WorldWideScience

Sample records for irradiated intermetallic compounds

  1. Computer simulations of disordering kinetics in irradiated intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; Diaz de la Rubia, T.

    1994-01-01

    Molecular-dynamics computer simulations of collision cascades in intermetallic Cu 3 Au, Ni 3 Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni 3 Al and Cu 3 Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given

  2. Prediction of intermetallic compounds

    International Nuclear Information System (INIS)

    Burkhanov, Gennady S; Kiselyova, N N

    2009-01-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  3. The effect of boron additions on irradiation-induced order changes in Ni3Al intermetallic compounds

    International Nuclear Information System (INIS)

    Njah, N.; Gilbon, D.; Dimitrov, O.

    1995-01-01

    The effects of boron additions (0.1 wt%) on the kinetics of atomic order changes in a Ni 76 Al 24 intermetallic compound, under 1 MeV electron irradiation, were investigated at temperatures of 293 K and 410 K and displacement rates of 0.09 x 10 -3 to 4.7 x 10 -3 dpa.s -1 . In these irradiation conditions, a state of residual order was obtained for long irradiation times, characterized by a steady state order parameter S∞; it corresponds to a competition between two opposite features: irradiation disordering and thermal reordering enhanced by irradiation. Boron additions did not affect the efficiency of irradiation-induced disordering: the disordering cross-section (or, equivalently, the number of replacements per displacement var-epsilon) were comparable with and without a boron addition. By contrast, the S∞ values at 293 K were much lower in the alloy containing boron. Since boron does not change the disordering rate, the large difference between the values obtained in undoped and in boron-doped alloys shows that the reordering rate is strongly reduced by the presence of boron. Thus, boron modifies the mobility of the defects responsible for the irradiation-enhanced diffusion. The data on dislocation-loop size and the reordering kinetics suggest that vacancies are trapped by boron at low temperatures and immobilized, probably by the formation of a boron-vacancy complex. The effect becomes weaker at higher displacement rates and higher temperatures, probably due to the boron-vacancy complexes becoming unstable. It is proposed that two different reordering mechanisms may be operative at 293 K, according to the presence of boron: reordering is promoted by vacancy migration in the Ni 76 Al 24 alloy, whereas in the Ni 76 Al 24 (0.1 wt%B) alloy, it is promoted by the migration of split-interstitials or/and of low-mobility vacancy-boron complexes

  4. Computer simulation of disordering kinetics in irradiated A3B intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; De la Rubia, T.

    1994-01-01

    Molecular dynamics computer simulations of collision cascades on intermetallic Ni 3 Al, Cu 3 Au and NiAl have been performed to study the nature of the disordering processes in the cascade. The evolution of the crystalline and chemical order parameters show different time scales. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the relaxation time and saturation value of the chemical short range order, SRO. A theoretical model for the time evolution of the SRO is given. ((orig.))

  5. Diffusion mechanisms in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)

    1992-08-01

    Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.

  6. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  7. Fracture toughness of ordered intermetallic compounds exhibiting limited ductility and mechanical properties of ion-irradiated polycrystalline NiAl. Final report, July 1, 1986 - June 30, 1997

    International Nuclear Information System (INIS)

    Ardell, A.J.

    1997-09-01

    The focus of the research performed under the auspices of this grant changed several times during the lifetime of the project. The initial activity was an investigation of irradiation-induced amorphization of ordered intermetallic compounds, using energetic protons as the bombarding species. Two significant events stimulated a change of direction: (1) the proton accelerating facility that the authors had been using at the California State University at Los Angeles became unavailable late in 1988 because of a personnel matter involving the only individual capable of operating the machine; (2) they learned that disordering and amorphization of intermetallic compounds produced interesting effects on their mechanical properties. Loss of access t the local accelerator prompted a collaboration with Dr. Droa Pedraza of the Oak Ridge National Laboratory (ORNL), enabling access to the accelerator at ORNL. The influence of disordering and amorphization on mechanical properties ultimately stimulated the development of a miniaturized disk-bend testing (MDBT) facility, the intent of which was to provide semiquantitative and even quantitative measures of the mechanical behavior of ion-irradiated ordered intermetallic alloys. The second phase of the project involved the perfection and usage of the MDBT, and involved exploratory experiments on unirradiated materials like amorphous alloy ribbons and brittle grain boundaries in Ni 3 Al. This report is a brief summary of the research highlights of the project, organized according to the activity that was emphasized at the time

  8. Spin polarization in rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Steenwijk, F.J. van

    1976-01-01

    In this thesis the results of Moessbauer experiments performed on a series of intermetallic compounds of europium and gadolinium are reported. For each of these compounds the magnetic hyperfine field, the electric field gradient at the nuclear site and the isomer shift were determined. For most of the compounds the magnetic ordering temperature was also measured. For some of the europium compounds (e.g. EuAu 5 , EuAg 5 , and EuCu 5 ) it could be derived from the measurements that the easy direction of magnetization falls along the crystallographic c-axis. In a number of compounds (e.g. EuCu 5 , EuZn 5 , EuAu 2 and GdCu 5 ), the various contributions to the magnetic hyperfine field were disentangled by the investigation of suitable pseudobinary compounds that are dilute in Eu. The neighbour contribution Hsub(N) and the paramagnetic Curie temperature thetasub(p) were compared with each other in terms of the RKKY model for EuCu 5 and GdCu 5 . Since the correspondence was found to be poor it was concluded that the magnetic behaviour in these compounds cannot be described by a simple free electron picture as is the basis for the RKKY model

  9. Containerless automated processing of intermetallic compounds and composites

    Science.gov (United States)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  10. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  11. Oxygen stabilized rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Dariel, M.P.; Malekzadeh, M.; Pickus, M.R.

    1975-10-01

    A new, oxygen-stabilized intermetallic compound was identified in sintered, pre-alloyed rare-earth iron powder samples. Its composition corresponds to formula R 12 Fe 32 O 2 and its crystal structure belongs to space group Im3m. The presence of these compounds was observed, so far, in several R--Fe--O systems, with R = Gd, Tb, Dy, Ho, Er, and Y

  12. Hydrogenations of alloys and intermetallic compounds of magnesium

    International Nuclear Information System (INIS)

    Gavra, Z.

    1981-08-01

    A kinetic and thermodynamic study of the hydrogenation of alloys and intermetallic compounds of magnesium is presented. It was established that the addition of elements of the IIIA group (Al, Ga, In) to magnesium catalyses its hydrogenation. This is explained by the mechanism of diffusion of magnesium cation vacancies. The hydride Mg 2 NiH 4 was characterized by thermal analysis, x-ray diffraction and NMR measurements. The possibility of forming pseudo-binary compounds of Mg 2 Ni by the substitution of nickel or magnesium was examined. The hydrogenation of the inter-metallic compounds of the Mg-Al system was investigated. It was found that the addition of indium and nickel affected the hydrogenation kinetics. A preliminary study of the hydrogenation of various binary and ternary alloys of magnesium was carried out. (Author)

  13. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  14. Intermetallic compound development for the 21st century

    International Nuclear Information System (INIS)

    Munroe, P.R.

    2000-01-01

    lntermetallic compounds have been vigorously researched for the past twenty years. As a result of these studies the fundamental behaviour of a number of transition metal aluminides and suicides is now well understood, and a number of alloys with commercially acceptable properties have been developed. Future challenges for these alloys, for example Ni 3 AI, TiAI and Fe 3 AI, are focused on the development of large-scale production routes. However, there remain a number of other intermetallic compounds, such as Laves phases, which exhibit some promising properties, but little is presently known about their intrinsic behaviour. For compounds such as these more fundamental studies are required

  15. Investigations on Ce- and Yb-based intermetallic compounds

    International Nuclear Information System (INIS)

    Elenbaas, R.A.

    1980-01-01

    The author describes investigations on a number of cerium- and ytterbium-based intermetallic compounds and alloys, yielding a lot of experimental results which could not always be put in a quantitative picture. All experimental data are consistent with a single-ion behaviour, where the 4f state is more or less modified by the conduction electrons. In the investigated systems several different features of the magnetism of cerium atoms in metals were studied. (Auth.)

  16. Lattice and magnetic anisotropies in uranium intermetallic compounds

    DEFF Research Database (Denmark)

    Havela, L.; Mašková, S.; Adamska, A.

    2013-01-01

    Examples of UNiAlD and UCoGe illustrate that the soft crystallographic direction coincides quite generally with the shortest U-U links in U intermetallics. Added to existing experimental evidence on U compounds it leads to a simple rule, that the easy magnetization direction and the soft crystall...... crystallographic direction (in the sense of highest compressibility under hydrostatic pressure) must be mutually orthogonal....

  17. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  18. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  19. An experimental study of praseodymium intermetallic compounds at low temperatures

    International Nuclear Information System (INIS)

    Greidanus, F.J.A.M.

    1982-01-01

    In this thesis the author studies the low temperature properties of praseodymium intermetallic compounds. In chapter 2 some of the techniques used for the experiments described in the subsequent chapters are discussed. A set-up to perform specific-heat experiments below 1 K and a technique for performing magnetic susceptibility measurments below 1 K, using a superconducting quantum interference device (SQUID) are described. Chapter 3 is devoted to the theory of interacting Pr 3+ ions. Both bilinear and biquadratic interactions are dealt with in a molecular-field approximation. It is shown that first as well as second-order phase transitions can occur, depending on the nature of the ground state, and on the ratio of magnetic to crystal-field interactions. In chapters 4, 5, 6 and 7 experimental results on the cubic Laves phase compounds PrRh 2 , PrIr 2 , PrPt 2 , PrRu 2 and PrNi 2 are presented. From inelastic neutron scattering experiments the crystalline electric field parameters of the above compounds are determined. In chapters 5 and 6 susceptibility, neutron-diffraction, hyperfine specific-heat, low-field magnetization, pulsed-field magnetization, specific-heat and resistivity measurements are presented. In chapter 7 the specific heat and differential susceptibility of PrNi 2 below 1 K are studied. Finally, in chapter 8 praseodymium intermetallic compounds with low-symmetry singlet ground states, and cubic compounds with magnetic doublet ground states are studied. (Auth.)

  20. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  1. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  2. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  3. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  4. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Pecharsky, A.O.; Pecharsky, V.K.

    2004-01-01

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from ∼3 to ∼350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature ( 2 , Er 3 Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K

  5. Diffusion in intermetallic compounds studied using short-lived radioisotopes

    CERN Multimedia

    Diffusion – the long range movement of atoms – plays an important role in materials processing and in determining suitable applications for materials. Conventional radiotracer methods for measuring diffusion can determine readily how distributions of radioactive probe atoms in samples evolve under varying experimental conditions. It is possible to obtain limited information about atomic jump rates and pathways from these measurements; however, it is desirable to make more direct observations of the atomic jumps by using experimental methods that are sensitive to atomic scale processes. One such method is time-differential perturbed $\\gamma$–$\\gamma$-angular correlation spectroscopy (PAC). Two series of PAC experiments using $^{111m}$Cd are proposed to contribute to fundamental understanding of diffusion in intermetallic compounds. The goal of the first is to determine the dominant vacancy species in several Li$_{2}$-structured compounds and see if the previously observed change in diffusion mechanism th...

  6. Experimental formation enthalpies for intermetallic phases and other inorganic compounds

    Science.gov (United States)

    Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei

    2017-01-01

    The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466

  7. Effects of elastic anisotropy on mechanical behavior of intermetallic compounds

    International Nuclear Information System (INIS)

    Yoo, M.H.

    1991-01-01

    Fundamental aspects of the deformation and fracture behavior of ordered intermetallic compounds are examined within the framework of linear anisotropic elasticity theory of dislocations and cracks. The orientation dependence and the tension/compression asymmetry of yield stress are explained in terms of the anisotropic coupling effect of non-glide stresses to the glide strain. The anomalous yield behavior is related to the disparity (edge/screw) of dislocation mobility and the critical stress required for the dislocation multiplication mechanism of Frank-Read type. The slip-twin conjugate relationship, extensive faulting, and pseudo-twinning (martensitic transformation) at a crack tip can be enhanced also by the anisotropic coupling effect, which may lead to transformation toughening of shear type

  8. Electronic and magnetic properties of intermetallic compound YCo5

    International Nuclear Information System (INIS)

    Zhang, G.W.; Feng, Y.P.; Ong, C.K.

    1998-01-01

    The electronic and magnetic properties of the intermetallic compound YCo 5 have been studied using density functional theory with the local spin density approximation. The calculated magnetic moments of Y, Co(2c) and Co(3g) are -0.61, 1.68 and 2.04 μ B , respectively, and the total magnetic moment is about 8.87 μ B per formula unit, which agrees well with the previous experimental results. The dependence of the magnetic moments of Y, Co(2c) and Co(3g) on the lattice spacing has been investigated. The local electronic structure of Y, Co(2c) and Co(3g) are discussed in detail. The local magnetic susceptibilities of Y, Co(2c) and Co(3g) are calculated. Based on our results, YCo 5 was found to have characteristic of a strong ferromagnet. (orig.)

  9. Effect of Flux onto Intermetallic Compound Formation and Growth

    Directory of Open Access Journals (Sweden)

    Idris Siti Rabiatull Aisha

    2016-01-01

    Full Text Available In this study, the effect of different composition of no-clean flux onto intermetallic compound (IMC formation and growth was investigated. The solder joint between Sn-3Ag-0.5Cu solder alloy and printed circuit board (PCB was made through reflow soldering. They were further aged at 125°C and 150°C for up to 1000 hours. Results showed that fluxes significantly affect the IMC thickness and growth. In addition, during aging, the scallop and columnar morphology of IMC changed to a more planar type for both type of flux during isothermal aging. It was observed that the growth behavior of IMC was closely related to initial soldering condition.

  10. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  11. Computer simulations of disordering and amorphization kinetics in intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Victoria, M.

    1995-01-01

    Molecular dynamics computer simulations on three intermetallic compounds, Cu 3 Au, Ni 3 Al and NiAl, have been performed to investigate the kinetics of the disordering and amorphization processes. These systems were chosen because reliable embedded atom potentials were developed for the constituent species and their alloys, and also because extended experimental results are available for them. Previous simulations of collision cascades with 5 keV Cu and Ni primary knock-out atom (PKA) showed a significant difference between the evolution of the short range order (SRO) and the crystalline order (CO) parameters in all of the intermetallics: a complete loss of the crystalline structure and only partial chemical disorder in the core of the cascade [T. Diaz de la Rubia et al., Phys. Rev. B 47 (1993) 11483; M. Spaczer et al., Phys. Rev. B 50 (1994) 13204]. The present paper deals with the simulation of the amorphization process in NiAl by 5 and 15 keV Ni PKAs. The kinetic energy of the atoms in the simulated systems was removed on different time scales to mimic strong or weak coupling between electrons and phonons. No evidence of amorphization was found at the end of the cascades created by the 5 keV recoils. However, the 15 keV PKA events showed that (i) in the no-coupling case the system evolved to a highly disordered state, (ii) an amorphous region with about 100 non-lattice atoms was found in the case of weak coupling, (iii) the locally melted and recrystallized region collapsed to a small dislocation loop when medium coupling was used and (iv) a highly ordered state resulted in the case of strong coupling. (orig.)

  12. Microstructure and tribological properties of Ti–Cu intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo, Chun; Zhou, Jiansong; Yu, Youjun; Wang, Lingqian; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    Highlights: ► Ti–Cu coating has been synthesized on pure Ti substrate by laser cladding. ► Microstructure and tribological properties of Ti–Cu coating were analyzed. ► The prepared Ti–Cu intermetallic compound coating has excellent wear resistance. -- Abstract: Ti–Cu intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using copper powder as the precursor. It has been found that the prepared coating mainly contains of TiCu, TiCu 3 , Ti 3 Cu, and Ti phases. The transmission electron microscopy results conform further the existence of Ti–Cu intermetallic compound in the fabricated coating. Tribological properties of the prepared Ti–Cu intermetallic compound coating were systematically evaluated. It was found that normal loads and sliding speeds have a strong influence on the friction coefficient and wear rate of Ti–Cu intermetallic compound coating. Namely, the friction coefficient of the Ti–Cu intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the Ti–Cu intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  13. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  14. The effect of crystal structure stability on the mobility of gas bubbles in intermetallic uranium compounds

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.; Birtcher, R.C.

    1988-01-01

    Irradiation experiments with certain low-enrichment, high-density, uranium-base intermetallic alloys that are candidate reactor fuel materials, such as U 3 Si and U 6 Fe, have revealed extraordinarily large voids at low and medium fuel burnup. This phenomenon of breakaway swelling does not occur in other fuel types, such as U 3 Si 2 and UAl 3 , where a distribution of relatively small and stable fission gas bubbles forms. In situ transmission electron microscope observations of ion radiation-induced rapid swelling of intermetallic materials are consistent with growth by plastic flow. Large radiation enhancement of plastic flow in amorphous materials has been observed in several independent experiments and is thought to be a general materials phenomenon. The basis for a microscopic theory of fission gas bubble behavior in irradiated amorphous compounds has been formulated. The assumption underlying the overall theory is that the evolution of the porosity from that observed in the crystalline material to that observed in irradiated amorphous U 3 Si as a function of fluence is due to a softening of the irradiated amorphous material. Bubble growth in the low-viscosity material has been approximated by an effective enhanced diffusivity. Mechanisms are included for the radiation-induced softening of the amorphous material, and for a relation between gas atom mobilities and radiation-induced (defect-generated) changes in the material. Results of the analysis indicate that the observed rapid swelling in U 3 Si arises directly from enhanced bubble migration and coalescence due to plastic flow. 34 refs., 11 figs

  15. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  16. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  17. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    International Nuclear Information System (INIS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-01-01

    Ni 3 V bulk intermetallic compounds with ordered D0 22 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D0 22 structure of Ni 3 V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D0 22 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation

  18. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  19. Development of melting and casting process for Nb-Al intermetallic compounds and mechanical properties

    International Nuclear Information System (INIS)

    Kamata, Kinya; Degawa, Toru; Nagashima, Yoshinori

    1993-01-01

    The shaping methods of Nb-Al intermetallic compounds, especially melting and casting, have considerably different characteristics as compared with those for other metals and alloys. The authors have investigated melting and casting processes for Nb-Al compounds to develop precision casting processes for these intermetallics. Fundamental properties of Nb-Al compound castings have been also investigated for high temperature structural use in this work. An advanced Induction Skull Melting (ISM) furnace has been developed and the advantages of ISM have been recognized as a result of this study. The mechanical properties, such as hardness and compression strength, are dependent upon the Al content in Nb-Al binary compounds

  20. Large positive magnetoresistance in intermetallic compound NdCo2Si2

    Science.gov (United States)

    Roy Chowdhury, R.; Dhara, S.; Das, I.; Bandyopadhyay, B.; Rawat, R.

    2018-04-01

    The magnetic, magneto-transport and magnetocaloric properties of antiferromagnetic intermetallic compound NdCo2Si2 (TN = 32K) have been studied. The compound yields a positive magnetoresistance (MR) of about ∼ 123 % at ∼ 5K in 8 T magnetic field. The MR value is significantly large vis - a - vis earlier reports of large MR in intermetallic compounds, and possibly associated with the changes in magnetic structure of the compound. The large MR value can be explained in terms of field induced pseudo-gaps on Fermi surface.

  1. The influence of pressure on diffusion leading to intermetallic compounds

    International Nuclear Information System (INIS)

    Adda, Y.; Beyeler, M.; Kirianenko, A.; Pernot, B.

    1961-01-01

    Some investigators A.D. LE CLAIRE, J.L. ZAMBROW, L. CASTLEMAN, have shown that the application of uniaxial pressure parallel to the direction of diffusion may notably modify the kinetics of growth of the intermediate phases which can be formed in this direction. The interpretation of this phenomenon being obscure, an attempt is made to explain it by detailed analysis of the experimental facts. The microscopic studies of the kinetics of growth of the zones formed shows particularly in the couples Uranium-Copper and Uranium-Nickel that it is influenced in a similar manner by a uniaxial pressure and a hydrostatic one. On the other hand the rate of growth of these zones increases as a function of the applied pressure in the systems Uranium-Copper, Uranium-Nickel and Uranium-Aluminium (this effect being particularly marked in Uranium-Aluminium). To determine with precision the limits of the range of stability of the intermetallic compounds, the curves of concentration penetration characteristics of the diffusion have been established by means of the CASTAING electronic microanalyser. The examination of the results indicates that when diffusion takes place without external pressure (couples U-Cu and U-Ni) or with a pressure less than 300 kg/cm 2 (couple U-Al) the concentration varies notably in the compounds obtained, which theoretically are stoichiometric. Thus, when crossing the zone of diffusion of one base metal to another one notes a continual passage of: UCu 4.70 to UCu 5.25 in the couple U-Cu; UNi 4.75 to UNi 5.25 in the couple U-Ni; UAl 2.2 to UAl 3.3 in the couple U-Al. If an uniaxial or hydrostatic pressure above 500 kg/cm 2 is applied to the couples U-Cu and U-Ni, or above 1000 kg/cm 2 for the couple U-Al, the composition is then constant in the zones formed. It corresponds to: UCu 5 in the couple U-Cu; UNi 5 in the couple U-Ni; UAl 3 in the couple U-Al. These results are confirmed by an X-ray diffraction study, mainly in the U-Cu system. Experiments in

  2. Microstructure and tribological properties of TiAg intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Chen Jianmin; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Zhou Huidi

    2011-01-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  3. Microstructure and tribological properties of TiAg intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  4. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  5. Real structure and selected properties of the superconducting intermetallic compound V3Si

    International Nuclear Information System (INIS)

    Kleinstueck, K.; Kraemer, U.; Paufler, P.; Ullrich, H.J.

    1980-01-01

    Plasticity and electro-plastic effects have been detected at temperatures above 1200 0 C in the intermetallic compound V 3 Si which can not plastically be deformed under normal conditions. The mechanisms of plastic deformation were elucidated. The critical temperature and the critical current density could be altered by plastic deformation. It was found that the mechanisms of plastic deformation as well as the alteration of the critical parameters are dependent on the chemical composition of the intermetallic compound within the range of homogeneity. For measuring such alterations Kossel's interference method was used. Intense plastic deformation of crystals resulted in an influence on the martensite transformation

  6. Characterization of intermetallic compounds in Cu-Al ball bonds: layer growth, mechanical properties and oxidation

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1 st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  7. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials

    International Nuclear Information System (INIS)

    He, P.; Liu, D.

    2006-01-01

    The formation of brittle intermetallic compounds at the interfaces of diffusion bonds is the main cause which leads to poor bond strength. Therefore, it is very important to study and establish the formation and growth model of intermetallic compounds at the interfaces for the control process of diffusion bonding. In this paper, according to the diffusion kinetics and the thermodynamics, the principle of formation of intermetallic compounds at interfaces in the multi-component diffusion couple, the flux-energy principle, is put forward. In the light of diffusion theory, the formation capacity of the phase at the interfaces is determined by specific properties of the composition in the diffusion couple and the composition ratio of the formed phase is in agreement with the diffusion flux. In accordance with the flux-energy principle, the microstructure of the Ni/TC4 interface is Ni/TiNi 3 /TiNi/Ti 2 Ni/TC4, the microstructure of the TC4/00Cr18Ni9Ti interface is 00Cr18Ni9Ti/TiFe 2 /TiFe/Ti 2 Fe/TC4, and the microstructure of the TiAl/40Cr interface is 40Cr/TiC/Ti 3 Al + FeAl + FeAl 2 /TiAl. Multi-intermetallic compounds with the equivalent flux-energy can be formed at the interfaces at the same time

  8. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; De Teresa, J. M.; Morellon, L.; Blasco, J.; Magen, C.; Prokhnenko, Olexandr; Kamarád, Jiří; Ritter, C.

    2005-01-01

    Roč. 17, - (2005), S3035-S3055 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * intermetallic compounds * magnetic properties * magnetic phase transitions * magnetotransport properties * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  9. Charge and spin density in s-stable rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Graaf, H. de.

    1982-01-01

    This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)

  10. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  11. Thermochemical investigations on intermetallic UMe3 compounds (Me=Ru,Rh,Pd)

    International Nuclear Information System (INIS)

    Wijbenga, G.

    1981-10-01

    The subject of this thesis is the determination of the thermodynamic properties of the intermetallic compounds of uranium with the light platinum metals, ruthenium, rhodium and palladium. These intermetallics are formed as very stable compounds during fission in nuclear fuel by the reaction of the fission products Ru, Rh and Pd with the matrix. Methods for the preparation of URu 3 , URh 3 and UPd 3 , experiments showing the chemical reactivities of these compounds, and studies of the stoichiometry of hexagonal UPd 3 by X-ray diffraction of solubility experiments of UN and palladium in UPd 3 , are described. Thermodynamic properties of the UMe 3 compounds have been obtained using several experimental thermodynamic techniques: fluorine bomb calorimetry, low-temperature cryogenic calorimetry, high-temperature drop calorimetry and EMF measurements of reversible cells. (Auth.)

  12. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  13. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  14. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  15. Temperature effects in the valence fluctuation of europium intermetallic compounds

    International Nuclear Information System (INIS)

    Menezes, O.L.T. de; Troper, A.; Gomes, A.A.

    1978-03-01

    A previously reported model for valence fluctuations in europium compound in order to account for thermal occupation effect. Experimental results are critically discussed and new experiments are suggested

  16. Structure and properties of intermetallic ternary rare earth compounds

    International Nuclear Information System (INIS)

    Casper, Frederick

    2008-01-01

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  17. Structure and properties of intermetallic ternary rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Casper, Frederick

    2008-12-17

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  18. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  19. Control of interfacial intermetallic compounds in Fe–Al joining by Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Li, Y.L., E-mail: liyulong1112ster@gmail.com [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Zhang, H. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Guo, W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2015-10-01

    By Zn addition to the fusion zone, the interfacial intermetallic compounds (IMCs) of laser Al/steel joint changed from layered Fe{sub 2}Al{sub 5} and needle-like FeAl{sub 3} to layered Fe{sub 2}Al{sub 5−x}Zn{sub x} and dispersed FeZn{sub 10} with minor Al-rich amorphous phase. This resulted in an improvement in the joint strength and the change of failure mode.

  20. Magnetic behavior of binary intermetallic compound YPd{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Mazumdar, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)], E-mail: chandan.mazumdar@saha.ac.in; Ranganathan, R. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-05-12

    We report the results of detailed magnetic studies on binary rare-earth-transition metal compound YPd{sub 3}. The results of temperature and magnetic field dependent DC-magnetic measurements along with the results of powder X-ray diffraction measurement and electrical transport have been discussed. The X-ray data suggest a well-defined ordered crystal lattice, free from any detectable impurity phase. Magnetization data exhibits predominant diamagnetic character at higher fields. However, the compound exhibits anomalous behavior at low fields.

  1. Process for the manufacture of a superconductor with an intermetallic compound

    International Nuclear Information System (INIS)

    Wilhelm, M.

    1980-01-01

    A superconductor with a superconducting intermetallic compound consisting of at least two elements can be manufactured by producing a conductor preproduct with a first component containing one element of the compound and a second component consisting of a carrier metal and the remaining element or elements of the alloy containing the compound, and by heat treating the conductor preproduct, so that the compound is formed by the reaction of the element of the first compound with the remaining element or elements of the second compound. In such a superconductor, one tries to increase the effective current density and critical current. The invention states that the heat treatment should be carried out in a hydrogen atmosphere. Superconductors produced by this process can be used for superconductor devices whose magnetic fields have a flux density above 10 Tesla. (orig.) [de

  2. A new method to estimate the atomic volume of ternary intermetallic compounds

    International Nuclear Information System (INIS)

    Pani, M.; Merlo, F.

    2011-01-01

    The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

  3. B2 intermetallic compounds of Zr. New class of the shape memory alloys

    International Nuclear Information System (INIS)

    Koval, Yu.N.; Delaey, L.; Jang, W.Y.

    1995-01-01

    It is known that the B2 equiatomic intermetallic compounds of Zr (ZrCo-based) undergo a martensitic transformation (MT) with wide temperature hysteresis. It was found that the MT is accompanied by the perfect shape memory effect (SME) for ZrCu and ZrRh. In this report we represent the results of structural analysis, electrical resistivity, calorimetric and SME measurements for ZrCu- and ZrCo-based compounds. Interrelation between structural, thermodynamical parameters of MT and SME in this alloys will be described. The shape memory aspects of this potential alloys for the application at high temperatures will be discussed. (orig.)

  4. Thermodynamic data for uranium and thorium intermetallic compounds: A historical perspective

    International Nuclear Information System (INIS)

    Alcock, C.B.

    1989-01-01

    The development of quantitative information concerning the stabilities of uranium and thorium intermetallic compounds since the publication of Rough and Bauer's phase diagram compilation are reviewed. During this era a number of high temperature measurement techniques have been developed, from gas/solid equilibration to mass spectrometry and from high temperature calorimetry to solid state electrochemistry, and the growth of quantitative information has run parallel to this evolution. The amount of experimental effort now appears to be declining, and the task presently of major importance is to integrate and rationalize the quantitative information, an effort which will undoubtedly lead to new experimental initiatives. (orig.)

  5. Properties of vacancies type defects in intermetallic compounds of the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, M.I; Fernandez, J.R; Monti, A.M

    2006-01-01

    There are five intermetallic compounds in the Al-Mo system that are stable at low temperatures. Of these, the richest phases in some of the two components are the compounds Al 12 Mo and AlMo 3 , whose Pearson symbols are cI26 and cP8, respectively. In both structures, the atoms of the minority component occupy positions bcc and each one of them is surrounded by 12 atoms first neighbors of the other component. These 13 atoms form icosahedron shaped units or heaps. Unlike what occurs in Al 12 Mo, the AlMo 3 heaps are superposed by sharing atoms from the majority component. The neighboring environment of the majority component is mixed but differs considerably in one or another intermetallic. In each structure, the sites occupied by any given species are crystallographically equivalent, that is, they can self generate from one of the positions and from the crystalline structure's elements of symmetry. This work studies the energy of vacancies and antisites in both compounds and the atomic-jump processes to vacant sites. Computer simulation techniques were used based on minimizing the system's energy. Many-body embedded-atom potentials were used to represent the atomic interactions. The potential mixture used resulted in an adjustment to the crystalline structure of the AlMo 3 phase at low temperatures and to its formation energy (cw)

  6. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  7. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    International Nuclear Information System (INIS)

    Sabochick, M.J.

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After ∼0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing ∼0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs

  8. The corrosion behavior of the T1 (Al2CuLi) intermetallic compound in aqueous environments

    Science.gov (United States)

    Buchheit, R. G.; Stoner, G. E.

    1989-01-01

    The intermetallic compound T1 (Al2CuLi) is suspected to play an important role in the localized corrosion at subgrain boundaries in Al-Li-Cu alloys. The intermetallic was synthesized for characterization of its corrosion behavior. Experiments performed included open circuit potential measurements, potentiodynamic polarization, and corrosion rate vs. pH in solutions whose pH was varied over the range of 3 to 11. Subgrain boundary pitting and continuous subgrain boundary corrosion are discussed in terms of the data obtained. Evidence suggesting the dealloying of copper from this compound is also presented.

  9. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    CERN Document Server

    Rhee, J Y

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder -> order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by p...

  10. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.

    Science.gov (United States)

    Oliynyk, Anton O; Mar, Arthur

    2018-01-16

    Intermetallic compounds are bestowed by diverse compositions, complex structures, and useful properties for many materials applications. How metallic elements react to form these compounds and what structures they adopt remain challenging questions that defy predictability. Traditional approaches offer some rational strategies to prepare specific classes of intermetallics, such as targeting members within a modular homologous series, manipulating building blocks to assemble new structures, and filling interstitial sites to create stuffed variants. Because these strategies rely on precedent, they cannot foresee surprising results, by definition. Exploratory synthesis, whether through systematic phase diagram investigations or serendipity, is still essential for expanding our knowledge base. Eventually, the relationships may become too complex for the pattern recognition skills to be reliably or practically performed by humans. Complementing these traditional approaches, new machine-learning approaches may be a viable alternative for materials discovery, not only among intermetallics but also more generally to other chemical compounds. In this Account, we survey our own efforts to discover new intermetallic compounds, encompassing gallides, germanides, phosphides, arsenides, and others. We apply various machine-learning methods (such as support vector machine and random forest algorithms) to confront two significant questions in solid state chemistry. First, what crystal structures are adopted by a compound given an arbitrary composition? Initial efforts have focused on binary equiatomic phases AB, ternary equiatomic phases ABC, and full Heusler phases AB 2 C. Our analysis emphasizes the use of real experimental data and places special value on confirming predictions through experiment. Chemical descriptors are carefully chosen through a rigorous procedure called cluster resolution feature selection. Predictions for crystal structures are quantified by evaluating

  11. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  12. Contribution to the study of magnetic properties of rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Morariu, M.

    1976-01-01

    The intermetallic binary compounds Ysub(x)Fesub(y)(YFe 2 ,YFe 3 ,Y 6 Fe 23 ,Y 2 Fe 17 ), RFe 2 (R=Gd,Tb,Dy,Ho,Er and Tm) and the intermetallic pseudobinary compounds (Gdsub(x)Ysub(1-x))Fe 2 and Dy(Fesub(x)Nisub(1-x)) 3 were studied, using magnetic measurements and Moessbauer spectroscopy, in order to obtain information on their magnetic behaviour. The different models which describe magnetic interactions in rare-earths with 3d transition element compounds are reviewed. The magnetic hyperfine field Hsub(n) at the Fe 57 nucleus, measured by Moessbauer spectroscopy, depends on the atom position in the lattice, being sensitive to magnetic interactions with neighbouring atoms. The mean value of the magnetic hyperfine field, average Hsub(n) is proportional to the mean magnetic moment of the iron atom: average Hsub(n)/average μsub(Fe) approximately 150 kOe. The comparative study of the temperature dependence of average Hsub(n) and average μsub(Fe) values shows that this relation is valid for the whole range of magnetic ordering (T>Tsub(c)). The mean magnetic hyperfine fields at the Fe 57 nucleus in RFe 2 compounds depend on the rare-earth partner and vary approximative linearly with the Gennes factor. The spin reorientation diagram for the (Gdsub(x)Ysub(1-x))Fe 2 system is obtained. All results on Moessbauer spectroscopy are in good agreement with the magnetic measurements. The magnetic behaviour of iron atoms is justified using a model in which the most electrons are in a narrow band, so they could be considered localized, and the magnetic interactions between these atoms take place through a fraction (<5%) of 3d itinerant electrons. (author)

  13. Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Molecular dynamics (MD) has been applied to simulate the radiation damage created in displacement cascades in D0 19 Ti 3 Al structural intermetallics. Collision cascades formed by the recoil of either Al or Ti primary knock-on atoms (PKA) with energy E PKA = 5, 10, 15 or 20 keV were considered in Ti 3 Al single crystals at T = 100, 300, 600 and 900 K. At least 24 different cascades for each (E PKA , T, PKA type) set were simulated. A comprehensive treatment of the modelling results has been carried out. We have evaluated the number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA ,T, PKA type). Preferred formation of both Al vacancies and self-interstitial atoms in D0 19 Ti 3 Al exposed to irradiation has been detected

  14. A theoretical search for intermetallic compounds and solution phases in the binary system Sn/Zn

    Energy Technology Data Exchange (ETDEWEB)

    Appen, Joerg von; Dronskowski, Richard; Hack, Klaus

    2004-10-06

    The binary system Sn/Zn was theoretically investigated by a classical thermodynamic analysis (CALPHAD approach) and by density-functional total-energy calculations on the basis of the LDA/GGA, plane waves/muffin-tin orbitals, and supercell geometries. In harmony with experimental data, both methods agree in that there is only very small solubility between the elements and no formation of a stable intermetallic phase over the entire compositional range. For the hypothetical composition Sn{sub 2}Zn, a total of 30 different crystal structures was quantum-mechanically optimized, and the chemical bondings of Sn{sub 2}Zn adopting the CaF{sub 2} and HgBr{sub 2} structures were analyzed in detail; generally, the more ionic structure types are better suited for the Sn{sub 2}Zn composition than typical intermetallic ones. Theoretical enthalphy-pressure diagrams were generated to explore high-pressure compound formation, and the observed transition pressures between the {alpha}, {beta} and {gamma} allotropes of tin were correctly reproduced by electronic structure theory.

  15. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C. H.; Jiang Yu; Medling, S. A. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Wang, D. L. [Nuclear Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bauer, E. D. [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); McCall, S. K.; Wall, M. A.; Allen, P. G. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-03-07

    The effect of self-irradiation damage on the local structure of {delta}-Pu, PuAl{sub 2}, PuGa{sub 3}, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa{sub 5}. In contrast, {delta}-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a {delta}-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of {delta}-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in {delta}-Pu as a network former.

