L.

    1986-01-01

    Fuel cycle calculations have been performed with reference HEU fuel and LEU fuel using Cd wires or boron as burnable absorbers. The 235 U content in the LEU element has increased 20% to 480g compared to the reference HEU element. The number of fuel plates has remained unchanged while the fuel meat thickness has increased to 0.76 mm from 0.51 mm. The LEU meat density is 5.1 Mg U/m 3 . The reference fuel cycle was a 31 element core operating at 56 MW with a 19.8 day cycle length and eight fresh elements loaded per cycle. Comparable fuel cycle characteristics can be achieved using the proposed LEU fuel element with either Cd wires or boron burnable absorbers. The neutron flux for E/sub n/ > 1 eV changes very little (<5%) in LEU relative to HEU cores. Thermal flux reductions are 5 to 10% in non-fueled positions, and 20 to 30% in fuel elements

  14. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA® Reactor

    International Nuclear Information System (INIS)

    Schickler, R.A.; Marcum, W.R.; Reese, S.R.

    2013-01-01

    Highlights: • The Oregon State TRIGA ® Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA ® Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least-squares technique. The quantification of

  15. Evidence for the presence of U-Mo-Al ternary compounds in the U-Mo/Al interaction layer grown by thermal annealing: a coupled micro X-ray diffraction and micro X-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Palancher, H.; Martin, P.; Nassif, V.

    2007-01-01

    The systematic presence of the ternary phases U 6 Mo 4 Al 43 and UMo 2 Al 20 is reported in a U-Mo/Al interaction layer grown by thermal annealing. This work shows, therefore, the low Mo solubility in UAl 3 and UAl 4 binary phases; it contradicts the hypothesis of the formation of (U,Mo)Al 3 and (U,Mo)Al 4 solid solutions often admitted in the literature. Using μ-XAS (micro X-ray absorption spectroscopy) at the Mo K edge and μ-XRD (micro X-ray diffraction), the heterogeneity of the interaction layer obtained on a γ-U 0.85 Mo 0.15 /Al diffusion couple has been precisely investigated. The UMo 2 Al 20 phase has been identified at the closest location from the Al side. Moreover, μ-XRD mapping performed on an annealed fuel plate enabled the characterization of the four phases resulting from the γ-U 0.85 Mo 0.15 /Al and (U 2 Mo+α-U)/Al interactions. A strong correlation between the concentrations of UAl 4 and UMo 2 Al 20 and those of UAl 3 and U 6 Mo 4 Al 43 has been shown. (orig.)

  16. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin–Shtrikman model due to the theoretical model’s inability to consider the thermal resistance at interfaces between the meat constituents.

  17. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Science.gov (United States)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  18. Improvement of Silicide Coating Method as Diffusion Barrier for U-Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-Mo-Ti alloy powders were coated with silicide layers. The coating process was improved when compared to the previous coating in terms of the ball milling and heat treatment conditions. Subsequently, silicide coated U-Mo-Ti powders and pure aluminum powders were mixed and made into a compact for the annealing test. The compacts were annealed at 550 .deg. C for 2hr, and characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). 1. Uniform, homogeneous, thickness controllable silicide layers were successfully coated on the surface of U-7wt%Mo-1wt%Ti powders. 2. U{sub 3}Si, U{sub 3}Si{sub 2} silicide layers formed on the surface of U-7wt%Mo-1wt%Ti powders, and were identified by XRD and EDS analyses.

  19. Microstructure of HFIR-irradiated 12-Cr 1 MoVW ferritic steel

    International Nuclear Information System (INIS)

    Vitek, J.M.; Klueh, R.L.

    1983-01-01

    As part of the fusion materials development program in the United States, a 12 Cr-1 MoVW ferritic steel was irradiated in the High Flux Isotope Reactor (HFIR) to a damage level of 36 dpa at 300, 400, 500, and 600 0 C. During irradiation in HFIR, a transmutation reaction of nickel results in the production of helium, to a level of 99 at. ppM in the present experiment. The microstructures were evaluated after irradiation and the results are presented. Cavities were found at all temperatures. Small cavities (3 to 9 nm) were observed after irradiation at 300, 500 and 600 0 C. At 500 and 600 0 C, the cavities were found preferentially at dislocations, lath boundaries, and prior austenite grain boundaries. After irradiation at 400 0 C, larger cavities (4 to 30 nm) were observed homogeneously distributed throughout the tempered martensite structure. The maximum swelling was 0.07% after irradiation at 400 0 C. Comparision of the results with other studies in which helium was not present at such high levels indicated helium enhances the swelling of 12 Cr-1 MoVW

  20. Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for Kijang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Man; Tahk, Young Wook; Jeong, Yong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); and others

    2017-08-15

    The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U–Mo fuel. Plate-type U–7 wt.% Mo/Al–5 wt.% Si, referred to as U–7Mo/Al–5Si, dispersion fuel with a uranium loading of 8.0 gU/cm{sup 3}, was selected to achieve higher fuel efficiency and performance than are possible when using U{sub 3}Si{sub 2}/Al dispersion fuel. To qualify the U–Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U–7Mo/Al–5Si dispersion fuel (8 gU/cm{sup 3}), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U–7Mo/Al–5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U–Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U–Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

  1. Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

    Directory of Open Access Journals (Sweden)

    Jong Man Park

    2017-08-01

    Full Text Available The construction project of the Kijang research reactor (KJRR, which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U–Mo fuel. Plate-type U–7 wt.% Mo/Al–5 wt.% Si, referred to as U–7Mo/Al–5Si, dispersion fuel with a uranium loading of 8.0 gU/cm3, was selected to achieve higher fuel efficiency and performance than are possible when using U3Si2/Al dispersion fuel. To qualify the U–Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1], containing U–7Mo/Al–5Si dispersion fuel (8 gU/cm3, were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U–7Mo/Al–5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U–Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U–Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

  2. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U{sub 3}Si{sub 5} mixed layer while U{sub 3}Si{sub 2} acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness.

  3. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    International Nuclear Information System (INIS)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam

    2015-01-01

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U 3 Si 5 mixed layer while U 3 Si 2 acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness

  4. Results of four one-day electron-accelerator irradiations of enriched Mo-100 targets for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, V. [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    A series of four one-day irradiations was conducted with 100Mo-enriched disk targets. After irradiation, the enriched disks were removed from the target and dissolved. The resulting solution was processed using a NorthStar RadioGenix™ 99mTc generator either at Argonne National Laboratory or at the NorthStar Medical Radioisotopes facility. Runs on the RadioGenix system produced inconsistent analytical results for 99mTc in the Tc/Mo solution. These inconsistencies were attributed to the impurities in the solution or improper column packing. During the irradiations, the performance of the optic transitional radiation (OTR) and infrared cameras was tested in high radiation field. The OTR cameras survived all irradiations, while the IR cameras failed every time. The addition of X-ray and neutron shielding improved camera survivability and decreased the number of upsets.

  5. Development of dispersion U(Mo)/Al–Si miniplates fabricated at 500 °C with Al 6061 as cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mirandou, M.I., E-mail: mirandou@cnea.gov.ar [Gerencia Materiales-GAEN-CNEA, Avda. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Aricó, S.F. [Gerencia Materiales-GAEN-CNEA, Avda. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Instituto Sabato UNSAM-CNEA, Avda. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Balart, S.N. [Gerencia Materiales-GAEN-CNEA, Avda. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Fabro, J.O. [Departamento ECRI, Gerencia de Ciclo del Combustible Nuclear, CNEA, Avda. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina)

    2015-02-15

    In the frame of U(Mo) dispersion fuel elements qualification, Si additions to Al matrix arose as a promising solution to the unacceptable failures found when pure Al is used. Analysis of as-fabricated fuel plates made with Al–Si matrices demonstrated that good irradiation behavior is correlated with the formation during fabrication of a Si-containing interaction layer around the U(Mo) particles. Thus, the analysis of the influence of fabrication parameters becomes important. Studies on Al–Si dispersion miniplates fabricated in CNEA, Argentina, have been initiated to determine how to obtain the better interaction layer characteristics with the lesser modifications to the fabrication process and the smaller amount of Si in the matrix. In this work results for miniplates made of atomized U–7 wt%Mo particles dispersed in Al–2 wt%Si and Al–4 wt%Si matrices, obtained by mixing pure Al and Si powders, and Al 6061 as cladding are presented. Interaction layer grown during fabrication process (500 °C) consists of Si-containing phases being U(Al, Si){sub 3} its principal component. Its uniformity is not satisfactory due to the formation of an oxide layer.

  6. SHI induced irradiation effect on Mo/Si interface

    International Nuclear Information System (INIS)

    Agarwal, Garima; Agarwal, Shivani; Jain, Rajkumar; Lal, Chhagan; Jain, I.P.; Kabiraj, D.; Pandey, Akhilesh

    2006-01-01

    Present parametric study investigates the characteristics of SHI induced mixed molybdenum silicide film with various ion fluences. The deposition of molybdenum thin films onto the Silicon substrate was performed using e-beam evaporation, while the heavy Au ion irradiation with energy 120 MeV was subsequently applied to form molybdenum silicide. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) for the identification of phase formation at the interface. Formation of t-Mo 5 Si 3 mixed molybdenum silicide was observed on increasing the ion irradiation fluences. (author)

  7. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  8. Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae-Won; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been

  9. Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity

    International Nuclear Information System (INIS)

    Cho, Tae-Won; Sohn, Dong-Seong

    2014-01-01

    The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been

  10. Internal friction measurements of Mo after low-temperature proton irradiation

    International Nuclear Information System (INIS)

    Tanimoto, H.; Mizubayashi, H.; Masuda, R.; Okuda, S.; Tagishi, Y.

    1992-01-01

    Internal friction measurements are performed in Mo after 20 MeV proton irradiation in order to clarify the behavior of self-interstitial atoms (SIA's) in Mo. In the low dose range, strong dislocation pinning suggesting the free migration of defects is observed at about 40 K and weak pinning at about 25 K. The features are very similar to those reported after neutron irradiation except that the 25 K pinning is much smaller after proton irradiation. The result suggests that the migration of free SIA's is responsible for the 40 K pinning and that of SIA-defect clusters, probably di-SIA's, formed during irradiation for the 25 K pinning. In the high dose range, the relaxation peaks are observed at about 13 and 41 K, where the close similarities are found between the present peaks and the corresponding peaks reported after neutron irradiation except that the peak height of the 41 K peak per unit concentration of Frenkel pairs (FP) tends to increase strongly with decreasing dose here. The latter fact suggests the strong interaction between SIA's. Then the smallness of the 41 K peak reported after electron irradiation with very high dose could be explained by an increased interaction between SIA's, but not by the two-dimensional migration of SIA's as proposed by Jacques and Robrock. Deformation given prior to irradiation causes a drastic decrease in the modulus defects associated with FP's (so-called bulk effect) and in the 13 K peak height. After neutron irradiation, no such effect of deformation was reported. A possible origin for this difference is discussed. (orig.)

  11. PIE Report on the KOMO-3 Irradiation Test Fuels

    International Nuclear Information System (INIS)

    Park, Jong Man; Ryu, H. J.; Yang, J. H.

    2009-04-01

    In the KOMO-3, in-reactor irradiation test had been performed for 12 kinds of dispersed U-Mo fuel rods, a multi wire fuel rod and a tube fuel rod. In this report we described the PIE results on the KOMO-3 irradiation test fuels. The interaction layer thickness between fuel particle and matrix could be reduced by using a large size U-Mo fuel particle or introducing Al-Si matrix or adding the third element in the U-Mo particle. Monolithic fuel rod of multi-wire or tube fuel was also effective in reducing the interaction layer thickness

  12. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  13. Structural instability and ground state of the U_2Mo compound

    International Nuclear Information System (INIS)

    Losada, E.L.; Garcés, J.E.

    2015-01-01

    This work reports on the structural instability at T = 0 °K of the U_2Mo compound in the C11_b structure under the distortion related to the C_6_6 elastic constant. The electronic properties of U_2Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11_b structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D_6 distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U_2Mo due to the D_6 distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U_2Mo compound is not the assumed C11_b structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U_2Mo compound.

  14. Update on Fresh Fuel Characterization of U-Mo Alloys

    International Nuclear Information System (INIS)

    Burkes, D.E.; Wachs, D.M.; Keiser, D.D.; Okuniewski, M.A.; Jue, J.F.; Rice, F.J.; Prabhakaran, R.

    2009-01-01

    The need to provide more accurate property information on U-Mo fuel alloys to operators, modellers, researchers, fabricators, and government increases as success of the GTRI Reactor Convert program continues. This presentation provides an update on fresh fuel characterization activities that have occurred at the INL since the RERTR 2008 conference in Washington, D.C. The update is particularly focused on properties recently obtained and on the development progress of new measurement techniques. Furthermore, areas where useful and necessary information is still lacking is discussed. The update deals with mechanical, physical, and microstructural properties for both integrated and separate effects. Appropriate discussion of fabrication characteristics, impurities, thermodynamic response, and effects on the topic areas are provided, along with a background on the characterization techniques used and developed to obtain the information. Efforts to measure similar characteristics on irradiated fuel plates are discussed.

  15. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  16. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  17. Computational and experimental analysis of causes for local deformation of research reactor U-Mo fuel pin claddings in case of high burn-ups

    International Nuclear Information System (INIS)

    Popov, V.V.; Khmelevsky, M.Ya.; Lukichev, V.A.; Golosov, O.A.

    2005-01-01

    Post-reactor investigations of (U-Mo) fuel pins irradiated in the IVV-2M reactor have allowed to determine: the change in a fuel pin volume; the dimensions and the kind of the local deformation of fuel pin claddings; the amount of gases released under the cladding from the fuel composition, the thickness and appearance of the interaction layer of between the (U-Mo) particles and aluminium as a matrix material. The computational analysis of the stressed-strained state of fuel pins has shown that the major contribution to the increase of the fuel pin volume is made by the fuel swelling caused by the solid products of fission being formed in the process of operation. The emergence of the (U-Mo) fuel-aluminium matrix interaction layers around the (U-Mo) particles results in formation and evolution of lamination cavities inside the fuel composition under the joint action of the pressure of process gases and gaseous fission products. In case of high burn-up a local bulge of a fuel pin cladding is being formed in the fuel lamination area caused by the pressure of gases in the presence of creep in the fuel pin cladding material. The computational results relating to the local strain in a research reactor (U-Mo) fuel pin are in a good accordance with the results of the post-reactor investigations. (author)

  18. Installation for the Mo-99 production from fission products

    International Nuclear Information System (INIS)

    Marques, R.O.; Cristini, P.R.; Marziale, D.P.; Furnari, E.S.; Fernandez, H.O.

    1988-01-01

    The installation to produce Mo-99 from nuclear fission started going on August 12th 1985 in Ezeiza Atomic Center. The characteristics of the process, the emplacement of the power plant, target, and irradiation conditions are presented. The targets are plates with a nucleus of Al/U alloy, with U-235 enriched to 90 % covered by Al plates. Each plate consists of about 1.10 -3 Kg of U-235 and 13.10 -3 Kg of Al. The plates are irradiated with a 3.10 13 n cm -2 s -1 flux during five days in the RA-3 nucleus. The Mo-99 separation method, is presented, where it is foreseen te I-131 separation. An account of the treatment of solid, liquid and gaseous waste is provided. An equipment to transfer the filter precipitate was designed in order to recover the U. The installation to continue the U recovery process, to separate I-131 and Xe-133 and to incorporate a Mo-99 purification stage for sublimation is being extended. (M.E.L.) [es

  19. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-01-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 deg. C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 deg. C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%

  20. Development of 99Mo/99mTc Generator System for Production of Medical Radionuclide 99mTc using a Neutron-activated 99Mo and Zirconium Based Material (ZBM as its Adsorbent

    Directory of Open Access Journals (Sweden)

    I. Saptiama

    2016-12-01

    Full Text Available Molybdenum produced from fission of U-235 is the most desirable precursor for 99Mo/99mTc generator system as it is non-carrier added and has high specific activity. However, in the last decade there has been short supply of 99Mo due to several constrains. Therefore, there have been many works performed for development of 99Mo/99mTc generator system using 99Mo which is not produced from either LEU or HEU. This report deals with development of 99Mo/99mTc generator system where zirconium-based material (ZBM is used as adsorbent of neutron-activated 99Mo. The system was prepared by firstly irradiating natural Mo in the G. A. Siwabessy reactor to produce neutron-activated 99Mo. The target was dissolved in NaOH 4N and then neutralized with 12 M HCl. The 99Mo solution was then mixed with a certain amount of ZBM followed by heating at 90°C for three hours to allow the 99Mo adsorbed on ZBM. The 99Mo-ZBM (9.36 GBq of 99Mo was Mo/ 4.2 g ZBM was packed on a fritz-glass column. This column was then fitted serially with an alumina column for trapping 99Mo breakthrough. The columns were then eluted daily with saline solution for up to one week. The yield of 99mTc was found to be between 53.7 – 74% (n= 5. All 99mTc eluates were clear solutions with pH of 5. Breakthrough of 99Mo in 99mTc eluates was found to be 0.031 ± 0.019 μCi 99Mo/ mCi 99mTc (n= 5 which was less than the maximum activity of 99Mo allowed in 99mTc solution ( 99%. Radiolabeling of this 99mTc towards methylene diphosphonate (MDP kit gave a radiolabelling efficiency of 99%. In summary, a new 99Mo/99mTc generator system that used neutron-activated 99Mo and ZBM as its adsorbent has been successfully prepared. The 99mTc produced from this new 99Mo/99mTc generator system attained the quality of 99mTc required for medical purposes.

  1. Separation and purification of 99Mo from uranium and fission products using Cintichem process, our experience

    International Nuclear Information System (INIS)

    Manolkar, R.B.; Mathakar, A.R.; Kumar, Yogendra; Kumar, Manoj; Dash, A.; Venkatesh, Meera; Pillai, K.T.; Singh, Sarbjit; Venugopal, V.

