WorldWideScience

Sample records for irradiated conditions fracture

  1. Fracture toughness of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  2. Fracture toughness of irradiated and recovered vessel steels

    International Nuclear Information System (INIS)

    Perosanz, F.; Lapena, J.

    1998-01-01

    This paper presents the fracture toughness measurements carried out on three vessel steels in an irradiated condition and after a post-irradiation recovery treatment. A statistical approach and the fracture parameters corresponding to two theoretical models of the fracture tests are used for evaluating toughness. Test results show that the neutron fluence gradually transforms the fracture behaviour of the vessel steels from ductile to brittle and seriously reduces their fracture toughness. The effectiveness of the recovery treatment, as evaluated from the toughness measurements, is confirmed, although the efficiency is not the same for the steels and depends on the evaluation parameter except in the case of almost complete recovery. The recovery effect increases with the received neutron fluence if the toughness values after treatment are compared with those in the irradiated condition rather than those in the as received condition. (orig.)

  3. Fracture mechanics behaviour of neutron irradiated Alloy A-286

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    The effect of fast-neutron irradiation on the fatigue-crack propagation and fracture toughness behaviour of Alloy A-286 was characterized using fracture mechanics techniques. The fracture toughness was found to decrease continuously with increasing irradiation damage at both 24 deg. C and 427 deg. C. In the unirradiated and low fluence conditions, specimens displayed appreciable plasticity prior to fracture, and equivalent Ksub(Ic) values were determined from Jsub(Ic) fracture toughness results. At high irradiation exposure levels, specimens exhibited a brittle Ksub(Ic) fracture mode. The 427 deg. C fracture toughness fell from 129 MPa√m in the unirradiated condition to 35 MPa√m at an exposure of 16.2 dpa (total fluence of 5.2x10 22 n/cm 2 ). Room temperature fracture toughness values were consistently 40 to 60 percent higher than the 427 deg. C values. Electron fractography revealed that the reduction in fracture resistance was attributed to a fracture mechanism transition from ductile microvoid coalescence to channel fracture. Fatigue-crack propagation tests were conducted at 427 deg. C on specimens irradiated at 2.4 dpa and 16.2 dpa. Crack growth rates at the lower exposure level were comparable to those in unirradiated material, while those at the higher exposure were slightly higher than in unirradiated material. (author)

  4. Study and simulation of irradiated zirconium alloys fracture under type RIA accidental loading conditions; Comprehension et modelisation de la rupture d'alliages de zirconium irradies en conditions accidentelles de type RIA

    Energy Technology Data Exchange (ETDEWEB)

    Le Saux, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    The thesis aims to study and simulate the mechanical behavior under Reactivity Initiated Accident loading conditions, of the Zircaloy 4 fuel claddings, irradiated or not. It also aims to characterize and simulate the behavior and the fracture under RIA loading conditions of hydrided Zircaloy 4 non irradiated. This study proposes an experimental approach and a simulation. (A.L.B.)

  5. Femoral neck fracture following groin irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, Perry W; Roberts, Heidi L; Perez, Carlos A

    1995-04-30

    Purpose: The incidence and risk factors are evaluated for femoral neck fracture following groin irradiation for gynecologic malignancies. Methods and Materials: The radiation therapy records of 1313 patients with advanced and recurrent cancer of the vagina, vulva, cervix, and endometrium, treated at the Mallinckrodt Institute of Radiology from 1954 to 1992, were reviewed. Median follow-up was 12.7 years. From this group, 207 patients were identified who received irradiation to the pelvis and groins with anterposterior-posterior anterior (AP-PA), 18 MV photons. Data were reviewed regarding irradiation dose to the femoral neck and other presumed risk factors including age, primary site, stage, groin node status, menopausal status, estrogen use, cigarette use, alcohol consumption, and osteoporosis. Results: The per-patient incidence of femoral neck fracture was 4.8% (10 out of 207). Four patients developed bilateral fractures. However, the cumulative actuarial incidence of fracture was 11% at 5 years and 15% at 10 years. Cox multivariate analysis of age, weight, and irradiation dose showed that only irradiation dose may be important to developing fracture. Step-wise logistic regression of presumed prognostic factors revealed that only cigarette use and x-ray evidence of osteoporosis prior to irradiation treatment were predictive of fracture. Conclusion: Femoral head fracture is a common complication of groin irradiation for gynecologic malignancies. Fracture in our database appears to be related to irradiation dose, cigarette use, and x-ray evidence of osteoporosis. Special attention should be given in treatment planning (i.e., shielding of femoral head/neck and use of appropriate electron beam energies for a portion of treatment) to reduce the incidence of this complication.

  6. Femoral neck fracture following groin irradiation

    International Nuclear Information System (INIS)

    Grigsby, Perry W.; Roberts, Heidi L.; Perez, Carlos A.

    1995-01-01

    Purpose: The incidence and risk factors are evaluated for femoral neck fracture following groin irradiation for gynecologic malignancies. Methods and Materials: The radiation therapy records of 1313 patients with advanced and recurrent cancer of the vagina, vulva, cervix, and endometrium, treated at the Mallinckrodt Institute of Radiology from 1954 to 1992, were reviewed. Median follow-up was 12.7 years. From this group, 207 patients were identified who received irradiation to the pelvis and groins with anterposterior-posterior anterior (AP-PA), 18 MV photons. Data were reviewed regarding irradiation dose to the femoral neck and other presumed risk factors including age, primary site, stage, groin node status, menopausal status, estrogen use, cigarette use, alcohol consumption, and osteoporosis. Results: The per-patient incidence of femoral neck fracture was 4.8% (10 out of 207). Four patients developed bilateral fractures. However, the cumulative actuarial incidence of fracture was 11% at 5 years and 15% at 10 years. Cox multivariate analysis of age, weight, and irradiation dose showed that only irradiation dose may be important to developing fracture. Step-wise logistic regression of presumed prognostic factors revealed that only cigarette use and x-ray evidence of osteoporosis prior to irradiation treatment were predictive of fracture. Conclusion: Femoral head fracture is a common complication of groin irradiation for gynecologic malignancies. Fracture in our database appears to be related to irradiation dose, cigarette use, and x-ray evidence of osteoporosis. Special attention should be given in treatment planning (i.e., shielding of femoral head/neck and use of appropriate electron beam energies for a portion of treatment) to reduce the incidence of this complication

  7. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  8. Fracture toughness behavior of irradiated stainless steel in PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Fyfitch, S. [AREVA NP Inc., Lynchburg, Pennsylvania (United States); Tang, H.T. [Electric Power Research Inst., Palo Alto, California (United States)

    2007-07-01

    Data from available research programs were collected and evaluated by the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) to determine the relationship between fracture toughness and neutron fluence for conditions representative of pressurized water reactor (PWR) conditions. It is shown that the reduction of fracture toughness with increasing neutron dose in both boiling water reactors (BWRs) and PWRs is consistent with that observed in fast reactors. The lower bound fracture toughness observed for irradiated stainless steels in PWRs is 38 MPa{radical}m (34.6 ksi{radical}in) at neutron exposures greater than 6.7 X 10{sup 21} n/cm{sup 2} (E > 1.0 MeV) or approximately 10 dpa. For such levels of fracture toughness, it is recommended that linear-elastic fracture mechanics (LEFM) analyses be considered for design and operational analyses. The results from this study can be used by the nuclear industry to assess the effects of irradiation on stainless steels in PWR systems. (author)

  9. Influence of irradiation on microyielding and fracture of polycrystalline MgO

    International Nuclear Information System (INIS)

    Ibrahim, N.A.; Tangri, K.

    1976-01-01

    Detailed study of the microstructural features characterizing microyielding and fracture in polycrystalline MgO is reported for the material in irradiated and unirradiated conditions. In both materials fracture is preceded by plastic flow, and intergranular cracks are initiated by slip bands encountering unfavourably oriented grains. The data provide direct evidence for three irreversible energy dissipating processes associated with fracture. These are: generation of plastic zones; formation of secondary cracks; and creation of discrete microcracks. Irradiation is found to produce two competing effects; it it increases the stress required to initiate fracture and decreases the irreversible energy expenditure during crack extension. A linear relationship between fracture stress and (grain diameter)sup(-1/2) is found for the irradiated material but a non-linear behaviour is observed for the unirradiated material. The behaviour in the unirradiated material is explained in terms of dependence off γsub(irr) (excess surface energy due to various irreversible energy dissipating processes) on grain size. (author)

  10. Experimental and statistical study on fracture boundary of non-irradiated Zircaloy-4 cladding tube under LOCA conditions

    Science.gov (United States)

    Narukawa, Takafumi; Yamaguchi, Akira; Jang, Sunghyon; Amaya, Masaki

    2018-02-01

    For estimating fracture probability of fuel cladding tube under loss-of-coolant accident conditions of light-water-reactors, laboratory-scale integral thermal shock tests were conducted on non-irradiated Zircaloy-4 cladding tube specimens. Then, the obtained binary data with respect to fracture or non-fracture of the cladding tube specimen were analyzed statistically. A method to obtain the fracture probability curve as a function of equivalent cladding reacted (ECR) was proposed using Bayesian inference for generalized linear models: probit, logit, and log-probit models. Then, model selection was performed in terms of physical characteristics and information criteria, a widely applicable information criterion and a widely applicable Bayesian information criterion. As a result, it was clarified that the log-probit model was the best among the three models to estimate the fracture probability in terms of the degree of prediction accuracy for both next data to be obtained and the true model. Using the log-probit model, it was shown that 20% ECR corresponded to a 5% probability level with a 95% confidence of fracture of the cladding tube specimens.

  11. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  12. Fracture toughness and strength change of neutron-irradiated ceramic materials

    International Nuclear Information System (INIS)

    Dienst, W.; Zimmermann, H.

    1994-01-01

    In order to analyse the results of bending strength measurements on neutron-irradiated samples of Al 2 O 3 , AlN and SiC, fracture toughness measurements were additionally conducted. The neutron fluences concerned were mostly in the range of 0.6 to 3.2x10 26 n/m 2 at irradiation temperatures of 400 to 550 C. A fracture toughness decrease was generally observed for polycrystalline materials which, however, was considerably smaller than the reduction of the fracture strength. Exceptional increase of the fracture toughness seems typical for the effect of rather coarse irradiation defects. The irradiation-induced change of the fracture toughness of single crystal Al 2 O 3 appeared dependent on the crystallographic orientation; both reduced and increased fracture toughness after irradiation was observed. Recent results of neutron irradiation to about 2x10 25 n/m 2 at 100 C showed, that the strength decrease of various Al 2 O 3 grades sets in at (3-5)x10 24 n/m 2 and seems to be little dependent on the irradiation temperature. ((orig.))

  13. Fracture behavior and deformation mechanisms under fast neutron irradiation

    International Nuclear Information System (INIS)

    Boutard, J.L.; Dupouy, J.M.

    1980-09-01

    We have established the out-of-pile and in-pile deformation mechanism maps of a 316 stainless steel irradiated in a fast reactor. The knowledge of the dominating deformation mechanism either in post irradiation creep experiments or during the in-pile steady state operating conditions allows to rationalize the apparent discrepancy between the very low out-of-pile ductility and the rather high plastic diametral strains which are obtained in the fast reactor environment without fracture

  14. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    International Nuclear Information System (INIS)

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken

  15. Brittle-fracture potential of irradiated Zircaloy-2 pressure tubes

    Science.gov (United States)

    Huang, F. H.

    1993-12-01

    Neutron irradiation can degrade the fracture toughness of Zircaloy-2 and may cause highly irradiated reactor components of this material to fail in a brittle manner. The effects of radiation embrittlement on the structural integrity of N Reactor pressure tubes are studied by performing KIc and JIc fracture toughness testing on samples cut from the Zircaloy-2 tubes periodically removed from the reactor. A fluence of 6 × 10 25n/ m2 ( E > 1 MeV) reduced the fracture toughness of the material by 40 to 50%. The fracture toughness values appear to saturate at 260°C with fluences above 3 × 10 25n/ m2 ( E > 1 MeV), but continue to decline with increasing fluence at temperatures below 177°C. Present and previous results obtained from irradiated pressure tubes indicate that the brittle-fracture potential of Zircaloy-2 increases with decreasing temperature and increasing fluence. Fractographic examinations of the fracture surfaces of irradiated samples reveal that circumferential hydride formation significantly influenced fracture morphology by providing sites for easy crack nucleation and leaving deep cracks. However, the deep cracks created at the hydride platelets in specimens containing less than 220 ppm hydrogen are not believed to be the major cause of degradation in postirradiation fracture toughness.

  16. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Yongqiang; Liu, Juan [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhang, Chonghong, E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Chen, Jiachao [Paul Scherrer Institute, Villigen PSI (Switzerland); Yang, Yitao; Zhang, Liqing; Song, Yin [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2015-06-15

    Highlights: • Fractal dimensions of fracture surfaces of steels before and after irradiation were calculated. • Fractal dimension can effectively describe change of fracture surfaces induced by irradiation. • Correlation of change of fractal dimension with embrittlement of irradiated steels is discussed. - Abstract: A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.

  17. Deformation and Fracture Properties in Neutron Irradiated Pure Mo and Mo Alloys

    International Nuclear Information System (INIS)

    Byun, T.S.; Snead, L.; Li, M.; Cockeram, B.V.

    2007-01-01

    Full text of publication follows: The evolution in microstructural and mechanical properties was investigated for molybdenum and molybdenum alloys after high temperature neutron irradiation. Test materials include oxide dispersion-strengthened (ODS) molybdenum alloy, molybdenum- 0.5% titanium-0.1% zirconium (TZM) alloy, and low carbon arc-cast (LCAC) molybdenum. Tensile specimens were irradiated in high flux isotope reactor (HFIR) at temperatures in the range ∼300 - 1000 deg. C to neutron fluences of 2.28 - 24.7 x 10 25 n/m 2 (E>0.1 MeV) or 1.2-13.1 dpa. Tensile tests were performed at temperatures ranging from -150 deg. C to 1000 deg. C. To evaluate irradiation effects, true stress parameters (yield stress, plastic instability stress, and true fracture stress) and ductility parameters (uniform strain, fracture strain, and reduction area) were compared for both irradiated and non-irradiated materials. Fracture toughness was also evaluated from the fracture stress and fracture strain data using a fracture strain model. The fracture strain was used to determine the ductile-to-brittle transition temperature (DBTT). Results indicate that irradiation in the temperature range of 600 - 800 deg. C hardened the materials by up to 70%, while the irradiation hardening outside this temperature range was much lower (<40%). The plastic instability stress was strongly dependent on test temperature; however, it was nearly independent of irradiation dose and temperature. It was also found that the true fracture stress was dependent on test temperature. The true fracture stress was not significantly influenced by irradiation at elevated and high test temperatures; however, it was decreased significantly at sub-zero temperatures after irradiation due to material embrittlement. The DBTT for 600 deg. C irradiated ODS molybdenum alloy was found to be about room temperature or lower, and among the test materials the ODS alloy showed the highest resistance to irradiation embrittlement

  18. Pelvic fractures following irradiation for endometrial carcinoma

    International Nuclear Information System (INIS)

    Konski, Andre; Sowers, Maryfran

    1996-01-01

    Purpose: To investigate the incidence and etiologic factors of pelvic fractures following radiation therapy for endometrial carcinoma. Methods and Materials: Tumor registry and radiation oncology records of patients treated for endometrial carcinoma at The Toledo Hospital between April 1989, and December 1992, were reviewed. Patients identified as having pelvic fractures without the presence of metastatic disease underwent total body mineral density measurement with dual x-ray densitometry. Results: Two of 75 patients (2.7%) were found to have pelvic fractures an average of 29 months from the completion of postoperative irradiation. One patient, who received preoperative irradiation, was also identified as having developed a fracture of the pelvis and was included in the analysis. All patients were treated prone with 10-15 MV photons in four fields daily. All three fracture patients received 45 Gy external beam radiation therapy. The two postoperative patients each received a single vaginal brachytherapy application delivering 20 Gy to 0.5 cm deep to the vaginal mucosa with a vaginal cylinder containing 30 mgRaeq 137 Cs. The preoperative patient received a single brachytherapy application with tandem and colpostats delivering 20 Gy to point A. Only one of the three fracture patients had the entire pubis included in the field of external beam treatment. One patient was taking nonsteroidal anti-inflammatory medication, one patient thyroid hormone replacement, and one patient was taking both types of medication. Conclusion: The etiology of pelvic fractures after irradiation is multifactorial. A complete medication history should be obtained, and care should be exercised in positioning the radiation fields to avoid inclusion of the entire pubis prior to the initiation of the radiation treatment

  19. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI Series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel Irradiation Program obtained a statistically significant fracture toughness data base on two high-copper (0.23 and 0.31 wt %) submerged-arc welds to determine the shift and shape of the K Ic curve as a consequence of irradiation. Compact specimens with thicknesses to 101.6 mm (4 in) in the irradiated condition and 203.2 mm (8 in) in the unirradiated condition were tested, in addition to Charpy impact, tensile, and drop-weight specimens. Irradiations were conducted at a nominal temperature of 288 degree C and an average fluence of 1.5 x 10 19 neutrons/cm 2 (>l MeV). The Charpy 41-J temperature shifts are about the same as the corresponding drop-weight NDT temperature shifts. The irradiated welds exhibited substantial numbers of cleavage pop-ins. Mean curve fits using two-parameter (with fixed intercept) nonlinear and linearized exponential regression analysis revealed that the fracture toughness 100 MPa lg-bullet √m shifts exceeded the Charpy 41-J shifts for both welds. Analyses of curve shape changes indicated decreases in the slopes of the fracture toughness curves, especially for the higher copper weld. Weibull analyses were performed to investigate development of lower bound curves to the data, including the use of a variable K min parameter which affects the curve shape

  20. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700 0 C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625 0 C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities

  1. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700/sup 0/C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625/sup 0/C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities.

  2. Post irradiation fracture properties of precipitation-strengthened alloy D21

    International Nuclear Information System (INIS)

    Huang, F.H.

    1986-03-01

    The precipitation strengthened alloys have the potential for use in fuel cladding and duct applications for liquid metal reactors due to their high strength and low swelling rate. Unfortunately, these high strength alloys tend to exhibit poor fracture toughness, and the effects of neutron irradiation on the fracture properties of the material are of concern. Compact tension specimens of alloy D21 were irradiated in the Experimental Breeder Reactor II to a fluence of 2.7 x 10 22 n/cm 2 (E > 0.1 MeV) at 425, 500, 550 and 600 0 C. Fracture toughness tests on these specimens wre performed using electric potential techniques at temperatures ranging from 205 to 425 C. The material exhibited low postirradiation fracture toughness which increased with either increasing test or irradiation temperature. The tearing modulus, however, increased with increasing irradiation temperature but decreased with increasing test temperature. Results wre analyzed using the J-integral approach. The fracture toughness of irradiated D21 was evaluated essentially following the procedure recommended in ASTM Test Method E813. It was found that the data elimination limits illustrated in E813 were too large for the specimens tested, although the thickness criterion was satisfied. The precautions needed to determine J/sub 1c/ based on a reduced data qualification range were disussed

  3. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in

  4. Technology development on analysis program for measuring fracture toughness of irradiated specimens

    International Nuclear Information System (INIS)

    Shibata, Akira; Takada, Fumiki

    2007-03-01

    The fracture toughness which represents resistance for brittle or ductile fracture is one of the most important material property concerning linear and non-linear fracture mechanics analyses. In order to respond to needs of collecting data relating to fracture toughness of pressure vessel and austenitic stainless steels, fracture toughness test for irradiated materials has been performed in JMTR hot laboratory. On the other hand, there has been no computer program for analysis of fracture toughness using the test data obtained from the test apparatus installed in the hot cell. Therefore, only load-displacement data have been provided to users to calculate fracture toughness of irradiated materials. Recently, request of analysis of fracture toughness have been increased. Thus a computer program, which calculates the amount of the crack extension, the compliance and the fracture toughness from the data acquired from the test apparatus installed in the hot cell, has been developed. In the program unloading elastic compliance method is applied based on ASTM E1820-01. Through the above development, the request for the fracture toughness analysis can be satisfied and the fracture toughness of irradiated test specimens can be provided to users. (author)

  5. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    Mills, W.J.

    1986-01-01

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 427 0 C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m 2 ; the weld exhibited a saturation level of 11 kJ/m 2 . Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  6. Experimental study upon the effect of irradiation on callus formation of fracture

    International Nuclear Information System (INIS)

    Saigusa, Fujio

    1981-01-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone. (Ueda, J.)

  7. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  8. Fracture toughness and stress relief response of irradiated Type 347/348 stainless steel

    International Nuclear Information System (INIS)

    Haggag, F.M.

    1985-01-01

    A test program has experimentally determined: (1) The fracture toughness of Type 347/348 stainless steel (SS) specimens with high values of irradiation fluence (2.3 to 4.8 x 10 22 n/cm 2 , E > 1.0 MeV) and experiencing different levels of irradiation creep (0.0, 0.6, 1.1, 1.8%), (2) the effect of thermal stress relief on fracture toughness recovery for the highly irradiated material, and (3) the mechanisms associated with fracture toughness recovery due to thermal stress relief. The postirradiation fracture toughness tests and tensile tests were conducted at 427 0 C

  9. Fracture toughness of ferritic alloys irradiated at FFTF

    International Nuclear Information System (INIS)

    Huang, F.H.

    1986-05-01

    Ferritic compact tension specimens loaded in the Material Open Test Assembly (MOTA) for irradiation during FFTF Cycle 4 were tested at temperatures ranging from room temperature to 428/degree/C. The electrical potential single specimen method was used to measure the fracture toughness of the specimens. Results showed that the fracture toughness of both HT-9 and 9Cr-1Mo decreases with increasing test temperature and that the toughness of HT-9 was about 30% higher than that of 9Cr-1Mo. In addition, increasing irradiation temperature resulted in an increase in tearing modulus for both alloys. 4 refs., 5 figs., 1 tab

  10. Tensile and fracture toughness properties of copper alloys and their HIP joints with austenitic stainless steel in unirradiated and neutron irradiated condition

    International Nuclear Information System (INIS)

    Taehtinen, S.; Pyykkoenen, M.; Singh, B.N.; Toft, P.

    1998-03-01

    The tensile strength and ductility of unirradiated CuAl25 IG0 and CuCrZr alloys decreased continuously with increasing temperature up to 350 deg C. Fracture toughness of unirradiated CuAl25 IG0 alloy decreased continuously with increasing temperature from 20 deg C to 350 deg C whereas the fracture toughness of unirradiated CuCrZr alloy remained almost constant at temperatures up to 100 deg C, was decreased significantly at 200 deg C and slightly increased at 350 deg C. Fracture toughness of HIP joints were lower than that of corresponding copper alloy and fracture path in HIP joint specimen was always within copper alloy side of the joint. Neutron irradiation to a dose level of 0.3 dpa resulted in hardening and reduction in uniform elongation to about 2-4% at 200 deg C in both copper alloys. At higher temperatures softening was observed and uniform elongation increased to about 5% and 16% for CuAl25 IG0 and CuCrZr alloys, respectively. Fracture toughness of CuAl25 IG0 alloy reduced markedly due to neutron irradiation in the temperature range from 20 deg C to 350 deg C. The fracture toughness of the irradiated CuCrZr alloy also decreased in the range from 20 deg C to 350 deg C, although it remained almost unaffected at temperatures below 200 deg C and decreased significantly at 350 deg C when compared with that of unirradiated CuCrZr alloy. (orig.)

  11. Ultra high vacuum fracture and transfer device for AES analysis of irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Urie, M.W.; Panayotou, N.F.; Robinson, J.E.

    1980-01-01

    An ultrahigh vacuum fracture and transfer device for analysis of irradiated and non-irradiated SS 316 fuel cladding is described. Mechanical property tests used to study the behavior of cladding during reactor transient over-power conditions are reported. The stress vs temperature curves show minimal differences between unirradiated cladding and unfueled cladding. The fueled cladding fails at a lower temperature. All fueled specimens failed in an intergranular mode

  12. Fracture toughness of irradiated Zr-2.5Nb pressure tube from Indian PHWR

    Science.gov (United States)

    Shah, Priti Kotak; Dubey, J. S.; Shriwastaw, R. S.; Dhotre, M. P.; Bhandekar, A.; Pandit, K. M.; Anantharaman, S.; Singh, R. N.; Chakravartty, J. K.

    2015-03-01

    Fracture toughness of irradiated Zr-2.5Nb alloy pressure tube, fabricated by the cold pilgering and stress relieving route, was evaluated using disk compact tension type specimens. These specimens were punched out from the irradiated pressure tube (S-07), which was in service for about 8 effective full power years of reactor operation in the Kakrapar Atomic Power Station-2 (KAPS-2). The tests were carried out remotely inside a lead shielded enclosure. Crack growth during the test was measured using the direct current potential drop technique. The irradiated pressure tube showed low fracture toughness at 25 °C. The fracture toughness increased with increase in temperature up to 250 °C but was practically unaffected with further increase in temperature up to 300 °C. This paper discusses the fracture behavior of irradiated Indian pressure tube material and compares it with other data available.

  13. Vertebral compression fractures after spine irradiation using conventional fractionation in patients with metastatic colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ree, Woo Joong; Kim, Kyung Hwan; Chang, Jee Suk; Kim, Hyun Ju; Choi, Seo Hee; Koom, Woong Sub [Dept.of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul (Korea, Republic of)

    2014-12-15

    To evaluate the risk of vertebral compression fracture (VCF) after conventional radiotherapy (RT) for colorectal cancer (CRC) with spine metastasis and to identify risk factors for VCF in metastatic and non-metastatic irradiated spines. We retrospectively reviewed 68 spinal segments in 16 patients who received conventional RT between 2009 and 2012. Fracture was defined as a newly developed VCF or progression of an existing fracture. The target volume included all metastatic spinal segments and one additional non-metastatic vertebra adjacent to the tumor-involved spines. The median follow-up was 7.8 months. Among all 68 spinal segments, there were six fracture events (8.8%) including three new VCFs and three fracture progressions. Observed VCF rates in vertebral segments with prior irradiation or pre-existing compression fracture were 30.0% and 75.0% respectively, compared with 5.2% and 4.7% for segments without prior irradiation or pre-existing compression fracture, respectively (both p < 0.05). The 1-year fracture-free probability was 87.8% (95% CI, 78.2-97.4). On multivariate analysis, prior irradiation (HR, 7.30; 95% CI, 1.31-40.86) and pre-existing compression fracture (HR, 18.45; 95% CI, 3.42-99.52) were independent risk factors for VCF. The incidence of VCF following conventional RT to the spine is not particularly high, regardless of metastatic tumor involvement. Spines that received irradiation and/or have pre-existing compression fracture before RT have an increased risk of VCF and require close observation.

  14. An interbubble fracture mechanism of blister formation on helium-irradiated metals

    International Nuclear Information System (INIS)

    Evans, J.H.

    1977-01-01

    This paper describes a new model of surface blister formation in which a blister is nucleated by the interbubble fracture of highly overpressurized helium bubbles. As in other gas-driven models, the internal release of helium then provides the driving force for blister lid deformation. The high pressures required for the suggested mode of fracture are a result of the difficulty, experienced by the bubbles in acquiring vacancies. By considering the bubble growth mechanisms, the critical conditions for interbubble fracture are shown to depend on the helium dose and energy, the bubble size, and their depth in the irradiated material. These parameters and other aspects of blister formation are discussed on the basis of the proposed model. One important result concerns the position of the fracture plane; because of the usual displacement of damage and helium peaks relative to depth, this plane can lie well beyond the helium peak. Thus, the disagreement inherent in previous gas models between helium range and measured blister lid thickness values can be resolved without recourse to lateral stress arguments. (Auth.)

  15. The effect of irradiation and irradiation temperature on the fracture toughness of cold-worked Zr-2.5 wt percent Nb

    International Nuclear Information System (INIS)

    Simpson, L.A.; Ellis, R.B.; Stark, D.J.; Shillinglaw, A.J.

    1984-09-01

    The use of fracture mechanics methods and small specimens to assess the effect of metallurgical variables on fracture toughness and critical crack length in reactor pressure tubes is reviewed. Fracture toughness tests on specimens irradiated in the NRU research reactor at 260 degrees C are described and compared with results from a previous irradiation in the WR-1 research reactor at 350 degrees C. The J-resistance curve is used as the measure of fracture toughness, and is shown to be very sensitive to the metallurgical state. The lower irradiation temperature (260 degrees C), characteristic of the operating temperature range for power reactors, has a significant effect on fracture toughness. Circumferential hydrides also have an effect. Estimates of critical crack length are made using the J-resistance data, and are seen to slightly underestimate the actual critical crack length as determined in full-scale burst tests. This conservatism is not large enough to impose a significant penalty in design applications

  16. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures

    International Nuclear Information System (INIS)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.; Shiba, Kiyoyuki

    1994-01-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 or 250 degrees C. These specimens have been tested over a temperature range from 20 to 250 degrees C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenitic stainless steels, but the toughness remains quite high. The toughness decreases as the test temperature increases. Irradiation at 250 degrees C is more damaging than at 90 degrees C, causing larger decreases in the fracture toughness. Ferritic-martensitic steels are embrittled by the irradiation, and show the lowest toughness at room temperature

  17. An Evaluation of Fracture Toughness of Vinyl Ester Composites Cured under Microwave Conditions

    Science.gov (United States)

    Ku, H.; Chan, W. L.; Trada, M.; Baddeley, D.

    2007-12-01

    The shrinkage of vinyl ester particulate composites has been reduced by curing the resins under microwave conditions. The reduction in the shrinkage of the resins by microwaves will enable the manufacture of large vinyl ester composite items possible (H.S. Ku, G. Van Erp, J.A.R. Ball, and S. Ayers, Shrinkage Reduction of Thermoset Fibre Composites during Hardening using Microwaves Irradiation for Curing, Proceedings, Second World Engineering Congress, Kuching, Malaysia, 2002a, 22-25 July, p 177-182; H.S. Ku, Risks Involved in Curing Vinyl Ester Resins Using Microwaves Irradiation. J. Mater. Synth. Proces. 2002b, 10(2), p 97-106; S.H. Ku, Curing Vinyl Ester Particle Reinforced Composites Using Microwaves. J. Comp. Mater., (2003a), 37(22), p 2027-2042; S.H. Ku and E. Siores, Shrinkage Reduction of Thermoset Matrix Particle Reinforced Composites During Hardening Using Microwaves Irradiation, Trans. Hong Kong Inst. Eng., 2004, 11(3), p 29-34). In tensile tests, the yield strengths of samples cured under microwave conditions obtained are within 5% of those obtained by ambient curing; it is also found that with 180 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are also within the 5% of those obtained by ambient curing. While, with 360 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are 5% higher than those obtained by ambient curing. Whereas, with 540 W microwave power, the tensile strengths obtained for most samples are 5% below those obtained by ambient curing (H. Ku, V.C. Puttgunta, and M. Trada, Young’s Modulus of Vinyl Ester Composites Cured by Microwave Irradiation: Preliminary Results, J. Electromagnet. Waves Appl., 2007, 20(14), p. 1911-1924). This project, using 33% by weight fly ash reinforced vinyl ester composite [VE/FLYSH (33%)], is to further investigate the difference in fracture toughness between microwave cured vinyl ester particulate composites and those cured

  18. Effects of irradiation on the fracture behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Stiegler, J.O.; Holmes, J.J.

    1977-01-01

    Fracture in irradiated materials occurs by mechanisms which occur in unirradiated materials in addition to mechanisms related to irradiation phenomena. The paper examines radiation effects in austenitic stainless steels for use as core structural materials in fast breeder reactors

  19. Multiple fracture planes in deuteron irradiated metals

    International Nuclear Information System (INIS)

    Jones, W.R.; Johnson, P.B.

    1987-01-01

    Evidence has been found of multiple fracture planes in the blistering and flaking of metals observed at room temperature following irradiation at 120 K with 200 keV deuterons. In particular, two fracture planes are identified in copper, gold and stainless steel and three in aluminium. In nickel only one fracture plane is found. Qualitative models are proposed which explain the different fracture planes that are observed. In these models it is proposed that several mechanisms are important. (i) High levels of compressional stress in the implanted layer inhibits bubble nucleation and bubble growth in the depth region near the maxima in the damage and gas deposition profiles. (ii) The lateral stress varies from compression in the implant region to tension in the material below. In the region of tension bubble growth is enhanced. The vertical gradient in the lateral stress may also assist gas to move deeper into the target to further enhance bubble growth in this region. (iii) Shear resulting from differential expansion due to a combination of radiation induced swelling and localised heating is an important mechanism leading to fracture. (orig.)