  16. Electrochemical preparation of Al–Sm intermetallic compound whisker in LiCl–KCl Eutectic Melts

    International Nuclear Information System (INIS)

    Ji, De−Bin; Yan, Yong−De; Zhang, Mi−Lin; Li, Xing; Jing, Xiao−Yan; Han, Wei; Xue, Yun; Zhang, Zhi−Jian; Hartmann, Thomas

    2015-01-01

    Highlights: • The reduction process of Sm(III) was investigated in LiCl–KCl melt on an aluminum electrode at 773 K. • Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) was prepared by potentiostatic electrolysis on an aluminum electrode with the change of electrolytic potentials and time in LiCl–KCl–SmCl 3 melts. • Al − Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The results from micro–hardness test and potentiodynamic polarization test show the micro hardness and corrosion property are remarkably improved with the help of Al–Sm intermetallic compound whiskers. - Abstract: This work presents the electrochemical study of Sm(III) on an aluminum electrode in LiCl–KCl melts at 773 K by different electrochemical methods. Three electrochemical signals in cyclic voltammetry, square wave voltammetry, open circuit chronopotentiometry, and cathode polarization curve are attributed to different kinds of Al–Sm intermetallic compounds, Al 2 Sm, Al 3 Sm, and Al 4 Sm, respectively. Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) could be obtained by the potentiostatic electrolysis with the change of electrolytic potentials and time. Al–Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The XRD and SEM&EDS were employed to investigate the phase composition and microstructure of Al–Sm alloy. SEM analysis shows that lots of needle−like precipitates formed in Al–Sm alloy, and their ratios of length to diameter are found to be greater than 10 to 1. The TEM and electron diffraction pattern were performed to investigate the crystal structure of the

  17. Intermetallic compounds in 3D integrated circuits technology: a brief review

    Science.gov (United States)

    Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning

    2017-12-01

    The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.

  18. Intermetallic compounds in 3D integrated circuits technology: a brief review.

    Science.gov (United States)

    Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning

    2017-01-01

    The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.

  19. Sodium borohydride hydrolysis in the presence of intermetallic compound LaNi5

    International Nuclear Information System (INIS)

    Korobov, I.I.; Mozgina, N.G.

    1992-01-01

    Kinetics of catalytic hydrolysis of sodium borohydride in the 1 mol/l solution of caustic sodium within the range of 298-318 K in presence of LaNi 5 intermetallic compound is studied. It is established that the reaction has zero order by NaBH 4 and the first one by LaNi 5 . The apparent activation energy of NaBH 4 catalytic hydrolysis in presence of LaNi 5 , calculated on the basis of temperature dependence of reaction velocity, is constant within the temperature range under investigation and constitutes 56$+-$1.5 kJ/mol. Recombination of surface hydrogen on LaNi 5 in molecular one is limiting stage determining NaBH 4 hydrolysis rate

  20. Description of structure of Fe-Zn intermetalic compounds present in hot-dip galvanized coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-10-01

    Full Text Available The article is describing formation, composition, morphology and crystallographic characteristics of intermetalic compounds Fe - Zn present in the coating formed during the process of low-temperature hot-dip galvanizing of carbon steels. In mutual confrontation we introduce older bibliography and results of latest modern researches based on combination of most precise analytical methods.

  1. Characterization of intermetallic compounds in Cu-Al ball bonds: thermo-mechanical properties, interface delamination and corrosion

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Kouters, M.H.M.; Dos Santos Ferreira, O.

    2012-01-01

    In high power automotive electronics copper wire bonding is regarded as the most promising alternative for gold wire bonding in 1st level interconnects. In the Cu-Al ball bond interface the growth of intermetallic compounds can deteriorate the electrical and mechanical properties of the

  2. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  3. The formation of intermetallic compounds during interdiffusion of Mg–Al/Mg–Ce diffusion couples

    International Nuclear Information System (INIS)

    Dai, Jiahong; Jiang, Bin; Li, Xin; Yang, Qingshan; Dong, Hanwu; Xia, Xiangsheng; Pan, Fusheng

    2015-01-01

    Graphical abstract: Al–Ce intermetallic compounds (IMCs) formed in Mg–Al/Mg–Ce diffusion couples. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg atoms of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce, and AlCe were formed via the reaction of Al and Ce. - Highlights: • Al–Ce IMCs formation in the Mg–Al/Mg–Ce diffusion couples was studied. • Formation of Al 4 Ce as the first phase was rationalized using the Gibbs free energy. • The activation energy for the growth of the diffusion reaction zones was 36.6 kJ/mol. - Abstract: The formation of Al–Ce intermetallic compounds (IMCs) during interdiffusion of Mg–Al/Mg–Ce diffusion couples prepared by solid–liquid contact method was investigated at 623 K, 648 K and 673 K for 24 h, 48 h and 72 h, respectively. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce and AlCe were formed via the reaction of Al and Ce. The formation of Al 4 Ce as the first kind of IMC was rationalized on the basis of an effective Gibbs free energy model. The activation energy for the growth of the total diffusion reaction layer was 36.6 kJ/mol

  4. NMR measurements in milled GdCo2 and GdFe2 intermetallic compounds

    International Nuclear Information System (INIS)

    Tribuzy, C.V.B.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1998-12-01

    We have used the nuclear magnetic resonance technique to study the magnetic and structural properties of the Gd-Co and Gd-Fe metallic systems, starting with the C15 laves phase intermetallic compounds, and submitting them to a high energy milling process. This leads to the amorphization of the samples, as determined by the X-ray diffraction spectra. For the Gd-Co system the NMR study used the 59 Co nucleus; in the Gd-Fe system, 155,157 Gd and 57 Fe were used. Both systems showed segregation of the pure elements, after a few hours of milling. In the Gd-Co system, a single line, of increasing width, was observed in the 59 Co spectrum. In the Gd-Fe system, the 155 Gd and 157 Gd resonances show three lines, arising from electrical quadrupole interaction. With increasing milling time, the lines broaden, and extra lines appear attributed to a cubic phase of Gd; this interpretation is supported by the X-ray analysis of the samples. The 57 Fe NMR spectrum of this system also informs on the direction of magnetization of the samples in the early stages of milling. From 1 h to 7 h of milling, a spectrum of α-Fe was observed. The study of the NMR line intensity as a function of radio frequency (r.f.) power in Gd Co 2 suggests the existence of regions of the samples with different degrees of disorder. We have observed the persistence of NMR signals from the original intermetallic compounds in the samples with up to 10 h and 7 h of milling, respectively, for Gd Co 2 and Gd Fe 2 . (author)

  5. Magneto-caloric effect in the pseudo-binary intermetallic YPrFe{sub 17} compound

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pablo [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Gorria, Pedro, E-mail: pgorria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Sanchez Llamazares, Jose L. [Division de Materiales Avanzados, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis Potosi (Mexico); Perez, Maria J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Franco, Victorino [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Reiffers, Marian; Kovac, Jozef [Institute of Experimental Physics, Watsonova 47, SK-04001 Kosice (Slovakia); Puente-Orench, Ines [Institute Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer YPrFe{sub 17} exhibits a broad {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). Black-Right-Pointing-Pointer We obtain |{Delta}S{sub M}| Almost-Equal-To 2.3 J kg{sup -1} K{sup -1} and RCP Almost-Equal-To 100 J kg{sup -1}for a magnetic field change of 1.5 T. Black-Right-Pointing-Pointer A single master curve for {Delta}S{sub M} is found when compared with other isostructural R{sub 2}Fe{sub 17} binary alloys. - Abstract: We have synthesized the intermetallic YPrFe{sub 17} compound by arc-melting. X-ray and neutron powder diffraction show that the crystal structure is rhombohedral with R3{sup Macron }m space group (Th{sub 2}Zn{sub 17}-type). The investigated compound exhibits a broad isothermal magnetic entropy change {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). The |{Delta}S{sub M}| ( Almost-Equal-To 2.3 J kg{sup -1} K{sup -1}) and the relative cooling power ( Almost-Equal-To 100 J kg{sup -1}) have been calculated for applied magnetic field changes up to 1.5 T. A single master curve for {Delta}S{sub M} under different values of the magnetic field change can be obtained by a rescaling of the temperature axis. The results are compared and discussed in terms of the magneto-caloric effect in the isostructural R{sub 2}Fe{sub 17} (R = Y, Pr and Nd) binary intermetallic alloys.

  6. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence

    International Nuclear Information System (INIS)

    Etoh, Y.; Shimada, S.

    1993-01-01

    Intermetallic precipitates in Zircaloy-2 and -4, recrystallized at the α-phase temperature, have been examined using analytical electron microscopy. The specimens were irradiated in BWRs up to a fast neutron fluence of 1.4x10 26 n/m 2 (E>1 MeV). Neutron irradiation induces a crystalline-to-amorphous transition, depleting Fe in the amorphous phase of Zr(Fe, Cr) 2 precipitates in the alloys. Amorphization starts from the periphery of the precipitates and all of them are totally amorphized at higher fluences than 1.2x10 26 n/m 2 . The width of the Fe-depleted zone increases in proportion to the 0.45 power of fluence. This result indicates that diffusion of Fe is the rate-controlling process for Fe depletion in Zr(Fe, Cr) 2 precipitates. Dissolution of Zr 2 (Fe, Ni) precipitates in Zircaloy-2 occurs during neutron irradiation. At a high fluence, such as 1.2x10 26 n/m 2 , Zr 2 (Fe, Ni) precipitates are almost completely dissolved into the matrix and the dissolution rate of Fe is faster than that of Ni. (orig.)

  7. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  8. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  9. New intermetallic compounds Ln(Ag, AL)4 (Ln-Y, Gd, Tb, Dy) and their structure

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.

    1990-01-01

    By the methods of X-ray analysis crystal structure of compounds Ln(Ag,Al) 4 , where Ln-Y, Gd, Tb, Dy, posessing rhombic structure, is determined. The intermetallics have been prepared for the first time. Ways of atom distribution and their coordinates in DyAg 0.55 Al 3.45 structure (a=0.4296(1), b=04179(1), c=0.9995(3), R=0.093) are specified. Other compounds are formed in case of LnAgAl 3 compositions. Interatomic distances in Dy(Ag,Al) 4 structure are considered. A supposition is made on the formation in Ln-Ag-Al systems of a greater number of intermetallic compounds

  10. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    International Nuclear Information System (INIS)

    Rhee, Joo Yull

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder → order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by presumption that the recrystallization would be realized in such a way that the average atomic spacing would be reduced

  11. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  12. Influence of low Co substitution on magnetoelastic properties of HoFe11Ti intermetallic compound

    International Nuclear Information System (INIS)

    Motevalizadeh, L.; Tajabor, N.; Sanavi Khoshnoud, D.; Fruchart, D.; Pourarian, F.

    2012-01-01

    The thermal expansion and magnetostriction of HoFe 11−x Co x Ti (x=0, 0.3, 0.7 and 1) intermetallic compounds were measured, using the strain gauge method in the temperature range 77–590 K under applied magnetic fields up to 1.5 T. Results show that for samples with x=0 and 0.3, both linear thermal expansion and linear thermal expansion coefficient exhibit anomalies below the Curie temperature. Below room temperature, the spontaneous volume magnetostriction decreases with Co content. For all compounds studied, the anisotropic magnetostriction shows similar behaviour in the measured temperature range. The magnetostriction compensation occurs above room temperature in all samples. The volume magnetostriction shows a linear dependence on the applied field and by approaching the Curie temperature this trend changes to parastrictive behaviour. The results of the spontaneous magnetostriction are discussed based on the local magnetic moment model. The contribution of magnetostriction attributed to the magnetic sublattices R and T (Fe or Co) is discussed. - Highlights: ► Magnetostriction of HoFe 11−x Co x Ti have been measured by using strain gauge method. ► The measurement was carried in 77–590 K under applied magnetic fields up to 1.5 T. ► Spontaneous volume magnetostriction and Invar effect decrease with Co substitution. ► Ho sublattice has negative contribution to spontaneous volume magnetostriction. ► Absolute values of anisotropic magnetostriction decrease slightly with Co content.

  13. Calorimetric study of the intermetallic compounds UAl2 and PuAl2

    International Nuclear Information System (INIS)

    Trainor, R.J.; Brodsky, M.B.; Knapp, G.S.

    1975-01-01

    Results of low temperature specific heat measurements are presented on the strongly paramagnetic intermetallic compounds UAl 2 and PuAl 2 in the temperature intervals 0.9 to 20 0 K, respectively. These compounds are characterized by very narrow 5f bands near the Fermi energy. The low-temperature properties of UAl 2 and PuAl 2 are dominated by long lived spin fluctuations within these narrow bands. In UAl 2 a nearly field-independent T 3 logT contribution dominates the specific heat below 10 0 K, consistent with the predictions of ferromagnetic spin-fluctuation theory. The specific heat, static susceptibility, and electrical resistivity are mutually consistent with T/sub sf/ = 25 +- 10 0 K, where T/sub sf/ is the characteristic spin-fluctuation temperature of the system. Below 20 0 K, the specific heat of PuAl 2 contains a very large linear term, C greater than or approximately equal to 260T (mJ/mole- 0 K), which is approximately four times the magnitude of the measured susceptibility, when both quantities are expressed in the same units. The specific heat of PuAl 2 exhibits no anomalous behavior below 10 0 K, where a resistivity anomaly has been previously obser []ed. The properties of PuAl 2 are qualitatively discussed in terms of antiferromagnetic spin fluctuations. (auth)

  14. Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads

    International Nuclear Information System (INIS)

    Kim, Hyung Giun; Kim, Sang Min; Lee, Jae Young; Choi, Mi Ri; Choe, Si Hyun; Kim, Ki Hong; Ryu, Jae Sung; Kim, Sangshik; Han, Seung Zeon; Kim, Won Yong; Lim, Sung Hwan

    2014-01-01

    A comparative study on the difference in interfacial behavior of thermally aged Cu wire bonding with Al and Au pads was conducted using transmission electron microscopy. During high-temperature lifetime testing of Cu wire bonding with Al and Au pads at 175 °C for up to 2000 h, different growth rates and growth characteristics were investigated in the Cu–Al intermetallic compounds (IMCs), including CuAl 2 , CuAl and Cu 9 Al 4 , and in the Cu–Au IMCs, including (Au,Cu), Cu 3 Au and (Cu,Au). Because of the lower growth rates and greater ductility of Cu–Au IMCs compared to those of Cu–Al IMCs, the Cu wire bonding with the Au pad showed relatively better thermal aging properties of bond pull strength and ball shear strength than those with the Al pad counterpart. In this study, the coherent interfaces were found to retard the growth of IMCs, and a variety of orientation relationships between wire, pad and interfacial IMCs were identified

  15. Effects of Fragmented Fe Intermetallic Compounds on Ductility in Al-Si-Mg Alloys.

    Science.gov (United States)

    Kim, JaeHwang; Kim, DaeHwan

    2018-03-01

    Fe is intentionally added in order to form the Fe intermetallic compounds (Fe-IMCs) during casting. Field emission scanning electron microscope with energy dispersive spectrometer (EDS) was conducted to understand microstructural changes and chemical composition analyses. The needlelike Fe-IMCs based on two dimensional observation with hundreds of micro size are modified to fragmented particles with the minimum size of 300 nm through clod rolling with 80% thickness reduction. The ratio of Fe:Si on the fragmented Fe-IMCs after 80% reduction is close to 1:1, representing the β-Al5FeSi. The yield and tensile strengths are increased with increasing reduction rate. On the other hand, the elongation is decreased with the 40% reduction, but slightly increased with the 60% reduction. The elongation is dramatically increased over two times for the specimen of 80% reduction compared with that of the as-cast. Fracture behavior is strongly affected by the morphology and size of Fe-IMCs. The fracture mode is changed from brittle to ductile with the microstructure modification of Fe-IMCs.

  16. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  17. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  18. First-principles screening of structural properties of intermetallic compounds on martensitic transformation

    Science.gov (United States)

    Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao

    2017-11-01

    Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.

  19. Intermetallic Compound Growth and Stress Development in Al-Cu Diffusion Couple

    Science.gov (United States)

    Mishler, M.; Ouvarov-Bancalero, V.; Chae, Seung H.; Nguyen, Luu; Kim, Choong-Un

    2018-01-01

    This paper reports experimental observations evidencing that the intermetallic compound phase interfaced with Cu in the Al-Cu diffusion couple is most likely α2-Cu3Al phase, not γ-Cu9Al4 phase as previously assumed, and that its growth to a critical thickness may result in interface failure by stress-driven fracture. These conclusions are made based on an interdiffusion study of a diffusion couple made of a thick Cu plate coated with ˜ 2- μm-thick Al thin film. The interface microstructure and lattice parameter were characterized using scanning electron microscopy and x-ray diffraction analysis. Specimens aged at temperature between 623 K (350°C) and 723 K (450°C) for various hours produced consistent results supporting the main conclusions. It is found that disordered α2-Cu3Al phase grows in a similar manner to solid-state epitaxy, probably owing to its structural similarity to the Cu lattice. The increase in the interface strain that accompanies the α2-Cu3Al phase growth ultimately leads to interface fracture proceeding from crack initiation and growth along the interface. This mechanism provides the most consistent explanation for interface failures observed in other studies.

  20. Moessbauer Study of the Ball Milling Disordering Process of FeAl Intermetallic Compounds

    International Nuclear Information System (INIS)

    Oleszak, Dariusz; Bruna, Pere; Crespo, Daniel; Pradell, Trinitat

    2005-01-01

    Structural changes during ball milling of ordered Fe50Al50 intermetallic compounds were studied. X-Ray diffraction allowed the computation of a Long Range Order parameter (LRO) which dropped to zero after a short milling time. The initial B2 ordered structure gradually transforms into a disordered BCC structure, with a final crystallite size of about 25 nm. Moessbauer spectroscopy was used for obtaining a Chemical Short Range Order parameter (CSRO). Using a semiempirical n-body noncentral potential a model of the partially disordered B2 structure was built allowing computing the distribution of Quadrupole Splitting during the disordering process. Comparison between experimental and simulated Moessbauer spectra shows a maximum of disorder in the system for 5h milling, related to the highest value of the lattice spacing and the broader quadrupole hyperfine distribution. However, after milling for times longer than 5h, there is a change on the behavior of the experimental data that cannot be explained by the simple disordering process

  1. Mictomagnetic, ferromagnetic, and antiferromagnetic transitions in La(FexAl1–x)13 intermetallic compounds

    NARCIS (Netherlands)

    Palstra, T.T.M.; Nieuwenhuys, G.J.; Mydosh, J.A.; Buschow, K.H.J.

    1985-01-01

    Cubic La(FexAl1–x)13 intermetallic compounds can be stabilized with iron concentration x between 0.46 and 0.92 in the NaZn13-type structure (D23) with Fm3c (Oh6) space-group symmetry. Here the Fe-Fe coordination number can increase up to 12. At low x values, a mictomagnetic regime occurs with

  2. The system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb2Ln composition

    International Nuclear Information System (INIS)

    Badalova, M.A.; Chamanova, M.; Dodkhoev, E.S.; Badalov, A.; Abdusalyamova, M.N.

    2015-01-01

    Present article is devoted to system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb 2 Ln composition. The melting enthalpy was estimated. The temperature value was determined.

  3. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  4. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  5. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  6. Nitrogen compounds behavior under irradiation environment

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Takagi, Junichi; Yotsuyanagi, Tadasu

    1991-01-01

    Laboratory experiments were performed to evaluate nitrogen compounds behavior in liquid phase under irradiation environments. Nitrogen compounds take a chemical form of ammonium ion under reducing condition by gamma irradiation, whereas ammonium ions are rather stable even under oxidizing conditions. Key reactions were pointed out and their reaction rate constants and activation energies were estimated through computer code simulation. A reaction scheme for nitrogen compounds including protonate reaction was proposed. (author)

  7. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  8. The atomic structure of low-index surfaces of the intermetallic compound InPd

    Energy Technology Data Exchange (ETDEWEB)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de, E-mail: vincent.fournee@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, F-54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstrasse 41, D-80333 München (Germany); Ivarsson, D. C. A.; Armbrüster, M. [Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Ardini, J.; Held, G. [Department of Chemistry, University of Reading, Reading RG6 6AD (United Kingdom); Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Maccherozzi, F. [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Bayer, A. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen (Germany); Lowe, M. [Surface Science Research Centre and Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Pussi, K. [Department of Mathematics and Physics, Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta (Finland); Diehl, R. D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States)

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  9. Statistical thermodynamics -- A tool for understanding point defects in intermetallic compounds

    International Nuclear Information System (INIS)

    Ipser, H.; Krachler, R.

    1996-01-01

    The principles of the derivation of statistical-thermodynamic models to interpret the compositional variation of thermodynamic properties in non-stoichiometric intermetallic compounds are discussed. Two types of models are distinguished: the Bragg-Williams type, where the total energy of the crystal is taken as the sum of the interaction energies of all nearest-neighbor pairs of atoms, and the Wagner-Schottky type, where the internal energy, the volume, and the vibrational entropy of the crystal are assumed to be linear functions of the numbers of atoms or vacancies on the different sublattices. A Wagner-Schottky type model is used for the description of two examples with different crystal structures: for β'-FeAl (with B2-structure) defect concentrations and their variation with composition are derived from the results of measurements of the aluminum vapor pressure, the resulting values are compared with results of other independent experimental methods; for Rh 3 Te 4 (with an NiAs-derivative structure) the defect mechanism responsible for non-stoichiometry is worked out by application of a theoretical model to the results of tellurium vapor pressure measurements. In addition it is shown that the shape of the activity curve indicates a certain sequence of superstructures. In principle, there are no limitations to the application of statistical thermodynamics to experimental thermodynamic data as long as these are available with sufficient accuracy, and as long as it is ensured that the distribution of the point defects is truly random, i.e. that there are no aggregates of defects

  10. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  11. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  12. Magnetism in rare-earth metals and rare-earth intermetallic compounds

    International Nuclear Information System (INIS)

    Johansson, B.; Nordstroem, L.; Eriksson, O.; Brooks, M.S.S.

    1991-01-01

    Some of out recent local spin density electronic structure calculations for a number of ferromagnetic rare-earth systems are reviewed. A simplified model of the level densities for rare-earth (R) transition metal (M) intermetallic compounds, R m M n , is used to describe in a simple way the main features of their basic electronic structure. Explicit calculations for LuFe 2 and RFe 2 (R=Gd-Yb) systems are presented, where a method to treat simultaneously the localized 4f and the conduction electron spin magnetism is introduced. Thereby it becomes possible to calculate the K RM exchange coupling constant. This method is also used to study theoretically the permanent magnet material Nd 2 Fe 14 B. The electronic structure of the anomalous ferromagnets CeFe 2 and CeCo 5 is discussed and an induced 4f itinerant magnetism is predicted. The γ-α transition in cerium metal is considered, and results from calculations including orbital polarization are presented, where a volume collapse of 10% is obtained. On one side of the transition the 4f electrons are calculated to be essentially non-bonding (localized) and on the other side they are found to contribute to the metallic bonding and this difference in behaviour gives rise to the volume collapse. Recent calculations by Wills, Eriksson and Boring for the crystal structure changes in cerium metal under high pressure are discussed. Their successful results imply an itinerant picture for the 4f electrons in α-cerium. Consequently this strongly supports the view that the γ-α phase transformation is caused by a Mott transition of the 4f electrons. (orig.)

  13. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  14. Magnetic anisotropy in intermetallic compounds containing both uranium and 3d-metal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Tereshina, Evgeniya; Gorbunov, Denis; Šantavá, Eva; Šebek, Josef; Žáček, Martin; Homma, Y.; Shiokawa, Y.; Satoh, I.; Yamamura, Y.; Komatsubara, T.; Watanabe, K.; Koyama, K.

    2013-01-01

    Roč. 114, č. 9 (2013), s. 727-733 ISSN 0031-918X R&D Projects: GA ČR GAP204/12/0150 Institutional support: RVO:68378271 Keywords : uranium intermetallics * magnetic anisotropy * ferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.605, year: 2013

  15. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  16. Irradiation damage

    International Nuclear Information System (INIS)

    Howe, L.M.

    2000-01-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization

  17. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    Science.gov (United States)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  18. Anomalous magnetic aftereffect in Nd3(Fe,T)29 (T = Ti or Re) intermetallic compounds

    International Nuclear Information System (INIS)

    Collocott, S.J.; Dunlop, J.B.; Gwan, P.B.

    1999-01-01

    Full text: The intermetallic compounds Nd 3 (Fe,Ti) 29 and Nd 3 (Fe,Re) 29 order ferromagnetically with Curie Temperatures, T c , of 430 and 370 K respectively. They have a monoclinic crystal structure, space group A2/m (Nd 3 (Fe,Ti) 29 type) with two rare earth sites and eleven Fe(T) sites, which is an intermediate structure between the rhombohedral Th 2 Zn 17 and tetragonal ThMn 12 structures, and is closely related to hexagonal CaCu 5 . Ferromagnetic materials, depending on their magnetic prehistory, may exhibit a time dependent magnetisation. The term 'magnetic aftereffect' is used to describe this behaviour, which may fall into three categories: 1. Reversible or diffusion aftereffect which is associated with the diffusion of impurity atoms or holes within the ferromagnetic lattice. 2. The irreversible or fluctuation aftereffect, which results in a logarithmic time dependence of magnetisation, J(t)=J(0)+Sln(t+t 0 ), where S is the magnetic viscosity and t 0 a parameter to establish the origin of the time scale measurements. 3. Quantum tunnelling of magnetisation which is observed at very low temperatures. A range of magnetic aftereffects have been observed in both Nd 3 (Fe,Ti) 29 and Nd 3 (Fe,Re) 29 . Of particular interest is the case where the material is fully saturated by application of a field in the positive direction, the applied field is then reversed to trace out part of the major demagnetisation curve into the third quadrant, and thence along a recoil curve, such that in zero applied field the magnetisation is zero (H=0, J=0). (This corresponds to dc field magnetisation.) This magnetic prehistory results in two interesting effects; spontaneous remagnetisation e.g. remagnetisation without application of an external field, and thermal remagnetisation e.g. an increase in magnetisation as the temperature is increased. Additionally, the behaviour of the magnetic viscosity has been explored on the major demagnetisation curve as a function of temperature

  19. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  20. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  1. The nuclear quadrupole interaction of {sup 181}Ta in the intermetallic compound Hf{sub 2}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, N.; Koicki, S.; Cekic, B.; Manasijevic, M.; Koteski, V.; Marjanovic, D. [Institute of Nuclear Sciences VINCA, Laboratory for Nuclear and Plasma Physics, PO Box 522, Belgrade (Yugoslavia)

    1999-01-11

    The time differential perturbed angular correlation technique has been used to measure the electric field gradient at {sup 181}Ta impurities in the intermetallic compound Hf{sub 2}Rh. The results of the measurements show the presence of two independent quadrupole interactions. At room temperature the interaction frequencies are {omega}{sub Q1} = 58 Mrad s{sup -1} and {omega}{sub Q2} = 239 Mrad s{sup -1}. The electric field gradient V{sub 22}, the corresponding asymmetry parameter {eta} and the distribution parameter {delta} exhibit a pronounced temperature dependence from 78 to 1223 K. (author)

  2. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique

    International Nuclear Information System (INIS)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani; Cintho, Osvaldo Mitsuyuki

    2010-01-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni 2 Al 3 and Ni 3 Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni 2 Al 3 and Ni 3 Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  3. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Arafat, M.M., E-mail: arafat_mahmood@yahoo.com; Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  4. The role of zinc on the chemistry of complex intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Weiwei [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  5. Thermal, structural, and magnetic studies of metals and intermetallic compounds. Final report

    International Nuclear Information System (INIS)

    Wallace, W.E.; Craig, R.S.; Rao, V.U.S.

    1976-01-01

    The powerful magnetism of certain intermetallics, e.g., SmCo 5 , has been established to originate with the powerful magnetic anisotropy of SmCo 5 , not its large magnetization. The anisotropy is, in turn, a crystal field effect. The crystal field interaction has been elucidated by the method of quantum mechanics. Studies of the systems RFe 2 , RFe 3 , RCo 3 , and R 2 Co 7 (R = a rare earth, Y or Th) reveals them to be important for hydrogen storage. In addition, important effects associated with hydrogenation of metals have been found--great enhancement of magnetization of certain systems (e.g., ErFe 2 ) and substantial increase in superconducting transition temperatures (e.g., Zr/sub .5/H/sub .5/V 2 ). Results of studies suggest that the surfaces of rare earth intermetallics are atypical. The spectrum of properties exhibited by the rare earth intermetallics suggests their utility in the efficient capture and storage of solar energy and the use of it for powering a vehicle. These aspects of the systems warrant further attention

  6. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  7. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al–20Si–5Fe alloys

    International Nuclear Information System (INIS)

    Fatih Kilicaslan, M.; Yilmaz, Fikret; Hong, Soon-Jik; Uzun, Orhan

    2012-01-01

    The effects of cobalt addition on microstructure and mechanical properties of Al–20Si–5Fe–XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al–Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  8. Reaction of intermetallic compounds of the ScT composition (T=Ag, Cu, Zn, Ni) with hydrogen

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.; Tarasov, B.P.

    1995-01-01

    Reaction of intermetallic compounds of ScT composition (T=Ag, Cu, Zn, Ni), crystallized in CsCl structural type, with hydrogen at 0.2-10 MPa pressure and 293-673 K temperature is studied by chemical, x-ray phase and complex thermogravimetry analysis methods. It is shown that under such conditions hydrogen absorption by ScAg and ScCu is accompanied by the decay of their source matrices into scandium dihydride and metal silver and copper respectively. For ScZn a fine-dispersion mixture of scandium dihydride with zinc and hydride phase of a new zinc-containing intermetallic compound appears to be the finite reaction product. In case of ScNi a hydride phase of ScNiH 2.6 composition is produced, which is crystallized in a rhombic syngony with the lattice periods: a=0.5281±0.0007, b=0.7393±0.0009 and c=0.3327±0.0004 nm. 9 refs.; 2 tabs

  9. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal, 462026 (India)

    2016-05-06

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  10. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Science.gov (United States)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  11. Interaction of intermetallic compounds formed by rare earths, scandium, yttrium and 3d-transition metals, with gaseous ammonia

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.

    1992-01-01

    Interaction of the RT n intermetallic compounds, where R Sc, Y, rare earths, T = Fe, Co, Ni; n = 2,3,5, with gaseous ammonia under pressure of 1MPa and at temperatures of 293, 723 and 798 K is studied. It is established on the basis of roentgenographic studied, chemical analysis data, X-ray photoelectron spectroscopy and specific surface measurements that metallic matrixes of intermetallides decompose into nitrides and transition metal phases at temperatures of 723 and 798 K under effect of ammonia and independent of structural types of the source materials; partial or complete decomposition of intermetallides through ammonia with formation of transition metal mixture, binary hydrides and nitrides of the most electropositive metal the above systems occurs at the temperature of 293 K depending on the heat of the source compounds and their tendency to decomposition under ammonia effect

  12. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal 462002 (India); Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com [Department of Physics, National Defence Academy, Pune 411023 (India); Sanyal, Sankar P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2015-08-28

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.

  13. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  14. Dependence of intermetallic compound formation on the sublayer stacking sequence in Ag–Sn bilayer thin films

    International Nuclear Information System (INIS)

    Rossi, P.J.; Zotov, N.; Bischoff, E.; Mittemeijer, E.J.

    2016-01-01

    Intermetallic compound (IMC) formation in thermally-evaporated Ag–Sn bilayer thin films has been investigated employing especially X-ray diffraction (XRD) and (S)TEM methods. The specific IMCs that are present in the as-deposited state depend sensitively on the stacking sequence of the sublayers. In case of Sn on top of Ag, predominantly Ag 3 Sn is formed, whereas Ag 4 Sn is predominantly present in the as-deposited state for Ag on top of Sn. In the latter case this is accompanied by an extremely fast uptake of a large amount of Sn by the Ag sublayer, leaving behind macroscopic voids in the Sn sublayer. The results are discussed on the basis of the thermodynamics and kinetics of (IMC) product-layer growth in thin films. It is shown that both thermodynamic and kinetic arguments explain the contrasting phenomena observed.

  15. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  16. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Mehdi [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)]. E-mail: mehdi@kntu.ac.ir; Yazdani, Ahmad [Tarbiat Modares University, P.O. Box 14155-4838, Tehran (Iran, Islamic Republic of); Vaezzadeh, Majid [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Daneshmand, Gissoo [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Kanzeghi, Ali [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2006-05-01

    The magnetic behavior of Gd-based intermetallic compound (Gd{sub 2}Al{sub (1-x)}Au{sub x}) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement {chi}(T) shows two different stages. Moreover for (T>T{sub K2}) a fall of the value of {chi}(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T{sub K1}) an increase of {chi}(T) and in the second stage (T{sub K2}) a new remarkable decrease of {chi}(T) (T{sub K1}>T{sub K2}). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution.

  17. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    International Nuclear Information System (INIS)

    Vaezzadeh, Mehdi; Yazdani, Ahmad; Vaezzadeh, Majid; Daneshmand, Gissoo; Kanzeghi, Ali

    2006-01-01

    The magnetic behavior of Gd-based intermetallic compound (Gd 2 Al (1-x) Au x ) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement χ(T) shows two different stages. Moreover for (T>T K2 ) a fall of the value of χ(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T K1 ) an increase of χ(T) and in the second stage (T K2 ) a new remarkable decrease of χ(T) (T K1 >T K2 ). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution

  18. Complex magnetic behaviour and evidence of a superspin glass state in the binary intermetallic compound Er5Pd2

    Science.gov (United States)

    Sharma, Mohit K.; Yadav, Kavita; Mukherjee, K.

    2018-05-01

    The binary intermetallic compound Er5Pd2 has been investigated using dc and ac magnetic susceptibilities, magnetic memory effect, isothermal magnetization, non-linear dc susceptibility, heat capacity and magnetocaloric effect studies. Interestingly, even though the compound does not show geometrical frustration it undergoes glassy magnetic phase transition below 17.2 K. Investigation of dc magnetization and heat capacity data divulged absence of long-ranged magnetic ordering. Through the magnetic memory effect, time dependent magnetization and ac susceptibility studies it was revealed that the compound undergoes glass-like freezing below 17.2 K. Analysis of frequency dependence of this transition temperature through scaling and Arrhenius law; along with the Mydosh parameter indicate, that the dynamics in Er5Pd2 are due to the presence of strongly interacting superspins rather than individual spins. This phase transition was further investigated by non-linear dc susceptibility and was characterized by static critical exponents γ and δ. Our results indicate that this compound shows the signature of superspin glass at low temperature. Additionally, both conventional and inverse magnetocaloric effect was observed with a large value of magnetic entropy change and relative cooling power. Our results suggest that Er5Pd2 can be classified as a superspin glass system with large magnetocaloric effect.

  19. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    International Nuclear Information System (INIS)

    Tegus, O.; Bao Li-Hong; Song Lin

    2013-01-01

    Since the discovery of giant magnetocaloric effect in MnFeP 1−x As x compounds, much valuable work has been performed to develop and improve Fe 2 P-type transition-metal-based magnetic refrigerants. In this article, the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques, effects of atomic substitution on the magnetism and magnetocalorics of Fe 2 P-type intermetallic compounds MnFeX (X=P, As, Ge, Si) is reviewed. Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP 1−x Si(Ge) x . These new materials show large magnetocaloric effects resembling MnFe(P, As) near room temperature. Some new physical phenomena, such as huge thermal hysteresis and ‘virgin’ effect, were found in new materials. On the basis of Landau theory, a theoretical model was developed for studying the mechanism of phase transition in these materials. Our studies reveal that MnFe(P, Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  1. The influence of the magnetic state on the thermal expansion in 1:2 rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Gratz, E.; Lindbaum, A.

    1994-01-01

    The attempt is made to demonstrate on some selected rare earth intermetallics the influence of the magnetic state on the thermal expansion. Using the X-ray powder diffraction method we investigated the thermal expansion of some selected nonmagnetic compounds (YAl 2 , YNi 2 and YCo 2 ) and some magnetic RE (rare earth) - cobalt compounds (RCo 2 ) in the temperature range from 4 up to 450 K. All these compounds crystallize in the C15-type structure (cubic Laves phase structure). By comparing the nonmagnetic Y-based compounds we could show that there is an enhanced contribution of the 3d electrons to the thermal expansion in YCo 2 . In the magnetic RCo 2 compounds the induced 3d magnetism gives rise to large volume anomalies at the magnetic ordering temperature T c . Below T c there is in addition a distortion of the cubic unit cell due to the interaction of the magnetically ordered RE ions with the anisotropic crystal field.The thermal expansion of the orthorhombic TmCu 2 , GdCu 2 and YCu 2 compounds has also been investigated for comparison. The influence of the crystal field on the thermal expansion in TmCu 2 in the paramagnetic range (TmCu 2 orders magnetically at T N =6.3 K) has been determined by comparing the thermal expansion of the nonmagnetic YCu 2 with that of TmCu 2 . The data thus obtained are compared with a theoretical model. GdCu 2 , for which the influence of the crystal field can be neglected, has been investigated in order to study the influence of the exchange interaction in the magnetically ordered state (below 42 K). ((orig.))

  2. Core-level XPS studies of Ce and La intermetallic compounds and their implications for the 4f levels of Ce compounds

    International Nuclear Information System (INIS)

    Freiburg, C.; Fuggle, J.C.; Hillebrecht, F.U.; Zolnierek, Z.; Laesser, R.