    2009-01-01

    A pilot study was carried out to assess the feasibility of producing 99 Mo by fission of Unat following the Cintichem method. U-Mo alloy was irradiated for one week at Dhruva reactor and processed for the separation of 99 Mo from fission products. The irradiated targets were chemically processed to separate and purify the 99 Mo. Recovery of ∼70% and the purity of 99 Mo was > 99%. (author)

  2. A survey of the mechanical properties of uranium alloys U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, G.

    1969-04-15

    In a continuing program on the development of soft and ductile uranium alloys for armament applications, two compositions were studied. These gamma extruded uranium alloys were U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%. This study was carried out to determine the influence of tempering heat treatments associated with extrusion on the ductility of these uranium alloys. The mechanical properties of both alloys were measured in the extruded condition, in the extruded and annealed condition and in the quenched and tempered condition. A maximum elongation of 13.7% in tension with a low amount of work hardening was obtained for the U-3Mo-3Nb wt.% alloy after 1 1/2 hours anneal at 1200 deg F (650 deg C) followed by a rapid cooling in water at 70 deg F (21 deg C). A maximum elongation of 17.3% with a large amount of work hardening was obtained for alloy U-5Mo-3Nb wt.% after vacuum annealing, normalizing, gamma phase solubilizing at 1500 deg F (815 deg C) and quenching in water at 700 deg F (210 deg C). The maximum ductility achieved in these two alloys by our approaches is low compared with the ductility of Armco Iron employed for the same applications in the field of ballistics.

  3. Modeling of the behavior under fuel dispersed irradiation of U-Mo with aluminum matrix from the thermal point of view and its interrelationship with the interdiffusion phase fuel / matrix

    International Nuclear Information System (INIS)

    Moscarda, Maria V.; Taboada, Horacio H.; Rest, J.

    2009-01-01

    Results from postirradiation examinations of U-Mo / Al dispersion fuels plates denotes a strong interrelation and feedback between the fuel-matrix interaction and the fuel temperature, bringing undesired consequences on the total swelling and behavior under irradiation. The present work approaches this problem, modeling the profile of temperatures moment by moment to be able to evaluate the increase of this interaction. The Fast Dart program is used, optimized version of program Dart, developed by Dr. J. Rest in collaboration with Dr. H. Taboada. A subroutine of thermal calculation was implemented in this code, which allowed to calculate the evolution of the interaction between the fuel and the matrix. The results of simulations are compared with the results of postirradiation examinations realized by the Reduced Enrichment for Research and Test Reactors International Program. In particular, a good adjustment in the calculation of the depth of interdiffusion U-Mo/Al is observed, demonstrating a right estimation of the profile of temperatures on the fuel plate. It is considered necessary the inclusion of a model that describes the phases that form in the zone of interaction, denoting its thermal dependency and effects due to the radiation damage. (author)

  4. An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions

    International Nuclear Information System (INIS)

    Naik, H.; Goswami, A.; Suryanarayana, S.V.; Jagadeesan, K.C.; Thakare, S.V.; Joshi, P.V.; Nimje, V.T.; Mittal, K.C.; Venugopal, V.; Kailas, S.

    2013-01-01

    The radionuclide 99 Mo, which has a half-life of 65.94 h was produced from 238 U(γ, f) and 100 Mo(γ, n) reactions using a 10 MeV electron linac at EBC, Kharghar Navi-Mumbai, India. This has been investigated since the daughter product 99m Tc is very important from a medical point of view and can be produced in a generator from the parent 99 Mo. The activity of 99 Mo was analyzed by a γ-ray spectrometric technique using a HPGe detector. From the detected γ-rays activity of 140.5 and 739.8 keV, the amount of 99 Mo produced was determined. For comparison, the amount of 99 Mo from 238 U(γ, f) and 100 Mo(γ, n) reactions was also estimated using the experimental photon flux from 197 Au(γ, n) 196 Au reaction. The amount of 99 Mo from the detected γ-lines is in agreement with the estimated value for 238 U(γ, f) and 100 Mo(γ, n) reactions. The production of 99 Mo activity from 238 U(γ, f) and 100 Mo(γ, n) reactions is a relevant and novel approach, which provides alternative routes to 235,238 U(n, f) and 98 Mo(n, γ) reactions, circumventing the need for a reactor. The viability and practicality of the 99 Mo production from the 238 U(γ, f) and 100 Mo(γ, n) reactions alternative to 235,238 U(n, f) and 98 Mo(n, γ) reactions has been emphasize. An estimate has been also arrived based on the experimental data of present work to fulfill the requirement of DOE. (author)

  5. Interdiffusion between U-Zr-Mo and stainless steel cladding

    International Nuclear Information System (INIS)

    Hwang, J. Y.; Lee, B. S.; Lee, J. T.; Kang, Y. H.

    1998-01-01

    Interdiffusion investigations were carried out at 700 deg C for 200 hours for the diffusion couples assembled with the U-Zr-Mo ternary fuel versus austenitic stainless steel D9 and the U-Zr-Mo ternary fuel versus martensitic stainless steel HT9 respectively to investigate the fuel-cladding compatibility. SEM-EDS analysis was utilized to determine the composition and the penetration depths of the reaction layers. In the case of Fuel/D9 couple, (Fe, Cr, Ni) of the cladding elements formed the precipitates with the Zr, Mo and diminished the U concentration upto 800μ length from the fuel side. Composition of the precipitates was varied with the penetrated elements. In Fuel/HT9 couple, reaction layer was smaller than that of D9 couples and was less affected by cladding elements. The eutectic reaction appeared partially in the Fuel/HT9 diffusion couple

  6. Fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1984-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors

  7. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    Science.gov (United States)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  8. Status and progress of the RERTR program in the year 2002

    International Nuclear Information System (INIS)

    Travelli, Armando

    2002-01-01

    Following the cancellation of the 2001 International RERTR Meeting, which had been planned to occur in Bali, Indonesia, this paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the years 2001 and 2002, and discusses the main activities planned for the year 2003. The past two years have been characterized by very important achievements of the RERTR program, but these technical achievements have been overshadowed by the terrible events of September 11, 2001. Those events have caused the U.S. Government to reevaluate the importance and urgency of the RERTR program goals. A recommendation made at the highest levels of the government calls for an immediate acceleration of the program activities, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The RERTR program has prepared and submitted to the Department of Energy a plan and a schedule to achieve this goal. The plan makes full use of two very important technical developments that have occurred within the program during the past two years: - Excellent results have been obtained from the irradiation of miniplates containing monolithic LEU U-Mo fuel with uranium density of 15.6 g/cm 3 . If an economically viable manner of fabricating monolithic LEU U-Mo fuel elements is developed, and if the preliminary irradiation tests are confirmed, this fuel holds the promise of enabling LEU operation of all existing and future research reactors in combination with unprecedented performance. - The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of most Russian-designed research and test reactors. The plan is structured to achieve LEU

  9. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 g U/cm 3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼63% 235 U burnup). (author)

  10. LEU fuel fabrication program for the RECH-1 reactor. Status report

    International Nuclear Information System (INIS)

    Chavez, J.C.; Barrera, M.; Jimenez, O.; Lisboa, J.; Marin, J.

    2000-01-01

    In 1995 a 50 LEU U 3 Si 2 fuel elements fabrication program for the RECH-1 research reactor was established at the Comision Chilena de Energia Nuclear, CCHEN. After a fabrication process qualification stage, in 1998, four elements were early delivered to the reactor in order to start an irradiation qualification stage. The irradiation has reached an estimated 10% burn-up and no fabrication problems have been detected up to this burn-up level. During 1999 and up to the first quarter of 2000, 19 fuel elements were produced and 7 fuel elements are expected for the end of 2000. This report presents an updated summary of the main results obtained in this fuel fabrication program. A summary of other activities generated by this program, such as in core follow-up of the four leader fuel elements, ISO 9001 implementation for the fabrication process and a fabrication and qualification optimization planning, is also presented here. (author)

  11. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  12. Effects of the shape of the foil corners on the irradiation performance of U10Mo alloy based monolithic mini-plates

    Energy Technology Data Exchange (ETDEWEB)

    Ozaltun, Hakan [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory

    2015-06-01

    Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.

  13. Advances and highlights of the CNEA qualification program as high density fuel manufacturer for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [Unidad de Actividad Combustibles Nucleares Comision Nacional de Energia Atomica (CNE4), Avda. del Libertador, 8250 C1429BNO Buenos Aires (Argentina)

    2002-07-01

    One of the main objectives of CNEA regarding the fuel for research reactors is the development and qualification of the manufacturing of LEU high-density fuels. The qualification programs for both types of fuels, Silicide fuel and U- x Mo fuel, are similar. They include the following activities: development and set up of the fissile compound manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of mini plates and plates, design and fabrication of fuel assembly prototypes for irradiation, post-irradiation examination and feedback for manufacturing improvements. This paper describes the different activities performed within each program during the last year and the main advances and achievements of the programs within this period. The main achievements may be summarized in the following activities: Continuation of the irradiation of the first silicide fuel element in the R A3. Completion of the manufacturing of the second silicide fuel element, licensing and beginning of its irradiation in the R A3. Development of the HMD Process to manufacture U-Mo powder (pUMA project). Set up of fuel plates manufacturing at industrial level using U-Mo powder. Preliminary studies and the design for the irradiation of mini plates, plates and full scale fuel elements with U-Mo and 7 g U/cm{sup 3}. PIE destructive studies for the P-04 silicide fuel prototype (accurate burnup determination through chemical analysis, metallography and SEM of samples from the irradiated fuel plates). Improvement and development of new characterization techniques for high density fuel plates quality control including US testing and densitometric analysis of X-ray examinations. The results obtained in this period are encouraging and also allow to foresee a wider participation of CNEA in the international effort to qualify U-Mo as a new material for the manufacturing of research reactor fuels. (author)

  14. Advances and highlights of the CNEA qualification program as high density fuel manufacturer for research reactors

    International Nuclear Information System (INIS)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H.

    2002-01-01

    One of the main objectives of CNEA regarding the fuel for research reactors is the development and qualification of the manufacturing of LEU high-density fuels. The qualification programs for both types of fuels, Silicide fuel and U- x Mo fuel, are similar. They include the following activities: development and set up of the fissile compound manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of mini plates and plates, design and fabrication of fuel assembly prototypes for irradiation, post-irradiation examination and feedback for manufacturing improvements. This paper describes the different activities performed within each program during the last year and the main advances and achievements of the programs within this period. The main achievements may be summarized in the following activities: Continuation of the irradiation of the first silicide fuel element in the R A3. Completion of the manufacturing of the second silicide fuel element, licensing and beginning of its irradiation in the R A3. Development of the HMD Process to manufacture U-Mo powder (pUMA project). Set up of fuel plates manufacturing at industrial level using U-Mo powder. Preliminary studies and the design for the irradiation of mini plates, plates and full scale fuel elements with U-Mo and 7 g U/cm 3 . PIE destructive studies for the P-04 silicide fuel prototype (accurate burnup determination through chemical analysis, metallography and SEM of samples from the irradiated fuel plates). Improvement and development of new characterization techniques for high density fuel plates quality control including US testing and densitometric analysis of X-ray examinations. The results obtained in this period are encouraging and also allow to foresee a wider participation of CNEA in the international effort to qualify U-Mo as a new material for the manufacturing of research reactor fuels. (author)

  15. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  16. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  17. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  18. Mechanical properties of Mo and TZM alloy neutron-irradiated at high temperatures

    International Nuclear Information System (INIS)

    Ueda, Kazukiyo; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori

    1997-01-01

    This work reports the mechanical properties of irradiated molybdenum (Mo) and its alloy, TZM. Recrystallized and stress-relieved specimens were irradiated at five temperatures between 373 and 800degC in FFTF/MOTA to fluence levels of 6.8 to 34 dpa. Irradiation embrittlement and hardening were evaluated by three-point bend test and Vickers hardness test, respectively. Stress-relieved materials showed the enough ductility even after high fluence irradiation. The role of layered structure of stress-relieved specimen was discussed. (author)

  19. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  20. ANL progress on the cooperation with CNEA for the MO-99 production: Base-side digestion process

    International Nuclear Information System (INIS)

    Gelis, A.V.; Quigley, K.J.; Aase, S.B.; Bakel, A.J.; Leyva, A.; Regalbuto, M.C.; Vandergrift, G.F.

    2005-01-01

    Conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) targets for the Mo-99 production requires certain modifications of the target design, the digestion and the purification processes. ANL and the Argentine Comision Nacional de Energia Atomica (CNEA) are collaborating to overcome all the concerns caused by the conversion of the CNEA process to use LEU foil targets. A new digester with stirring system has been successfully applied for the digestion of the low burn-up U foil targets in KMnO 4 alkaline media. In this paper, we report the progress on the development of the digestion procedure utilizing effective stirring and focusing on minimization of the liquid radioactive waste. (author)

  1. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA{sup ®} Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schickler, R.A., E-mail: robert.schickler@oregonstate.edu; Marcum, W.R., E-mail: wade.marcum@oregonstate.edu; Reese, S.R.

    2013-09-15

    Highlights: • The Oregon State TRIGA{sup ®} Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA{sup ®} Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least

  2. Neutronic analysis for conversion of the Ghana Research Reactor-1 facility using Monte Carlo methods and UO{sub 2} LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Akaho, E.H.K.; Maakuu, B.T.; Gbadago, J.K. [Ghana Research Reactor-1 Centre, Dept. of Nuclear Engineering and Materials Science, National Nuclear Research Institute, Ghana Atomic Energy Commission, Legon, Accra (Ghana); Andam, A. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Physics (Ghana); Liaw, J.J.R.; Matos, J.E. [Argonne National Lab., RERTR Programme, Div. of Nuclear Engineering (United States)

    2007-07-01

    Monte Carlo particle transport methods and software (MCNP) have been applied to the modelling, simulation and neutronic analysis for the conversion of the HEU-fuelled (high enrichment uranium) core of the Ghana Research Reactor-1 (GHARR-1) facility. The results show that the MCNP model of the GHARR-1 facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR) is good as the simulated neutronic and other reactor physics parameters agree with very well with experimental and zero power results. Three UO{sub 2} LEU (low enrichment uranium) fuels with different enrichments (12.6% and 19.75%), core configurations, core loadings were utilized in the conversion studies. The nuclear criticality and kinetic parameters obtained from the Monte Carlo simulation and neutronic analysis using three UO{sub 2} LEU fuels are in close agreement with results obtained for the reference 90.2% U-Al HEU core. The neutron flux variation in the core, fission chamber and irradiation channels for the LEU UO{sub 2} fuels show the same trend as the HEU core as presented in the paper. The Monte Carlo model confirms a reduction (8% max) in the peak neutron fluxes simulated in the irradiation channels which are utilized for experimental and commercial activities. However, the reductions or 'losses' in the flux levels neither affects the criticality safety, reactor operations and safety nor utilization of the reactor. Employing careful core loading optimization techniques and fuel loadings and enrichment, it is possible to eliminate the apparent reductions or 'losses' in the neutron fluxes as suggested in this paper. Concerning neutronics, it can be concluded that all the 3 LEU fuels qualify as LEU candidates for core conversion of the GHARR-1 facility.

  3. Study on microstructure change of Uranium nitride coated U-7wt%Mo powder by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Hyoung; Park, Jae Soon; Lee, Hae In; Kim, Woo Jeong; Yang, Jae Ho; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium-molybdenum alloy particle dispersion fuel in an aluminum matrix with a high uranium density has been developed for a high performance research reactor in the RERTR program. In order to retard the fuel-matrix interaction in U-Mo/Al dispersion fuel in which the U-Mo fuel particles were dispersed in Al matrix, nitride layer coated U-Mo fuel particle has been designed and techniques to fabricate nitride-layer coated U-7wt%Mo particles have been developed in our lab. In this study, uranium nitride coated U-Mo particle has heat treatment for several times and degree. And we suggested for interaction layer remedy in U-Mo dispersion fuel. We investigate effect of heat treatment interaction layer evolution on uranium nitride coated U-Mo powder. The EDS and XRD analysis to investigate the phase evolution in uranium nitride coated layer is also a part of the present work

  4. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U-10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U-10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U-10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  5. Neutronic analysis for core conversion (HEU–LEU of the low power research reactor using the MCNP4C code

    Directory of Open Access Journals (Sweden)

    Aldawahra Saadou

    2015-06-01

    Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.

  6. A fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1985-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  7. A fuel cycle cost study with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    Fuel cycle costs are compared for a range of {sup 235}U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  8. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, New York (United States)

    2007-07-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat.

  9. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan; Kim, Yeon Soo

    2007-01-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat

  10. SEM Characterization of the High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Jian Gan; Brandon Miller; Adam Robinson; Pavel Medvedev; James Madden; Dan Wachs; M. Teague

    2014-04-01

    During irradiation, the microstructure of U-7Mo evolves until at a fission density near 5x1021 f/cm3 a high-burnup microstructure exists that is very different than what was observed at lower fission densities. This microstructure is dominated by randomly distributed, relatively large, homogeneous fission gas bubbles. The bubble superlattice has collapsed in many microstructural regions, and the fuel grain sizes, in many areas, become sub-micron in diameter with both amorphous fuel and crystalline fuel present. Solid fission product precipitates can be found inside the fission gas bubbles. To generate more information about the characteristics of the high-fission density microstructure, three samples irradiated in the RERTR-7 experiment have been characterized using a scanning electron microscope equipped with a focused ion beam. The FIB was used to generate samples for SEM imaging and to perform 3D reconstruction of the microstructure, which can be used to look for evidence of possible fission gas bubble interlinkage.

  11. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼ 63% 235 U burnup)

  12. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys

    International Nuclear Information System (INIS)

    Boucher, R.; Barthelemy, P.