  20. Allogenic bone rods with freeze drying and gamma rays irradiation for treatment of fracture

    International Nuclear Information System (INIS)

    Zhou Zhenbin

    1999-01-01

    Opened reduction and internal fixation are the usual treatment of fracture, but both methods need a second operation for removal implants. The benefits of the bone rods are that they can avoid the removement of internal fixation and will be absorbed spontaneously. The bone rods are made of allogeneic compact bones with freeze-drying and gamma rays irradiation supplied by Shanxi Provincial Tissue Bank. The purpose of this study is to evaluate allograft reaction, the stability of the internal fixation, osteoinduction in the treatment of fracture using allogeneic bone rods with freeze drying and gamma rays irradiation. From May 1997 to May 1998, fourteen cases (male 12, female 2) of treatment were reviewed. The mean age was 37.3 (21-5 1). There were 3 medial malleolus fractures, 7 tibia and fibula fractures, 1 ulna and radius fracture, 1 lateral condyle of humerus fracture. The clinical results were satisfactory. Because the strength of the bone rods are weaker than that of screws, the bone rods are only indicated in the fixation of cancellous bones fracture and unloaded bone fracture. It can be used as a supplementary fixation of loaded bone. It is not indicated for fixation of comminuted fracture. More than two bone rods may be used in the fixation of fracture in order to get stability of the fracture and decrease stress between rods which will prevent the break of the bone rods. Allogeneic bone rods with freeze-drying and gamma rays irradiation can be used as implants of non-immunogenicity. There are no allograft reactions in all cases (including fever, leukocytosis, exudation or swelling in the wound). Although plenty of experimental studies have showed that freeze drying with gamma rays irradiation (below 50 KGy) would not destroy BMP of bone allograft, but there is no osteoinduction in our cases. The healing of a fracture and bridging external callus are similar as other operations. This new technique may have the following advantages compare with the screws: 1

  1. Understanding the origin of the fracture toughness evolution of nuclear glasses under irradiation

    International Nuclear Information System (INIS)

    Kieu, L.-H.

    2011-01-01

    In the nuclear industry, complex borosilicate glasses are used for the confinement of fission products and long-life minor actinides. Under irradiations, the structure and the mechanical properties of these glasses evolve. In this work, atomistic and multi-scale simulations of three simplified borosilicate glasses were run to understand the origin of their fracture behavior change under irradiation. Under the radiation effects, elasticity decreases and plasticity increases. Fracture happens due to the formation and coalescence of nano-cavities. The structural modifications under the radiation effects lead to a delay of the coalescence and of the irradiated glass rupture. Several phenomena overlay to explain this behavior, especially the cavities distribution modifications, the sodium mobility, and the borate and silicate entities organization in the glassy network. Depending on the nature of the more important mechanism, the fracture toughness can increase or decrease under radiation. (author) [fr

  2. Statistical analyses of fracture toughness results for two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Nanstad, R.K.; McCabe, D.E.; Haggag, F.M.; Bowman, K.O.; Downing, D.J.

    1990-01-01

    The objectives of the Heavy-Section Steel Irradiation Program Fifth Irradiation Series were to determine the effects of neutron irradiation on the transition temperature shift and the shape of the K Ic curve described in Sect. 6 of the ASME Boiler and Pressure Vessel Code. Two submerged-arc welds with copper contents of 0.23 and 0.31% were commercially fabricated in 215-mm-thick plates. Charpy V-notch (CVN) impact, tensile, drop-weight, and compact specimens up to 203.2 mm thick [1T, 2T, 4T, 6T, and 8T C(T)] were tested to provide a large data base for unirradiated material. Similar specimens with compacts up to 4T were irradiated at about 288 degrees C to a mean fluence of about 1.5 x 10 19 neutrons/cm 2 (>1 MeV) in the Oak Ridge Research Reactor. Both linear-elastic and elastic-plastic fracture mechanics methods were used to analyze all cleavage fracture results and local cleavage instabilities (pop-ins). Evaluation of the results showed that the cleavage fracture toughness values determined at initial pop-ins fall within the same scatter band as the values from failed specimens; thus, they were included in the data base for analysis (all data are designated K Jc )

  3. Influence of specimen size/type on the fracture toughness of five irradiated RPV materials

    International Nuclear Information System (INIS)

    Sokolov, Mikhail A; Lucon, Enrico

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 10 11 n/cm 2 /s (>1 MeV) to fluences from 0.5 to 3.4 10 19 n/cm 2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 10 13 n/cm 2 /s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 10 13 n/cm 2 /s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 10 19 n/cm 2 . The irradiation-induced shifts of the Master Curve reference temperatures, ΔT 0 , for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, ΔT 0 , 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT 0 , were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  4. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  5. Application of small specimens to fracture mechanics characterization of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; Wallin, K.; McCabe, D.E.

    1996-01-01

    In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic K Jc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for K Jc data. By converting PCVN data to IT compact specimen equivalent K Jc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic K Jc database and the ASME lower bound K Ic curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of K Jc with respect to K Ic in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for K Jc data from PCVN specimens. 13 refs., 8 figs., 1 tab

  6. Influence of specimen size/type on the fracture toughness of five irradiated RPV materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lucon, Enrico [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 1011 n/cm2/s (>1 MeV) to fluences from 0.5 to 3.4 1019 n/cm2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 1013 n/cm2/s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 1013 n/cm2/s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 1019n/cm2. The irradiation-induced shifts of the Master Curve reference temperatures, ΔT0, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T0, 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT0, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  7. Experimental study upon the effect of irradiation on callus formation of fracture. Observation of vascular alteration and callus formation

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, F [Nippon Dental Coll., Tokyo

    1981-02-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone.

  8. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel irradiation (HSSI) Program was aimed at obtaining a statistically significant fracture toughness data base on two weldments with high-copper contents to determine the shift and shape of the K lc curve as a consequence of irradiation. The program included irradiated Charpy V-notch impact, tensile, and drop-weight specimens in addition to compact fracture toughness specimens. Compact specimens with thicknesses of 25.4, 50.8, and 101.6 mm [1T C(T), 2T C(T), and 4T C(T), respectively] were irradiated. Additionally, unirradiated 6T C(T) and 8T C(T) specimens with the same K lc measuring capacity as the irradiated specimens were tested. The materials for this irradiation series were two weldments fabricated from special heats of weld wire with copper added to the melt. One lot of Linde 0124 flux was used for all the welds. Copper levels for the two welds are 0.23 and 0.31 wt %, while the nickel contents for both welds are 0.60 wt %. Twelve capsules of specimens were irradiated in the pool-side facility of the Oak Ridge Research Reactor at a nominal temperature of 288 degree C and an average fluence of about 1.5 x 10 19 neutrons/cm 2 (> 1 MeV). This volume, Appendices E and F, contains the load-displacement curves and photographs of the fracture toughness specimens from the 72W weld (0.23 wt % Cu) and the 73 W weld (0.31 wt % Cu), respectively

  9. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  10. An investigation of two-level fracture in the blistering of D+ irradiated Cu

    International Nuclear Information System (INIS)

    Johnson, P.B.; Jones, W.R.

    1984-01-01

    The blisters produced by 200 keV D + irradiation of Cu at 120 K and subsequent heating to room temperature are found to be of two distinct types: small semi-spherical blisters and large blister flakes. A simple method has been developed to remove blister flakes enabling direct observation of the exposed underside of the flakes by scanning electron microscopy. The small semi-spherical blisters, which form before the more extensive blister flakes, have a consistently deeper plane of fracture than the flakes. To explain the different depths of fracture two alternative models are proposed. Compressional stress may inhibit bubble nucleation and early growth near the depth region around the maxima in the damage and gas deposition profiles. It is proposed that in the later stages of the irradiation shear introduced by differential expansion, caused by a combination of radiation induced swelling and localised heating plays a central role in fracture. (orig./RK)

  11. The role of strain localization in the fracture of irradiated pressure tube material

    International Nuclear Information System (INIS)

    Dutton, R.

    1989-04-01

    This report reviews those phenomena that lead to strain localization in zirconium alloys, with particular reference to the role played by the formation of shear bands in fracture processes. The important influence of plastic deformation, in general, on fracture mechanisms is emphasized. This is to be expected when elastic-plastic fracture mechanics is the chosen analytical technique. Intensely inhomogeneous characteristics of strain localization cause an abrupt bifurcation in the evolution of deformation strain and lead to plastic instability linked with intrinsic material behaviour (e.g., work softening) or of geometric origin (e.g., localized necking). Both of these effects are discussed in relation to measurable deformation parameters, such as the work hardening rate and strain rate sensitivity, which determine the degree of resistance to plastic instability. The modifying effect of irradiation on these quantities is given specific attention, the appropriate literature pertaining to Zircaloy and Zr-2.5% Nb being reviewed. Recommendations are made for a combined experimental and theoretical program to characterize strain localization and reduced ductility in irradiated cold-worked Zr-2.5% Nb pressure tube material. The relationship between the deformation properties and the fracture behaviour is discussed

  12. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  13. Kinetic and energetic approaches to analysis of scabbing fracture of structural steels under thermal shock

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2002-01-01

    The regularities of the scabbing fracture of nine brands of structural steels under the conditions of the impact of the nuclear explosion X-ray irradiation are studied. The time dependences of the scabbing strength of the structural materials under thermal shock, initiated by the X-ray irradiation, are established within the frames of the approach to the problem on the scabbing fracture. The time dependences of the critical specific energy of the steels fracture under the conditions of the X-ray irradiation effect are determined within the frames of the energetic approach to the problem on the scabbing fracture, based on the comparison of the sample energy reserve and fracture work [ru

  14. Application of local approach to quantitative prediction of degradation in fracture toughness of steels due to pre-straining and irradiation

    International Nuclear Information System (INIS)

    Miyata, T.; Tagawa, T.

    1996-01-01

    Degradation of cleavage fracture toughness for low carbon steels due to pre-straining and irradiation was investigated on the basis of the local fracture criterion approach. Formulation of cleavage fracture toughness through the statistical modelling proposed by BEREMIN has been simplified by the present authors to the expression involving yield stress and cleavage fracture stress of materials. A few percent pre-strain induced by cold rolling deteriorates significantly the cleavage fracture toughness. Ductile-brittle transition temperature is increased to more than 70 C higher by 8% straining in 500 MPa class high strength steel. Quantitative prediction of degradation has been successfully examined through the formulation of the cleavage fracture toughness. Analytical and experimental results indicate that degradation in toughness is caused by the increase of flow stress in pre-strained materials. Quantitative prediction of degradation of toughness due to irradiation has been also examined for the past experiments on the basis of the local fracture criterion approach. Analytical prediction from variance of yield stress by irradiation is well consistent with the experimental results. (orig.)

  15. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  16. Optimal Treatment of Malignant Long Bone Fracture: Influence of Method of Repair and External Beam Irradiation on the Pathway and Efficacy of Fracture Healing

    Science.gov (United States)

    2015-10-01

    stiffness, or a partial snap with lower yield force and stiffness (Figure 4). Three dimensional micro CT analysis around fracture Figure 3. (a-b... fractures with plate fixation on both sides and irradiation on the left while the contralateral limb serves as a non-radiated internal control. The...AWARD NUMBER: W81XWH-13-1-0430 TITLE: Optimal Treatment of Malignant Long Bone Fracture : Influence of Method of Repair and External Beam

  17. Fracture toughness of neutron irradiated solid and powder HIP 316L(N). ITER Task 214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Rensman, J.; Van den Broek, F.P.; Jong, M.; Van Osch, E.V.

    1998-04-01

    The fracture toughness properties of unirradiated and neutron irradiated type 316L(N) stainless steel plate (European Reference Heat ERHII), conventional 316L(N) solid HIP joints (heat PM-130), and 316L(N)-1G powder HIP material have been measured. Compact tension specimens with a thickness of 12 and 5 mm were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the fusion reactor's first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP (or HIP-bonded) CT-specimens were irradiated in two separate experiments: SIWAS-6 with 1.3 to 2.3 dpa (1.7 dpa av.) at 353 K, and CHARIOT-3 with 2.7 to 3.1 dpa (2.9 dpa av.) at 600 K. The plate material and powder HIP CT-specimens were irradiated in one experiment only, SIWAS-6. The helium content is up to 20 appm for the 2.9 dpa (av.) dose level. Testing temperatures of 353K and 573K have been used for the fracture toughness experiments. The report contains the experimental conditions and summarises the results, which are given in terms of J-resistance curve fits. The main conclusions are that all three materials have very high toughness in the unirradiated state with little difference between them; the solid HIP has the highest toughness, the powder HIP lowest. The toughness of all three materials is reduced significantly by irradiation, the reduction is the least for the plate material and the highest for the powder HIP material. However, many, but not all, of the solid HIP CT specimens showed debonding of the joint during testing. The machined notch of the CT specimens was not exactly on the joint interface, which could lead to unjustified interpretation of the measured values as being the toughness of the joint, the toughness of the joint being probably much lower. The reduction by irradiation of the fracture toughness of the powder HIP material is clearly larger than for plate material, which is confirmed by the observed early initiation

  18. Review of recent studies on neutron irradiation embrittlement in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sudo, Akira; Miyazono, Shohachiro

    1983-06-01

    Recent studies in foreign countries (USA, France, FRG and UK) on neutron irradiation embrittlement have been reviewed. These studies are classified into four areas, such as 1) effect of chemical composition on irradiation embrittlement sensitivity, 2) postirradiation heat treatment for embrittlement relief, 3) fracture toughness evaluation of irradiated materials based on fracture mechanics analysis, and 4) effect of irradiation on fatigue crack propagation behavior. The first area mainly includes the studies related to the effects of copper, phosphorus impurities and nickel alloying and synergistic effect of these components, and furthermore, evaluation of Regulatory Guide 1.99 Rev.l. Studies in the second area show the effects of annealing condition (temperature and time) and metallugical condition on embrittlement relief, and evaluation of periodic annealing in the period of irradiation as a promising method for embrittlement control. Studies in the third area show the correlation between fracture toughness and Cv notch ductility changes with neutron irradiation, and J-R curves of irradiated materials based on the elasto-plastic fracture mechanics. In the forth area, most of studies are investigated in air condition but a few studies in reactor-grade water at high temperature and pressure. (author)

  19. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  20. Assessment of redox conditions based on fracture mineralogy

    International Nuclear Information System (INIS)

    Tullborg, E.L.

    1999-01-01

    The frequency and distribution of fracture minerals like calcite, Fe-oxides/hydroxides, and sulphides can be used in performance assessment since their presence reflects the redox processes that are active or have been active in the fractures. The advantage in using fracture minerals is that they undoubtedly represent conditions prior to disturbances caused by drilling or tunnel excavations. In addition, they give a continuous record from the surface to great depth. On the other hand the disadvantage is that the fracture mineral distribution is a result of both past and present processes such that the mineral distribution alone can not discriminate between old and recent processes. Nevertheless it is suggested that the fracture mineral distribution provides important information about the redox capacity in the fracture system. (author)

  1. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Preliminary results

    International Nuclear Information System (INIS)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.

    1993-01-01

    Candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at temperatures of either 60 or 250 degrees C. Preliminary results have been obtained for several of these materials irradiated at 60 degrees C. The results show that irradiation at this temperature reduces the fracture toughness of austenitic stainless steels, but the toughness remains quite high. The unloading compliance technique developed for the subsize disk compact specimens works quite well, particularly for materials with lower toughness. Specimens of materials with very high toughness deform excessively, and this results in experimental difficulties

  2. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  3. The dose dependence of fracture toughness Of F82H steel

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States); Tanigawa, H.; Ando, M.; Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Odette, G. [UCSB, Santa-Barbara, Dept. of Mechanical Engineering UCSB, AK (United States); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States)

    2007-07-01

    Full text of publication follows: The ferritic-martensitic steel F82H is a primary candidate low-activation material for fusion applications, and it is being investigated in the joint U.S. Department of Energy-Japan Atomic Energy Agency. As a part of this program, several capsules containing fracture toughness specimens were irradiated in High-Flux Isotope Reactor. These specimens were irradiated to a wide range of doses from 3.5 to 25 dpa. The range of irradiation temperature was from 250 deg. C to 500 deg. C. This paper summarizes the changes in fracture toughness transition temperature and decrease in the ductile fracture toughness as result of various irradiation conditions. It is shown that in the 3.5 to 25 dpa dose range, irradiation temperature plays the key rote in determination of the shift of the transition temperature. Highest embrittlement observed at 250 deg.C and the lowest at 500 deg. C. At a given irradiation temperature, shift of the fracture toughness transition temperature increases slightly with dose within the studied dose range. It appears that main gain in transition temperature shift occurred during initial {approx}5 dpa of irradiation. The present data are compared to the available published trends. (authors)

  4. Aversive conditioning in prenatally gamma-irradiated rats

    International Nuclear Information System (INIS)

    Tamaki, Yoshitaka; Hoshino, Kiyoshi; Kameyama, Yoshiro

    1987-01-01

    To examine how intrauterine exposure to gamma rays would exert on four kinds of aversive conditioning, rat fetuses were irradiated with 0.27, 0.48, or 1.46 Gy at Day 15 post conception. When ordinary avoidance conditioning was given to the groups with 0.27 and 0.48 Gy, there was no significant difference between the irradiated groups and the control group in the rate of positive avoidance response. Nor was this different in the irradiated groups and the control group, when the rate of baseline response was examined in avoidance conditioning. In positive avoidance conditioning to two kinds of anticipatory electric stimuli, the acquisition of avoidance was significantly inferior in all irradiated groups to that in the control group. When giving succesive discrimination learning, the group with 1.46 Gy tended to have higher rate of positive avoidance response and remarkably lower rate of passive avoidance response than the control group. (Namekawa, K.)

  5. Fracture toughness of A533B Part III - variability of A533B fracture toughness as determined from Charpy data

    International Nuclear Information System (INIS)

    Druce, S.G.; Eyre, B.L.

    1978-08-01

    This is the final part of a series of three reports examining the upper shelf fracture toughness of A533B Class 1 pressure vessel steel. Part I (AERE R 8968) critically reviews the current elasto plastic fracture mechanics methodologies employed to characterise toughness following extensive yielding and Part II (AERE R 8969) examines several sources of fracture mechanics data pertinent to A533B Class 1 in the longitudinal (RW) orientation. Part III is a review of the effects of (i) position and orientation within the plate (ii) welding processes and post weld heat treatment and (iii) neutron irradiation as measured by Charpy impact testing. It is concluded that the upper shelf factor energy is dependent on orientation and position and can be reduced by welding, extended post weld heat treatments and neutron irradiation. Neutron irradiation effects are known to be strongly dependent on composition and metallurgical conditions, but an explanation for the variability following extended post weld treatments has yet to be resolved. (author)

  6. The depth distribution of bubbles and fracture in He+ and D+ irradiated copper

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1982-01-01

    Transmission electron microscopy is used to investigate the spatial arrangement and distribution with depth of gas bubbles produced in Cu by irradiation at 320 K to a level approx. equal to 4 x 10 21 30 keV He + m -2 . At the depth of maximum bubble size the bubbles are random and large (up to approx. equal to 10 nm across). At both shallower and greater depths the gas bubbles are smaller (approx. equal to 2 nm diam), much more uniform in size and ordered on an fcc superlattice with a lattice constant of a 1 approx. equal to 7.7 nm which (in contrast to the average bubble size) is independent of depth. It is suggested that blistering results from fracture, at a depth near the mean projected range, between large randomly-ordered bubbles which have evolved from smaller bubbles of uniform size arranged on a superlattice. For the particular case of D + irradiation of Cu at 120 K evidence is found to suggest that the fracture mechanisms involved in blistering and flaking are quite different. (orig.)

  7. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  8. Some advances in fracture studies under the heavy-section steel technology program

    International Nuclear Information System (INIS)

    Pugh, C.E.; Corwin, W.R.; Bryan, R.H.; Bass, B.R.

    1985-01-01

    Recent results are summarized from HSST studies in three major areas that relate to assessing nuclear reactor pressure vessel integrity under pressurized-thermal-shock (PTS) conditions: irradiation effects on the fracture properties of stainless steel cladding, crack run-arrest behavior under nonisothermal conditions, and fracture behavior of a thick-wall vessel under combined thermal and pressure loadings

  9. Nuclear irradiation parameters of beryllium under fusion, fission and IFMIF irradiation conditions

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Leichtle, D.; Simakov, S.; Moeslang, A.; Vladimirov, P.

    2004-01-01

    A computational analysis is presented of the nuclear irradiation parameters for Beryllium under irradiation in typical neutron environments of fission and fusion reactors, and of the presently designed intense fusion neutron source IFMIF. The analysis shows that dpa and Tritium production rates at fusion relevant levels can be achieved with existing high flux fission reactors while the achievable Helium production is too low. The resulting He-Tritium and He/dpa ratios do not meet typical fusion irradiation conditions. Irradiation simulations in the medium flux test modules of the IFMIF neutron source facility were shown to be more suitable to match fusion typical irradiation conditions. To achieve sufficiently high production rates it is suggested to remove the creep-fatigue testing machine together with the W spectra shifter plate and move the tritium release module upstream towards the high flux test module. (author)

  10. Fast reactor irradiation effects on fracture toughness of Si_3N_4 in comparison with MgAl_2O_4 and yttria stabilized ZrO_2

    International Nuclear Information System (INIS)

    Tada, K.; Watanabe, M.; Tachi, Y.; Kurishita, H.; Nagata, S.; Shikama, T.

    2016-01-01

    Fracture toughness of silicon nitride (Si_3N_4), magnesia-alumina spinel (MgAl_2O_4) and yttria stabilized zirconia (8 mol%Y_2O_3–ZrO_2) was evaluated by the Vickers-indentation technique after the fast reactor irradiation up to 55 dpa (displacement per atom) at about 700 °C in the Joyo. The change of the fracture toughness by the irradiation was correlated with nanostructural evolution by the irradiation, which was examined by transmission electron microscopy. The observed degradation of fracture toughness in Si_3N_4 is thought to be due to the relatively high density of small-sized of the irradiation induced defects, which should be resulted from a large amount of transmutation gases of hydrogen and helium. Observed improvement of fracture toughness in MgAl_2O_4 was due to the blocking of crack propagation by the antiphase boundaries. The radiation effects affected the fracture toughness of yttria stabilized zirconia at 55 dpa, suggesting that the generated high density voids would affect the propagation of cracks. - Highlights: • Si_3N_4, MgAl_2O_4 and YSZ were neutron irradiated up to 55dpa around 700 °C in the Joyo. • They are candidate ceramics for the inert matrices of nuclear fuels in the fast reactors. • The irradiation enhanced the fracture toughness of MgAl_2O_4 and YSZ, while degraded that of Si_3N_4. • The toughness changes were correlated with radiation induced defects and transmutation gases.

  11. Fracture toughness of irradiated Zr-2.5Nb pressure tube from KAPS-2 evaluated using disk compact tension specimens

    International Nuclear Information System (INIS)

    Shah, Priti Kotak; Dubey, J.S.; Balakrishnan, K.S.; Shriwastaw, R.S.; Dhotre, M.P.; Bhandekar, A.; Pandit, K.M.; Anantharaman, S.

    2013-12-01

    The report gives the results of the fracture toughness tests carried out over the range of temperatures on specimens prepared from the irradiated S-07Zr-2.5Nb pressure tube removed from Kakrapar Atomic Power Station-2 (KAPS-2) as a part of materials surveillance programme. The pressure tube had experienced ∼ 8 effective full power years (EFPY) of reactor operation and had hydrogen equivalent (H eq ) content less than 20 ppm along the tube length. The fracture toughness tests have been carried out using 30 mm Disk Compact Tension (DCT) specimens, that were punched out of the irradiated pressure tube. The disk punching was carried out using specially made shielded enclosure and hydraulic press. Fatigue pre-cracking and fracture toughness tests were performed using servo-hydraulic universal testing machine with Direct Current Potential Drop (DCPD) equipment to monitor the crack length. The tests were carried out at different test temperature from ambient to 300℃. The fracture toughness values have been used to estimate the critical pressure for the tube. The fracture properties indicate that such tubes have sufficient toughness to satisfy the Leak-Before-Break (LBB) criterion for in-reactor operation. (author)

  12. Hip fractures and area level socioeconomic conditions: a population-based study

    Directory of Open Access Journals (Sweden)

    Rapp Kilian

    2009-04-01

    Full Text Available Abstract Background Only a limited number of studies have analyzed the association between hip fracture incidence and socioeconomic conditions. Most, but not all found an association, and results are in part conflicting. The aim of our study was to evaluate the association between hip fractures and socioeconomic conditions in Germany, from 1995 to 2004, on a census tract area level. Methods We used data from the national hospital discharge diagnosis register and data on socioeconomic and demographic characteristics of 131 census tracts from official statistics. Associations between the hip fracture incidence and socioeconomic conditions were analyzed by multiple Poisson regression models, taking overdispersion into account. Results The risk of hip fracture decreased by 4% with a 7% increase (about one interquartile range of non-German nationals. It decreased by 10% with a 6% increased rate of unemployment, increased by 7% with a 2% increase of the proportion of welfare recipients, and also increased by 3% with an increase of the proportion of single parent families of 1.9%. Conclusion Our results showed weak associations between indicators of socioeconomic conditions at area level and hip fracture risk; the varied by type of indicator. We conclude that hip fracture incidence might be influenced by the socioeconomic context of a region, but further analysis using more specific markers for deprivation on a smaller scale and individual-level data are needed.

  13. Non-linear imaging condition to image fractures as non-welded interfaces

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2014-01-01

    Hydraulic properties of a fractured reservoir are often controlled by large fractures. In order to seismically detect and characterize them, a high-resolution imaging method is necessary. We apply a non-linear imaging condition to image fractures, considered as non-welded interfaces. We derive the

  14. Non-equilibrium surface conditions and microstructural changes following pulsed laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC

    International Nuclear Information System (INIS)

    More, K.L.; Davis, R.F.

    1986-01-01

    Pulsed laser irradiation and ion beam mixing of thin Ni overlayers on sintered alpha-SiC have been investigated as potential surface modification techniques for the enhancement of the mechanical properties of the SiC. Each of these surface processing methods are nonequilibrium techniques; materials interactions can be induced at the specimen surface which are not possible with conventional thermal techniques. As a result of the surface modification, the physical properties of the ceramic can be altered under the correct processing conditions. Following laser irradiation using a pulsed ruby or krypton fluoride (KrF) excimer laser, the fracture strength of the SiC was increased by approximately 50 percent and 20 percent, respectively. However, ion-beam mixing of Ni on SiC resulted in no change in fracture strength. Cross-sectional transmission electron microscopy, scanning electron microscopy, secondary ion mass spectroscopy, and Rutherford backscattering techniques, have been used to characterize the extent of mixing between the Ni and SiC as a result of the surface modification and to determine the reason(s) for the observed changes in fracture strength. 19 references

  15. The effects of ion irradiation on the micromechanical fracture strength and hardness of a self-passivating tungsten alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, Moritz T., E-mail: mor.lessmann@gmail.com [School of Mechanical Aerospace and Civil Engineering, The University of Manchester, Manchester (United Kingdom); CCFE, Culham Science Centre, Abingdon (United Kingdom); Sudić, Ivan; Fazinić, Stjepko; Tadić, Tonči [Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia); Calvo, Aida [Ceit-IK4 and Tecnun (University of Navarra), San Sebastian (Spain); Hardie, Christopher D.; Porton, Michael [CCFE, Culham Science Centre, Abingdon (United Kingdom); García-Rosales, Carmen [Ceit-IK4 and Tecnun (University of Navarra), San Sebastian (Spain); Mummery, Paul M. [School of Mechanical Aerospace and Civil Engineering, The University of Manchester, Manchester (United Kingdom)

    2017-04-01

    An ultra-fine grained self-passivating tungsten alloy (W88-Cr10-Ti2 in wt.%) has been implanted with iodine ions to average doses of 0.7 and 7 dpa, as well as with helium ions to an average concentration of 650 appm. Pile-up corrected Berkovich nanoindentation reveals significant irradiation hardening, with a maximum hardening of 1.9 GPa (17.5%) observed. The brittle fracture strength of the material in all implantation conditions was measured through un-notched cantilever bending at the microscopic scale. All cantilever beams failed catastrophically in an intergranular fashion. A statistically confirmed small decrease in strength is observed after low dose implantation (−6%), whilst the high dose implantation results in a significant increase in fracture strength (+9%), further increased by additional helium implantation (+16%). The use of iodine ions as the implantation ion type is justified through a comparison of the hardening behaviour of pure tungsten under tungsten and iodine implantation.

  16. Analysis of nature of brazed joints fracture under operating conditions

    International Nuclear Information System (INIS)

    Orlov, A.V.; Gura, P.M.

    1985-01-01

    Technique establishing causes leading to brazed joint fracture in pressure boundary components, operating under heavy conditions of high temperature and corrosive medium is described. Some cases of tube brazed joint fractures in a superheater of 12Kh1MF and 08Kh18N10T steels are considered. The attention is paid on using metallography for determination of mechanical or corrosion fracture properties. The diagram is developed permitting to take into account the interrelation between the fracture area in the given zone and its strength

  17. Results of fracture mechanics tests on PNC SUS 304 plate

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.; Blackburn, L.D.

    1985-08-01

    PNC provided SUS 304 plate to be irradiated in FFTF at about 400 0 C to a target fluence of 5 x 10 21 n/cm 2 (E > 0.1 MeV). The actual irradiation included two basically different exposure levels to assure that information would be available for the exposure of interest. After irradiation, tensile properties, fatigue-crack growth rates and J-integral fracture toughness response were determined. These same properties were also measured for the unirradiated material so radiation damage effects could be characterized. This report presents the results of this program. It is expected that these results would be applicable for detailed fracture analysis of reactor components. Recent advances in elastic-plastic fracture mechanics enable reasonably accurate predictions of failure conditions for flawed stainless steel components. Extensive research has focused on the development of J-integral-based engineering approach for assessing the load carrying capacity of low-strength, high-toughness structural materials. Furthermore, Kanninen, et al., have demonstrated that J-integral concepts can accurately predict the fracture response for full-scale cracked structures manufactured from Type 304 stainless steel

  18. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  19. EFFECT OF GAMMA RAY IRRADIATION ON INTERLAMINAR SHEAR STRENGTH OF GLASS FIBER REINFORCED PLASTICS AT 77 K

    International Nuclear Information System (INIS)

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-01-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation

  20. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  1. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  2. Effect of irradiation on acrylic cement with special reference to fixation of pathological fractures

    International Nuclear Information System (INIS)

    Eftekhar, N.S.; Thurston, C.W.

    1975-01-01

    Self-curing cement is generally used in conjunction with conventional metallic devices. If the acrylic cement was supplemented, the primary goal would be a rigid immobiliztion of the fracture to alleviate the pain; usually, however, the final aim is toward osteosynthesis. During the course of rehabilitation, it is often desirous to supplement the treatment by irradiation. Although the industrial, dental and surgical literature has adequately dealt with many aspects of bone cement; for example, physical and chemical properties in joint replacement, and so on, the effects of irradiation on the acrylic cement have not been previously reported. It is the purpose of this paper to analyze the experimental studies conducted to evaluate the mechanical properties of the polymethylmethacrylate when subjected to irradiation within a maximum range of a therapeutic dose

  3. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  4. FFTF irradiation of fracture mechanics specimens for out-of-core structures

    International Nuclear Information System (INIS)

    King, D.C.

    1978-09-01

    The National Program Plan has established data requirements for out-of-core structures for FBRs. Significant FFTF irradiation space with moderate gamma heating levels is required to irradiate relatively large fracture mechanics specimens to total neutron fluences ranging between 5 x 10 21 and 5 x 10 22 n/cm 2 and temperatures which range between 400 0 C (750 0 F) and 650 0 C (1200 0 F). Priority 1 data on stainless steel welds requires a test volume of 7443 cm 3 (454 in 3 ). Priority 2 data on 304 and 316 SS and Inconel 718 materials and Inconel 718 welds requires 2760 cm 3 (168 in 3 ). Priority 3 data on stainless steels, other nickel-base alloys, and ferritics requires 33,118 cm 3 (2021 in 3 ). Priority 4 data at elevated temperatures on stainless steels, other nickel-base alloys and ferritics requires 69,182 cm 3

  5. Irradiated dynamic fracture toughness of ASTM A533, Grade B, Class 1 steel plate and submerged arc weldment. Heavy section steel technology program technical report No. 41

    International Nuclear Information System (INIS)

    Davidson, J.A.; Ceschini, L.J.; Shogan, R.P.; Rao, G.V.