    1983-01-01

    The 3d core hole X-ray photoelectron spectra (XPS) of approximately 30 intermetallic compounds of La and Ce are reported. Transitions to final states with approximately f 0 , f 1 and f 2 character are observed in some Ce compounds (f 0 and f 1 for La compounds). The results are discussed in terms of the current ideas of the influence of f-counts and f-levels hybridization on core level lineshapes. We cannot find an explanatoin of the observed spectra consisted with the ''promotial model'' where the 4f-count varies and 4f electron was thought to be entirely promoted to the Ce 5d6s valence bands in some compounds. There may be some small charge transfer from the f level, however. In conjunction with ideas on screening processes in XPS the observed lineshapes suggest coupling of the 4f electrons to other states is strongest in those compounds previously thought to have f 0 character. This coupling increases despite a large increase in the Ce-Ce distance when Ce is diluted with Ni or Pd. Thus it cannot be due to direct f-f interaction and must be attributed to coupling with the other valence electrons; possibly those centred on the partner sites. (orig./EZ) [de

  3. Electroerosion of Zr3Al and ZrAl3 intermetallic compounds

    International Nuclear Information System (INIS)

    Asanov, U.A.; Sakavov, I.E.; Denisov, A.S.

    1974-01-01

    The results of an investigation of the mechanochemical processes initiated in polymers (polypropylene and polystyrene in contact with Br 2 , I 2 and CBr 4 ) owing to simultaneous effect of mechanical action and u.v. irradiation are presented. The treatment results in the formation of a large number of active radicals and broken chemical bonds. It was shown that u.v. irradiation facilitates mechanoactivation and mechanodestruction of the polymers

  4. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G.

    2002-01-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  5. Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1−xAlx)2 compounds

    International Nuclear Information System (INIS)

    Ivanova, T.I.; Nikitin, S.A.; Tskhadadze, G.A.; Koshkid’ko, Yu.S.; Suski, W.; Iwasieczko, W.; Badurski, D.

    2014-01-01

    Highlights: • The Al influence on magnetic properties of the Ho (Co 1-x Al x ) 2 compounds is analyzed. • The first-order magnetic transition appears in sample with Al concentrations x ≤ 0.06. • The MCE and Curie temperature TC demonstrate complex Al concentration dependences. • The magnetoresistance for sample with Al concentration x = 0.06 (58%) is maximum. • High magnetic fields changes the Curie temperature T c of the Ho (Co 1−x Al x ) 2 compounds. - Abstract: The magnetization, magnetoresistivity and magnetocaloric effect (MCE) of the Ho (Co 1−x Al x ) 2 Laves phase intermetallic compounds for x ⩽ 0.2 have been investigated. Complex measurements have been carried out in order to determine the influence of substitution in the Co sublattice by Al on the Co moment, type of the magnetic transition and related properties of these compounds. A comparative analysis of the magnetic, transport and magnetocaloric properties of Ho (Co 1−x Al x ) 2 alloys under various Al concentration is represented. Substitutions at the Co site by Al are found to result in the appearance of itinerant electron metamagnetism (IEM) at the small Al concentrations and in positive magnetovolume effect, leading to an initial increase in the ordering temperature; on the other hand the magnetic phase transition temperature as well as ΔT (MCE) do not depend in direct way on the Al concentration. The 16% increase of magnetocaloric effect for the alloy with x = 0.02 is detected in relation to maternal HoCo 2 . A giant value of magnetoresistivity (58%) is observed for the alloy with the same Al concentration

  6. Synthesis, growth, and studies (crystal chemistry, magnetic chemistry) of actinide-based intermetallic compounds and alloys with a 1.1.1 stoichiometry

    International Nuclear Information System (INIS)

    Kergadallan, Yann

    1993-01-01

    The first part of this research thesis reports the study of the synthesis and reactivity of intermetallic compounds with a 1.1.1 stoichiometry. It presents the thermal properties of 1.1.1 compounds: general presentation of physical transitions, and of solid solutions and formation heat, application to actinides (reactivity analysis from phase diagrams, techniques of crystal synthesis and crystal growth. It describes experimental techniques: synthesis, determination of fusion temperature by dilatometry, methods used for crystal growth, characterisation techniques (metallography, X ray diffraction on powders, dilatometry). It discusses the obtained results in terms of characterisation of synthesised samples, of crystal growth, and of measurements of fusion temperature. The second part addresses crystal chemistry studies: structure of compounds with a 1.1.1 stoichiometry (Laves structures, Zr, Ti and Pu compounds), techniques of analysis by X-ray diffraction (on powders and on single crystals), result interpretation (UNiX compounds, AnTAl compounds with T being a metal from group VIII, AnTGa compounds, AnNiGe compounds, distance comparison, structure modifications under pressure). The third part concerns physical issues. The author addresses the following topics: physical properties of intermetallic 1.1.1 compounds (magnetism of yttrium phases, behaviour of uranium-based Laves phases, analysis of pseudo-binary diagrams, physical characteristics of uranium-based 1.1.1 compounds, predictions of physical measurements), analysis techniques (Moessbauer spectroscopy, SQUID for Superconducting Quantum Interference Device), and result interpretation

  7. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  8. Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5 Intermetallic Compound During Mechanical Alloying Process

    Directory of Open Access Journals (Sweden)

    A. Khajesarvi

    2015-07-01

    Full Text Available In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5 intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

  9. On the nature of chromatic color of PdIn intermetallic compounds

    International Nuclear Information System (INIS)

    Nomerovannaya, L.V.; Kirillova, M.M.; Savitskij, E.M.; Polyakova, V.P.; Gorina, N.B.; Korenovskij, N.L.; AN SSSR, Moscow. Inst. Metallurgii)

    1979-01-01

    For the first time measured are the indexes of refraction and absorption of the six samples in the region of PdIn compound existence within the spectral range from 0.072 to 4.94 eV. The peculiarities of intersone light absoprtion are studied, the energy shift of absorption edge with the change of indium concentration is determined and the nature of the appearance of unusual colors of these compounds is explained. The refraction capacity for the normal light fall is calculated according to the values of refraction and absorption indexes. The refraction capacity curves for compounds with 42, 46, 50 at % indium content are presented, whose spectral dependence and high refraction (40-98%) show that PdIn compounds possess metallic conductivity

  10. Microstructural analyses of intermetallic TiAl(Nb)-compounds prepared by arc melting and by powder metallurgy

    International Nuclear Information System (INIS)

    Chen, S.

    1988-01-01

    Intermetallic compounds based on TiAl with Nb or V as alloying additions prepared by powder metallurgy (P/M) and arc melting (A/M) techniques have been investigated with respect to their potential as new high temperature materials. All the alloys with nominal Al-concentrations 34-36 wt% contain two phases, γ-TiAl and α 2 -Ti 3 Al, but significant differences in the distribution of γ and α 2 were found between the P/M and A/M materials. The role of impurities during processing and the microstructural stability in the planned service temperature range 700-1000 0 C are discussed. In the P/M TiAl alloys two carbide precipitates have been found, which are the cubic Perovskite-AlTi 3 C phase in the γ-matrix and the hexagonal H-AlTi 2 (C, N) phase at grain boundaries. At high temperatures the AlTi 3 C phase dissolves and is replaced by more stable H-phase, and therefore no longer contributes to the high temperature strength of the material. Mechanical properties of both the P/M and A/M alloys are compared in association with the processing methods and the resulting microstructures. (orig.) With 71 figs., 22 tabs [de

  11. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    International Nuclear Information System (INIS)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described

  12. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  13. Spontaneous growth of whiskers on RE-bearing intermetallic compounds of Sn-RE, In-RE, and Pb-RE

    Energy Technology Data Exchange (ETDEWEB)

    Liu Meng [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xian Aiping, E-mail: ap.xian@imr.ac.c [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China)

    2009-11-03

    A phenomenon of the whiskers growth on the bulk rare earth (RE)-intermetallic compounds of NdSn{sub 3}, NdIn{sub 3}, and LaPb{sub 3} is reported. The whiskers formed spontaneously on all of the RE-intermetallic compounds after exposed to room ambience (21-28 deg. C/20-56% RH, relative humidity) for several days. Among the samples, the propensity of whisker growth for NdSn{sub 3} is the strongest, on which the tin whiskers were flourishing and covered all of the surfaces after exposed to room ambience for 22 days; while LaPb{sub 3} is the secondary and NdIn{sub 3} is the last one. Observed by SEM, the whiskers were exhibited as different morphology, size, and number density. The XRD analysis confirms the existence of RE(OH){sub 3} after whiskers formed, also, the weight gain curve of the samples exposed to room ambience supports that a spontaneous chemical reaction of the RE-intermetallic compounds with water in room ambience takes place. In discussion, it is proposed that the fresh metal atoms released by the chemical reaction could be causative to result in nucleation and spontaneous growth of the whiskers, while the anisotropy of crystal structure could be a reason to understand the difference of the whisker growth behaviors between Sn and Pb.

  14. Spontaneous growth of whiskers on RE-bearing intermetallic compounds of Sn-RE, In-RE, and Pb-RE

    International Nuclear Information System (INIS)

    Liu Meng; Xian Aiping

    2009-01-01

    A phenomenon of the whiskers growth on the bulk rare earth (RE)-intermetallic compounds of NdSn 3 , NdIn 3 , and LaPb 3 is reported. The whiskers formed spontaneously on all of the RE-intermetallic compounds after exposed to room ambience (21-28 deg. C/20-56% RH, relative humidity) for several days. Among the samples, the propensity of whisker growth for NdSn 3 is the strongest, on which the tin whiskers were flourishing and covered all of the surfaces after exposed to room ambience for 22 days; while LaPb 3 is the secondary and NdIn 3 is the last one. Observed by SEM, the whiskers were exhibited as different morphology, size, and number density. The XRD analysis confirms the existence of RE(OH) 3 after whiskers formed, also, the weight gain curve of the samples exposed to room ambience supports that a spontaneous chemical reaction of the RE-intermetallic compounds with water in room ambience takes place. In discussion, it is proposed that the fresh metal atoms released by the chemical reaction could be causative to result in nucleation and spontaneous growth of the whiskers, while the anisotropy of crystal structure could be a reason to understand the difference of the whisker growth behaviors between Sn and Pb.

  15. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  16. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  17. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prajapat, C. L., E-mail: prajapat@barc.gov.in; Singh, M. R.; Mishra, P. K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Chattaraj, D. [Product Development Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Mishra, R. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Ravikumar, G. [Scientific Information Resources Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India)

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  18. Disorder-induced amorphization of intermetallic compounds: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Massobrio, C. (Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Physique Experimentale); Pontikis, V.; Doan, N.V.; Martin, G. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires)

    The reaction of the crystalline compound NiZr{sub 2} to imposed chemical disorder has been studied by molecular dynamics in the isobaric canonical ensemble. The cohesive energy used is inspired by the second moment apporoximation of the local density of states in the tight binding model. Imposed chemical disorder induced swelling (3% for full disorder, 1% for 10% disorder). Above 10% disorder, the crystalline structure athermally collapses to an amorphous state which retains much of the local chemical order. (orig.).

  19. Disorder-induced amorphization of intermetallic compounds: A molecular dynamics study

    International Nuclear Information System (INIS)

    Massobrio, C.; Pontikis, V.; Doan, N.V.; Martin, G.

    1991-01-01

    The reaction of the crystalline compound NiZr 2 to imposed chemical disorder has been studied by molecular dynamics in the isobaric canonical ensemble. The cohesive energy used is inspired by the second moment apporoximation of the local density of states in the tight binding model. Imposed chemical disorder induced swelling (3% for full disorder, 1% for 10% disorder). Above 10% disorder, the crystalline structure athermally collapses to an amorphous state which retains much of the local chemical order. (orig.)

  20. Ab initio study of the structural, electronic, elastic and thermal properties of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miloud Abid, O.; Yakoubi, A. [Laboratoire d’Etudes des Matériaux et Instrumentations Expérimentales, Université Djilali Liabes de Sidi Bel-Abbes, 22000 (Algeria); Tadjer, A. [Modeling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, Sidi Bel-Abbes (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Azam, Sikander [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2014-12-15

    Highlights: • The calculated structural parameters of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds are found in good agreement with the experimental data. • The structural and band structure calculation reveals that these compounds are ferromagnetic brittle metals. • The elastic and thermodynamic properties for the herein studied compounds are investigated for the first time. - Abstract: Intermetallic RMn{sub 2}Ge{sub 2} ternary compounds have attracted considerable attention from researchers in recent years because they show strong indications for novel magnetic characteristics and they have the potential to reveal the mechanism of superlattices. The study of the paramagnetic, ferromagnetic and antiferromagnetic phases affirms the strong dependence to the distance between atomic species in these compounds. In this study, we investigated the structural, elastic, electronic and thermodynamic properties of the intermetallic RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds. To carry out this study, we used the full potential (FP) linearized (L) augmented plane wave plus local orbitals (APW + lo), a scheme of calculations developed within the frame work of density functional theory (DFT). To incorporate the exchange correlation (XC) energy and corresponding potential into the total energy calculations, local density approximation (LDA) parameterized by Perdew and Wang is taken into account. Analysis of the density of states (DOS) profile illustrates the conducting nature of these intermetallic compounds; with a predominantly contribution from the R and Mn-d states. At ambient conditions, calculations for elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 44}, C{sub 33} and C{sub 66}) are also performed, which point to their brittle character. In addition, the quasi harmonic Debye model was used to predict the thermal properties, together with relative expansion coefficients and heat capacity.

  1. Thermal expansion and spontaneous magnetostriction of R2Co7 intermetallic compounds

    International Nuclear Information System (INIS)

    Andreev, A.V.; Bartashevich, M.I.; Deryagin, A.V.; Zadvorkin, S.M.; Tarasov, E.N.

    1988-01-01

    Thermal expansion of R 2 Co 7 (R=Y, Nd, Gd, Tb) single crystals was invesigated by the method of X-ray dilatometry. Anomalous of thermal expansion, taking place during magnetic ordering and spin reorientation were used to determine linear and volumetric magnetistriction deformations. Constants of anisotropic magnetostriction of all R 2 Co 7 compounds with nonzero orbital moment of rare earth ion were calculated on the basis of single-ion model according to deformation values and with account of temperature dependences of the magnitude and direction of magnetic moment

  2. High pressure study of the intermetallic compound UFe2Al10

    International Nuclear Information System (INIS)

    Halevy, I.; Zenou, V.Y.; Salhov, S.; Caspi, E.N.; Schaefer, W.; Yaar, I.

    2006-01-01

    The crystallographic and electronic structure of UFe 2 Al 10 was studied as a function of pressure by combining X-ray diffraction results with the full potential linearized augmented plane wave (LAPW) calculations method. The volume-pressure reduction measured at 23.5 GPa is V/V 0 = 0.87, with a B 0 value of 132 ± 8 GPa. The uranium 5f electrons in this compound are located in a narrow and well-defined band above E Fermi , having a very weak interaction with the iron 3d band located below E Fermi . Consequently, the DOS at E Fermi is close to zero, indicating a close to zero-magnetic moment of the uranium atom at low temperature up to a pressure of 23.5 GPa, as expected from the layered crystallographic structure of this compound. The above assumption is supported by preliminary neutron diffraction data, where no long-range magnetic order was detected down to 3 K

  3. An ab-initio investigation on SrLa intermetallic compound

    Science.gov (United States)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-05-01

    The electronic, elastic and thermodynamic property of CsCl-type SrLa are investigated through density functional theory. The energy-volume relation for this compound has been obtained. The band structure, density of states and charge density in (110) plane are also examined. The elastic constants (C11, C12 and C44) of SrLa is computed, then, using these elastic constants, the bulk moduli, shear moduli, Young's moduli and Poisson's ratio are also derived. The calculated results showed that CsCl-type SrLa is ductile at ambient conditions. The thermodynamic quantities such as free energy, entropy and heat capacity as a function of temperature are estimated and the results obtained are discussed.

  4. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Directory of Open Access Journals (Sweden)

    Aparna Sankar

    2018-05-01

    Full Text Available Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62 similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2 Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ∼1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC respectively. Field dependent magnetization (M-H at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ∼27 Jkg-1K-1 and ∼24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ∼440 J/kg and ∼432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  5. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Science.gov (United States)

    Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2018-05-01

    Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  6. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  7. Crystal growth of the intermetallic compound Nd{sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. [IFW Dresden, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstr. 20, 01171 Dresden (Germany); State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Loeser, W.; Blum, C.G.F.; Buechner, B. [IFW Dresden, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstr. 20, 01171 Dresden (Germany); Tang, F. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Liu, L. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-02-15

    Nd{sub 2}PdSi{sub 3} single crystals were grown by a vertical floating zone method with radiation heating at a zone traveling rate of 3 mm/h. The compound exhibits congruent melting behavior at a liquidus temperature of about 1790 C. The actual crystal composition (35.3 {+-} 0.5) at.% Nd, (16.2 {+-} 0.5) at.% Pd, and (48.5 {+-} 0.5) at.% Si is slightly depleted in Pd and Si with respect to the nominal stoichiometry. Therefore, the gradual accumulation of these elements in the traveling zone led to a decrease of the operating temperature during the growth process. Single crystalline samples exhibit a large anisotropy due to the crystal electric field effect and order ferromagnetically below the Curie temperature T{sub C}=15.1 K. The [001] orientation was identified as the magnetic easy axis at low temperatures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Effects of Be additions on microstructures of TiAl intermetallic compounds

    International Nuclear Information System (INIS)

    Nonaka, Katsuhiko; Tanosaki, Kazuo; Kawabata, Takeshi; Nakajima, Hideo

    1997-01-01

    TiAl-0.1-3.0 mol%Be alloys made by the argon arc melting method were investigated to characterize microstructures in cast and annealed conditions using optical microscopy, SEM, EPMA and X-ray diffractometer. The addition of Be to TiAl resulted in a decrease of α 2 phase, thereby coarsening grains and a shift of γ/(γ+α 2 ) phase boundary to Ti-rich side. Two types of Be compound were observed: one was a few micron size of particles which contain a large amount of oxygen and the other was a coarse and eutectic-like phase (θ) which has an atomic ratio of Ti:Al:Be=41:30:29. The solubility limit of Be in TiAl was less than 0.1 mol%. In the (γ+θ) two phase and (γ+α 2 +θ) three phase regions, an increase of Be addition beyond the solubility limit resulted in a small increase of Ti/Al compositional ratio in γ phase. A volume fraction of lamellar structure in TiAl-Be ternary alloys was smaller in the cast structure but was larger in the annealed structure than that in TiAl binary alloys which have nearly the same Ti/Al ratio as that in the ternary alloys, because the Be addition may increase the stacking fault energy and will stabilize the lamellar twin boundaries, respectively. (author)

  9. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes

    International Nuclear Information System (INIS)

    Bergers, W.W.A.

    1980-01-01

    Potatoes were used to study the metabolic stress effects in irradiated vegetable products. The changes of the contents of specific target compounds (glycoalkaloids, phenolic acids and coumarins) in alcoholic extracts of gamma irradiated potatoes were studied for metabolic irradiation stress. Doses of up to 3 kGy were applied to potatoes of several varieties. (Auth.)

  10. FY 1992 Report on the survey results. Surveys on trends of research and development of advanced materials for severe environments (Intermetallic compounds); 1992 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu (kinzokukan kagobutsu) ni kakawaru kenkyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The trends of the ongoing researches on intermetallic compounds are surveyed through interviews and inquiries, in order to evaluate the results of the projects and research and development of the advanced materials for severe environments, and also to survey the research trends. The survey results are pigeonholed into 4 general categories; (1) research trends in the USA, UK and Germany, (2) notable topics of recent progress in intermetallic research and development, (3) evaluation of the projects, and (4) lists of the results of the researches on the Al-Ti and Al-Nb intermetallic compounds. The ongoing projects include those for intermetallic compounds of high specific strength and of high melting point, the former being represented by Al-Ti compounds and the latter by Al-Nb compounds, for aircraft and space development purposes. The projects are evaluated, viewed from materials and purposes/targets pursued by the projects, R and D organizations, and degree of attention the projects are attracting. The intermetallic compounds are extensively studied and attracting attention in various countries, but possibilities of achieving the set targets are rather pessimistic. (NEDO)

  11. Multifunctional phenomena in rare-earth intermetallic compounds with a laves phase structure: giant magnetostriction and magnetocaloric effect

    Czech Academy of Sciences Publication Activity Database

    Tereshina, I.; Cwik, J.; Tereshina, Evgeniya; Politova, G.; Burkhanov, G.; Chzhan, V.; Ilyushin, A.; Miller, M.; Zaleski, A.; Nenkov, K.; Schultz, L.

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2504604 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : giant magnetostriction * Laves phase structure * magnetic anisotropy * magnetocaloric effect * rare-earth intermetallic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  12. Radiation-induced amorphization of intermetallic compounds: A molecular-dynamics study of CuTi and Cu4Ti3

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.; Sabochick, M.J.

    1991-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu 4 Ti 3 are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed. 25 refs., 4 figs

  13. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  14. Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets

    Science.gov (United States)

    Lapshina, Elena V [Troitsk, RU; Zhuikov, Boris L [Troitsk, RU; Srivastava, Suresh C [Setauket, NY; Ermolaev, Stanislav V [Obninsk, RU; Togaeva, Natalia R [Obninsk, RU

    2012-01-17

    The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  15. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    Science.gov (United States)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along {1 1 0} direction, {1 1 0} direction and {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, and directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along direction of AlSc will easily split into two superpartials.

  16. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  17. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  18. The possibility of the mixed valence state in the uranium intermetallic compounds: UCoGa5, U2Ru2Sn and U2RuGa8

    International Nuclear Information System (INIS)

    Troc, Robert

    2007-01-01

    The mixed valence (MV) phenomenon has been observed so far in a large number of various compounds but containing only lanthanides. These properties are usually associated with the mixing of the localised f-state and the band states. The usual valence state for magnetic uranium intermetallics is the trivalent state 5f 3 or hybridised 5f 2 6d 1 , both are nearly degenerate in energy and can compete for a stability of the compound. In some cases a gain in an energy minimum may be achieved by very fast fluctuating between these two states with a time of 10 -14 s, which does not allow to yield the ordered state even if the exchange interactions (favourite the U-U distances) would be able for that. The latter cases seem to concern the described here intermetallics: one ternary compound based on Co, UCoGa 5 , and the two uranium ternary compounds based on Ru, namely U 2 Ru 2 Sn and U 2 RuGa 8 which all crystallize in a tetragonal unit cell. All these compounds show a maximum in their temperature dependences of the magnetic susceptibility measured along and perpendicular to the c-axis. Such a behaviour, which is reminiscent of a number of Ce (Sm, Eu) and Yb compounds for which χ(T) has in the past been considered by Sales and Wohlleben (SW) by applying their ICF model or by Lawrance et al. following their scaling procedure. It turned out that these phenomenological models can also be applied to the considered here two Ru-based uranium ternaries from which some reliable energy parameters could be found. In order to further support the mixing valence scenario for the first such cases in uranium compounds presented here, the transport and thermodynamic properties are also discussed. However, some of the most important results confirming the MV state, e.g., in U 2 RuGa 8 , has recently been achieved from the inelastic neutron scattering performed in the Rutherford Appleton Laboratory on the ISIS facility. From these measurements a characteristic gap of 60 meV has been

  19. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  20. Irradiation effects on polymer-model compounds

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Hayakawa, Naohiro; Tamura, Naoyuki; Katsumura, Yosuke; Hayashi, Nariyuki; Tabata, Yoneho

    1991-01-01

    Irradiation effects on n-paraffins and squalane, used as models of polymers, were investigated by product analysis. Four n-paraffins, C 20 H 42 , C 21 H 44 , C 23 H 48 and C 24 H 50 , and squalane (C 30 H 62 ) were γ-irradiated under vacuum in liquid, crystalline and glassy states. The evolved gases were analyzed by gas chromatography and changes in molecular weight were analyzed by liquid chromatography and mass spectroscopy. G-values for crosslinking of n-paraffins were 1.2 for crystalline states (at 25 0 C) and 1.7 for liquid states (at 55 0 C), and showed no difference between odd and even carbon numbers. The G-value of liquid squalane was 1.7; it was 1.3 for the glassy state at low temperature (-77 0 C). Double bonds were common in the crosslinked products, especially after liquid-phase irradiation. The probability of chain scission was estimated as being negligible, though a small number of chain-scission products (which were products of scission at chain-ends or side chains) were observed by gas analysis. (author)

  1. Influence of Nickel Thickness and Annealing Time on the Mechanical Properties of Intermetallic Compounds Formed between Cu-Sn Solder and Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yiseul; Kwon, Jeehye; Yoo, Dayoung; Park, Sungkyu; Lee, Dajeong; Lee, Dongyun [Pusan National University, Busan (Korea, Republic of)

    2017-03-15

    Intermetallic compounds (IMCs) developed on the interface between a solder alloy and its bonding pads are an important factor in the failure of electronic circuits. In this study, the mechanical behaviors of the IMCs formed in the Cu-Ni-Sn ternary alloy system are investigated. Presumably, Ni can act as a diffusion barrier to Cu and Sn to form the IMCs. Detailed analysis of the microstructure is conducted using an electron probe micro-analyzer (EPMA). The addition of Ni softened the IMCs, which is determined based on the fracture toughness increasing (from 0.71 to 1.55 MPa√m) with the Ni layer thickness. However, above a critical amount of Ni involved in the Cu-Sn IMCs, the softening effect is diminished, and this could result from the segregation of Ni inside the IMCs. Therefore, the optimized condition must be determined in order to obtain a positive Ni effect on enhancing the reliability of the electronic circuits.

  2. Crystal structure and magnetic state of pseudo-binary intermetallic compounds Ho(Cosub(1-x)Nisub(x))sub(5)

    International Nuclear Information System (INIS)

    Chuev, V.V.; Kelarev, V.V.; Pirogov, A.N.; Sidorov, S.K.; Koryakova, V.S.

    1983-01-01

    In the range of 1.8-1000 K intermetallic compounds Ho(Cosub(1-x)Nisub(x))sub(5) have been investigated neutronographically and roentgenographically. Crystal structure of two series of samples: HoCosub(5.5-5.5x)Nisub(5x) and HoCosub(5-5x)Nisub(5x) is studied. It is shown that Ni atoms mainly occupy positions 2c, Co atoms - positions 3g; coordinates of atoms and position occupation of TbCu 7 type structure are specified. Analysis of magnetic structure is made, angles of magnetic momenta orientation as to crystallographic axes are determined. Magnetic phase diagram is built. Concentrational dependences of sublattice magnetization: Msub(Ho)(x), Mdsub(2c)(x), Mdsub(3g)(x) are determined

  3. Abnormal accumulation of intermetallic compound at cathode in a SnAg3.0Cu0.5 lap joint during electromigration

    International Nuclear Information System (INIS)

    Li Mingyu; Chang Hong; Pang Xiaochao; Wang Ling; Fu Yonggao

    2011-01-01

    Interfacial reactions in a SnAg 3.0 Cu 0.5 /Cu lap joint for naked and encompassed specimens were investigated contrastively under electric current stressing. After applying a constant direct current at 6.5 A for 144 h, an abnormal accumulation of bulk Cu 6 Sn 5 intermetallic compound was found at the cathode for the naked specimen. But normal polarization phenomenon arose for the encompassed specimen at the same current density for 504 h. The abnormal accumulation phenomenon was explained by the mechanism that thermomigration and stress migration induced by temperature gradient dominated the migration process. A three-dimensional joint simulation model was designed to demonstrate how current crowding and temperature gradient can enhance the local atomic flux.

  4. Intensive structural investigation of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds using high resolution powder neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Mujamilah,; Ridwan, [Materials Science Research Center, National Atomic Energy Agency of Indonesia, Jakarta (Indonesia)

    1998-10-01

    The crystallographic and magnetic structure of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds system were refined by Rietveld analyses of the high resolution neutron powder diffraction data. The analyses results show that the substituent atoms were not distributed randomly over the Fe sites, but preferentially occupied some Fe sites. More further, it was also found that the substituent atoms which atomic radius smaller than Fe tend to avoid the 6c site at low concentration while the larger substituent atom tend to replace the Fe atom at this 6c site corresponding to their concentration. From these crystallographic data, it was suggested that the change of magnetic ordering temperature Tc, is not mainly determined by the change of short bond distance between this `dumb-bell` atoms, but it was also influenced by the nearest coordinated atoms to this site. (author)

  5. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    Science.gov (United States)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  6. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    International Nuclear Information System (INIS)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. (review)

  7. Method to increase the transition temperature and for the critical magnetic field strength of the known intermetallic compounds of vanadium or niobium

    International Nuclear Information System (INIS)

    Winter, H.

    1977-01-01

    The invention deals with a method to raise the transition temperature and critical magnetic field strength of superconducting, intermetallic compounds of vanadium and niobium. For example, a niobium alloy with 4 wt.% Al in melted in vacuum electric arc and formed into a sheet of about 1 mm thick. Strips of this sheet are electrically heated up to 1,900 0 C for one hour in a high-vacuum oven. The strips are then annealed in evacuated quartz ampoules for 120 hours at 800 0 C. These strips have a transition temperature of 24 K and a critical magnetic field strength of 600 kg; the critical current density was 5 x 10 4 A/cm 2 . (HPOE) [de

  8. Influence of interstitial solutions (H, N) on cerium electronic state in Ce-Fe intermetallic compounds: X-ray Absorption Spectroscopy (XAS) study

    International Nuclear Information System (INIS)

    Chaboy, J.; Marcelli, A.; Bozukov, L.

    1995-03-01

    It is presented an x-ray absorption spectroscopy (XAS) investigation performed at the L-edges of the rare-earth and at the K-edge of iron in the R-Fe intermetallic compounds (La, Ce) 2 Fe 14 BH χ and Ce 2 Fe 17 (H,N) χ , to elucidate the role of the interstitial doping into the electronic and magnetic properties of these systems. Comparison with x-ray circular magnetic dichroism (XCMD) experiments has been carried out to clarify the localization of 4f magnetic moment at the Ce sites upon hydriding. Both XAS and XCMD results evidence the interplay between the structural and magnetic changes, that are associated to the modification of the hybridization between the Fe(3d) and Ce(5d) bands

  9. [Zn(NH3)4][PtCl6] and [Cd(NH3)4][PtCl6] as precursors for intermetallic compounds PtZn and PtCd

    International Nuclear Information System (INIS)

    Zadesenets, A.V.; Venediktov, A.B.; Shubin, Yu.V.; Korenev, S.V.

    2007-01-01

    Double complex salts (tetraamminezinc and tetraamminecadmium hexachloroplatinates) have been synthesized. Their thermal properties have been studied, as well as the products of their degradation in hydrogen and helium atmospheres. Optimal thermolysis schedules have been determined. Thermolysis under hydrogen yields intermetallic compounds PtZn and PtCd [ru

  10. A Novel Access to Organostannane Compounds under Ultrasound Irradiation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simple and efficient procedure has been developed for the synthesis of organostannane compounds by one-pot reaction of stannane halides, magnesium turnings and organic halides in the presence of 1, 2-dibromoethane under ultrasound irradiation for the first time.

  11. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  12. Intermetallic semiconducting films

    CERN Document Server

    Wieder, H H

    1970-01-01

    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  13. Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure

    International Nuclear Information System (INIS)

    Ohashi, K.; Tawara, Y.; Osugi, R.; Shimao, M.

    1988-01-01

    Sm(Fe/sub 1-//sub x/M/sub x/) 12 ternary compounds based on the tetragonal ThMn 12 structure where M is Ti, Si, V, Cr, and Mo were investigated. M atoms have a preference for site occupation. Ti atoms occupy the 8i or 8j site and Cr atoms occupy the 8i site. Curie temperatures on Sm(M,Fe) 12 compounds are around 590 K except for the SmMo 2 Fe 10 compound (T/sub c/ = 483 K). The SmTiFe 11 and SmSi 2 Fe 10 compounds have a high saturation magnetization and magnetic anisotropy

  14. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD.

    Science.gov (United States)

    Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-09-01

    The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the

  15. Magnetocaloric effects in RTX intermetallic compounds (R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si)

    International Nuclear Information System (INIS)

    Zhang Hu; Shen Bao-Gen

    2015-01-01

    The magnetocaloric effect (MCE) of RTSi and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RTX compounds exhibit various crystal structures and magnetic properties, which then result in different MCE. Large MCE has been observed not only in the typical ferromagnetic materials but also in the antiferromagnetic materials. The magnetic properties have been studied in detail to discuss the physical mechanism of large MCE in RTX compounds. Particularly, some RTX compounds such as ErFeSi, HoCuSi, HoCuAl exhibit large reversible MCE under low magnetic field change, which suggests that these compounds could be promising materials for magnetic refrigeration in a low temperature range. (topical review)

  16. NMR study of electron spin density distribution in rare-earth intermetallic compounds with iron and cobalt

    International Nuclear Information System (INIS)

    Vasil'kovskij, V.A.; Gorlenko, A.A.; Kupriyanov, A.K.; Ostrovskij, V.F.

    1988-01-01

    It is shown that in intermettalic compounds local fields in rare earth (RE) element nuclei directed by 3d-sublattice atoms depend on 3d-atom type but they practically do not depend on the value of its magnetic moment and the compound stoichiometry. The results are explained in the assumption concerning the presence of a system of collectivized electrons, their spin polarization determining the field in RE nuclei and contributing to 3d-atom magnetic moment

  17. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  18. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  19. Concurrent nucleation, formation and growth of two intermetallic compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering

    International Nuclear Information System (INIS)

    Park, M.S.; Arróyave, R.

    2012-01-01

    This study investigates the concurrent nucleation, formation and growth of two intermetallic compounds (IMCs), Cu 6 Sn 5 (η) and Cu 3 Sn (ε), during the early stages of soldering in the Cu–Sn system. The nucleation, formation and growth of the IMC layers is simulated through a multiphase-field model in which the concurrent nucleation of both IMC phases is considered to be a stochastic Poisson process with nucleation rates calculated from classical nucleation theory. CALPHAD thermodynamic models are used to calculate the local contributions to the free energy of the system and the driving forces for precipitation of the IMC phases. The nucleation parameters of the η phase are estimated from experimental results and those of the ε phase are assumed to be similar. A parametric investigation of the effects of model parameters (e.g. grain boundary (GB) diffusion rates, interfacial and GB energies) on morphological evolution and IMC layer growth rate is presented and compared with previous works in which nucleation was ignored . In addition, the resulting growth rates are compared with the available literature and it is found that, for a certain range in the model parameters, the agreement is quite satisfactory. This work provides valuable insight into the dominant mechanisms for mass transport as well as morphological evolution and growth of IMC layers during early stages of Pb-free soldering.

  20. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  1. Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging

    Science.gov (United States)

    Su, Yu-Ping; Wu, Chun-Sen; Ouyang, Fan-Yi

    2016-01-01

    Three-dimensional integrated circuit technology has become a major trend in electronics packaging in the microelectronics industry. To effectively remove heat from stacked integrated circuitry, a temperature gradient must be established across the chips. Furthermore, because of the trend toward higher device current density, Joule heating is more serious and temperature gradients across soldered joints are expected to increase. In this study we used heat-sink and heat-source devices to establish a temperature gradient across SnAg microbumps to investigate the thermomigration behavior of Ag in SnAg solder. Compared with isothermal conditions, small Ag3Sn particles near the hot end were dissolved and redistributed toward the cold end under a temperature gradient. The results indicated that temperature gradient-induced movement of Ag atoms occurred from the hot side toward the cold side, and asymmetrical precipitation of Ag3Sn resulted. The mechanism of growth of the intermetallic compound (IMC) Ag3Sn, caused by thermomigration of Ag, is discussed. The rate of growth Ag3Sn IMC at the cold side was found to increase linearly with solid-aging time under a temperature gradient. To understand the force driving Ag diffusion under the temperature gradient, the molar heat of transport ( Q*) of Ag in Sn was calculated as +13.34 kJ/mole.

  2. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  3. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  4. A Correlation between the Ultimate Shear Stress and the Thickness Affected by Intermetallic Compounds in Friction Stir Welding of Dissimilar Aluminum Alloy–Stainless Steel Joints

    Directory of Open Access Journals (Sweden)

    Florent Picot

    2018-03-01

    Full Text Available In this work, Friction Stir Welding (FSW was applied to join a stainless steel 316L and an aluminum alloy 5083. Ranges of rotation and translation speeds of the tool were used to obtain welding samples with different heat input coefficients. Depending on the process parameters, the heat generated by FSW creates thin layers of Al-rich InterMetallic Compound (IMC mainly composed of FeAl3, identified by energy dispersive spectrometry. Traces of Fe2Al5 were also depicted in some samples by X-ray diffraction analysis and transmission electron microscopy. Monotonous tensile tests performed on the weld joint show the existence of a maximum mechanical resistance for a judicious choice of rotation and translation speeds. It can be linked to an affected zone of average thickness of 15 µm which encompass the presence of IMC and the chaotic mixing caused by plastic deformation in this area. A thickness of less than 15 µm is not sufficient to ensure a good mechanical resistance of the joint. For a thickness higher than 15 µm, IMC layers become more brittle and less adhesive due to high residual stresses which induces numerous cracks after cooling. This leads to a progressive decrease of the ultimate shear stress supported by the bond.

  5. Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions

    International Nuclear Information System (INIS)

    Park, M.S.; Stephenson, M.K.; Shannon, C.; Cáceres Díaz, L.A.; Hudspeth, K.A.; Gibbons, S.L.; Muñoz-Saldaña, J.; Arróyave, R.