    1964-01-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [fr

  13. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  14. Separation of fission 99Mo by alpha-benzoin oxime precipitation in nitric medium

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Freitas, Antonio A.; Egute, Nayara dos S.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Since 2009, the production of generators 99 Mo/ 99 mTc suffers a crisis of global supply due to technical problems of the two reactors which account for 64% of world production of fission 99 Mo. By the project of Brazilian Multipurpose Reactor (RMB), the Brazilian government invests in the construction of the first multipurpose reactor suitable for the domestic production of 99 Mo from LEU targets in order to supply of fission 99 Mo in the coming decades. The IPEN started the research of the technology and production of fission 99 Mo from acid and alkaline dissolutions of Low Enriched Uranium (LEU) targets as well as other used radioisotopes in nuclear medicine. This work is part of the research of the technology of the fission 99 Mo from acid dissolution of the LEU targets that is being developed at the IPEN. In this study the separation of the Mo by precipitation with alpha-benzoin oxime in nitric medium and the recovery by dissolution were investigated. The precipitation studies were performed by batch assays with nitric solution of Mo(VI), containing 99 Mo tracer, and uranyl ions. Influence of concentration of permanganate from 0.03 to 2.5%, dissolution temperature at 30 deg C and 150 deg C and the uranium concentration from 74 g.L -1 to 115 g.L -1 was studied. Results indicated that the precipitation of Mo with alpha-benzoin oxime from nitric medium is highly efficient, and its recovery by dissolution with basic solution of H 2 O 2 gave a high yield. (author)

  15. Study on characterization of interaction layer between U-10wt%Mo alloy and LT24Al

    International Nuclear Information System (INIS)

    Chen Jiangang; Yin Changgeng; Sun Changlong; Pang Xiaoxuan; Liu Yunming

    2009-01-01

    The characterization of interaction layer(IL) between U-10wt%Mo alloy and LT24 Al was studied in detail in this paper. Sandwich structured U-Mo/LT24 Al diffusion couples were hot pressed at different temperature and pressure for different time. Then they were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM) to observe the width of the IL. The distribution of the diffusion elements and the phases in the IL were determined by Energy Dispersive Spectroscopy (EDS) and X Ray Diffraction (XRD). Analysis results are as follows: the diffusion manner was reaction diffusion, and diffusion direction mainly was that Al atoms diffused to U-Mo alloy; diffusion mechanism was vacancy diffusion and growth kinetics showed reaction was controlled by the diffusion speed; the IL containing single phase was constituted mainly by (U, Mo) Al 3 ; the IL containing two phases or more was constituted mainly by (U, Mo) Al 3 and (U, Mo) Al 4 and Al 20 Mo 2 U; and Si impurity in the LT24 Al was easy to enrich in the IL which showed Si added to Al could play positive role on improve compatibility between U-Mo and Al. (authors)

  16. Modeling solute segregation during the solidification of γ-phase U-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.A., E-mail: mas4cw@virginia.edu [University of Virginia, Material Science and Engineering, 395 McCormick Rd, Charlottesville, VA 22904 (United States); Garlea, E. [Y-12 National Security Complex, Oak Ridge, TN 37831 (United States); Agnew, S.R. [University of Virginia, Material Science and Engineering, 395 McCormick Rd, Charlottesville, VA 22904 (United States)

    2016-06-15

    Using first principles calculations, it is demonstrated that solute segregation during U-Mo solidification can be modeled using the classic Brody-Fleming limited diffusion framework. The necessary supporting equations specific to the U-Mo alloy, along with careful verification of the assumptions underpinning the Brody-Fleming model are developed, allowing for concentration profile predictions as a function of alloy composition and cooling rate. The resulting model is compared to experimental solute concentration profiles, showing excellent agreement. Combined with complementary modeling of dendritic feature sizes, the solute segregation model can be used to predict the complete microstructural state of individual U-Mo volume elements based upon cooling rates, informing ideal processing routes.

  17. Neutronic performance of a 14 MW TRIGA reactor: LEU vs HEU fuel

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.; Cornella, R.J.

    1983-01-01

    A primary objective of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is to develop means for replacing, wherever possible, currently used highly-enriched uranium (HEU) fuel ( 235 U enrichment > 90%) with low-enriched uranium (LEU) fuel ( 235 U enrichment < 20%) without significantly degrading the performance of research and test reactors. The General Atomic Company has developed a low-enriched but high uranium content Er-U-ZrH/sub 1.6/ fuel to enable the conversion of TRIGA reactors (and others) from HEU to LEU. One possible application is to the water-moderated 14 MW TRIGA Steady State Reactor (SSR) at the Romanian Institute for Nuclear Power Reactors. The work reported here was undertaken for the purpose of comparing the neutronic performance of the SSR for HEU fuel with that for LEU fuel. In order to make these relative comparisons as valid as possible, identical methods and models were used for the neutronic calculations

  18. Alternative Crucibles for U-Mo Microwave Melting

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Brent W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-31

    The crucibles used currently for microwave melting of U-Mo alloy at the Y-12 Complex contain silicon carbide (SiC) in a mullite (3Al2O3-2SiO2) matrix with an erbia coating in contact with the melt. Due to observed silicon contamination, Pacific Northwest National Laboratory has investigated alternative crucible materials that are susceptible to microwave radiation and are chemically compatible with molten U-Mo at 1400 1500C. Recommended crucibles for further testing are: 1) high-purity alumina (Al2O3); 2) yttria-stabilized zirconia (ZrO2); 3) a composite of alumina and yttria-stabilized zirconia; 4) aluminum nitride (AlN). Only AlN does not require an erbia coating. The recommended secondary susceptor, for heating at low temperature, is SiC in a “picket fence” arrangement.

  19. HEU and LEU MTR fuel elements as target materials for the production of fission molybdenum

    International Nuclear Information System (INIS)

    Sameh, A.A.; Bertram-Berg, A.

    1993-01-01

    The processing of irradiated MTR-fuels for the production of fission nuclides for nuclear medicine presents a significantly increasing task in the field of chemical separation technology of high activity levels. By far the most required product is MO-99, the mother nuclide of Tc-99m which is used in over 90% of the organ function tests in nuclear medicine. Because of the short half life of Mo-99 (66 h) the separation has to be carried out from shortly cooled neutron irradiated U-targets. The needed product purity, the extremely high radiation level, the presence of fission gases like xenon-133 and of volatile toxic isotopes such as iodine-131 and its compounds in kCi-scale require a sophisticated process technology

  20. Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to {approx}19.5 dpa at 365{degrees}C and to {approx}100 dpa at 420{degrees}C in the Fast Flux Test Facility (FFTF). In previous work, the same materials were irradiated to 4-5 dpa at 365{degrees}C and 35-36 dpa at 420{degrees}C in FFTF. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, had a significant effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties.

  1. Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.

    1997-01-01

    Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to ∼19.5 dpa at 365 degrees C and to ∼100 dpa at 420 degrees C in the Fast Flux Test Facility (FFTF). In previous work, the same materials were irradiated to 4-5 dpa at 365 degrees C and 35-36 dpa at 420 degrees C in FFTF. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, had a significant effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties

  2. Waste Management Strategies for Production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-31

    Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Program for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.

  3. The RERTR [Reduced Enrichment Research and Test Reactor] program: A progress report

    International Nuclear Information System (INIS)

    Travelli, A.

    1986-11-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1985, the activities, results, and new developments which occurred in 1986 are reviewed. The second miniplate series, concentrating on U 3 Si 2 -Al and U 3 Si-Al fuels, was expanded and its irradiation continued. Postirradiation examinations of several of these miniplates and of six previously irradiated U 3 Si 2 -Al full-size elements were completed with excellent results. The whole-core ORR demonstration with U 3 Si 2 -Al fuel at 4.8 g U/cm 3 is well under way and due for completion before the end of 1987. DOE removed an important barrier to conversions by announcing that the new LEU fuels will be accepted for reprocessing. New DOE prices for enrichment and reprocessing services were calculated to have minimal effect on HEU reactors, and to reduce by about 8 to 10% the total fuel cycle costs of LEU reactors. New program activities include preliminary feasibility studies of LEU use in DOE reactors, evaluation of the feasibility to use LEU targets for the production of fission-product 99 Mo, and responsibility for coordinating safety evaluations related to LEU conversions of US university reactors, as required by NRC. Achievement of the final program goals is projected for 1990. This progress could not have been achieved without close international cooperation, whose continuation and intensification are essential to the achievement of the ultimate goals of the RERTR Program

  4. SMOPY, a new NDA tool for safeguards of LEU and MOX spent fuel

    International Nuclear Information System (INIS)

    Lebrun, A.; Merelli, M.; Szabo, J.-L.; Huver, M.; Arenas-Carrasco, J.

    2001-01-01

    Upon IAEA request, the French support program to IAEA Safeguards has developed a new device for control of the irradiated LEU and MOX fuels. The Safeguards Mox Python (SMOPY) is the achievement of a 4 years R and D program supported by CEA and COGEMA in partnership with Eurisys Mesures. The SMOPY system is based on the combination of 2 NDA techniques (passive neutron and room temperature gamma spectrometry) and on line interpretation tools (automatic gamma spectrum interpretation, depletion code EVO). Through the measurement managing software, all this contributes to the fully automatic measurement, interpretation and characterization of any kind of spent fuel. The device is transportable (50 kg, 60 cm) and is composed of four parts: 1. the measurement head with one high efficiency fission chamber and a micro room temperature gamma spectrometric probe; 2. the carrier which carries the measurement head. The carrier bottom fits the racks for accurate positioning and its top fits operator's fuel moving tool; 3. the portable electronic cabinet which includes both neutron and gamma electronic cards; 4. the portable PC which gets inspectors data, controls the measurement, get measured values, interprets them and immediately provides the inspector with worthwhile info for appropriate on the field decisions. Main features of SMOPY are: Discrimination of MOX versus LEU irradiated fuels in any case (conservative case is one cycle MOX versus three cycles LEU after short cooling time); Full characterization of irradiated LEU (burnup, cooling time, Pu amounts ...); Partial Defect Test on LEU fuels. A first version of SMOPY has been tested in industrial condition during summer 2000. This tests shown a need of shielding improvement around the gamma detector. A new version has been build a will be qualified during a new field test and then the system will be ready for routine operation in IAEA and commercial delivery. After giving details about the system itself, this paper

  5. Development of U6Fe-Al dispersions for the use of LEU in research and test reactors

    International Nuclear Information System (INIS)

    Nazare, S.

    1983-01-01

    For some time now, efforts are being made to develop fuel dispersions that would permit the use of low (approx. 20% 235-U) enriched uranium (LEU) instead of the currently used highly (approx. 93% 235-U) enriched uranium (HEU) in research and test reactors. Since penalties in the performance of the reactor have to be avoided, the 235-U content in the dispersion has at least to be retained at current levels. On account of their high U-densities, the major development effort has been focussed on the uranium silicides (U 3 Si, U 3 Si(Al), and U 3 Si 2 -based dispersions). With silicides as dispersants, it is possible to fabricate fuel element plates with U-densities in the dispersion of about 6.0 gU/cm 3 . In comparison to the silicides, the U 6 Fe-phase offers several advantages namely: higher U-density (approx. 17.0 gU/cm 3 ); relative ease of formation compared to U 3 Si; possible advantages with regard to reprocessing of the spent fuel due to the absence of silicon. The studies outlined here were performed with a view to investigating the preparation, reaction behavior and dimensional stability after heat treatment of U 6 Fe-Al dispersions

  6. Development of U6Fe-Al dispersions for the use of LEU in research and test reactors

    International Nuclear Information System (INIS)

    Nazare, S.

    1983-01-01

    For some time now, efforts are being made to develop fuel dispersions that would permit the use of low (∼ 20% 235-U) enriched uranium (LEU) instead of the currently used highly (∼ 93% 235-U) enriched uranium (HEU) in research and test reactors. Since penalties in the performance of the reactor have to be avoided, the 235-U content in the dispersion has at least to be retained at current levels. On account of their high U-densities, the major development effort has been focussed on the uranium silicides [U 3 Si, U 3 Si(Al), and U 3 Si 2 - based dispersions. With silicides as dispersants, it is possible to fabricate fuel element plates with U-densities in the dispersion of about 6.0 g U/cm 3 . In comparison to the silicides, the U 6 Fe-phase offers several advantages namely: - higher U-density (∼ 17.0 g U/cm 3 ); - relative ease of formation compared to U 3 Si; - possible advantages with regard to reprocessing of the spent fuel due to the absence of silicon. The studies outlined here were therefore performed with a view to investigating the preparation, reaction behaviour and dimensional stability after heat treatment of U 6 Fe-Al dispersions

  7. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy

    Science.gov (United States)

    Mishra, Pawan; Tangi, Malleswararao; Ng, Tien Khee; Hedhili, Mohamed Nejib; Anjum, Dalaver H.; Alias, Mohd Sharizal; Tseng, Chien-Chih; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    Recent interest in two-dimensional materials has resulted in ultra-thin devices based on the transfer of transition metal dichalcogenides (TMDs) onto other TMDs or III-nitride materials. In this investigation, we realized p-type monolayer (ML) MoS2, and intrinsic GaN/p-type MoS2 heterojunction by the GaN overgrowth on ML-MoS2/c-sapphire using the plasma-assisted molecular beam epitaxy. A systematic nitrogen plasma ( N2 * ) and gallium (Ga) irradiation studies are employed to understand the individual effect on the doping levels of ML-MoS2, which is evaluated by micro-Raman and high-resolution X-Ray photoelectron spectroscopy (HRXPS) measurements. With both methods, p-type doping was attained and was verified by softening and strengthening of characteristics phonon modes E2 g 1 and A 1 g from Raman spectroscopy. With adequate N2 * -irradiation (3 min), respective shift of 1.79 cm-1 for A 1 g and 1.11 cm-1 for E2 g 1 are obtained while short term Ga-irradiated (30 s) exhibits the shift of 1.51 cm-1 for A 1 g and 0.93 cm-1 for E2 g 1 . Moreover, in HRXPS valence band spectra analysis, the position of valence band maximum measured with respect to the Fermi level is determined to evaluate the type of doping levels in ML-MoS2. The observed values of valance band maximum are reduced to 0.5, and 0.2 eV from the intrinsic value of ≈1.0 eV for N2 * - and Ga-irradiated MoS2 layers, which confirms the p-type doping of ML-MoS2. Further p-type doping is verified by Hall effect measurements. Thus, by GaN overgrowth, we attained the building block of intrinsic GaN/p-type MoS2 heterojunction. Through this work, we have provided the platform for the realization of dissimilar heterostructure via monolithic approach.

  8. Analysis of Neutron Flux Distribution in Rsg-Gas Reactor With U-Mo Fuels

    Directory of Open Access Journals (Sweden)

    Taswanda Taryo

    2004-01-01

    Full Text Available The use of U-Mo fuels in research reactors seems to be promising and, recently, world researchers have carried out these such activities actively. The National Nuclear Energy Agency (BATAN which owns RSG-GAS reactor available in Serpong Research Center for Atomic Energy should anticipate this trend. It is, therefore, this research work on the use of U-Mo fuels in RSG-GAS reactor should be carried out. The work was focused on the analysis of neutron flux distribution in the RSG-GAS reactor using different content of molybdenum in U-Mo fuels. To begin with, RSG-GAS reactor core model was developed and simulated into X, Y and Z dimensions. Cross section of materials based on the developed cells of standard and control fuels was then generated using WIMS-D5-B. The criticality calculations were finally carried out applying BATAN-2DIFF code. The results showed that the neutron flux distribution obtained in U-Mo-fuel-based RSG-GAS core is very similar to those achieved in the 300-gram sillicide-fuel-based RSG-GAS reactor core. Indeed, the utilization of the U-Mo RSG-GAS core can be very similar to that of the high-density sillicide reactor core and even could be better in the future.

  9. Qualification of high-density fuel manufacturing for research reactors at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; De La Fuente, M.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [CNEA, Buenos Aires (Argentina)

    2001-07-01

    CNEA, the National Atomic Energy Commission of Argentina, is at the present a qualified supplier of uranium oxide fuel for research reactors. A new objective in this field is to develop and qualify the manufacturing of LEU high-density fuel for this type of reactors. According with the international trend Silicide fuel and U-xMo fuel are included in our program as the most suitable options. The facilities to complete the qualification of high-density MTR fuels, like the manufacturing plant installations, the reactor, the pool side fuel examination station and the hot cells are fully operational and equipped to perform all the activities required within the program. The programs for both type of fuels include similar activities: development and set up of the fuel material manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of miniplates, fabrication and irradiation of full scale fuel elements, post-irradiation examination and feedback for manufacturing improvements. For silicide fuels most of these steps have already been completed. For U-xMo fuel the activities also include the development of alternative ways to obtain U-xMo powder, feasibility studies for large-scale manufacturing and the economical assessment. Set up of U-xMo fuel plate manufacturing is also well advanced and the fabrication of the first full scale prototype is foreseen during this year. (author)

  10. Fabrication, fabrication control and in-core follow up of 4 LEU leader fuel elements based on U3Si2 in RECH-1

    International Nuclear Information System (INIS)

    Chavez, J.C.; Barrera, M.; Olivares, L.; Lisboa, J.

    1999-01-01

    The RECH-1 MTR reactor has been converted from HEU to MEU (45% enrichment) and the decision to a LEU (20% enrichment) conversion was taken some years ago. This LEU conversion decision involved a local fuel development and fabrication based on U 3 Si 2 -Al dispersion fuel, and a fabrication qualification stage that resulted in four fuel elements fully complying with established fabrication standards for this type of fuel. This report-presents relevant points of these four leaders fuel elements fabrication, in particular a fuel plate core homogeneity control development. A summary of the intended in core follow-up studies for the leaders fuel elements is also presented here. (author)

  11. Can gamma irradiation during radiotherapy influence the metal release process for biomedical CoCrMo and 316L alloys?

    Science.gov (United States)

    Wei, Zheng; Edin, Jonathan; Karlsson, Anna Emelie; Petrovic, Katarina; Soroka, Inna L; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2018-02-09

    The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  12. U-10Mo Baseline Fuel Fabrication Process Description

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Lance R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arendt, Christina L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dye, Daniel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Christopher K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lerchen, Megan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zacher, Alan H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    This document provides a description of the U.S. High Power Research Reactor (USHPRR) low-enriched uranium (LEU) fuel fabrication process. This document is intended to be used in conjunction with the baseline process flow diagram (PFD) presented in Appendix A. The baseline PFD is used to document the fabrication process, communicate gaps in technology or manufacturing capabilities, convey alternatives under consideration, and as the basis for a dynamic simulation model of the fabrication process. The simulation model allows for the assessment of production rates, costs, and manufacturing requirements (manpower, fabrication space, numbers and types of equipment, etc.) throughout the lifecycle of the USHPRR program. This document, along with the accompanying PFD, is updated regularly

  13. Irradiation tests of U3Si2-Al fuels up to very high fission densities

    International Nuclear Information System (INIS)

    Nuding, M.; Boening, K.