    1976-10-01

    As a result of the Heavy Section Steel Technology Program (HSST), sponsored by the Nuclear Regulatory Commission, Westinghouse Electric Corporation conducted dynamic fracture toughness tests on irradiated HSST Plate 02 and submerged arc weldment material. Testing performed at the Westinghouse Research and Development Laboratory in Pittsburgh, Pennsylvania, included 0.394T compact tension, 1.9T compact tension, and 4T compact tension specimens. This data showed that, in the transition region, dynamic test procedures resulted in lower (compared to static) fracture toughness results, and that weak direction (WR) oriented specimen data were lower than the strong direction (RW) oriented specimen results. Irradiated lower-bound fracture toughness results of the HSST Program material were well above the adjusted ASME Section III K/sub IR/ curve. An irradiated and nonirradiated 4T-CT specimen was tested during a fracture toughness test as a preliminary study to determine the effect of irradiation on the acoustic emission-stress intensity factor relation in pressure vessel grade steel. The results indicated higher levels of acoustic emission activity from the irradiated sample as compared to the unirradiated one at a given stress intensity factor (K) level

  6. Heavy-section steel irradiation program summary

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1992-01-01

    Since a failure of the RPV carries the potential of major contamination release and severe accident, it is imperative to safe reactor operation to understand and be able to accurately predict failure models of the vessel material. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water RPVs. The program includes the direct continuation of irradiation studies previously conducted within the Heavy-Section Steel Technology Program augmented by enhanced examinations of the accompanying microstructural changes. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness (K Ic and J Ic ), crack-arrest toughness (K Ia ), ductile tearing resistance (dJ/da), Charpy V-notch impact energy, dropweight nil-ductility temperature (NDT), and tensile properties. Models based on observations of radiation-induced microstructural changes using field ion and high-resolution transmission electron microscopy provide a firmer basis for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI Program are highcopper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. In addition, a limited effort will focus on stainless steel weld overlay cladding, typical of that used on the inner surface of RPVs, since its postirradiation fracture properties have the potential for strongly affecting the extension of small surface flaws during overcooling transients. (orig./GL)

  7. Heavy-section steel irradiation program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. The RPV is one of only two major safety- related components of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness crack arrest toughness ductile tearing resistance Charpy V-notch impact energy, dropweight nil-ductility temperature and tensile properties. Models based on observations of radiation-induced microstructural changes using the field on microprobe and the high resolution transmission electron microscopy provide improved bases for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs

  8. Comparisons of irradiation-induced shifts in fracture toughness, crack arrest toughness, and Charpy impact energy in high-copper welds

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.

    1991-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program is examining relative shifts and changes in shape of fracture and crack-arrest toughness versus temperature behavior for two high-copper welds. Fracture toughness 100-MPa√m temperature shifts are greater than Charpy 41-J shifts for both welds. Mean curve fits to the fracture toughness data provide mixed results regarding curve shape changes, but curves constructed as lower boundaries indicate lower slopes. Preliminary crack-arrest toughness results indicate that shifts of lower-bound curves are approximately the same as CVN 41-J shifts with no shape changes

  9. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott A., E-mail: scott.ploger@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Hunn, John D.; Kehn, Jay S. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2014-05-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 × 10{sup 5} total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

  10. Anomalous fracture toughness of irradiated Cr-MoV - Reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahistrand, R [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    The base metal Crack Opening Displacement (COD) specimens of the irradiation-induced embrittlement surveillance programme in Loviisa 1 revealed an anomalous behaviour of K{sub JC} compared to the Charpy-V results and to expected results according to standards: about 20% of the COD specimens showed an exceptionally low fracture toughness. Abnormal test specimens were analyzed through fractography, metallography and repeated tests using reconstitution technique: the anomalous behaviour appears to be caused by incorrect pre-fatigue cracking of base metal COD specimens. 7 refs., 9 figs.

  11. Age peculiarities of postraumatic repair of open fractures in case of combined radiation injuries

    International Nuclear Information System (INIS)

    Shantyr', V.I.; Korzh, A.A.; Frenkel', L.A.; Kazitskij, V.M.; Lan'ko, A.I.; Yakovenko, M.G.

    1982-01-01

    Results of investigation of recovery in rabbit soft tissues (skin, muscle tissue) and in bones following bone fractures and whole-body X-irradiation are presented. Heavier damages developed in connective tissue in adolescent than in adult rabbits in conditions of combined radiation injuries. Normalization of connective tissue in skin and muscles was observed by 90 day in adolescent rabbits, where as connective tissue remained inferior in adult animals. Bone tissue recovery remained unfinished by 90 day in adolescent and adult rabbits in conditions of combined radiation injuries. The main reason for slowing-down of recovery of damaged tissues in case of open fracture is radiation injury in the irradiated organism

  12. Radiation-induced femoral neck fracture in patients cured of cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lukowska, K; Zomer-Drozda, J; Kielbinska, S [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    In the years 1948-1967 8275 patients with cervical carcinoma in various grades of progression were treated at the Institute of Oncology in Warsaw by radiotherapy from external fields. Five-year survival without signs of recurrence was obtained in 4204 cases, 3863 of them were irradiated from external fields with X-rays under conventional conditions, while 341 received Co/sup 60/ radiotherapy. In 43 patients treated with X-rays and radium and regarded as cured radiological evidence of femoral neck fracture was obtained. These patients account for 1.1% of all cured patients. In the group treated with Co/sup 60/ radiation in only 1 case femoral neck fracture was observed (0.3%). In the group of cured patients with femoral neck fracture the method of irradiation from external fields, the age, clinical course, radiological appearance of radiation-induced changes and the method of fracture management were analysed.

  13. Electrical in situ and post-irradiation properties of ceramics relevant to fusion irradiation conditions

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Zinkle, S.J.

    2002-01-01

    Electrical properties of ceramic candidate materials for the next-generation nuclear fusion devices under relevant irradiation conditions are reviewed. A main focal point is placed on the degradation behavior of the electrical insulating ability during and after irradiation. Several important radiation induced effects play important roles: radiation induced conductivity, thermally stimulated electrical conductivity, radiation induced electrical charge separation, and radiation induced electromotive force. These phenomena will interact with each other under fusion relevant irradiation conditions. The design of electrical components for the next-generation fusion devices should take into account these complicated interactions among the radiation induced phenomena

  14. Bilateral femoral neck fractures following pelvic irradiation

    International Nuclear Information System (INIS)

    Mitsuda, Kenji; Nishi, Hosei; Oba, Hiroshi

    1977-01-01

    Over 300 cases of femoral neck fractures following radiotherapy for intrapelvic malignant tumor have been reported in various countries since Baensch reported this disease in 1927. In Japan, 40 cases or so have been reported, and cases of bilateral femoral neck fractures have not reached to ten cases. The authors experienced a case of 75 year-old female who received radiotherapy for cancer of the uterus, and suffered from right femoral neck fracture 3 months after and left femoral neck fracture one year and half after. As clinical symptoms, she had not previous history of trauma in bilateral femurs, but she complained of a pain in a hip joint and of gait disturbance. The pain in left femoral neck continued for about one month before fracture was recognized with roentgenogram. As histopathological findings, increase of fat marrow, decrease of bone trabeculae, and its marked degeneration were recognized. Proliferation of some blood vessels was found out, but thickness of the internal membrane and thrombogenesis were not recognized. Treatment should be performed according to degree of displacement of fractures. In this case, artificial joint replacement surgery was performed to the side of fracture of this time, because this case was bilateral femoral neck fractures and the patient had received artificial head replacement surgery in the other side of fracture formerly. (Tsunoda, M.)

  15. Stress-stain relations of irradiated stainless steels below 673 K

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Hishinuma, A.; Grossbeck, M.L.

    1992-01-01

    Most specimens, irrespective of thermo-mechnaical treatment, exhibited proof stress levels of above 800 MPa and uniform elongations below 1% after irradiation in the the High Flux Isotope Reactor (HFIR). Only the solution annealed specimens irradiated at a low temperature of 328 k showed uniform elongations larger than 5% and proof stresses smaller than 800 MPa. Irradiation in the High Flux Reactor (HFR) caused more hardening than did irradiation in the HFIR. Ductility loss and change in work hardening characteristics by HFR irradiation were evaluated from reduction of area values. Residual ductility was revealed to be larger than 0.5 in natural strain, and the irradiation was estimated to have a small effect on work hardening characteristics and on fracture stress. The ductility of the irradiated alloys was found to be about 58% of that for the unirradiated alloys, as has been previously reported for irradiation in the HFIR. It was also demonstrated that true stress-strain relations, except for the fracture conditions, could be represented by Swift's type constitutive equation. (orig.)

  16. Analysis of tensile and fracture toughness results on irradiated molybdenum alloys, TZM and Mo-5%Re. Analysis of results performed in the frame of the NET task PDS 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Scibetta, M.; Chaouadi, R.; Puzzolante, J.L

    1999-10-01

    Due to their good resistance at high temperature, good thermal conductivity and swelling resistance, molybdenum alloys are considered amongst the candidates for divertor structural materials. However, little is known about their tensile and fracture toughness behaviour, in particular after irradiation. This report aims to investigate the tensile and fracture toughness properties of two molybdenum alloys, namely TZM and Mo-5%Re. Tensile and compact tension specimens were irradiated in the BR2 reactor at 40 and 450 degrees Celsius up to a fast neutron fluence of 3.5 1020 n/cm{sup 2} (0.2 dpa). Fracture toughness tests were performed on both precracked and notched specimens. Results show a drastic decrease of the ductility due to irradiation, but only a slight decrease of the fracture toughness in the lower shelf domain.

  17. Analysis of tensile and fracture toughness results on irradiated molybdenum alloys, TZM and Mo-5%Re. Analysis of results performed in the frame of the NET task PDS 1.4

    International Nuclear Information System (INIS)

    Scibetta, M.; Chaouadi, R.; Puzzolante, J.L.

    1999-10-01

    Due to their good resistance at high temperature, good thermal conductivity and swelling resistance, molybdenum alloys are considered amongst the candidates for divertor structural materials. However, little is known about their tensile and fracture toughness behaviour, in particular after irradiation. This report aims to investigate the tensile and fracture toughness properties of two molybdenum alloys, namely TZM and Mo-5%Re. Tensile and compact tension specimens were irradiated in the BR2 reactor at 40 and 450 degrees Celsius up to a fast neutron fluence of 3.5 1020 n/cm 2 (0.2 dpa). Fracture toughness tests were performed on both precracked and notched specimens. Results show a drastic decrease of the ductility due to irradiation, but only a slight decrease of the fracture toughness in the lower shelf domain

  18. Irradiation effects on aluminium and beryllium

    International Nuclear Information System (INIS)

    Bieth, M.

    1992-01-01

    The High Flux Reactor (HFR) in Petten (The Netherlands) is a 45 MW light water cooled and moderated research reactor. The vessel was replaced in 1984 after more than 20 years of operation because doubts had arisen over the condition of the aluminium alloy construction material. Data on the mechanical properties of the aluminium alloy Al 5154 with and without neutron irradiation are necessary for the safety analysis of the new HFR vessel which is constructed from the same material as the old vessel. Fatigue, fracture mechanics (crack growth and fracture toughness) and tensile properties have been obtained from several experimental testing programmes with materials of the new and the old HFR vessel. 1) Low-cycle fatigue testing has been carried out on non-irradiated specimens from stock material of the new HFR vessel. The number of cycles to failure ranges from 90 to more than 50,000 for applied strain from 3.0% to 0.4%; 2) Fatigue crack growth rate testing has been conducted: - with unirradiated specimens from stock material of the new vessel; - with irradiated specimens from the remnants of the old core box. Irradiation has a minor effect on the sub-critical fatigue crack growth rate. The ultimate increase of the mean crack growth rate amounts to a factor of 2. However crack extension is strongly reduced due to the smaller crack length for crack growth instability (reduction of K IC ). - Irradiated material from the core box walls of the old vessel has been used for fracture toughness testing. The conditional fracture toughness values K IQ ranges from 30.3 down to 16.5 MPa√m. The lowermost meaningful 'K IC ' is 17.7 MPa√m corresponding to the thermal fluence of 7.5 10 26 n/m 2 for the End of Life (EOL) of the old vessel. - Testing carried out on irradiated material from the remnants of the old HFR core box shows an ultimate neutron irradiation hardening of 35 points increase of HSR 15N and an ultimate tensile yield stress of 589 MPa corresponding to the

  19. Ductility and failure behaviour of both unirradiated and irradiated zircaloy-4 cladding using plane strain tensile specimens

    International Nuclear Information System (INIS)

    Carassou, S.; Le Saux, M.; Pizzanelli, J.P.; Rabouille, O.; Averty, X.; Poussard, C.; Cazalis, B.; Desquines, J.; Bernaudat, C.

    2010-01-01

    In this work, eight PST (Plan Strain Tensile) tests machined from a Zircaloy-4 (Zy-4) cladding irradiated up to 5 annual cycles have been performed at 280, 350 and 480 Celsius degrees. The specimen displacements during the tests were filmed and digitally recorded to allow the use of a Digital Image Correlation (DIC) analysis technique to experimentally determine the local strains on the outer surface of the specimens. The plane strain conditions have been verified and prevail over a wide area between the notches of the specimen, as expected from full 3D FE numerical analysis performed in support of the tests. For the first time, the location of the onset of fracture for this geometry on irradiated material has been experimentally observed: at 280 C.degrees, crack initiates in the vicinity of the notches, in an area where plane strain conditions are not fulfilled, and for a local circumferential strain value of about 5%. At 350 C. degrees and 480 C. degrees, cracks initiate at a location where plane strain conditions prevail, for circumferential strain values respectively close to 10% and greater than 50%. These results have been compared to results obtained previously by similar test on fresh and hydrided material, as well as tests performed as support to the study. At 350 C. degrees, the homogeneous 700 ppm hydrided Zy-4 and the Zy-4 irradiated during 5 annual cycles exhibit similar fracture behaviour, for both fracture hoop strain values (10%) and fracture mode (through-wall slant fracture). For the irradiated material, it has clearly been established that at 350 C. degrees, a brittle fracture occurs at the outer surface in the hydride rim. The crack propagates subsequently toward the inner surface and the notches, where final fracture occurs

  20. A new method for improving the reliability of fracture toughness surveillance of nuclear pressure vessel by neutron irradiated embrittlement

    International Nuclear Information System (INIS)

    Zhang Xinping; Shi Yaowu

    1992-01-01

    In order to obtain more information from neutron irradiated sample specimens and raise the reliability of fracture toughness surveillance test, it has more important significance to repeatedly exploit the broken Charpy-size specimen which had been tested in surveillance test. In this work, on the renewing design and utilization for Charpy-size specimens, 9 data of fracture toughness can be gained from one pre-cracked side-grooved Charpy-size specimen while at the preset usually only 1 to 3 data of fracture toughness can be obtained from one Chharpy-size specimen. Thus, it is found that the new method would obviously improve the reliability of fracture toughness surveillance test and evaluation. Some factors which affect the reasonable design of pre-cracked deep side-groove Charpy-size compound specimen have been discussed

  1. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  2. Test methodology and technology of fracture toughness for small size specimens

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, E.; Takada, F.; Ishii, T.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Matsukawa, S. [JNE Techno-Research Co., Kanagawa-ken (Japan)

    2007-07-01

    Full text of publication follows: Small specimen test technology (SSTT) is required to investigate mechanical properties in the limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources. The test methodology guideline and the manufacture processes for very small size specimens have not been established, and we would have to formulate it. The technology to control exactly the load and displacement is also required in the test technology under the environment of high dose radiation produced from the specimens. The objective of this study is to examine the test technology and methodology of fracture toughness for very small size specimens. A new bend test machine installed in hot cell has been manufactured to obtain fracture toughness and DBTT (ductile - brittle transition temperature) of reduced-activation ferritic/martensitic steels for small bend specimens of t/2-1/3PCCVN (pre-cracked 1/3 size Charpy V-notch) with 20 mm length and DFMB (deformation and fracture mini bend specimen) with 9 mm length. The new machine can be performed at temperatures from -196 deg. C to 400 deg. C under unloading compliance method. Neutron irradiation was also performed at about 250 deg. C to about 2 dpa in JMTR. After the irradiation, fracture toughness and DBTT were examined by using the machine. Checking of displacement measurement between linear gauge of cross head's displacement and DVRT of the specimen displacement was performed exactly. Conditions of pre-crack due to fatigue in the specimen preparation were also examined and it depended on the shape and size of the specimens. Fracture toughness and DBTT of F82H steel for t/2-1/3PCCVN, DFMB and 0.18DCT specimens before irradiation were examined as a function of temperature. DBTT of smaller size specimens of DFMB was lower than that of larger size specimen of t/2-1/3PCCVN and 0.18DCT. The changes of fracture toughness and DBTT due to irradiation were also

  3. Master curve approach to monitor fracture toughness of reactor pressure vessels in nuclear power plants

    International Nuclear Information System (INIS)

    2009-10-01

    A series of coordinated research projects (CRPs) have been sponsored by the IAEA, starting in the early 1970s, focused on neutron radiation effects on reactor pressure vessel (RPV) steels. The purpose of the CRPs was to develop correlative comparisons to test the uniformity of results through coordinated international research studies and data sharing. The overall scope of the eighth CRP (CRP-8), Master Curve Approach to Monitor Fracture Toughness of Reactor Pressure Vessels in Nuclear Power Plants, has evolved from previous CRPs which have focused on fracture toughness related issues. The ultimate use of embrittlement understanding is application to assure structural integrity of the RPV under current and future operation and accident conditions. The Master Curve approach for assessing the fracture toughness of a sampled irradiated material has been gaining acceptance throughout the world. This direct measurement of fracture toughness approach is technically superior to the correlative and indirect methods used in the past to assess irradiated RPV integrity. Several elements have been identified as focal points for Master Curve use: (i) limits of applicability for the Master Curve at the upper range of the transition region for loading quasi-static to dynamic/impact loading rates; (ii) effects of non-homogeneous material or changes due to environment conditions on the Master Curve, and how heterogeneity can be integrated into a more inclusive Master Curve methodology; (iii) importance of fracture mode differences and changes affect the Master Curve shape. The collected data in this report represent mostly results from non-irradiated testing, although some results from test reactor irradiations and plant surveillance programmes have been included as available. The results presented here should allow utility engineers and scientists to directly measure fracture toughness using small surveillance size specimens and apply the results using the Master Curve approach

  4. Numerical investigations of rib fracture failure models in different dynamic loading conditions.

    Science.gov (United States)

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam

    2016-01-01

    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  5. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alexandreanu, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  6. The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31

    Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

  7. The evolution of mechanical property change in irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Lucas, G.E.

    1993-01-01

    The evolution of mechanical properties in austenitic stainless steels during irradiation is reviewed. Changes in strength, ductility and fracture toughness are strongly related to the evolution of the damage microstructure and microstructurally-based models for strengthening reasonably correlate the data. Irradiation-induced defects promote work softening and flow localization which in turn leads to significant reductions in ductility and fracture toughness beyond about 10 dpa. The effects of irradiation on fatigue appear to be modest except at high temperature where helium embrittlement becomes important. The swelling-independent component of irradiation creep strain increases linearly with dose and is relatively insensitive to material variables and irradiation temperature, except at low temperatures where accelerated creep may occur as a result of low vacancy mobility. Creep rupture life is a strong function of helium content, but is less sensitive to metallurgical conditions. Irradiation-induced stress corrosion cracking appears to be related to the evolution of radiation-induced segregation/depletion at grain boundaries, and hence may not be significant at low irradiation temperatures. (orig.)

  8. Bone fractures following external beam radiotherapy and limb-preservation surgery for lower extremity soft tissue sarcoma: relationship to irradiated bone length, volume, tumor location and dose.

    Science.gov (United States)

    Dickie, Colleen I; Parent, Amy L; Griffin, Anthony M; Fung, Sharon; Chung, Peter W M; Catton, Charles N; Ferguson, Peter C; Wunder, Jay S; Bell, Robert S; Sharpe, Michael B; O'Sullivan, Brian

    2009-11-15

    To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to >or=40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. For fracture patients, mean dose to bone was 45 +/- 8 Gy (mean dose at fracture site 59 +/- 7 Gy), mean FS was 37 +/- 8 cm, maximum dose was 64 +/- 7 Gy, and V40 was 76 +/- 17%, compared with 37 +/- 11 Gy, 32 +/- 9 cm, 59 +/- 8 Gy, and 64 +/- 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. The risk of radiation-induced fracture appears to be reduced if V40 Fracture incidence was lower when the mean dose to bone was lower mean FS for nonfracture patients.

  9. Effect Of Irradiation Temperature and Dose On Mechanical Properties And Fracture Characteristics Of Cu//SS Joints For ITER

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Peacock, A.; Roedig, M.; Linke, J.; Gervash, A.; Barabash, V.

    2007-01-01

    Full text of publication follows: By now, a number of technologies have been proposed for the production of Cu//SS joints for ITER, such as brazing, friction welding, HIP and cast-copper-to-steel (CC). The two last-mentioned technologies ensure sufficiently high mechanical properties and a high joint quality, when unirradiated. The data, however, on mechanical characteristics of irradiated of Cu//SS HIP joints are limited. In this paper, the authors present the results of investigations into the mechanical characteristics after irradiation of GlidCopAl25/316L(N) and Cu-Cr-Zr/316L(N)-type joints produced by the HIP and CC technologies. Specimens of the joints were irradiated in the RBT-6 reactor in the dose range of 10 -3 - 10 -1 dpa at T irr = 200 deg. C and 300 deg. C. The tensile stress-strain curves for irradiated and unirradiated joint specimens show deformation processes occurring in both the Cu and SS parts of the specimens. Irradiation at T irr = 200 deg. C causes strengthening of the joints specimens (by about 100 MPa at the maximum dose). The uniform elongation drops from 8% in the initial state to 2-3 %. But the total elongation remains at a relatively high level of ∼ 7%. Irradiation at T irr = 300 deg. C causes a slight strengthening of the joints specimens (∼30 MPa). The uniform elongation remains unchanged at ∼ 7%. The total elongation also maintains a relatively high level of ∼9-13%. SEM investigations revealed that fracture occurs only in the copper part of the irradiated specimens, and ductile trans-crystalline fracture predominates in the joints. 3D finite element analysis of the tensile test indicates that the concentration of stresses and deformations in the copper layer adjacent to the joint line is responsible for this typical failure of the irradiated joints specimens. Comparison of the behavior of the joints irradiated at T irr = 200 deg. C and 300 deg. C indicate an increased embrittlement at lower irradiation temperatures. At a

  10. Influence of irradiation conditions on the gamma irradiation effect in polyethylene

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Gal, O.; Novakovic, L.J.; Secerov, B.

    2002-01-01

    Complete text of publication follows. The radiation cross-linking of polyethylene, due to its high cross-linking yield, has resulted in the radiation technology that has found application in radiation production of heat shrinkable structures and in improvement of mechanical and thermo-physical properties of oriented polyethylene objects. It is observed that the cross-linking efficiency decreases when the irradiation is carried out in the presence of oxygen. In order to estimate the conditions that improve cross-linking efficiency, gamma irradiation effect in two types of polyethylene, irradiated in water and air was investigated. The polyethylene samples used were the low density (LDPE) Lotrene CdF 0302 with 45% crystallinity and the high density (HDPE) Hiplex EHM 6003 with 73% crystallinity. Both kinds of samples, fixed in the Pyrex glass tubes, were simultaneously irradiated with 60 Co gamma rays in distilled water and air, at a doses rate of 9,5 kGy/h (determined by the Fricke dosimeter) at room temperature. Radiation induced oxidative degradation was followed through oxygen containing group formation by the carbonyl group band (1720 cm -1 ) and transvinylene group formation by the band at 966 cm -1 in the infrared spectra. Cross-linking efficiency was determined by gel content using the procedure of the extraction in xylene. The monitored effects of gamma irradiation in water and air point to the conclusion that irradiation in water leads to the lower oxidative degradation and higher cross-linking compared with the effects measured after irradiation in air

  11. Material Fracture Characterization and Toughness Improving Technology Developments

    International Nuclear Information System (INIS)

    Lee, Bong Sang; Kim, M. C.; Lee, H. J. and others

    2005-04-01

    Reactor pressure boundary components including pressure vessel and piping are facing a severe aging condition that can degrade the physical-mechanical properties under neutron irradiation, high temperature, high pressure, and corrosive environments. In order to increase the safety of nuclear power plants, it is inevitable to improve the credibility and capability of evaluation technology based on the quantitative fracture mechanics for aging assessment of reactor components. Irradiation embrittlement is the primary aging mechanism of reactor pressure vessel and various techniques have been developed to predict the aging characteristics by using only small volume of irradiated materials. Material database of the domestic structural steels for KSNP's under reactor environments must be very important to play a role in developing an advanced material, in improving the safety of nuclear components, and also in expanding the nuclear industry abroad. This research project has been focused on developing an advanced technology of testing and analysis in the fracture mechanical point of view as well as acquiring test data and improving the performance of nuclear structural steels

  12. Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels

    International Nuclear Information System (INIS)

    Spaetig, P.; Bonade, R.; Odette, G.R.; Rensman, J.W.; Campitelli, E.N.; Mueller, P.

    2007-01-01

    We investigate the plastic flow properties at low and high temperature of the tempered martensitic steel Eurofer97. We show that below room temperature, where the Peierls friction on the screw dislocation is active, it is necessary to modify the usual Taylor's equation between the flow stress and the square root of the dislocation density and to include explicitly the Peierls friction stress in the equation. Then, we compare the fracture properties of the Eurofer97 with those of the F82H steel. A clear difference of the fracture toughness-temperature behavior was found in the low transition region. The results indicate a sharper transition for Eurofer97 than for the F82H. Finally, the shift of the median toughness-temperature curve of the F82H steel was determined after two neutron irradiations performed in the High Flux Reactor in Petten

  13. Effects of non-steady irradiation conditions on fusion materials performance

    International Nuclear Information System (INIS)

    Matsui, H.; Fukumoto, K.; Nagumo, T.; Nita, N.

    2001-01-01

    During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)

  14. Behaviour of the activity of cellulase irradiated under various conditions

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    The activity of cellulase irradiated at various conditions has been studied. The activity of cellulase irradiated at low temperature (-78 0 C) increased by heating at 40 0 C, but that of cellulase irradiated at high temperature above 0 0 C decreased. The activity of cellulase irradiated in the dry state at room temperature increased with irradiation dose. The effect of adding biological substances such as amino acids, enzymes, and agar on the irradiation of cellulase was studied. It was shown that EDTA and p-benzoquinone have a protective ability against radiation-induced inactivation of the enzyme. (author)

  15. Behaviour of the activity of cellulase irradiated under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I

    1988-04-18

    The activity of cellulase irradiated at various conditions has been studied. The activity of cellulase irradiated at low temperature (-78 /sup 0/C) increased by heating at 40 /sup 0/C, but that of cellulase irradiated at high temperature above 0 /sup 0/C decreased. The activity of cellulase irradiated in the dry state at room temperature increased with irradiation dose. The effect of adding biological substances such as amino acids, enzymes, and agar on the irradiation of cellulase was studied. It was shown that EDTA and p-benzoquinone have a protective ability against radiation-induced inactivation of the enzyme.

  16. Study of Irradiation Effects on the Fracture Properties of A533-Series Ferritic Steels

    International Nuclear Information System (INIS)

    Lee, Yong Bok; Lee, Gyeong Geun; Kwon, Jun Hyun

    2011-01-01

    Since the Kori nuclear power plant unit 3 (Kori-3) was founded in 1986, the surveillance tests have been conducted five times. One of the primary objectives of the surveillance test is to determine the effects of irradiation on reactor pressure vessel (RPV) steel embrittlement. The RPV is made out of ferritic steels such as SA533 type B class 1, which were used for early nuclear power plants industry including Kori-2, 3, 4 and Yonggwang-1, 2 units in Korea. The Westinghouse supplied Kori-3 with the RPV steels ASTM A533 grade B class 1, which is equivalent to SA533 type B class 1. The irradiation effects on tensile properties in ASTM A533 grade B class 1 steel had been studied by Steichen and Williams. They experimentally determined the effect of strain rate and temperature on the tensile properties of unirradiated and irradiated A533 grade B steel 1. The effects of neutron irradiation on ferritic steels could be determined from tensile properties, as well as the fracture strength and toughness measurements. Hunter and Williams have reported that the strength and ductility for unirradiated material at a low strain rate increase with decreasing test temperature. Also, neutron irradiation increases strength and decreases ductility. Crosley and Ripling revealed that the yield strength of unirradiated material rapidly increases with the strain rate. Therefore, yield strength for unirradiated and irradiated materials should be determined by test parameters along with strain rate and temperature. In this study we compare ASTM A533 grad B class 1 steel obtained from several papers with SA533 type B class 1 steel taken from the surveillance data of Kori-3 unit, whose mechanical property of unirradiated and irradiated materials was correlated with the rate-temperature parameter

  17. The influence of low dose irradiation on the creep properties of type 316 welds

    International Nuclear Information System (INIS)

    Marshall, P.; Steeds, J.W.; Lin, Y.P.; Finlan, G.T.

    1987-01-01

    Fully instrumented creep and stress rupture tests have been performed at 873K for times up to 20,000h on a series of type 316 steel/17Cr 8Ni 2Mo weld metal specimens in the unirradiated and thermal neutron irradiated conditions. The specimens tested included all weld metal longitudinal and transverse composites in the as-welded condition and following a stress relief heat treatment of 10h at 1075K. Simulated heat affected zone (HAZ) specimens were also tested. Analysis of the creep results combined with metallography, autoradiography and TEM established that the decrease in properties of irradiated samples is caused by an increasing secondary strain rate due to enhanced helium induced grain boundary fracture of the simulated HAZ and enhanced interdendritic fracture in the weld metal. Implications of strength reductions on the design of welded structures subjected to thermal irradiation are briefly assessed. (author)

  18. In-reactor deformation and fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bloom, E.E.; Wolfer, W.G.

    1978-01-01

    An experimental technique for determining in-reactor fracture strain was developed and demonstrated. Differential swelling between a sample holder and a test specimen with a lower swelling rate produced uniaxial deformation. In-reactor deformations of 0.7 to 2.1% were achieved in type 304 stainless steel previously irradiated to fluences up to 8.8 x 10 26 n/m 2 without fracture. These strains are significantly higher than found in postirradiation creep-rupture tests on similar samples. From the measured strain values and published irradiation creep data and correlations, the stress levels during the irradiation were calculated. On the basis of previous postirradiation creep-rupture results, many of the samples that did not fail would be predicted to fail. Thus we conclude that the in-reactor rupture life is longer than predicted by postirradiation tests. Strain in a fractured sample was estimated to be less than 3.8%, and the in-reactor fractures were intergranular--the same fracture mode as found in postirradiation tests. Irradiation creep may relax stresses at crack tips and sliding boundaries, thus retarding the initiation and/or growth of cracks and leading to longer rupture lives in-reactor. However, the very high ductility or superplastic behavior predicted by the strain rate sensitivity of irradiation creep is not achieved because of the eventual interruption of the deformation process by grain boundary fracture

  19. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1994-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (1.25 mm diam by 4.6 mm thick). Specimens of European type 316L austenitic stainless steel were irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 or 250 C and tested over a temperature range from 20 to 250 C. Results show that irradiation to this dose level at these temperatures reduces the fracture toughness but the toughness remains quite high. The toughness decreases as the test temperature increases. Irradiation at 250 C is more damaging than at 90 C, causing larger decreases in the fracture toughness. The testing shows that it is possible to generate useful fracture toughness data with a small disk compact specimens

  20. Fracture appraisal of large scale glass block under various realistic thermal conditions

    International Nuclear Information System (INIS)

    Laude, F.; Vernaz, E.; Saint-Gaudens, M.

    1982-06-01

    Fracturing of nuclear waste glass caused primarily by thermal and residual stresses during cooling increases the potential leaching surface area and the number of small particles. A theoretical study shows that it is possible to calculate the stresses created but it is difficult to evaluate the state of fracture. Theoretical results are completed by an experimental study with inactive industrial scale glass blocks. The critical stages of its thermal history are simulated and the total surface area of the pieces is measured by comparison of leaching rate of the fractured glass with known samples in the same conditions. Quenching due to water impact, air cooling in a storage fit and experimental reassembly of fractured glass by re-heating are examined

  1. Techniques developed to evaluate the fracture toughness offast breeder reactor duct

    International Nuclear Information System (INIS)

    Huang, F.H.; Wire, G.L.