    2012-01-01

    Cu/Sn soldering alloys have emerged as a viable alternative to Pb-based solders, and thus have been extensively explored in the past decade, although the fine-scale behavior of the resulting intermetallic compounds (IMCs), particularly during the early stages of interface formation, is still a source of debate. In this work, the microstructural evolution of Cu 6 Sn 5 , in a Cu/Sn soldering reaction at 523 K, was experimentally investigated by dipping a single Cu sample into molten Sn at a near-constant speed, yielding a continuous set of time evolution samples. The thickness, coarsening and morphology evolution of the Cu 6 Sn 5 layer is investigated through the use of scanning electron microscopy. The experimental results are also compared to phase-field simulations of the microstructural evolution of the Cu 6 Sn 5 layer. The influence of model parameters on the kinetics and morphological evolution of the IMC layer was examined. In general, good qualitative agreement is found between experiments and simulations and for a limited parameter set there appears to be good quantitative agreement between the growth kinetics of the Cu 6 Sn 5 layer, the grain boundary (GB) effect on grain coarsening, and the substrate/IMC interface roughness evolution. Furthermore, the parametric investigations of the model suggests that good agreement between experiments and simulations is achieved when the dominant transport mechanism for the reacting elements (Cu and Sn) is GB diffusion.

  6. Self-propagating high-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat-loss condition

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1996-01-01

    Extensive comparisons have been conducted between experimental and theoretical results for the nonadiabatic self-propagating high-temperature synthesis combustion characteristics of many solid-solid systems subjected to volumetric heat loss. The nonadiabatic flame propagation theory--which describes the premixed mode of bulk flame propagation supported by the nonpremixed reaction of dispersed nonmetal (or higher-melting point metal) particles in the liquid metal, with finite-rate reaction at the particle surface and temperature-sensitive Arrhenius-type condensed-phase mass diffusivity--is used to compare with experimental results with heat loss. Systems examined are ceramics (TiC, TiB 2 , and ZrB 2 ) and intermetallic compounds (NiAl, TiCo, and TiNi). By using a consistent set of physicochemical parameters for these systems, satisfactory quantitative agreement is demonstrated for the flammable range (defined in terms of the mixture ratio, degree of dilution, particle size, and/or compact diameter)

  7. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model

    International Nuclear Information System (INIS)

    Hou Hua; Zhao Yuhong; Zhao Yuhui

    2009-01-01

    With the microscopic phase-field model, atomic-scale computer simulation programs for the precipitation mechanism of the ordered intermetallic compound γ' in binary Ni-15.5 at.%Al alloy, θ and γ' in ternary Ni 75 Al x V 25-x alloys were worked out based on the microscopic diffusion equation and non-equilibrium free energy. The simulation can be applied to the whole precipitation process and composition range. A prior assumptions on the new phase structure or transformation path was unnecessary, the possible non-equilibrium phases, atomic clustering and ordering could be described automatically, and atomic images, order parameters and volume fractions of precipitates were obtained. Computer simulation was performed systematically on the precipitation mechanism, precipitation sequence of θ and γ' in complicated system with ordering and clustering simultaneously. Through the simulated atomic images and chemical order parameters of precipitates, we can explain the complex precipitation mechanisms of θ (Ni 3 V) and γ' (Ni 3 Al) ordered phases. For the binary alloy, the precipitation mechanism of γ' phase has the characteristic of both non-classical nucleation and growth (NCNG) and congruent ordering and spinodal decomposition (COSD). For the ternary alloys, the precipitation characteristic of γ' phase transforms from NCNG to COSD gradually, otherwise, the precipitation characteristic of θ phase transforms from COSD to NCNG mechanism gradually

  8. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    International Nuclear Information System (INIS)

    Hon, M.-H.; Chang, T.-C.; Wang, M.-C.

    2008-01-01

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η'-Cu 6 Sn 5 transforms to the hexagonal η-Cu 6 Sn 5 and the orthorhombic Cu 5 Zn 8 transforms to the body-centered cubic (bcc) γ-Cu 5 Zn 8 as aged at 180 deg. C. The scallop-shaped Cu 6 Sn 5 layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from η'-Cu 6 Sn 5 and reacts with Sn to form Ag 3 Sn, and the Cu 5 Zn 8 layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h

  9. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    Energy Technology Data Exchange (ETDEWEB)

    Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Bldg. 11, 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu, 310, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-06-30

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic {eta}'-Cu{sub 6}Sn{sub 5} transforms to the hexagonal {eta}-Cu{sub 6}Sn{sub 5} and the orthorhombic Cu{sub 5}Zn{sub 8} transforms to the body-centered cubic (bcc) {gamma}-Cu{sub 5}Zn{sub 8} as aged at 180 deg. C. The scallop-shaped Cu{sub 6}Sn{sub 5} layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from {eta}'-Cu{sub 6}Sn{sub 5} and reacts with Sn to form Ag{sub 3}Sn, and the Cu{sub 5}Zn{sub 8} layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h.

  10. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  11. Fermi surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure

    DEFF Research Database (Denmark)

    Ram, Swetarekha; Kanchana, V; Svane, Axel

    2013-01-01

    –correlation functional and including spin–orbit coupling. Fermi surface topology changes are found for all the isostructural AB3 compounds under compression (at V=V0 = 0.90 for LaPb3 (pressure = 8 GPa), at V=V0 = 0.98 for AIn3 (pressure = 1.5 GPa), at V=V0 = 0.80 for ATl3 (pressure in excess of 18 GPa)) apart from YPb3...

  12. Formation and elution of toxic compounds from sterilized medical products: toxic compound formation from irradiated products

    International Nuclear Information System (INIS)

    Shintani, Hideharu

    1996-01-01

    No formation of MDA was observed in chain-extended thermoplastic polyurethane (PU) when sterilized by autoclave or γ-ray irradiation. No formation of MDA was observed in nonchain-extended thermoplastic PU when sterilized by γ-ray irradiation. Less than 1 ppm MDA was produced in nonchain-extended thermoplastic PU sterilized by autoclave sterilization. Autoclave sterilization did not produce MDA in thermosetting PU potting material. MDA formation in potting material was promoted by γ-irradiation and increased with increasing irradiation at a quadratic equation of regression. MDA formation at 100 kGy irradiation is a few ppm and < 1 ppm at 25kGy irradiation, therefore the potential risk to human recipients was not significant. The elution of compounds other than MDA from potting material was more problematic. Solvent extracts from potting material presented mutagenicity in the absence of metabolic activity. MDA presented mutagenicity in the presence of metabolic activity, therefore MDA was not the mutagenic trigger. The chemical and biological characteristics of the specific mutagens required to identify in a further study. Negative promotion of MDA formation and a less presence of mutagen in autoclave sterilized potting material indicated that autoclave sterilization was preferable. (Author)

  13. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    Science.gov (United States)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  14. Degradation of organophosphorus compounds by X-ray irradiation

    International Nuclear Information System (INIS)

    Trebse, P.; Arcon, I.

    2002-01-01

    Complete text of publication follows. Our research presented in this contribution aims to elucidate the degradation mechanisms of organophosphate pesticides as organic pollutants by X-ray irradiation. Diazinon, one of the most widely used pesticides in Slovenia, has been chosen as a model compound for the study of radiation induced degradation of organophosphorus pesticides. Recent studies have shown that the degradation of the pesticide at normal conditions (room temperature, exposure to daylight) is strongly enhanced when the pesticide is exposed to UV light (Hg lamp, λ=254 nm, XeCl excimer laser, λ=308 nm). In our study we irradiated the pesticide in aqueous media with a white x-ray beam from a conventional x-ray source. Mo X-ray tube operating at the high voltage of 55 kV and a current of 45 mA was used. The flux of the continuous X-ray beam was stabilized within 1%. Saturated water solution of the pesticide (volume: 4mL, conc. of 40 mg L -1 ) was inserted in 1 cm long lucite cell with 1 mm thick lucite windows. The whole volume of the solution in the cell was exposed to the unfiltered X-ray beam. The dose rate on the sample was about 1 mGy/s. Different irradiation times between 30 min to 120 min were chosen to study the dependence of the pesticide decomposition with the absorbed dose. Solid phase extraction was employed for sample extraction from the solution, and gas chromatography was used for the identification and quantification of the compounds. The results show that the concentration of the pesticide in the solution decreases exponentially with the exposure time, i.e. with the absorbed dose. At irradiation conditions described above, the time constant of the exponential decrease was 74 min

  15. Irradiation of strawberries and tomatoes - chemical changes, marker compound

    International Nuclear Information System (INIS)

    Breitfellner, F.; Schindler, M.; Solar, S.; Sontag, G.

    2003-01-01

    The objective of this study was directed to the detection of radiation induced chemical changes in strawberries and tomatoes. The investigations were focused on polyphenols (phenolic acids and flavonoids). These compounds, which are present in minor amounts [low ppm-range (mg/kg)], are part of the bioactive substances and have anticancerogenic, antimicrobial and antioxidative properties. Determination of polyphenols occurred by HPLC with diode array and/or coulometric electrode array detection. In strawberries 15 phenolic compounds could be detected. Upon irradiation (1-6 kGy) five were decreasing and one was increasing with dose, nine remained unaffected /1, 2/. In tomatoes five phenolic components could be identified, three of them decreased markedly with irradiation. In unirradiated samples of both foods the content of phenolic derivatives varied significantly, depending on variety, origin and degree of ripeness. Since these differences were in the same range as the radiation induced chemical changes, it could be concluded that irradiation does not reduce food quality based on the phenolic components. In strawberries a substance was detected which may be used as marker to prove an irradiation treatment. Its zero dose level is insignificant yet its concentration showed a linear increase with dose, it trebled at 3 kGy and quintupled at 6 kGy. Due to its presence in very low concentration (<1ppm) the chemical structure could not yet been determined. MS/MS analysis proved a molecular weight of m/z 318 as well as characteristic fragments of m/z 197, 165, 137, 93. On the basis of the UV-VIS spectrum (absorption maximum 265 nm) it can not be attributed to flavonoids, ellagic acids or cinnamic acid derivatives

  16. Satelite structure in 59Co NMR spectrum of magnetically ordered Dysub(1-x)Ysub(x)Co2 intermetallic compound

    International Nuclear Information System (INIS)

    Yoshimura, Kazuyoshi; Hirosawa, Satoshi; Nakamura, Yoji

    1984-01-01

    The magnetic environment effect of cobalt in Dysub(1-x)Ysub(x)Co 2 has been studied by means of bulk magnetization and 59 Co spin-echo NMR measurements at 4.2K. Clearly resolved satellite structures of the NMR spectra have been observed. The hyperfine field distributions of 59 Co are decomposed into contributions of Co atoms in various nearest neighbor configurations of rare earth atoms. In this analysis the dipole field due to nearest neighbor rare earth moments plays an important role. The result indicates that the magnetic moment of Co in the RCo 2 cubic Laves phase pseudobinary compounds is quite sensitive to the nearest neighbor rare earth environment. (author)

  17. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  18. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  19. Electric quadrupole and magnetic dipole interactions at {sup 181}Ta impurity in Zr{sub 2}Ni{sub 7} intermetallic compound: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dey, C.C., E-mail: chandicharan.dey@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Srivastava, S.K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India)

    2013-10-15

    Electric quadrupole interactions at {sup 181}Ta impurity in the intermetallic compound Zr{sub 2}Ni{sub 7} have been studied by perturbed angular correlation technique. It has been found that there are two electric field gradients (EFG) at the {sup 181}Ta site due to two different crystalline configurations in Zr{sub 2}Ni{sub 7}, while contradictory results were reported from previous investigations. The values of EFG at room temperature have been found to be V{sub zz}=7.9×10{sup 17} V/cm{sup 2} and 7.1×10{sup 17} V/cm{sup 2} corresponding to present experimental values of quadrupole frequencies and asymmetry parameters for the two sites: ω{sub Q}{sup 1}=70.7(1) Mrad/s, η=0.28(1), δ=0.8(2)% (site fraction 84%) and ω{sub Q}{sup 2}=63(1) Mrad/s, η=0.35(5), δ∼0 (site fraction 9%). Electric field gradients and asymmetry parameters have been computed from the complementary first-principles density functional theory (DFT) to compare with present experimental results. Our calculated values of EFG are found to be in close agreement with the experimental results. No magnetic interactions in Zr{sub 2}Ni{sub 7} have been observed at 298 and 77 K which implies that there is no ferromagnetic ordering in this material down to 77 K. This observation is corroborated by theoretical calculations, wherein no magnetic moment or hyperfine field is found at any atomic site.

  20. Valence behavior of Eu-ions in intermetallic compound Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek, E-mail: apandey@ameslab.gov [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Mazumdar, Chandan, E-mail: chandan.mazumdar@saha.ac.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Ranganathan, R. [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Raghavendra Reddy, V.; Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandawa Road, Indore (India)

    2011-12-15

    We have studied the valence behavior of rare-earth ions, in particular Eu-ions, in a cubic intermetallic compound Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5} which is a homogeneous solid solution of two mixed-valent compounds CePd{sub 3} and EuPd{sub 3}B. Results of {sup 151}Eu Moessbauer spectroscopic measurements show that two different valence states, i.e., divalent- and trivalent-like states of Eu-ions exist in the compound. The possible reason for the observed heterogeneous valency vis-a-vis the variation in the chemical environment and the number of nearest-neighbor B atoms surrounding the Eu-ions has been discussed. Our results demonstrate that B incorporation in such Eu-based cubic intermetallic compounds leads to a situation where heterogeneous-valence state of Eu-ions is an energetically favorable ground state. - Highlights: > Intermetallic compound Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5} crystallizes in a single phase. > Eu-ions in Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5} are charge-ordered compared to +2.3 valency in Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}. > B incorporation makes charge-ordered state of Eu-ions energetically more favorable. > Nearest-neighbor chemical environment affects the Eu valency.

  1. Effect of Nb on plasticity and oxidation behavior of TiA1Nb intermetallic compound by density functional theory

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; XU Hui; SONG Zhao-quan; MA Song-shan

    2010-01-01

    Based on the pseudo potential plane-wave method of density functional theory(DFT),Ti1-xNbxA1(x=0,0.062 5,0.083 3,0.125,0.250)crystals' geometry structure,elastic constants,electronic structure and Mulliken populations were calculated,and the effects of doping on the geometric structure,electronic structure and bond strength were systematically analyzed.The results show that the influence of Nb on the geometric structure is little in terms of the plasticity,and with the increase of Nb content,the covalent bond strength remarkably reduces,and Ti-A1,Nb-M(M=Ti,A1)and other hybrid bonds enhance; meanwhile,the peak district increases and the pseudo-energy gap first decreases and then increases,the overall band structure narrows,the covalent bond and direction of bonds reduce.The population analysis also shows that the results are consistent with the electronic structure analysis.The density of states of TiAlNb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film.All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5%(mole fraction).

  2. R5T4 compounds - unique multifunctional intermetallics for basic research and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mudryk, Yaroslav

    2016-10-01

    The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd2Fe14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result of a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.

  3. RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series

    Science.gov (United States)

    Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.

    2018-05-01

    The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.

  4. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  5. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In

    International Nuclear Information System (INIS)

    Lapolli, Andre Luis

    2006-01-01

    Systematic behavior of magnetic hyperfine field (B hf ) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B hf were carried out at the rare earth atom and in sites using the nuclear probes 140 Ce and 11 '1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from 140 Ce probe as well as at in sites obtained from 111 Cd probe for each series of compounds were extrapolated to zero Kelvin B hf (T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B hf comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B hf (T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with 111 Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the 111 Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  6. Effects of gamma irradiation on the volatile compounds of ginger rhizome (Zingiber officinale Roscoe)

    International Nuclear Information System (INIS)

    Wu, J.J.; Yang, J.S.

    1994-01-01

    Gingers were irradiated at a dose of 0.05 kGy to inhibit sprouting and conserve quality. Effects of gamma irradiation on the flavor compounds of ginger were studied. After 3 months of storage after irradiation, the quantities of some major volatile compounds such as alpha-zingiberene, alpha-bergamotene, neral, geranial, and alpha-curcumene were significantly lower in irradiated than in unirradiated ginger, although no difference was found immediately after irradiation. A triangle test showed no difference between irradiated and unirradiated gingers stored for 1 month at ambient temperature but showed significant difference after 5 months of storage

  7. Magnetization and specific heat study of metamagnetism in Lu.sub.2./sub.Fe.sub.17./sub.-based intermetallic compounds

    Czech Academy of Sciences Publication Activity Database

    Tereshina, Evgeniya; Andreev, Alexander V.

    2010-01-01

    Roč. 18, č. 6 (2010), 1205-1210 ISSN 0966-9795 R&D Projects: GA ČR GA202/09/0339 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare-earth intermetallics * magnetic properties * single crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.327, year: 2010

  8. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  9. Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-Ying; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2014-11-14

    A new multilayer metallization, ENEPIG (Electroless Ni(P)/Electroless Pd/Immersion Au) with ultrathin Ni(P) deposit (ultrathin-ENEPIG), was designed to be used in high frequency electronic packaging in this study because of its ultra-low electrical impedance. Sequential interfacial microstructures of commercial Sn–3.0Ag–0.5Cu solders reflowed on ultarthin-ENEPIG with Ni(P) deposit thickness ranged from 4.79 μm to 0.05 μm were first investigated. Accelerated thermal aging test was then conducted to evaluate the long-term thermal stabilization of solder joints. The results showed that P-rich intermetallic compound (IMC) layer formed when the Ni(P) thickness was greater than a critical vale (about 0.18 μm). Besides, it is interesting to mention that the growth of (Cu,Ni){sub 6}Sn{sub 5} and (Cu,Ni){sub 3}Sn IMCs was suppressed with the formation of P-rich layer, i.e., Ni{sub 3}P and Ni{sub 2}Sn{sub 1+x}P{sub 1−x} phase, even though the electroless-plated Ni(P) layer was exhausted at initial stage of reflow process. The atomic Cu flux in solder joints without P-rich layer was calculated to be several times larger than that with P-rich layer formation after calculation, which implies that the P-rich layer and ultrathin Ni(P) deposit in ENEPIG served as diffusion barrier against rapid Cu diffusion. - Highlights: • Microstructures in ultrathin-ENEPIG with various Ni(P) thickness are investigated. • P-rich IMC layer formed when the Ni(P) thickness is greater than 0.18 μm. • Secondary (Cu,Ni){sub 6}Sn{sub 5} formed when the Ni(P) thickness is between 0.18 and 0.31 μm. • Cu diffusion flux without P-rich layer is larger than those with P-rich layer. • P-rich layer in ultrathin-ENEPIG exhibits good diffusion barrier characteristic.

  10. The Application of CPA to Calculations of the Mean Magnetic Moment in the Gd1-xNi, Gd1-xFe, Gd1xCox, and Y1-xCox Intermetallic Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Kozarzewski, B.

    1977-01-01

    with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline......Calculations are made of the mean magnetic moment per atom of the transition metal and the rare-earth metal in the intermetallic compounds, Gd1-x,Nix, Gd1-x Fex, Gd1-x Cox, and Y1-x Cox. A simple model of the disordered alloy consisting of spins localized on the rare-earth atoms and interacting...

  11. Superconductivity in irradiated A-15 compounds at low fluences. I. Neutron-irradiated V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Pande, C.S.

    1978-01-01

    The behavior of the superconducting transition temperature T/sub c/ of single-crystal and polycrystalline V 3 Si was investigated as a function of low-fluence neutron irradiation. It is found that the initial degradation of T/sub c/ is sample-dependent, some specimens showing no degradation in T/sub c/ up to a fluence of 2 x 10 18 n/cm 2 . This and many other earlier observations on low-fluence behavior are explained in terms of a recently proposed model of radiation damage in A-15 compounds

  12. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-01-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  13. Valence instabilities in cerium intermetallics

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1982-01-01

    The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn 3 . In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn 3 and Cesub(1-x)Ysub(x)Sn 3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn 3 , also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In 3 and Cesub(1-x)Ysub(x)In 3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi 2 , CeSi, and in CeGa 2 . (Auth.)

  14. Effect of Gamma-Irradiation on the Volatile Flavor Compounds from Dried Ginger (Zingiber officinale Roscoe)

    International Nuclear Information System (INIS)

    No, K.M.; Seo, H.Y.; Gyawali, Rajendra; Shim, S.L.; Yang, S.H.; Lee, S.J.; Kim, K.S.

    2005-01-01

    The effect of gamma irradiation on volatile components of Korean dried ginger (Zingiber officinale Roscoe) was studied and compared with non-irradiated sample. Volatile compounds from non- and irradiated samples were extracted using simultaneous distillation-extraction (SDE) apparatus and analyzed by gas chromatography-mass spectrometer (GC/MS). A total of 83 and 71 compounds were identified and quantified from non-and irradiated dried ginger at dose of 10 kGy. Identified components were hydrocarbons, alcohols, aldehydes, esters, ketones and miscellaneous compounds

  15. Effects of irradiation on the volatile compounds of garlic (Allium sativum L)

    International Nuclear Information System (INIS)

    Wu, J.J.; Yang, J.S.; Liu, M.S.

    1996-01-01

    The effects of 0.15 kGy gamma irradiation on the content of volatile compounds in garlic bulbs during storage at room temperature were evaluated. The content of diallyl disulphide decreased immediately after irradiation. However, at the end of 8-month storage both irradiated and unirradiated samples showed a significant increase in diallyl disulphide

  16. The intermetallic ThRh5: microstructure and enthalpy increments

    International Nuclear Information System (INIS)

    Banerjee, Aparna; Joshi, A.R.; Kaity, Santu; Mishra, R.; Roy, S.B.

    2013-01-01

    Actinide intermetallics are one of the most interesting and important series of compounds. Thermochemistry of these compounds play significant role in understand the nature of bonding in alloys and nuclear fuel performance. In the present paper we report synthesis and characterization of thorium based intermetallic compound ThRh 5 (s) by SEM/EDX technique. The mechanical properties and enthalpy increment as a function of temperature of the alloy has been measured. (author)

  17. Effect of γ-irradiation on volatile compounds of dried Welsh onion (Allium fistulosum L.)

    International Nuclear Information System (INIS)

    Gyawali, Rajendra; Seo, Hye-Young; Lee, Hyun-Ju; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kim, Kyong-Su

    2006-01-01

    The volatile compounds of γ-irradiated dried Welsh onion were isolated by simultaneous distillation-extraction (SDE) technique and then analyzed by gas chromatography-mass spectrometry (GC-MS) along with their non-irradiated counterparts. A total of 35 volatile compounds were identified in non-irradiated and 1 kGy irradiated samples and 36 volatile compounds were identified in 3, 5, 10 and 20 kGy irradiated samples so far belong to chemical classes of acid, alcohol, aldehyde, ester, furan, ketone and S-containing compound. S-containing compounds were detected as major volatile compounds of all experimental samples. Though the content of several compounds was increased after irradiation, content of major S-containing compounds was found to decreased in the process. Application of high-dose irradiation if required for microbial decontamination of dried Welsh onion is feasible as it enhanced the total concentration of volatile compounds by 31.60% and 24.85% at 10 and 20 kGy, respectively

  18. FY 1997 report on the improvement of toughness of silicide system intermetallic compounds by complex texture; 1997 nendo chosa hokokusho (fukugo soshikika ni yoru silicide kei kinzokukan kagobutsu no kyojinsei kaizen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to develop new materials superior in both room- temperature ductility and high-temperature strength, the basic data on MoSi2 intermetallic compounds with complex texture were stored. Intermetallic compound is one of the promising candidates of new super heat-resistant materials superior to conventional super heat-resistant alloys, however, it is extremely poor in ductility at room temperature. Based on available information on isothermal sectional phase diagrams of ternary system (Mo-Si-X system) composed of Mo silicide and the third element (X), some alloy systems were selected in consideration of use of carbide and nitride stably existing as dispersed phase of deposits at high temperature. A knowledge on phase diagrams of ternary system specimens with various compositions was obtained through arc melting, X-ray diffraction and texture observation, and heat treatment conditions for obtaining target complex textures were also determined. Storage of the basic data suggested that improvement of the ductility is possible by forming fine texture through addition of the third element and teat treatment. 21 refs., 58 figs., 15 tabs.

  19. MD study of primary damage in L10 TiAl structural intermetallics

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Computer modelling by molecular dynamics has been applied to study the radiation damage created in collision cascades in L1 0 TiAl intermetallic compound. Either Al or Ti primary knock-on atoms (PKA) with energy 5 keV ⩽ E PKA ⩽ 20 keV were introduced in the intermetallic crystals at temperatures ranging from 100 K to 900 K. At least 24 different cascade for each (E PKA , T, PKA type) set were modelled in order to simulate a random spatial and temporal distribution of PKAs and provide statistical reliability of the results. The total yield of more than 760 simulated cascades is the largest yet reported for this binary intermetallic material. A comprehensive treatment of the modelling results has been carried out. The number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA , T, PKA type) has been established. Preferred formation of Al self-interstitial atoms has been detected in L1 0 TiAl structural intermetallics exposed to irradiation

  20. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  1. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  2. Single crystal growth of europium and ytterbium based intermetallic ...

    Indian Academy of Sciences (India)

    The difference between an intermetallic compound and a regular metal (e.g., ... intriguing properties, there have not been any reports of thorough investigations of .... scanning electron microscope (SEM) equipped with an energy dispersive ...

  3. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  4. The influence of pressure on diffusion leading to intermetallic compounds; Influence de la pression sur les diffusions donnant naissance a des composes intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Beyeler, M; Kirianenko, A; Pernot, B [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    Some investigators A.D. LE CLAIRE, J.L. ZAMBROW, L. CASTLEMAN, have shown that the application of uniaxial pressure parallel to the direction of diffusion may notably modify the kinetics of growth of the intermediate phases which can be formed in this direction. The interpretation of this phenomenon being obscure, an attempt is made to explain it by detailed analysis of the experimental facts. The microscopic studies of the kinetics of growth of the zones formed shows particularly in the couples Uranium-Copper and Uranium-Nickel that it is influenced in a similar manner by a uniaxial pressure and a hydrostatic one. On the other hand the rate of growth of these zones increases as a function of the applied pressure in the systems Uranium-Copper, Uranium-Nickel and Uranium-Aluminium (this effect being particularly marked in Uranium-Aluminium). To determine with precision the limits of the range of stability of the intermetallic compounds, the curves of concentration penetration characteristics of the diffusion have been established by means of the CASTAING electronic microanalyser. The examination of the results indicates that when diffusion takes place without external pressure (couples U-Cu and U-Ni) or with a pressure less than 300 kg/cm{sup 2} (couple U-Al) the concentration varies notably in the compounds obtained, which theoretically are stoichiometric. Thus, when crossing the zone of diffusion of one base metal to another one notes a continual passage of: UCu{sub 4.70} to UCu{sub 5.25} in the couple U-Cu; UNi{sub 4.75} to UNi{sub 5.25} in the couple U-Ni; UAl{sub 2.2} to UAl{sub 3.3} in the couple U-Al. If an uniaxial or hydrostatic pressure above 500 kg/cm{sup 2} is applied to the couples U-Cu and U-Ni, or above 1000 kg/cm{sup 2} for the couple U-Al, the composition is then constant in the zones formed. It corresponds to: UCu{sub 5} in the couple U-Cu; UNi{sub 5} in the couple U-Ni; UAl{sub 3} in the couple U-Al. These results are confirmed by an X

  5. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  6. Analysis of volatile organic compounds and sensory characteristics of pork loin samples irradiated to high doses

    International Nuclear Information System (INIS)

    Hou Zhengchi; Sun Dakuan; Qin Zongying; Jin Jiang; Zhu Liandi; Yao Side; Sheng Kanglong

    2005-01-01

    Fresh pork loin samples, protein enzyme inactivated at (72 ± 3) degree C and vacuum packaged, were irradiated to up to 45 kGy at -20 degree C by 60 Co γ-rays. The irradiated samples were examined by various kinds of method to study high dose irradiation effects of sensory changes (meat color and off-odor), transverse shearing strength, weight loss in steam cooking, volatile organic compounds, and lipid oxidation. The results showed that the high dose irradiation produced no serious effects to the pork loin samples, and volunteer responses showed fine acceptability to the irradiated meat. (authors)

  7. Effect of γ-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    International Nuclear Information System (INIS)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok; Seo, Hye-young; Kim, Hee-Yeon; Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo; Kwon, Joong-Ho; Kim, Kyong-Su

    2009-01-01

    A study was carried out to find the effect of γ-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix (Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, (E)-carveol, (E,E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of γ-irradiation on medicinal herb.

  8. Effect of {gamma}-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok [Department of Food and Nutrition, Chosun University (Korea, Republic of); Seo, Hye-young [Korea Food Research Institute (Korea, Republic of); Kim, Hee-Yeon [Korea Food and Drug Administration (Korea, Republic of); Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo [Advanced Radiation Technology Institute, KAERI, Jeongeup 580-185 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University (Korea, Republic of); Kim, Kyong-Su [Korea Food Research Institute (Korea, Republic of)], E-mail: kskim@chosun.ac.kr

    2009-07-15

    A study was carried out to find the effect of {gamma}-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix (Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, (E)-carveol, (E,E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of {gamma}-irradiation on medicinal herb.

  9. Determination of slip systems and their relation to the high ductility and fracture toughness of the B2 DyCu intermetallic compound

    International Nuclear Information System (INIS)

    Cao, G.H.; Shechtman, D.; Wu, D.M.; Becker, A.T.; Chumbley, L.S.; Lograsso, T.A.; Russell, A.M.; Gschneidner, K.A.

    2007-01-01

    DyCu single crystals with CsCl-type B2 structure were tensile tested at room temperature. Slip trace analysis shows that the primary slip system in DyCu with a tensile axis orientation of is {1 1 0} and the critical resolved shear stress for {1 1 0} slip is 18 MPa. Slip traces were also observed from a secondary slip system, {1 1 0} , and this slip system appears to be a key contributor to the previously reported high ductility and high fracture toughness of polycrystalline DyCu. Transmission electron microscopy determinations of the Burgers vectors of dislocations in tensile tested specimens revealed and dislocations, with -type dislocations being more abundant. The implications of these findings for the understanding of the mechanical properties of DyCu and the large family of ductile rare earth B2 intermetallics are discussed

  10. Recycling of Gamma Irradiated Inner Tubes in Butyl Based Rubber Compound

    International Nuclear Information System (INIS)

    Karaagac, B.

    2006-01-01

    Crosslinked elastomeric materials, such as tyres are of great challenge concerning the environmental and ecological reasons. Ionizing radiation seems to offer unique opportunities to tackle the problem of recycling of polymers and rubbers on account of its ability to cause chain scission and/or cross-linking of polymeric materials. There is only limited amount of work reported on the irradiation-induced degradation of rubbers. Unlike the majority of the elastomers with high levels of unsaturation, butyl rubber exhibits significant degradation by ionizing radiation action. In this study, recycling of gamma irradiated inner tubes made of butyl rubber in butyl based rubber compounds was studied. Used inner tubes were irradiated with gamma rays in air at 100 and 120 kGy absorbed doses. The compatibility of irradiated inner tubes with virgin butyl rubber was first investigated. Gamma irradiated inner tube wastes were replaced with butyl rubber up to 15 phr in the compound recipe. Similar recipes were also prepared by using the same quantity of commercial butyl rubber crumbs devulcanized by conventional methods. The rheological and mechanical properties and carbon black dispersion degree for both types of compounds prepared by using inner tubes scraps and commercial butyl crumbs were measured and were compared to the values of virgin butyl rubber compound. It is well known that mechanical properties are deteriorated when rubber crumb is added to the virgin compound. It was observed that the decrease in the mechanical properties was much lower for the compounds prepared from the tubes irradiated at 120 kGy than irradiated at 100 kGy. The better mechanical properties were obtained for the compounds prepared by recycling of irradiated inner tubes at 120 kGy than the compounds prepared by using commercial butyl crumbs. Almost similar carbon black distributions were observed for the all compounds studied. It has been concluded that gamma irradiated inner tubes are compatible

  11. Enthalpies of formation of Cd0.917Sr0.083, Cd0.857Sr0.143 and Cd0.667Sr0.333 intermetallic compounds

    International Nuclear Information System (INIS)

    Agarwal, Renu; Singh, Ziley

    2008-01-01

    Cadmium is expected to be the solvent for pyrochemical processing of the metallic nuclear fuel. Therefore, thermodynamic properties of cadmium with various fuel and clad elements are of interest. Enthalpies of formation of the intermetallic compounds of Cd-Sr system, Cd 0.917 Sr 0.083 , Cd 0.857 Sr 0.143 and Cd 0.667 Sr 0.333 were determined by precipitation using Calvet calorimeter. Enthalpies of formation of the compounds were found to be -3.05 ± 0.5 kJ mol -1 at 723 K, -14.2 ± 0.7 kJ mol -1 at 843 K and -28.4 ± 0.8 kJ mol -1 at 863 K, respectively. Enthalpies of formation of Cd 0.917 Sr 0.083 and Cd 0.857 Sr 0.143 were also determined by partial enthalpy of formation measurements and the values were found to be -3.9 ± 1.1 kJ mol -1 at 723 K and -13.42 ± 1.2 kJ mol -1 at 843 K, respectively. Miedema model was used to estimate the enthalpies of formation of these compounds and the estimated values were compared with the experimentally determined values

  12. Nature of the defects in irradiated A-15 compounds

    International Nuclear Information System (INIS)

    Pande, C.S.; Viswanathan, R.

    1978-01-01

    From transmission electron microscopy and heat capacity measurements radiation induced damage in A-15 compounds was found to be inhomogeneous, consisting of small disordered regions in an ordered matrix. Some consequences of this result are discussed

  13. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  14. Measurement of pressure effects on the magnetic and the magnetocaloric properties of the intermetallic compounds DyCo2 and Er(Co1-xSix)2

    International Nuclear Information System (INIS)

    Singh, Niraj K; Kumar, Pramod; Suresh, K G; Nigam, A K; Coelho, A A; Gama, S

    2007-01-01

    The effect of external pressure on the magnetic properties and magnetocaloric effect of polycrystalline compounds DyCo 2 and Er(Co 1-x Si x ) 2 (x = 0,0.025 and 0.05) has been studied. The ordering temperatures of both the parent and the Si-substituted compounds are found to decrease with pressure. In all the compounds, the critical field for metamagnetic transition increases with pressure. It is seen that the magnetocaloric effect in the parent compounds is almost insensitive to pressure, while there is considerable enhancement in the case of Si-substituted compounds. Spin fluctuations arising from the magnetovolume effect play a crucial role in determining the pressure dependence of the magnetocaloric effect in these compounds. The variation of the magnetocaloric effect is explained on the basis of the Landau theory of magnetic phase transitions

  15. GREENER SYNTHESIS OF HETEROCYCLIC COMPOUNDS USING MICROWAVE IRRADIATION

    Science.gov (United States)

    An introduction of our interest in the microwave-assisted greener synthesis of a variety of heterocyclic compounds will be presented. It involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports, such as alumina, sili...

  16. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    Directory of Open Access Journals (Sweden)

    Martínez-Perales, Laura G.

    2016-03-01

    Full Text Available The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C, pressure (5, 10 y 20 MPa and holding time (3600, 5400 y 7200 seconds. Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.Los intermetálicos α-Al9FeMnSi y β-Al9FeMn2Si formados por sinterización reactiva de polvos Al, Si, Mn, Fe, Cr, Ni se han utilizado en aceros AISI 304L para mejorar la microdureza. Las variables de procesamiento de sinterización reactiva fueron temperatura (600, 650, 700, 750, y 800 °C, presión (5, 10 y 20 MPa y el tiempo de retención (3600, 5400 7200 segundos. Los resultados experimentales muestran que la temperatura es la variable más importante que afecta a la formación del sustrato/recubrimiento, mientras que la presión no parece tener un efecto significativo una influencia significativa. Los resultados muestran las condiciones óptimas de la sinterización reactiva que favorecen la formación del sustrato/recubrimiento a 800 °C, 20 MPa y 7200 segundos. En estas condiciones, la zona de reacción entre el sustrato y el recubrimiento es más compacta y bien

  17. Radiation effects in x-irradiated hydroxy compounds

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Box, H.C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 0 K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap

  18. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F.; Galvao, Natascha S.; Lanfer-Marquez, Ursula M.

    2013-01-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  19. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Galvao, Natascha S.; Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-07-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  20. The reprocessing of irradiated fuels by halides and their compounds

    International Nuclear Information System (INIS)

    Bourgeois, M.; Faugeras, P.

    1964-01-01

    A brief description is given of the experiments leading to the choice of the process volatilization of fluorides by gas phase attack. The chemical process is described for certain current types of clad Fuels: the aluminium or the zirconium cladding is first volatilized as chloride by attack with gaseous hydrogen chloride. The uranium is then transformed into volatile hexafluoride by attack with fluorine. These reactions are carried out consecutively in the same reactor in the presence of a fluidized bed of alumina which facilitates heat exchange. The experiments have been carried out in quantities from 100 gms to several kilograms of fuel, first without activity, and then with tracers. A description is given of the laboratory research which was carried out simultaneously on the separation of uranium and plutonium fluorides. Finally, an apparatus is described which is intended to test the process on irradiated fuel at an activity level of several thousands of curies of fission products. (authors) [fr

  1. Preparation of Tritium from irradiated lithium compounds (study)

    International Nuclear Information System (INIS)

    1989-01-01

    The aim of the present study is the selection of a certain scheme for release, collection, measurement and analysis of Tritium as produced in Lithium compounds (Li 2 O, LiOH, Li 2 CO 3 LiF and some Lithium alloys) in accordance with the 6 Li(n, α)T reaction. Tritium technology is of vital concern to power reactor programmes as well as to fusion technology. Meanwhile the fields of activity include, tritium generation and mangement in fission and fusion reactors; enviromental studies, release modeling HT/HTO conversion and dose assessments, absorption/ deabsorption, monitoring and plant design; research and development, labeling, compatibility and physical chemical properties

  2. Calculations of the magnetic properties of R{sub 2}M{sub 14}B intermetallic compounds (R=rare earth, M=Fe, Co)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masaaki, E-mail: masaaki.ito@neel.cnrs.fr [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Yano, Masao [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Dempsey, Nora M. [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Givord, Dominique [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2016-02-15

    The hard magnetic properties of “R–M–B” (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R{sub 2}M{sub 14}B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R{sub 2}Fe{sub 14}B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe. - Highlights: • Anisotropy constants derived from CEF parameters of R{sub 2}M{sub 14}B compounds (M=Fe, Co). • Anisotropy constants of all R{sub 2}Fe{sub 14}B compounds using unique set of CEF parameters. • Moment non-collinearity in magnetization processes under B{sub app} along hard axis.