    2001-01-01

    The new research reactor of the Munich Technical University (TUM), the FRM-II, will have U 3 Si 2 -Al as the fuel. This fuel is considered qualified and optimally usable in the light of findings obtained in the RERTR program (Reduced Enrichment for Research and Test Reactors). The RERTR program was conducted to develop new fuel for the use of low enriched uranium (LEU) in research reactors. As the unique properties of the FRM-II in research and application are based also on achieving a very compact reactor core with highly enriched uranium (HEU), additional irradiation tests were performed on the basis of the RERTR program. They were run in close cooperation with the French Commissariat a l'Energie Atomique (CEA) in its SILOE and OSIRIS facilities, among others. After extensive evaluation, also of other studies, these tests confirm the RERTR findings about fuel swelling behavior and, consequently, the suitability of U 3 Si 2 -Al (HEU) for use in the compact core of the FRM-II. (orig.) [de

  14. Electronic properties of γ-U and superconductivity of U–Mo alloys

    International Nuclear Information System (INIS)

    Tkach, I.; Kim-Ngan, N.-T.H.; Warren, A.; Scott, T.; Gonçalves, A.P.; Havela, L.

    2014-01-01

    Highlights: • The bcc phase of uranium was stabilized to low temperature in U–Mo alloys. • Ultrafast cooling was utilized. • Negative coefficient dρ/dT indicates very strong disorder. • The alloys are superconducting with T c ≈ 2.1 K. • They exhibit high critical field exceeding 5 T. - Abstract: Fundamental electronic properties of γ-Uranium were determined using Mo doping combined with ultrafast (splat) cooling, which allowed stabilization of the bcc structure to low temperatures. The Sommerfeld coefficient γ e is enhanced to 16 mJ/mol K 2 from 11 mJ/mol K 2 for α-U. Magnetic susceptibility remains weak and T-independent, ≈5 × 10 −8 m 3 /mol. The Mo-doped γ-U exhibits a conventional BCS superconductivity with T c ≈ 2.1 K and critical field exceeding 5 T for 15 at.% Mo. This type of superconductivity is qualitatively different from the one found for pure U splat, which has T c higher than 1 K but the weak specific heat anomaly proves that it is not real bulk effect

  15. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.

    1996-01-01

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U 3 Si 2 fuel is about 6.0 g U/cm 3 . The French Commissariat a l'Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L'Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm 3 and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersion fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm 3 . On the other hand, UN is the least reactive fuel because of the relatively large 14 N(n,p) cross section. For a fixed value of k eff , the required 235 U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO 2 dispersions are only useful for uranium densities below 5.0 g/cm 3 . In this density range, however, UO 2 is more reactive than U 3 Si 2

  16. Study of the effect of irradiation of Mo targets at nuclear reactor

    International Nuclear Information System (INIS)

    Nieto, Renata C.; Lima, Ana Lucia V.P.; Silva, Nestor C. da; Osso Junior, Joao Alberto

    2000-01-01

    The most used radioisotope in nuclear medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by the 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MoO 3 , metallic Mo and Mo Zr gel were evaluated, as well as the radionuclidic purity of 99m Tc eluted from generators prepared. (author)

  17. LEUbased Fission Mo-99 Process with Reduced Solid Wastes

    International Nuclear Information System (INIS)

    Lee, Seungkon; Lee, Suseung; Jung, Sunghee; Hong, Soonbog; Jang, Kyungduk; Choi, Sang Mu; Lee, Jun Sig; Lim, Incheol

    2014-01-01

    99m Tc emits 140 keV of very low gamma-ray radiation energy, as low as conventional diagnostic X-ray, and has short half-life of 6.0058 hours. Therefore, as radioactive tracer, 99m Tc provides high quality diagnostic images but keeps total patient radiation exposure low. Depending on the tagging pharmaceuticals and procedures, 99m Tc can be applied for the diagnostics of various target organs and diseases: brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and tumors. More than 95% of 99 Mo is produced through fission of 235 U worldwide because, 99m o generated from the fission (fission 99 Mo) exhibits very high specific activity (<100 Ci/g). Over 90% of fission 99 Mo producers have been used highly enriched uranium (HEU) targets so far. However, the IAEA recommends the use of low enriched uranium (LEU) to the 99 Mo producers for nonproliferation reason. These days, worldwide 99 Mo supply is not only insufficient but also unstable. Because, most of the main 99 Mo production reactors are about 50 years old and suffered from frequent and unscheduled shutdown. Planned weekly productivity of 2000 Ci fission 99 Mo, in a 6-day reference, will cover 100% domestic demand of Korea, as well as 20% of international market. It is expected to replace 4.3 million USD ($800/Ci) of 99 Mo import for domestic market while exporting 82.8 million USD for world market, annually

  18. Progress in the development of very high density research and test reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, Idaho 83415 (United States)

    2009-06-15

    New nuclear fuels are being developed to enable many of the most important research and test reactors worldwide to convert from high enriched uranium (HEU) fuels to low enriched uranium (LEU) fuels without significant loss in performance. The last decade of work has focused on the development of uranium-molybdenum alloy (U-Mo) based fuels and is an international effort that includes the active participation of more than ten national programs. The US RERTR program, under the NNSA's Global Threat Reduction Initiative (GTRI), is in the process of developing both dispersion and monolithic U-Mo fuel designs. While the U-Mo fuel alloy has behaved extremely well under irradiation, initial testing (circa 2003) revealed that the U-Mo fuels dispersed in aluminum had an unexpected tendency toward unstable swelling (pillowing) under high-power conditions. Technical investigations were initiated worldwide at this time by the partner programs to understand this behavior as well as to develop and test remedies. The behavior was corrected by modifying the chemistry of the U-Mo/Al interfaces in both fuel designs. In the dispersion fuel design, this was accomplished by the addition of small amounts of silicon to the aluminum matrix material. Two methods are under development for the monolithic fuel design, which include the application of a thin layer of silicon or a thin zirconium based diffusion barrier at the fuel/clad interface. This paper gives an overview of the current status of U-Mo fuel development, including basic research results, manufacturing aspects, results of the latest irradiations and post irradiation examinations, the approach to fuel performance qualification, and the scale-up and commercialization of fabrication technology. (authors)

  19. What the difference to use LEU and HEU fuel elements separately or together in a research reactor

    International Nuclear Information System (INIS)

    Kaya, S.; Uestuen, G.

    2005-01-01

    Concerning of nuclear material safety, most of the research reactors are advised to shift from HEU (high enriched-%93 U-235) to LEU (low enriched-%20 U-235) fuel elements. When LEU and HEU fuel elements are to be used together in a research reactor, some design and safety problems are encountered. According to use of the reactor, some research reactors such as MTR type may not show any considerable difference for HEU or LEU fuel elements, but the efficiency of radioisotope production generated by thermal neutron interaction may decrease about twenty-thirty percent when LEU fuel elements are used. Here, fine mesh-sized 3D neutronic analysis of TR-2 research reactor is presented to indicate the arising problem when LEU end HEU fuel elements are used together in a research reactor. Partial thermohydraulic analysis of the reactor is also given to show the betterness of the LEU fuel element design. However, there might be some points that should be noticed for safer operation of plate type fuelled research reactors. (author)

  20. Evaluation of ferritic alloy Fe-2 1/4Cr-1Mo after neutron irradiation: Microstructural development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-10-01

    As part of a program to provide a data base on the bainitic alloy Fe-2-1/4-1Mo for fusion energy applications, microstructural examinations are reported for nine specimen conditions for 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Void swelling is found following irradiation at 400 0 C to 480 0 C. Concurrently dislocation structure and precipitation developed. Peak void swelling, void density, dislocation density and precipitate number density formed at the lowest temperature, approximately 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  1. Metallographic analysis of irradiated RERTR-3 fuel test specimens

    International Nuclear Information System (INIS)

    Meyer, M. K.; Hofman, G. L.; Strain, R. V.; Clark, C. R.; Stuart, J. R.

    2000-01-01

    The RERTR-3 irradiation test was designed to investigate the irradiation behavior of aluminum matrix U-MO alloy dispersion fuels under high-temperature, high-fission-rate conditions. Initial postirradiation examination of RERTR-3 fuel specimens has concentrated on binary U-MO atomized fuels. The rate of matrix aluminum depletion was found to be higher than predictions based on low temperature irradiation data. Wavelength Dispersive X-ray Spectroscopy (WDS) indicates that aluminum is present in the interior of the fuel particles. WDS data is supported by a mass and volume balance calculation performed on the basis of image analysis results. The depletion of matrix aluminum seems to have no detrimental effects on fuel performance under the conditions tested to date

  2. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy

    KAUST Repository

    Mishra, Pawan

    2017-01-03

    Recent interest in two-dimensional materials has resulted in ultra-thin devices based on the transfer of transition metal dichalcogenides (TMDs) onto other TMDs or III-nitride materials. In this investigation, we realized p-type monolayer (ML) MoS2, and intrinsic GaN/p-type MoS2 heterojunction by the GaN overgrowth on ML-MoS2/c-sapphire using the plasma-assisted molecular beam epitaxy. A systematic nitrogen plasma (N∗2N2*) and gallium (Ga) irradiation studies are employed to understand the individual effect on the doping levels of ML-MoS2, which is evaluated by micro-Raman and high-resolution X-Ray photoelectron spectroscopy (HRXPS) measurements. With both methods, p-type doping was attained and was verified by softening and strengthening of characteristics phonon modes E12gE2g1 and A1gA1g from Raman spectroscopy. With adequate N∗2N2*-irradiation (3 min), respective shift of 1.79 cm−1 for A1gA1g and 1.11 cm−1 for E12gE2g1 are obtained while short term Ga-irradiated (30 s) exhibits the shift of 1.51 cm−1 for A1gA1g and 0.93 cm−1 for E12gE2g1. Moreover, in HRXPS valence band spectra analysis, the position of valence band maximum measured with respect to the Fermi level is determined to evaluate the type of doping levels in ML-MoS2. The observed values of valance band maximum are reduced to 0.5, and 0.2 eV from the intrinsic value of ≈1.0 eV for N∗2N2*- and Ga-irradiated MoS2 layers, which confirms the p-type doping of ML-MoS2. Further p-type doping is verified by Hall effect measurements. Thus, by GaN overgrowth, we attained the building block of intrinsic GaN/p-type MoS2 heterojunction. Through this work, we have provided the platform for the realization of dissimilar heterostructure via monolithic approach.

  3. Progress in safety evaluation for the JMTR core conversion to LEU fuel

    International Nuclear Information System (INIS)

    Sakurai, F.; Komori, Y.; Saito, J.; Komukai, B.; Ando, H.; Nakata, H.; Sakakura, A.; Niiho, S.; Saito, M.; Futamura, Y.

    1991-01-01

    The JMTR (50 MWt) has been in steady operation with MEU fuel since July 1986. The effort is still continued to convert the core from MEU to LEU fuel. The LEU silicide fuel element at 4.8 gU/cm 3 with Cd wires as burnable absorbers has been selected in order to achieve upgraded fuel cycle performance of extended cycle length and reduced control rod movement operation. The neutronic calculation methods (diffusion theory model) developed for the LEU core with Cd wires was benchmarked with a detailed Monte Carlo model and verified experimentally using the critical facility, JMTRC. Hydraulic tests of the LEU silicide fuel element with Cd wires were completed with satisfactory results, and measurements of release/born (R/B) ratios of FPs of silicide fuel at high temperature are in progress. (orig.)

  4. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins

    Science.gov (United States)

    Bura-Nakić, Elvira; Andersen, Morten B.; Archer, Corey; de Souza, Gregory F.; Marguš, Marija; Vance, Derek

    2018-02-01

    Sedimentary molybdenum (Mo) and uranium (U) abundances, as well as their isotope systematics, are used to reconstruct the evolution of the oxygenation state of the surface Earth from the geological record. Their utility in this endeavour must be underpinned by a thorough understanding of their behaviour in modern settings. In this study, Mo-U concentrations and their isotope compositions were measured in the water column, sinking particles, sediments and pore waters of the marine euxinic Lake Rogoznica (Adriatic Sea, Croatia) over a two year period, with the aim of shedding light on the specific processes that control Mo-U accumulation and isotope fractionations in anoxic sediment. Lake Rogoznica is a 15 m deep stratified sea-lake that is anoxic and euxinic at depth. The deep euxinic part of the lake generally shows Mo depletions consistent with near-quantitative Mo removal and uptake into sediments, with Mo isotope compositions close to the oceanic composition. The data also, however, show evidence for periodic additions of isotopically light Mo to the lake waters, possibly released from authigenic precipitates formed in the upper oxic layer and subsequently processed through the euxinic layer. The data also show evidence for a small isotopic offset (∼0.3‰ on 98Mo/95Mo) between particulate and dissolved Mo, even at highest sulfide concentrations, suggesting minor Mo isotope fractionation during uptake into euxinic sediments. Uranium concentrations decrease towards the bottom of the lake, where it also becomes isotopically lighter. The U systematics in the lake show clear evidence for a dominant U removal mechanism via diffusion into, and precipitation in, euxinic sediments, though the diffusion profile is mixed away under conditions of increased density stratification between an upper oxic and lower anoxic layer. The U diffusion-driven precipitation is best described with an effective 238U/235U fractionation of +0.6‰, in line with other studied euxinic

  5. Study on characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates

    International Nuclear Information System (INIS)

    Liu Lijian; Yin Changgeng; Chen Jiangang; Sun Changlong; Liu Yunming

    2014-01-01

    In this paper, we analyzed the characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates. The results show that the interaction layers (IL) are with irregular morphology and uneven thickness, and are mainly formed in the internal micro cracks of the dispersion fuel particles or at the interface between the particles and the substrates. The diffusion mechanism of U-Mo/Al-Si is the vacancy diffusion, Al and Si are migrating elements, and the diffusion reaction is that Al and Si diffuse to U-Mo alloy. Inside the interaction layers, the Al content keeps constant basically, but the Si content gradually increases with the substrate-fuel direction, and the maximum content of Si appears interaction layers near the U-Mo side. Adding about 5 wt% Si into Al matrix can restrain the diffusion reaction, and improve the performance of dispersion fuel plates finally. (authors)

  6. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  7. Direct observation of solute segregation to voids in a fast-neutron irradiated (Mo/1.0 at. % Ti alloy

    International Nuclear Information System (INIS)

    Wagner, A.; Seidman, D.N.

    1978-11-01

    The atom-probe field-ion microscope was used to study segregation effects to voids in a Mo--Ti alloy which had been irradiated with fast neutrons. The Ti does not segregate significantly to voids, concentration of Ti in solid solution and the spacial distribution of Ti was not affected by irradiation, carbon was not detected, resolution of TiC or MoC precipitates did not occur

  8. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  9. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  10. Analysis of the TREAT LEU Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Management and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.

  11. Nitride Coating Effect on Oxidation Behavior of Centrifugally Atomized U-Mo Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Jin; Cho, Woo Hyoung; Park, Jong Man; Lee, Yoon Sang; Yang, Jae Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium metal and uranium compounds are being used as nuclear fuel materials and generally known as pyrophoric materials. Nowadays the importance of nuclear fuel about safety is being emphasized due to the vigorous exchanges and co-operations among the international community. According to the reduced enrichment for research and test reactors (RERTR) program, the international research reactor community has decided to use low-enriched uranium instead of high-enriched uranium. As a part of the RERTR program, KAERI has developed centrifugally atomized U-Mo alloys as a promising candidate of research reactor fuel. Kang et al. studied the oxidation behavior of centrifugally atomized U-10wt% Mo alloy and it showed better oxidation resistance than uranium. In this study, the oxidation behavior of nitride coated U-7wt% Mo alloy is investigated to enhance the safety against pyrophoricity

  12. Construction of a sputtering reactor for the coating and processing of monolithic U-Mo nuclear fuel

    International Nuclear Information System (INIS)

    Schmid, Wolfgang

    2011-01-01

    In the presented thesis sputter deposition was used for the first time to coat monolithic U-Mo nuclear fuel foils with diffusion inhibitive materials. The intention of these coatings is to prevent the formation of an interdiffusion layer between U-Mo and Al cladding during the use of the fuel. A small sputtering reactor was built, in which the method was tested and processing parameters were investigated. In parallel a larger sputtering reactor was constructed, that allows to coat full size monolithic U-Mo nuclear fuel foils and was used to test an industrial application of the technique. As a result a method based on sputter deposition and erosion can be presented, that allows to clean as well as to coat the surface of monolithic U-Mo nuclear fuel foils in excellent quality. It can be included at any time into the manufacturing chain for U-Mo fuel elements, which is currently being developed.

  13. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.Y.; Zeng, F.L.; Wu, K.; Wang, Y.Q.; Liang, X.Q.; Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn; Zhang, G.J.; Sun, J., E-mail: junsun@mail.xjtu.edu.cn

    2016-09-15

    Nanoindentation methodology was used to investigate the plastic deformation characteristics, including the hardness (H), strain rate sensitivity (SRS, m) and activation volume (V{sup *}), of Cu/Mo nanostructured metallic multilayers (NMMs) with equal layer thickness (h) spanning from 10 to 200 nm before and after He-implantation at room temperature. Compared with the as-deposited Cu/Mo NMMs, the irradiated Cu/Mo samples exhibited the enhanced hardness particularly at great h, which is caused by the bubble-hardening effect. Unlike the as-deposited Cu/Mo NMMs displayed a monotonic increase in SRS (or a monotonic decrease in activation volume) with reducing h, the irradiated Cu/Mo samples manifested an unexpected non-monotonic variation in SRS as well as in activation volume. It was clearly unveiled that the SRS of irradiated Cu/Mo firstly decreased with reducing h down to a critical size of ~50 nm and subsequently increased with further reducing h, leaving a minimum value at the critical h. These phenomena are rationalized by considering a competition between dislocation-boundary and dislocation-bubble interactions. A thermally activated model based on the depinning process of bowed-out partial dislocations was employed to quantitatively account for the size-dependent SRS of Cu/Mo NMMs before and after irradiation. Our findings not only provide fundamental understanding of the effects of radiation-induced defects on plastic characteristics of NMMs, but also offer guidance for their microstructure sensitive design for performance optimization at extremes.