    1979-01-01

    Large changes in strength and ductility of metals after irradiation are known to occur. The fracture toughness of irradiated metals, which is related to the combined strength and ductility of a material, may be significantly reduced and the potential for unstable crack extension increased. Therefore, the resistance of cladding and duct materials to fracture after exposure to fast neutron environments is of concern. Existing Type 316 stainless steel irradiated ducts are relatively thin and since this material retains substantial ductility, even after irradiation, the fracture behavior of the duct material cannot be analyzed by linear elastic fracture mechanics techniques. Instead, the multispecimen R-curve method and J-integral analysis were used to develop an experimental approach to evaluate the fracture toughness of thin breeder reactor duct materials irradiated at elevated temperatures. Alloy A-286 was chosen for these experiments because the alloy exhibits elastic/plastic behavior and the fracture toughness data of thicker (12 mm) specimens were available for comparison. Technical problems associated with specimen buckling and remote handling were treated in this work. The results are discussed in terms of thickness criterion for plane strain

  2. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Science.gov (United States)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  3. Bone Fractures Following External Beam Radiotherapy and Limb-Preservation Surgery for Lower Extremity Soft Tissue Sarcoma: Relationship to Irradiated Bone Length, Volume, Tumor Location and Dose

    International Nuclear Information System (INIS)

    Dickie, Colleen I.; Parent, Amy L.; Griffin, Anthony M.; Fung, Sharon; Chung, Peter W.M.; Catton, Charles N.; Ferguson, Peter C.; Wunder, Jay S.; Bell, Robert S.; Sharpe, Michael B.; O'Sullivan, Brian

    2009-01-01

    Purpose: To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Methods and Materials: Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to ≥40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. Results: For fracture patients, mean dose to bone was 45 ± 8 Gy (mean dose at fracture site 59 ± 7 Gy), mean FS was 37 ± 8 cm, maximum dose was 64 ± 7 Gy, and V40 was 76 ± 17%, compared with 37 ± 11 Gy, 32 ± 9 cm, 59 ± 8 Gy, and 64 ± 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. Conclusions: The risk of radiation-induced fracture appears to be reduced if V40 <64%. Fracture incidence was lower when the mean dose to bone was <37 Gy or maximum dose anywhere along the length of bone was <59 Gy. There was a trend toward lower mean FS for nonfracture patients.

  4. Review of irradiation experiments for water reactor safety research

    International Nuclear Information System (INIS)

    Tobioka, Toshiaki

    1977-02-01

    A review is made of irradiation experiments for water reactor safety research under way in both commercial power plants and test reactors. Such experiments are grouped in two; first, LWR fuel performance under normal and abnormal operating conditions, and second, irradiation effects on fracture toughness in LWR vessels. In the former are fuel densification, swelling, and the influence of power ramp and cycling on fuel rod, and also fuel rod behavior under accident conditions in in-reactor experiment. In the latter are the effects of neutron exposure level on the ferritic steel of pressure vessels, etc.. (auth.)

  5. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions

    International Nuclear Information System (INIS)

    Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.

    2011-01-01

    Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.

  6. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    International Nuclear Information System (INIS)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-01-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The

  7. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E.

    1995-01-01

    The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab

  8. Postirradiation fracture toughness of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1983-01-01

    The effect of fast-neutron irradiation on the fracture toughness response of Inconel X-750 was characterized at 427 deg C using the J-R curve technique. Irradiation exposures ranging from 3 to 16 displacements per atom resulted in a reduction in Jsub(Ic) from 130 to 76 kJ/m 2 and a reduction in tearing modulus from 32 to 2.6. Postirradiation fractographic examination revealed that an intergranular fracture mechanism was dominant, in contrast to the extensive transgranular cracking mode found on unirradiated fracture surfaces. The enhanced intergranular failure observed after irradiation was caused by extensive heterogeneous slip in a matrix that was greatly strengthened by an irradiation-induced dislocation substructure. Specifically, intense planar slip bands impinged on the grain boundaries and generated large stress concentrations. Since the stress concentrations could not be relaxed by the hardened matrix, the grain boundaries 'unzipped' readily, resulting in the low toughness and tearing resistance. (author)

  9. Microstructure and fracture toughness of irradiated stainless steel retrieved from the field: the potential role of radiation-induced clusters

    International Nuclear Information System (INIS)

    Chou, P.; Soneda, N.; Nishida, K.; Dohi, K.; Marquis, E.A.; Chen, Y.

    2015-01-01

    The microstructures of six material/fluence combinations of stainless steels retrieved from BWR components (top guide and control rods) have been examined by atom probe tomography; the irradiated microstructure had been already characterized by transmission electron microscopy (TEM). The fracture toughness of two material/fluence combinations had been previously measured. The aggregate results strongly suggest that radiation-induced clusters play a significant role in the degradation of fracture toughness that occurs at fluences below ∼ 13 dpa. Because TEM has not been able to consistently identify and quantify the nano-sized clusters in this fluence range, it has not highlighted the potential role of radiation-induced clusters. (authors)

  10. Intensely irradiated steel components: Plastic and fracture properties, and a new concept of structural design criteria for assuring the structural integrity

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Jitsukawa, Shiro; Okubo, Nariaki; Takada, Fumiki

    2010-01-01

    In order to develop a systematic and reasonable concept assuring the structural integrity of components under intense neutron irradiation, two basic tensile properties, true stress-true strain (TS-TS) curves and fracture strain, were investigated on an austenitic stainless steel and martensitic steel. Application of Swift equation is confirmed to a large plastic strain range of TS-TS curves. Fracture strain ε f data were well correlated as ε f + ε 0 = const. where ε 0 is the pre-strain representing the irradiation hardening. Based on those formulations and available experimental information, several critical issues to be dealt with in developing the concept were identified possible reduction in ductility, significant change in mechanical properties, remarkable cyclic softening and other unique cyclic properties observed during a high-cycle fatigue testing, and the redundancy of the plastic collapse concept to bending. Existing structural codes are all based on the assumption that there will be no significant changes in mechanical properties during operation, and of high ductility. Therefore, a new concept for assuring structural integrity is required for application not only to components with high ductility but also components with reduced ductility. First, potential failure modes were identified, and a new and systematic concept was proposed for preventing these modes of failure, introducing a new concept of categorizing the loadings by stability of deformation process to fracture (as type F and M loadings). Based on the basic concept, a detailed concept of how to protect against ductile fracture was given, and loading type-dependent limiting parameters were set. Finally, application of the detailed concept was presented, especially on determination of loading type (in numerical approach, the formulation of TS-TS curves and fracture strain derived above are needed), and on how to determine the limiting parameters as allowable limits. Experiments were done to

  11. Intensely irradiated steel components: Plastic and fracture properties, and a new concept of structural design criteria for assuring the structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuhiko, E-mail: suzuki.kazuhiko@jaea.go.j [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Jitsukawa, Shiro; Okubo, Nariaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Takada, Fumiki [Japan Atomic Energy Agency, Department of JMTR Operation, Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki-ken 311-1393 (Japan)

    2010-06-15

    In order to develop a systematic and reasonable concept assuring the structural integrity of components under intense neutron irradiation, two basic tensile properties, true stress-true strain (TS-TS) curves and fracture strain, were investigated on an austenitic stainless steel and martensitic steel. Application of Swift equation is confirmed to a large plastic strain range of TS-TS curves. Fracture strain epsilon{sub f} data were well correlated as epsilon{sub f} + epsilon{sub 0} = const. where epsilon{sub 0} is the pre-strain representing the irradiation hardening. Based on those formulations and available experimental information, several critical issues to be dealt with in developing the concept were identified possible reduction in ductility, significant change in mechanical properties, remarkable cyclic softening and other unique cyclic properties observed during a high-cycle fatigue testing, and the redundancy of the plastic collapse concept to bending. Existing structural codes are all based on the assumption that there will be no significant changes in mechanical properties during operation, and of high ductility. Therefore, a new concept for assuring structural integrity is required for application not only to components with high ductility but also components with reduced ductility. First, potential failure modes were identified, and a new and systematic concept was proposed for preventing these modes of failure, introducing a new concept of categorizing the loadings by stability of deformation process to fracture (as type F and M loadings). Based on the basic concept, a detailed concept of how to protect against ductile fracture was given, and loading type-dependent limiting parameters were set. Finally, application of the detailed concept was presented, especially on determination of loading type (in numerical approach, the formulation of TS-TS curves and fracture strain derived above are needed), and on how to determine the limiting parameters as

  12. Experimental characterization and modelling of the alteration of fractured cement under CO2 storage conditions

    International Nuclear Information System (INIS)

    Abdoulghafour, Halidi

    2012-01-01

    The main purpose of this thesis was to characterize and to model the hydrodynamic and thermochemical processes leading to the alteration of the wellbore cement materials under borehole conditions. Percolation experiments were performed on fractured cement samples under CO 2 storage conditions (60 C and 10 MPa). Injection flow rate was dictated by the fracture aperture of each sample. CO 2 enriched brine was flowed along the fracture aperture, and permeability changes as well as chemical evolution of major cations were continuously acquired during the experiment time. Reaction paths developed by the alteration of the cement were characterized using microtomography and ESEM images. The experiments conducted using samples presenting large fracture apertures during 5 h showed that permeability was maintained constant during the experiment time. Three reacted layers were displaying by the alteration of portlandite and CSH. Long term experiment (26 h) conducted with large initial fracture aperture showed a decrease of the permeability after 15 hours of CO 2 exposure. Otherwise, experiments performed on samples presenting narrow apertures indicated the conversion of portlandite and CSH to calcite leading to the permeability reduction and the fracture clogging. Assemblages of phases and chemical changes were modelled using GEMS-PSI speciation code. We studied also using a coupled transport-reactive model the conditions leading to the cement alteration and the formation of associated layers. (author)

  13. Development of fracture toughness test method for nuclear grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. H.; Lee, J. S.; Cho, H. C.; Kim, D. J.; Lee, D. J. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    Because of its high strength and stability at very high temperature, as well as very low thermal neutron absorption cross-section, graphite has been widely used as a structural material in Gas Cooled Reactors (GCR). Recently, many countries are developing the Very High Temperature gas cooled Reactor (VHTR) because of the potentials of hydrogen production, as well as its safety and viable economics. In VHTR, helium gas serves as the primary coolant. Graphite will be used as a reflector, moderator and core structural materials. The life time of graphite is determined from dimensional changes due to neutron irradiation, which closely relates to the changes of crystal structure. The changes of both lattice parameter and crystallite size can be easily measured by X-ray diffraction method. However, due to high cost and long time of neutron irradiation test, ion irradiation test is being performed instead in KAERI. Therefore, it is essential to develop the technique for measurement of ion irradiation damage of nuclear graphite. Fracture toughness of nuclear grade graphite is one of the key properties in the design and development of VHTR. It is important not only to evaluate the various properties of candidate graphite but also to assess the integrity of nuclear grade graphite during operation. Although fracture toughness tests on graphite have been performed in many laboratories, there have been wide variations in values of the calculated fracture toughness, due to the differences in the geometry of specimens and test conditions. Hence, standard test method for nuclear graphite is required to obtain the reliable fracture toughness values. Crack growth behavior of nuclear grade graphite shows rising R-curve which means the increase in crack growth resistance as the crack length increases. Crack bridging and microcracking have been proposed to be the dominant mechanisms of rising R-curve behavior. In this paper, the technique to measure the changes of crystallite size and

  14. Unstable ductile fracture conditions in upper shelf region

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Kubo, Takahiro

    1985-01-01

    The phenomenon of unstability of ductile fracture in the upper shelf region of a forged steel for nuclear reactor pressure vessels A508 Cl. 3 was studied with a large compliance apparatus, whose spring constants were 100, 170 and 230 kgf/mm, at the test temperatures of 100, 200 and 300 0 C and at the loading rates of 2, 20 and 200 mm/min in the crosshead speed. The main results obtained are as follows: (1) The fracture modes of the specimens consisted of (a) stable fracture, (b) unstable fracture which leads to a complete fracture rapidly and (c) quasiunstable fracture which does not lead to a complete fracture though a rapid extension of ductile crack takes place. (2) Side groove, high temperature or small spring constant made a ductile crack more unstable. (3) High temperature or large spring constant made the occurrence of quasiunstable fracture easier. (4) Quasiunstable ductile fracture took place before the maximum load, that is, at the J integral value of about 10 kgf/mm. The initiation of a microscopic ductile crack, therefore, seems to lead to quasiunstable fracture. (5) The concept that unstable ductile fracture takes place when Tsub(app) exceeds Tsub(mat) seems applicable only to the case in which unstable ductile fracture takes place after the maximum load has been exceeded. (author)

  15. Fracture analysis of HFIR beam tube caused by radiation embrittlement

    International Nuclear Information System (INIS)

    Chang, S.J.

    1994-01-01

    With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation

  16. Low dose irradiation effects on DIN 1.4948 mechanical properties

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Vries, M.I. de

    For the SNR 300 the licensing authorities require the determination of the lower boundaries of post-irradiation mechanical properties for DIN 1.4948 parent metal and welded joints. It has been established that with decreasing strain rate the post-irradiation tensile ductility decreases. A transition strain rate has been observed, above which there is no effect of irradiation on ductility. The transition strain rate increases with increasing temperature. Coarse grained heats show lower ultimate tensile strength above 800 K than fine grained heats. There is no significant effect of irradiation on load controlled high cycle fatigue with frequencies of 1 Hz or higher. In low cycle fatigue numbers of cycles to failure decrease with decreasing frequency. Increasing the test temperature reduces the number of cycles to failure even more. The frequency effect is more evident at 823 K. Parent metal has a better fatigue resistance than welded joints in unirradiated and irradiated condition. Creep strength is reduced by irradiation due to loss of ductility. It is shown that with increasing grain size the rupture strength decreases. The ductility of welded joints after irradiation is low, in some cases as low as 0.5% creep strain. After irradiation, tensile, creep and fatigue fracture surfaces show many more intergranular features than in the equivalent unirradiated condition. The promotion of intergranular fracture by irradiation and the consequent degradation of low strain rate mechanical properties is explained by the presence of helium on grain boundaries. Several measures to increase the helium content threshold can be taken, such as grain refinement, homogeneous boron distribution and promotion of helium bubble initiation. In cases where helium embrittlement is encountered, life reduction factors on unirradiated material properties must be applied

  17. Effect of gamma irradiation on the sensitivities of escherichia coli at deep frozen conditions

    International Nuclear Information System (INIS)

    Takigami, Machiko; Ito, Hitoshi

    1996-01-01

    Phosphate buffer suspensions of three strains of Escherichia coli were irradiated with gamma-rays at room temperature and deep frozen conditions. They were inoculated on MacConkey agar plates to see the comparative sensitivities to the irradiation. Compared to the irradiation at room temperature, the sensitivities of the strains decreased by irradiation at deep frozen conditions. Addition of glycerol to the E. coli suspensions decreased the sensitivities of E. coli to gamma-rays not only at room temperature but also at deep frozen conditions. These phenomena were elucidated by the decrease of production and mobility of OH radicals at deep frozen conditions. (author)

  18. Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model

    Science.gov (United States)

    Hoff, Paula; Maschmeyer, Patrick; Gaber, Timo; Schütze, Tabea; Raue, Tobias; Schmidt-Bleek, Katharina; Dziurla, René; Schellmann, Saskia; Lohanatha, Ferenz Leonard; Röhner, Eric; Ode, Andrea; Burmester, Gerd-Rüdiger; Duda, Georg N; Perka, Carsten; Buttgereit, Frank

    2013-01-01

    The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma. PMID:23396474

  19. Real-World Rib Fracture Patterns in Frontal Crashes in Different Restraint Conditions.

    Science.gov (United States)

    Lee, Ellen L; Craig, Matthew; Scarboro, Mark

    2015-01-01

    The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors. Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively. There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted). Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed

  20. Assessment of the fracture toughness of irradiated stainless steel for BWR core shrouds

    International Nuclear Information System (INIS)

    Carter, R.G.; Gamble, R.M.

    2002-01-01

    Data from previously performed experiments were collected and evaluated to determine the relationship between fracture toughness and neutron fluence for conditions representative of BWR core shrouds. This relationship together with EPFM (elastic-plastic fracture mechanics) analysis methods similar to those in Appendix K of Section XI of the ASME Code were used to compute margin against failure as a function of neutron fluence for postulated cracks in BWR core shrouds. The results indicate that EPFM analyses can be used for flaw evaluation of core shrouds at fluence levels less than 3.10 21 n/cm 2 (E > 1 MeV). At fluence levels equal to or greater than 3.10 21 n/cm 2 , LEFM (linear-elastic fracture mechanics) analyses should be used with K Ic = 55 MPa-(m) 0.5 . (authors)

  1. Heavy-Section Steel Irradiation Program

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1990-08-01

    The primary goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (particularly the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program includes direct continuation of irradiation studies previously conducted by the Heavy-Section Steel Technology Program augmented by enhanced examinations of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are examined on a wide range of fracture properties. Detailed statistical analyses of the fracture data on K Ic shift of high-copper welds were performed. Analysis of the first phase of irradiated crack-arrest testing on high-copper welds was completed. Final analysis and publication of the results of the second phase of the irradiation studies on stainless steel weld-overlay cladding were completed. Determinations were made of the variations in chemistry and unirradiated RT NDT of low upper-shelf weld metal from the Midland reactor. Final analyses were performed on the Charpy impact and tensile data from the Second and Third Irradiation series on low upper-shelf welds, and the report on the series was drafted. A detailed survey of existing data on microstructural models and data bases of irradiation damage was performed, and initial development of a reaction-rate-based model was completed. 40 refs., 7 figs., 4 tabs

  2. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    International Nuclear Information System (INIS)

    Vladimirov, P.; Moeslang, A.

    2004-01-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions

  3. Irradiation, annealing, and reirradiation research in the ORNL heavy-section steel irradiation program

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results from work performed as part of the Heavy-Section Steel Irradiation (HSSI) Program managed by Oak Ridge National Laboratory (ORNL) for the U.S. Nuclear Regulatory Commission. The HSSI Program focuses on annealing and re-embrittlement response of materials which are representative of those in commercial RPVs and which are considered to be radiation-sensitive. Experimental studies include (1) the annealing of materials in the existing inventory of previously irradiated materials, (2) reirradiation of previously irradiated/annealed materials in a collaborative program with the University of California, Santa Barbara (UCSB), (3) irradiation/annealing/reirradiation of U.S. and Russian materials in a cooperative program with the Russian Research Center-Kurchatov Institute (RRC-KI), (4) the design and fabrication of an irradiation/anneal/reirradiation capsule and facility for operation at the University of Michigan Ford Reactor, (5) the investigation of potential for irradiation-and/or thermal-induced temper embrittlement in heat-affected zones (HAZs) of RPV steels due to phosphorous segregation at grain boundaries, and (6) investigation of the relationship between Charpy impact toughness and fracture toughness under all conditions of irradiation, annealing, and reirradiation

  4. Heavy-Section Steel Irradiation Program

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In FY1990 the Heavy-Section Steel Irradiation (HSSI) Program was arranged into 8 tasks: (1) program management, (2) K Ic curve shift in high-copper welds, (3) K Ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf (LUS) welds, (6) irradiation effects in a commercial LUS weld, (7) microstructural analysis of irradiation effects, and (8) in-service aged material evaluations. Of particular interest are the efforts in FY1990 concerning the shifts in fracture toughness and crack arrest toughness in high-copper welds, the unirradiated examination of a LUS weld from the Midland reactor, and the continued investigation into the causes of accelerated low-temperature embrittlement recently observed in RPV support steels. In the Fifth and Sixth Irradiation Series, designed to examine the shifts and possible changes in shape in the ASME K Ic and K Ia curves for two irradiated high-copper welds, it was seen that both the lower bound and mean fracture toughness shifts were greater than those of the associated Charpy-impact energies, whereas the shifts in crack arrest toughness were comparable. The irradiation-shifted fracture toughness data fell slightly below the appropriately indexed ASME K Ic curve even when it was shifted according to Revision 2 of Regulatory Guide 1.99 including its margins. The beltline weld, which was removed from the Midland reactor, fabricated by Babcock and Wilcox, Co. using Linde 80 flux, is being examined in the Tenth Irradiation Series to establish the effects of irradiation on a commercial LUS weld. A wide variation in the unirradiated fracture properties of the Midland weld were measured with values of RT NDT ranging from -22 to 54F through its thickness. In addition, a wide range of copper content from 0.21 to 0.45 wt % was found, compared to the 0.42 wt % previously reported

  5. Dose Profiles in ECAL Crystals for Various Irradiation Conditions

    CERN Document Server

    Huhtinen, Mika

    1998-01-01

    Simulated dose profiles in various irradiation and beam test conditions are compared to the expected dose profiles in the ECAL crystals at LHC. Simple front or side irradiations with photons give too steep or too flat dose profiles, respectively. Thus, if dose maxima are fitted to agree, front irradiation underestimate the average dose whereas side irradiations tend to overestimate. Different profiles are difficult to compare reliably, but it seems likely that in both cases the discrepancy is about a factor of 2-3 but in different directions. For most purposes this is likely to be good enough, but should be taken into account in the interpretation of the test results. It is shown that using a customized lead mask between the source and the crystal can significantly improve the agreement between 60 Co side irradiations and the LHC predictions. A 400 MeV/c pion beam incident on a crystal matrix can also reproduce rather well the profiles expected in the barrel ECAL.

  6. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  7. Development of Mini-Compact Tension Test Method for Determining Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Validation of the mini compact tension specimen (mini-CT) geometry has been performed on previously well characterized Midland beltline Linde 80 (WF-70) weld in the unirradiated condition. It was shown that the fracture toughness transition temperature, To, measured by these Mini-CT specimens is almost the same as To value that was derived from various larger fracture toughness specimens. Moreover, an International collaborative program has been established to extend the assessment and validation efforts to irradiated Linde 80 weld metal. The program is underway and involves the Oak Ridge National Laboratory (ORNL), Central Research Institute for Electrical Power Industry (CRIEPI), and Electric Power Research Institute (EPRI). The irradiated Mini-CT specimens from broken halves of previously tested Charpy

  8. Radiometric ratio characterization for low-to-mid CPV modules operating in variable irradiance conditions

    Science.gov (United States)

    Vorndran, Shelby; Russo, Juan; Zhang, Deming; Gordon, Michael; Kostuk, Raymond

    2012-10-01

    In this work, a concentrating photovoltaic (CPV) design methodology is proposed which aims to maximize system efficiency for a given irradiance condition. In this technique, the acceptance angle of the system is radiometrically matched to the angular spread of the site's average irradiance conditions using a simple geometric ratio. The optical efficiency of CPV systems from flat-plate to high-concentration is plotted at all irradiance conditions. Concentrator systems are measured outdoors in various irradiance conditions to test the methodology. This modeling technique is valuable at the design stage to determine the ideal level of concentration for a CPV module. It requires only two inputs: the acceptance angle profile of the system and the site's average direct and diffuse irradiance fractions. Acceptance angle can be determined by raytracing or testing a fabricated prototype in the lab with a solar simulator. The average irradiance conditions can be found in the Typical Metrological Year (TMY3) database. Additionally, the information gained from this technique can be used to determine tracking tolerance, quantify power loss during an isolated weather event, and do more sophisticated analysis such as I-V curve simulation.

  9. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions

    Directory of Open Access Journals (Sweden)

    Gao Mingzhong

    2017-01-01

    Full Text Available Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian’an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.

  10. High-temperature irradiation effects on mechnical properties of HTGR graphites

    International Nuclear Information System (INIS)

    Oku, Tatsuo; Eto, Motokuni; Fujisaki, Katsuo

    1978-04-01

    The irradiation effects on stress-strain relation, Young's modulus, tensile strength, bending strength and compressive strength of HTGR graphites were studied in irradiation temperature ranges of 200 - 300 0 C and 800 - 1400 0 C and in neutron fluences up to 7.4 x 10 20 n/cm 2 and 3 x 10 21 n/cm 2 (> 0.18 MeV). Fracture criteria and strain energy to fracture of the unirradiated and the irradiated graphites were also examined. (1) Neutron fluence dependences are similar in Young's modulus, tensile strength and bending strength. (2) The change of compressive strength and of tensile and bending strengths with neutron fluence differ; the former varies with graphite kind. (3) At lower irradiation temperatures the bending fracture strain energy decreases with increasing neutron fluence and at higher irradiation temperatures it increases. (4) The fracture criteria of graphites deviates from the constant strain energy theory (α = 0.5) and the constant strain theory (α = 1), shifting from α asymptotically equals 0.5 to α asymptotically equals 1 with increasing irradiation temperature. (auth.)

  11. Microstructural defects in EUROFER 97 after different neutron irradiation conditions

    Directory of Open Access Journals (Sweden)

    Christian Dethloff

    2016-12-01

    Full Text Available Characterization of irradiation induced microstructural evolution is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM is used to determine the defect microstructure after different neutron irradiation conditions. In particular dislocation loops, voids and precipitates are analyzed concerning defect nature, density and size distribution after irradiation to 15 dpa at 300 °C in the mixed spectrum High Flux Reactor (HFR. New results are combined with previously obtained data from irradiation in the fast spectrum BOR-60 reactor (15 and 32 dpa, 330 °C, which allows for assessment of dose and dose rate effects on the aforementioned irradiation induced defects and microstructural characteristics.

  12. Surface cracking in proton-irradiated glass

    International Nuclear Information System (INIS)

    Jensen, T.; Lawn, B.R.; Dalglish, R.L.; Kelly, J.C.

    1976-01-01

    Some observations are reported of the surface fracture behaviour of soda-lime glass slabs (6mm thick Pilkington float glass) irradiated with 480 kV protons. A simple indentation microfracture technique provided a convenient means of probing the irradiated surface regions. Basically, the technique involves loading a standard Vickers diamond pyramid indenter onto the area of interest such that a well-developed deformation/fracture pattern is generated. (author)

  13. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    Science.gov (United States)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be

  14. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  15. Proton irradiation effects on tensile and bend-fatigue properties of welded F82H specimens

    Energy Technology Data Exchange (ETDEWEB)

    Saito, S., E-mail: saito.shigeru@jaea.go.j [JAEA Tokai, J-PARC Center, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kikuchi, K.; Hamaguchi, D. [JAEA Tokai, J-PARC Center, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Usami, K.; Ishikawa, A.; Nishino, Y.; Endo, S. [JAEA Tokai, Department of Hot Laboratories, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kawai, M. [KEK, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Dai, Y. [PSI, Spallation Source Division, 5232 Villigen PSI (Switzerland)

    2010-03-15

    In several institutes, research and development for an accelerator-driven transmutation system (ADS) have been progressed. Ferritic/martensitic (FM) steels are the candidate materials for the beam window of ADS. To evaluate of the mechanical properties of the irradiated materials, the post irradiation examination (PIE) work of the SINQ (Swiss spallation neutron source) target irradiation program (STIP) specimens was carried out at JAEA. In present study, the results of PIE on FM steel F82H and its welded joint have been reported. The present irradiation conditions of the specimens were as follows: proton energy was 580 MeV. Irradiation temperatures were ranged from 130 to 380 deg. C, and displacement damage level was ranged from 5.7 to 11.8 dpa. The results of tensile tests performed at 22 deg. C indicated that the irradiation hardening occurred with increasing the displacement damage up to 10.1 dpa at 320 deg. C irradiation. At higher dose (11.8 dpa) and higher temperature (380 deg. C), irradiation hardening was observed, but degradation of ductility was relaxed in F82H welded joint. In present study, all specimens kept its ductility after irradiation and fractured in ductile manner. The results on bend-fatigue tests showed that the fatigue life (N{sub f}) of F82H base metal irradiated up to 6.3 dpa was almost the same with that of unirradiated specimens. The N{sub f} of the specimens irradiated up to 9.1 dpa was smaller than that of unirradiated specimens. Though the number of specimen was limited, the N{sub f} of F82H EB (15 mm) and EB (3.3 mm) welded joints seemed to increase after irradiation and the fracture surfaces of the specimens showed transgranular morphology. While F82H TIG welded specimens were not fractured by 10{sup 7} cycles.

  16. Study of I11-conditioning of Linac stereotactic irradiation subspaces using singular values decomposition analysis

    International Nuclear Information System (INIS)

    Platoni, K.; Lefkopoulos, D.; Grandjean, P.; Schlienger, M.

    1999-01-01

    A Linac sterotactic irradiation space is characterized by different angular separations of beams because of the geometry of the stereotactic irradiation. The regions of the stereotactic space characterized by low angular separations are one of the causes of ill-conditioning of the stereotactic irradiation inverse problem. The singular value decomposition (SVD) is a powerful mathematical analysis that permits the measurement of the ill-conditioning of the stereotactic irradiation problem. This study examines the ill-conditioning of the stereotactic irradiation space, provoked by the different angular separations of beams, using the SVD analysis. We subdivided the maximum irradiation space (MIS: (AA) AP x (AA) RL =180 x 180 ) into irradiation subspaces (ISSs), each characterized by its own angular separation. We studied the influence of ISSs on the SVD analysis and the evolution of the reconstruction quality of well defined three-dimensional dose matrices in each configuration. The more the ISS is characterized by low angular separation the more the condition number and the reconstruction inaccuracy are increased. Based on the above results we created two reduced irradiation spaces (RIS: (AA) AP x (AA) RL =180 x 140 and (AA) AP x (AA) RL =180 x 120 ) and compared the reconstruction quality of the RISs with respect to the MIS. The more an irradiation space is free of low angular separations the more the irradiation space contains useful singular components. (orig.)

  17. Conclusions regarding fracture mechanics testing and evaluation of small specimens - As evidenced by the finnish contribution to the IAEA CRP3 programme

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, K; Valo, M; Rintamaa, R; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, R [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    An extensive mechanical property evaluation has been carried out on various specimens (a Japanese steel plate (JRQ), a French forging material (FFA) and a Japanese forging material (JFL)) in the as-received and irradiated conditions. The mechanical properties measured at different temperatures include Charpy-V notch and instrumented pre-cracked Charpy data and static and dynamic elastic-plastic fracture toughness based on the J-integral, with various specimen size and geometry. Test analysis lead to conclusions regarding the use of small specimen fracture mechanical tests for investigating irradiation effects: CVN{sub pc} and RCT type specimens are suitable for determining the materials fracture toughness even in the ductile/brittle transition region provided the elastic-plastic parameter K{sub JC} is applied together with a statistical size correction. These two specimen types yield equivalent results for the fracture toughness transition shift. Charpy-V appears not to be suitable for estimating the static fracture toughness transition shift. 8 refs., 11 figs.

  18. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul Demkowicz; Scott Ploger; John Hunn

    2012-05-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

  19. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    International Nuclear Information System (INIS)

    Demkowicz, Paul; Ploger, Scott; Hunn, John

    2012-01-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

  20. Hemostimulating efficiency of non-steroid anti-inflammatory drugs under modified irradiation conditions

    International Nuclear Information System (INIS)

    Zhvoronkov, L.P.; Sklobovskaya, I.Eh.

    1988-01-01

    Non-steroid anti-inflammatory drugs (NSAID) were found to have hemostimulating effect in mice after irradiation. This effect was rather definite under irradiation conditions modified by dose fractioning or radioprotective chemicals. NSAID application during fractionated irradiation with midlethal integral dose leads to almost complete recovery of bone marrow hemopoiesis by the 9th day of radiation illness. NSAID usage combined with chemical radioprotectors provides effective hemopoiesis stimulation leading to survival increase in animals, irradiated with absolutely lethal doses. (author)

  1. Influence of Aging Conditions on Fatigue Fracture Behaviour of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rafiq Ahmed Siddiqui

    2001-12-01

    Full Text Available Aluminum - Magnesium - Silicon (Al-Mg-Si 6063 alloy was heat-treated using under aged, peak aged and overage temperatures. The numbers of cycles required to cause the fatigue fracture, at constant stress, was considered as criteria for the fatigue resistance. Moreover, the fractured surface of the alloy at different aging conditions was evaluated by optical microscopy and the Scanning Electron Microscopy (SEM. The SEM micrographs confirmed the cleavage surfaces with well-defined fatigue striations. It has been observed that the various aging time and temperature of the 6063 Al-alloy, produces different modes of fractures. The most suitable age hardening time and temperature was found to be between 4 to 5 hours and to occur at 460 K. The increase in fatigue fracture property of the alloy due to aging could be attributed to a vacancy assisted diffusion mechanism or due to pinning of dislocations movement by the precipitates produced during aging. However, the decrease in the fatigue resistance, for the over aged alloys, might be due to the coalescence of precipitates into larger grains.