  3. Calculations of the magnetic properties of R2M14B intermetallic compounds (R=rare earth, M=Fe, Co)

    International Nuclear Information System (INIS)

    Ito, Masaaki; Yano, Masao; Dempsey, Nora M.; Givord, Dominique

    2016-01-01

    The hard magnetic properties of “R–M–B” (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R 2 M 14 B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R 2 Fe 14 B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe. - Highlights: • Anisotropy constants derived from CEF parameters of R 2 M 14 B compounds (M=Fe, Co). • Anisotropy constants of all R 2 Fe 14 B compounds using unique set of CEF parameters. • Moment non-collinearity in magnetization processes under B app along hard axis.

  4. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    International Nuclear Information System (INIS)

    Jo, Cheo Run; Byun, Myung Woo

    2000-01-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7α- and 7β- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions

  5. Preparation of Tritium from irradiated lithium compounds (study)

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The aim of the present study is the selection of a certain scheme for release, collection, measurement and analysis of Tritium as produced in Lithium compounds (Li[sub 2]O, LiOH, Li[sub 2]CO[sub 3] LiF and some Lithium alloys) in accordance with the [sup 6]Li(n, [alpha])T reaction. Tritium technology is of vital concern to power reactor programmes as well as to fusion technology. Meanwhile the fields of activity include, tritium generation and mangement in fission and fusion reactors; enviromental studies, release modeling HT/HTO conversion and dose assessments, absorption/ deabsorption, monitoring and plant design; research and development, labeling, compatibility and physical chemical properties.

  6. Magnetic domain structure and domain-wall energy in UFe8Ni2Si2 and UFe6Ni4Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-01-01

    Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds

  7. Effect of irradiation on the critical currents of alloy and compound superconductors

    International Nuclear Information System (INIS)

    Sekula, S.T.

    1977-06-01

    The effects of energetic-particle irradiation on the critical-current density J/sub c/(H) of several superconducting compounds and Nb-Ti alloys have been examined by a number of workers. The irradiations used in the investigations include electrons, fast neutrons, ions, and fission fragments. The results of these studies are reviewed and summarized. In the alloys, changes in J/sub c/(H) on irradiation depend on the metallurgical history of the material and indicate that radiation defects modify the strength of the interaction between the fluxoid array and the sample microstructure. Radiation defects in alloys can also affect J/sub c/(H) through small decreases in T/sub c/, the transition temperature and rho, the normal-state resistivity. Irradiations of A15 compounds up to moderate fluences (dependent on the type and energy of irradiating particle) lead to decreases in T/sub c/ of approximately 1 0 K and increases in J/sub c/(H) with dose for most of the samples investigated. This result can be qualitatively understood as resulting from radiation-induced changes in rho and the pinning force acting on the fluxoids. At higher dose levels, significant depressions of T/sub c/ and possibly gamma, the electronic specific heat coefficient, lead to drastic reductions in J/sub c/(H). The effect of various energetic particles and irradiation temperature on changes in J/sub c/(H) are discussed

  8. Influence of drying and irradiation on the composition of volatile compounds of thyme (Thymus vulgaris L.)

    International Nuclear Information System (INIS)

    Venskutonis, R.; Poll, L.; Larsen, M.

    1996-01-01

    An investigation of the influence of air-drying, freeze-drying, γ- and β-irradiation and storage for up to 10 months on the composition of volatile compounds in thyme herb (Thymus vulgaris L.) is presented. Altogether, 70 constituents were identified (53 positively and 17 tentatively), including those considered most important for thyme flavour. Quantitative results did not reveal significant differences in the composition of irradiated and non-irradiated samples, and the reduction of the amount of some volatile compounds after drying was comparable for air-dried and freeze-dried herb. The largest changes in flavour composition were observed during storage, especially the reduction in the concentration of monoterpene hydrocarbons

  9. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  10. FY 1998 annual report on the improvement of toughness of silicide-based intermetallic compounds by controlling their composite structures; 1998 nendo fukugo soshikika ni yoru shirisaidokei kinzokukan kagobutsu no kyojinsei kaizen chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Intermetallic compounds, although attracting much attention as most promising materials serviceable at superhigh temperature, are very fragile at normal temperature, which is one of their major disadvantages. Structures of these compounds prepared by the melting method are controlled to improve their toughness by, e.g., changing phase ratio of the initial crystal for the Mo-Si-Nb system to prevent cracking during the melting and casting stages, addition of a third element (e.g., Zr, Ti or Hf) or a mixed component of Nb and Zr to control the structure of Mo{sub 5}Si{sub 3} considered to be a cause for the cracking, and controlling melting and solidification rates for the FZ melting method. The three-phase microstructures with added Hf or Zr show improved toughness, but need additional procedures for controlling solidification and cooling conditions. For the powder method, the MA conditions are investigated with a two-element system, and the effects of Al or Zr as the third element added to the base composition on the composite microstructures and constituent phases are also investigated. Unlike the melting method, the powder method causes no cracking problems during the stock preparation stage and hence is expected to be applicable to production of larger stocks. However, the products by this method are found to be insufficient both in toughness and high-temperature strength. It is necessary to develop methods for cutting down and controlling oxides in the grain boundaries, in order to prevent deterioration of their strength at high temperature. (NEDO)

  11. Chlorogenic acid was specifically induced among phenolic compounds in centipedegrass by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    An, Byung Chul; Barampuram, Shyamkumar; Lee, Seung Sik; Lee, Eun Mi; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    Centipedegrass is a warm season turfgrass in the world. Chlorogenic acid (CA) is one of the important compounds present in the leaf of centipedegrass and already known as an antioxidant, CA has become a key resistance against insect pests and bacteria pathogens of agricultural and horticultural plants during seedlling stage. Furthermore, CA is accumulated by abiotic stress such as an UV irradiation. In present study, we investigated enhancement of the level of CA upon gamma irradiation in centipedegrass. The high performance liquid chromatography (HPLC) data analysis showed an approximately increasing of the CA levels from among the irradiated samples. However, plants irradiated at 50 Gy showed a constant increase in the CA level (0.0066 to 0.114 mg ml{sup -1} and 0.0258 to 0.2211 mg ml{sup -1}, respectively) from 3{sup rd} to 15{sup th} day among one and three month irradiated plants compared to control. The present study, indicates an increase in the CA level upon gamma irradiation, suggests strategy for conferment of strong resistance on seedling stage plants by gamma irradiation as simplicity and cheaply method.

  12. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  13. Effect of gamma-irradiation on flavor compounds of fresh mushrooms

    International Nuclear Information System (INIS)

    Mau, J.L.; Hwang, S.J.

    1997-01-01

    Fresh mushrooms (Agaricus bisporus) were gamma-irradiated with doses of 1,2, and 5 kGy. The volatile compounds were isolated using a Lickens-Nickerson apparatus and analyzed using gas chromatography and gas chromatography-mass spectrometry. The amount of total volatiles was greatly affected by the doses applied. The amounts of benzaldehyde and benzyl alcohol were not affected by gamma-irradiation and ranged from 8.94 to 11.79 and from 0.696 to 1.503 micrograms/g, respectively. The amounts of eight-carbon compounds decreased as the doses of gamma-irradiation increased, from 41.73 for the control (0 kGy) to 20.06 (1 kGy), 8.77 (2 kGy), and 4.04 micrograms/g (5 kGy irradiated mushrooms). The major eight-carbon compound was 1-octen-3-ol, and its amount decreased from 30.34 (the control) to 14.18 (1 kGy), 6.22 (2 kGy), and 2.92 micrograms/g (5 kGy)

  14. The Effects Of Irradiation On The Active Compounds In Curcuma Longa

    International Nuclear Information System (INIS)

    Suntararuks, Sumitra; Charoenying, Siravit; Rangkadilok, Nuchanart; Satayavivad, Jutamaad

    2005-10-01

    Food irradiation is a technology to control spoilage and eliminate food-borne pathogens such as Escherichia coli, salmonella, yeasts and mold. It is also applied to spices, herbs, and natural products including Fahthalai and Curcuma longa (C. longa) products. Therefore, it is important to study the effect of irradiation on the active compounds in these products (two crude and two extracts). The results indicated that HPLC and TLC fingerprints of C. longa samples were similar for both before and after irradiation (2.5, 5, 10, 25 kGy). There were no any new compounds occurred after irradiation and during storage. The curcumin content in C. longa crude (2 samples) was stable during 12 months of this study. However, the curcumin content in 2 extracts trended to increase during storage time. Irradiation process at least 5 kGy can reduce some bacteria and fungi contaminations in natural products to the acceptable level indicated in the quality control methods for medicinal plant materials (WHO, 1998). The amount of microorganism growth were not more than 105, 104, 103 colony forming unit (CFU) of each sample for aerobic bacteria, fungi, and enterobacteriaceae growth, respectively, and E. coli, Salmonella spp. and Staphylococcus aureus were not found in all samples

  15. Recent advances in ordered intermetallics

    International Nuclear Information System (INIS)

    Liu, C.T.

    1995-01-01

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at elevated temperatures in hostile environments. Their attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at elevated temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past ten years, considerable effort has been devoted to the research and development of ordered intermetallic alloys, and good progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel efforts on alloy design have led to the development of a number of ductile and strong intermetallic alloys based on Ni(3)Al, NiAl, Fe(3)Al, FeAl, Ti(3)Al and TiAl systems for structural applications. (orig.)

  16. Isothermal Crystallization Kinetics of HDPE/HA Compounds Irradiated with Sterilization Doses of Gamma Rays

    International Nuclear Information System (INIS)

    Albano, C.

    2006-01-01

    The objective of this work was to study the isothermal crystallization of High Density Polyethylene/Hydroxyapatite nanocomposites, with 2 and 5 ppc of HA, irradiated with 25 kGy (sterilization dose) of γ-Ray from a 60 C o source, at a rate of 4.8 kGy/h in air and at room temperature. The selected crystallization temperatures were 118, 117, 116 and 115 degree. The crystallization kinetics was analyzed using the Avrami's model whose parameters were optimized using a non-linear regression technique. Regression results show that the Avrami exponent varies between 1.8 and 1.5, meaning that the spherulitic growth is mainly two dimensional. Values for specific crystallization constant 'k' were found to be higher for HDPE/HA compounds than for pure HDPE, clearly indicating the presence of an HA nucleation effect. It was also observed that values for the specific crystallization constant 'k' decreases with increasing temperatures, being this effect more noticeable for HDPE/HA compounds than for pure HDPE. Regarding to irradiated samples, their 'k' values were found to be lower than those for non irradiated samples, the difference getting more significant with decreasing crystallization temperature. Simulation of experimental data with the Avrami's model show a clear influence of the crystallization temperature, the HA content in the sample and the amount of applied radiation. It was also observed that the Avrami model correlates satisfactorily experimental data for not irradiated samples of pure HDPE and HDPE/HA compounds at the highest crystallization (T c ). However, as the crystallization temperature decreases, the values simulated with the Avrami model increasingly deviate from experimental data, specifically at the highest values of the relative crystallinity. This effect is even stronger on irradiated samples of HDPE and HDPE/HA compounds

  17. Electron spin resonance of Gd3+ in the intermetallic Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds

    Science.gov (United States)

    Mendonça, E. C.; Silva, L. S.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Duque, J. G. S.; Souza, J. C.; Pagliuso, P. G.; Lora-Serrano, R.; Teixeira-Neto, A. A.

    2017-10-01

    In this work, experiments of X-ray diffraction, magnetic susceptibility, heat capacitance, and Electron Spin Resonance (ESR) carried out in the Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds grown through a Ga self flux method are reported. The X-ray diffraction data indicate that these compounds crystallize in a trigonal crystal structure with a space group R32. This crystal structure is unaffected by Y-substitution, which produces a monotonic decrease of the lattice parameters. For the x = 0 compound, an antiferromagnetic phase transition is observed at TN = 19.2 K, which is continuously suppressed as a function of the Y-doping and extrapolates to zero at x ≈ 0.85. The ESR data, taken in the temperature range 15 ≤ T ≤ 300 K, show a single Dysonian Gd3+ line with nearly temperature independent g-values. The linewidth follows a Korringa-like behavior as a function of temperature for all samples. The Korringa rates (b = ΔH /ΔT ) are Y-concentration-dependent indicating a "bottleneck" regime. For the most diluted sample (x = 0.90), when it is believed that the "bottleneck" effect is minimized, we have calculated the q-dependent effective exchange interactions between Gd3+ local moments and the c-e of 〈Jf-ce 2(q ) 〉 1 /2 = 18(2) meV and Jf -c e(q =0 ) = 90(10) meV.

  18. 161Dy Moessbauer spectroscopy of the intermetallic compounds DyNi2Si2, DyNi2Ge2 and DyAg2Si2

    International Nuclear Information System (INIS)

    Onodera, Hideya; Murata, Akifumi; Koizuka, Masaaki; Ohashi, Masayoshi; Yamaguchi, Yasuo

    1994-01-01

    161 Dy Moessbauer spectroscopic study has been performed on DyNi 2 Si 2 , DyNi 2 Ge 2 and DyAg 2 Si 2 in order to clarify microscopic properties of antiferromagnets with incommensurate and sinusoidally moment-modulated structure. The experiments were done using the standard 161 Tb Moessbauer sources prepared by neutron irradiation at the Japan Material Testing Reactor. The Moessbauer spectra of DyNi 2 Si 2 are analyzed satisfactorily by a single set of hyperfine parameters, and hence the sinusoidal moment-modulation is considered to be realized through a distribution of spin relaxation rate. The broadened spectra of DyNi 2 Ge 2 are fitted tentatively by three subspectra. It seems for DyNi 2 Ge 2 that the incommensurate arrangement of Dy moments differed in magnitude as well as the distribution of spin relaxation rate originates the moment modulation. The fact that the spectrum of DyAg 2 Si 2 at 3 K consists of two distinct subspectra ensures the complicated antiferromagnetic structure where two kinds of Dy moments differed in magnitude are arranged noncollinearly. (author)

  19. Phase transformations in intermetallic phases in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)

    2017-11-15

    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  20. Calculation of the magnetic properties of pseudo-ternary R2M14B intermetallic compounds (R = rare earth, M = Fe, Co

    Directory of Open Access Journals (Sweden)

    Gabriel Gómez Eslava

    2016-06-01

    Full Text Available The extrinsic properties of NdFeB-based magnets can be tuned through partial substitution of Nd by another rare-earth element and Fe by Co, as such substitution leads to a modification in the intrinsic properties of the main phase. Optimisation of a magnet's composition through trial and error is time consuming and not straightforward, since the interplay existing between magnetocrystalline anisotropy and coercivity is not completely understood. In this paper we present a model to calculate the intrinsic magnetic properties of pseudo-ternary Nd2Fe14B-based compounds. As concrete examples, which are relevant for the optimisation of NdFeB-based high-performance magnets used in (hybrid electric vehicles and wind turbines, we consider partial substitution of Nd by Dy or Tb, and Fe by Co.

  1. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3−xTi2 (0 ≤ x ≤ 3

    Directory of Open Access Journals (Sweden)

    Balamurugan Balasubramanian

    2016-11-01

    Full Text Available We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3 and saturation magnetic polarization (11.4 kG are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.

  2. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    Science.gov (United States)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-08-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.

  3. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Full text: The ion implantation at a high intensity mode is an effective method for modification of the surface properties of metals and alloys. Improvement of mechanical and tribological properties of irradiated materials using the high intensity implantation is connected with an element composition and microstructure modification of the surface and subsurface layers. One shows a great interest in intermetallic phase's synthesis by ion implantation, because of unique physical-mechanical properties of the intermetallic compounds. The influence of the irradiation conditions on the structural state and surface properties of implanted materials is not clear enough. The study of the factors influencing on the formation of the surface ion - alloyed layers of metal targets having the high tribological and mechanical properties by high intensity ion implantation is actual. The aim of the present work is a study of the microstructure, phase composition, physical and mechanical properties of the ion-alloyed Ni surfaces formed at high intensity implantation of Ti ions. The implantation Ti ions into Ni samples at high intensity mode was realized using ion source 'Raduga - 5'. The implantation Ti ions into Ni was carried out at accelerating voltage 20 kV for 2 h. The regimes were differed in the samples temperature (580 - 700 K), the distance from the ion implanted samples to the ion source (0.43-0.93 m) and the dose of irradiated ions (0.3·10 18 -2.9·10 18 ion/cm -2 ). The element composition of the implanted samples was analyzed by the electron spectroscopy. The structural-phase state of the Ni ion-modified layers was investigated by the transmission electron microscopy and X-ray diffraction methods. Additionally, the investigation of mechanical and tribological properties of the implanted Ni samples was carried out. It was established that the maximum thickness of the ion-alloyed nickel layers at high intensity mode allows forming the nanoscale intermetallic phases (Ni

  4. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    International Nuclear Information System (INIS)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-01-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC–MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added. - Highlights: ► Garlic and red wine were added to ground beef and irradiated at 5 kGy in the presence of charcoal pack. ► When the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly and it affected sensory score. ► Thus, addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation. ► This effect was consistent when additives, such as garlic and red wine, were added into ground beef.

  5. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time, but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for higher temperature applications. Fundamental studies were carried out on amongst other materials, plasticised PVC compounds for use in cable applications. The results of this work, encouraged the author to investigate cross-linkable PVC in areas such as footwear soling

  6. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni{sub 2}In-type intermetallics of the Ni–In–Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: susana.ramos@fain.uncoma.edu.ar [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas – CONICET-UNCo (Argentina); González Lemus, N.V. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Deluque Toro, C. [Grupo de Nuevos Materiales, Universidad de la Guajira, Riohacha (Colombia); Fernández Guillermet, A. [CONICET - Instituto Balseiro, Centro Atómico Bariloche, Avda. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-01-15

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G{sub m}) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni{sub 2}In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni){sub 1}(Ni,Va){sub 1}(In,Ni){sub 1} and (Ni,Va){sub 1}(Ni,Va){sub 1}(In,Ni,Sn){sub 1}, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G{sub m} for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni){sub 1}(Ni){sub 1}(In){sub 1}, which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni{sub 2}In”), Ni:Ni:Ni (i.e., “Ni{sub 3}”), Ni:Ni:Sn (

  7. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni2In-type intermetallics of the Ni–In–Sn system

    International Nuclear Information System (INIS)

    Ramos de Debiaggi, S.; González Lemus, N.V.; Deluque Toro, C.; Fernández Guillermet, A.

    2015-01-01

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G m ) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni 2 In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni) 1 (Ni,Va) 1 (In,Ni) 1 and (Ni,Va) 1 (Ni,Va) 1 (In,Ni,Sn) 1 , respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G m for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni) 1 (Ni) 1 (In) 1 , which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni 2 In”), Ni:Ni:Ni (i.e., “Ni 3 ”), Ni:Ni:Sn (“Ni 2 Sn”), Ni:Va:In (i.e., “NiIn”), Ni:Va:Ni (i

  8. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Dennis, K.J.; Shibamoto, T.

    1990-01-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  9. Synthesis and characterization of Ge–Cr-based intermetallic compounds: GeCr3, GeCCr3, and GeNCr3

    International Nuclear Information System (INIS)

    Lin, S.; Tong, P.; Wang, B.S.; Huang, Y.N.; Song, W.H.; Sun, Y.P.

    2014-01-01

    Highlights: • Polycrystalline samples of GeCr 3 , GeCCr 3 , and GeNCr 3 are synthesized by using solid state reaction method. • A good quality of our samples is verified by the Rietveld refinement and electrical transport measurement. • We present a comprehensive understanding of physical properties of GeCr 3 , GeCCr 3 , and GeNCr 3 . -- Abstract: We report the synthesis of GeCr 3 , GeCCr 3 , and GeNCr 3 polycrystalline compounds, and present a systematic study of this series by the measurements of X-ray diffraction (XRD), magnetism, electrical/thermal transport, specific heat, and Hall coefficient. Good quality of our samples is verified by quite small value of residual resistivity and considerably large residual resistivity ratio. Based on the Rietveld refinement of XRD data, the crystallographic parameters are obtained, and, correspondingly, the sketches of crystal structure are plotted for all the samples. The ground states of GeCr 3 , GeCCr 3 , and GeNCr 3 are paramagnetic/antiferromagnetic metal, and even a Fermi-liquid behavior is observed in electrical transport at low temperatures. Furthermore, the analysis of the thermal conductivity data suggests the electron thermal conductivity plays a major role in total thermal conductivity for GeCr 3 at low temperatures, while the phonon thermal conductivity is dominant for GeCCr 3 and GeNCr 3 at high temperatures. The negative value of Seebeck coefficient and Hall coefficient indicate that the charge carriers are electron-type for GeCr 3 , GeCCr 3 , and GeNCr 3

  10. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce[Gamma irradiation; Fermented anchovy; Color; Flavor compounds; Electronic nose; Sensory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell.

  11. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.

  12. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and anneal-.

  13. Solid state diffusion in zirconium-copper and zirconium-nickel systems. Study of the intermetallic compounds formed; Diffusion a l'etat solide dans les systemes zirconium-cuivre et zirconium-nickel. Etude des composes intermetalliques formes

    Energy Technology Data Exchange (ETDEWEB)

    Meny, L; Champigny, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    Solid state diffusion has been provoked in pure Zr-Cu and Zr-Ni metal couples. The tests were carried out in the following experimental conditions : the samples were maintained at a mechanical pressure of 30 kg/cm{sup 2}; annealing was carried out in a secondary vacuum during 100 and 500 hours, at temperatures of between 650 C and 900 C. In all cases, a diffusion zone made up of several parallel layers was formed. The various intermetallic compounds have been studied by metallography (optical microscopy and micro-hardness) X-ray diffraction and micro-analysis with an electronic probe. In the Zr-Cu system, six compounds have been determined, Zr{sub 2}Cu, ZrCu, Zr{sub 2}Cu{sub 3}, ZrCu{sub 4} and ZrCu{sub 5}. These results confirm a recent publication mentioning for the first time the existence of ZrCu{sub 5} and demonstrating the formulae ZrCu{sub 3} and ZrCu{sub 4}. In a similar manner, we have found six compounds, stable at room temperature, in the Zr-Ni system: these are Zr{sub 2}Ni, ZrNi, Zr{sub 7}Ni{sub 10}, ZrNi{sub 3}, ZrNi{sub 4} and ZrNi{sub 5}; the results of American workers are confirmed for four of these compounds; however we identify as ZrNi{sub 3} and ZrNi{sub 4} the compounds for which they proposed the formulae Zr{sub 2}Ni{sub 5} and Zr{sub 2}Ni{sub 7}. A comparison of these results suggests that the two systems ZrCu and ZrNi have the same type of equilibrium diagrams. (authors) [French] Des diffusions a l'etat solide ont ete effectuees entre les couples de metaux purs Zr-Cu et Zr-Ni. Les essais ont eu lieu dans les conditions experimentales suivantes: les echantillons ont ete maintenus par une pression mecanique de 3O kg/cm{sup 2}; les recuits ont ete effectues sous vide secondaire pendant des temps de 100 et 500 heures, a des temperatures comprises entre 650 C et 900 C. Dans tous les cas, il y a eu formation d'une zone de diffusion formee de plusieurs couches paralleles. Les differents composes intermetalliques ont ete etudies par metallographie

  14. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  15. Evolution of phase microstructure during irradiation

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1985-11-01

    The phase microstructure of alloys is frequently severely altered during irradiation. Sluggish precipitation reactions including precipitation coarsening are accelerated by irradiation-enhanced diffusion. Radiation-induced segregation redistributes existing precipitate phases within the microstructure, induces precipitation of nonequilibrium phases and affects the composition of phases in multicomponent alloys. The displacement process causes disordering of ordered alloys and frequently amorphization, especially in intermetallic compounds, at low temperature. Although a good qualitative understanding of the basic process involved, i.e., displacement mixing, radiation-enhanced diffusion and radiation-induced segregation exists, methods for detailed quantitative modeling of the evolution of the microstructure of alloys remain to be developed

  16. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    International Nuclear Information System (INIS)

    Abdel-Gawad Emara, A.S.; Abdel-Fattah, A.A.; Ebraheem, S.E.; Ali, Z.I.; Gad, H.

    2001-01-01

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k 1 , was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x10 9 to 1.92x10 -7 mol·L -1 '·cm -1 . In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some

  17. Pressure induced helimagnetism in Fe-based (Y.sub.2./sub.Fe.sub.17./sub., Lu.sub.2./sub.Fe.sub.17./sub.) intermetallic compounds

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Prokhnenko, Olexandr; Prokeš, K.; Arnold, Zdeněk; Andreev, Alexander V.

    2007-01-01

    Roč. 310, - (2007), s. 1801-1803 ISSN 0304-8853 R&D Projects: GA ČR GA202/06/0178 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic structure * Fe-base intermetallics * Y 2 Fe 17 * pressure effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  18. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    Science.gov (United States)

    Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique

    2016-01-01

    Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake. PMID:28231106

  19. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    Directory of Open Access Journals (Sweden)

    Edmundo Juarez-Enriquez

    2016-02-01

    Full Text Available Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake.

  20. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation

    International Nuclear Information System (INIS)

    Rivera-Utrilla, José; Daiem, Mahmoud M. Abdel; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl; López-Peñalver, Jesús J.; Velo-Gala, Inmaculada; Mota, Antonio J.

    2016-01-01

    Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO"·), hydrated electron (e_a_q"−) and hydrogen atom (H"·) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO"· radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds. - Highlights: • Degradation of plasticizers and herbicides using gamma radiation was studied. • Dose constants, removal percentages, and radiation-chemical yields were determined. • The reaction rate constants of HO"·, e_a_q"−, H"· with the pollutants were determined. • The elimination of the pollutants mainly followed the oxidative pathway. • The evolution of chemical oxygen demand and toxicity was analyzed.

  1. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Utrilla, José, E-mail: jrivera@ugr.es [Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada (Spain); Daiem, Mahmoud M. Abdel [Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519 Zagazig (Egypt); Sánchez-Polo, Manuel [Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada (Spain); Ocampo-Pérez, Raúl [Center of Research and Postgraduate Studies, Faculty of Chemical Science, Autonomous University of San Luis Potosí, Av. Dr. M. Nava No.6, San Luis Potosí SLP 78210 (Mexico); López-Peñalver, Jesús J.; Velo-Gala, Inmaculada; Mota, Antonio J. [Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada (Spain)

    2016-11-01

    Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO{sup ·}), hydrated electron (e{sub aq}{sup −}) and hydrogen atom (H{sup ·}) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO{sup ·} radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds. - Highlights: • Degradation of plasticizers and herbicides using gamma radiation was studied. • Dose constants, removal percentages, and radiation-chemical yields were determined. • The reaction rate constants of HO{sup ·}, e{sub aq}{sup −}, H{sup ·} with the pollutants were determined. • The elimination of the pollutants mainly followed the oxidative pathway. • The evolution of chemical oxygen demand and toxicity was analyzed.

  2. Elimination of radical on the x-ray irradiated hydroxyapatite compounds

    International Nuclear Information System (INIS)

    Ohta, M.; Yasuda, M.; Miyazawa, C.; Okamura, H.; Suzuki, Y.

    2002-01-01

    We investigate the elimination of radical produced in a human tooth and synthetic calcium-deficient hydroxyapatite compounds after X-ray irradiation. Used samples were enamel and dentine of a human tooth and synthetic calcium-deficient hydroxyapatite (DAp), and stoichiometric hydroxyapatite (HAp). The ESR signal intensities at nearly g = 2 in the samples after X-ray irradiation were proportional to the absorbed dose in the range from 6 to 39 Gy. And these ESR signal intensities of the samples soaked in various ion containing fluids decreased with soaking time. Especially, the decrease in these ESR signal intensities was remarkably large in the samples soaked in Na 2 HPO 4 aqueous solution. This fact suggests that the surface layer of the samples easily dissolves in ion containing fluids

  3. Solute-solute interactions in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debashis; Murray, Ryan; Collins, Gary S., E-mail: collins@wsu.edu [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O. [Northern Kentucky University, Department of Physics and Geology (United States)

    2017-11-15

    Experiments were carried out on highly ordered GdAl{sub 2} samples containing extremely dilute mole fractions of{sup 111}In/Cd probe-atom solutes (about 10{sup −11}), intrinsic antisite atoms Al{sub Gd} having mole fractions of order 0-10{sup −2}, and doped with Ag solutes at mole fractions of order 10{sup −2}. Three types of defect interactions were investigated. (1) Quadrupole interactions caused by Ag-solute atoms neighboring{sup 111}In/Cd solute probe atoms were detected using the method of perturbed angular correlation of gamma rays (PAC). Three complexes of pairs of In-probes and Ag-solutes occupying neighboring positions on Gd- and Al-sublattices were identified by comparing site fractions in Gd-poor and Gd-rich GdAl{sub 2}(Ag) samples and from the symmetry of the quadrupole interactions. Interaction enthalpies between solute-atom pairs were determined from temperature dependences of observed site fractions. Repulsive interactions were observed for close-neighbor complexes In{sub Gd}+Ag{sub Gd} and In{sub Gd}+Ag{sub Al} pairs, whereas a slightly attractive interaction was observed for In{sub Al}+Ag{sub Al}. Interaction enthalpies were all small, in the range ±0.15 eV. (2) Quadrupole interactions caused by intrinsic antisite atoms Al{sub Gd} neighboring In{sub Gd} probes were also detected and site fractions measured as a function of temperature, as in previous work on samples not doped with Ag-solutes [Temperature- and composition-driven changes in site occupation of solutes in Gd{sub 1+3x}Al{sub 2−3x}, Zacate and Collins (Phys. Rev. B69, 174202 (1))]. However, the effective binding enthalpy between In{sub Gd} probe and Al{sub Gd} antisite was found to change sign from -0.12 eV (attractive interaction) in undoped samples to + 0.24 eV (repulsive) in Ag-doped samples. This may be attributed to an attractive interaction between Al{sub Gd} antisite atoms and Ag-dopants that competes with the attractive interaction between In{sub Gd} and Al{sub Gd} defects observed in undoped samples. Alternatively, it may be attributed to competing flows of Ag and Al atoms that, in effect, change the numbers of available sites on the two sublattices (termed degeneracies). (3) The site preference of In-probes to occupy Gd- and Al-sublattices, without nearby defects, in Ag-doped samples was measured. Effective transfer enthalpies between the two sublattices were found in doped samples that were much smaller than the value 0.343(3) eV found in the previous study in undoped GdAl{sub 2}. Two approaches to understanding why the measured enthalpies in doped and undoped samples differ are discussed.

  4. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-01-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation. - Highlights: • Soy sauce (SS) could inhibit volatiles cooked irradiated beef patties. • Vacuum packaging and SS treatment is effective to prevent lipid oxidation. • Hexanal content was highly correlated with TBA value of the irradiated beef patties

  5. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  6. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  7. Histochemical evidence for the relationship between peel damage and the accumulation of phenolic compounds in gamma-irradiated citrus fruit

    International Nuclear Information System (INIS)

    Riov, J.

    1975-01-01

    The first symptoms of radiation damage to citrus fruit were noted 24 to 48 hr after irradiation with 240 krad of gamma rays. At about the same time, radiation-damaged cells were observed in peel cross sections in the flavedo, the outer colored peel layers. The damaged cells were deformed and their protoplasts stained much darker with haematoxylin-safranin than protoplasts of intact cells. The cytoplasm in damaged cells either thickened at one side of the cell, sometimes filling up most of the cell space, or contracted into a small mass. Using several histochemical reagents, a considerable accumulation of phenolic compounds was found to occur in the damaged cells shortly after irradiation. No accumulation of phenolic compounds was observed in intact cells of irradiated fruit. It is suggested that the phenolic compounds which accumulate in flavedo cells following irradiation cause cell death and consequent peel necrosis (pitting). (author)

  8. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T compounds. Many of these new products are of direct interest to astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  9. Radioprotective properties of some heterocyclic nitrogenous compounds against changes in hemoglobin concentration and hematocrit value in x-irradiated mice

    International Nuclear Information System (INIS)

    Rousdhy, H.; Pierotti, T.; Polverelli, M.

    1969-01-01

    Radioprotective properties of imidazole and benzimidazole have been proved in previous works. In this study, authors try to demonstrate radioprotective action of these compounds in comparison with cysteamine upon the hematopoietic system after lethal X-irradiation. Results show: no drastic variations of hematologic constants (hemoglobin concentration and hematocrit value) after intraperitoneal injection of radioprotective compounds apart certain apparent reactions with the heterocyclic compounds; the better radioprotective action of benzimidazole. Twenty five days after irradiation, hemoglobin concentration and hematocrit of radio protected mice return to normal values. (author) [fr

  10. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang, Congmin; Wu, Yurong; Wang, Xin; Zou, Liangliang; Zou, Zhiqing; Yang, Hui

    2016-01-01

    Many intermetallic compounds have a predictable structure, interesting electronic effects, and useful catalytic properties. In this work, a low temperature, surfactant-free, and one-pot method is used to synthesize carbon supported Pd 2 Sn intermetallic nanoparticles. The superlattice of the product was then characterized using X-ray diffraction and transmission electron microscopy. These synthesized intermetallic nanoparticles were found to exhibit a higher activity and stability for electrocatalysis of the ethanol oxidation reaction in an alkaline media than has been achieved using a traditional Pd/C catalyst, which could be attributed to the structural and compositional stabilities of ordered Pd 2 Sn intermetallic nanoparticles.

  11. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  12. Effects of stoichiometry and neutron irradiation in superconducting A-15 compounds

    International Nuclear Information System (INIS)

    Moehlecke, S.

    1978-01-01

    The A-15 (A 3 B) compounds comprise an important class of superconducting compounds. In order to gain a clearer understanding of the parameters influencing the superconductivity in these materials, several A-15 compounds have been prepared and the effects of varying stoichiometry, heat treatment, and irradiation with high energy neutrons (E > 1 MeV) on the superconducting transition temperature T/sub c/, Bragg--William order parameter S, and the lattice parameter a 0 , have been studied. The systems investigated include Nb 3 Ge, Nb 3 Al, Nb 3 Pt, Nb 3 Ir, V 3 Ga, V 3 Si and Mo 3 Os. Some of the results may be summarized as follows: 1) for Nb 3 Al, Nb 3 Pt and V 3 Ga, T/sub c/ is a strong function of composition, reaching a maximum value at the ideal stoichiometric composition of 3A: 1B, if that composition exists in the equilibrium phase diagram, 2) irradiation with high energy neutrons at temperatures of approx.150 0 C results in drastic lowering of T/sub c/ for Nb 3 Al, Nb 3 Pt and Nb 3 Ge, but not for Mo 3 Os, 3) T/sub c/ can be recovered by annealing, the recovery temperature being in the range 300-800 0 C depends on the particular compound, 4) the order parameter S, decreases with increasing neutron fluence (decreasing T/sub c/), and is also recoverable upon annealing at the appropriate temperature, 5) the lattice parameter a 0 , increases with increasing neutron fluence, and isalso restored to its original value by annealing. A simple hard sphere model is developed to calculate the dependence of a 0 on composition within the A-15 phase. Excellent agreement is obtained for the measured values in the Nb--Al, Nb--Pt and V--Ga systems. The results of both compositionally and irradiation induced disorder can be understood on the basis of site-exchange taking placee between the A and B sites in the A-15 structure

  13. Effects of γ-Irradiation of Wild Thyme (Thymus serpyllum L. on the Phenolic Compounds Profile of Its Ethanolic Extract

    Directory of Open Access Journals (Sweden)

    Janiak Michał A.

    2017-12-01

    Full Text Available The presented study revealed that there were changes in the phenolic compounds profile of extract of wild thyme (Thymus serpyllum L. after γ-irradiation at the dose of 5 kGy. Ethanolic extracts of irradiated and non-irradiated herb were prepared and their compounds were analyzed by RP-HPLC-DAD technique. Between thirty two detected constituents, twelve phenolic compounds classified as hydroxybenzoic and hydroxycinnamic acids derivatives, flavones and flavanones were identified. Among them, caffeic acid derivatives and flavones predominated with the highest content of rosmarinic acid and luteolin-7-O-glucoside, respectively. Additionally, thymol was recognized in the analyzed extracts. γ-Irradiation slightly affected the quantitative profile of phenolic compounds of a wild thyme ethanolic extract. Only four constituents differed significantly (P<0.05 in terms of their content in the irradiated and non-irradiated samples. The content of phenolic acids (p-coumaric and caffeic acids decreased and that of flavonoid aglycons (luteolin and eriodictyol increased after the γ-ray treatment.