  14. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions

    International Nuclear Information System (INIS)

    Zhang, J.Y.; Zeng, F.L.; Wu, K.; Wang, Y.Q.; Liang, X.Q.; Liu, G.; Zhang, G.J.; Sun, J.

    2016-01-01

    Nanoindentation methodology was used to investigate the plastic deformation characteristics, including the hardness (H), strain rate sensitivity (SRS, m) and activation volume (V * ), of Cu/Mo nanostructured metallic multilayers (NMMs) with equal layer thickness (h) spanning from 10 to 200 nm before and after He-implantation at room temperature. Compared with the as-deposited Cu/Mo NMMs, the irradiated Cu/Mo samples exhibited the enhanced hardness particularly at great h, which is caused by the bubble-hardening effect. Unlike the as-deposited Cu/Mo NMMs displayed a monotonic increase in SRS (or a monotonic decrease in activation volume) with reducing h, the irradiated Cu/Mo samples manifested an unexpected non-monotonic variation in SRS as well as in activation volume. It was clearly unveiled that the SRS of irradiated Cu/Mo firstly decreased with reducing h down to a critical size of ~50 nm and subsequently increased with further reducing h, leaving a minimum value at the critical h. These phenomena are rationalized by considering a competition between dislocation-boundary and dislocation-bubble interactions. A thermally activated model based on the depinning process of bowed-out partial dislocations was employed to quantitatively account for the size-dependent SRS of Cu/Mo NMMs before and after irradiation. Our findings not only provide fundamental understanding of the effects of radiation-induced defects on plastic characteristics of NMMs, but also offer guidance for their microstructure sensitive design for performance optimization at extremes.

  15. Interdiffusion and reactions between U-Mo and Zr at 650 °C as a function of time

    Science.gov (United States)

    Park, Y.; Keiser, D. D.; Sohn, Y. H.

    2015-01-01

    Development of monolithic U-Mo alloy fuel (typically U-10 wt.%Mo) for the Reduced Enrichment for Research and Test Reactors (RERTR) program entails a use of Zr diffusion barrier to eliminate the interdiffusion-reactions between the fuel alloy and Al-alloy cladding. The application of Zr barrier to the U-Mo fuel system requires a co-rolling process that utilizes a soaking temperature of 650 °C, which represents the highest temperature the fuel system is exposed to during both fuel manufacturing and reactor application. Therefore, in this study, development of phase constituents, microstructure and diffusion kinetics of U-10 wt.%Mo and Zr was examined using solid-to-solid diffusion couples annealed at 650 °C for 240, 480 and 720 h. Phase constituents and microstructural development were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Concentration profiles were mapped as diffusion paths on the isothermal ternary phase diagram. Within the diffusion zone, single-phase layers of β-Zr and β-U were observed along with a discontinuous layer of Mo2Zr between the β-Zr and β-U layers. In the vicinity of Mo2Zr phase, islands of α-Zr phases were also found. In addition, acicular α-Zr and U6Zr3Mo phases were observed within the γ-U(Mo) terminal alloy. Growth rate of the interdiffusion-reaction zone was determined to be 7.75 (± 5.84) × 10-16 m2/s at 650 °C, however with an assumption of a certain incubation period.

  16. U-turn type continuous irradiation method and device for radiation-irradiated capsule

    International Nuclear Information System (INIS)

    Kikuchi, Takayuki.

    1997-01-01

    A capsule to be irradiated is moved while being rotated in one of conveying shafts disposed in a reactor to conduct irradiation treatment. Then, the irradiated capsule is made U-turn in the reactor, inserted to the other conveying shaft and moved while being rotated to conduct irradiation treatment again, and then transported out of the reactor. The device comprises a rotational conveying shaft for moving the irradiated capsule while rotating it, a conveying gear for U-turning the irradiated capsule in the reactor and inserting it to the conveying shaft and a driving mechanism for synchronously rotating the conveying gear relative to the conveying shaft at a constant ratio. Mechanical time loss and manual operation time loss can be reduced upon loading and taking up of the irradiated capsule. Then, the amount of irradiation treatment per unit time is increased, and an optional neutron irradiation amount can be obtained thereby enabling to reduce operator's radiation exposure. (N.H.)

  17. Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics

    Science.gov (United States)

    Pizzochero, Michele; Yazyev, Oleg V.

    2018-04-01

    Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.

  18. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov

    2017-07-15

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  19. Heat Generation Effects on U-Mo/Al through ABAQUS FEM Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Taewon; Jeong, Gwan Yoon; Lee, Cheol Min; Sohn Dongseong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    U-Mo/Al dispersion fuels have been considered a most promising candidate for a replacement of Highly Enriched Uranium (HEU) fuel in many research reactors. Coulson developed a FEM model which show the fuel meat realistically and compared the thermal conductivity results of two and three dimensional model. Williams also developed a FEM model which are different from the former in that it use regularly meshed unit cells. He showed a heat generation effects through FEM simulation and the effective thermal conductivity of the fuel with heat generated in the fuel particles is a little lower than that of the fuel with no heat generated. In the current work, the heat generation effects are analyzed and discussed in a wider range of volume fraction with more realistic models by using ABAQUS finite element package. The FEM model is used to determine the effective thermal conductivity of U-Mo/Al and to simulate the heat generation effects in the study. This model reflected the microscopic morphology of the fuel very well by making random distribution particles although the particle shape is considered as sphere. All simulation results show the heat generation effects although the effects are small when the volume fraction of fuels are high. When the particles are surrounded with interaction layers, the heat transfer from the particle to matrix is disturbed by interaction layers due to the low thermal conductivity of interaction layers. However this effects decreases when the sum of the volume fraction of fuels and interaction layers exceeds 40-50 vol% because a great portion of the heat must pass through fuels and interaction layers although the heat is applied on the surface. Therefore particle size and initial particle volume fractions will be the important factors for the heat generation effects when interaction layers grow during irradiations.

  20. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@gmail.com [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hofman, Gerard L. [Argonne National Laboratory, Chicago, IL 60439 (United States); Kee, Robert J. [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); King, Jeffrey C. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-10-15

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  1. Study of the activation of targets containing Mo for the production of 99Mo by the 98Mo(n,γ)99Mo nuclear reaction and the behaviour of the radionuclidic impurities of the process

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    1998-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MOO 3 and MoZr gel were evaluated, and these represent the two possible ways of preparing the gel of MoZr. A target of metallic Mo was also studied. The radionuclidic purity of 99m Tc eluted from generators prepared in these ways was also measured and compared with the generators prepared with fission 99 Mo. The results showed that, by all the parameters analysed, the best way of preparing the generator of 99 Mo - 99m Tc is the irradiation of MOO 3 and further preparation of the gel and the generators. (author)

  2. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2003-01-01

    The availability of isotope grade, Highly Enriched Uranium (HEU), from the United States for use in the manufacture of targets for molybdenum-99 production in AECL's NRU research reactor has been a key factor to enable MDS Nordion to develop a reliable, secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets is a proven and established method that has reliably produced medical isotopes for several decades. The HEU process provides predictable, consistent yields for our high-volume, molybdenum-99 production. Other medical isotopes such as I-131 and Xe-133, which play an important role in nuclear medicine applications, are also produced from irradiated HEU targets as a by-product of the molybdenum-99 process. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the commissioning of two MAPLE reactors and an associated isotope processing facility (the New Processing Facility). The new MAPLE facilities, which will be dedicated exclusively to medical isotope production, will provide an essential contribution to a secure, robust global healthcare system. Design and construction of these facilities has been based on a life cycle management philosophy for the isotope production process. This includes target irradiation, isotope extraction and waste management. The MAPLE reactors will operate with Low Enriched Uranium (LEU) fuel, a significant contribution to the objectives of the RERTR program. The design of the isotope production process in the MAPLE facilities is based on an established process - extraction of isotopes from HEU target material. This is a proven technology that has been demonstrated over more than three decades of operation. However, in support of the RERTR program and in compliance with U.S. legislation, MDS Nordion has undertaken a LEU Target Development and Conversion Program for the MAPLE facilities. This paper will provide an

  3. A neutronic feasibility study for LEU conversion of the High Flux Beam Reactor (HFBR)

    International Nuclear Information System (INIS)

    Pond, R.B.; Hanan, N.A.; Matos, J.E.

    1997-01-01

    A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm 3 in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept. (author)

  4. Release behavior of fission products from irradiated dispersion fuels at high temperatures

    International Nuclear Information System (INIS)

    Iwai, Takashi; Shimizu, Michio; Nakagawa, Tetsuya

    1990-02-01

    As a framework of reduced enrichment fuel program of JMTR Project, the measurements of fission products release rates at high temperatures (600degC - 1100degC) were performed in order to take the data to use for safety evaluation of LEU fuel. Three type miniplates of dispersion silicide and aluminide fuel, 20% enrichment LEU fuel with 4.8 gU/cc (U 3 Si 2 90 %, USi 10 % and U 3 Si 2 50 %, U 3 Si 50 % dispersed in aluminium) and 45 % enrichment MEU fuel with 1.6 gU/cc, were irradiated in JMTR. The burnups attained by one cycle (22 days) irradiation were within 21.6 % - 22.5 % of initial 235 U. The specimens cut down from miniplates were measured on fission products release rates by means of new apparatus specially designed for this experiment. The specimens were heated up within 600degC - 1100degC in dry air. Then fission products such as 85 Kr, 133 Xe, 131 I, 137 Cs, 103 Ru, 129m Te were collected at each temperature and measured on release rates. In the results of measurement, the release rates of 85 Kr, 133 Xe, 131 I, 129m Te from all specimens were slightly less than that of G.W. Parker's data on U-Al alloy fuel. For 137 Cs and 103 Ru from a silicide specimen (U 3 Si 2 90 %, USi 10 % dispersed in aluminium) and 137 Cs from an aluminide specimen, the release rates were slightly higher than that of G.W. Parker's. (author)

  5. Incomplete deep inelastic processes in 100Mo + 100Mo and 120Sn + 120Sn at 18 and 24 MeV/u

    International Nuclear Information System (INIS)

    Petrovici, M.

    1989-12-01

    Experimental evidence on inclomplete deep inelastic process in 100 Mo + 100 Mo at 18.67 MeV/u, 23.75 MeV/u and in 120 Sn + 120 Sn at 18.34 MeV/u are presented. Such a mechanism is responsible for strong deviations observed at these incident energies in σ 2 Z -TKEL/l g (for two-body) and P 3 /(P 2 + P 3 )-TKEL (for three-body) systematics. Calculations which predict the number of preequilibrium emitted nucleons and the corresponding excitation energy per nucleon that remains in the dinuclear system could explain the observed discrepancies. (author)

  6. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  7. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  8. Separation and determination of 103Ru in samples of fission 99Mo

    International Nuclear Information System (INIS)

    Aghazarian, V.P.; Duran, Adrian P.; Mondino, Angel V.

    2003-01-01

    In Argentina 99 Mo is produced in the RA-3 reactor at the Ezeiza Atomic Center (CAE), by irradiation of miniplates of Al/U (90% 235 U) alloy. The 99 Mo separation is carried out at the Fission Radioisotopes Production Plant. Quality control is important to assure the quality of molybdenum that is produced in CAE. A new method to purify and on line quantify 103 Ru as an impurity present in 99 Mo samples was developed. This procedure is based in the RuO 4 volatilization and its dissolution in NaOH 6M. This is necessary due to the fact that 103 Ru cannot be detected in presence of high activities of 99 Mo without previous separation. This method allows a quantitative, specific, efficient, fast and reproducible separation of 103 Ru from 99 Mo. (author)

  9. Homogeneous SLOWPOKE reactors for Mo-99/Tc-99m production in North America

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, J.W., E-mail: hilbovanw@sympatico.ca [Deep River, Ontario (Canada); Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    The 15 month shutdown of NRU in 2009 - 2010 caused an overall isotope shortage of approximately 30%; and in North America, the annual Tc-99m demand decreased from an estimated 20 million unit doses to about 15 million unit doses. Mo-99/Tc-99m is produced from HEU targets, irradiated in NRU for 11 days, and after chemical removal of uranium it is shipped to Nordion in Kanata, Ontario. Nordion further purifies the material and sends it to Lantheus Medical Imaging in the USA for manufacture of Mo-99 generators, which are then distributed to hundreds of hospital radiopharmacies throughout North America. One other American company, Covidien, manufactures and distributes Mo-99 generators like Lantheus, but they import bulk Mo-99 from Europe or South Africa. At the hospitals, Tc-99m is chemically extracted daily from the Mo-99 generators and loaded into syringes for immediate clinical use. Fortuitously, the 66 hour half-life of Mo-99 allows the replenishment of Tc-99m in the generator over a growth period of about 20 hours; and a generator can be 'milked' daily for up to two weeks. A more efficient model is the direct production and distribution of Tc-99m unit doses to regional hospitals from 10 'industrial' radiopharmacies located at existing licensed reactor sites in North America. A 20 kW homogeneous SLOWPOKE reactor at each site would deliver 15 litres of irradiated uranyl sulphate fuel solution daily to industrial-scale hot cells for extraction of Mo-99, which would be incorporated in large Mo-99/Tc-99m generators for extraction of Tc-99m five days a week; and the Low Enriched Uranium (LEU) would be recycled. Each automated hot-cell facility would be designed to load up to 7,000 Tc-99m syringes daily, for courier delivery to all of the Nuclear Medicine hospitals within a 3 hour average range by road transport. Typically, the delivered doses would be in the range 10 to 30 mCi. Assuming an average unit dose of 25 mCi at the hospital and 5 x 52

  10. Study of the 99Mo production effect on some of research reactor core specification using DARE-P

    International Nuclear Information System (INIS)

    Khamis, I.; Ezzuddin, H.

    2006-12-01

    In this study, the major basis of Mo- production using irradiation method for targets of enriched uranium is presented. Factors such as neutron flux, time of irradiation, and enrichment ration have also been analyzed. It was concluded that Mo-production requires nuclear reactors having high neutron fluxes, and that raising the neutron flux results in increasing the Mo-activities especially at fluxes that are higher than 10 14 n.cm -2 .s -1 . Time of irradiation was found to have adverse i.e. positive and negative effects on Mo activity. Therefore, the optimum irradiation time should be determined. The Mo-production was modeled through a set of differential equation with respect to time with aim to study the most influencing factors on Mo production, especially the effects of neutron flux and time of irradiation. In addition, the mass of plutonium produced during the irradiation of low enriched uranium has been evaluated. An investigation as to whether 99 Mo could be produced in the Syrian MNSR has been made. The result shows that a specific activity of 0.3773 Ci/g for 99 Mo could be produced. In future, a nuclear research reactor having neutron flux of 10 14 n.cm -2 .s -1 and 8 irradiation sites suitable for targets of 5 g of 235 U could produce about 5000 Ci on a weekly. Calculation and simulation have been achieved using the already developed DARE-P simulation language which was modified and improved in the nuclear Engineering Department in the Atomic Energy Commission of Syria. (author)

  11. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    Science.gov (United States)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  12. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  13. Development of dissolution process for metal foil target containing low enriched uranium

    International Nuclear Information System (INIS)

    Srinivasan, B.; Hutter, J.C.; Johnson, G.K.; Vandegrift, G.F.

    1994-01-01

    About six times more low enriched uranium (LEU) metal is needed to produce the same quantity of 99 Mo as from a high enriched uranium (HEU) oxide target, under similar conditions of neutron irradiation. In view of this, the post-irradiation processing procedures of the LEU target are likely to be different from the Cintichem process procedures now in use for the HEU target. The authors have begun a systematic study to develop modified procedures for LEU target dissolution and 99 Mo separation. The dissolution studies include determination of the dissolution rate, chemical state of uranium in the solution, and the heat evolved in the dissolution reaction. From these results the authors conclude that a mixture of nitric and sulfuric acid is a suitable dissolver solution, albeit at higher concentration of nitric acid than in use for the HEU targets. Also, the dissolver vessel now in use for HEU targets is inadequate for the LEU target, since higher temperature and higher pressure will be encountered in the dissolution of LEU targets. The desire is to keep the modifications to the Cintichem process to a minimum, so that the switch from HEU to LEU can be achieved easily

  14. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  15. Density changes observed in pure molybdenum and Mo-41Re after irradiation in FFTF/MOTA

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.

    1993-01-01

    Pure molybdenum and Mo-41wt% Re, in both the 20% cold-worked and aged and the annealed and aged conditions, were irradiated in FFTF/MOTA to exposures as high as 111 dpa. Pure molybdenum appears to approach a saturation swelling level that is independent of the starting state. Cold-worked and aged molybdenum initially swells at a higher rate than that of solution annealed and aged molybdenum and overshoots the saturation level at lower irradiation temperatures. This requires that part of the accumulated swelling be removed to approach saturation, probably by void shrinkage. The alloy Mo-41Re exhibits a more complex behavior with the annealed and aged condition initially swelling faster, but eventually the density change of both conditions begins to turn downward and tends toward densification. The role of solid transmutation to Tc, Re, and Os is though to be very important in the irradiation behavior of these two metals. Calculations of transmutant generation are provided for FFTF, HFIR and STARFIRE spectra

  16. Analytical analyses of startup measurements associated with the first use of LEU fuel in Romania's 14-MW TRIGA reactor

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.; Ciocanescu, M.

    1992-01-01

    The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% 235U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, each containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration. In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and themocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations

  17. Qualification status of LEU [low enriched uranium] fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.

    1987-01-01

    Sufficient data has been obtained from tests of high-density, low-enriched fuels for research and test reactors to declare them qualified for use. These fuels include UZrH x (TRIGA fuel) and UO 2 (SPERT fuel) for rod-type reactors and UAl x , U 3 O 8 , U 3 Si 2 , and U 3 Si dispersed in aluminium for plate-type reactors. Except for U 3 Si, the allowable fission density for LEU applications is limited only by the available 235 U. Several reactors are now using these fuels, and additional conversions are in progress. The basic performance characteristics and limits, if any, of the qualified low-enriched (and medium-enriched) fuels are discussed. Continuing and planned work to qualify additional fuels is also discussed. (Author)

  18. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy. Rev. 1

    International Nuclear Information System (INIS)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.; Schemer-Kohrn, Alan L.; Guzman, Anthony D.; Lavender, Curt A.