  2. Fracture toughness of Charpy-size compound specimens and its application in engineering

    International Nuclear Information System (INIS)

    Zhang, X.P.; Shi, Y.W.

    1994-01-01

    The use of a pre-cracked Charpy-size specimen with a side-groove to evaluate the fracture toughness of materials has been researched and considered. This method not only satisfies the demand for small-size specimens in surveillance tests of fracture toughness but also avoids using complicated physical methods to monitor the initial conditions of crack propagation. For most materials this method has solved the problem in which the small-size specimen did not satisfy the valid conditions of a fracture toughness measurement. In order to obtain more information from neutron-irradiated sample specimens and raise the reliability of fracture toughness surveillance tests, it has been considered more important to repeatedly exploit the broken Charpy-size specimen tested in the surveillance test, and to make it renewable. In this work, on the renewing design and utilization of Charpy-size specimens, nine data on fracture toughness can be obtained from one pre-cracked side-grooved Charpy-size specimen, while at present usually only one to three data on fracture toughness can be obtained from one Charpy-size specimen. Thus, it is found that the new method would improve the reliability of fracture toughness surveillance testing and evaluation. In addition, some factors that affect the optimum design of pre-cracked deep side-groove Charpy-size compound specimens have also been discussed. (author)

  3. Probabilistic fracture mechanics analysis of reactor vessels with low upper-shelf fracture toughness

    International Nuclear Information System (INIS)

    Yoon, K.K.

    1993-01-01

    A class of submerged-arc welds used in fabricating early reactor vessels has relatively high copper contents. Studies have shown that when such vessels are irradiated, the copper contributes to lowering the Charpy upper-shelf energy level. To address this concern, 10CFR50, Appendix G requires a fracture mechanics analysis to demonstrate an adequate margin of safety for continued service. The B and W Owners Group (B and WOG) has been accumulating J-resistance fracture toughness data for these weld metals. Based on a mathematical model derived from this B and WOG data base, the first Appendix G analysis was performed. Another important issue affecting reactor vessel integrity is pressurized thermal shock (PIS) transients. In the early 1980s, probabilistic fracture mechanics analyses were performed on a reactor vessel to determine the probability of failure under postulated accident scenarios. Results of such analyses were used by the Nuclear Regulatory Commission (NRC) to establish the screening criteria for assessing reactor vessel integrity under PTS transient loads. This paper addresses the effect of low upper-shelf toughness on the probability of failure of reactor vessels under PTS loads. Probabilistic fracture mechanics codes were modified to include the low upper-shelf toughness model used in a reference and a series of analyses was performed using plant-specific material conditions and realistic PTS scenarios. The results indicate that low upper-shelf toughness has an insignificant effect on the probability of reactor vessel failures. This is mostly due to PTS transients being susceptible to crack initiation at low temperatures and not affected by upper-shelf fracture toughness

  4. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: Yiren_Chen@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Alexandreanu, B.; Chen, W.-Y.; Natesan, K. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Li, Z.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Rao, A.S. [US Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2015-11-15

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  5. Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Wolfer, W.G.

    1983-08-01

    A correlation has been developed which allows an estimate to be made of the toughness of austenitic alloys using more easily obtained tensile data. Tensile properties measured on 20% cold-worked AISI 316 specimens made from ducts and cladding irradiated in EBR-II were used to predict values for the plane strain fracture toughness according to a model originally developed by Krafft. Some microstructural examination is required to determine a parameter designated as the process zone size. In contrast to the frequently employed Hahn-Rosenfeld model, this model gives results which agree with recent experimental determinations of toughness performed in the transgranular failure regime

  6. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  7. Effects of irradiation on the fracture properties of stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Nanstad, R.K.

    1989-01-01

    Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. For the first single-wire method, the first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. The three-wire method used various combinations of types 308, 309, and 304 stainless steel weld wires, and produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. 14 refs., 15 figs., 4 tabs

  8. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.; Portillo, C.

    2015-01-01

    Highlights: • The solar resource has been predicted for three hours at 1-min intervals. • Digital image levels and cloud motion vectors are joint for irradiance forecasting. • The three radiation components have been predicted under different sky conditions. • Diffuse and global radiation has an nRMSE value around 10% in all sky conditions. • Beam irradiance is predicted with an nRMSE value of about 15% in overcast skies. - Abstract: In the search for new techniques to predict atmospheric features that might be useful to solar power plant operators, we have carried out solar irradiance forecasting using emerging sky camera technology. Digital image levels are converted into irradiances and then the maximum cross-correlation method is applied to obtain future predictions. This methodology is a step forward in the study of the solar resource, essential to solar plant operators in adapting a plant’s operating procedures to atmospheric conditions and to improve electricity generation. The results are set out using different statistical parameters, in which beam, diffuse and global irradiances give a constant normalized root-mean-square error value over the time interval for all sky conditions. The average measure is 25.44% for beam irradiance; 11.60% for diffuse irradiance and 11.17% for global irradiance.

  9. Tensile properties of irradiated TZM and tungsten

    International Nuclear Information System (INIS)

    Steichen, J.M.

    1975-04-01

    The effect of neutron irradiation on the elevated temperature tensile properties of TZM and tungsten has been experimentally determined. Specimens were irradiated at a temperature of approximately 720 0 F to fluences of 0.4 and 0.9 x 10 22 n/cm 2 (E greater than 0.1 MeV). Test parameters for both control and irradiated specimens included strain rates from 3 x 10 -4 to 1 s -1 and temperatures from 72 to 1700 0 F. The results of these tests were correlated with a rate-temperature parameter (T ln A/epsilon) to provide a concise description of material behavior over the range of deformation conditions of this study. The yield strength of the subject materials was significantly increased by decreasing temperature, increasing strain rate, and increasing fluence. Ductility was significantly reduced at any temperature or strain rate by increasing fluence. Cleavage fractures occurred in both unirradiated and irradiated specimens when the yield strength was elevated to the effective cleavage stress by temperature and/or strain rate. Neutron irradiation for the conditions of this study increased the ductile-to-brittle transition temperature of tungsten by approximately 300 0 F and TZM by approximately 420 0 F. (U.S.)

  10. Mechanical properties of 1950's vintage 304 stainless steel weldment components after low temperature neutron irradiation

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Caskey, G.R. Jr.; Thomas, J.K.; Hawthorne, J.R.; Hiser, A.L.; Lott, R.A.; Begley, J.A.; Shogan, R.P.

    1991-01-01

    The reactor vessels of the nuclear production reactors at the Savannah River Site (SRS) were constructed in the 1950's from Type 304 stainless steel plates welded with Type 308 stainless steel filler using the multipass metal inert gas process. An irradiated mechanical properties database has been developed for the vessel with materials from archival primary coolant system piping irradiated at low temperatures (75 to 150 degrees C) in the State University of New York at Buffalo reactor (UBR) and the High Flux Isotope Reactor (HFIR) to doses of 0.065 to 2.1 dpa. Fracture toughness, tensile, and Charpy-V impact properties of the weldment components (base, weld, and weld heat-affected-zone (HAZ)) have been measured at temperatures of 25 degrees C and 125 degrees C in the L-C and C-L orientations for materials in both the irradiated and unirradiated conditions for companion specimens. Fracture toughness and tensile properties of specimens cut from an SRS reactor vessel sidewall with doses of 0.1 and 0.5 dpa were also measured at temperatures of 25 and 125 degrees C. The irradiated materials exhibit hardening with loss of work hardenability and a reduction in toughness relative to the unirradiated materials. The HFIR-irradiated materials show an increase in yield strength between about 20% and 190% with a concomitant tensile strength increase between about 15% to 30%. The elastic-plastic fracture toughness parameters and Charpy-V energy absorption both decrease and show only a slight sensitivity to dose. The irradiation-induced decrease in the elastic-plastic fracture toughness (J def at 1 mm crack extension) is between 20% to 65%; the range of J 1C values are 72.8 to 366 kJ/m 2 for the irradiated materials. Similarly, Charpy V-notch results show a 40% to 60% decrease in impact energies

  11. Fracture assessment of the Oskarshamn 1 reactor pressure vessel under cold over-pressurization

    International Nuclear Information System (INIS)

    Sattari-Far, I.

    2001-03-01

    The major motivation of this study was to develop a methodology for fracture assessment of surface defects in the 01 reactor pressure vessel under cold loading scenarios, particularly the cold over-pressurization event. According to a previous study, the FENIX project, the cold over-pressurization of the O1 reactor is a limiting loading case, as the ductile/brittle transition temperature (RT NDT ) of certain welds in the O1 beltline region may be over 100 deg C at the-end-of-life condition. The FENIX project gave values of the acceptable and critical crack depth to be equal to the thickness of the cladding layer (about 6 mm) under this load case using the ASME K Ic reference curve methodology. This study is aimed to develop a methodology to give a more precise fracture assessment of the O1 reactor under cold loading scenarios. Some of the main objectives of this study have been as below: To prepare a material which can simulate the mechanical properties and RT NDT of the O1 reactor at the end-of-life conditions. To conduct a fracture mechanics test program to cover the essential influencing factors, such as crack geometry (shallow and deep cracks) and loading condition (uniaxial and biaxial) on the cleavage fracture toughness. To perform fracture mechanics analyses to identify a suitable methodology for assessment of the experimental results. To study the responses of engineering fracture assessment methods to the experimental results from the clad specimens. To propose a fracture assessment procedure for determination of the acceptable and critical flaw sizes in the 01 reactor under the cold loading events. A test program consisted of experiments on standard SEN(B) specimens and clad beams, containing surface cracks was conducted during the course of this project. A total of nine clad beams and clad cruciform specimens were tested under uniaxial and biaxial loading. The test material is reactor steel of type A 508 Grade B, which is specially heat-treated to

  12. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, Randy K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, George R. [Univ. of California, Santa Barbara, CA (United States); Almirall, Nathan [Univ. of California, Santa Barbara, CA (United States); Robertson, Janet [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Server, W. L. [ATI Consulting, Pinehurst, NC (United States); Yamamoto, T. [Univ. of California, Santa Barbara, CA (United States); Wells, Peter [Univ. of California, Santa Barbara, CA (United States)

    2017-05-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. The available embrittlement predictive models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  13. Effects of gamma Rays Irradiation on resistance of Pseudomonas aeruginosa in various condition

    International Nuclear Information System (INIS)

    Nikham

    2002-01-01

    The investigation of gamma tays 60Co irradiation effect on resistance of bacteri P.aeruginosa has been done.The objective of the research was to know the D10 value of bacteria P.aeruginosa. By using of distilled water,talc and peanut powder as carrier in dry,wet,O 2 and N 2 condition the bacteria of P.aeruginosa were irradiated on gamma rays of 6 0Co with dose of O to 2.5 kGy,and with dose rate of 5 and 10 kGy/h.After irradiation the bacteria of P. aeruginosa were cultured in media of the Tryptone Soya Agar and incubatedat temperature of 32±2 o C for 3 days. The survival colonies were calculated,and the data were used to make the curve and to determine the D10 value. The results of the experiments showed that D10 value of irradiated bacteria of P.aeruginosain the disitilled water,talc and peanut powder as carrier were not high significant.Nevertheless the D10 value of the irradiated at dose rate 10kGy/h show more higher tendency than at dose rate 5kGy/h. The D10 value of irradiated bacteria in the N2 condition was higher,if compared with in the O2 condition

  14. Bilateral Femoral Neck Fatigue Fracture due to Osteomalacia Secondary to Celiac Disease: Report of Three Cases.

    Science.gov (United States)

    Selek, Ozgur; Memisoglu, Kaya; Selek, Alev

    2015-08-01

    Bilateral non traumatic femoral neck fatigue fracture is a rare condition usually occurring secondary to medical conditions such as pregnancy, pelvic irradiation, corticosteroid exposure, chronic renal failure and osteomalacia. In this report, we present three young female patients with bilateral femoral neck fracture secondary to osteomalacia. The underlying cause of osteomalacia was Celiac disease in all patients. The patients were treated with closed reduction and internal fixation with cannulated lag screws. They were free of pain and full weight bearing was achieved at three months. There were no complications, avascular necrosis and nonunion during the follow up period. In patients with bone pain, non traumatic fractures and muscle weakness, osteomalacia should be kept in mind and proper diagnostic work-up should be performed to identify the underlying cause of osteomalacia such as celiac disease.

  15. Fractographic and microstructural aspects of fracture toughness testing in irradiated 304 stainless steel

    International Nuclear Information System (INIS)

    Cullen, W.H.; Hiser, A.L.; Hawthorne, J.R.; Abramczyk, G.A.; Caskey, G.R.

    1987-01-01

    Fracture toughness and Charpy impact test results on 304 stainless steel baseplate, weld and heat-affected zone (HAZ) tested at 25 0 C and 125 0 C are correlated with the microstructural and fractographic features observed in these materials. Specimens were collected from several sections of 12.7 mm (0.5 in.) wall thickness piping removed from a process system, and were characterized by different material chemistries and thermomechanical histories. As a result, mechanical properties vary over a considerable range from one pipe section to another. The presence of delta ferrite in some of the samples caused significant degradations in the toughness properties for certain crack orientations. Decreases in Charpy impact energies occur in the same material for different crack orientations. Materials irradiated showed 40% decreases in Charpy impact energy, but little change in fracture morphology. An increase in the test temperature resulted in an expected increase in Charpy energies for all materials. Fractographic features did not change appreciably with respect to the 100 0 C increase in test temperature. In unirradiated specimens, a test temperature increase caused lower J/sub Ic/ and J-R curve values with tearing modules values increased. The latter is due to the large decreases in tensile strength with increasing test temperature. The weld metals tend to have the highest tearing resistance, while the HAZ's tend to have the lowest. 30 figs., 3 tabs

  16. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  17. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  18. Tensile properties of neutron irradiated solid HIP 316L(N). ITER Task T214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Van Osch, E.V.; Tjoa, G.L.; Boskeljon, J.; Van Hoepen, J.

    1998-05-01

    The tensile properties of neutron irradiated Hot Isostatically Pressed (HIP) joints of type 316L(N) stainless steel (heat PM-130) have been measured. Cylindrical tensile test specimens of 4 mm diameter were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP specimens were irradiated up to a target dose level of 5 dpa at a temperature of 550K. The damage levels realized range from 3.0 to 4.1 dpa, with helium contents up to 38 appm. Post irradiation testing temperatures ranged from 300 to 700K. The report contains the experimental conditions and summarises the results, which are given in terms of engineering stresses and strains and reduction of area. The main conclusions are that the unirradiated solid-HIP material is very soft, assumingly due to the relatively large grain size. Neutron irradiation induces both hardening and reduction of ductility, similar to the behaviour of 316L(N) plate. No failures related to debonding were observed for the tests of the unirradiated samples, however one of eight tested irradiated specimens fractured in the HIP joint, showing a flat fracture surface and a low reduction of area. 6 refs

  19. Technique Comparison of the Fracture Toughness Tests for Irradiated Fuel Claddings in a Hot Cell

    International Nuclear Information System (INIS)

    Ahn, Sangbok; Kim, Dosik; Jung, Yanghong; Choo, Yongsun; Ryu, Wooseog

    2007-01-01

    The degradation of a fracture toughness in a fuel cladding is a important factor to restrict the operation safety in nuclear power plants. The fracture properties of claddings were traditionally measured through a rubber bung test, a burst test, etc. Those results were the qualitative fracture characteristics, and could not be used as design or operation safety evaluation data. We need to evaluate the quantitative characteristics of claddings under normal operation and in accidents. The application of a fracture mechanics concept in testing a fuel cladding is restricted by the cladding geometry and creating the correct stress-state conditions. The geometry of claddings does not meet the requirement of the ASTM Standards for a specimen configuration and an applied load. The specimen may be produced from previously flattened claddings, but the flattening causes some uncertainties in the results due to changes in the microstructure of the material and a new distribution of the internal stresses. Therefore many efforts have been devoted to developing new test techniques, to quantify the fracture characteristics of claddings. Researchers from JAEA and NFI in Japan, Studsvik Company Ltd in Sweden, IAEA in Australia, and KAERI in Korea have independently developed fracture test techniques. This study is designed to review the independently developed techniques and to compare of their merits. Finally we shall apply the other techniques to upgrade our developing techniques

  20. Fracture toughness testing on ferritic alloys using the electropotential technique

    International Nuclear Information System (INIS)

    Huang, F.H.; Wire, G.L.

    1981-01-01

    Fracture toughness measurements as done conventionally require large specimens (5 x 5 x 2.5 cm) which would be prohibitively expensive to irradiate over the fluence and temperature ranges required for first wall design. To overcome this difficulty a single specimen technique for J intergral fracture toughness measurements on miniature specimens (1.6 cm OD x 0.25 cm thick) was developed. Comparisons with specimens three times as thick show that the derived J/sub 1c/ is constant, validating the specimen for first wall applications. The electropotential technique was used to obtain continuous crack extension measurements, allowing a ductile fracture resistence curve to be constructed from a single specimen. The irradiation test volume required for fracture toughness measurements using both miniature specimens and single specimen J measurements was reduced a factor of 320, making it possible to perform a systematic exploration of irradiation temperature and dose variables as required for qualification of HT-9 and 9Cr-1Mo base metal and welds for first wall application. Fracture toughness test results for HT-9 and 9Cr-1Mo from 25 to 539 0 C are presented to illustrate the single specimen technique

  1. Conditions of viscosity measurement for detecting irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-01-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)

  2. Progress Report on Disassembly and Post-Irradiation Experiments for UCSB ATR-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, Randy K [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, G. R. [Univ. of California, Santa Barbara, CA (United States); Robertson, Janet Pawel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, T [Univ. of California, Santa Barbara, CA (United States)

    2015-09-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  3. Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions.

    Science.gov (United States)

    Qiu, Liang; Feng, Jundong; Dai, Yaodong; Chang, Shuquan

    2017-06-01

    As a new-emerging method for strontium disposal, biosorption has shown advantages such as high sorption capacity; low cost. In this study, we investigated the potential of Saccharomyces cerevisiae (S. cerevisiae) in strontium disposal under culture conditions and the effects of irradiation on their biosorption capabilities. We found that S. cerevisiae can survive irradiation and grow. Pre-exposure to irradiation rendered S. cerevisiae resistant to further irradiation. Surprisingly, the pre-exposure to irradiation can increase the biosorption capability of S. cerevisiae. We further investigated the factors that influenced the biosorption efficiency, which were (strongest to weakest): pH > strontium concentration > time > temperature. In our orthogonal experiment, the optimal conditions for strontium biosorption by irradiated S. cerevisiae were: pH 7, 150 mg L -1 strontium at the temperature of 32 °C with 30 h. The equilibrium of strontium biosorption was analyzed by Langmuir and Freundlich models, from which the formal model is found to provide a better fit for the experimental results. The kinetics of strontium biosorption by living irradiated S. cerevisiae was found to be comprised of three phases: dramatically increased during 0-9 h, decreased during 12-24 h, and increased during 30-50 h. These results provide a systematic understanding of the biosorption capabilities of irradiated S. cerevisiae, which can contribute to the development of remediating nuclear waste water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  5. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  6. Impact of creep-fatigue interaction on the lifetime of a dispersion strengthened copper alloy in unirradiated and irradiated conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    2001-06-01

    Creep-fatigue interaction behaviour of a dispersion strengthened copper alloy was investigated at 22 and 250 deg. C. To determine the effect of irradiation a number of fatigue specimens were irradiated at 250 deg. C to a dose level of 0.3 dpa and were tested at 250 deg. C. The creep-fatigue interaction was simulated by applying a certain hold-time on both tension and compression sides of the cyclic loading with a frequency of 0.5 Hz. Hold-times of 0,2, 5, 10, 100 and 1000 seconds were used. For a given hold-time, the real lifetime and the number of cycles to failure were determined at different strain amplitudes. Post-deformation micro-structures and fracture surfaces were investigated using transmission and scanning electron microscopes, respectively. The main results of these investigations are presented and their implications are briefly discussed in the present report. The central conclusion emerging from the present work is that a hold-time of 10 seconds or less causes a drastic decrease in the real lifetime as well as in the number of cycles to failure, particularly at low levels of strain amplitudes. A combination of higher temperature, higher strain amplitude and longer hold-time, on the other hand, may lead to an improvement in the lifetime. The irradiation at 250 deg. C to a dose level of 0.3 dpa does not play any significant role in determining the lifetime under creep-fatigue testing conditions. (au)

  7. Heavy-section steel irradiation program. Progress report, October 1994--March 1995

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-10-01

    This document is the October 1994-March 1995 Progress Report for the Heavy Section Steel Irradiation Program. The report contains a summary of activities in each of the 14 tasks of the HSSI Program, including: (1) Program management, (2) Fracture toughness shifts in high-copper weldments, (3) Fracture toughness shifts in low upper-shelf welds, (4) Irradiation effects in a commercial low upper-shelf weld, (5) Irradiation effects on weld heat-affected zone and plate materials, (6) Annealing effects in low upper-shelf welds, (7) Microstructural analysis of radiation effects, (8) In-service irradiated and aged material evaluations, (9) Japanese power development reactor vessel steel examination, (10) fracture toughness curve shift method, (11) Special technical assistance, (12) Technical assistance for JCCCNRS, (13) Correlation monitor materials, and (14) Test reactor irradiation coordination. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  8. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Kim, S.W.; Tanigawa, H.; Hirose, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  9. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  10. Fracture toughness evaluation in the transition region of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Onizawa, K.; Suzuki, M.

    1995-01-01

    The fracture toughness (K jc and Jc) values at the cleavage fracture initiation in the transition region of a RPV steel were investigated using mainly precracked Charpy specimens. A conventional statistical approach and a fractographic study were applied to analyze the scatter of the fracture toughness values from precracked Charpy specimens. The material used was an ASTM A533B class 1 steel, which was designated as an IAEA correlation monitor material, JRQ. A lower bound transition curve of the fracture toughness for unirradiated condition was determined by the 5% confidence limit from the Weibull and fractographic analyses. The lower bound transition curve after irradiation was evaluated based on the statistics of unirradiated specimens. The results indicated that the shift of the fracture toughness transition curbe were somewhat larger than the Charpy 41J transition temperature. The parameters to determine the lower bound toughness such as the Weibull slope and the amount of ductile crack growth are discussed. The results are also compared with a model based on weakest link theory. (author). 12 refs, 12 figs, 5 tabs

  11. Influence of microporosity on fracture stress of pyrocarbon coatings

    International Nuclear Information System (INIS)

    Krautwasser, P.; Nickel, H.; Taueber, K.

    1975-01-01

    In this paper recent investigations on fracture behaviour of integral PyC-coatings are presented. The fracture stresses of propene, acetylene, and methane-derived pyrocarbons are measured as a function of deposition temperature and deposition rate. The measured fracture stresses are interpreted in terms of microporosity values determined by X-ray small angle scattering (SAXS). It can be shown that the fracture stress is correlated unambigously with the concentration of micropores in the range of about 50 to 500A diameter. TEM inspection of the investigated materials revealed a component of disordered, tangled fibres with a high microporosity in agreement with SAXS results. This component increases with temperature in the range of 1250 to 1400 at the expense of of a high-density component. As a result, the coatings deposited in this temperature range show decreasing fracture stress with increasing amount of the porous glass wool like component. PyC coatings with a good irradiation behaviour had an initial pore size distribution typical for a relatively high content of tangled material. The assumption, that a relatively high amount of the disordered material is fafourable for a good behaviour i.e. integrity of coating up to high neutron doses, was confirmed besides other investigations by the relative low preirradiation fracture stresses of the well behaving coatings. This means, the integrity of pyrocarbon coatings after irradiation is favoured not so much by a high preirradiation fracture stress, but by the enhanced dimensional stability of the disordered porous material. In addition to this, the increase of the relatively low fractures stress due to the measured irradiation induced reduction of pores in the size range of 200 to 1000A diameter is in favour of coating integrity

  12. Post Irradiation Mechanical Behaviour of Three EUROFER Joints

    International Nuclear Information System (INIS)

    Lucon, E.; Leenaers, A.; Vandermeulen, W.

    2006-01-01

    The post-irradiation mechanical properties of three EUROFER joints (two diffusion joints and one TIG weld) have been characterized after irradiation to 1.8 dpa at 300 degrees Celsius in the BR-2 reactor. Tensile, KLST impact and fracture toughness tests have been performed. Based on the results obtained and on the comparison with data from EUROFER base material irradiated under similar conditions, the post-irradiation mechanical behaviour of both diffusion joints (laboratory and mock-up) appears similar to that of the base material. The properties of the TIG joint are affected by the lack of a post-weld heat treatment, which causes the material from the upper part of the weld to be significantly worse than that of the lower region. Thus, specimens from the upper layer exhibit extremely pronounced hardening and embrittlement caused by irradiation. The samples extracted from the lower layer show much better resistance to neutron exposure, although their measured properties do not match those of the diffusion joints. The results presented demonstrate that diffusion joining can be a very promising technique.

  13. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu

    2017-01-01

    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  14. Fracture assessment of the Oskarshamn 1 reactor pressure vessel under cold over-pressurization

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, I. [DNV Technical Consulting AB, Stockholm (Sweden)

    2001-03-01

    The major motivation of this study was to develop a methodology for fracture assessment of surface defects in the 01 reactor pressure vessel under cold loading scenarios, particularly the cold over-pressurization event. According to a previous study, the FENIX project, the cold over-pressurization of the O1 reactor is a limiting loading case, as the ductile/brittle transition temperature (RT{sub NDT}) of certain welds in the O1 beltline region may be over 100 deg C at the-end-of-life condition. The FENIX project gave values of the acceptable and critical crack depth to be equal to the thickness of the cladding layer (about 6 mm) under this load case using the ASME K{sub Ic} reference curve methodology. This study is aimed to develop a methodology to give a more precise fracture assessment of the O1 reactor under cold loading scenarios. Some of the main objectives of this study have been as below: To prepare a material which can simulate the mechanical properties and RT{sub NDT} of the O1 reactor at the end-of-life conditions. To conduct a fracture mechanics test program to cover the essential influencing factors, such as crack geometry (shallow and deep cracks) and loading condition (uniaxial and biaxial) on the cleavage fracture toughness. To perform fracture mechanics analyses to identify a suitable methodology for assessment of the experimental results. To study the responses of engineering fracture assessment methods to the experimental results from the clad specimens. To propose a fracture assessment procedure for determination of the acceptable and critical flaw sizes in the 01 reactor under the cold loading events. A test program consisted of experiments on standard SEN(B) specimens and clad beams, containing surface cracks was conducted during the course of this project. A total of nine clad beams and clad cruciform specimens were tested under uniaxial and biaxial loading. The test material is reactor steel of type A 508 Grade B, which is specially heat

  15. Dynamics of a stabilized motor defense conditioned reflex at different levels of motivation in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Shtemberg, A S

    1982-05-01

    Postradiation dynamics of strengthened motor-defense conditioned reflex in rats-males irradiated with the doses of 94.111 and 137 Gy was studied. Phase disturbances of conditioned-reflex activity increased with enhancing irradiation dose have been revealed. Rapid recovery of conditioned reflex after short primary aggravation was a characteristic peculiarity. At that, the dynamics of relation of main nervous processes in cortex was noted for significant instability increasing with radiation syndrome development. Enhancement of force of electro-defense support promoted more effective strengthening of temporary connections and conditioned high stability of trained-reflex reactions during serious functional disturbances resulted from sublethal dose irradiation.

  16. Radiation induced fractures of sacrum: CT diagnosis

    International Nuclear Information System (INIS)

    Rafii, M.; Firooznia, H.; Golimbu, C.; Horner, N.

    1988-01-01

    Sacral insufficiency fracture due to bone atrophy may develop as a complication of irradiation of pelvic malignancies. Pain is the presenting symptom and the clinical diagnoses most often considered are recurrence of the original malignancy and metastatic disease. Computed tomography provides the most specific information helpful for the detection of these fractures and for exclusion of recurrent malignancy

  17. Assessment of plastic flow and fracture properties with small specimens test techniques for IFMIF-designed specimens

    International Nuclear Information System (INIS)

    Spaetig, P.; Campitelli, E.N.; Bonade, R.; Baluc, N.

    2005-01-01

    The primary mission of the International Fusion Material Irradiation Facility (IFMIF) is to generate a material database to be used for the design of various components, for the licensing and for the assessment of the safe operation of a demonstration fusion reactor. IFMIF is an accelerator-based high-energy neutron source whose irradiation volume is quite limited (0.5 l for the high fluence volume). This requires the use of small specimens to measure the irradiation-induced changes on the physical and mechanical properties of materials. In this paper, we developed finite element models to better analyze the results obtained with two different small specimen test techniques applied to the tempered martensitic steel F82H-mod. First, one model was used to reconstruct the load-deflection curves of small ball punch tests, which are usually used to extract standard tensile parameters. It was shown that a reasonable assessment of the overall plastic flow can be done with small ball punch tests. Second, we investigated the stress field sensitivity at a crack tip to the constitutive behavior, for a crack modeled in plane strain, small-scale yielding and fracture mode I conditions. Based upon a local criterion for cleavage, that appears to be the basis to account for the size and geometry effects on fracture toughness, we showed that the details of the constitutive properties play a key role in modeling the irradiation-induced fracture toughness changes. Consequently, we suggest that much more attention and efforts have to be paid in investigating the post-yield behavior of the irradiated specimens and, in order to reach this goal, we recommend the use of not only tensile specimens but also that of compression ones in the IFMIF irradiation matrices. (author)

  18. Behavior of pre-irradiated fuel under a simulated RIA condition

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide

    1994-07-01

    This report presents results from the power burst experiment with pre-irradiated fuel rod, Test JM-3, conducted in the Nuclear Safety Research Reactor (NSSR). The data concerning test method, pre-irradiation, pre-pulse fuel examination, pulse irradiation, transient records and post-pulse fuel examination are described, and analyses, interpretations, and discussions of the results are presented. Preceding to the pulse irradiation in the NSRR, test fuel rod was irradiated in the Japan Materials Testing Reactor (JMTR) up to a fuel burnup of 19.6MWd/kgU with average linear heat rate of 25.3 kW/m. The fuel rod was subjected to the pulse irradiation resulting in a deposited energy of 174±6 cal/g·fuel and a peak fuel enthalpy of 130±5 cal/g·fuel under stagnant water cooling condition at atmospheric pressure and ambient temperature. Test fuel rod behavior was assessed from pre- and post-pulse fuel examinations and transient records during the pulse. The cladding surface temperature increased to only 150degC, and the test resulted in slight fuel deformation and no fuel failure. An estimated rod-average fission gas release during the transient was about 2.2%. Through the detailed fuel examinations, the information concerning microstructural change in the fuel pellets were also obtained. (author)

  19. Development status of post irradiation examination techniques at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Ohmi, M.; Ohsawa, K.; Nakagawa, T.; Umino, A.; Shimizu, M.; Satoh, H.; Oyamada, R.

    1992-01-01

    Hot laboratory at Oarai Research Establishment was founded to examine the objects mainly irradiated at JMTR (Japan Materials Testing Reactor) and has been operated since 1971. A wide variety of post-irradiation examinations (PIE) is available using the hot laboratory. Continuous efforts are made to develop new PIE techniques to accommodate the user's requirements. The following are main techniques recently developed in the hot laboratory; 1. Remote capsule assembly including remote weld of irradiated objects for reirradiation in JMTR. 2. Fracture toughness tests of reactor component materials. 3. Creep tests of heat resistance alloys in high temperature conditions. 4. Tests of irradiation assisted stress corrosion cracking (IASCC). 5. Examination techniques of miniaturized test specimens. This report describes an outline of the hot laboratory with main emphasis on the new PIE techniques. (author)

  20. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  1. Effect of parenteral nutrition on the bone marrow recovery under exsperimental conditions of uneven irradiation

    International Nuclear Information System (INIS)

    Moroz, B.B.; Fedorovskij, L.L.; Deshevoj, Yu.B.