  14. The effect of gamma irradiation on some carotenoid compounds of paprika

    International Nuclear Information System (INIS)

    Zachariev, Gy.; Kiss, I.

    1983-01-01

    Highly purified crystalline carotenoids (capsanthin, capsorubin, cryptoxanthin and zeaxanthin) were isolated from the pericarp of ripen paprika. The carotenoids were irradiated in a 60 Co source in benzene and aqueous solutions to study their radiolysis. In 100 μM benzene solutions at a dose of 0.91 kGy the following G-values were determined: beta-carotene 0.51, capsanthin 0.44, capsorubin 0.41, zeaxanthin 0.32, cryptoxanthin 0.15. In water at a 0.30 kGy dose (0.91 kGy is very destructive) the obtained G-values were: capsanthin 2.57, capsorubin: 2.31, zeaxanthin 2.34, beta-carotene 1.75, crytpoxanthin 1.54. Ascorbic acid reduced the radiolysis of carotenoids in water. 100 μM benzene solutions of capsanthin and zeaxanthin were irradiated at 1.2 kGy and 1.5 kGy doses, resp. The irradiated solutions were column-chromatographed and the separated bands were investigated by spectrophotometric and chemical methods. It was established that 40% of the capsanthin and 56% of the cryptoxanthin was decomposed to UV absorbing, not yet identified compounds. The remainder consisted in 69-72% of the original all-trans carotenoids. Among the radiation products cis-trans isomers and monoepoxy derivatives of the respective carotenoids could be identified. These amounted only to 0.3-2.2% of the all-trans carotenoids that survived the damage of irradiation. (author)

  15. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  16. Inorganic elements and organic compounds degradation studies by gamma irradiation in used lubricating oils

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio

    2008-01-01

    The automotive lubricating oils have partial degradation of organic compounds and addition of undesirable inorganic elements, during its use. These substances classify the used lubricating oils as dangerous and highly toxic. According to global consensus, concerning the environmental conservation, the best is to perform a reuse treatment of these lubricating oils. For this purpose, the uses of an alternative and effective technology have been sought. In this work, the efficacy and technical feasibility of the advanced oxidation process (AOP), by gamma radiation, for used automotive lubricating oil treatment has been studied. Different quantities of hydrogen peroxide and water Milli-Q were added to oil samples. They were submitted to the Cobalt-60 irradiator, type Gammacell, with 100, 200 and 500 kGy absorbed doses. The inorganic analysis by X-ray fluorescence (WDXRF) showed inorganic elements removal, mainly to sulphur, calcium, iron and nickel elements at acceptable levels by environmental protection law for oils reusing. The gas chromatography (GC/MS) analysis showed that the advanced oxidation process promotes the organic compounds degradation. The main identified compounds were tridecane, 2-methyl-naphthalene, and trietilamina-tetramethyl urea, which have important industrial applications. The multivariate analysis, Cluster Analysis, showed that advanced oxidation process application is a viable and promising treatment for used lubricating oil reusing. (author)

  17. Specific heat of Nb3Sn and V2Zr compounds irradiated with high fluences fast neutrons

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Mirmel'shtejn, A.V.; Arkhipov, V.E.; Goshchitskij, B.N.

    1987-01-01

    Specific heat of Nb 3 Sn (structure A15) and V 2 Zr (C15) specimens irradiated with high fluences of bast neutrons has been measured. It is shown that in these compounds the temperature reduction of superconducting transition T c under neutron irradiation is accompanied with high decrease of N(E F ). Phonon spectrum of the irradiated V 2 Zr (amorphous phase) on the whole is harder, than at an initial state, for irradiated Nb 3 Sn state (disordered crystalline structure) phonon spectrum is differ weakly from initial one. General regularities of parameter change of electron and phonon subsystems for A15 compounds investigated here and earlier (V 3 Si, Mo 3 Si, Mo 3 Ge) have been analysed

  18. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  19. A mast cell secretagogue, compound 48/80, prevents the accumulation of hyaluronan in lung tissue injured by ionizing irradiation

    International Nuclear Information System (INIS)

    Nilsson, K.; Bjermer, L.; Hellstroem, S.H.; Henriksson, R.; Haellgren, R.

    1990-01-01

    Irradiation with a single dose of 30 Grey on the basal regions of the lungs of Sprague-Dawley rats induced a peribronchial and alveolar inflammation. Infiltration of mast cells in the edematous alveolar interstitial tissue and also in the peribronchial tissue were characteristic features of the lesion. The appearance of mast cells was already seen 4 wk after irradiation and by weeks 6 to 8 there was a heavy infiltration. The staining properties suggested that they were connective tissue-type mast cells. The infiltration of mast cells was paralleled by an accumulation of hyaluronan (hyaluronic acid) in the alveolar interstitial tissue 6 and 8 wk after irradiation. The recovery of hyaluronan (HA) during bronchoalveolar lavage (BAL) of the lungs also increased at this time. Treatment with a mast cell secretagogue, compound 48/80, induced a distinct reduction of granulated mast cells in the alveolar tissue. Regular treatment with compound 48/80 from the time of irradiation considerably reduced the HA recovery during BAL and the HA accumulation in the interstitial tissue but did not affect the interstitial infiltration of mononuclear cells and polymorphonuclear leukocytes. By contrast, an accumulation of HA in the alveolar interstitial space was induced when compound 48/80 was given not until mast cell infiltration of the lung had started. The effects of compound 48/80 indicate that the connective tissue response after lung irradiation is dependent on whether or not mast cell degranulation is induced before or after the mast cell infiltration of the alveolar tissue

  20. Irradiation damage of II-VI compounds in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Yoshiie, T.; Iwanaga, H.; Shibata, N.; Suzuki, K.; Ichihara, M.; Takeuchi, S.

    1983-01-01

    Dislocation loops produced by electron irradiation in a 1 MV electron microscope have been studied above room temperature for five II-VI compounds: CdS and ZnO, with the wurtzite structure, and CdTe, ZnSe and ZnS, with the zincblende structure. For all the crystals the density of loops decreased as the irradiation temperature increased, until no loops were produced above a certain temperature which varied from crystal to crystal. However, the loop density did not depend on the electron flux intensity, suggesting the heterogeneous nucleation at some impurity complex of equilibrium concentration. Diffraction contrast analyses showed that the loops are of interstitial type in each crystal, with Burgers vectors as follows: 1/2[0001] and 1/3 for wurtzite crystals, the density ratio of the former type to the latter being increased with increasing temperature; mostly 1/3 and a few 1/2 for zincblende crystals, the latter type being presumably formed as a result of unfaulting in the former. An effect of crystal polarity on the shape of the loops in zincblende crystals has been observed. (author)

  1. A novel estrogenic compound transformed from fenthion under UV-A irradiation

    International Nuclear Information System (INIS)

    Yamada, Kenta; Terasaki, Masanori; Makino, Masakazu

    2010-01-01

    The photo-transformed products of fenthion well-known as one of the most photosensitive organophosphorus insecticides and their estrogenic activities were investigated using a yeast two-hybrid assay incorporating the human estrogen receptor α (hERα). We identified fenthion sulfoxide and 3-methyl-4-methylsulfinylphenol (MMS) as the major transformed products and 3-methyl-4-(methylthio)phenol (MMP) as the minor product under UV-A irradiation. Further, significant estrogenic activity was observed in the solution irradiated for 160 min; this activity was evaluated as 18 pM converted to 17β-estradiol (E 2 ) equivalent concentration. By using authentic standards, it was found that MMP possessed weak estrogenic activity; its activity was evaluated as 1.7 x 10 -6 times compared with that of E 2 . However, it was also revealed that the activity due to MMP was only 13%. From high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopies, we newly identified a significant estrogenic compound transformed from fenthion, O,O-dimethyl S-[3-methyl-4-(methylthio)phenyl]phosphorothioate, S-aryl fenthion.

  2. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  3. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  4. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  5. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  6. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  7. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  8. Microencapsulated antimicrobial compounds as a means to enhance electron beam irradiation treatment for inactivation of pathogens on fresh spinach leaves.

    Science.gov (United States)

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-08-01

    Recent outbreaks associated to the consumption of raw or minimally processed vegetable products that have resulted in several illnesses and a few deaths call for urgent actions aimed at improving the safety of those products. Electron beam irradiation can extend shelf-life and assure safety of fresh produce. However, undesirable effects on the organoleptic quality at doses required to achieve pathogen inactivation limit irradiation. Ways to increase pathogen radiation sensitivity could reduce the dose required for a certain level of microbial kill. The objective of this study was to evaluate the effectiveness of using natural antimicrobials when irradiating fresh produce. The minimum inhibitory concentration of 5 natural compounds and extracts (trans-cinnamaldehyde, eugenol, garlic extract, propolis extract, and lysozyme with ethylenediaminetetraacetate acid (disodium salt dihydrate) was determined against Salmonella spp. and Listeria spp. In order to mask odor and off-flavor inherent of several compounds, and to increase their solubility, complexes of these compounds and extracts with β-cyclodextrin were prepared by the freeze-drying method. All compounds showed bacteriostatic effect at different levels for both bacteria. The effectiveness of the microencapsulated compounds was tested by spraying them on the surface of baby spinach inoculated with Salmonella spp. The dose (D₁₀ value) required to reduce the bacterial population by 1 log was 0.190 kGy without antimicrobial addition. The increase in radiation sensitivity (up to 40%) varied with the antimicrobial compound. These results confirm that the combination of spraying microencapsulated antimicrobials with electron beam irradiation was effective in increasing the killing effect of irradiation. Foodborne illness outbreaks attributed to fresh produce consumption have increased and present new challenges to food safety. Current technologies (water washing or treating with 200 ppm chlorine) cannot

  9. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).

    Science.gov (United States)

    Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman

    2011-09-01

    Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®

  10. Channelling phenomenon in the gamma irradiated Benzo-quinone and other compounds observed under the scanning electron microscope

    International Nuclear Information System (INIS)

    Suleiman, Y.M.

    1984-01-01

    Scanning Electron Microscope (S.E.M.), has been used to examine the gamma irradiated pure crystals of Benzo-quinone and other compounds in the polycrystaline form. After gamma irradiation, shallow lines (channels) were observed on the crystal's surfaces when the crystal layers arrangements are parallel to the photons beam direction. Holes were also observed when those layers of the crystals are in the nonparallel case. The phenomenon has been studied and analysed in connected with the H-atom bonds disruption, and H-atoms migration through the crystal's layers. (author)

  11. Therapeutic effect of the compound Danshen dripping pill combined with laser acupoint irradiation on early diabetic retinopathy

    Science.gov (United States)

    Liu, Hui-Hui; Xiong, Guo-Xin; Zhang, Li-Ping

    2017-06-01

    To investigate the therapeutic effect of the compound Danshen dripping pill combined with laser acupoint irradiation on early diabetic retinopathy, 19 patients with early diabetic retinopathy were randomly divided into a treatment group and a control group. The TaiYang, YangBai, YuYao and ZanZhu acupoints of patients in the treatment group were irradiated with a semiconductor laser combined with the oral compound Danshen dropping pills, while those in the control group only used the oral compound Danshen dropping pills. The indicators of vision, mean defect of light sensitivity in the visual field, renal function and fasting blood glucose, were examined to evaluate the efficacy. After treatment, the above indicators of patients in the two groups were significantly improved and there was a significant difference between the two groups. This showed that the compound Danshen dripping pills combined with the laser acupoint irradiation can improve the ischemic and anoxic state of early diabetic retinopathy and improve the visual field.

  12. Rare earth-ruthenium-magnesium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Kersting, Marcel; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    Eight new intermetallic rare earth-ruthenium-magnesium compounds have been synthesized from the elements in sealed niobium ampoules using different annealing sequences in muffle furnaces. The compounds have been characterized by powder and single crystal X-ray diffraction. Sm{sub 9.2}Ru{sub 6}Mg{sub 17.8} (a=939.6(2), c=1779(1) pm), Gd{sub 11}Ru{sub 6}Mg{sub 16} (a=951.9(2), c=1756.8(8) pm), and Tb{sub 10.5}Ru{sub 6}Mg{sub 16.5} (a=942.5(1), c=1758.3(4) pm) crystallize with the tetragonal Nd{sub 9.34}Ru{sub 6}Mg{sub 17.66} type structure, space group I4/mmm. This structure exhibits a complex condensation pattern of square-prisms and square-antiprisms around the magnesium and ruthenium atoms, respectively. Y{sub 2}RuMg{sub 2} (a=344.0(1), c=2019(1) pm) and Tb{sub 2}RuMg{sub 2} (a=341.43(6), c=2054.2(7) pm) adopt the Er{sub 2}RuMg{sub 2} structure and Tm{sub 3}Ru{sub 2}Mg (a=337.72(9), c=1129.8(4) pm) is isotypic with Sc{sub 3}Ru{sub 2}Mg. Tm{sub 3}Ru{sub 2}Mg{sub 2} (a=337.35(9), c=2671(1) pm) and Lu{sub 3}Ru{sub 2}Mg{sub 2} (a=335.83(5), c=2652.2(5) pm) are the first ternary ordered variants of the Ti{sub 3}Cu{sub 4} type, space group I4/mmm. These five compounds belong to a large family of intermetallics which are completely ordered superstructures of the bcc subcell. The group-subgroup scheme for Lu{sub 3}Ru{sub 2}Mg{sub 2} is presented. The common structural motif of all three structure types are ruthenium-centered rare earth cubes reminicent of the CsCl type. Magnetic susceptibility measurements of Y{sub 2}RuMg{sub 2} and Lu{sub 3}Ru{sub 2}Mg{sub 2} samples revealed Pauli paramagnetism of the conduction electrons.

  13. Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit

    Science.gov (United States)

    Najafabadi, Najmeh Shams; Sahari, Mohammad Ali; Barzegar, Mohsen; Esfahani, Zohreh Hamidi

    2017-01-01

    Interest in the protection of bioactive compounds and a safe alternative method for preservation of processed fruits and fruit juices has recently increased significantly throughout the world. There is a distinct lack of information on the profile of bioactive compounds in jujube fruit (e.g. organic acids, anthocyanins, and water-soluble vitamins) and their changes during processing (e.g. gamma irradiation). Therefore, in this study, the effect of gamma irradiation at different doses (0.0, 0.5, 1.0, 2.5 and 5.0 kGy) on some physicochemical properties and the bioactive compounds of jujube fruit was investigated. The total soluble solids (TSSs) values remained unaffected at various doses, while the level of total acidity (TA) showed a slight increase at doses ≥ 2.5 kGy (p ≤ 0.05). Irradiation up to 2.5 kGy caused a significant increase in the total monomeric anthocyanin and the total phenolic content (about 12% and 6%, respectively), but a significant decrease was observed in both parameters immediately after irradiation at 5 kGy. Moreover, irradiation treatment caused a significant decrease in L* value and a significant increase in a* and b* values (P ≤ 0.05); however, changes of color were slight until the dose of 5 kGy. Gamma irradiation up to 2.5 kGy had no significant effect on the concentration of malic, citric and succinic acids, while the level of ascorbic acid decreased significantly at all irradiation doses (0-5 kGy). Cyanidin-3, 5-diglucoside was determined as the major anthocyanin in the jujube fruit studied (about 68%), which was reduced significantly when 5 kGy of irradiation was applied (degradation percentage: 27%). The results demonstrated that vitamins C, B2 and B1 are the most water-soluble vitamins in jujube fruit, respectively. Vitamins C and B1 content significantly decreased at all applied doses (0-5 kGy), whereas B2 content at doses ≤ 2.5 kGy was not significantly affected. The results of this study indicate that gamma irradiation at

  14. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes; a food irradiation study on radiation induced stress in vegetable products

    NARCIS (Netherlands)

    Bergers, W.W.A.

    1980-01-01

    Irradiation is a recent preservation method. With the aid of ionizing radiation microorganisms in food can be killed or specific physiological processes in vegetable products can be influenced.

    In order to study the effects of metabolic radiation stress on quantitative chemical changes in

  15. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  16. Method of production multifilamentary intermetallic superconductors

    International Nuclear Information System (INIS)

    Marancik, W.G.; Young, M.S.

    1980-01-01

    A method of making A-15 type intermetallic superconductors is disclosed which features elimination of numerous annealing steps. Nb or V filaments are embedded in Cu matrices; annular layers of Sn or Ga, respectively, separated from each other by Cu layers, provide the other component of the intermetallic superconductors Nb3Sn and V3Ga

  17. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  18. Comparison of UV irradiation and p-fluorphenylaline as selective agents for production of aromatic compounds in plant cell culture

    International Nuclear Information System (INIS)

    Quesnel, A.A.; Ellis, B.E.

    1989-01-01

    Resistance to UV irradiation, and to the toxicity of p-fluorophenylalanine, can both be mediateted in plants by enhanced synthesis of aromatic compounds. These selective agents were applied to cell cultures of Nicotiana tabacum, Anchusa officinalis and Catharanthus roseur, and the production of aromatic metabolites in the resulting resistant lines of each species was compared. While Nicotiana and Anchusa cultures responded to each selective agent ith an enhanced accumulation of aromatic compounds, the Catharanthus cultures acquired resistance through other, unknown, mechanisms. Some degree of cross-resistance was observed between cultures selected individually for resistance to each agent (author). 26 refs.; 2 figs.; 1 tab

  19. Blood, blood compounds and cell cultures irradiation in clinical radiotherapy equipment: studies on ideal volume and dose

    International Nuclear Information System (INIS)

    Fernandes, Marco Antonio R.; Pereira, Adelino Jose; Novaes, Paulo Eduardo R.S.

    1995-01-01

    The authors present the technic and equipment used by the Physical Radiologic Service of Radiation Therapy Department of A.C. Camargo Hospital to irradiate blood and blood compounds. The practical routine is illustrated. The results from others Institutions are presented, discussing about the homogeneity of dose of 2000 to 3500 c Gy to all target volume, sufficient to neutralize cells responsible by graft-versus-host disease from blood transfusions. (author). 6 refs., 2 figs., 1 tab

  20. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    International Nuclear Information System (INIS)

    Engohang-Ndong, Jean; Uribe, R.M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-01-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50–70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application. - Highlights: • Use of electron beam irradiation for the treatment of municipal sewage sludge. • Irradiation at 4.5 kGy is required to eliminate risks of bacterial infection. • Irradiation at 14.5 kGy is required to eliminate risks of helminth infection. • Electron beam technology is not effective for controlling volatile organic compounds. • Electron beam treatment of sludge is less expensive than traditional techniques

  1. Intermetallics structures, properties, and statistics

    CERN Document Server

    Steurer, Walter

    2016-01-01

    The focus of this book is clearly on the statistics, topology, and geometry of crystal structures and crystal structure types. This allows one to uncover important structural relationships and to illustrate the relative simplicity of most of the general structural building principles. It also allows one to show that a large variety of actual structures can be related to a rather small number of aristotypes. It is important that this book is readable and beneficial in the one way or another for everyone interested in intermetallic phases, from graduate students to experts in solid-state chemistry/physics/materials science. For that purpose it avoids using an enigmatic abstract terminology for the classification of structures. The focus on the statistical analysis of structures and structure types should be seen as an attempt to draw the background of the big picture of intermetallics, and to point to the white spots in it, which could be worthwhile exploring. This book was not planned as a textbook; rather, it...

  2. Bioactive compounds of fourth generation gamma-irradiated Typhoniumflagelliforme Lodd. mutants based on gas chromatography-mass spectrometry

    Science.gov (United States)

    Sianipar, N. F.; Purnamaningsih, R.; Rosaria

    2016-08-01

    Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

  3. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    International Nuclear Information System (INIS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiationпј€1–7 kGyпј‰ and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC. - Highlights: • E-beam irradiation generated three novel volatile compounds. • E-beam irradiation increased the relative proportions of alcohols, aldehydes, and ketones. • E-beam irradiation coupled to microwave heating increased aldehyde levels and generated five heterocyclic compounds. • E-beam irradiation at 5 and 7 kGy decreased the levels of unsaturated fatty acids, but did not affect trans fatty acid levels.

  4. Effect of dose-rate of gamma irradiation (60Co) on the anti nutritional compounds phytic acid and antitrypsin on soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Tanhindarto, R.P.; Hariyadi, P.; Purnomo, E.H.; Irawati, Z.

    2013-01-01

    An investigation on the effect of gamma irradiation at different dose-rate on the anti-nutritional compounds (phytic acid and antitrypsin) and the color of soybean has been conducted. The purpose of the study was to analyze the influence of the dose-rate on the rate of change of anti-nutritional compounds and color. Samples were irradiated with dose-rates of 1.30; 3.17; 5.71 and 8.82 kGy/hour with irradiation time varied from 0.5 to 55 hours. Phytic acid content and antitrypsin activity, as well as their L α b color values were analyzed. Results showed that a simple first order kinetics model can be used to describe changes in the concentration of the anti-nutritional compounds and color soybeans during the radiation processing. Data indicate that irradiation process at higher dose-rate (shorter time) is more effective in destroying anti-nutritional compounds as compared to that of irradiation process at lower dose-rate (longer time). Furthermore, irradiation process at higher dose-rate (shorter time) also have less detrimental effect on color of the soybean and the resulted soybean flour as compared to that of irradiation process at lower dose-rate (longer time). These findings suggest that irradiation process at a same dose may potentially be optimized by selecting the most appropriate combination of dose-rate and time of irradiation. (author)

  5. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds; Diseno y fabricacion de un sistema de aleado mecanico para preparar compuestos intermetalicos, nanocristalinos, amorfos y cuasicristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  6. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    NARCIS (Netherlands)

    Besemer, A.C.

    1982-01-01

    The paper describes the analysis of products of the photochemical degradation of toluene and toluene-14C in smog chamber experiments. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation

  7. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  8. Intermetallics: past, present and future

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2005-12-01

    Full Text Available Intermetallics have seen extensive world-wide attention over the past decades. For the most part these studies have examined multi-phase aluminide based alloys, because of their high stiffness, combined with reasonable strength and ductility, good structural stability and oxidation resistance, and attempted to improve current Ni-base superalloys, Ti-base alloys, or Fe-base stainless steels for structural aerospace applications. The current status of development and application of such materials is briefly reviewed. Future developments are taking intermetallics from the realm of "improved high-temperature but low-ductility metallic alloys" into the realm of "improved aggressive-environment, high-toughness ceramic-like alloys". Such evolution will be outlined.

    Durante los últimos décadas ha habido un desarrollo de los intermetálicos, sobre todo por aplicaciones estructurales a alta temperatura en aplicaciones aeroespaciales, donde, por su rigidez alta, en combinación con una resistencia mecánica y ductilidad razonable, su buena estabilidad estructural y resistencia a la oxidación, han sido vistos como versiones avanzadas y mejoradas de las aleaciones metálicas como, por ejemplo, las superaleaciones a base de nitrógeno y las aleaciones de titanio. Se discute el desarrollo importante durante las últimas décadas, y también los nuevos desarrollos probables durante los próximos años. Se podrían ver los intermetálicos como versiones mejoradas de los cerámicos.

  9. Vacancy-type defects in electron and proton irradiated II-VI compounds

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Balogh, A.G.; Baumann, H.

    1997-01-01

    In this contribution, the authors present a study aimed at investigating the basic properties of radiation induced defects in ZnS and ZnO and the influence of the atmosphere on the annealing characteristics of the defects. Positron annihilation experiments (both lifetime and Doppler-broadening measurements) were performed on both single- and polycrystalline samples, irradiated with 3 MeV protons or 1 MeV electrons. For ZnS it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics. The annealing of proton irradiated ZnS in air leads to significant oxidation and eventual transformation into ZnO

  10. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  11. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  12. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  13. Study of the effect of gamma irradiation on phenolic compounds and pesticides residues

    International Nuclear Information System (INIS)

    Fkih, Sana

    2007-01-01

    The aim of this study was to show the effects of this process of conservation on the polyphenol rate and the antioxidant capacity of polyphenols of quince, of the cocoa and those of sage, then to study its effects on the pesticides residues in the sage sheets. The irradiation of quince polyphenols, increased the polyphenols rate as well as the antioxidant capacity. In the case of cocoa polyphenols, we don't have ace observed many differences between the irradiated and not irradiated samples, and in the case of sage polyphenols, the polyphenol rate as well as the antioxidant capacity decreased. Finally, irradiation of parathion caused degradation of this molecule, and the polyphenol rate as well as the antioxidant capacity pf polyphenols of the sheets of sage soaked with parathion was a less decreased than polyphenols of the sheets not soaked with parathion. (Author). 37 refs

  14. Mechanical properties of intermetallics formed during thermal aging of Cu-Al ball bonds

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.; Weltevreden, E.R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  15. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    International Nuclear Information System (INIS)

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys

  16. Intermetallics as innovative CRM-free materials

    Science.gov (United States)

    Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello

    2018-03-01

    Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.

  17. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  18. Magnetic properties and magnetocaloric effect in the HoNi1−xCuxIn (x=0, 0.1, 0.3, 0.4) intermetallic compounds

    International Nuclear Information System (INIS)

    Mo, Zhao-Jun; Shen, Jun; Yan, Li-Qin; Tang, Cheng-Chun; He, Xiao-Nan; Zheng, Xinqi; Wu, Jian-Feng; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    The magnetic properties and magnetocaloric effect (MCE) in HoNi 1−x Cu x In (x=0, 0.1, 0.3, 0.4) compounds have been investigated. With the substitution of Cu for Ni, the Ho magnetic moment will cant from the c-axis, and form a complicated magnetic structure. These compounds exhibit two successive magnetic transitions with the increase in temperature. The large reversible magnetocaloric effects have been observed in HoNi 1−x Cu x In compounds around T ord , with no thermal and magnetic hysteresis loss. The large reversible isothermal magnetic entropy change (−ΔS M ) is 20.2 J/kg K and the refrigeration capacity (RC) reaches 356.7 J/kg for field changes of 5 T for HoNi 0.7 Cu 0.3 In. Especially, the value of −ΔS M (12.5 J/kg K) and the large RC (132 J/kg) are observed for field changes of 2 T for HoNi 0.9 Cu 0.1 In. Additionally, the values of RC are improved to 149 J/K for the field changes of 2 T due to a wide temperature span for the mix of HoNi 0.9 Cu 0.1 In and HoNi 0.7 Cu 0.3 In compounds with the mass ratio of 1:1. These compounds with excellent MCE are expected to have effective applications in magnetic refrigeration around 20 K. - Highlights: • For magnetic-field changes of 2 T, the values of RC are improved to 149 J/K. • MCEs of these compounds show no thermal and magnetic hysteresis. • Compounds show two successive magnetic transitions with the increase in temperature. • With the substitution of Cu for Ni, compounds form a complicated magnetic structure

  19. Intermetallics Synthesis in the Fe–Al System via Layer by Layer 3D Laser Cladding

    Directory of Open Access Journals (Sweden)

    Floran Missemer

    2013-10-01

    Full Text Available Intermetallide phase formation was studied in a powdered Fe–Al system under layer by layer laser cladding with the aim of fabricating the gradient of properties by means of changing the Fe–Al concentration ratio in the powder mixture from layer to layer. The relationships between the laser cladding parameters and the intermetallic phase structures in the consecutively cladded layers were determined. In order to study the structure formation an optical microscopy, X-ray diffraction analysis, measurement of microhardness, scanning electron microscopy (SEM with energy dispersive X-ray (EDX spectroscopy analysis were used after the laser synthesis of intermetallic compounds.

  20. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  1. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    International Nuclear Information System (INIS)

    Besemer, A.C.

    1982-01-01

    The analysis of products of the photochemical degradation of toluene and toluene- 14 C in smog chamber experiments is described. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation of methylglyoxal appeared to be acetaldehyde. (author)

  2. Pressure and irradiation effects on transport properties of samarium compounds with instable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1981-01-01

    Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB 6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x 6 is presented [fr

  3. The GR-value deviation from the additivity rule for irradiated systems containing heterocyclic compounds

    International Nuclear Information System (INIS)

    Nanobashvili, H.M.; Shanidze, G.V.; Khidesheli, G.I.; Panchvidze, M.V.

    1988-01-01

    The investigation of the low temperature radiolysis of binary systems containing heterocyclic compounds has been carried out. In the systems under study the G R -value deviation from the additivity rule is observed due to the energy transfer processes from matrix molecules. It is shown that heterocyclic compounds are good radioprotectors. (author)

  4. First principles electronic and thermal properties of some AlRE intermetallics

    International Nuclear Information System (INIS)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-01-01

    A study on structural and electronic properties of non-magnetic cubic B 2 -type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics

  5. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  6. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  7. Some effects of irradiation of mice in utero with tritiated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, B E; Phipps, M L [Radiobiology Department, The Medical College of Bartholomew' s Hospital, London, UK

    1978-01-01

    Mice have been exposed continuously, in utero, to tritiated water (via the maternal drinking water) or to tritiated thymidine (infused continuously into the mother). In both cases the patterns of labeling and subsequent loss of tritium over an extended period have been studied. The technique of infusion in unrestrained mice and its application in the production of fully tritium-labeled offspring is described in some detail. These fully labeled mice are being used to study a number of early and late effects, in particular, gonad cell effects and carcinogenesis, following this form of internal irradiation. Some preliminary results are presented. Similar results produced by homogeneous irradiation from tritiated water are also reported.

  8. Effects of Zinc Compound on Body Weight and Recovery of Bone Marrow in Mice Treated with Total Body Irradiation

    Directory of Open Access Journals (Sweden)

    Ming-Yii Huang

    2007-09-01

    Full Text Available This study aimed to investigate if zinc compound would have effects on body weight loss and bone marrow suppression induced by total body irradiation (TBI. ICR mice were divided randomly into two groups and treated with test or control compounds. The test compound contained zinc (amino acid chelated with bovine prostate extract, and the control was reverse osmosis pure water (RO water. One week after receiving the treatment, mice were unirradiated, or irradiated with 6 or 3 Gy by 6MV photon beams to the total body. Body weight changes were examined at regular intervals. Three and 5 weeks after the radiation, animals were sacrificed to examine the histologic changes in the bone marrow. Lower body weight in the period of 1-5 weeks after radiation and poor survival rate were found after the 6 Gy TBI, as compared with the 3 Gy groups. The median survival time after 6 Gy and 3 Gy TBI for mice given the test compound were 26 and 76 days, respectively, and the corresponding figures were 14 and 70 days, respectively, for mice given the control compound (p < 0.00001. With zinc supplement, the mean body weight in mice which received the same dose of radiation was 7-8 g heavier than in the water-supplement groups during the second and third weeks (p < 0.05. Hence, there was no statistically significant difference in survival rate between zinc and water supplement in mice given the same dose of irradiation. Histopathologically there was less recovery of bone marrow cells in the 6Gy groups compared with the 3Gy groups. In the 3 Gy water-supplement group, the nucleated cells and megakaryocytes were recovered in the fifth week when recovery was still not seen in the 6Gy group. With zinc supplement, these cells were recovered in the third week. In this study, we found that zinc is beneficial to body weight in mice treated with TBI. Histologic examination of bone marrow showed better recovery of bone marrow cells in groups of mice fed with zinc. This study

  9. Magnetocrystalline anisotropy constants, rotational hysteresis energy and magnetic domain structure in UFe6Al6, UFe9AlSi2 and ScFe10Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Pawlik, P.; Wochowski, K.; Kotur, B.; Bodak, O.I.

    1996-01-01

    The magnetic torque, T, was applied to determine the anisotropy constants K 1 and K 2 of the UFe 6 Al 6 , UFe 9 AlSi 2 and ScFe 10 Si 2 compounds. The mechanism of magnetization reversal processes in these compounds was investigated on the basis of the analysis of the rotational hysteresis energy, W r and rotational hysteresis integral, R, calculated from the magnetic torque curves. Applying the powder pattern method, magnetic domain structures were observed. Moreover, the fundamental parameters of the domain structure were determined. (orig.)

  10. Alteration of sensitivity of intratumor quiescent and total cells to γ-rays following thermal neutron irradiation with or without 10B-compound

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Sakurai, Yoshinori; Kobayashi, Tooru; Takagaki, Masao; Kinashi, Yuko; Akaboshi, Mitsuhiko

    2000-01-01

    Purpose: Changes in the sensitivity of intratumor quiescent (Q) and total cells to γ-rays following thermal neutron irradiation with or without 10 B-compound were examined. Methods and Materials: 5-Bromo-2'-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10 B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of γ-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. Results: In total cells, during the interval between the two irradiations, the tumor sensitivity to γ-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only 10 B-compound, especially BPA, in thermal neutron irradiation causes the recruitment from the Q to P population

  11. Ultraviolet irradiation of nucleic acids and related compounds. Final progress report

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1976-01-01

    Progress is reported on the following research projects: photohydration of pyrimidine derivatives; thymine dimerization; uv-induced formation of pyrimidinyl radicals; formation of a coupled product by irradiation of 5-bromouracil derivatives; studies on pyrimidine adducts; molecular aggregates-puddle formation hypothesis of pyrimidine photodimerization; and topochemical studies of structures of dimers and of crystalline arrangements

  12. Radioprotective properties of certain nitrogenous compounds heterocyclic on the serum proteins of irradiated mice

    International Nuclear Information System (INIS)

    Pierotti, T.; Roushdy, H.; Polverelli, M.; Mazza, M.

    1969-01-01

    The results obtained from this study suggest the following: the concentration of total serum proteins in mice is very little changed during all the treatments carried out, while protein fractions showed significant alterations. The concentrations of various serum proteins remain almost constant under normal conditions. Intraperitoneal administration of imidazole or benzimidazole at the mentioned doses induces rapid quantitative changes in the serum which are recovered in about 3 days Whole-body X-irradiation at 750 roentgens creates slow but progressive and persisting serious changes in a concentration of serum protein fractions which end by death of animals at the 8 - 10. day after irradiation. Whole-body X-irradiation of imidazole or benzimidazole protected animals results in quantitative rapid changes in concentration of serum protein fractions, for about four days after which a slow but steady restoration begins. The concentration approaches the normal levels towards the 10. day after irradiation. Imidazole and benzimidazole were proved to be good radio-protectants against the effects of radiation on serum protein fractions. Benzimidazole seems to surpass imidazole. (authors) [fr

  13. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  14. Effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage.

    Science.gov (United States)

    Zhang, Qing-An; Wang, Ting-Ting

    2017-11-01

    In this paper, the effects of ultrasound irradiation were investigated on the evolution of color properties and major phenolic compounds during wine storage. The results indicate that the changing trends of color parameters are very similar in both the ultrasonically-treated and untreated wines, meanwhile the evolutions of malvidin-3-O-glucoside, monomeric flavan-3-ols and phenolic acids also demonstrate some similar patterns in all wines during storage, respectively. In summary, the ultrasound irradiation does not only temporally influence the color characteristics and phenolic compounds of wine, but also have a longer effect on their evolutions during wine storage. Furthermore, the ultrasonically-treated wine had a quicker changing trend than that of the untreated wine regarding the studied parameters. All these results indicate that the ultrasound might be as a feasible and promising novel technology for wineries to produce more red wines with the similar quality as the traditionally-aged wine in a shorter time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A new disordering mechanism in A15 type compounds submitted to low temperature irradiation or to quenching from high temperatures

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1984-05-01

    A new diffusion mechanism describing the changes of the long range order parameter in A15 type compounds after both quenching from high temperatures or low temperature irradiation with high energy particles is presented. It is based on the occupation of nonequilibrium or 'virtual' sites centered halfway between two neighbouring A atoms on 6c sites, arising from the instability of a single 6c vacancy recently found by Welch and coworkers by pair potential calculations. After low temperature irradiation, the occupation of this interstitial site creates the necessary conditions for A B site exchanges over several interatomic distances by focused replacement collision sequences. Due to the occupation of a certain concentration of virtual sites, atomic 'overlapping' is not only possible between A atoms on the chains or between A and B atoms (due to deviations from perfect ordering),but also between B atoms on BBB sequences. The latter are retained after low temperature irradiation only and are responsible for the observed lattice expansion and static displacement. (orig.) [de

  16. Investigation of local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds using perturbed angular correlation gamma-gamma spectroscopy; Investigacao do magnetismo local em compostos intermetalicos do tipo RZn (R = Ce, Gd, Tb, Dy) e GdCu pela espectroscopia de correlacao angular gama-gama perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Brianna Bosch dos

    2010-07-01

    This work presents, from a microscopic point of view, a systematic study of the local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds through measurements of hyperfine interactions using the Perturbed Angular Correlation Gamma- Gamma Spectroscopy technique with {sup 111}In {yields} {sup 111}Cd and {sup 140}La {yields} {sup 140}Ce as probe nuclei. As the magnetism in these compounds originates from the 4f electrons of the rare-earth elements it is interesting to observe in a systematic study of RZn compounds the behavior of the magnetic hyperfine field with the variation of the number of 4f electrons in the R element. The use of probe nuclei {sup 140}La {yields} {sup 140}Ce is interesting because Ce{sup +3} ion posses one 4f electron which may contribute to the total hyperfine field, and the results showed anomalous behavior. The results for {sup 111}Cd probe showed that the temperature dependence of the magnetic hyperfine field follows the Brillouin function, and the magnetic hyperfine field decreases linearly with increase of the atomic number of rare earth when plotted as a function of the rare-earth J spin projection, showing that the main contribution to the magnetic hyperfine field in RZn compounds comes from the polarization of the conduction electrons. The results for the electric field gradient measured with {sup 111}Cd for all compounds showed a strong decrease with the atomic number of the rare-earth element. We have therefore assumed that the major contribution to the electric field gradient originates from the 4f electrons of the rare-earths. The measurements of the electric field gradient for GdCu with {sup 111}Cd, after temperature decreases and increases again showed that two different structures, CsCl-type cubic and FeB-type orthorhombic structures co-exist. Finally, it is the first time that measurements of hyperfine parameters have been carried out with theses two probe nuclei in the studied RZn. (author)

  17. Analysis of 14C-bearing compounds released by the corrosion of irradiated steel using accelerator mass spectrometry.

    Science.gov (United States)

    Cvetković, B Z; Salazar, G; Kunz, D; Szidat, S; Wieland, E

    2018-06-25

    The combination of ion chromatography (IC) with accelerator mass spectrometry (AMS) was developed to determine the speciation of 14C-(radiocarbon) bearing organic compounds in the femto to pico molar concentration range. The development of this compound-specific radiocarbon analysis (CSRA) of carboxylic acids is reported and the application of the method on a leaching solution from neutron-irradiated steel is demonstrated. The background and the dynamic range of the AMS-based method were quantified. On using 14C-labelled standards, the measurements demonstrate the repeatability of the analytical method and the reproducible recovery of the main target carboxylic acids (i.e., acetate, formate, malonate, and oxalate). The detection limit was determined to be in the mid fmol 14C per L level while the dynamic range of the analytical method covers three orders of magnitude from the low fmol to the mid pmol 14C per L level. Cross contamination was found to be negligible during IC fractionation and was accounted for during eluate processing and 14C detection by AMS. The 14C-bearing carboxylates released from an irradiated steel nut into an alkaline leaching solution were analysed using the CSRA-based analytical method with the aim to check the applicability of the approach and develop appropriate sample preparation. The concentrations of 14C-bearing formate and acetate, the main organic corrosion products, were at a low pmol 14C per L level for convenient dimensions of the alkaline leaching experiment which demonstrates that compound-specific 14C AMS is an extremely sensitive analytical method for analysing 14C-bearing compounds. The content of total organic 14C in solution (TO14C) determined by the direct measurement of an aliquot of the leaching solution agrees well with the sum of the 14C concentrations of the individual carboxylates within the uncertainty of the data. Furthermore, the TO14C content is in good agreement with the calculated value using the corrosion rate

  18. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  19. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  20. Some effects of irradiation of mice in utero with tritiated compounds

    International Nuclear Information System (INIS)

    Lambert, B.E.; Phipps, M.L.