    2016-01-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  19. Neutronic and thermal hydraulic analyses of LEU targets irradiated in a research reactor for Molybdenum-99 production

    International Nuclear Information System (INIS)

    Jo, Daeseong; Lee, Kyung-Hoon; Kim, Hong-Chul; Chae, Heetaek

    2014-01-01

    Highlights: • Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99. • Heat production during and after irradiation was evaluated using MCNP and ORIGEN-APR. • Cooling capacities under various cooling conditions were evaluated using TMAP. • Natural convective cooling was adequate for the decay power after 0.03 h from withdrawal. • Maximum temperature of the target decayed for 24 h does not exceed the blistering threshold. - Abstract: Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99 production in a research reactor were performed to investigate (1) the heat production during irradiation, (2) decay heat after irradiation, and (3) cooling capacities under various cooling conditions. The heat production on the target plates irradiated in the core was evaluated using the MCNP code. The decay heat after irradiation was evaluated using the ORIGEN-APR code, and compared against ANSI/ANS-5.1-1979. The cooling capacities of forced convective cooling during irradiation and natural convective cooling after irradiation were estimated using the TMAP code. An equilibrium core with different core statuses i.e., BOC, MOC, and EOC was used to evaluate power released from the targets and the axial power distribution. Based on the neutronic calculations, thermal margins i.e., the maximum wall temperature, minimum ONB temperature margin, and minimum CHF ratio were estimated, and the cooling strategy of the fission Mo targets was discussed. The targets were cooled by forced convective cooling during irradiation, and cooled by natural convective cooling after irradiation. For a further production process, the targets transported to a hot cell were exposed to the air, and cooled by natural convection cooling in air. As a result, the maximum wall temperature remained below the ONB temperature while the targets were under water, and the maximum wall temperature remained under the blistering limit while the targets

  20. Comment on the contribution of S.C. Mo, N.A. Hanan and J.E. Matos: 'Comparison of the FRM-II HEU design with an alternative LEU design'

    International Nuclear Information System (INIS)

    Boening, K.

    2004-01-01

    The results of the reference paper, which came to our attention for the first time during this RERTR Meeting, are more or less consistent with neutronic data we have obtained earlier within the FRM-II project (i.e. with own calculations and extrapolations). However, a realistic comparison of the HEU design of the FR.M-II (HEU = highly enriched uranium, 93 % U-235) with an alternative LEU design (LEU = low enriched uranium, 20 % U-235) is only possible on the basis of identical assumptions on the input parameters and has to consider more than neutronic data only. Serious scientists and experts should not confuse the politicians with academic studies touching some aspects of the full story only. The comparison has shown that the performance and reliability of the FRM-II design, which uses HEU fuel, is so advantageous that it can not - not even approximately - be met by an alternative design using LEU fuel. A change of the FRM-II design from HEU to LEU fuel with the results as shown above - i.e. less performance, higher costs, more nuclear waste and higher risk potential, and all of this with a delay of at least 5 years this could never be justified. If a future development of more advanced fuels should allow us to achieve our scientific goals at the conditions as identified above also with uranium of reduced enrichment - there would be no objection to a corresponding later conversion. Activities to realize a new neutron source in Germany go back to the late 70's with the project of a new middle flux beam reactor (MSR), which was abandoned shortly later in favour of an ambitious new spallation neutron source (SNQ). After this project also having been terminated around 1985 because of too high costs and technological risks, the hopes of the German community of neutron scientists focussed on the FRM-II. If non-technical pressure would damage this project this would equally provide irreversible damage to the large and still prospering field of neutron research in Germany

  1. Development of fission Mo-99 production technology - A nuclear feasibility study on UN target for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun; Kim, Woo Sik [Kyunghee University, Seoul (Korea)

    2000-03-01

    Nuclear target design satisfying all the constraints for fission moly production in HANARO was proposed in this project. The 'MCNP-ORIGEN' code system which was previously proposed for a design tool, was evaluated by the comparison with through the 'MCNP-Analytic Eq.' system. A characteristics of each chemical processing step were analysed and material balance was set up to evaluate the overall yield ratio of Mo-99 recovery. A parametric study was done for the optimum HEU target design. Tested parameters were target thickness, recoil-loss rate to the fuel thickness, target radius, cladding materials, thickness of irradiation guide tube, and barrier materials. Optimized HEU target design was proposed which satisfying the constraints and having high production yield. For a LEU target design using 19.7 w/o UN powder fuel, a parametric study was also done for the optimization of fuel thickness, powder packing density, mixture material volume ratio. 24 refs., 35 figs., 57 tabs. (Author)

  2. Neutronic feasibility studies for LEU conversion of the HFR Petten reactor

    International Nuclear Information System (INIS)

    Hanan, N.A.; Deen, J.R.; Matos, J.E.; Hendriks, J.A.; Thijssen, P.J.M.; Wijtsma, F.J.

    2000-01-01

    Design and safety analyses to determine an optimum LEU fuel assembly design using U 3 Si 2 -Al fuel with up to 4.8 g/cm 3 for conversion of the HFR Petten reactor were performed by the RERTR program in cooperation with the Joint Research Centre and NRG. Credibility of the calculational methods and models were established by comparing calculations with recent measurements by NRG for a core configuration set up for this purpose. This model and methodology were then used to study various LEU fissile loading and burnable poison options that would satisfy specific design criteria. (author)

  3. A neutronic feasibility study for LEU conversion of the WWR-M reactor at Gatchina

    International Nuclear Information System (INIS)

    Petrov, Yu. V.; Erykalov, A.N.; Onegin, M.S.

    2000-01-01

    In this report we present the results of computations of the full scale reactor core with HEU (90%), MEU (36%) and LEU (19.75%) fuel. The reactor computer model for the MCU RFFI Monte Carlo code includes all peculiarities of the core. Calculations show that a uranium density of 3.3gU/cm 3 of MEU (36%) fuel and 8/25gU/cm 3 of LEU (19.75%) in WWR-M5 fuel assembly (FA) geometry is required to match the fuel cycle length of the HEU (90%) case with the same end of cycle (EOEC) excess reactivity. For the equilibrium fuel cycle the fuel burnup and poisoning, the fast and thermal neutron fluxes, the reactivity worth of control rods were calculated for the reference case with HEU (90%) FA and for the MEU and LEU FA. The relative accuracy of this neutronic feasibility study of fuel enrichment reduction of the WWR-M reactor in Gatchina is sufficient to start the fabrication feasibility study of MEU (36%) WWR-M5 fuel assemblies. At the present stage of technology it seems hardly possible to manufacture LEU (19.75%) fuel elements in WWR-M5 geometry due to too high uranium density. Only a future R and D can solve the problem. (author)

  4. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  5. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  6. Carbon potential measurement on the Mo-MoC0.47 system by methane - hydrogen equilibration

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Anthonysamy, S.; Vasudeva Rao, P.R.; Mathews, C.K.

    1993-01-01

    Uranium plutonium mixed carbides are potential candidate fuel materials for liquid metal cooled fast breeder reactors. The carbon potential of the fuel is an important thermochemical property which strongly influences the carbon transport between the clad and the fuel. The carbon potential of the fuel is altered during irradiation of the fuel in the reactor. This is due to the formation of various fission products and their binary and ternary carbides. Molybdenum is a fission product with a high yield which can alter the carbon potential of the fuel. The present work forms part of our studies on the carbon potential measurements in the U - Mo - C ternary system. The carbon potential of the Mo-Mo 2 C couple measured by the methane hydrogen gas equilibration technique is presented here and the results are compared with the values cited in the literature. (author)

  7. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Rubiolo, Gerardo H.

    2003-01-01

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm 3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm 3 . Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  8. Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Cheng Jiushan

    2017-01-01

    Full Text Available In this paper, the composite ZnS/MoS2 was obtained via two steps including solvothermal methods. The as-synthesized sample was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and UV-Vis. diffuse reflectance spectra (DRS. The photocatalytic activity of the product was evaluated through photocatalytic degradation of Rhodamine B (Rh B under UV-Vis. light irradiation; the electrical conductivity of ZnS/MoS2 composites was significantly improved compared to ZnS, MoS2, respectively. The results showed that the ZnS/MoS2 composite photocatalyst possesses better photocatalytic activity in degrading Rh B than the single ZnS or the single MoS2. The better photocatalytic properties may be due to the synergetic effect of two semiconductors, because of which electrons and holes were separated effectively. And its specific microstructure played an active role in evaluating photocatalytic performance.

  9. Performance and economic penalties of some LEU [low enriched uranium] conversion options for the Australian Reactor HIFAR

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Robinson, G.S.

    1987-01-01

    Performance calculations for the conversion of HIFAR to low enriched uranium (LEU) fuel have been extended to a wide range of 235 U loadings per fuel element. Using a simple approximate algorithm for the likely costs of LEU compared with highly enriched uranium (HEU) fuel elements, the increases in annual fuelling costs for LEU compared with HEU fuel are examined for a range of conversion options involving different performance penalties. No significant operational/safety problems were found for any of the options canvassed. (Author)

  10. U.V.-enhanced reactivation of u.v.-irradiated herpes virus by primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Zurlo, J.; Yager, J.D.

    1984-01-01

    Carcinogen treatment of cultured mammalian cells prior to infection with u.v.-irradiated virus results in enhanced virus survival and mutagenesis suggesting the induction of SOS-type processes. In this paper, we report the development of a primary rat hepatocyte culture system to investigate cellular responses to DNA damage which may be relevant to hepatocarcinogenesis in vivo. We have obtained data demonstrating that enhanced reactivation of u.v.-irradiated Herpes simplex virus type 1 (HSV-1) occurs in hepatocytes irradiated with u.v. Cultured hepatocytes were pretreated with u.v. at the time of enhanced DNA synthesis. These treatments caused an inhibition followed by a recovery of DNA synthesis. At various times after pretreatment, the hepatocytes were infected with control or u.v.-irradiated HSV-1 at low multiplicity, and virus survival was measured by direct plaque assay. U.v.-irradiated HSV-1 exhibited the expected two-component survival curve in control or u.v. pretreated hepatocytes. The magnitude of enhanced reactivation of HSV-1 was dependent on the u.v. dose to the hepatocytes, the time of infection following u.v. pretreatment, and the level of DNA synthesis at the time of pretreatment. These results suggest that u.v. treatment of rat hepatocytes causes the induction of SOS-type functions that may have a role in the initiation of hepatocarcinogenesis

  11. The U.S. RERTR Program: Overview, status and plans

    International Nuclear Information System (INIS)

    Travelli, A.

    1985-01-01

    The status of the Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief review of the accomplishments which the RERTR Program, in cooperation with its many international partners, had achieved by the end of 1983 in the area of LEU research reactor fuels development and application, emphasis is placed on the RERTR Program developments which took place during 1984 and on current plans and schedules. The RERTR progress in 1984 has been significant, with solid accomplishments and few surprises. Most LEU U 3 Si 2 -AI irradiation tests with 48 g U/cm 3 have been successfully completed, and contract negotiations are under way for the procurement of a whole-core demonstration of this fuel in the ORR. The demonstration is to begin in mid-1985 and to last for approximately eighteen months. Qualification of U 3 Si-AI fuel with 7 g U/cm 3 is scheduled for 1989. International cooperation among fuel developers, commercial vendors, and reactor operators has been essential to the progress which has been achieved. With continued international cooperation, it will be feasible to significantly reduce HEU usage in research reactors in the next few years. (author)

  12. HEU/LEU-conversion of BER II successfully finished

    International Nuclear Information System (INIS)

    Haas, K.; Fischer, C.-O.; Krohn, H.

    2000-01-01

    The BER II (Berliner Experimental Reactor) research reactor is a swimming pool type reactor located in Berlin, Germany. The reactor operates with a thermal power of 10 MW and is primarily used to produce neutrons for neutron scattering experiments. The conversion from HEU- to LEU-fuel elements began in August, 1997. At the last RERTR Meeting 1999 in Budapest, Hungary, Hahn-Meitner-Institut (HMI) presented a 'Status Report' on the conversion of 10 HEU/LEU mixed cores. In February 2000, HMI finished the HEU/LEU-conversion. Hereby, the first pure LEU-standard-core went into operation. Our second LEU-core just ends its operation at the end of July. The third LEU-core will be built up in the beginning of August. The average burn-up rate was improved from 50 - 55% (HEU) to 60 - 65% (LEU). Therefore, only 14 elements/year are now used instead of 28/year. The following report describes our first steps in building pure LEU-cores from mixed HEU/LEU-cores, as well as our initial experience using the pure LEU-cores. (author)

  13. Decomposition of the metastable phase γU in U-7% and U-7% Mo-0.9% Pt

    International Nuclear Information System (INIS)

    Arico, Sergio F.; Gribaudo, Luis M.

    2004-01-01

    The 'Reduced Enrichment for Research and Test Reactors' is an international project for the development of a nuclear fuel with high density in uranium capable to get a great neutron flux with good capacity for being reprocessed. One of the candidates is a fuel containing U-Mo alloy powder, as bcc metastable phase γ, dispersed in Al powder. In order to know the influence of Pt as a stabilizing element two U-7 wt.% Mo alloys are studied, one of them with 0.9 wt.% Pt. They were fabricated in an arc furnace and both homogenized in composition during 2 h at 1000 C degrees. Then, isothermal treatments at 480, 430 and 350 C degrees were performed at times between 1 and 177 h. The decomposition of the γ phase was studied by metallography and X-ray diffraction analysis. Adding Pt, the start of the decomposition of the γ phase is delayed, but the initial grain size of the alloys is an important variable which has also to be considered. (author) [es

  14. Design, fabrication and irradiation test report on HANARO instrumented capsule (05M-07U) for the researches of universities in 2005

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Choi, M. H.; Cho, M. S.; Son, J. M.; Choi, M. H.; Shin, Y. T.; Park, S. J.

    2006-09-15

    As a part of the 2005 project for an active utilization of HANARO, an instrumented capsule (05M-07U) was designed, fabricated and irradiated for an irradiation test of various unclear materials under irradiation conditions which was requested by external researchers from universities. The basic structure of the 05M-07U capsule was based on the 00M-01U, 01M-05U, 02M-05U, 03M-06U and 04M-07U capsules which had been successfully irradiated in HANARO as part of the 2000, 2001, 2002, 2003 and 2004 projects. However, because of a limited number of specimens and the budget of one university, the remaining space in the capsule was filled with various KAERI specimens for researches on a nuclear core and SMART materials, and parts of a nuclear fuel assembly of KNFC. Various types of specimens such as tensile, Charpy, TEM, hardness, compression and growth specimens made of Zr 702, Ti and Ni alloys, Zirlo, Inconel, STS 316L and Cr-Mo alloys were placed in the capsule. Especially, this capsule was designed to evaluate the nuclear characteristics of the parts of a nuclear fuel assembly and the Ti tubes in HANARO. The capsule was composed of 5 stages having many kinds of specimens and an independent electric heater at each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 5 sets of Ni-Ti-Fe neutron fluence monitors installed in the capsule. The capsule was irradiated in the CT test hole of HANARO of a 30MW thermal output at 270 ∼ 400 .deg. C up to a fast neutron fluence of 5.7 x 10{sup 20} (n/cm{sup 2}) (E >1.0MeV). The obtained results will be very valuable for the related research of the users.

  15. Irradiation behavior of U{sub 6}Mn-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.K. E-mail: mitchell.meyer@anl.gov; Wiencek, T.C.; Hayes, S.L.; Hofman, G.L

    2000-04-01

    Irradiation testing of U{sub 6}Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U{sub 6}Mn in an unrestrained plate configuration performs similarly to U{sub 6}Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3x10{sup 27} m{sup -3}. Fuel plate failure occurs by fission gas pressure driven 'pillowing' on continued irradiation.

  16. A neutronics study of LEU fuel options for the HFR-Petten

    International Nuclear Information System (INIS)

    Deen, J.R.; Snelgrove, J.L.

    1985-01-01

    The standard HEU fuel cycle characteristics are compared with those of several different LEU fuel cycles in the new vessel configuration. The primary design goals were to provide similar reactivity performance and neutron flux profiles with a minimal increase in 235 U loading. The fuel cycle advantages of Cd burnable absorbers over 10 B are presented. The LEU fuel cycle requirements were calculated also for an extended 32-day cycle and for a reload batch size reduction from six to five standard elements for the standard 26-day cycle. The effects of typical in-core experiments upon neutron flux profiles and fuel loading requirements are also presented. (author)

  17. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  18. Pre-irradiation tests on U-Si alloys

    International Nuclear Information System (INIS)

    Howe, L.M.; Bell, L.G.

    1958-05-01

    Pre-irradiation tests of hardness, density, electrical resistivity, and corrosion resistance as well as metallographic and X-ray examinations were undertaken on U-Si core material, which had been co-extruded in Zr--2, in order that the effect of irradiation on alloys in the epsilon range could be assessed. In addition, a study of the epsilonization of arc-melted material was undertaken in order to rain familiarity with the epsilonization process and to obtain information on the corrosion behaviour of epsilonized material. Sheathed U-Si samples in the epsilonized and de-epsilonized conditions have been irradiated in the X-2 loop, with a water temperature of 275 o C. The samples have been examined after 250 MWD/Tonne and show no dimensional change. (author)

  19. Description of ECRI (CNEA'S MTR fuel fabrication plant)

    International Nuclear Information System (INIS)

    Echenique, P.; Fabro, J.; Podesta, D.; Restelli, M.; Rossi, G.; Alvarez, L.; Adelfang, P.