    1986-01-01

    Using white rats-males the effect of parenteral nutrition (PN) on blood formation (hemopoiesis) recovery under the conditions of total (control), subtotal (shielding of animal hind limb) with 7.5 Gy and X-ray partial irradiation of abdomen region with the 13.5 Gy has been studied. It has been found that bone marrow recovery increases either at subtotal or partial irradiation under the conditions of PN. Mechanisms of PN favourable effect are discussed. The advisability of using PN under uneven irradiations of organism is indicated

  2. Effect of irradiation and chemical composition on deformation and fracture of steel of OH16N15 type during long-term test

    International Nuclear Information System (INIS)

    Averin, S.A.; Deniskin, Yu.S.; Shushlebin, V.V.; Panchenko, V.L.

    1992-01-01

    Thermal and radiation creep, as well as long-term strength of an austenitic stainless steel were investigated as a function of sulphur content and niobium addition. Interrelation between the grain boundary sleep and the intergranular fracture, and an important role of the surface in the nucleation and propagation of crack were revealed by quantitative structural and fractographic studies. Irradiation and chemical composition were found to influence these processes

  3. Fracture properties of hydrided Zircaloy-4 cladding in recrystallization and stress-relief anneal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: hhhsu@iner.gov.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 325, Taiwan (China); Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Tsay, Leu-Wen [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2012-03-15

    In this work, the stress-relieved (SRA) and recrystallized (RXA) Zircaloy-4 cladding specimens were hydrogen-charged to the target concentration of 300 wppm and then manufactured into X-specimens for fracture toughness test. The hydrogen embrittlement susceptibility of Zircaloy-4 cladding specimens in both SRA and RXA conditions were investigated. At the hydrogen concentration level of 300 wppm, J-integral values for RXA cladding were higher than those for SRA cladding at both 25 Degree-Sign C and 300 Degree-Sign C. The formation of brittle zirconium hydrides had a significant impact on the fracture toughness of Zircaloy-4 cladding in both SRA and RXA states, especially at 25 Degree-Sign C. Among all the tests, SRA cladding tested at 25 Degree-Sign C exhibited a great loss of the fracture toughness. The micrographic and fractographic observations further demonstrated that the fracture toughness of Zircaloy-4 cladding would be improved by the coarse grains in RXA cladding, but degraded by zirconium hydrides precipitated along the grain boundary.

  4. Relaxation behavior of radicals produced in irradiated black pepper under various moisture conditions by ESR

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kawauchi, Risa; Shimoyama, Yuhei; Kaeda, Yoko; Ogawa, Satoko; Nakamura, Hideo; Ukai, Mitsuko

    2008-01-01

    Black pepper is easy to be contaminated by microorganism and often processed to γ-irradiation. ESR has been used for the detection of radicals induced in irradiated spices. Using ESR, we revealed the effects of moisture condition during storage of irradiated black pepper on the saturation behavior of ESR signal. The ESR spectrum of black pepper consists of a broad sextet centered at g=2.0, a singlet as same g-value and a singlet at g=4.0. The irradiation causes two new signals, one is the strong and sharp singlet signal at g=2.0 and the other is the side signal. We found that the signal intensity originated by the radicals of black pepper with and without radiation decayed in the high humidity condition during storage. The ESR signal intensity of irradiated black pepper decayed during storage and showed almost the same intensity level as that of non-irradiated black pepper during storage. (author)

  5. Warm pre-stress experiments on highly irradiated reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Landron, C.; Ait-Bachir, M.; Moinereau, D.; Molinie, E.; Garbay, E.

    2015-01-01

    In the aim to justify in-service integrity of reactor pressure vessel beyond 40 years, experimental warm pre-stress (WPS) tests were performed on irradiated materials representative of RPV steels corresponding to 40 operating years. Different types of WPS loading path have been considered to cover typical postulated accidental transients. These results confirmed the beneficial effect of WPS on the cleavage fracture resistance of the irradiated materials. No fracture occurred during the cooling phase of the loading path and the fracture toughness values are higher than that measured with conventional isothermal tests. The analyses of the experiments, conducted using either simplified engineering models or more refined fracture models based on local approach to cleavage fracture, are in agreement with the experimental results. (authors)

  6. The effects of irradiation to 8x1026m-2 on the mechanical properties of 6061-T651 aluminum

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1995-01-01

    The effects of irradiation on the mechanical properties of candidate structural materials are being examined. A key to the generation of useful neutron beams is allowing the neutrons produced in the core to escape. Therefore, an aluminum alloy has been selected for the first wall containment adjacent to the core, the Core Pressure Boundary Tube (CPBT), Alloy (6061 J651 Al 1.0Mg-0.6Si-0.3Cu-0.2Cr) with acceptable mechanical properties in unirradiated condition, low neutron cross-section, high thermal conductivity for heat removal. This alloy may also be used for the beam tubes and reflector tank. An irradiation program is underway to determine the effects of irradiation on the mechanical properties of 6061-T651 aluminium in particular the fracture toughness. This data will allow the operating lifetime of the CPBT to determined which will in turn determine its replacement schedule in the ANS. The first two capsules for the ANS Irradiation Effects program have been successfully irradiated to 10 26 and 8x10 26 m -2 (thermal flux), respectively, at a nominal irradiation temperature of 95 deg. C. The testing of the specimens of 6061-T651 aluminum has shown: 1. The yield and ultimate tensile strengths are increased by irradiation; 2. The uniform and total elongations are reduced, but useful ductility remains, even at the higher irradiation level; 3. The fracture toughness at 25 deg. C and 95 deg. C is unaffected by irradiation, but at 150 deg. C, it decreases with an increase in irradiation; 4. The tearing modulus of 6061-T651 is low in the unirradiated condition, and is reduced to very low values by irradiation. This alloy also shows a tendency for sudden unstable crack extension

  7. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  8. Characterization of ductile fracture properties of quench-hardenable boron steel: Influence of microstructure and processing conditions

    International Nuclear Information System (INIS)

    Golling, Stefan; Östlund, Rickard; Oldenburg, Mats

    2016-01-01

    Developments of the hot stamping technology have enabled the production of components with differential microstructure composition and mechanical properties. These can increase the performance of certain crash-relevant automotive structures by combining high intrusion protection and energy absorption. This paper presents a comprehensive experimental investigation on the flow and ductile fracture properties of boron-alloyed steel with a wide range of different microstructure compositions. Three types of dual phase microstructures at three different volume fractions, and one triple phase grade, were generated by thermal treatment. Flow curves extending beyond necking and the equivalent plastic strain to fracture for each grade was determined by tensile testing using full-field measurements. The influence of phase composition and microstructural parameters were further investigated by means of a multi-scale modeling approach based on mean-field homogenization in combination with local fracture criteria. Inter-phase and intra-phase fracture mechanisms were considered by adopting two separate fracture criteria formulated in terms of the local average stress field. The micromechanical model captures with useful accuracy the strong influence of microstructure and processing conditions on the flow and fracture properties, implying promising prospects of mean-field homogenization for the constitutive modeling of hot stamped components.

  9. Characterization of ductile fracture properties of quench-hardenable boron steel: Influence of microstructure and processing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Stefan, E-mail: stefan.golling@ltu.se [Luleå University of Technology, SE 971 87 Luleå (Sweden); Östlund, Rickard [Gestamp HardTech, Ektjärnsvägen 5, SE 973 45 Luleå (Sweden); Oldenburg, Mats [Luleå University of Technology, SE 971 87 Luleå (Sweden)

    2016-03-21

    Developments of the hot stamping technology have enabled the production of components with differential microstructure composition and mechanical properties. These can increase the performance of certain crash-relevant automotive structures by combining high intrusion protection and energy absorption. This paper presents a comprehensive experimental investigation on the flow and ductile fracture properties of boron-alloyed steel with a wide range of different microstructure compositions. Three types of dual phase microstructures at three different volume fractions, and one triple phase grade, were generated by thermal treatment. Flow curves extending beyond necking and the equivalent plastic strain to fracture for each grade was determined by tensile testing using full-field measurements. The influence of phase composition and microstructural parameters were further investigated by means of a multi-scale modeling approach based on mean-field homogenization in combination with local fracture criteria. Inter-phase and intra-phase fracture mechanisms were considered by adopting two separate fracture criteria formulated in terms of the local average stress field. The micromechanical model captures with useful accuracy the strong influence of microstructure and processing conditions on the flow and fracture properties, implying promising prospects of mean-field homogenization for the constitutive modeling of hot stamped components.

  10. Numerical estimate of fracture parameters under elastic and elastic-plastic conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    2003-01-01

    The importance of the stress intensity factor K in the elastic fracture analysis is well known. In this work three methods are developed to estimate the parameter K I , corresponding to the normal loading mode, employing the finite elements method. The elastic-plastic condition is also analyzed, where the line integral J is the relevant parameter. Two cases of interest are studied: sample with a crack in its center and tubes with internal pressure. (author)

  11. Heavy-section steel irradiation program. Semiannual progress report, October 1996--March 1997

    International Nuclear Information System (INIS)

    Rosseel, T.M.

    1998-02-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established. Its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into eight tasks: (1) program management, (2) irradiation effects in engineering materials, (3) annealing, (4) microstructural analysis of radiation effects, (5) in-service irradiated and aged material evaluations, (6) fracture toughness curve shift method, (7) special technical assistance, and (8) foreign research interactions. The work is performed by the Oak Ridge National Laboratory

  12. Comparative study of the tungsten irradiation conditions in IFMIF and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, S.P.; Pereslavtsev, P.; Fischer, U. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Neutron Physics and Reactor Technology; Moeslang, A. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Material Research I

    2010-05-15

    The International Fusion Material Irradiation Facility (IFMIF) [1] will provide an accelerator based intense neutron source with a white spectrum extending up to 55 MeV for high fluence irradiations of fusion power reactor (FPR) candidate materials. Material samples located in test modules will be subjected to a radiation load anticipated for a fusion power reactor. The highest neutron flux is expected in the High Flux Test Module, which is considered in the IFMIF design to host around 1000 compactly packed stainless steel samples - the main structure materials of power fusion reactors. Another material subjected to the highest loads in a FPR is a tungsten. It is planned to be used as armour tiles for the divertor or the first wall. It turned out that no specific effort has been undertaken so far to search for a suitable irradiation location in the IFMIF Test Cell which provides a reasonable representation of the irradiation conditions in the divertor of a fusion power reactors. (orig.)

  13. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  14. Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru, E-mail: saito.shigeru@jaea.go.jp [JAEA, J-PARC Center, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kikuchi, Kenji [Ibaraki Univ., iFRC, Tokai-mura, Ibaraki-ken 319-1106 (Japan); Hamaguchi, Dai [JAEA, J-PARC Center, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Usami, Kouji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki [JAEA, Dept. of Hot Laboratories, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kawai, Masayoshi [KEK, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Dai, Yong [PSI, Spallation Source Division, Villigen PSI (Switzerland)

    2012-12-15

    To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel Japan primary candidate alloy (JPCA). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430 Degree-Sign C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (RT), 250 Degree-Sign C and 350 Degree-Sign C. Fracture surface observation after the tests was done by Scanning electron microscope (SEM). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250 Degree-Sign C and 350 Degree-Sign C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner.

  15. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  16. Patients exposed to therapeutic irradiation for benign conditions in childhood

    International Nuclear Information System (INIS)

    Carroll, R.G.

    1976-01-01

    In the United States there are over 1 million individuals who have been irradiated for benign conditions in the head and neck. Many recent reports document conclusively that individuals who have had head and neck radiation for benign conditions have markedly increased risk of thyroid, salivary, and perhaps breast cancer as compared to the general population. Although the relative risk as compared to the general population is high, the risk that any one individual who has had head or neck irradiation will develop a subsequent malignancy is relatively low. Identification of these patients through some type of screening procedure may be beneficial in terms of prevention of subsequent mortality and morbidity from cancer, especially thyroid and salivary cancer. The American Medical Association and the American Hospital Association issued a joint statement of October 17, 1975, urging hospitals and physicians to work together in their communities to develop guidelines and procedures for screening of exposed individuals and for public education

  17. Computational science simulation of laser materials processing and provision of their irradiation conditions

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu

    2016-01-01

    In laser processing, it is necessary for achieving the intended performance and product, to understand the complex physical courses including melting and solidification phenomena occurring in laser processing, and thus to set proper laser irradiation conditions. This condition optimization work requires an enormous amount of overhead due to repeated efforts, and has become a cause for inhibiting the introduction of laser processing technology into the industrial field that points to the small lot production of many products. JAEA tried to make it possible to quantitatively handle the complex physical course from the laser light irradiation to the fabricating material until the completion of processing, and is under development of the computational science simulation code SPLICE that connects micro behavior and macro behavior through a multi-level scale model. This SPLICE is able to visualize the design space and to reduce the overhead associated with the setting of laser irradiation conditions and the like, which gives the prospect of being effective as a tool for front-loading. This approach has been confirmed to be effective for the welding and fusing process. (A.O.)

  18. Alpha radiation and in-pile annealing effects on the fracture properties of a sintered alumino borosilicate glass

    International Nuclear Information System (INIS)

    Bevilacqua, Arturo M.; Prado, Miguel O.; Messi de Bernasconi, Norma B.; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    The alpha radiation and the in-pile during irradiation effects on the hardness, the crack nucleation and the fracture toughness of the German alumino borosilicate glass SG7 were investigated by using the Vickers indentation. Cold pressed and sintered samples were irradiated with thermal neutrons, in the Argentine nuclear reactors RA-3 and RA-6, to produce alpha particles in the whole volume of the glass by means of the (n, alpha)-reaction with B-10. The Vickers hardness, the crack nucleation, as 50 percent fracture probability load, plotted as the Weibull's fracture probability distribution function and the fracture toughness, as critical stress intensity factor K Ic , were correlated to the four cumulative disintegration values. It was ascertained that: a) the Vickers hardness decreases from 5.6 GPa for the non-irradiated sample up to 4.7 GPa for the sample irradiated 70 h at the lower neutron flux (4.0 x 10 - sup 18 - alpha disintegration per cm - sup 3 -), b) the 50 % fracture probability load increases from 1.4 N for the non-irradiated sample up to 4.7 g for the sample irradiated 22 h at the higher flux (6.8 x 10 - sup 18 - alpha disintegration per cm - sup 3 -), and c) the stress intensity factor increases from 0.80 MPa.m - sup 1/2 - for the non irradiated sample up to 0.86 MPa.m - sup 1/2 - for the sample mentioned in b). The in-pile annealing was analyzed by comparing the crack nucleation after irradiation with data obtained by heavy ion irradiation followed by thermal annealing. Results for the SG7 glass were compared to those for soda-lime and borosilicate glasses. (author)

  19. Heavy-Section Steel Irradiation Program. Volume 5, No. 2, Progress report, April 1994--September 1994

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-07-01

    The Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness curve shift in high-copper weldments (Series 5 and 6), (3) K lc and K la curve shifts in low upper-shelf (LUS) welds (Series 8), (4) irradiation effects in a commercial LUS weld (Series 10), (5) irradiation effects on weld heat-affected zone and plate materials (Series 11), (6) annealing effects in LUS welds (Series 9), (7) microstructural and microfracture analysis of irradiation effects, (8) in-service irradiated and aged material evaluations, (9) Japan Power Development Reactor (JPDR) steel examination, (10) fracture toughness curve shift method, (11) special technical assistance, (12) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, (13) correlation monitor materials, and (14) test reactor coordination. Progress on each task is reported

  20. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    International Nuclear Information System (INIS)

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL's Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field

  1. BWRVIP-140NP: BWR Vessel and Internals Project Fracture Toughness and Crack Growth Program on Irradiated Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Gilman, J.

    2005-01-01

    To prepare for this project, EPRI and BWRVIP conducted a workshop at Ponte Vedra Beach, Florida during February 19-21, 2003 (EPRI report 1007822). Attendees were invited to exchange relevant information on the effects of irradiation on austenitic materials in light water reactors and to produce recommendations for further work. EPRI reviewed the data, recommendations, and conclusions derived from the workshop and developed prioritized test matrices defining new data needs. Proposals were solicited, and selected proposals are the basis for the program described in this report. Results The planned test matrix for fracture toughness testing includes 21 tests on 5 materials

  2. Irradiation combined with Bleomycin treatment of synchronized cells in culture under oxic and hypoxic conditions

    International Nuclear Information System (INIS)

    Midander, J.; Littbrand, B.; Edsmyr, F.

    1980-01-01

    Bleomycin-treated cells are sensitized to radiation delivered under oxic conditions both in the early S and G 2 phases of the cycle, irradiated under hypoxic conditions, sensitization occurs only in the early S phase. This difference in the sensitizing effect of the drug is discussed in regard to the possible clinical advantages of a combined treatment of tumours with irradiation and Bleomycin. (Auth.)

  3. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  4. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    International Nuclear Information System (INIS)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K Ic n K Id temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K Ia degradation. Finally, the CVN-tensile load-temperature diagram provides substantial

  5. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.

    Science.gov (United States)

    Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng

    2017-07-04

    Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.

  6. UV irradiation of track membranes as a method for obtaining the necessary value of brittleness for good fractures of samples for sem observations

    International Nuclear Information System (INIS)

    Sartowska, B.; Nowicki, A.; Orelovitch, O.; )

    2006-01-01

    Synthesis of nano- and microstructures of materials inside the pores of specific template-track membranes can be used to obtain nano- and microwires or nano- and microtubes. It is important for these applications to know the inner geometry of the pores like sizes, shape and surface morphology. Scanning electron microscopy technique (SEM) was used predominantly for this kind of membrane characterisation. The use of other methods of sample preparation as electron, gamma rays or UV irradiation allows to make them more brittle. In present paper authors describe preliminary results of the tensile measurements of membranes after UV irradiation. Poly(ethylene terephthalate) (PET) membrane 10 μm thick with pore diameter 1.0 μm were prepared t the Joint Institute for Nuclear Research (Dubna, Russia) using the standard procedure. The samples were irradiated with UV light with energy flux 2.8 W/cm 2 during different periods of time. The tensile measurements of the initial and irradiated materials were carried in the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). In conclusion, authors claim that it is possible to find the dose of UV irradiation that ensures the fracture without elastic deformation. In the case when the time of UV irradiation increases up to 90 h, the PET membrane breaks without distortion of its channel structure

  7. The effects of combined treatment of irradiation and heat on bacteria escherichia coli and sarcina lutea in dry condition

    International Nuclear Information System (INIS)

    Nikham; Hilmy, Nazly

    1987-01-01

    The effects of combination treatment of irradiation and heat on bacteria escherichia coli and sarcina lutea in dry condition. Investigation on the effects of combined irradiation + heat and heat + irradiation treatments have been carried out i.e. at the doses of 0; 1.0; 1.5; and 2.0 kGy with heating at 50 0 C for 10; 20; and 30 minutes on escherichia coli B/r, escherichia coli from sludge and sarcine lutea. Samples of bacteria were prepared in dry condition by using sterile fine sand as carrier. Irradiation was done in aerobic condition with RH 90% and the time range between irradiation and heating was not more than 2 hours. The results showed that the D 10 value did not give significant difference between the combined irradiation + heat, and heat + irradiation treatments for the 3 species of bacteria, compared to irradiation only (p 0.05). Doses of 1.0 and 1.5 kGy combined with heating at 50 0 C for 10 and 20 minutes gave better results compared to irradiation only. 17 refs

  8. Long-term effects of localized spinal radiation therapy on vertebral fractures and focal lesions appearance in patients with multiple myeloma

    International Nuclear Information System (INIS)

    Lecouvet, Frederic; Richard, Francoise; Berg, B. Vande; Malghem, Jacques; Maldague, Baudouin; Ferrant, Augustin; Michaux, J.-L.

    1997-01-01

    The occurrence of new vertebral fractures and focal marrow lesions was determined and compared in irradiated and nonirradiated vertebrae of 12 patients with multiple myeloma (MM), prospectively followed using magnetic resonance imaging (MRI) of the thoraco-lumbar spine after localized spinal radiation therapy. During follow-up (mean 35 months), fractures appeared in 5% of irradiated vertebrae and in 20% of nonirradiated vertebrae; new focal lesions appeared in 4% of irradiated vertebrae and in 27% of nonirradiated vertebrae. This study demonstrates a beneficial long-term effect of localized radiation therapy, consisting of a reduced incidence of vertebral fractures and focal marrow lesions in irradiated vertebrae. (author)

  9. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  10. Investigation of irradiation embrittlement and annealing behaviour of JRQ pressure vessel steel by instrumented impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Rintamaa, R; Nevalainen, M; Wallin, K; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Tipping, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    Seven series of A533-B type pressure vessel steel specimens irradiated as well as irradiated - annealed - re-irradiated to different fast neutron fluences (up to 5.10{sup 19}/cm{sup 2}) have been tested with a new type of instrumented impact test machine. The radiation embrittlement and the effect of the intermediate annealing was assessed by using the ductile and cleavage fracture initiation toughness. Although the ductile fracture initiation toughness exhibited scatter, the transition temperature shift corresponding to the dynamic cleavage fracture initiation agreed well with the 41 J Charpy-V shift. The results indicate that annealing is beneficial in restoring mechanical properties in an irradiated nuclear pressure vessel steel. (authors). 8 refs., 11 figs., 1 tab.

  11. Changes in quality of apple (Malus domestica) cultivars due to γ-irradiation and storage conditions

    International Nuclear Information System (INIS)

    Hussain, P.R.; Dar, M.A.; Meena, R.S.; Wani, A.M.; Mir, M.A.; Shafi, F.

    2008-01-01

    Ambri, Golden Delicious and Royal Delicious apple varieties were γ-irradiated (0.1-0.5 kGy) and stored under ambient (15 ±2 degC, 80%RH) and refrigerated (3±1 degC, 90%RH) conditions. They were evaluated periodically for firmness, total soluble solids, acidity, juice yield, physiological loss in weight, overall acceptability and yeast and mold counts. The γ-irradiation doses of 0.2, 0.3 and 0.5 kGy proved beneficial in maintaining the overall quality of all the 3 varieties of apple under both the storage conditions. γ-irradiation significantly reduced the yeast and mold counts of apples under storage. (author)

  12. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  13. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions

    International Nuclear Information System (INIS)

    Pedersen, Ketill O.; Borvik, Tore; Hopperstad, Odd Sture

    2011-01-01

    The fracture behaviour of the aluminium alloy AA7075-T651 is investigated for quasi-static and dynamic loading conditions and different stress states. The fracture surfaces obtained in tensile tests on smooth and notched axisymmetric specimens and compression tests on cylindrical specimens are compared to the fracture surfaces that occur when a projectile, having either a blunt or an ogival nose shape, strikes a 20 mm thick plate of the aluminium alloy. The stress state in the impact tests is much more complex and the strain rate significantly higher than in the tensile and compression tests. Optical and scanning electron microscopes are used in the investigation. The fracture surface obtained in tests with smooth axisymmetric specimens indicates that the crack growth is partly intergranular along the grain boundaries or precipitation free zones and partly transgranular by void formation around fine and coarse intermetallic particles. When the stress triaxiality is increased through the introduction of a notch in the tensile specimen, delamination along the grain boundaries in the rolling plane is observed perpendicular to the primary crack. In through-thickness compression tests, the crack propagates within an intense shear band that has orientation about 45 o with respect to the load axis. The primary failure modes of the target plate during impact were adiabatic shear banding when struck by a blunt projectile and ductile hole-enlargement when struck by an ogival projectile. Delamination and fragmentation of the plates occurred for both loading cases, but was stronger for the ogival projectile. The delamination in the rolling plane was attributed to intergranular fracture caused by tensile stresses occurring during the penetration event.

  14. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  15. Characterization of gamma irradiated peanut kernels stored one year under ambient and frozen conditions

    International Nuclear Information System (INIS)

    Chiou, R.Y.Y.; Shyu, S.L.; Tsai, C.L.

    1991-01-01

    Peanut kernels were gamma irradiated at 0, 2.5, 5.0, 10, and 20 KGy, and stored 1 yr at ambient and frozen (-14 degrees C) conditions. Irradiated peanuts lost germination capabilities during storage. Molds were detected only on peanuts irradiated with 2.5 KGy and stored at ambient temperature. Peanut oil in kernels stored at -14 degrees C was comparatively more stable than that in peanuts stored at ambient temperature. Oxidation of oil was not significantly changed by irradiation. Changes in fatty acid content varied slightly with exception of linoleic and linolenic acids which decreased with increased radiation depending on storage temperature. The SDS-PAGE protein patterns of peanuts revealed no noticeable variation of protein subunits resulting from irradiation and storage

  16. Correlation of irradiation-induced transition temperature increases from Cv and KJc/KIc data

    International Nuclear Information System (INIS)

    Hiser, A.L.

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C v ) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region (ΔT) is based upon the ΔT determined from notch ductility (C v ) tests. Since the ASME K Ic and K IR reference fracture toughness curves are shifted by the ΔT from C v , assurance that this ΔT does not underestimate ΔT associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of ΔT's defined by elastic-plastic fracture toughness and C v tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using ''as-measure'' fracture toughness values (K Jc ), average comparisons between ΔT(C v ) and ΔT(K Jc ) are: (a) All data: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) +10 degree C; (b) Plates only: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) +15 degree C; and (c) Welds only: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) -1 degree C. Fluence rate is found to have no significant effect on the relationship between ΔT(C v ) and ΔT(K Jc ). 12 refs., 12 figs., 5 tabs

  17. Relationship between irradiation hardening and embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.; Lombrozo, P.M.; Wullaert, R.A.

    1984-01-01

    Based on a large body of test and power reactor data, empirical relationships between irradiation strengthening and embrittlement are derived. It is shown that the Charpy V-notch (C /SUB v/ ) 41-J indexed transition temperature increases and the upper-shelf energy decreases systematically with increases in the yield stress. The transition temperature shifts are related to two mechanisms: increases in the maximum temperature of elastic-cleavage fracture, and decreases in the slope of the C, energy versus test temperature curve associated with reductions in the upper-shelf energy. The cleavage shift contribution, which is usually dominant, can be predicted from the initial temperature of fracture at general yield and the change in ambient temperature static yield stress. In developing this simplified cleavage fracture model, it is shown that: (a) yield stress changes are independent of temperature and strain rate; (b) the increase in yield stress with decreasing temperature is independent of the strain rate, irradiation, and metallurgical state; and (c) the microcleavage fracture stress is independent of irradiation and temperature. A semi-empirical procedure for estimating the shift contribution due to upper-shelf energy decreases and the total temperature shift at 41 J, based on the observation of an approximately constant temperature interval of the transition regime, is proposed, along with a method for forecasting the entire irradiated C, curve

  18. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  19. Mezzo-scopic Analysis of Fracture Toughness in Steels

    Directory of Open Access Journals (Sweden)

    Miyata Takashi

    2002-01-01

    Full Text Available The cleavage fracture toughness of steels was mezzo-scopically analyzed on the basis of the statistical local fracture criterion approach. The statistical stress criterion at the crack tip region suggests that the cleavage fracture toughness in steels can be described as a function of the yield stress, the cleavage fracture stress, and other mechanical properties of the materials. Formulation of the cleavage fracture toughness was first examined through an investigation on correlation between the cleavage toughness and the cleavage fracture stress obtained in notched round bar specimens in accordance with the theoretical prediction. Then, the scatter of the toughness, specimen thickness effect on the toughness, deterioration of the toughness due to cold working and irradiation, and improvement of the toughness caused by the Ni addition, were analyzed through the formulation of the toughness.

  20. Analytical Modeling of the Pseudo-Colloid Migration with the Band release Boundary Condition in the Fractured Porous Media

    International Nuclear Information System (INIS)

    Jeong, Miseon; Kang, Chulhyung; Hwang, Yongsoo

    2011-01-01

    Many papers have already dealt with the problem of the radionuclide transport in various fractured porous systems, but without discussing daughter products. However, natural radionuclides may decay to radioactive daughter muscled, which may travel farther than the the parent nuclides. It is considered the multi-member decay chain of the actinide nuclide with the band release inlet boundary condition in a fractured porous rock. In this paper, it is developed the pseudo-colloid migration with the band release inlet boundary conditions with multi-member decay chains in a fractured porous matrix. It is obtained a semi-analytical solution for the multi-member decay chains as a canonical form. As one can expected, the colloid has significantly important influence to the radionuclide transport in the geologic system and the decay chain also isn't neglecting. The concept of deep geological disposal of high-level radioactive waste has been widely accepted at many countries. The repositories aim mainly to prevent the radionuclides form migrating to the biosphere through any one of many pathways. Fractures can act as main pathways for radionuclide transport because of their relatively high permeabilities

  1. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  2. New JMTR irradiation test plan on fuels and materials

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Nishiyama, Yutaka; Chimi, Yasuhiro; Sasajima, Hideo; Ogiyanagi, Jin; Nakamura, Jinichi; Suzuki, Masahide; Kawamura, Hiroshi

    2009-01-01

    In order to maintain and enhance safety of light water reactors (LWRs) in long-term and up-graded operations, proper understanding of irradiation behavior of fuels and materials is essentially important. Japanese government and the Japan Atomic Energy Agency (JAEA) have decided to refurbish the Japan Materials Testing Reactor (JMTR) and to install new tests rigs, in order to play an active role for solving irradiation related issues on plant aging and high-duty uses of the current LWRs and on development of next-generation reactors. New tests on fuel integrity under simulated abnormal transients and high-duty irradiation conditions are planned in the JMTR. Power ramp tests of newdesign fuel rods will also be performed in the first stage of the program, which is expected to start in year 2011 after refurbishment of the JMTR. Combination of the JMTR tests with simulated reactivity initiated accident tests in the Nuclear Safety Research Reactor (NSRR) and loss of coolant accident tests in hot laboratories would serve as the integrated fuel safety research on the high performance fuels at extended burnups, covering from the normal to the accident conditions, including abnormal transients. For the materials irradiation, fracture toughness of reactor vessel steels and stress corrosion cracking behavior of stainless steels are being studied in addition to basic irradiation behavior of nuclear materials such as hafnium. The irradiation studies would contribute not only to solve the current problems but also to identify possible seeds of troubles and to make proactive responses. (author)

  3. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  4. Viscoplastic-dynamic analyses of small-scale fracture tests to obtain crack arrest toughness values for PTS conditions

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Hudak, S.J. Jr; Dexter, R.J.; Couque, H.; O'Donoghue, P.E.; Polch, E.Z.

    1988-01-01

    Reliable predictions of crack arrest at the high upper shelf toughness conditions involved in postulated pressurized thermal shock (PTS) events require procedures beyond those utilized in conventional fracture mechanics treatments. To develop such a procedure, viscoplastic-dynamic fracture mechanics finite element analyses, viscoplastic material characterization testing, and small-scale crack propagation and arrest experimentation are being combines in this research. The approach couples SwRI's viscoplastic-dynamic fracture mechanics finite element code VISCRK with experiments using duplex 4340/A533B steel compact specimens. The experiments are simulated by VISCRK computations employing the Bodner-Partom viscoplastic constitutive relation and the nonlinear fracture mechanics parameter T. The goal is to develop temperature-dependent crack arrest toughness values for A533B steel. While only room temperature K Ia values have been obtained so far, these have been found to agree closely with those obtained from wide plate tests. (author)

  5. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B.

    1993-09-01

    Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear

  6. Review of intense irradiation data and discussion on structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Jitsukawa, S.; Okubo, N. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Mechanical property data on austenitic stainless steels and F82H have been reviewed to discuss for developing structural integrity methodologies of intensely irradiated components such as first walls. The following have been already clarified: (1) Fracture ductility is still high even though tensile rupture elongation is reduced remarkably. (2) Strain-hardening occurs in true stress-logarithmic strain (true strain) relationship. Work-softening behavior observed in nominal stress-nominal strain curves is simply resulted from a reduction of work hardening rate accompanied by the increase of flow stress level by irradiation. The review lead to an innovative design concept for application to intensely irradiated components. A special consideration is given to unique feature of bending moment in developing design methodology for preventing ductile fracture of intensely irradiated materials. Another discussion is also made on how to simulate mechanical behavior of intensely irradiated components, because mechanical testing of component-wise specimens after intense irradiation is inevitable for the development of design concepts, although irradiation on such a large scale specimen seems to be almost impossible with current irradiation facilities. (authors)

  7. Fatigue performance of HFIR-irradiated Nimonic PE-16 at 4300C

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1983-01-01

    Nimonic PE-16 was irradiated in the HFIR to 6 to 9 dpa and 560 to 1000 at. ppM He at 430 0 C. Postirradiation fatigue tests revealed a reduction in fatigue life by about a factor of 10 at 430 0 C. In contrast to AISI type 316 stainless steel, no endurance limit was observed. All irradiated specimens exhibited some intergranular fracture with an increasing tendency toward cleavage-like intragranular fracture for low strain ranges

  8. Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions

    International Nuclear Information System (INIS)

    Oraevsky, A.A.; Jacques, S.L.; Tittel, F.K.