    1978-01-01

    Mice have been exposed continuously, in utero, to tritiated water (via the maternal drinking water) or to tritiated thymidine (infused continuously into the mother). In both cases the patterns of labeling and subsequent loss of tritium over an extended period have been studied. The technique of infusion in unrestrained mice and its application in the production of fully tritium-labeled offspring is described in some detail. These fully labeled mice are being used to study a number of early and late effects, in particular, gonad cell effects and carcinogenesis, following this form of internal irradiation. Some preliminary results are presented. Similar results produced by homogeneous irradiation from tritiated water are also reported. (Auth.)

  1. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations

    International Nuclear Information System (INIS)

    Pereira, Luciano Fabricio Dias

    2006-01-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m l = -2 and m l = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,π), (π,π,0) and ((π,π,π) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type (π,π,0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  2. Influence of oxygen and long term storage on the profile of volatile compounds released from polymeric multilayer food contact materials sterilized by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Salafranca, Jesús, E-mail: fjsl@unizar.es [Aragón Institute of Engineering Research (I3A), EINA, Department of Analytical Chemistry, University of Zaragoza, María de Luna 3 (Torres Quevedo Bldg.), 50018 Zaragoza (Spain); Clemente, Isabel, E-mail: isabelclemente1984@gmail.com [Aragón Institute of Engineering Research (I3A), EINA, Department of Analytical Chemistry, University of Zaragoza, María de Luna 3 (Torres Quevedo Bldg.), 50018 Zaragoza (Spain); Isella, Francesca, E-mail: Francesca.Isella@goglio.it [Goglio S.p.A. Packaging Division, Via dell' Industria 7, 21020 Daverio (Italy); Nerín, Cristina, E-mail: cnerin@unizar.es [Aragón Institute of Engineering Research (I3A), EINA, Department of Analytical Chemistry, University of Zaragoza, María de Luna 3 (Torres Quevedo Bldg.), 50018 Zaragoza (Spain); Bosetti, Osvaldo, E-mail: Osvaldo.Bosetti@goglio.it [Goglio S.p.A. Packaging Division, Via dell' Industria 7, 21020 Daverio (Italy)

    2015-06-09

    Highlights: • 13 different food-use multilayers unirradiated and gamma-irradiated were studied. • 60–80 compounds/sample were identified by SPME–GC–MS even after 8-month storage. • Volatile profile of air- and N{sub 2}-filled bags greatly differed after irradiation. • Principal component analysis classified the samples into 4 groups. • Migration from irradiated materials to vapor phase was much lower than EU limits. - Abstract: The profile of volatile compounds released from 13 different multilayer polymeric materials for food use, before and after their exposure to gamma radiation, has been assessed by solid-phase microextraction–gas chromatography–mass spectrometry. Thermosealed bags of different materials were filled with either air or nitrogen to evaluate the oxygen influence. One-third of the samples were analyzed without irradiation, whereas the rest were irradiated at 15 and 25 kGy. Half of the samples were processed just after preparation and the other half was stored for 8 months at room temperature prior to analysis. Very significant differences between unirradiated and irradiated bags were found. About 60–80 compounds were released and identified per sample. A huge peak of 1,3-ditertbutylbenzene was present in most of the irradiated samples. An outstanding reproducibility in all the variables evaluated (chromatograms, oxygen percentage, volume of bags) was noticed. Independently of filling gas, the results of unirradiated materials were almost identical. In contrast, the chromatographic profile and the odor of irradiated bags filled with nitrogen were completely different to those filled with air. Principal component analysis was performed and 86.9% of the accumulated variance was explained with the first two components. The migration of compounds from irradiated materials to the vapor phase was much lower than the limits established in the Commission Regulation (EU) No 10/2011.

  3. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    International Nuclear Information System (INIS)

    Kim, Youngji; Joo, Hyunku; Her, Namguk; Yoon, Yeomin; Sohn, Jinsik; Kim, Sungpyo; Yoon, Jaekyung

    2015-01-01

    Highlights: • Self-rotating reactor including TiO 2 NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO 2 and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO 2 nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO 2 nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions

  4. Effect of Some Dithiocarbamate Compounds in Irradiated Rats: Mechanism of Action

    International Nuclear Information System (INIS)

    Moustafa, E.M.M.

    2013-01-01

    The objective of this study is to give more information about the role of dithiocarbamates as antioxidant in radiation-protection. Three dithiocarbamates were selected: diethyldithiocarbamate (DEDC), thiram (TD) and dimethyldithiocarbamate (DMDC). Irradiation was performed by whole body exposure of rats to 1Gy of γ-irradiation 3 times /week up to a total dose of 9 Gy. Irradiated rats received, via gavages, 100 mg/Kg body weight, of the selected dithiocarbamates, 30 min before exposure to each dose. Animals were sacrificed at 2 weeks and 3 weeks after the last irradiation dose. The results obtained in animals treated with Thiram or its metabolite dimethyldithiocarbamate (DMDC) and combination with γ-radiation showed dramatic results of all parameters and revealed synergistic effect of combination between them. Sever antioxidant and detoxification enzyme depletion. Beside DNA fragmentation was highly recognized in tail DNA % (comet assay), in addition to deterioration in liver enzymes. On the other hand, Diethyl dithiocarbamates has significantly ameliorated radiation-induced oxidative stress in brain and liver tissues. The activity levels of the antioxidant enzymes reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px) and glutathione reductase (GR), the superoxide dismutase (SOD) and catalase (CAT) were significantly ameliorated associated with a significant decrease in malondialdehyde (MDA) level. In addition, the administration of diethyldithiocarbamate has significantly ameliorated the radiation-induced changes in the activity of the detoxifying enzymes; glutathione-S-transferase (GST), acetylcholinesterase (AChE), paraoxonase (PON), arylesterase (AE), and carboxylesterase activity (CE) which tends to record normal values. Diethyldithiocarbamate have also shown protection against the radiation-induced deoxyribonucleic acid (DNA) fragmentation level. However, DEDT at low doses was the more efficient in radiation protection.

  5. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA

    International Nuclear Information System (INIS)

    Held, K.D.; Harrop, H.A.; Michael, B.D.

    1984-01-01

    Dithiothreitol (DTT), cysteamine, cysteine and glutathione all protect B. subtilis transforming DNA in a manner dependent on gassing conditions. In O 2 , the protection is consistent with the scavenging of OH radicals by the SH compounds, but in N 2 there is additional protection possibly due to hydrogen atom donation from the SH compound to radiation-induced DNA lesions, a process blocked by O 2 . This additional protection results in an increase in the ratio of inactivation in the absence and presence of oxygen with increasing SH concentration to a maximum followed by a decrease at high SH concentrations. The maximum value of the ratio and the SH concentration at which it occurs depend on the SH compound. In particular, GSH appears to be significantly less efficient in the hydrogen-donation repair reaction with transforming DNA than are the other three SH compounds. The existence is postulated of a damage fixation process occurring in the absence of O 2 , in competition with damage repair by SH compounds, at a rate not less than 300s -1 . Results demonstrate that the damage fixing reaction of O 2 with transforming DNA radicals proceeds 200-fold faster than the competing repair reaction by hydrogen-donation from DTT. (U.K.)

  6. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  7. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  8. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  9. Formation and properties of radicals in γ-irradiated molecular compounds of urea with dicarboxylic acids

    International Nuclear Information System (INIS)

    Kasparov, M.S.; Trofimov, V.I.

    1978-01-01

    Radiation chemical yields of paramagnetic centres and their nature have been studied as well as secondary reactions in channel inclusion compounds of urea with sebacic acid and in mixed crystals of urea with succinic acid. In inclusion compounds of urea with sebacic acid the yield exceeds additive at 77 K. In mixed crystals of urea with succinic acid the yield at 77 K is equal to additive. In mixed crystals at all temperatures quazistationary concentrations of radicals are lower than in pure succinic acid. In inclusion compounds quazistationary concentration of radicals are higher than in pure sebacic acid. It has been shown that in solid two-component systems, when the nature of the components is identical, the matrix structure exerts an essential influence on the radiolysis of the system

  10. Contribution to the study of the amorphization mechanisms of intermetallic compounds by mechanical grinding; Contribution a l`etude des mecanismes d`amorphisation par sollicitation mecanique de composes intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Galy, D

    1995-01-11

    This work aims at identifying the mechanisms responsible for amorphization of NiZr and NiZr{sub 2} compounds under ball-milling. In the first part, the effect of a localized deformation is studied: the deformation is produced by indentation on bulk samples, very high local strains can be achieved by this technique. The resulting microstructure is studied by transmission electron microscopy (TEM). No evidence for amorphization is found in these compounds, contrary to what is known to occur in silicon and germanium. Despite of their high brittleness, the NiZr and NiZr{sub 2} compounds accommodate the multiaxial localized stress by plastic deformation: dislocations multiplication and glide, micro-twinning. Dislocations (both perfect and imperfect) and micro-twins have been analysed into details for the first time. The twinning mechanism in NiZr{sub 2} has been elucidated. In the second part of this work, the microstructure of NiZr{sub 2} in the course of amorphization by ball-milling is studied by TEM observation are prepared by ultra-microtomy. The following evolution is observed: first, the material is fragmented and plastically deformed; the microstructure is refined by polygonation. Second, aggregates are formed by a fragmentation and sticking process, leading to a stationary size for the aggregates. The aggregates themselves are made of a mixture of nanocrystalline (about 10 nm) material and coarser crystallites. As milling proceeds, the latter disappear to the benefit of the former. Once aggregates are 100% nanocrystalline, the amorphous phase appears and develops to the expense of the nanocrystalline phase. At late stages, small crystallites embedded in an amorphous matrix are observed. No massive chemical disordering is observed but a small amount can not be ruled out. It is suggested that amorphization occurs by chemical disordering at interfaces, induced by shear waves. (Author). 76 refs., 57 figs., 12 tabs.

  11. Inhibition of ultraviolet irradiation response of human skin by topical phlogostatic compounds

    International Nuclear Information System (INIS)

    Weirich, E.G.; Lutz, U.C.

    1977-01-01

    By adaption of the model of UV dermatitis in human skin a test procedure has been developed which facilitates realistic assessment of topical contra-inflammatory activity of steroidal as well as non-steroidal compounds. Sixt typical skin drug agents were tested according to their reaction inhibition effect. (orig./MG) [de

  12. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for high temperature applications such as under-bonnet wiring, stove wiring, post office telecommunication wire and shrink tubing. In South Africa interest in developing commercial applications for cross-linkable polymeric materials was initially stimulated through the work of the Atomic Energy Board at Pelindaba in late 1971 using a cobalt - 60 gamma radiation unit

  13. Biosynthesis of phenolic compounds and water soluble vitamins in culantro (Eryngium foetidum L. plantlets as affected by low doses of gamma irradiation

    Directory of Open Access Journals (Sweden)

    Amina Abd El-Hamid ALY

    2010-11-01

    Full Text Available Explants obtained from in-vitro propagated plantlets of Culantro (Eryngium foetidum L. were exposed to four dose levels of γ-irradiation (0.0, 10.0, 20.0 and 40.0 Gy to investigate the biosynthesis of phenolic compounds and water soluble vitamins in Culantro fresh plantlets. Among six identified phenolic compounds, the content of p-cumaric acid was the highest in the extracts, followed by caffeic acid, coumarin, benzoic acid, salicylic acid and apigenin. Significant increases were observed at dose 40.0 Gy (61.66 mg/g d.w. for flavonoids, 18.02 mg/g d.w, for flavonone and 5.06 mg/g d.w for anthocyanin compared to control. On the other hand, the flavonols were decreased by increasing the irradiation dose. Vitamin C was increased in irradiated samples and this increase was in correlation with irradiation dose level. Thiamin, riboflavin and nicotinic acid were enhanced by the applied dose level 10 Gy. In addition, folic acid was enhanced by the dose levels 20 and 40 Gy and not detected for the control and 10 Gy treatments. Meanwhile, pyridoxine was decreased by increasing the irradiation dose level. The results obtained suggested that both low doses of γ-irradiation and tissue culture technique could be used to produce plantlets with high amount of phenolic compounds and water soluble vitamins.

  14. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  15. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    Science.gov (United States)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  16. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    International Nuclear Information System (INIS)

    Nguyen, Thi Kim Lan; Dang, Van Phu; Nguyen, Ngoc Duy; Le, Anh Quoc; Nguyen, Quoc Hien; Nguyen, Thuy Ai Trinh

    2013-01-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag + dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag + is occurred by hydrated electron (e − aq ) and hydrogen atom (H • ) generated during radiolysis of ethanol/water. The conversion doses (Ag + → Ag 0 ) were determined by UV–Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5–40 nm for Ag + concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg −1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc. (paper)

  17. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    Science.gov (United States)

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Forecasting of superconducting compounds

    International Nuclear Information System (INIS)

    Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.

    1981-01-01

    In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning

  19. Stabilization of gamma-irradiated poly(vinyl chloride) by epoxy compounds. III. Conjugated double bonds and degree of unsaturation in gamma-irradiated PVC-stabilizer mixtures

    International Nuclear Information System (INIS)

    Lerke, G.; Lerke, I.; Szymanski, W.

    1983-01-01

    The concentration of conjugated polyene sequences was studied in γ-irradiated PVC with 4% admixture of four epoxy stabilizers: diglycidyl ether of 2,2-bis(4-hydroxy-3-methylphenyl)propane (I), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). As in the former investigations (Papers I and II), the process of the formation of the polyenes occurs in two stages. The concentration of polyene sequences with n double bonds, H/sub n/ the total amount of polyene sequences, ΣH/sub n/, the average length of the polyene sequence, n, and the extents of reaction x and p, were computed. The stabilizing effect of all compounds used agrees with the increasing content of epoxy groups. The addition of stabilizers diminishes the value of n. The decrease of the fraction of long sequences and the increase of short ones occurs. Apart from the binding of evolved HCl, the protective effect towards the macromolecules of PVC consists mainly in the inhibition of growth of chain dehydrochlorination by the epoxy groups

  20. Surfaces of Intermetallics: Quasicrystals and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, Chad [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  1. Toughening and creep in multiphase intermetallics through ...

    Indian Academy of Sciences (India)

    It has however often been the case that the process of ductilisation or toughening has also led to a decrease in high temperature properties, especially creep. In this paper we describe approaches to the ductilisation of two different classes of intermetallic alloys through alloying to introduce beneficial, second phase effects.

  2. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys

    Science.gov (United States)

    Pourbahari, Bita; Mirzadeh, Hamed; Emamy, Massoud

    2018-03-01

    The effects of rare earth intermetallics and grain refinement by alloying and hot extrusion on the mechanical properties of Mg-Gd-Al-Zn alloys have been studied to elucidate some useful ways to enhance the mechanical properties of magnesium alloys. It was revealed that aluminum as an alloying element is a much better grain refining agent compared with gadolinium, but the simultaneous presence of Al and Gd can refine the as-cast grain size more efficiently. The presence of fine and widely dispersed rare earth intermetallics was found to be favorable to achieve finer recrystallized grains during hot deformation by extrusion. The presence of coarse dendritic structure in the GZ61 alloy, grain boundary eutectic containing Mg17Al12 phase in the AZ61 alloy, and rare earth intermetallics with unfavorable morphology in the Mg-4Gd-2Al-1Zn alloy was found to be detrimental to mechanical properties of the alloy in the as-cast condition. As a result, the microstructural refinement induced by hot extrusion process resulted in a significant enhancement in strength and ductility of the alloys. The presence of intermetallic compounds in the extruded Mg-4Gd-2Al-1Zn and Mg-2Gd-4Al-1Zn alloys deteriorated tensile properties, which was related to the fact that such intermetallic compounds act as stress risers and microvoid initiation sites.

  4. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al₂O₃-H₂O₂ system under ultrasonic irradiation.

    Science.gov (United States)

    Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar

    2015-03-01

    Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Genotoxic Properties of 2-Dodecylcyclobutanone, a Compound Formed on Irradiation of Food Containing Fat

    International Nuclear Information System (INIS)

    Delincee, Henry; Pool-Zobel, Beatrice-Louise

    1998-01-01

    When food containing fat is treated by ionizing radiation, a group of 2-alkylcyclobutanones is formed. These components contain the same number of carbon atoms as their precursor fatty acids and the alkyl group is located in ring position 2. Thus, from palmitic acid 2-dodecylcyclobutanone is derived. To date, there is no evidence that the cyclobutanones occur in unirradiated food. Therefore, these components cannot be considered inherent to food, and for questions pertaining to risk assessment of irradiated food it would be advisable to determine the genotoxic and toxic potentials of cyclobutanones. Measurements of DNA damage in cells exposed to 2-dodecylcyclobutanone, employing the single cell microgel electrophoresis technique, have been carried out. In vitro experiments using rat and human colon cells indicate that 2-dodecylcyclobutanone in the concentration range of about 0.30-1.25 mg/ml induces DNA strand breaks in the cells. Simultaneously, a concentration related cytotoxic effect is observed as was determined by trypan blue exclusion. To which extent these in vitro findings are of relevancy for the in vivo human exposure situation needs to be investigated in further studies. In vivo tests in rats are in progress

  6. Quaternary borocarbides: New class of intermetallic superconductors

    Science.gov (United States)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  7. Theory of Valence Transitions in Ytterbium and Europium Intermetallics

    International Nuclear Information System (INIS)

    Zlatic, V.; Freericks, J.K.

    2001-01-01

    The exact solution of the multi-component Falicov-Kimball model in infinite-dimensions is presented and used to discuss a new fixed point of valence fluctuating intermetallics with Yb and Eu ions. In these compounds, temperature, external magnetic field, pressure, or chemical pressure induce a transition between a metallic state with the f-ions in a mixed-valent (non-magnetic) configuration and a semi-metallic state with the f-ions in an integral-valence (paramagnetic) configuration. The zero-field transition occurs at the temperature T V , while the zero-temperature transition sets in at the critical field H c . We present the thermodynamic and dynamic properties of the model for an arbitrary concentration of d- and f -electrons. For large U, we find a MI transition, triggered by the temperature or field- induced change in the f-occupancy. (author)

  8. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  9. Precipitates in irradiated Zircaloy

    International Nuclear Information System (INIS)

    Chung, H.M.

    1985-10-01

    Precipitates in high-burnup (>20 MWd/kg U) Zircaloy spent-fuel cladding discharged from commercial boiling- and pressurized-water reactors have been characterized by TEM-HVEM. Three classes of primary precipitates were observed in the irradiated Zircaloys: Zr 3 O (2 to 6 nm), cubic-ZrO 2 (greater than or equal to 10 nm), and delta-hydride (35 to 100 nm). The former two precipitations appears to be irradiation induced in nature. Zr(Fe/sub x/Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/Ni/sub 1-x/) intermetallics, which are the primary precipitates in unirradiated Zircaloys, were largely dissolved after the high burnup. It seems, therefore, that the influence of the size and distribution of the intermetallics on the corrosion behavior may be quite different for the irradiated Zircaloys

  10. Formation of Ni-Ti intermetallics during reactive sintering at 500-650 degrees C

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Pokorný, P.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Čapek, J.; Karlík, M.; Kopeček, Jaromír

    2015-01-01

    Roč. 155, Apr (2015), s. 113-121 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 Keywords : intermetallic compounds * powder metallurgy * electron microscopy * microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.101, year: 2015

  11. Near-surface segregation in irradiated Ni3Si

    International Nuclear Information System (INIS)

    Wagner, W.; Rehn, L.E.; Wiedersich, H.

    1982-01-01

    The radiation-induced growth of Ni 3 Si films on the surfaces of Ni(Si) alloys containing = 3 Si phase has been observed. Post-irradiation depth profiling by Auger electron spectroscopy, as well as in situ analysis by high-resolution Rutherford backscattering spectrometry, reveals Si-enrichment at the surfaces of Ni(Si) alloys in excess of stoichiometric Ni 3 Si during irradiation. Thin, near-surface layers with silicon concentrations of 28 to 30 at.% are observed, and even higher Si enrichment is found in the first few atom layers. Transmission electron microscopy and selected area-electron diffraction were employed to characterize these Si-enriched layers. A complex, multiple-spot diffraction pattern is observed superposed on the diffraction pattern of ordered Ni 3 Si. The d-spacings obtained from the extra spots are consistent with those of the orthohexagonal intermetallic compound Ni 5 Si 2 . (author)

  12. Mechanical and oxidation properties of some B2 rare earth–magnesium intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Stumphy, Brad [Iowa State Univ., Ames, IA (United States)

    2006-12-15

    The remainder of Chapter 1 provides background information on three main topics. First is a discussion about the basic structure and composition of binary B2 intermetallic compounds. Second, the mechanical properties of intermetallics are examined, starting with the cause for the typically inherent brittleness observed in B2 intermetallics. A number of B2 compounds have been found to possess an abnormal level of ductility compared to other intermetallics in this class, including a handful of other rare earth–non-rare earth (RM) B2 line compounds, and these findings are also discussed. Finally, oxidation studies of rare earth metals, focusing on yttrium and cerium, as well as magnesium and some B2 materials are discussed. Chapter 2 is an in-depth look into certain aspects of the laboratory work done during this study. The many challenges and difficulties encountered required that a variety of laboratory techniques be attempted in the making, processing, and testing of these two intermetallic materials. The results and ensuing discussion for the mechanical testing that was performed are found in Chapter 3. Tensile and compression testing results for YMg are shown first, followed by those for CeMg. Some samples were made using electrical discharge machining (EDM) while others were polished into the desired shape. A scanning electron microscope (SEM) was utilized to inspect surfaces of the tensile and compression samples. Hardness values and attempts to determine fracture toughness are also recorded before beginning the discussion. Chapter 4 follows the same basic format for the oxidation study portion of the research. Oxidation curves for CeMg are followed by a qualitative chemical analysis using energy dispersive spectroscopy (EDS). The YMg oxidation curves are shown next followed by an x-ray diffraction (XRD) analysis of the oxidation process for this material and a discussion of the results. Chapter 5 is a summary of the research performed in the mechanical and

  13. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    Science.gov (United States)

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  14. Pressure-induced phenomena in U intermetallics

    Czech Academy of Sciences Publication Activity Database

    Sechovský, V.; Honda, F.; Prokeš, K.; Syshchenko, O.; Andreev, Alexander V.; Kamarád, Jiří

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1377-1386 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : pressure effect * intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  15. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  16. The Effect Of Gamma Irradiation And CaCO3 On The Physical And Mechanical Properties Of Natural Rubber (NR) Compound

    International Nuclear Information System (INIS)

    Iskandar, Sudrajat; Marliyanti, Isni; Kadariyah; Kardha, Made Sumarti

    2000-01-01

    The characterization of the effect of gamma irradiation and CaCO 3 on the physical and mechanical properties of NR compound (NRC) have been started. The NRC was made by blending of NR and low density polyethylene (LDPE), carbon black, additives (stearic acid, ZnO, irganox 1076, paraffin wax and minarex B oil) in certain amount and CaCO 3 with various composition of 33,67 and 100 phr (part per hundred ratio of rubber) using hot roll mill at 120 deg C and 100 deg C of front and back roll respectively. For making film, film, the NRC was then pressed by hot and cold press machine at 135 deg C and at room temperature respectively for about 3 minutes. The film was then irradiated with gamma rays at 150, 300, and 500 kGy. Characterization was done according to the Indonesian National Standard (SNI) The experimental results showed that by increasing the irradiation dose, the aging resistance, tensile strength, elongation at break, solvent xylene resistance, tear strength and hardness of natural rubber compound increased. While by increasing the CaCO 3 content, the hardness and specific gravity of irradiated NRC. Were increased. But the tensile strength, elongation at break and tear strength of irradiated NRC decreased According to SNI no 12-1000-1989 and SII 0944-84 that the experiment results may possible to used for making shoe sole and rubber carpet

  17. Modification of PTFE nanopowder by controlled electron beam irradiation: A useful approach for the development of PTFE coupled EPDM compounds

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Low-temperature reactive mixing of controlled electron beam modified Polytetrafluoroethylene (PTFE nanopowder with Ethylene-Propylene-Diene-Monomer (EPDM rubber produced PTFE coupled EPDM rubber compounds with desired physical properties. The radiation-induced chemical alterations in PTFE nanopowder, determined by electron spin resonance (ESR and Fourier transform infrared (FTIR spectroscopy, showed increasing concentration of radicals and carboxylic groups (–COOH with increasing irradiation dose. The morphological variations of the PTFE nanopowder including its decreasing mean agglomerate size with the absorbed dose was investigated by particle size and scanning electron microscopy (SEM analysis. With increasing absorbed dose the wettability of the modified PTFE nanopowder determined by contact angle method increased in accordance with the (–COOH concentration. Transmission electron microscopy (TEM showed that modified PTFE nanopowder is obviously enwrapped by EPDM. This leads to a characteristic compatible interphase around the modified PTFE. Crystallization studies by differential scanning calorimetry (DSC also revealed the existence of a compatible interphase in the modified PTFE coupled EPDM.

  18. Opacity alterations of bovine crystalline proteins irradiated with 10 Co in vitro in the presence of sulfonate compounds

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Mastro, N.L. del

    1990-01-01

    Sulfhydrilic compounds with a strong basic function separated from the SH group by no more than three C atoms, as amino ethyl iso thiourea (AET) and mercapto ethyl alanine (MEA) are exceptionally effective in competing with free radicals produced by water radiolysis. In a similar way, dimethyl sulfoxide (DMSO) is also effective in the removal of hydroxyl radicals. In the present work, aqueous solutions of crystalline removed surgically from bovine eyes were used. Crystalline were homogenized, the suspension centrifuged and the supernatant dialysed. From the dialysed supernatant a series of solutions was prepared that was 60 Co irradiated with different doses from 5,000 to 25,000 Gy in the presence of 10 mM AET, MEA and DMSO. The degree of opacification was read spectrophotometricaly at 600 nm. The results pointed out a decrease of the increment of opacity produced by the radiation in the presence of those free radical scavengers, showing a radioprotective action of them at the molecular level, that can be measured by this method that mimics the cataract formation in eye lens. (author)

  19. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  20. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  1. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    Science.gov (United States)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  2. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    Science.gov (United States)

    2010-02-28

    Oxid. Met. Vol.14, pp. 217-234. 1980. 20. T.A. Rannanarayanan, M. Raghavan and R. Petrovic-Luton. Metallic Yttrium Additions to High Temperatura ... Temperatura Alloys: Influence of AI2O3 Scale Properties. Oxid. Met. Vol.22, pp. 83-100. 1984. 21. High-temperature characterization of reactively

  3. The motion of hydrogen isotopes in metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Drexel, W.; Murani, A.; Tocchetti, D.; Kley, W.

    1976-08-01

    The existence of local and band modes of hydrogen and deuterium impurities in α-palladium hydride was observed by inelastic scattering of thermal neutrons of 12.6 meV. The first and second harmonic of the hydrogen local mode could be observed at Esub(1)sup(H)=(66+-4)meV and Esub(2)sup(H)=(135+-15)meV. For deuterium the first harmonics appears at Esub(1)sup(D)=(48+-4)meV. The width of the hydrogen local mode Esub(1)sup(H) is changing from 30 to 20 meV and its position from 63 to 66meV if the hydrogen concentration is altered from 2.7 to 0.2 atom percent. The intensity of the Esub(1)sup(H) mode, integrated for scattering angles from 11 0 till 68 0 and a mean k-vector pointing in the [210]-direction, is decreasing by a factor of 5 with respect to harmonic oscillator while the intensity of the second harmonic Esub(2)sup(H) and of the band modes stays almost constant if the temperature is changed from 423 0 K till 673 0 K. The behavior of this intensity distributions with temperature indicates a partition of the proton motions in diffusive and localized motions and supports the assumption of an anharmonic periodic potential along the [110] direction. The frequency distribution function of the hydrogen band modes has a shape as expected from measured dispersion curves. For [Pdsub(0.018)sup(D)-Pd] a broad quasielastic line is observed that indicates the existence of overdamped phonons in the vicinity of the impurity atom

  4. Void formation in NiTi shape memory alloys by medium-voltage electron irradiation

    International Nuclear Information System (INIS)

    Schlossmacher, P.; Stober, T.

    1995-01-01

    In-situ electron irradiation experiments of NiTi shape memory alloys, using high-voltage transmission electron microscopes, result in amorphization of the intermetallic compound. In all of these experiments high-voltages more than 1.0 MeV had to be applied in order to induce the crystalline-to-amorphous transformation. To their knowledge no irradiation effects of medium-voltage electrons of e.g. 0.5 MeV have been reported in the literature. In this contribution, the authors describe void formation in two different NiTi shape memory alloys, resulting from in-situ electron irradiation, using a 300 kV electron beam in a transmission electron microscope. First evidence is presented that void formation is correlated with the total oxygen content of the alloys

  5. New ternary intermetallics, based magnesium, for hydrogen storage

    International Nuclear Information System (INIS)

    Roquefere, J.G.

    2009-05-01

    The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism,...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. (authors)

  6. Study of the radioprotective efficiency of combined administration of natural antioxidants and a sulfhydryl compound in feverish irradiated rats

    International Nuclear Information System (INIS)

    Radwan, R.R.

    2008-01-01

    In the present experiments, a study of the radioprotective effects of natural antioxidants, rutin alone, vitamine E alone or each of them combined with synthetic radioprotector, cysteine have been investigated in irradiated and feverish irradiated rats. Furthermore, the oxidative stress bio markers and certain liver function tests of the irradiated and the feverish whole body irradiated rats were examined. Two main sets of animals were used: The 1st set was constructed in order to study the effect of irradiation, while the second set was used to study the effect of irradiation on feverish rats. The effect of irradiation was evaluated by exposing the whole body of rats to gamma radiation at acute single dose level of 6.5 Gy. Rutin was orally daily administered for two weeks before irradiation in a dose of 1.064 mmol/kg , vitamine E was injected intraperitoneally daily for seven days before irradiation in a dose of 50 mg/100 g. While, cysteine was intraperitoneally administered only 30 min. before irradiation in a dose of 30 mg/kg. In order to determine the antipyretic effect of the drugs, body temperature of each animal was measured before induction of hyperthermia as well as 18 hours following yeast injection. Rats were treated with the tested drugs before induction of fever then exposed to whole body gamma radiation at acute single dose level of 6.5 Gy and body temperature of each animal was measured 3 days after irradiation

  7. Study of the radioprotective efficiency of combined administration of natural antioxidants and a sulfhydryl compound in feverish irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R R [Pharmacist in National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    In the present experiments, a study of the radioprotective effects of natural antioxidants, rutin alone, vitamine E alone or each of them combined with synthetic radioprotector, cysteine have been investigated in irradiated and feverish irradiated rats. Furthermore, the oxidative stress bio markers and certain liver function tests of the irradiated and the feverish whole body irradiated rats were examined. Two main sets of animals were used: The 1st set was constructed in order to study the effect of irradiation, while the second set was used to study the effect of irradiation on feverish rats. The effect of irradiation was evaluated by exposing the whole body of rats to gamma radiation at acute single dose level of 6.5 Gy. Rutin was orally daily administered for two weeks before irradiation in a dose of 1.064 mmol/kg , vitamine E was injected intraperitoneally daily for seven days before irradiation in a dose of 50 mg/100 g. While, cysteine was intraperitoneally administered only 30 min. before irradiation in a dose of 30 mg/kg. In order to determine the antipyretic effect of the drugs, body temperature of each animal was measured before induction of hyperthermia as well as 18 hours following yeast injection. Rats were treated with the tested drugs before induction of fever then exposed to whole body gamma radiation at acute single dose level of 6.5 Gy and body temperature of each animal was measured 3 days after irradiation.

  8. Electroencephalogram in relation to brain glycogen level in irradiated rats treated with vitamin E as a radioprotective compound

    International Nuclear Information System (INIS)

    Mahdy, A.M.

    1992-01-01

    Whole body gamma irradiation of untreated rats at the dose of 7 Gy induced severe abnormalities in the brain electrical activity, electroencephalogram (EEG), patterns of both frontal and occipital cortical areas. The visual analysis of the frontal EEG records showed a significant shift of frequencies towards faster and higher voltage activity along the experiment period (first , third, seventh and tenth days post irradiation). However, an opposite picture was prominent on the occipital EEG records after irradiation. On the other hand,the level of brain glycogen, which is considered as an important energy source for brain functions, significantly increased at all intervals of post irradiation. The treatment of rats with intraperitoneal injection of vitamin E pre-irradiation succeeded in diminishing the deleterious abnormalities in the EEG records in both frontal and occipital areas as well as the changes induced in the level of brain glycogen after whole body gamma irradiation.4 fig

  9. Evaluation of gamma irradiation impact on antibacterial activity, chemical and physical characteristics of the sodium cifteraxon compound

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Al-Adawi, M. A.; Hammouda, A.; Al-Baroudi, H.

    2008-04-01

    To investigate the effect of gamma irradiation on the solid state of ceftriaxon sodium salt (C18H16N8Na2O7S3) as a member of the third generation of cephalosporins. Solid Ceftriaxon as a pharmaceutical dosage was exposed to doses of 0, 5, 10, 15, 20, 25, and 50 kGy in 60 Co package irradiator. Physical and chemical characteristics of ceftriaxon have been investigated by using UV (Ultra Violet) and IR (Infra Red) spectroscopic, pH, solubility and DSC (Differential Scanning Calorimetric) methods. Antibacterial activity of ceftriaxon was investigated using Escherichia coli ATCC 25922 as a strain of bacteria. The obtained results indicated that gamma irradiation have no effect on physical and chemical characteristics of ceftriaxon, No significant differences were found between irradiated and non-irradiated samples in the Antibacterial activity of ceftriaxon on E. Coli.(author)

  10. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  11. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  12. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  13. First principles electronic and thermal properties of some AlRE intermetallics

    Science.gov (United States)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  14. First principles electronic and thermal properties of some AlRE intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vipul [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India)], E-mail: vips73@yahoo.com; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India); Rajagopalan, M. [Department of Physics, Anna University, Chennai-600 025 (India)

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B{sub 2}-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  15. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys

    Science.gov (United States)

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-01-01

    Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155

  16. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Directory of Open Access Journals (Sweden)

    Chunyan Song

    2016-12-01

    Full Text Available Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %. Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  17. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  18. Application of the Moessbauer spectroscopy to the investigation of the proton irradiation effects in several iron compounds

    International Nuclear Information System (INIS)

    Kopcewicz, M.; Kotlicki, A.

    1975-01-01

    The results of a study into the influence of proton irradiation on the Moessbauer effect in FeSO 4 x 7H 2 O, K 4 [Fe(CN) 6 ] x 3H 2 O and K 3 [Fe(CN) 6 ] are reported. In the interpretation of the effect observed, the 'spike' model was applied. Chemical decomposition processes due to proton irradiation and formation of the superparamagnetic state of metallic iron were investigated. A Moessbauer observation of interstitial Fe 2+ ions in irradiated FeSO 4 x 7H 2 O was made. (Z.S.)