    2002-01-01

    The ECRI Plant is dedicated to the development and fabrication of high-density fuel elements and targets for 99 Mo. In this sector had been done the start up Fuel Elements for the Reactors of Peru, Iran, Algeria and Egypt. All of them were made with U 3 O 8 . The targets for 99 Mo using HEU were fabricated too in the last years. The new material of high-density for Fuel Elements as U 3 Si 2 were done in this sector, three prototypes were fabricated, two are still under irradiation. (P06 and P07). As new developments we are working with U-Mo (7%) Fuel Plates with both material Korean and HMD. This work is under the RERTR Program and two fuel elements, manufactured by us, with both powders, will be irradiated in Petten. For 99 Mo targets, we are fabricating miniplates of LEU with an AlUx powder by pulvi-metallurgy technique. And it is under development the foils targets under the RERTR Program. A general view of the fabrication facilities and control sector will be shown. The different operations that are done in each sector will be explained. All our activities will be certified under the ISO 9000 and we are working hard to get it in the middle of 2003. (author)

  20. Superconductivity in U-T alloys (T = Mo, Pt, Pd, Nb, Zr stabilized in the cubic γ-U structure by splat-cooling technique

    Directory of Open Access Journals (Sweden)

    N.-T.H. Kim-Ngan

    2016-06-01

    Full Text Available We succeed to retain the high-temperature (cubic γ-U phase down to low temperatures in U-T alloys with less required T alloying concentration (T = Mo, Pt, Pd, Nb, Zr by means of splat-cooling technique with a cooling rate better than 106 K/s. All splat-cooled U-T alloys become superconducting with the critical temperature Tc in the range of 0.61 K–2.11 K. U-15 at.% Mo splat consisting of the γ-U phase with an ideal bcc A2 structure is a BCS superconductor having the highest critical temperature (2.11 K.

  1. Studies on molybdenum elution study in dowex 1x8 resin applied on purification process of fission 99Mo

    International Nuclear Information System (INIS)

    Damasceno, M.O.; Yamaura, M.; Santos, J.L. dos; Forbicini, C.A.L.G. de O.

    2013-01-01

    Molybdenum-99 is the most widely employed radioisotope in nuclear medicine, due to its decay product, Technetium-99, which is used in radio-pharmaceutical marking molecules for diagnostic examinations tumor dis-eases. Today Brazil imports 99 Mo from some countries, so the National Commission of Nuclear Energy (CNEN) is implementing a new research reactor RMB, currently in the conceptual design phase. The process of separation of fission 99 Mo begins with the dissolution of uranium targets after irradiation in reactor; the resulting solution goes through a series of chromatographic columns that allows a gradual decontamination of other components, yielding the 99 Mo with high radio-chemical and chemical purity for use in nuclear medicine as a generator of 99 mTc. This work is part of the RMB research project to separate and purify the fission 99 Mo by chromatographic columns from alkaline dissolution of LEU UAl x -Al targets. In the present study Mo removal by batch assays and glass column was investigated using anionic exchanger Dowex 1x8. Different salts and its concentration, cations and temperature were evaluated on elution of molybdenum and iodine (contaminant) retained on resin Dowex 1x8, aiming at their use in the process of separation and purification in chromatography columns on Brazilian project. Results showed high recovery of Mo and low-level contamination by iodine using NaHCO 3 hot solution. (author)

  2. The effect of U.V.-irradiation on lambda DNA transcription

    International Nuclear Information System (INIS)

    Ranade, S.S.

    1977-01-01

    The effect of U.V.-irradiation of template DNA has been studied in vitro in the E.coli RNA polymerase system with native and U.V.-treated lambda DNA. Lambda DNA was more susceptible to U.V. than was calf-thymus DNA, yet a residual activity was observed at a U.V. dose of 0.5 x 10 4 erg/mm 2 . From the kinetic analysis of the reaction and the incorporation of lambda 32 P-labelled nucleoside triphosphates, it seems reasonable to conclude that U.V.-irradiation probably did not affect the DNA initiation sites, recognizable by RNA polymerase. The transcription products made with U.V.-irradiated lambda DNA were asymmetrical, and hybridized to the right half (R) and the left half (L) of lambda DNA with the ratio of R/L=4/1, and they showed a lower hybridizability than the transcripts with native lambda DNA. The initiation sites recognizable by RNA polymerase seemed to be the same on both native and U.V.-irradiated lambda DNA, though the transcription of U.V.-treated lambda DNA appeared to terminate with rather short RNA chains. (author)

  3. Experimental irradiation of UMo fuel: Pie results and modeling of fuel behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Plancq, D.; Huet, F.; Guigon, B.; Lemoine, P.; Sacristan, P.; Hofman, G.; Snelgrove, J.; Rest, J.; Hayes, S.; Meyer, M.; Vacelet, H.; Leborgne, E.; Dassel, G.

    2002-01-01

    Seven full-sized U Mo plates containing ca. 8 g/cm 3 of uranium in the fuel meat have been irradiated since the beginning of the French U Mo development program. The first three of them with 20% 235 U enrichment were irradiated at maximum surfacic power under 150 W/cm 2 in the OSIRIS reactor up to 50% burn-up and are under examination. Their global behaviour is satisfactory: no failure and a low swelling. The other four plates were irradiated in the HFR Petten at maximum surfacic power between 150 and 250 W/cm 2 with two enrichments 20 and 35%. The experiment was stopped after two cycles due to a fuel failure. The post- irradiation examinations were completed in 2001 in Petten. Examinations showed a correct behaviour of 20% enriched plates and an abnormal behaviour of the two other plates (35%-enriched) with a clad failure on the plate 4. The fuel failure appears to result from a combination of factors that led to high corrosion cladding and high fuel meat temperatures. (author)

  4. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  5. Development of new ORIGEN2 data library sets for research reactors with light water cooled oxide and silicide LEU (20 w/o) fuels based on JENDL-3.3 nuclear data

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Sembiring, Tagor Malem

    2013-01-01

    Highlights: • We developed new ORIGEN2 data library sets for research reactors based on JENDL-3.3. • The sets cover oxide and silicide LEU fuels with meat density up to 4.74 g U/cm 3 . • Two kinds of data library sets are available: fuel region and non-fuel regions. • We verified the new data library sets with other codes. • We validated the new data library against a non-destructive test. -- Abstract: New sets of ORIGEN2 data library dedicated to research/testing reactors with light water cooled oxide and silicide LEU fuel plates based on JENDL-3.3 nuclear data were developed, verified and validated. The new sets are considered to be an extension of the most recent release of ORIGEN2.2UPJ code, i.e. the ORLIBJ33 library sets. The newly generated ORIGEN2 data library sets cover both oxide and silicide LEU fuels with fuel meat density range from 2.96 to 4.74 g U/cm 3 used in the present and future operation of the Indonesian 30 MWth RSG GAS research reactor. The new sets are expected applicable also for other research/testing reactors which utilize similar fuels or have similar neutron spectral indices. In addition to the traditional ORIGEN2 library sets for fuel depletion analyses in fuel regions, in the new data library sets, new ORIGEN2 library sets for irradiation/activation analyses were also prepared which cover all representative non-fuel regions of RSG GAS such as reflector elements, irradiation facilities, etc. whose neutron spectra are significantly softer than fuel regions. Verification with other codes as well as validation with a non-destructive test result showed promising results where a good agreement was confirmed

  6. Irradiation damage in U{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    MacEwan, J R; Bethune, B

    1969-04-15

    The ordered body-centered tetragonal structure of U{sub 3}S1 transforms allotropically or by irradiation damage to ordered and disordered face -centered cubic structures respectively. An exposure of about 6 x 10{sup 16} fissions/cm{sup 3} at 100{sup o}C produced X-ray diffraction patterns of the cubic form with a 0.6% decrease in X-ray density. However, immersion density measurements showed a volume increase of 2.3% at a similar exposure. Further irradiation removed all but two peaks from the diffraction pattern indicating a trend to an amorphous structure. Electrical resistivity measurements showed that U{sub 3}Si is an electronic conductor with a large positive temperature coefficient. Measurements made below the irradiation temperature of 100{sup o}C showed that the temperature coefficient decreased with irradiation and approached zero at high exposure, Amorphous materials have a negligible temperature coefficient, so the result confirms the trend observed by X-ray analyses. (author)

  7. Fuel conversion of JRR-4 from HEU to LEU

    International Nuclear Information System (INIS)

    Ichikawa, Hiroki; Nakajima, Teruo

    1997-01-01

    Japanese JRR-4 (Japan Research Reactor No.4) is a pool type, light water moderated and cooled, ETR type fuel reactor used for Shielding experiments, isotope production, neutron activation analyses, Si doping, reactor students training. It acieved first criticality on January 28, 1965 with maximum thermal power 3.5MW. The standard core consistes of 20 Fuel elements, 7 control rods 5 Irradiation holes, neutron source, graphite reflectors. Available thermal flux is 7x1013 n/cm2/s. Within the RERTR program plans are made for core conversion from HEU to LEU

  8. TRIGA high wt -% LEU fuel development program. Final report

    International Nuclear Information System (INIS)

    West, G.B.

    1980-07-01

    The principal purpose of this work was to investigate the characteristics of TRIGA fuel where the contained U-235 was in a relatively high weight percent (wt %) of LEU (low enriched uranium - enrichment of less than 20%) rather than a relatively low weight percent of HEU (high enriched uranium). Fuel with up to 45 wt % U was fabricated and found to be acceptable after metallurgical examinations, fission product retention tests and physical property examinations. Design and safety analysis studies also indicated acceptable prompt negative temperature coefficient and core lifetime characteristics for these fuels

  9. Effects of HFIR irradiation at 550C on the microstructure and toughness of HT-9 and 9Cr-1Mo

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hu, W.L.; Huang, F.H.; Johnson, G.D.

    1984-01-01

    Results are reported for base metal and weld metal specimens of HT-9 and Modified 9Cr-1Mo following irradiation in HFIR at 55 0 C to 5 dpa. The DBTT shifts in irradiated base metal specimens were 30 0 C for HT-9 and 90 0 C for 9Cr-1Mo with further shifts of 20 0 C for weld metal. Concurrently, strength as measured by hardness increased 15 percent for HT-9 and 25 percent for 9Cr-1Mo. The hardness increases can be attributed in part to defect clusters 1.5 to 3.0 nm in diameter at densities approaching 10 17 cm -3 and also to lower rates of cavity nucleation ahead of the propagating crack

  10. Neutronic design of a LEU [low enriched uranium] core for the Ohio State University research reactor

    International Nuclear Information System (INIS)

    Seshadri, M.D.; Aybar, H.S.; Aldemir, T.

    1987-01-01

    The 10 kw HEU fuelled Ohio State University Reactor (OSURR) will be upgraded to operate at 500 kW with standardized 125 g 235 U LEU U 3 Si 2 fuel plates. An earlier scoping study based on two-dimensional diffusion calculations has identified the potential LEU core configurations for the conversion/upgrade of OSURR using the standardized plates in a 16-plate (+ 2 dummy plates) standard and 10-scoping study is improved for a more precise determination of the excess reactivities and safety rod worths for these potential configurations. Comparison of the results obtained by the improved model to experimental results and to the results of full-core Monte Carlo simulations shows excellent agreement. The results also indicate that the conversion/upgrade of OSURR can be realized with three possible LEU core configurations while maintaining a cold, clean shutdown margin of 1.57-1.91 % Δ k/k, depending on the configuration used. (Author)

  11. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  12. Status of core conversion with LEU silicide fuel in JRR-4

    International Nuclear Information System (INIS)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji

    1997-01-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10 13 (n/cm 2 /s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities

  13. Waste processing to support 99Mo production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Longley, S.; Carson, S.; McDonald, M.

    1997-01-01

    As part of the isotope production program at Sandia National Laboratories (SNL), procedures are being finalized for the production of 99 Mo from the irradiation of 235 U-coated stainless-steel targets at the Technical Area (TA) V reactor and hot-cell facilities. Methods have been identified and tested for the management of the nonproduct (waste) material as the final step in the production process. These methods were developed utilizing the waste material from a series of cold and hot tests, beginning with depleted uranium powder and culminating with a test involving an irradiated 235 U target with an initial fission product inventory of ∼18000 Ci at the end of the irradiation cycle. This paper describes the radioactive waste management from the isotope production

  14. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  15. Thermodynamic stabilities of MO2+x(s) (M = U, Np, Pu and Am), pourbaix diagrams

    International Nuclear Information System (INIS)

    Vitorge, Pierre; Faure, Marie-Helene; Vercouter, Thomas; Capdevila, Helene; Maillard, Serge

    2002-01-01

    The experimental solubilities of the hydrated amorphous freshly precipitated M(OH) z (am) and MO 2 (OH) z (am) compounds are often used as an upper limit for the safety assessments of deep waste repositories, since these compounds slowly transform to less soluble ones, as typically M(OH) 4 (am) to MO 2 (cr). Solubility (vs. redox potential) at pH=8, and E-pH predominance diagrams are plotted in aqueous solutions at 25degC by using thermodynamic data recently selected by the NEA-TDB review, or estimated by using classical chemical analogies for the non-redox reactions. The solubilities and relative stabilities are also calculated for the MO 2+x (s) crystalline compounds of known stabilities: U 4 O 9 (s), U 3 O 7 (s), U 3 O 8 (s) and Np 2 O 5 (s) where 2+x = 2.25, 2.33, 2.67 and 2.5 respectively. The stabilities of the other MO 2+x (s) compounds are estimated by analogy: M 4 O 9 (s) (M=U, Np, Pu), M 3 O 7 (s) and M 3 O 8 (s) (M=U, Pu), and M 2 O 5 (s) (M=Np, Am) are predicted to be more stable (i.e. less soluble), than the amorphous hydroxides. However their precipitation have never been observed at room temperature possibly for kinetic reasons or difficulties in interpreting solubility experiments. (author)

  16. Conversion and start up of Tehran Research Reactor with LEU fuel

    International Nuclear Information System (INIS)

    Zaker, M.

    2004-01-01

    The MW Tehran Research Reactor, Highly Enriched Uranium (HEU) fuel has been converted to Low Enriched Uranium (LEU) fuel using U 3 0 8 -Al with less than 20% enriched uranium. Measured value of excess reactivity, control rod worth and other parameters indicate good agreement with computational predictions. (author)

  17. Fractographic examination of HT-9 and 9Cr-1Mo Charpy specimens irradiated in the AD-2 test

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hu, W.L.

    1983-01-01

    Fracture surface topologies have been examined using scanning electron microscopy for 20 selected half sized Charpy impact specimens of HT-9 and Modified 9Cr-1Mo in order to provide improved understanding of fracture toughness degradation as a result of irradiation for Path E alloys. The specimen matrix included unirradiated specimens and specimens irradiated in EBR-II in the AD-2 experiment. Also, hardness measurements have been made on selected irradiated Charpy specimens. The results of examinations indicate that irradiation hardening due to G-phase formation at 390 0 C is responsible for the large shift in ductile-to-brittle transition temperature (DBTT) found in HT-9. Toughness degradation in HT-9 observed following higher temperature irradiations is attributed to precipitation at delta ferrite stringers. Reductions in toughness as a consequence of irradiation in Modified 9Cr-1Mo are attributed to in-reactor precipitation of (V,Nb)C and M 23 C 6 . It is shown that crack propagation rates for ductile and brittle failure modes can be measured, that they differ by over an order of magnitude and that unexpected multiple shifts in fracture mode from ductile to brittle failure can be attributed to the effect of delta ferrite stringers on crack propagation rates

  18. Scaling up the production capacity of U-Mo powder by HMD process

    International Nuclear Information System (INIS)

    Pasqualini, E.E.; Lopez, M.; Helzel Garcia, L.J.; Echenique, P.; Adelfang, P.

    2002-01-01

    The recent discovery that uranium alloys in metastable gamma phase can be hydrided at low temperatures and pressures have allowed developing the method of commuting bulk materials by milling the hydride to desired size and then dehydriding the powder. This process is called HMD (hydriding-milling-dehydriding) and needs an initial step of hydrogen incorporation to allow the alloy to be hydrided. This four step process has been conveniently set up for the production of U-7Mo powder for its use in nuclear fuels. Low equipment investment and low man power are needed for this achievement. The process is being analyzed in its scaling up for one kilogram batches and a 50 kilogram per year production capacity of U-Mo powder. (author)

  19. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  20. Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    El-Sahlamy, Neama M. [Nuclear and Radiological Regulatory Authority, Cairo (Egypt)

    2017-11-15

    In the current work, comparisons between the core performances when using different LEU fuels are done. The fuels tested are UA1{sub X}-A1, U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al fuels with 19.7 % enrichment. Calculations are done using RELAP5 code to evaluate the thermal-hydraulic performance of the IAEA benchmark 10 MW reactor. First, a reassessment of the slow reactivity insertion transient with UA1{sub X}-A1 LEU fuel to compare the results with those reported in the IAEA TECDOC [1]. Then, comparisons between the thermal-hydraulic core performances when using the three LEU fuels are done. The assessment is performed at initial power of 1.0 W. The reactor power is calculated using the RELAP5 point kinetic model. The reactivity feedback, from changes in water density and fuel temperature, is considered for all cases. From the results it is noticed that U{sub 3}Si{sub 2}-Al fuel gives the best fuel performance since it has the minimum value of peak fuel temperature and the minimum peak clad surface temperature, as operating parameters. Also, it gives the maximum value of the Critical Heat Flux Ratio and the lowest tendency to flow instability occurrence.

  1. An alternative LEU design for the FRM-II

    International Nuclear Information System (INIS)

    Hanan, N.A.; Mo, S.C.; Smith, R.S.; Matos, J.E.

    1997-02-01

    The Alternative LEU Design for the FRM-II proposed by the RERTR Program at Argonne National Laboratory (ANL) has a compact core consisting of a single fuel element that uses LEU silicide fuel with a uranium density of 4.5 g/cm[sup 3] and has a power level of 32 MW. Both the HEU design by the Technical University of Munich (TUM) and the alternative LEU design by ANL have the same fuel lifetime (50 days) and the same neutron flux performance (8 x 10[sup 14] n/cm[sup 2]/s in the reflector). LEU silicide fuel with 4.5 g/cm[sup 3] has been thoroughly tested and is fully-qualified, licensable, and available now for use in a high flux reactor such as the FRM-II. Computer models for the HEU and LEU designs have been exchanged between TUM and ANL and discrepancies have been resolved. The following issues are addressed: qualification of HEU and LEU silicide fuels, stability of the fuel plates, gamma heating in the heavy water reflector, a hypothetical accident involving the configuration of the reflector, a loss of primary coolant flow transient due to an interrupted power supply, the radiological consequences of larger fission product and plutonium inventories in the LEU core, and cost and schedule. Calculations were also done to address the possibility that new high density LEU fuels could be developed that would allow conversion of the TUM HEU design to LEU fuel. Based on the excellent results for the Alternative LEU Design that were obtained in these analyses, the RERTR Program concludes that all of the major technical issues regarding use of LEU fuel instead of HEU fuel in the FRM-II have been successfully resolved and that it is definitely feasible to use LEU fuel in the FRM-II without compromising the safety or performance of the facility

  2. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  3. Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Bartsch, G.