    1995-01-01

    Pulsed laser ablation of aqueous medium irradiated under conditions of temporal confinement of thermal stress is described. Time-resolved measurements of laser-induced transient stress waves with simultaneous imaging of ablation process by laser-flash photography were performed. Stress transients induced in aqueous solution of K 2 CrO 4 by ablative nanosecond laser pulses at 355 nm were studied by a broad-band lithium niobate acoustic transducer. Recoil momentum upon material ejection was measured from the temporal profiles of the acoustic transducer signal as a function of incident laser fluence. Cavitation bubbles produced in the irradiated volume during the tensile phase of thermoelastic stress were shown to drive material ejection at temperatures substantially below 100 degree C. Experimental data are evident that nanosecond-pulse laser ablation of aqueous media (when temporal stress-confinement conditions are satisfied) include the following two main stages of material ejection: (1) ejection of water microdroplets due to expansion and rupture of subsurface cavitation bubbles; (2) ejection of liquid streams with substantial volume upon collapse of initial crater and large cavitation bubbles in the depth of irradiated volume (after coalescence of smaller bubbles). copyright 1995 American Institute of Physics

  9. Transition Fracture Toughness Characterization of Eurofer 97 Steel using Pre-Cracked Miniature Multi-notch Bend Bar Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clowers, Logan N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    In this report, we present the feasibility study of using pre-cracked miniature multi-notch bend bar specimens (M4CVN) with a dimension of 45mm (length) x 3.3mm (width) x 1.65mm (thickness) to characterize the transition fracture toughness of Eurofer97 based on the ASTM E1921 Master Curve method. From literature survey results, we did not find any obvious specimen size effects on the measured fracture toughness of unirradiated Eurofer97. Nonetheless, in order to exclude the specimen size effect on the measured fracture toughness of neutron irradiated Eurofer97, comparison of results obtained from larger size specimens with those from smaller size specimens after neutron irradiation is necessary, which is not practical and can be formidably expensive. However, limited literature results indicate that the transition fracture toughness of Eurofer97 obtained from different specimen sizes and geometries followed the similar irradiation embrittlement trend. We then described the newly designed experimental setup to be used for testing neutron irradiated Eurofer97 pre-cracked M4CVN bend bars in the hot cell. We recently used the same setup for testing neutron irradiated F82H pre-cracked miniature multi-notch bend bars with great success. Considering the similarity in materials, specimen types, and the nature of tests between Eurofer97 and F82H, we believe the newly designed experimental setup can be used successfully in fracture toughness testing of Eurofer97 pre-cracked M4CVN specimens.

  10. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  11. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  12. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine.

    Science.gov (United States)

    David, Shannon C; Lau, Josyane; Singleton, Eve V; Babb, Rachelle; Davies, Justin; Hirst, Timothy R; McColl, Shaun R; Paton, James C; Alsharifi, Mohammed

    2017-02-15

    Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of pre-irradiation conditioning of Medfly pupae (Diptera: Tephritidae): Hypoxia and quality of sterile males

    International Nuclear Information System (INIS)

    Nestel, D.; Nemny-Lavy, E.; Islam, S.M.; Wornoayporn, V.; Caceres, C.

    2007-01-01

    Irradiation of pupae in sterile insect technique (SIT) projects is usually undertaken in hypoxic atmospheres, which have been shown to lessen the deleterious effects of irradiation on the quality of adult sterile flies. Although this is the accepted technology in most mass-rearing and sterilization facilities, to date no information has been generated on the actual levels of oxygen (O 2 ) in pupae-packing containers during irradiation. The present study utilized recently-developed technology to investigate the O 2 level inside bags in which pupae of Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) are packed prior to irradiation, the ability of pupae to create hypoxic environments in these bags, and the effect of O 2 atmospheres on the quality of irradiated males. Pupae, 1 d before adult emergence, were shown to deplete the O 2 level in sealed bags in approximately 1 h. The rate of O 2 consumption was dependent upon pupal age and incubation temperature. Incubation temperature did not significantly affect the quality of pupae or mating capacity of resultant adult males if pupae were irradiated under maximal hypoxic conditions inside packing bags. In contrast, mating competitiveness drastically decreased when pupae were irradiated under ambient O 2 conditions, with the packing bag open. There was no difference in the mating capacity of males when pupae were irradiated in sealed bags under either 10% or 2% O 2 levels, or under maximal hypoxia. Normal doses of fluorescent dye, applied to pupae to mark sterile flies, did not affect the ability of pupae to create hypoxic conditions inside packing bags, nor the quality control parameters of either pupae or adults. Current practices in mass-rearing facilities are discussed in the light of these results. (author) [es

  14. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Puzzolante, J.L.; Fabry, A.; Van de Velde, J.

    1998-01-01

    The contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV weld material is reported. The objective of this contribution is twofold: (1) to gain experience in the field of the testing of WWER-440 steels; (2) to analyse the round-robin data according to in-house developed on used models in order to check their validity and applicability. Results from testing on unirradiated material are reported including data obtained from chemical analysis, Charpy-V impact testing, tensile testing and fracture toughness determination. Finally, irradiation strategies that can be used in the program to obtain irradiated, irradiated-annealed and irradiated-annealed-reirradiated conditions are outlined

  15. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  16. Anterior process calcaneal fractures: a systematic evaluation of associated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Petrover, David [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Hopital Beaujon, Service de Radiologie, Paris (France); Schweitzer, Mark E. [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Laredo, J.D. [Hopital Lariboisiere, Service de Radiologie, Paris (France)

    2007-07-15

    The objective was to evaluate the association, by MRI, of anterior calcaneal process fractures with tarsal coalitions, ankle sprains, and bifurcate ligament abnormalities. A retrospective review of 1,479 foot and ankle MR images was performed, over a period of 5 years, for isolated anterior process fractures of the calcaneus. Fifteen 1.5-T MR examinations were systematically evaluated by two radiologists in consensus. Marrow edema patterns, presence of a calcaneonavicular coalition, as well as bifurcate and anterior talofibular ligaments, were evaluated. There were 15 fractures of the anterior calcaneal process with an incidence of 1%. The average patient age was 51 years (range 25-82). Twelve patients were women and 3 were men. The majority of the fractures (14 out of 15) presented as an edema pattern on T2-weighted images, either diffuse (9 out of 15), or vertical (5 out of 15). One case did not show marrow edema, but rather a hypointense line. Nine patients (60%) demonstrated calcaneonavicular coalition and anterior calcaneal process fracture. In 6 patients (50%) the anterior talofibular ligament (ATFL) was thickened. Three patients did not have axial images, and were classified as non-conclusive for the ATFL evaluation. The bifurcate ligament was thickened with hyperintense signal demonstrating a sprain in 9 out of 13 (69%). Only 2 patients (16.5%) had an anterior calcaneal process fracture without any associated abnormality. We believe that there is a probable association of anterior process fractures and calcaneonavicular coalitions. We also feel, based on our results and the prior literature that there is likely also an association with both ATFL injuries and bifurcate ligament injuries. (orig.)

  17. Anterior process calcaneal fractures: a systematic evaluation of associated conditions

    International Nuclear Information System (INIS)

    Petrover, David; Schweitzer, Mark E.; Laredo, J.D.

    2007-01-01

    The objective was to evaluate the association, by MRI, of anterior calcaneal process fractures with tarsal coalitions, ankle sprains, and bifurcate ligament abnormalities. A retrospective review of 1,479 foot and ankle MR images was performed, over a period of 5 years, for isolated anterior process fractures of the calcaneus. Fifteen 1.5-T MR examinations were systematically evaluated by two radiologists in consensus. Marrow edema patterns, presence of a calcaneonavicular coalition, as well as bifurcate and anterior talofibular ligaments, were evaluated. There were 15 fractures of the anterior calcaneal process with an incidence of 1%. The average patient age was 51 years (range 25-82). Twelve patients were women and 3 were men. The majority of the fractures (14 out of 15) presented as an edema pattern on T2-weighted images, either diffuse (9 out of 15), or vertical (5 out of 15). One case did not show marrow edema, but rather a hypointense line. Nine patients (60%) demonstrated calcaneonavicular coalition and anterior calcaneal process fracture. In 6 patients (50%) the anterior talofibular ligament (ATFL) was thickened. Three patients did not have axial images, and were classified as non-conclusive for the ATFL evaluation. The bifurcate ligament was thickened with hyperintense signal demonstrating a sprain in 9 out of 13 (69%). Only 2 patients (16.5%) had an anterior calcaneal process fracture without any associated abnormality. We believe that there is a probable association of anterior process fractures and calcaneonavicular coalitions. We also feel, based on our results and the prior literature that there is likely also an association with both ATFL injuries and bifurcate ligament injuries. (orig.)

  18. Cycloadditions of ketene acetals under microwave irradiation in solvent-free conditions

    International Nuclear Information System (INIS)

    Diaz-Ortiz, A.; Diez-Barra, E.; La Hoz, A. De; Prieto, P.; Moreno, A.

    1994-01-01

    When subjected to microwave irradiation ketene acetals undergo 1.3-dipolar and hetero-Diels-Alder cycloadditions within 5-12 min to give excellent yields of easily purified heterocyclic products. This efficient and rapid synthesis has the advantage of employing milder reaction conditions than those of classical thermal heating. (author)

  19. Mechanical and fracture properties at impact loading of selected steels for nuclear power engineering

    International Nuclear Information System (INIS)

    Buchar, J.; Bilek, Z.

    1988-01-01

    The possibilities are briefly characterized of experimental research of mechanical and fracture properties of steels used in nuclear power engineering. Attention is paid to plastic deformation and the assessment of fracture formation during impact loading. The results are reported for steels 15Kh2MFA and 10GN2MFA. For steel 15Kh2MFA the effect was also studied of neutron radiation at different temperatures. From the theory developed for non-irradiated material 10GN2MFA, a prediction is made within the original model of the fracture stress value for steel 15Kh2MFA in both non-irradiated and irradiated states. The conclusion is arrived at that the existing methods of assessing steel properties at impact load allow obtaining knowledge of all significant effects during actual stress, this using only small specimens of the materials. (Z.M.). 4 figs., 8 refs

  20. The Predictive Capability of Conditioned Simulation of Discrete Fracture Networks using Structural and Hydraulic Data from the ONKALO Underground Research Facility, Finland

    Science.gov (United States)

    Williams, T. R. N.; Baxter, S.; Hartley, L.; Appleyard, P.; Koskinen, L.; Vanhanarkaus, O.; Selroos, J. O.; Munier, R.

    2017-12-01

    Discrete fracture network (DFN) models provide a natural analysis framework for rock conditions where flow is predominately through a series of connected discrete features. Mechanistic models to predict the structural patterns of networks are generally intractable due to inherent uncertainties (e.g. deformation history) and as such fracture characterisation typically involves empirical descriptions of fracture statistics for location, intensity, orientation, size, aperture etc. from analyses of field data. These DFN models are used to make probabilistic predictions of likely flow or solute transport conditions for a range of applications in underground resource and construction projects. However, there are many instances when the volumes in which predictions are most valuable are close to data sources. For example, in the disposal of hazardous materials such as radioactive waste, accurate predictions of flow-rates and network connectivity around disposal areas are required for long-term safety evaluation. The problem at hand is thus: how can probabilistic predictions be conditioned on local-scale measurements? This presentation demonstrates conditioning of a DFN model based on the current structural and hydraulic characterisation of the Demonstration Area at the ONKALO underground research facility. The conditioned realisations honour (to a required level of similarity) the locations, orientations and trace lengths of fractures mapped on the surfaces of the nearby ONKALO tunnels and pilot drillholes. Other data used as constraints include measurements from hydraulic injection tests performed in pilot drillholes and inflows to the subsequently reamed experimental deposition holes. Numerical simulations using this suite of conditioned DFN models provides a series of prediction-outcome exercises detailing the reliability of the DFN model to make local-scale predictions of measured geometric and hydraulic properties of the fracture system; and provides an understanding

  1. Treatment of tooth fracture by medium-energy CO2 laser and DP-bioactive glass paste: the interaction of enamel and DP-bioactive glass paste during irradiation by CO2 laser.

    Science.gov (United States)

    Lin, C P; Tseng, Y C; Lin, F H; Liao, J D; Lan, W H

    2001-03-01

    Acute trauma or trauma associated with occlusal disturbance can produce tooth crack or fracture. Although several methods are proposed to treat the defect, however, the prognosis is generally poor. If the fusion of a tooth fracture by laser is possible, it will offer an alternative to extraction or at least serve as an adjunctive treatment in the reconstruction. We have tried to use a continuous-wave CO2 laser and a newly developed DP-bioactive glass paste (DPGP) to fuse or bridge tooth crack or fracture lines. Both the DP-bioactive glass paste and tooth enamel have strong absorption bands at the wavelength of 10.6 microm. Therefore, under CO2 laser, DPGP and enamel should have an effective absorption and melt together. The interface between DPGP and enamel could be regarded as a mixture of DPGP and enamel (DPG-E). The study focused on the phase transformation, microstructure, functional group and thermal behavior of DPG-E with or without CO2 laser irradiation, by the analytical techniques of XRD, FTIR, DTA/TGA, and SEM. The results of XRD showed that the main crystal phase in the DPG-E was dicalcium phosphate dihydrate (CaHPO4.2H2O). It changed into CaHPO4, gamma-Ca2P2O7, beta-Ca2P2O7 and finally alpha-Ca2P2O7 with increasing temperature. In the FTIR analysis, the 720 cm(-1) absorption band ascribed to the P-O-P linkage in pyrophosphate rose up and the intensities of the OH- bands reduced after laser irradiation. In regard to the results of DTA/TGA after irradiation, the weight loss decreased due to the removal of part of absorption water and crystallization water by the CO2 laser. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight chemical bond between the enamel and DPGP. We expect that DPGP with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture.

  2. Fracture Toughness Evaluation of Kori-1 RPV Beltline Weld for a Long-Term Operation

    International Nuclear Information System (INIS)

    Lee, Bong-Sang; Kim, Min-Chul; Ahn, Sang-Bok; Kim, Byung-Chul; Hong, Jun-Hwa

    2007-01-01

    Irradiation embrittlement of RPV (reactor pressure vessel) material is the most important aging issue for a long-term operation of nuclear power plants. KORI unit 1, which is the first PWR in Korea, is approaching its initial licensing life of 30 years. In order to operate the reactor for another 10 years and more, it should be demonstrated that the irradiation embrittlement of the reactor will be adequately managed by ensuring that the fracture toughness properties have a certain level of the safety margin. The current regulation requires Charpy V-notch impact data through conventional surveillance tests. It is based on the assumption that Charpy impact test results are well correlated with the fracture toughness properties of many engineering steels. However, Charpy V-notch impact data may not be adequate to estimate the fracture toughness of certain materials, such as Linde 80 welds. During the last decade, a tremendous number of fracture toughness data on many RPV steels have been produced in accordance with the new standard test method, the so-called master curve method. ASTM E1921 represents a revolutionary advance in characterizing fracture toughness of RPV steels, since it permits establishing the ductile to brittle transition portion of the fracture toughness curve with direct measurements on a relatively small number of relatively small specimens, such as pre-cracked Charpy specimens. Actual fracture toughness data from many different RPV steels revealed that the Charpy test estimations are generally conservative with the exception of a few cases. Recent regulation codes in USA permit the master curve fracture toughness methodology in evaluating an irradiation embrittlement of commercial nuclear reactor vessels

  3. Probabilistic fracture mechanics applied for DHC assessment in the cool-down transients for CANDU pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Vasile, E-mail: vasile.radu@nuclear.ro [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania); Roth, Maria [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania)

    2012-12-15

    For CANDU pressure tubes made from Zr-2.5%Nb alloy, the mechanism called delayed hydride cracking (DHC) is widely recognized as main mechanism responsible for crack initiation and propagation in the pipe wall. Generation of some blunt flaws at the inner pressure tube surface during refueling by fuel bundle bearing pad or by debris fretting, combined with hydrogen/deuterium up-take (20-40 ppm) from normal corrosion process with coolant, may lead to crack initiation and growth. The process is governed by hydrogen hysteresis of terminal solid solubility limits in Zirconium and the diffusion of hydrogen atoms in the stress gradient near to a stress spot (flaw). Creep and irradiation growth under normal operating conditions promote the specific mechanisms for Zirconium alloys, which result in circumferential expansion, accompanied by wall thinning and length increasing. These complicate damage mechanisms in the case of CANDU pressure tubes that are also are affected by irradiation environment in the reactor core. The structural integrity assessment of CANDU fuel channels is based on the technical requirements and methodology stated in the Canadian Standard N285.8. Usually it works with fracture mechanics principles in a deterministic manner. However, there are inherent uncertainties from the in-service inspection, which are associated with those from material properties determination; therefore a necessary conservatism in deterministic evaluation should be used. Probabilistic approach, based on fracture mechanics principle and appropriate limit state functions defined as fracture criteria, appears as a promising complementary way to evaluate structural integrity of CANDU pressure tubes. To perform this, one has to account for the uncertainties that are associated with the main parameters for pressure tube assessment, such as: flaws distribution and sizing, initial hydrogen concentration, fracture toughness, DHC rate and dimensional changes induced by long term

  4. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  5. Fracture toughness behaviour using small CCT specimen of Zr-2.5Nb pressure tube materials

    International Nuclear Information System (INIS)

    Oh, Dong Joon; Kim, Young Suk; Ahn, Sang Bok; Im, Kyung Soo; Kwon, Sang Chul; Cheong, Yong Mu

    2001-03-01

    Fracture toughness of Zr-2.5Nb pressure tube is the essential data to estimate the CCL(critical crack length) for the concept of LBB(Leak-Before-Break) in PHWR. Zr-2.5Nb pressure tubes could be degraded due to the absorption of hydrogen from coolant and the irradiation. To investigate the fracture toughness behaviour such as J-resistance curves, dJ/da, and CCL of some Zr-alloys (CANDU-double, -quad, CW-E125, TMT-E125, E-635), the transverse tensile test and the fracture toughness test of small CCT (Curved Compact Tension) specimen with 17 mm width were carried out with the variation of testing temperature at different testing condition. To define the fracture mechanism of degradation, the fractographic comparison of fracture surface was performed using the stereoscope and SEM. In addition, the effect of non-uniformed pre-fatigue crack was also studied. In conclusion, CANDU double-melted was less tougher than CANDU quad-melted and the hydrogen embrittlement was found at room temperature. Finally, while the effect of non-uniformed pre-fatigue crack was considerable at room temperature, this effect was disappeared at 250-300 .deg. C

  6. Fracture toughness evaluation of Eurofer'97 by testing small specimens

    International Nuclear Information System (INIS)

    Serrano, M.; Fernandez, P.; Lapena, J.

    2006-01-01

    The Eurofer'97 is the structural reference material that will be tested in the ITER modules. Its metallurgical properties have been well characterized during the last years. However, more investigations related with the fracture toughness of this material are necessary because this property is one of the most important to design structural components and to study their integrity assessment. In the case of structural materials for fusion reactor the small specimen technology (SSTT) are being actively developed to investigate the fracture toughness among other mechanical properties. The use of small specimens is due to the small available irradiation volume of IFMIF and also due to the high fluence expected in the fusion reactor. The aim of this paper is to determine the fracture toughness of the Eurofer'97 steel by testing small specimens of different geometry in the ductile to brittle transition region, with the application of the Master Curve methodology, and to evaluate this method to assess the decrease in fracture toughness due to neutron irradiation. The tests and data analysis have been performed following the Master Curve approach included in the ASTM Standard E1921-05. Specimen size effect and comparison of the fracture toughness results with data available in the literature are also considered. (author)

  7. The effect of deformation twinning on irradiation embrittlement in iron single crystals

    International Nuclear Information System (INIS)

    Kayano, Hideo; Tokutomi, Shoichiro; Yajima, Seishi; Takaku, Hiroshi.

    1978-01-01

    Single crystals of iron with the [100] crystal orientation were irradiated in JMTR with fast neutrons to a fluence of 8 x 10 18 n/cm 2 (E > 1 MeV). All samples were deformed in tension at temperatures from liquid nitrogen temperature to 200 0 C at different strain rates using an Instron-type tensile testing machine. Scanning electron microscopy of the fractured surfaces revealed that deformation twinning is difficult to occur in irradiated samples, and also that twins formed in both irradiated and unirradiated samples inhibit fracture nucleation and growth. From the results of tensile deformation of the irradiated samples deformed in tension a different strain rates at 159 0 K, it is conceived that twinning suppression is greater in the irradiated than in the unirradiated samples, and that the nucleation and growth of twins are not necessarily related to those of cracks. It is suggested that the irradiation-induced defects impede plastic deformation of the crystals and deformation twinning is suppressed by irradiation, thus causing the irradiation embrittlement. (auth.)

  8. Enhancement in irradiated mononuclear cells in culture of mitogen-induced incorporation of [3H]thymidine by homologous conditioned medium

    International Nuclear Information System (INIS)

    Sandru, G.; Greiner, R.

    1994-01-01

    Incorporation of [ 3 H]thymidine in irradiated peripheral blood mononuclear cell cultures irradiated in vitro was stimulated significantly by either concanavalin A or phytohemagglutinin only in the presence of homologous conditioned medium. Production of this activity by mononuclear cells was enhanced by irradiation and/or pulsed exposure to puromycin but was abolished by actinomycin D. Addition of anti-interleukin 1 or anti-interleukin 2 monoclonal antibodies to the conditioned medium before assay did not influence the stimulatory action. A similar significant stimulation of mononuclear cell cultures irradiated with 6 Gy by concanavalin A was obtained when purified preparations of homologous conditioned medium were used in the assay. Purification was done by ultrafiltration and concentration, heparin agarose chromatography, ammonium sulfate precipitation, concanavalin A agarose chromatography, DEAE-ion exchange chromatography and HPLC gel filtration chromatography. With SDS-PAGE and silver staining, the active HPLC fraction gave one band of 50 kDa, suggesting that this protein is responsible for the co-stimulatory effect of homologous conditioned medium for both mitogen-induced irradiated and nonirradiated mononuclear cell cultures. 42 refs., 9 figs., 3 tabs

  9. Tensile and low cycle fatigue properties of EUROFER97-steel after 16.3 dpa neutron irradiation at 523, 623 and 723 K

    Energy Technology Data Exchange (ETDEWEB)

    Materna-Morris, E., E-mail: edeltraud.materna-morris@kit.edu; Möslang, A., E-mail: anton.moeslang@kit.edu; Schneider, H.-C., E-mail: hans-christian.schneider@kit.edu

    2013-11-15

    Neutron-irradiated specimens of the reduced-activation tempered martensitic steel EUROFER97 were tested by tensile and low cycle conditions to detect the impact of irradiation on strength and lifetime. The irradiation temperature ranged from 523 to 723 K with an accumulated dose of up to 16.3 dpa. Tensile tests revealed a significant irradiation-induced hardening below 673 K with a peak of ∼430 MPa at 573 K but none was seen at 723 K, as expected. Despite the significant irradiation-induced reduction of uniform elongation, the total elongation is only reduced by about 50% below 673 K. Post-irradiation strain-controlled fatigue tests have been carried out at T{sub irrad} = T{sub test} = 523, 623 and 723 K. Pronounced cyclic softening was observed in all specimens. At 623 and 723 K, neutron irradiation had no effect on fatigue life within the data scatter. A significant lifetime increase has been observed at T{sub irrad} = T{sub test} = 523 K that advances with decreasing stress amplitude Δε (1% → 0.5%) up to a factor of ten. Scanning electron microscopy (SEM) analysis revealed ductile fracture and fatigue striations on the fracture surfaces. After push–pull fatigue testing, transmission electron microscopy (TEM) investigations showed the typical sub-cell formation, even at T{sub irrad} = T{sub test} = 523 K.

  10. Study on irradiation conditions of producing 153Sm with natural abundance samarium target

    International Nuclear Information System (INIS)

    Du Jin; Jin Xiaohai; Bai Hongsheng; Liu Yuemin; Chen Daming; Wang Fan

    1998-01-01

    Irradiation conditions of natural abundance 152 Sm targets in different forms are studied in the heavy water reactor and the light water swimming pool reactor at the China Institute of Atomic Energy. The result shows that the specific activity of 153 Sm in liquid form target irradiated in the light water swimming pool reactor is two times greater than that in solid form target. The radionuclide purity of 153 Sm is more than 99%, which can meet the needs of clinical application

  11. Heavy-section steel irradiation program. Progress report, October 1992--March 1993

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1998-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is one of only two more safety-related components of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established at Oak Ridge National Laboratory (ORNL) under sponsorship of the Nuclear Regulatory Commission (NRC). The primary goal of this major safety program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (in particular, the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program centers on experimental assessments of irradiation-induced embrittlement (including the completion of certain irradiation studies previously conducted by the Heavy-Section Steel Technology Program) augmented by detailed examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties

  12. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K{sub Ic}n K{sub Id} temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K{sub Ia} degradation. Finally, the CVN-tensile load-temperature diagram

  13. Fracture of Zircaloy cladding by interactions with uranium dioxide pellets in LWR fuel rods. Technical report 10

    International Nuclear Information System (INIS)

    Smith, E.; Ranjan, G.V.; Cipolla, R.C.

    1976-11-01

    Power reactor fuel rod failures can be caused by uranium dioxide fuel pellet-Zircaloy cladding interactions. The report summarizes the current position attained in a detailed theoretical study of Zircaloy cladding fracture caused by the growth of stress corrosion cracks which form near fuel pellet cracks as a consequence of a power increase after a sufficiently high burn-up. It is shown that stress corrosion crack growth in irradiated Zircaloy must be able to proceed at very low stress intensifications if uniform friction effects are operative at the fuel-cladding interface, when the interfacial friction coefficient is less than unity, when a symmetric distribution of fuel cracks exists, and when symmetric interfacial slippage occurs (i.e., ''uniform'' conditions). Otherwise, the observed fuel rod failures must be due to departures from ''uniform'' conditions, and a very high interfacial friction coefficient and particularly fuel-cladding bonding, are means of providing sufficient stess intensification at a cladding crack tip to explain the occurrence of cladding fractures. The results of the investigation focus attention on the necessity for reliable experimental data on the stress corrosion crack growth behavior of irradiated Zircaloy, and for further investigations on the correlation between local fuel-cladding bonding and stress corrosion cracking

  14. High Temperature Tensile Properties of Unirradiated and Neutron Irradiated 20 Cr-35 Ni Austenitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R B; Solly, B

    1966-12-15

    The tensile properties of an unirradiated and neutron irradiated (at 40 deg C) 20 % Cr, 35 % Ni austenitic steel have been studied at 650 deg C, 750 deg C and 820 deg C. The tensile elongation and mode of fracture (transgranular) of unirradiated specimens tested at room temperature and 650 deg C are almost identical. At 750 deg C and 820 deg C the elongation decreases considerably and a large part of the total elongation is non-uniform. Furthermore, the mode of fracture at these temperatures is intergranular and microscopic evidence suggests that fracture is caused by formation and linkup of grain boundary cavities. YS and UTS decrease monotonically with temperature. Irradiated specimens show a further decrease in ductility and an increase in the tendency to grain boundary cracking. Irradiation has no significant effect on the YS, but the UTS are reduced. The embrittlement of the irradiated specimens is attributed to the presence of He and Li atoms produced during irradiation and the possible mechanisms are discussed. Prolonged annealing of irradiated and unirradiated specimens at 650 deg C appears to have no significant effect on tensile properties.

  15. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph [Univ. of Colorado, Boulder, CO (United States)

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix

  16. Effect of gamma irradiation conditions on the radiation-induced degradation of isobutylene-isoprene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Sen, M. E-mail: msen@hacettepe.edu.tr; Uzun, C.; Kantoglu, Oe.; Erdogan, S.M.; Deniz, V.; Gueven, O

    2003-08-01

    The effect of gamma irradiation conditions on the radiation-induced degradation of uncrosslinked, commercial isobutylene-isoprene rubbers has been investigated in this study. Influence of dose rate and irradiation atmosphere on the degradation of butyl rubber has been followed by viscosimetric and chromatographic analyses. Limiting viscosity number of all butyl rubbers decreased sharply up to 100 kGy and leveled off at around the same molecular weight, independent of dose rate. Slightly higher decrease in viscosity was observed for samples irradiated in air than in nitrogen especially at low dose rate irradiation. Cross-linking G(X), and chain scission G(S) yields of butyl rubbers were calculated by using weight- and number-average molecular weights of irradiated rubber determined by Size Exclusion Chromatography analyses. G-value results showed that chain scission reactions in isobutylene-isoprene rubber in air atmosphere are more favorable than in nitrogen atmosphere, and that lower dose rate enhances chain scission over cross-linking.

  17. Optimization of irradiation conditions for determination of LD50 in pigs

    International Nuclear Information System (INIS)

    Prochazka, Z.; Hampl, J.; Sedlacek, M.; Rodak, L.