  19. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  20. Influence of gamma irradiation of fission products of a research reactor on the stability of nitroso compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mirna, A; Rau, G; Stark, W; Lock, O

    1982-10-01

    There is still a great deal of prejudice against using ionizing rays to treat foods. According to a report by the Joint FAO/IAEA/WHO Expert Committee of Food irradiation the irradiation of foods at a dose of up to 10 kGy (= 1 Mrd) is not regarded as a health hazard: the method is particularly recommended for treating spices and a number of other foods. The content of volatile nitrosamines (NA) can be reduced by the effects of gamma rays in a similar way to UV irradiation. A reduction in the NA content, although only limited, is regarded as a positive side effect of irradiation. The use of Cs-137, which accumulates when reconditioning the fuel elements of nuclear power plants, as a source of radiation may be of increasing interest in the future in view of efforts to save energy.

  1. Immunomodulatory activities of some new synthesized compounds on serum IL-12 level and the production of IFN-gamma in irradiated female rats

    International Nuclear Information System (INIS)

    Noaman, E.; Elgawish, M.A.M.

    2002-01-01

    The immune responds to ionizing radiation with distinct characteristics depending on the dose and dose rate. The prominent suppressive effect of lethal and sublethal doses of ionizing radiation on immunity and hemopoiesis constitutes the basis of the chief clinical manifestations of acute radiation syndrome. The present of research was conducted to evaluate the effects of new compounds synthesized by adding histidine, glutathione or methionine to germanium element on the levels of interferon-gamma (IFN-γ)and interleukin-12 (IL-12) in serum of female rats exposure. The results revealed that exposure to γ-irradiation decreased significantly the levels of IL-12 and I FN-γ 1 and 3 days post-treatment. On the other hand, histidine-germanate could stimulate the production of IL-12 three days post-irradiation while glutathione-germanate and methionine-germanate may be considered as IFN-γ inducer during the investigated periods

  2. Lattice disorder in strongly correlated lanthanide and actinide intermetallics

    International Nuclear Information System (INIS)

    Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.

    2001-01-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)

  3. Diffusion in substitutionally disordered B2 intermetallics

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.

    2002-01-01

    In this paper, a comprehensive diffusion kinetics theory is formulated to describe seamlessly tracer and chemical diffusion in antistructurally disordered B2 intermetallics showing positive and negative deviations from stoichiometry. The theory is based around unit processes consisting of six-jump cycles that can be assisted by intrinsic and extrinsic antistructural atoms of either atomic species. The Ising alloy model is used to illustrate the formalism, but the formalism can be adapted to other models. Expressions are developed for the tracer diffusion coefficients, the phenomenological coefficients, the intrinsic diffusion coefficients, the interdiffusion coefficient and the various correlation factor components. Results for the tracer and collective correlation factors and the vacancy wind factor (in interdiffusion) are in excellent agreement with results from Monte Carlo computer simulations based around single vacancy jumps. (author)

  4. Phase formation in Zr/Fe multilayers during Kr ion irradiation

    International Nuclear Information System (INIS)

    Motta, A. T.

    1998-01-01

    A detailed study has been conducted of the effect of Kr ion irradiation on phase formation in Zr-Fe metallic multilayers, using the Intermediate Voltage Electron Microscopy (IVEM) at Argonne National Laboratory. Metallic multilayers were prepared with different overall compositions (near 50-50 and Fe-rich), and with different wavelengths (repetition thicknesses). These samples were irradiated with 300 keV Kr ions at various temperatures to investigate the final products, as well as the kinetics of phase formation. For the shorter wavelength samples, the final product was in all cases an amorphous Zr-Fe phase, in combination with Fe, while specially for the larger wavelength samples, in the Fe-rich samples the intermetallic compounds ZrFe 2 and Zr 3 Fe were formed in addition to the amorphous phase. The dose to full reaction decreases with temperature, and with wavelength in a manner consistent with a diffusion-controlled reaction

  5. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  6. Effects of gamma irradiation on pepper's volatile compounds sensory qualities and pest infestation control. Part of a coordinated programme in the Asian Regional Cooperative Project of Food Irradiation

    International Nuclear Information System (INIS)

    Khan, A.M.; Bahari Bin, I.

    1984-04-01

    The effects of gamma irradiation, packaging materials and storage time of black and white peppers on the infestation and reinfestation of microorganism and insects were evaluated. The samples were irradiated at the doses between 2 and 9 kGy. The packaging materials consisted of polypropylene woven bags laminated with thin polyethylene (PPE) and polyethylene bags (PE) of different thickness, 0.05, 01.2 and 0.17 mm. The jute bag was used as a control material. The changes of infestation and reinfestation status were observed for 6 months in Malaysia and for the next 2 months the changes were evaluated when the samples had reached Japan. Results obtained indicated that irradiation at a dose up to 9 kGy reduced the bacterial load of black pepper from 1.6x10 7 /g to 2 /g, while the dose of 6 kGy was required to reduce the population in white pepper from 2.3x10 4 /g to 2 /g. The original population of mould-yeast was relatively low (approx. 10 4 /g) and could be reduced to 2 /g at only 2 kGy. No problems and difficulties were faced with regard to the transportation of the peppers. However, prolonged storage time may encourage microbial growth, and 4 months of storage was a critical period for black pepper. Two species of Anobiidae infesting pepper had been identified, Lasioderma serricone (Fabricius) which made up 80% of the insect counts and Stegobium pamiceum (L.). However, at the doses applied and packaging materials used, there was no reinfestation for all but the material PPPE (no observation made for jute bags)

  7. Effect of Microwave Irradiation on the Condensation of 6-Substituted 3-Formylchromones with Some Five-membered Heterocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Nada Pronayova

    2000-02-01

    Full Text Available Different types of 3-substituted 4H-4-oxobenzopyrans were prepared by microwave irradiation as well as by a classical method. The beneficial effect of microwave irradiation on the aldol condensation of 3-formylchromones with 2-imino-1-methylimidazolidine-4-one (creatinine, 2-thioxoimidazolidine-4-one (thiohydantoin and 2-ethyl-2-thioxothiazolidin-4-one (3-ethylrhodanine in different reaction media is described. Our results show that the effect of microwave irradiation on the reactions studied was a shortening of the reaction times and a smooth increase in the yields. The subsequent reactions of the product with some nucleophiles are discussed. The structure of the products was proven by elemental analysis, IR and NMR spectra.

  8. Study of the direct detection of crosslinking in hydrocarbons by 13C-NMR. II. Identification of crosslink in model compound and application to irradiate paraffins

    International Nuclear Information System (INIS)

    Bennett, R.L.; Keller, A.; Stejny, H.H.; Murray, M.

    1976-01-01

    A 13 C-NMR investigation was carried out in aid of direct detection of crosslinks in hydrocarbons with the future objective of studying radiation-induced crosslinking in polyethylene by a direct method. The resonance signal due to a tertiary carbon atom appropriate to a crosslink far remote from molecular ends has been identified in a definitive manner with the aid of the H-shaped model compound 1,1,2,2-tetra(tridecyl)ethane synthetized in Part I of this study. This identification was then put to use in the examination of the irradiated linear paraffins n-hexadecane and n-eicosane, where it enabled the detection of radiation-induced crosslinks. This crosslinking could then be associated with corresponding changes in molecular weight (dimer, trimer formation) as revealed by discrete peaks in the gel-permeation chromatograms of the same samples and randomness of the crosslinking process in the liquid state of these compounds being inferred

  9. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  10. Magnetocaloric effect in rare-earth intermetallics: Recent trends

    Indian Academy of Sciences (India)

    ... intermetallic hydrides, manganite oxides, Ni–Mn–Sb-type shape memory ... With the help of temperature-dependent heat capacity information in various applied .... for relative cooling power and a wide working temperature range of about ...

  11. Microbial load and stability of some phyto chemical compounds of selected Sudanese medicinal plant materials as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Musa, H. A. A.; Ahmed, E. E. A.; Osman, G. A. M.; Ali, H. A.; Muller, J. L.

    2011-01-01

    The aim of the present study was to evaluate the effect of gamma irradiation treatment on seeds of pepper cress (lepidium sativum L), seeds of black mustard (brassica nigra L.Koch), leaves of lemon grass (cymbopogon citratus), and calyces of roselle (hibiscus sabdariffa L), pods of senna (cassia senna L) and pods prickly acacia (Acacia nilotica L.). The radiation processing was carried out at dose levels of 0, 5, 10. 15 kGy. The irradiated and control samples were analyzed for microbial load, tannins and total phenol content as well as DPPH scavenging activity. The results indicated that gamma radiation treatment significantly reduced microbial load and showed that the total microbial load decreased linearly with absorbed radiation dose. They, also, indicated maximum reduction in tannin content in lemon grass, prickly acacia and roselle. On the other hand, irradiation with 15 kGy increased the tannin and phenol contents in black mustard, pepper cress and senna and reduced the phenol content of roselle and prickly acacia. The results also revealed that gamma irradiation resulted in significant decrease of DPPH radical scavenging activity of the different studied methanolic extracts with exception of pepper cress seeds.(Author)

  12. Irradiation defects in the A-15 compounds V3Si and Nb3Ge: effects on superconducting and transport properties

    International Nuclear Information System (INIS)

    Rullier-Albenque, F.

    1984-11-01

    In the first part the mechanisms of atomic displacements under electron irradiation in these diatomic ordered solids are studied. In the case of superconducting alloys, simultaneous measurements of electrical resistivity at 20 K and critical temperature allow to distinguish the influence of point defects created in each sub-lattice and antisite defects. The threshold energies have been determined. In the case of V 3 Si, Frenkel pairs have been characterized by their specific resistivities and the decrease of Tsub(c) by vanadium vacancies. The Tsub(c) results obtained on V 3 Si also reveal the existence of a threshold electron energy to produce antisite defects. The second part is a comparative study of irradiation effects in Nb 3 Ge with very different kinds of projectiles: 2.5 MeV electrons, fast neutrons or 100 MeV heavy ions (uranium fission fragments). For these three types of irradiation, resistivity and critical temperature damage can be described in terms of point defects: Frenkel pairs and antisite defects. In the third part we have studied the influence of 2.5 MeV electron or fission fragment-irradiation on the resistivity versus temperature curves of Nb 3 Ge. For both projectiles, negative temperature coefficients of resistivity drho)/dT, were measured and correlated with resistivity at 280 K and 25 K. These anomalous transport properties are related to an electron localization process assisted by electron-phonon and electron-electron interaction [fr

  13. Predicting the stability of ternary intermetallics with density functional theory and machine learning

    Science.gov (United States)

    Schmidt, Jonathan; Chen, Liming; Botti, Silvana; Marques, Miguel A. L.

    2018-06-01

    We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB2C2 composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be ˜10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements.

  14. A study on heterogeneous photocatalytic degradation of various organic compounds using N-Tio2 under Uv-light irradiation

    Science.gov (United States)

    Srujana, Dhegam; Sailu, Chinta

    2018-04-01

    The aim of this work is to determine the photocatalytic degradation of mixture of four selected organic compounds are Congo Red (CR), Methylene Blue (MB), Diclofenaec (DC), 4-Chlorophenol (4-CP) have been subjected to Photo catalytic degradation by Ultraviolet (λ=254nm) radiation in presence of Nitrogen-doped Titanium dioxide (N-TiO2) catalyst. This paper focused on the enhancement of photo catalysis by modification of TiO2 employing non-metal ion (Nitrogen) doping. Experiments are conducted with a mixture of equal proportions of organic compounds (CR, MB, DC, and 4-CP) with combined concentrations of 10, 20, 30, 40 and 50 mg/l in water in a batch reactor in presence of N-TiO2catalyst with UV light (λ=254nm). The rate of degradation of each compound is determined by using spectrophotometer. The kinetics of degradation of the selected organic compounds is followed first order rate.

  15. The reprocessing of irradiated fuels by halides and their compounds; Le traitement des combustibles irradies par les halogenes et leurs composes

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, M; Faugeras, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    A brief description is given of the experiments leading to the choice of the process volatilization of fluorides by gas phase attack. The chemical process is described for certain current types of clad Fuels: the aluminium or the zirconium cladding is first volatilized as chloride by attack with gaseous hydrogen chloride. The uranium is then transformed into volatile hexafluoride by attack with fluorine. These reactions are carried out consecutively in the same reactor in the presence of a fluidized bed of alumina which facilitates heat exchange. The experiments have been carried out in quantities from 100 gms to several kilograms of fuel, first without activity, and then with tracers. A description is given of the laboratory research which was carried out simultaneously on the separation of uranium and plutonium fluorides. Finally, an apparatus is described which is intended to test the process on irradiated fuel at an activity level of several thousands of curies of fission products. (authors) [French] On rappelle brievement les experimentations qui nous ont permis de decider du procede adopte volatilisation des fluorures par attaque en phase gazeuse. On decrit le processus chimique pour certains types courants de combustibles Gaines: dans un premier stade, l'aluminium ou le zirconium est volatilise sous forme de chlorure par action de l'acide chlorhydrique. Ensuite, l'uranium est transforme en hexafluorure volatil par action du fluor. Ces operations se font successivement dans un meme reacteur, en presence d'un lit fluidise d'alumine qui a pour but de faciliter les echanges thermiques. L'experimentation a ete conduite sur des quantites allant de 100 g a plusieurs kg de combustibles, en inactif, puis avec des traceurs. On decrit les etudes de laboratoire menees parallelement sur la separation des fluorures d'uranium et de plutonium. Enfin, on decrit une installation en construction destinee a experimenter le procede sur combustible irradie, a l'echelle de

  16. The influence of the surface distribution of Al6(MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions

    International Nuclear Information System (INIS)

    Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Perez, J.; Rodriguez, M.A.; Marcos, M.

    1998-01-01

    In this paper the behaviour against pitting corrosion of different samples of AA5083 aluminium alloy has been studied. A correlation between the microstructure of the samples and their susceptibility to pitting has been established. Metallographic analysis combined with SEM and EDS techniques have allowed us to detect three intermetallic compounds in the samples. The particle size distribution and surface density of each intermetallic phase have been evaluated for the three AA5083 alloy samples coming from different suppliers. Significant differences in the microstructure of the three samples have been found. Full immersion test carried out in 3.5% aerated aqueous solutions showed that pitting starts at the locations of the Al 6 (MnFe) intermetallic particles. As a consequence of this, the samples with higher Al 6 (MnFe) content showed a higher pit density on its surface. The results of cyclic polarisation tests showed also a good correlation with the microstructural parameters. (orig.)

  17. On the effects of pressure and irradiation on the transport properties of samarium compounds with unstable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1983-06-01

    We present the first extensive study of electronic transport properties of ''quasi-stoichiometric'' SmS as a function of pressure P, temperature T, magnetic field B and defect concentration C. SmS which is a semiconductor, undergoes with increasing P a first order transition towards an homogeneous intermediate valence state. In the semiconducting phase (s.c.), the energie epsilon(f) necessary to delocalize a 4f electron increases greatly with T and is about 250meV at 300K. The phase diagram for the first order electronic transition Sm 2 + →Smsup(2+epsilon) with P has been determined for T 6 has been investigated by resistivity measurements under irradiation at 21K. The threshold energy Ed for displacement of Sm in SmS has been determined: Ed(Sm) = 20 +- 2 eV, and the observed effects of irradiation have been associated to samarium displacements (vacancies and interstitials) [fr

  18. ODS alloys for structures subjected to irradiation

    International Nuclear Information System (INIS)

    Carlan, Y. de

    2010-01-01

    ODS (oxide-dispersion-strengthened) materials are considered for cladding purposes for the fourth-generation sodium-cooled fast reactors. ODS materials afford many benefits. Indeed, these high-performance materials combine, at the same time, remarkable mechanical strength, in hot conditions, and outstanding irradiation behavior. New ODS steel grades, exhibiting better performance levels than the last-generation austenitic steels, afford not only negligible swelling under irradiation, owing to their 'ferritic' body-centered cubic structure - by contrast to austenitic grades, which feature a face-centered cubic structure - but equally outstanding creep properties, owing to the nano-reinforcements present in the matrix. ODS materials are obtained by powder metallurgy, the first fabrication step involves co-grinding a metal powder together with yttrium oxide (Y 2 O 3 ) powder. At this stage, an iron oxide may also be added, or an yttrium-rich intermetallic compound in order to provide the amounts of yttrium, and oxygen required for the formation of nano-oxides. The metal powder consists of a powder pre-alloyed to the chemical composition of the desired material. Once the powder has been obtained, consolidation of the ODS materials is achieved either by hot extrusion, or by hot isostatic pressing. (A.C.)

  19. Dramatic Influence of Ionic Liquid and Ultrasound Irradiation on the Electrophilic Sulfinylation of Aromatic Compounds by Sulfinic Esters

    DEFF Research Database (Denmark)

    Nguyen, Ngoc-Lan Thi; Vo, Hong-Thom; Duus, Fritz

    2017-01-01

    The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3-methylim......The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3...

  20. Ground state searches in fcc intermetallics

    International Nuclear Information System (INIS)

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration

  1. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  2. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Han [Technology research institute, Ulsan (Korea, Republic of); Lee, Hae Woo [Dong-A University, Busan (Korea, Republic of)

    2014-01-15

    This study investigated the effect of the aging time of weldment of 24Cr-3.5Mo duplex stainless steel on the microstructure and corrosion behavior. After performing FCAW, we carried out heat treatments at varying times at 850 ℃ and performed observation of microstructure, potentio dynamic test, SEM-EDS analysis, and X-ray diffraction analysis. As the aging time increased, the fraction of δ-ferrite decreased sharply, but the fraction of γ slightly increased. The σ phase was generated at a non-metallic inclusion along the grain boundaries of δ-ferrite and γ, while the χ phase was generated in the structure of δ-ferrite. As the intermetallic compounds increased, the critical pitting potential fell sharply, and PREN of the surrounding structure decreased by 5 due to precipitation of the σ phase in 3.5% NaCl at 60 ℃. Pitting occurred intensively under a multi-pass line which relatively had more intermetallic compounds, and the precipitation of the σ phase caused the formation of Cr carbide.

  3. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment

    International Nuclear Information System (INIS)

    Bae, Seong Han; Lee, Hae Woo

    2014-01-01

    This study investigated the effect of the aging time of weldment of 24Cr-3.5Mo duplex stainless steel on the microstructure and corrosion behavior. After performing FCAW, we carried out heat treatments at varying times at 850 ℃ and performed observation of microstructure, potentio dynamic test, SEM-EDS analysis, and X-ray diffraction analysis. As the aging time increased, the fraction of δ-ferrite decreased sharply, but the fraction of γ slightly increased. The σ phase was generated at a non-metallic inclusion along the grain boundaries of δ-ferrite and γ, while the χ phase was generated in the structure of δ-ferrite. As the intermetallic compounds increased, the critical pitting potential fell sharply, and PREN of the surrounding structure decreased by 5 due to precipitation of the σ phase in 3.5% NaCl at 60 ℃. Pitting occurred intensively under a multi-pass line which relatively had more intermetallic compounds, and the precipitation of the σ phase caused the formation of Cr carbide.

  4. Selective adsorption of thiophenic compounds from fuel over TiO{sub 2}/SiO{sub 2} under UV-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guang [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Ye, Feiyan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology, Guangzhou 510640 (China); Wu, Luoming; Ren, Xiaoling [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Jing, E-mail: cejingxiao@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Li, Zhong, E-mail: cezhli@scut.edu.cn [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology, Guangzhou 510640 (China); Wang, Haihui [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology, Guangzhou 510640 (China)

    2015-12-30

    Highlights: • TiO{sub 2}/SiO{sub 2} was developed for selective adsorption of DBTs under UV irradiation. • Remarkable adsorption uptake and selectivity were achieved for deep desulfurization. • Introduction of TiO{sub 2} into SiO{sub 2} enhanced its adsorption for DBTO{sub 2}. • Adsorption mechanism using TiO{sub 2}/SiO{sub 2} under UV irradiation was elucidated. - Abstract: This study investigates selective adsorption of thiophenic compounds from fuel over TiO{sub 2}/SiO{sub 2} under UV-irradiation. The TiO{sub 2}/SiO{sub 2} adsorbents were prepared and then characterized by N{sub 2} adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO{sub 2}/SiO{sub 2} were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO{sub 2}/0.7SiO{sub 2} adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO{sub 2} served as the photocatalytic sites for DBT oxidation, while SiO{sub 2} acted as the selective adsorption sites for the corresponding oxidized DBT using TiO{sub 2} as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO{sub 2}/SiO{sub 2}; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO{sub 2}/SiO{sub 2} was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO{sub 2}/0.7SiO{sub 2} adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions.

  5. Isotopic exchange in a neutron-irradiated mixed-valence compound: Tl3(I) Tl(III)Cl6

    International Nuclear Information System (INIS)

    Fernandez Valverde, S.; Duplatre, G.

    1977-01-01

    The initial distribution of Tl(I) and Tl(III) species, and its change on heating, have been investigated in solid thermal neutron-irradiated Th 4 Cl 6 . An initial ratio of 5/1 for 204 Tl(I)/ 204 Tl(III) is found and this remains constant for integral gamma-doses of 3 to 12 MRad. The variation of the 204 Tl(III) fraction with temperature is found identical to that observed in labelled Tl 4 Cl 6 for which a genuine isotopic exchange has previously been described. It is concluded that the recoil species are rapidly converted, after the recoil processes, into stable ions

  6. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  7. Magnetic properties of the LaCu5-xCox compounds

    International Nuclear Information System (INIS)

    Crisan, V.; Popescu, V.; Vernes, A.; Andreica, D.; Cristea, S.; Koepe, B.

    1996-01-01

    Magnetic moments and Curie temperatures of the intermetallic compounds LaCu 5-x Co x (x = 5) are calculated using a recursion method in the framework of the spin-fluctuation theory of Mohn and Wohlfarth. (orig.)

  8. Microstructure and electrode performance of AB5-type hydride-forming compounds

    NARCIS (Netherlands)

    Notten, P.H.L.

    1998-01-01

    A interesting experimental technique is proposed to investigate the hydrideformation/ decomposition reaction of intermetallic compounds. This X-ray diffraction (XRD) technique combines hydrogen absorptionldesorption measure ments with in situ XRD measurements. A high pressure XRD cell allows gas

  9. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  10. Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustrate the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.

  11. Hybridization and pressure effects in UTX compounds

    Czech Academy of Sciences Publication Activity Database

    Alsmadi, A. M.; Sechovský, V.; Lacerda, A. H.; Prokes, K.; Kamarád, Jiří; Chang, S.; Jung, M. H.; Nakotte, H.

    2002-01-01

    Roč. 91, - (2002), s. 8123-8125 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z1010914 Keywords : UTX intermetallic compounds * pressure effects magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.281, year: 2002

  12. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  13. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A. [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States); Bei, H. [Oak Ridge National Laboratory, Material Science and Technology Division, Oak Ridge, TN 37831 (United States); Russell, A.M. [Iowa State University, Department of Materials Science and Engineering, Ames, IA 50011 (United States); Agnew, S.R., E-mail: sra4p@virginia.edu [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2010-04-15

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction ({approx}5-20 vol.%) of second phases (M{sub 2}R intermetallics and R{sub 2}O{sub 3} oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  14. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    International Nuclear Information System (INIS)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A.; Bei, H.; Russell, A.M.; Agnew, S.R.

    2010-01-01

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (∼5-20 vol.%) of second phases (M 2 R intermetallics and R 2 O 3 oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  15. Dramatic Influence of Ionic Liquid and Ultrasound Irradiation on the Electrophilic Sulfinylation of Aromatic Compounds by Sulfinic Esters

    Directory of Open Access Journals (Sweden)

    Ngoc-Lan Thi Nguyen

    2017-09-01

    Full Text Available The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3-methylimidazolium chloride and aluminum chloride were found to be the most efficient and recyclable reaction framework. Ultrasound sonication appeared to be the most useful and green activation method to afford the sulfoxides in yields better than or equivalent to those obtained under the longer-lasting conventional stirring conditions.

  16. Transformation of iron containing constituent intermetallic particles during hydrothermal treatment

    DEFF Research Database (Denmark)

    Borgaonkar, Shruti; Din, Rameez Ud; Kasama, Takeshi

    2018-01-01

    in the alloys. Furthermore, electron energy loss spectroscopy analysis revealed that the during the steam treatment, the Fe enriched areas of the Al (Fe-Si) Mn type intermetallic particles were transformed into Fe2O3 and Fe3O4 phases, while energy-dispersive X-ray spectroscopy line profile measurements...... by scanning transmission electron microscope showed that Mn and Si were leached out and incorporated into the surrounding oxide layer. Further, the part of intermetallic phase was transformed into polycrystalline material....

  17. Characterization of intermetallics in aluminum to zinc coated interstitial free steel joining by pulsed MIG brazing for automotive application

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sushovan, E-mail: sushovanbasak@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Das, Hrishikesh, E-mail: hrishichem@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Shome, Mahadev, E-mail: mshome@tatasteel.com [Material Characterization & Joining Group, R & D, Tata Steel, Jamshedpur–831007 (India)

    2016-02-15

    In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effect of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is

  18. Stability of ZrBe17, and NiBe intermetallics during intermediate temperature oxidation

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.; Wadsworth, J.

    1992-01-01

    This paper reports that since the finding of MoSi 2 pest by Fitzer in 1955, a number of intermetallic compounds, e.g., ZrBe 13 , WSi 2 , and NiAl have also been reported to exhibit similar behavior during oxidation in air. For example, Lewis reported that catastrophic failure (total disintegration into powders) occurred in ZrBe 13 when oxidized at 700 degrees C in air. X-ray diffraction analyses revealed that the powders were composed of BeO, ZrO 2 (cubic), Zr 2 Be 17 , and unreacted ZrBe 13 . Regardless of numerous cited incidents of pest in intermetallics, fundamental understanding of pest is very limited. Recently, MoSi 2 pest has been studied in a great detail and fundamental insights to the mechanism of pest have been established. It is found that both single- and ply- crystalline MoSi 2 are susceptible to pest, which leads to the disintegration of test samples into powder consisting of MoO 3 whiskers, SiP 2 clusters, and residual MoSi 2 crystals. Pest is also noted to associate with substantial volume expansion of the samples. Most important, the occurrence of pest is contingent upon the formation of blisters, resulting from volume expansion by oxidation and the evaporation of MoO 3 on the surfaces and grain boundary interfaces

  19. Analysis of the interaction between two nitrosourea compounds and X-irradiation in rat brain tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Leenhouts, H P; Chadwick, K H [Association Euratom-ITAL, Wageningen (Netherlands); Deen, D F [California Univ., San Francisco (USA). Dept. of Neurology

    1980-02-01

    Experimental measurements have shown that both BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) and CCNU (1-(2-choroethyl)-3-cyclohexyl-1-nitrosourea) are toxic in rat 9L brain tumour cells and also sensitize these cells to the action of ionizing radiation. The interaction of BCNU and CCNU with radiation has been interpreted using a recently developed extension of the molecular theory of cell survival. The experimental results are shown to be compatible with the mathematical equations predicted by the model and the analysis indicates that the sensitizing effect is caused by a synergistic interaction between sublethal damage caused by the nitrosourea compound and the radiation at the molecular level. The analysis of the dependence of the interaction on the time between nitrosourea treatment and radiation indicates that the optimal interaction occurs with a 5 hour interval.

  20. Generation and alteration of the defects induced by particle irradiation and electromagnetic radiation in alkali halogen compounds

    International Nuclear Information System (INIS)

    Nistor, L.C.

    1979-01-01

    Interactions between electron beams, CO 2 - laser radiation and alkali halogen compound have led to interesting results: 1. The development of two types of F-centre respectively in normal lattice or near the dislocations. 2. The beginning of metal colloids development process at low temperature when a thermal treatment is applied. 3. An experimental confirmation of the Pooley-Hersh model for crystal defects has been brought up. 4. The surface penetration is an explosive process. 5. Surface polygonizations were also investigated. A model has been proposed to describe the destructive channels development within alkali halogen crystals with molecular anions impurities of less than 10 ppm. KCl monocrystals of advanced purity level was prepared for building up passive optical components of strong CO 2 lasers. (author)

  1. An analysis of the interaction between two nitrosourea compounds and X-irradiation in rat brain tumour cells

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Chadwick, K.H.; Deen, D.F.

    1980-01-01

    Experimental measurements have shown that both BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and CCNU [1-(2-choroethyl)-3-cyclohexyl-1-nitrosourea] are toxic in rat 9L brain tumour cells and also sensitize these cells to the action of ionizing radiation. The interaction of BCNU and CCNU with radiation has been interpreted using a recently developed extension of the molecular theory of cell survival. The experimental results are shown to be compatible with the mathematical equations predicted by the model and the analysis indicates that the sensitizing effect is caused by a synergistic interaction between sublethal damage caused by the nitrosourea compound and the radiation at the molecular level. The analysis of the dependence of the interaction on the time between nitrosourea treatment and radiation indicates that the optimal interaction occurs with a 5 hour interval. (Author)

  2. Molecular dynamics simulation of radiation-induced amorphization of the ordered compound NiZr2

    International Nuclear Information System (INIS)

    Devanathan, R.; Meshii, M.

    1992-12-01

    We have studied the electron irradiation-induced amorphization of the ordered intermetallic compound NiZr 2 by molecular dynamics simulations in conjunction with embedded-atom potentials. Randomly chosen Frenkel pairs and chemical disorder were introduced into the system in separate processes. In both cases, the energy and volume of the system rose above the corresponding levels of a quenched liquid and the calculated diffraction patterns indicated the occurrence of a crystalline-to-amorphous transition. In addition, the average shear elastic constant fell to about 50% of its value in the perfect crystal and the system became elastically isotropic. These results indicate that NiZr 2 can be amorphized by chemical disorder as well as Frenkel pairs and are in good agreement with experimental observations

  3. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  4. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    Science.gov (United States)

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  5. A process to preserve valuable compounds and acquire essential oils from pomelo flavedo using a microwave irradiation treatment.

    Science.gov (United States)

    Liu, Zaizhi; Zu, Yuangang; Yang, Lei

    2017-06-01

    A microwave pretreatment method was developed to preserve pectin, naringin, and limonin contents in pomelo flavedo to allow for longer storage times and subsequent extraction of pomelo essential oil. In terms of the essential oil, microwave pretreatment performed better than hydrodistillation with respect to extraction efficiency (1.88±0.06% in 24min versus 1.91±0.08% in 240min), oxygenation fraction (48.59±1.32% versus 29.63±1.02%), energy consumption (0.15kWh versus 1.54kWh), and environmental impact (123.20g CO 2 versus 1232g CO 2 ). Microwave-pretreated samples retained higher amounts of pectin, naringin, and limonin compared with non-pretreated samples. No obvious change in the degree of pectin esterification was observed. This study shows that the proposed process is a promising methodology for both preserving valuable compounds in pomelo flavedo during storage and acquiring essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. High-pressure structural stability of the ductile intermetallic ...

    Indian Academy of Sciences (India)

    Administrator

    Murnaghan equation of state fit to the pressure, volume data yielded a bulk modulus of 67∙6 GPa with the pressure derivative of bulk modulus fixed at 4. Keywords. Intermetallics; X-ray ... ners of the unit cell cube occupied by the 'M' element and cube centre occupied by the 'R' element. Although some ductility has been ...

  7. Magnetic properties of RNi5-xCux intermetallics

    International Nuclear Information System (INIS)

    Kuchin, A.G.; Ermolenko, A.S.; Kulikov, Yu.A.; Khrabrov, V.I.; Rosenfeld, E.V.; Makarova, G.M.; Lapina, T.P.; Belozerov, Ye.V.

    2006-01-01

    The magnetic properties have been studied for the series of RNi 5-x Cu x intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x= 5-x Cu x but GdNi 5-x Cu x . These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories

  8. Investigation on thixojoining to produce hybrid components with intermetallic phase

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  9. Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique.

    Science.gov (United States)

    Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru

    2016-01-01

    In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB.

  10. Studies in group IV organometallic chemistry XXX. Synthesis of compounds containing tin---titanium and tin---zirconium bonds

    NARCIS (Netherlands)

    Creemers, H.M.J.C.; Verbeek, F.; Noltes, J.G.

    1968-01-01

    Starting from the tetrakis(diethylamino) derivatives of titanium and zirconium and pheyltin hydrides six intermetalic compounds contianing up to nine tin and titanium(or zirconium) atoms have been obtained by hydrostannolysis type reactions.

  11. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  12. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  13. Effects of Nb content on the Zr{sub 2}Fe intermetallic stability

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. E-mail: ciramos@cnea.gov.ar; Saragovi, C.; Granovsky, M.; Arias, D

    2003-02-01

    With the aim of studying the stability range of the Zr{sub 2}Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase ({lambda}{sub 1}) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr{sub 2}Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr{sub 2}Fe+{lambda}{sub 1} region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed.

  14. Effects of Nb content on the Zr2Fe intermetallic stability

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    2003-01-01

    With the aim of studying the stability range of the Zr 2 Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase (λ 1 ) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr 2 Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr 2 Fe+λ 1 region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed

  15. Size and surface AREA analysis of some metallic and intermetallic powders

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Elsayed, A.A.; Abadir, M.F.

    1988-01-01

    The powder characterization of three intermetallic compounds ( Cr B, B 4 c and S ib 4 ) and three metallic powders (Fe, Co, and Ni) has been performed. This included the determination of powder density, chemical analysis, impurity analysis, shape factor, particle size analysis and specific surface area. The particle size analysis for the six powders was carried out using three techniques, namely; the 0-23, the microtrac and the fisher sub sieve and size. It was found that the analysis of the two powders and deviates from the log-normal probability distribution and the deviation was corrected. The specific surface area of the powders was measured using the high speed surface area analysis (BET method), and it was also calculated from surface area analysis findings, the BET technique was found to give the highest specific surface area values, and was attributed to the inclusion of internal porosity in the measurement. 8 fig., 10 tab

  16. The possibility to use TiAl intermetallics for high temperature applications

    International Nuclear Information System (INIS)

    Molotkov, A.V.

    1993-01-01

    Titanium aluminide TiAl is the promising heat resisting structural material with operation temperature up to 850-900 deg C. This intermetallic compound is characterized by low density and high specific values of elasticity moduli and heat resistance properties in wide temperature range, as compared to known heat resisting titanium, iron and nickel base alloys. Test batch of pressed blades was manufactured of TiAl with the use of powder technology. Results of testing showed, that endurance strength of blades exceeded by 30% the strength, required for operation. The calculations showed, that the use of such blades in gas-turbine cagines could provide 30-40% decrease of mass of compressor blading

  17. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    OpenAIRE

    Seung Zeon Han; Joonhee Kang; Sung-Dae Kim; Si-Young Choi; Hyung Giun Kim; Jehyun Lee; Kwangho Kim; Sung Hwan Lim; Byungchan Han

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanica...

  18. Crystal Growth and Characterization of MT2Si2 Ternary Intermetallics (M = U, RE and T = 3d, 4d, 5d Transition Metals)

    NARCIS (Netherlands)

    Menovsky, A.A.; Moleman, A.C.; Snel, G.E.; Gortenmulder, T.J.; Palstra, T.T.M.

    1986-01-01

    Bulk single crystals of the ternary intermetallic compounds UT2Si2 (T = Ni, Pd, Pt and Ru), LaT2Si2 (T = Pd and Rh) and LuPd2Si2 have been grown from the melt with a modified “tri-arc” Czochralski method. The as-grown crystals were characterized by X-ray, microprobe and chemical analyses. The

  19. Magnetic propertiesof Lu.sub.2./sub.Fe.sub.16./sub.X (X = Fe, Ni, Cr, Si) intermetallics under high hydrostatic pressure

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Andreev, Alexander V.; Machátová, Zuzana; Arnold, Zdeněk

    408-412, - (2006), s. 151-154 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GA202/02/0739; GA MŠk(CZ) ME 495 Institutional research plan: CEZ:AV0Z10100521 Keywords : intermetallic compounds * Lu 2 Fe 17 * magnetic properties * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.250, year: 2006

  20. Antiferromagnetism, structural instability and frustration in intermetallic AFe4X2 systems

    Science.gov (United States)

    Rosner, Helge; Bergmann, Christoph; Weber, Katharina; Kraft, Inga; Mufti, N.; Klauss, Hans-Henning; Dellmann, T.; Woike, T.; Geibel, Christoph

    2013-03-01

    Magnetic systems with reduced dimensionality or frustration attract strong interest because these features lead to an increase of quantum fluctuations and often result in unusual properties. Here, we present a detailed study of the magnetic, thermodynamic, and structural properties of the intermetallic AFe4X2 compounds (A=Sc,Y,Lu,Zr; X=Si,Ge) crystallizing in the ZrFe4Si2 structure type. Our results evidence that these compounds cover the whole regime from frustrated AFM order up to an AFM quantum critical point. Susceptibility χ(T), specific heat, resistivity, and T-dependent XRD measurements were performed on polycrystalline samples. In all compounds we observed a Curie-Weiss behavior in χ(T) at high T indicating a paramagnetic moment of about 3μB/Fe. Magnetic and structural transitions as previously reported for YFe4Ge2 occur in all compounds with trivalent A. However, transition temperatures, nature of the transition as well as the relation between structural and magnetic transitions change significantly with the A element. Low TN's and large θCW /TN ratios confirm the relevance of frustration. The results are analyzed and discussed with respect to electronic, structural and magnetic instabilities applying DFT calculations. Financial support from the DFG (GRK 1621) is acknowledged