    1987-01-01

    In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% 235 U) is presented. In order to assess the performance of the core with the LEU ( 235 U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial 235 U content is 195 g 235 U/SFE and 9.7 g 235 U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE

  4. Neutron flux measurement in the central channel (XC-1) of TRIGA 14 MW LEU core

    International Nuclear Information System (INIS)

    BARBOS, D.; BUSUIOC, P.; ROTH, Cs.; PAUNOIU, C.

    2008-01-01

    The TRIGA 14 MW reactor, operated by Institute for Nuclear Research Pitesti, Romania, is a pool type reactor, and has a rectangular shape which holds fuel bundles and is surrounded with beryllium reflectors. Each fuel bundle is composed of 25 nuclear fuel rods. The TRIGA 14 MW reactor was commissioned 28 years ago with HEU fuel rods. The conversion was gradually achieved, starting in February 1992 and completed in March 2006. The full conversion of the 14 MW TRIGA Research Reactor was completed in May 2006 and each step of the conversion was achieved by removal of HEU fuel, replaced by LEU fuel, accompanied by a large set of theoretical evaluation and physical measurements intended to confirm the performances of gradual conversion. After the core full conversion, a program of measurements and comparisons with previous results of core physics and measurements is underway, allowing data acquisition for normal operation, demonstration of safety and economics of the converted core. Neutron flux spectrum measurements in the XC in the XC-1 water 1 water-filled channel were performed using multi multi-foil activation techniques. The neutron spectra and flux are obtained by unfolding from measured reaction rates using SAND II computer code. The integral neutron flux value for LEU core is greater of 13% than for the standard HEU core. Also thermal neutron flux value for converted LEU core is smaller by 0.38% than for the standard HEU core. These differences appear because the foil activation detectors have been irradiated using a pneumatic rabbit having a diameter of 32 mm, whereas foil irradiations in standard HEU core has been performed with a pneumatic rabbit having a diameter of 14 mm, and therefore the neutron spectra in LEU core is less thermalized and the weight of fast neutron is greater

  5. Analyses for inserting fresh LEU fuel assemblies instead of fresh HEU fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam

    International Nuclear Information System (INIS)

    Hanan, N. A.; Deen, J.R.; Matos, J.E.

    2005-01-01

    Analyses were performed by the RERTR Program to replace 36 burned HEU (36%) fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam with either 36 fresh fuel assemblies currently on-hand at the reactor or with LEU fuel assemblies to be procured. The study concludes that the current HEU (36%) WWR-M2 fuel assemblies can be replaced with LEU WWR-M2 fuel assemblies that are fully-qualified and have been commercially available since 2001 from the Novosibirsk Chemical Concentrates Plant in Russia. The current reactor configuration using re-shuffled HEU fuel began in June 2004 and is expected to allow normal operation until around August 2006. If 36 HEU assemblies each with 40.2 g 235 U are inserted without fuel shuffling over the next five operating cycles, the core could operate for an additional 10 years until June 2016. Alternatively, inserting 36 LEU fuel assemblies each containing 49.7 g 235 U without fuel shuffling over five operating cycles would allow normal operation for about 14 years from August 2006 until October 2020. The main reason for the longer service life of the LEU fuel is that its 235 U content is higher than the 235 U content needed simply to match the service life of the HEU fuel. Fast neutron fluxes in the experiment regions would be very nearly the same in both the HEU and LEU cores. Thermal neutron fluxes in the experiment regions would be lower by 1-5%, depending on the experiment type and location. (author)

  6. Study on Al-alloy or silicide LEU for DR3 in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Karsten [Riso National Laboratory, DK 4000 Roskilde (Germany)

    1985-07-01

    The 10 MW D{sub 2}0-moderated and -cooled research reactor DR3 has at present HEU fuel available for continued operation till early 19. This report presents the status of a feasibility study prepared for selection of the best suited candidate LEU fuel type for DR3 at a potential conversion in 1988. At the moment two alternatives are evaluated: UAl-alloy with modified geometry and U{sub 3}Si{sub 2} with unchanged geometry. A decision on the type selected for further investigation is expected late 1984. The investigation should comprise development, in- and out-of-pile--testing and licensing activities on the potential LEU option. (author)

  7. Behaviour of uranium under irradiation; Comportement de l'uranium sous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mustelier, J P; Quere, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The main results obtained in a study of the formation of defects caused in uranium by fission at low temperature are reported. By irradiation at 20 K. it was possible to determine the number of Frenkel pairs produced by one fission. An analysis of the curves giving the variations in electrical resistivity shows the size of the displacement spikes and the mechanism of defect creation due to fission. Irradiations at 77 K gave additional information, showing behaviour differences in the case of recrystallised and of cold worked uranium. The diffusion of rare gases was studied using metal-rare gas alloys obtained by electrical discharge, and samples of irradiated uranium. Simple diffusion is only responsible for the release of the rare gases under vacuum in cases where the rare gas content is very low (very slightly irradiated U). On the other hand when the concentration is higher (samples prepared by electrical discharge) the gas is given off by the formation, growth and coalescence of bubbles; the apparent diffusion coefficient is then quite different from the true coefficient and cannot be used in calculations on swelling. The various factors governing the phenomenon of simple diffusion were examined. It was shown in particular that a small addition of molybdenum could reduce the diffusion coefficient by a factor of 100. The precipitation of gas in uranium (Kr), in silver (Kr) and in Al-Li alloy (He) have been followed by measurement of the crystal parameter and of the electrical resistivity, and by electron microscope examination of thin films. The important part played by dislocations in the generation and growth of bubbles has been demonstrated, and it has been shown also that precipitation of bubbles on the dislocation lattice could block the development of recrystallisation. The results of these studies were compared with observations made on the swelling of uranium and uranium alloys U Mo and U Nb strongly irradiated between 400 and 700 C. In the case of Cubic

  8. Irradiation behavior of uranium-molybdenum dispersion fuel: Fuel performance data from RERTR-1 and RERTR-2

    International Nuclear Information System (INIS)

    Meyer, M.K.; Clark, C.R.; Hayes, S.L.; Strain, R.V.; Hofman, G.L.; Snelgrove, J.L.; Park, J.M.; Kim, K.H.

    1999-01-01

    This paper presents quantitative data on the irradiation behavior of uranium-molybdenum fuels from the low temperature RERTR-1 and -2 experiments. Fuel swelling measurements of U-Mo fuels at ∼40% and ∼70% burnup are presented. The rate of fuel-matrix interaction layer growth is estimated. Microstructures of fuel in the pre- and postirradiation condition were compared. Based on these data, a qualitative picture of the evolution of the U-Mo fuel microstructure during irradiation has been developed. Estimates of uranium-molybdenum fuel swelling and fuel-matrix interaction under high-power research reactor operating conditions are presented. (author)

  9. Void formation and helium effects in 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated in HFIR and FFTF at 400/degree/C

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Martensitic/ferritic 9Cr-1MoVNb and 12Cr-1MoVW steels doped with up to 2 wt% Ni have up to 450 appm He after HFIR irradiation to /approximately/38 dpa, but only 5 appm He after 47 dpa in FFTF. No fine He bubbles and few or no larger voids were observable in any of these steels after FFTF irradiation at 407/degree/C. By contrast, many voids were found in the undoped steels (30-90 appm He) irradiated in HFIR at 400/degree/C, while voids plus many more fine He bubbles were found in the Ni-doped steels (400-450 appm He). Irradiation in both reactors at /approximately/400/degree/C produced significant changes in the as-tempered lath/subgrain boundary, dislocation, and precipitation structures that were sensitive to alloy composition, including doping with Ni. However, for each specific alloy the irradiation-produced changes were exactly the same comparing samples irradiated in FFTF and HFIR, particularly the Ni-doped steels. Therefore, the increased void formation appears solely due to the increased helium generation found in HFIR. While the levels of void swelling are relatively low after 37-39 dpa in HFIR (0.1-0.4%), details of the microstructural evolution suggest that void nucleation is still progressing, and swelling could increase with dose. The effect of helium on void swelling remains a valid concern for fusion application that requires higher dose experiments. 15 refs., 14 figs., 8 tabs

  10. Characterization of fuel miniplates fabricated with U(Mo) particles dispersed in Al-Si matrices

    International Nuclear Information System (INIS)

    Arico, S F; Mirandou, M I; Balart, S N; Fabro, J O

    2012-01-01

    In 2011 ECRI facility (Depto. ECRI, GCCN, CNEA) restarted the development for the fabrication of dispersion miniplates fuel elements in Al-Si matrix. This miniplates are fabricated with atomized U-7wt%Mo particles dispersed in a matrix formed by a mixture of pure Al and pure Si powders. The first results for an Al-4wt%Si matrix were presented at the AATN 2011 Annual Meeting. In this work, new results from the microstructural characterization of the meat in Al- 2wt%Si and pure Al miniplates are presented and compared with the previous ones. It is the intention to study the influence of the fabrication parameters as well as different Si concentration in the matrix, on the formation and characteristics of the interaction layer formed between the particles and the matrix at the end of the fabrication process. According to the results presented in this work an improvement can be observed on miniplates with Al-Si matrix respect to the one with pure Al. On the miniplates with Al- Si matrix, almost 100 % of the U(Mo) particles presented, at least in some fraction of its surface, an interaction layer composed by phases that contain Si. Moreover its morphological characteristics are independent of the crystallographic state of the U(Mo) particles. However, the oxide layer formed on the U(Mo) during the hot rolling acts as a barrier to the formation of the interaction layer. As a consequence, it is then mandatory to introduce some changes on the fabrication parameters to avoid, or at least minimize, this oxide layer (author)

  11. Modeling the homogenization kinetics of as-cast U-10wt% Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie, E-mail: zhijie.xu@pnnl.gov [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Joshi, Vineet [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hu, Shenyang [Reactor Materials & Mechanical Design, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Paxton, Dean [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lavender, Curt [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Burkes, Douglas [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-04-01

    Low-enriched U-22at% Mo (U–10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U–10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding of the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.

  12. Evaluation of 99Mo/99mTc generator experiment using PZC material and irradiated natural molybdenum

    International Nuclear Information System (INIS)

    Khongpetch, P.; Chingjit, S.; Dangprasert, M.; Rangsawai, W.; Virawat, N.

    2006-01-01

    Technetium-99m ( 99m Tc) is the most widely used radioisotope in nuclear medicine, accounting for more than 80% of all diagnostic nuclear medicine procedure. 99m Tc is almost exclusively produced from the decay of its parent molybdenum-99 ( 99 Mo). The present sources of 99 Mo are research reactors by using the (n, γ) nuclear reaction with natural molybdenum, resulting in inexpensive but low specific activity 99 Mo, or by neutron-induced fission of uranium-235, which result in expensive but high specific activity 99 Mo. The technology requirement for processing of 99 Mo from the (n, γ) 'activation method' is rather simple, and is within the reach of most developing countries operating research reactors. In the fission method' the technological and infrastructure requirements are some complex, and possibly can be sustained only by countries with advanced nuclear technology. To overcome these difficulties, Japan Atomic Energy Research Institute (JAERI) and KAKEN company have developed alternative technology for 99 Mo/ 99m Tc generator by using a molybdenum absorbent called Poly Zirconium compound (PZC) and irradiated natural molybdenum. The paper describes experiments for evaluation the performance of PZC as a column packing material for 99 Mo/ 99m Tc generator from (n, γ) 99 Mo. (author)

  13. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  14. A conversion development program to LEU targets for medical isotope production in the MAPLE Facilities

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2000-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). The molybdenum extraction process from the HEU targets provided predictable, consistent yields for our high-volume molybdenum production process. A reliable supply of HEU for the NRU research reactor targets has enabled MDS Nordion to develop a secure chain of medical isotope supply for the international nuclear medicine community. Each link of the isotope supply chain, from isotope production to patient application, has been established on a proven method of HEU target irradiation and processing. To ensure a continued reliable and timely supply of medical isotopes, the design of the MAPLE facilities was based on our established process - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a program to convert the MAPLE facilities to LEU targets. An initial feasibility study was initiated to identify the technical issues to convert the MAPLE targets from HEU to LEU. This paper will present the results of the feasibility study. It will also describe future challenges and opportunities in converting the MAPLE facilities to LEU targets for large scale, commercial medical isotope production. (author)

  15. Determination of 233U, 235U, 238U and 239Pu fission yields induced by fission and 14.7 MeV neutrons

    International Nuclear Information System (INIS)

    Laurec, Jean; Adam, Albert; Bruyne, Thierry de.

    1981-12-01

    The 233 U, 235 U, 238 U, 239 Pu fission yields have been determined by a radiochemical method. A target and a fission chamber made of same fissible material are irradied together. The total fission number is measured from the fission chamber. The fission product activities are directly measured on the target using calibrated Ge-Li detectors. The fissible material masses are determined by alpha and mass spectrometries. The irradiations were made on the critical assemblies PROSPERO and CALIBAN and on the 14 MeV neutron generator of C.E. VALDUC. 3 to 5% fission yield errors are got for the most measured nuclides: 95 Zr, 97 Zr, 99 Mo, 103 Ru, 131 I, 132 Te, 140 Ba, 141 Ce, 143 Ce, 144 Ce, 147 Nd [fr

  16. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    In support of the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNL’s efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  17. HEU to LEU fuel conversion. Final report

    International Nuclear Information System (INIS)

    Mulder, R.U.

    1994-10-01

    The Nuclear Regulatory Commission issued a ruling, effective March 27, 1986, that all U.S. non-power reactors convert from HEU fuel to LEU fuel. A Reduced Enrichment for Research and Test Reactors Program was conducted by the Department of Energy at Argonne National Laboratory to coordinate the development of the high density LEU fuel and assist in the development of Safety Analysis Reports for the smaller non-power reactors. Several meetings were held at Argonne in 1987 with the non-power reactor community to discuss the conversion and to set up a conversion schedule for university reactors. EG ampersand G at Idaho was assigned the coordination of the fuel element redesigns. The fuel elements were manufactured by the Babcock ampersand Wilcox Company in Lynchburg, Virginia. The University of Virginia was awarded a grant by the DOE Idaho Operations Office in 1988 to perform safety analysis studies for the LEU conversion for its 2 MW UVAR and 100 Watt CAVALIER reactors. The University subsequently decided to shut down the CAVALIER reactor. A preliminary SAR on the UVAR, along with Technical Specification changes, was submitted to the NRC in November, 1990. An updated SAR was approved by the NRC in January, 1991. In September, 1992, representatives from the fuel manufacturer (B ampersand W) and the fuel designer (EG ampersand G, Idaho) came to the UVAR facility to observe trial fittings of new 22 plate LEU mock fuel elements. B ampersand W fabricated two non-fuel bearing elements, a regular 22 plate element and a control rod element. The elements were checked against the drawings and test fitted in the UVAR grid plate. The dimensions were acceptable and the elements fit in the grid plate with no problems. The staff made several suggestions for minor construction changes to the end pieces on the elements, which were incorporated into the final design of the actual fuel elements. Selected papers are indexed separately for inclusion in the Energy Science and Technology

  18. HEU to LEU fuel conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, R.U.

    1994-10-01

    The Nuclear Regulatory Commission issued a ruling, effective March 27, 1986, that all U.S. non-power reactors convert from HEU fuel to LEU fuel. A Reduced Enrichment for Research and Test Reactors Program was conducted by the Department of Energy at Argonne National Laboratory to coordinate the development of the high density LEU fuel and assist in the development of Safety Analysis Reports for the smaller non-power reactors. Several meetings were held at Argonne in 1987 with the non-power reactor community to discuss the conversion and to set up a conversion schedule for university reactors. EG&G at Idaho was assigned the coordination of the fuel element redesigns. The fuel elements were manufactured by the Babcock & Wilcox Company in Lynchburg, Virginia. The University of Virginia was awarded a grant by the DOE Idaho Operations Office in 1988 to perform safety analysis studies for the LEU conversion for its 2 MW UVAR and 100 Watt CAVALIER reactors. The University subsequently decided to shut down the CAVALIER reactor. A preliminary SAR on the UVAR, along with Technical Specification changes, was submitted to the NRC in November, 1990. An updated SAR was approved by the NRC in January, 1991. In September, 1992, representatives from the fuel manufacturer (B&W) and the fuel designer (EG&G, Idaho) came to the UVAR facility to observe trial fittings of new 22 plate LEU mock fuel elements. B&W fabricated two non-fuel bearing elements, a regular 22 plate element and a control rod element. The elements were checked against the drawings and test fitted in the UVAR grid plate. The dimensions were acceptable and the elements fit in the grid plate with no problems. The staff made several suggestions for minor construction changes to the end pieces on the elements, which were incorporated into the final design of the actual fuel elements. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Code structure for U-Mo fuel performance analysis in high performance research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Cho, Tae Won; Lee, Chul Min; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A performance analysis modeling applicable to research reactor fuel is being developed with available models describing fuel performance phenomena observed from in-pile tests. We established the calculation algorithm and scheme to best predict fuel performance using radio-thermo-mechanically coupled system to consider fuel swelling, interaction layer growth, pore formation in the fuel meat, and creep fuel deformation and mass relocation, etc. In this paper, we present a general structure of the performance analysis code for typical research reactor fuel and advanced features such as a model to predict fuel failure induced by combination of breakaway swelling and pore growth in the fuel meat. Thermo-mechanical code dedicated to the modeling of U-Mo dispersion fuel plates is being under development in Korea to satisfy a demand for advanced performance analysis and safe assessment of the plates. The major physical phenomena during irradiation are considered in the code such that interaction layer formation by fuel-matrix interdiffusion, fission induced swelling of fuel particle, mass relocation by fission induced stress, and pore formation at the interface between the reaction product and Al matrix.

  20. Thermal Properties for the Thermal-Hydraulics Analyses of the BR2 Maximum Nominal Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2015-02-01

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in 235U) to LEU (19.75% enriched in 235U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. Section 2 provides a summary of the thermal properties in the form of tables while the following sections and appendices present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: i) aluminum, ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), iii) beryllium, and iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase’s volume fraction. Appendix B provides a revised methodology for determining the thermal conductivity as a function of burnup for HEU and LEU.