    1975-01-01

    Radiation LDsub(50/30) values were determined in 36 twelve-week-old pigs (with a mean body weight of 21 kg) exposed to whole-body X-ray irradiation on a revolvable table rotated at a rate of 2.5 rpm using the following conditions: 180 kV, 15 mA, focal distance 79 cm, HVT 0.9 mm Cu, dose rate 2.42 x 10 -3 to 2.68 x 10 -3 C kg -1 min -1 (9.4 to 10.4 R/min) depending upon the animal size. The coefficient of mean irradiation uniformity was 1.4. Under these conditions the LDsub(50/30) for pigs was found to be 5.89 x 10 -2 C kg -1 , (228.3 R) with the biological range of effectiveness being 5.22 x 10 -2 to 6.90 x 10 -2 C kg -1 (202.4 to 267.6 R) Further experiments on 77 pigs showed that the LD 50 determined in this study had actually the median lethal effect. (orig.) [de

  18. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  19. Properties of an irradiated heat-treated Zr-2.5Nb pressure tube removed from the NPD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Coleman, C.E. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Koike, M.H. [Power Reactor and Nuclear Fuel Development Corp., O-Arai Engineering Centre, O-Arai (Japan); Causey, A.R.; Ells, C.E.; Hosbons, R.R.; Sagat, S.; Urbanic, V.F.; Rodgers, D.K

    1997-07-01

    Some pressure tubes in reactors moderated by heavy water have been made from heat-treated (HT) Zr-2.5Nb. One such tube was removed from the NPD nuclear reactor after 20 years of operation. An extensive program was carried out jointly by AECL and PNC to evaluate the condition and properties of this pressure tube. The investigations include irradiation creep, tensile, corrosion, delayed hydride cracking (DHC), fatigue, and fracture properties. Results show that: (I) the in-reactor elongation rate is much lower and the transverse strain rates are slightly larger than in cold-worked (CW) Zr-2.5Nb tubes; (2) the tensile properties, hydrogen pickup, threshold stress intensity factor for DHC initiation, DHC velocity, and fatigue crack growth rates were similar to those of the CW Zr-2.5Nb material; (3) the fracture toughness of this tube, as measured by curved compact toughness specimens and burst tests, is slightly higher than the CW tubes. The results were also compared with other heat-treated Zr-2.5Nb materials irradiated in the Fugen reactor. The tube was in excellent condition when removed from the reactor and would have been satisfactory for further service. (author)

  20. Heavy-Section Steel Irradiation Program: Progress report for April--September 1995. Volume 6, Number 2

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1996-08-01

    The goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of effects of neutron irradiation on material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and post-irradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K Ic ) curve shift in high-copper welds, (3) crack-arrest toughness (K Ia ) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf welds, (6) annealing effects in low upper-shelf welds, (7) irradiation effects in a commercial low upper-shelf weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) JPDR steel examination, (13) technical assistance for JCCCNRS Working Groups 3 and 12, and (14) additional requirements for materials. This report provides an overview of the activities within each of these task from April through September 1995

  1. Behavior of irradiated ATR/MOX fuel under reactivity initiated accident conditions (Joint research)

    International Nuclear Information System (INIS)

    Sasajima, Hideo; Fuketa, Toyoshi; Nakamura, Takehiko; Nakamura, Jinichi; Uetsuka, Hiroshi

    2000-03-01

    Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20 MWd/kgHM were conducted at the NSRR in JAERI to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Deformation of the fuel rods due to PCMI occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet. (author)

  2. Dimensional threshold for fracture linkage and hooking

    Science.gov (United States)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  3. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kanemoto, Ayae

    2013-01-01

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p ≥ 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy 3 (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy 3 ] and the AUCs of V30 to V120 (EQD2; 18-72 Gy 3 ) and D max to D 1 0 cm 3 were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D max to D 1 0 cm 3 were also significant and clinically useful for estimating the risk of rib fracture after hypofractionated PBT

  4. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Ayae [Proton Medical Research Center and Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan)], e-mail: ayaek@pmrc.tsukuba.ac.jp [and others

    2013-04-15

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p {>=} 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy{sub 3} (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy{sub 3}] and the AUCs of V30 to V120 (EQD2; 18-72 Gy{sub 3}) and D{sub max} to D{sub 1}0{sub cm}{sup 3} were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D{sub max} to D{sub 1}0{sub cm}{sup 3} were also significant and clinically useful for estimating

  5. Evaluation of fatigue properties of HFIR-irradiated nimonic PE-16 at 4300C

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1984-01-01

    Nimonic PE-16 was irradiated in the HFIR to 6 to 9 dpa and 560 to 1000 at. ppM He at 430 0 C. Postirradiation fatigue tests revealed a reduction in fatigue life by about a factor of 10 at 430 0 C. In contrast with AISI type 316 stainless steel, no endurance limit was observed. All irradiated specimens exhibited some intergranular fracture with an increasing tendency toward cleavage like intragranular fracture for low strain ranges

  6. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  7. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  8. Experimental data base for assessment of irradiation induced ageing effects in pre-irradiated RPV materials of German PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hein, H.; Gundermann, A.; Keim, E.; Schnabel, H. [AREVA NP GmbH (Germany); Ganswind, J. [VGB PowerTech e.V (Germany)

    2011-07-01

    The 5 year research program CARISMA which ended in 2008 has produced a data base to characterize the fracture toughness of pre-irradiated original RPV (Reactor Pressure Vessel) materials being representative for all four German PWR construction lines of former Siemens/KWU company. For this purpose tensile, Charpy-V impact, crack initiation and crack arrest tests have been performed for three base materials and four weld metals irradiated to neutron fluences beyond the designed EoL range. RPV steels with optimized chemical composition and with high copper as well as high nickel content were examined in this study. The RTNDT concept and the Master Curve approach were applied for the assessment of the generated data in order to compare both approaches. A further objective was to clarify in which extent crack arrest curves can be generated for irradiated materials and how crack arrest can be integrated into the Master Curve approach. By the ongoing follow-up project CARINA the experimental data base will be extended by additional representative materials irradiated under different conditions and with respect to the accumulated neutron fluences and specific impact parameters such as neutron flux and manufacturing effects. The irradiation data cover also the long term irradiation behavior of the RPV steels concerned. Moreover, most of the irradiated materials were and will be used for microstructural examinations to get a deeper insight in the irradiation embrittlement mechanisms and their causal relationship to the material property changes. By evaluation of the data base the applicability of the Master Curve approach for both crack initiation and arrest was confirmed to a large extent. Moreover, within both research programs progress was made in the development of crack arrest test techniques and in specific issues of RPV integrity assessment. (authors)

  9. Storage tests with irradiated and non-irradiated onions

    International Nuclear Information System (INIS)

    Gruenewald, T.; Rumpf, G.; Troemel, I.; Bundesforschungsanstalt fuer Ernaehrung, Karlsruhe

    1978-07-01

    The results of several test series on the storage of irradiated and non-irradiated German grown onion are reported. Investigated was the influence of the irradiation conditions such as time and dose and of the storage conditions on sprouting, spoilage, browning of the vegetation centres, composition of the onions, strength and sensorial properties of seven different onion varieties. If the onions were irradiated during the dormancy period following harvest, a dose of 50 Gy (krad) was sufficient to prevent sprouting. Regarding the irradiated onions, it was not possible by variation of the storage conditions within the limits set by practical requirements to extend the dormancy period or to prevent browning of the vegetation centres, however. (orig.) 891 MG 892 RSW [de

  10. Thermal analysis of polypropylene modified by gamma irradiation composites under outdoor conditions

    International Nuclear Information System (INIS)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Lugao, Ademar B.; Parra, Duclerc F.

    2015-01-01

    This work reports the influence of the clay in the degradation process of the HMSPP.The polypropylene (PP) was irradiated under acetylene atmosphere in gamma irradiation source ( 60 Co) to obtain the HMSPP (high melt strength polypropylene). Composites of HMSPP were processed in twin-screw extruder with clay Cloisite 20A and Maleic Anhydride (PP-g-MA) as coupling agent. The obtained composites were exposed under outdoor conditions for 6 months. The ageing effects were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetry Analysis (TGA). Chemical oxidation was evaluated by Carbonyl Index (IC) through infrared Spectroscopy (FT-IR). The results showed correlation between carbonyl index and ageing time. (author)

  11. Thermal analysis of polypropylene modified by gamma irradiation composites under outdoor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work reports the influence of the clay in the degradation process of the HMSPP.The polypropylene (PP) was irradiated under acetylene atmosphere in gamma irradiation source ({sup 60}Co) to obtain the HMSPP (high melt strength polypropylene). Composites of HMSPP were processed in twin-screw extruder with clay Cloisite 20A and Maleic Anhydride (PP-g-MA) as coupling agent. The obtained composites were exposed under outdoor conditions for 6 months. The ageing effects were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetry Analysis (TGA). Chemical oxidation was evaluated by Carbonyl Index (IC) through infrared Spectroscopy (FT-IR). The results showed correlation between carbonyl index and ageing time. (author)

  12. Irradiation of goods

    International Nuclear Information System (INIS)

    Huebner, G.

    1992-01-01

    The necessary dose and the dosage limits to be observed depend on the kind of product and the purpose of irradiation. Product density and density distribution, product dimensions, but also packaging, transport and storage conditions are specific parameters influencing the conditions of irradiation. The kind of irradiation plant - electron accelerator or gamma plant - , its capacity, transport system and geometric arrangement of the radiation field are factors influencing the irradiation conditions as well. This is exemplified by the irradiation of 3 different products, onions, deep-frozen chicken and high-protein feed. Feasibilities and limits of the irradiation technology are demonstrated. (orig.) [de

  13. Simulation of the irradiation-induced thermo-mechanical behaviors evolution in monolithic U–Mo/Zr fuel plates under a heterogeneous irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunmei; Gong, Xin; Ding, Shurong, E-mail: dsr1971@163.com

    2015-04-15

    Highlights: • The three-dimensional stress update algorithms in a co-rotational framework are developed for U–Mo and Zircalloy with the irradiation effects. • An effective method for three-dimensional modeling of the in-pile behaviors in heterogeneously irradiated monolithic fuel plates is established and validated. • The effects of the fission-induced creep effects in the U–Mo foil are investigated in detail. • A deformation phenomenon similar to the irradiation experimental results is obtained. - Abstract: For monolithic fuel plates with U–Mo foil and Zircalloy cladding, the three-dimensional large deformation incremental constitutive relations and stress update algorithms in the co-rotational coordinate framework are developed for the fuel and cladding with their respective irradiation effects involved. Three-dimensional finite element simulation of their in-pile thermo-mechanical coupling behaviors under a location-dependent irradiation condition is implemented via the validated user-defined subroutines UMATHT and UMAT in ABAQUS. Comparison of the simulation results for two cases with or without creep considered in the U–Mo foil indicates that with the irradiation creep included (1) considerable stress-relaxation appears in the U–Mo foil, and the mechanical interaction between fuel and cladding is weakened; (2) approximately identical thickness increments in the plate and fuel foil exist and become comparably larger; (3) plastic deformation in the cladding is significantly diminished.

  14. Model of fracture of metal melts and the strength of melts under dynamic conditions

    International Nuclear Information System (INIS)

    Mayer, P. N.; Mayer, A. E.

    2015-01-01

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength

  15. Model of fracture of metal melts and the strength of melts under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P. N., E-mail: polina.nik@mail.ru; Mayer, A. E., E-mail: mayer@csu.ru [Chelyabinsk State University (Russian Federation)

    2015-07-15

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.

  16. Studies on irradiation resisting paints for concrete structures in nuclear power plant, 4

    International Nuclear Information System (INIS)

    Kita, Daizo; Sumino, Masahiro; Goto, Tomoaki.

    1978-01-01

    It is necessary for irradiation resisting paints to adhere tightly to concrete in order to exhibit superior effects. Adhesion of paints to concrete is greatly affected by moisture content and the form of moisture in concrete. Further, adhesion will probably be affected by differences in concrete surface conditions between floors, walls and ceilings. Therefore, experiments were conducted with concrete to make clear allowable moisture conditions and the influence of these concrete surfaces. The following results were obtained. (1) Adhesion of paint becomes stronger as pF-value increases, that is, as moisture content falls. (2) The allowable pF-values and moisture contents were respectively 5.5 over and 4.5% under at floor, 4.4 over and 4.9% under at wall, and 4.3 over and 5% under at ceiling. (3) Fractures of paint films under these allowable conditions occurred in paint-concrete composites, and the fractured concrete thickness than was 0.5-0.8 mm and measured adhesion strength was 33 kg/cm 2 . (auth.)

  17. Numerical simulation study of fracturing wells for shale gas with gas–water two-phase flow system under desorption and diffusion conditions

    Directory of Open Access Journals (Sweden)

    Jinzhou Zhao

    2016-06-01

    Full Text Available Hydraulic fracturing is an essential technology in developing shale gas reservoirs, not to mention, accurate prediction of productivity in fractured shale gas wells is the foundation of an efficient development in shale gas reservoirs. This paper establishes a gas–water two-phase flow percolation mathematical model by a determined numerical simulation and calculation method under desorption and diffusion conditions. By means of simulating for a post-frac performance of the shale gas reservoir, this paper devotes to a quantitative analysis the impact of fracture parameters, physical parameters, and desorption–diffusion parameters. The outcome of this research indicates that hydraulic fracturing can improve single well production and it's an effective measure in the development of shale gas. The conductivity of hydraulic fractures and the permeability of natural fractures are the main influences on shale gas production. The higher these factors are, the higher the gas and water productions are. In comparison, the matrix permeability and diffusion coefficients have minimal influences on production.

  18. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  19. Vertebral fracture complications following radiation therapy. Report of two cases

    International Nuclear Information System (INIS)

    Tanaka, Hisato; Komine, Mitsunori; Kurokawa, Hiroaki

    2007-01-01

    We observed the outbreak time of a spinal compression fracture following radiation therapy and its natural course. Case 1 was a 88-year-old, woman. NTX 66.9. Underwent cobalt irradiation 54 Gy for esophageal cancer. Three months after irradiation, the first lumbar vertebra was found to de compressed, and low back pain occurred. Vacuum cleft phenomenon in X-P appeared after two weeks, but anterior callus formation appeared in eight weeks, after which the low back pain disappeared. Case 2 was a 77-year-old woman. NTX 86.5. Underwent irradiation 69 Gy for uterine carcinoma. Six months after the irradiation, the fourth/five lumbar vertebra were found to be compressed. Great collapse occurred in X-P after two weeks, but stabilized and did not aggravate thereafter. Low back pain also disappeared. Radiotherapy affects bone cells (osteoblasts, osteoclasts), inhibiting bone remodeling. As a result, deficient elastic resistance occurs. Vertebral bodies are also compressed in such a situation. After that normal callus formation starts from adjacent normal bone cells. The compression fracture observed ranged from three to six months after radiation. Natural course is well. Therefore conservative therapy is recommended. (author)

  20. Fracture Strength of Indirect Resin Composite Laminates to Teeth with Existing Restorations : An Evaluation of Conditioning Protocols

    NARCIS (Netherlands)

    Mese, Ayse; Ozcan, Mutlu

    2009-01-01

    Purpose: This study evaluated the fracture strength and failure types of indirect resin-based composite laminates bonded to teeth with aged Class III composite restorations that were conditioned according to various protocols. Materials and Methods: Maxillary central incisors (N = 60) with

  1. Comparative study for the estimation of To shift due to irradiation embrittlement

    International Nuclear Information System (INIS)

    Lee, Jin Ho; Park, Youn won; Choi, Young Hwan; Kim, Seok Hun; Revka, Volodymyr

    2002-01-01

    Recently, an approach called the 'Master Curve' method was proposed which has opened a new means to acquire a directly measured material-specific fracture toughness curve. For the entire application of the Master Curve method, several technical issues should be solved. One of them is to utilize existing Charpy impact test data in the evaluation of a fracture transition temperature shift due to irradiation damage. In the U.S. and most Western countries, the Charpy impact test data have been used to estimate the irradiation effects on fracture toughness changes of RPV materials. For the determination of the irradiation shift the indexing energy level of 41 joule is used irrespective of the material yield strength. The Russian Code also requires the Charpy impact test data to determine the extent of radiation embrittlement. Unlike the U.S. Code, however, the Russian approach uses the indexing energy level varying according to the material strength. The objective of this study is to determine a method by which the reference transition temperature shift (ΔT o ) due to irradiation can be estimated. By comparing the irradiation shift estimated according to the U.S. procedure (ΔT 41J ) with that estimated according to the Russian procedure (ΔT F ), it was found that one-to-one relation exists between ΔT o and ΔT F

  2. The irradiation embrittlement of two pressure vessel steels -Contribution of local approach

    Energy Technology Data Exchange (ETDEWEB)

    Soulat, P; Marini, B [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Miannay, D; Horowitz, H [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Schill, R [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1994-12-31

    Within the IAEA Coordinated Research Programme on ``Optimizing the Reactor Pressure Vessel Surveillance Programmes and their Analyses``, the French participation has been focused on the contribution of the local approach to the determination of the sensitivity to radiation embrittlement of two different pressure vessel steels: a low sensitive French forging steel (FFA) and a high sensitive ``monitor`` Japanese plate steel (JRQ) were irradiated to a fluence of 3.10{sup 19} n/cm{sup 2} at 290 C. The irradiation embrittlement of the two steels measured by the shift of Charpy V transition curves is in good agreement with the estimated shifts given by theoretical prediction. The fracture toughness properties were examined at low temperature with brittle fracture, and at service temperature (290 C), with ductile tearing. The values of K{sub 1C} or K{sub JC} for the brittle fracture and J{sub 1C} for the ductile fracture are compared to predictions established using the local approach of cleavage fracture (Weibull analysis) and the critical rate of void growth respectively. 8 refs., 14 figs., 10 tabs.

  3. Fracture strength of aluminium alloys under rapid loading conditions

    International Nuclear Information System (INIS)

    Joshi, K.D.; Rav, Amit S.; Sur, Amit; Kaushik, T.C.; Gupta, Satish C.

    2016-04-01

    fracture and failure due to yielding as compared to that under quasi-static loading condition. (author)

  4. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  5. Heavy-Section Steel Irradiation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rosseel, T.M.

    2000-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  6. Heavy-Section Steel Irradiation Program

    International Nuclear Information System (INIS)

    Rosseel, T.M.

    2000-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established

  7. Heavy-Section Steel Technology program fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1989-10-01

    Large scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL. 24 refs., 18 figs

  8. Heavy-section steel technology program: Fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-01-01

    Large-scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low-strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring-forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL

  9. Status report on experiments and modelling of the cleavage fracture behaviour of F82Hmod using local fracture grid. Task TTMS-005

    International Nuclear Information System (INIS)

    Riesch-Oppermann, H.; Walter, M.

    2001-09-01

    Within the European Fusion Technology Programme framework, a fracture mechanics description of the material behaviour in the ductile to brittle transition-regime is developed using local fracture criteria. Based on experimental results using axisymmetrically notched and pre-cracked specimens together with a numerical stress analysis at fracture load, a statistical evaluation of cleavage fracture parameters can be performed along the lines described in various code schemes such as the British Energy R6-Code or the ESIS P6 procedure. The report contains results of the experimental characterization of the deformation and fracture behaviour of the fusion candidate RAFM steel variant F82Hmod, details and background of the numerical procedure for cleavage fracture parameter determination as well as additional statistical inference methods for transferability analysis. Fractographic results give important information about fracture mode and fracture origin sites and their location. Numerical prediction of fracture origin distribution is an important tool for transferability assessment. Future issues comprise constraint effect and ductile damage as well as incorporation of irradiation effects, which are topically addressed. The methodology developed and described in the present report will be applied to characterize material behaviour of future RAFM variants as the EUROFER 97, for which analysis is currently under way. (orig.)

  10. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States); Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Zenobia, S. J.; Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  11. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Curado da Silva, R.M., E-mail: rui.silva@coimbra.lip.pt [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Maia, J.M. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Beira-Interior, Covilhã (Portugal); Simões, N. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Marques, J. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Centro de Astrofísica, Universidade do Porto, Porto (Portugal); Pereira, L.; Trindade, A.M.F. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); and others

    2016-12-21

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a {sup 22}Na (511 keV) radioactive source. The polarized beam cross section was 1 cm{sup 2}, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level (~40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  12. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  13. Active and passive avoidance conditioning for rats which received x-ray irradiation in their embryonal period

    International Nuclear Information System (INIS)

    Tamaki, Yoshitaka; Inoue, Minoru; Kameyama, Yoshiro

    1983-01-01

    Fischer rats at 17 gestational days were given 200 R of x-ray, and their offsprings were subjected to conditioning of active and passive avoidance against a shuttle box stimulation. These rats irradiated in their embryonal period learned active avoidance reaction more rapidly than control rats, but it took time for them to gain passive avoidance reaction. This result seemed to suggest activated reactibility of the irradiated animals in avoiding the shuttle box stimulation. In the irradiated rats, frequency of the passive avoidance reaction increased gradually as they learned with training. (Ueda, J.)

  14. Mechanical properties of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.; Longhurst, G.R.; Wallace, R.S.

    1992-01-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 x 10 25 n/m 2 (E > MeV) at an irradiation temperature of 75deg C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium. (orig.)

  15. Mechanical properties of irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Beeston, J.M.; Longhurst, G.R.; Wallace, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.); Abeln, S.P. (EG and G Rocky Flats, Inc., Golden, CO (United States))

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 x 10[sup 25] n/m[sup 2] (E > MeV) at an irradiation temperature of 75deg C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium. (orig.).

  16. Mechanical properties of irradiated beryllium

    Science.gov (United States)

    Beeston, J. M.; Longhurst, G. R.; Wallace, R. S.; Abeln, S. P.

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 × 10 25 n/m 2 ( E > 1 MeV) at an irradiation temperature of 75°C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium.

  17. Simulation study of the VAPEX process in fractured heavy oil system at reservoir conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azin, Reza; Ghotbi, Cyrus [Department of Chemical and Petroleum Engineering, Sharif Univ. Tech., Tehran (Iran); Kharrat, Riyaz; Rostami, Behzad [Petroleum University of Technology Research Center, Tehran (Iran); Vossoughi, Shapour [4132C Learned Hall, Department of Chemical and Petroleum Engineering, Kansas University, Lawrence, KS (United States)

    2008-01-15

    The Vapor Extraction (VAPEX) process, a newly developed Enhanced Oil Recovery (EOR) process to recover heavy oil and bitumen, has been studied theoretically and experimentally and is found a promising EOR method for certain heavy oil reservoirs. In this work, a simulation study of the VAPEX process was made on a fractured model, which consists of a matrix surrounded by horizontal and vertical fractures. The results show a very interesting difference in the pattern of solvent flow in fractured model compared with the conventional model. Also, in the fractured system, due to differences in matrix and fracture permeabilities, the solvent first spreads through the fractures and then starts diffusing into matrix from all parts of the matrix. Thus, the solvent surrounds the oil bank, and an oil rather than the solvent chamber forms and shrinks as the process proceeds. In addition, the recovery factor is higher at lower solvent injection rates for a constant pore volume of the solvent injected into the model. Also, the diffusion process becomes important and higher recoveries are obtained at low injection rates, provided sufficient time is given to the process. The effect of inter-connectivity of the surrounding fractures was studied by making the side vertical fractures shorter than the side length of the model. It was observed that inter-connectivity of the fractures affects the pattern of solvent distribution. Even for the case of side fractures being far apart from the bottom fracture, the solvent distribution in the matrix was significantly different than that in the model without fractures. Combination of diffusion phenomenon and gravity segregation was observed to be controlling factors in all VAPEX processes simulated in fractured systems. The early breakthrough of the solvent for the case of matrix surrounded by the fracture partially inhibited diffusion of the solvent into the oil and consequently the VAPEX process became the least effective. It is concluded

  18. In situ observations of oxide fracture on austenitic stainless steels relevant to IASCC

    International Nuclear Information System (INIS)

    Duff, J.; Burke, M.G.; Scenini, F.

    2015-01-01

    Stress Corrosion Cracking (SCC) and Irradiation-Assisted Stress Corrosion Cracking (IASCC) are important failure modes in the nuclear industry, yet the exact mechanism(s) responsible for these complex failure phenomena are not fully understood. In particular, considerable attention is being focused on SCC and IASCC initiation and the behaviour of the oxidised metal surface during straining in a relevant environment. Experimental observations and data for oxide fracture at the grain boundary are limited, but are also required for the development of crack growth models. In this work, the role of strain localization on surface oxide fracture has been examined via: 1) in situ straining experiments using a state-of-the-art imaging autoclave; and 2) ex situ studies using pre-oxidised samples in a FEG-SEM with a micro-tensile stage. The work was conducted using three materials: 1) a non-irradiated archive Type 316 Stainless Steel, 2) a 1 dpa proton-irradiated Type 316 Stainless Steel, and 3) a model alloy designed to simulate the grain boundary composition resulting from radiation induced segregation. The observations were performed on samples pre-oxidized at 320 C. degrees in high purity, water containing 30 cm 3 /kg of dissolved H 2 and 2 ppm Li additions. The samples were strained in tension and the surface deformation measured via Digital Image Correlation. This technique provided quantitative data regarding the intergranular strains associated with oxide fracture. Oxide fracture and strain development were also related to the local irradiation-induced microstructure and grain boundary character. The results from this work contribute to the mechanistic information on the role of strain localization and composition on the incubation stages of IASCC. (authors)

  19. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  20. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  1. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  2. The effect of irradiation on the mechanical properties of 6061-T651 aluminum

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Critical components of the Advanced Neutron Source (ANS) reactor, to be built at Oak Ridge National Laboratory (ORNL), will be fabricated from 6061-T651 aluminum alloy. This alloy has been selected for its favorable neutronic, thermal, and mechanical properties. The effect of irradiation on the tensile properties and fracture toughness has been studied to allow the lifetime of these components to be estimated. Irradiations were carried out in the High Flux Isotope Reactor at ORNL at a temperature of approximately 95 degree C to a fluence of approximately 10 26 m -2 (thermal). Testing was conducted from room temperature to 150 degree C. The yield and ultimate tensile strengths were increased by irradiation, and the total elongation decreased, but the fracture toughness at 26 and 95 degree C was not degraded by irradiation, and decreased only slightly at 150 degree C

  3. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Thomas M. E-mail: thomas_regan@uml.edu; Harris, Daniel C. E-mail: harrisdc@navair.navy.mil; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10{sup 22}/m{sup 2} increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of {approx}2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.

  4. Effects of Ionizing Irradiation on Mushrooms as Influenced by Physiological and Environmental Conditions

    DEFF Research Database (Denmark)

    Skou, Jens-Peder; Bech, K.; Lundsten, K.

    1974-01-01

    The effects of irradiation with β (10 MeV fast electrons)- and γ-rays were studied on several characters in strains of the cultured mushroom under different physiological and environmental conditions, including uncut and cut mushrooms, tightness of packing, and relative humidity. Weight loss was ...

  5. Heavy-Section Steel Irradiation Program: Volume 3, Progress report, October 1991--September 1992

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-02-01

    The primary goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 10 tasks: (1) program management, (2) K Ic curve shift in high-copper welds, (3) K Ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf welds, (6) irradiation effects in a commercial low upper-shelf weld, (7) microstructural analysis of irradiation effects, (8) in-service aged material evaluations, (9) correlation monitor materials, and (10) special technical assistance. This report provides an overview of the activities within each of these tasks from October 1991 to September 1992

  6. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-01-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616

  7. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  8. Finite element modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications

    International Nuclear Information System (INIS)

    Mueller, P. F.

    2009-10-01

    The present report studies the brittle fracture in high-chromium reduced activation tempered martensitic steels foreseen as structural materials for thermonuclear fusion reactors. Developing the adequate materials that can withstand the severe irradiation conditions of the burning plasma in a fusion reactor is one of the major challenges to be solved in order to make profit from the great advantages of thermonuclear fusion as an energy source. High-chromium tempered martensitic steels such as F82H and the most advanced version Eurofer97 are among the main candidate materials for structural applications in future fusion power plants due to low irradiation-induced swelling, good mechanical and thermal properties, and reasonably fast radioactive decay. Drawback of this kind of steels is irradiation embrittlement, which is manifested by a ductile-to-brittle transition temperature shift to higher temperatures after irradiation. The laboratory specimen fracture data has to be transferred to real components in order to assess the performance of these steels in the different operating and transient conditions they could find during the operation life of a fusion reactor. The specimen geometry effects and specimen size effects on measured fracture toughness need to be properly understood, taken into account and predicted with an appropriate model. The microstructure of Eurofer97 and F82H has been characterized and compared by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy in order to identify microstructural features that could play a role in the measured fracture toughness. Both steels have similar but slightly different chemical composition and final heat treatments but the prior austenitic grain size measured in F82H is approximately 8 times larger than in Eurofer97. The alloying element tantalum is added to stabilize the austenite grain size. In Eurofer97 it forms carbides of an

  9. Electron microscope study of irradiated beryllium oxide; Etude au microscope electronique de l'oxyde de beryllium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bisson, A A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. {alpha}) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10{sup 19}, 9 x 10{sup 19} and 2 x 10{sup 20} n{sub f} cm{sup -2} at a temperature below 100 deg. C. For the irradiation at 6 x 10{sup 19} n{sub f} cm{sup -2}, the defects are merely visible, but at 2 x l0{sup 20} n{sub f} cm{sup -2} the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [French] L'oxyde de beryllium est d'abord etudie, par une methode fractographique, avant et apres irradiation, en

  10. Pentoxifylline in the treatment of radiation-related pelvic insufficiency fractures of bone

    International Nuclear Information System (INIS)

    Bese, N.S.; Oezgueroglu, M.; Kamberoglu, K.; Karahasanoglu, T.; Oeber, A.

    2003-01-01

    The reported incidence of bone complications after radiation therapy is quite low. The most commonly seen bone complication is insufficiency fractures of the pubis and sacrum. Treatment of insufficiency fractures consists of conservative care, and mineral replacement may be useful. The resolution of symptoms takes at least one year with these treatments. Vascular damage has an important role in the etiology of late radiation injury in normal tissues. Progressive ischemic changes further weaken the bone structure, which can cause fractures, and healing is also delayed. Pentoxifylline is a methylxanthine derivative that is shown to increase tissue blood flow. Here, we present a 63-year-old male patient with pelvic insufficiency fractures due to postoperative pelvic irradiation for rectal adenocarcinoma. The patient received pelvic radiotherapy to a total dose of 50.4 Gy with concomitant 5-FU. Six months after the completion of radiotherapy, the patient presented with severe pelvic pain. Pelvic magnetic resonance imaging (MRI) demonstrated abnormal signal intensity with insufficiency fractures at the sacrum and bone marrow edema near the fractures, but not an abnormal intensity that revealed bone metastases. Neither distant nor locoregional recurrence was observed at his work-up. The final diagnosis was insufficiency fractures of the pelvic bones owing to irradiation, and pentoxifylline (400 mg, 3 times daily, peroral, 1,200 mg/day) was used for eight months as treatment. Dramatic clinical improvement was obtained in six months, and objective healing was revealed with MRI. We concluded that pentoxifylline is a cost-effective drug with minimal adverse effects in treating radiation damage of bone. (author)

  11. Rib fractures after reirradiation plus hyperthermia for recurrent breast cancer. Predictive factors

    International Nuclear Information System (INIS)

    Oldenborg, Sabine; Valk, Christel; Os, Rob van; Voerde Sive Voerding, Paul zum; Crezee, Hans; Tienhoven, Geertjan van; Rasch, Coen; Oei, Bing; Venselaar, Jack; Randen, Adrienne van

    2016-01-01

    Combining reirradiation (reRT) and hyperthermia (HT) has shown high therapeutic value for patients with locoregional recurrent breast cancer (LR). However, additional toxicity of reirradiation (e.g., rib fractures) may occur. The aim of this study is to determine the impact of potential risk factors on the occurrence of rib fractures. From 1982-2005, 234 patients were treated with adjuvant reRT + HT after surgery for LR. ReRT consisted typically of 8 fractions of 4 Gy twice a week, or 12 fractions of 3 Gy four times a week. A total of 118 patients were irradiated with abutted photon and electron fields. In all, 60 patients were irradiated using either one or alternating combinations of abutted AP electron fields. Hyperthermia was given once or twice a week. The 5-year infield local control (LC) rate was 70 %. Rib fractures were detected in 16 of 234 patients (actuarial risk: 7 % at 5 years). All rib fractures occurred in patients treated with a combination of photon and abutted electron fields (p = 0.000); in 15 of 16 patients fractures were located in the abutment regions. The other significant predictive factors for rib fractures were a higher fraction dose (p = 0.040), large RT fields, and treatment before the year 2000. ReRT + HT results in long-term LC. The majority of rib fractures were located in the photon/electron abutment area, emphasizing the disadvantage of field overlap. Large abutted photon/electron fields combined with 4 Gy fractions increase the number of rib fractures in this study group. However, as these factors were highly correlated no relative importance of the individual factors could be estimated. Increasing the number of HT sessions a week does not increase the risk of rib fractures. (orig.) [de

  12. Studies on groundwater transport in fractured crystalline rock under controlled conditions using nonradioactive tracers

    International Nuclear Information System (INIS)

    Gustafsson, E.; Klockars, C.-E.

    1981-04-01

    The purpose of the investigation has been study the following parameters along existing fractures between two boreholes: hydraulic properties of rock mass and fractures; adsorptive properties of some selected tracers during transport along fractures; dispersivity and dilution of tracers during transport in fractures; kinematic porosity of fractured bedrock. The procedure has been to determine the hydraulic properties of a rock mass by means of conventional hydraulic testing methods in 100 m deep boreholes, and to study transport mechanisms and properties of selected tracers in a selected fracture zone between two boreholes. (Auth.)

  13. Fracture mechanics of ceramics. Vol. 8. Microstructure, methods, design, and fatigue

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.H.; Lange, F.F.

    1986-01-01

    This paper presents information on the following topics: fracture mechanics and microstructures; non-lubricated sliding wear of Al 2 O 3 , PSZ and SiC; mixed-mode fracture of ceramics; some fracture properties of alumina-containing electrical porcelains; transformation toughening in the Al 2 O 3 -Cr 2 O 3 /ZrO 2 -HfO 2 system; strength toughness relationships for transformation toughened ceramics; tensile strength and notch sensitivity of Mg-PSZ; fracture mechanisms in lead zirconate titanate ceramics; loading-unloading techniques for determining fracture parameters of brittle materials utilizing four-point bend, chevron-notched specimens; application of the potential drop technique to the fracture mechanics of ceramics; ceramics-to-metal bonding from a fracture mechanics perspective; observed changes in fracture strength following laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC; crack growth in single-crystal silicon; a fracture mechanics and non-destructive evaluation investigation of the subcritical-fracture process in rock; slow crack growth in sintered silicon nitride; uniaxial tensile fatigue testing of sintered silicon carbide under cyclic temperature change; and effect of surface corrosion on glass fracture

  14. Fractionated total body irradiation; the gastrointestinal toxicity versus the conditioning effect for bone marrow transplantation with different fractionation schedules

    International Nuclear Information System (INIS)

    Walma, E.P.; Klapwijk, W.M.; Miller, A.M.

    1982-01-01

    In most cases, bone marrow transplantation is preceded by a conditioning regimen employing irradiation and/or cytotoxic drugs. The authors are searching for better fractionation schedules in order to optimize the conditioning regimen prior to transplantation of stem-cell-enriched bone marrow. They have determined damage to the gastrointestinal tract in dogs and mice after total body irradiation in mice and dogs following a number of fractionation schedules, and these results are presented. The schedules were chosen such as to minimize the interval between irradiation and the bone marrow transplantation and to maximize clinical feasibility. (Auth./C.F.)

  15. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  16. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  17. Heavy-Section Steel Irradiation Program. Volume 2, No. 2: Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1994-10-01

    Goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel stools as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and post-irradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is into 10 tasks: (1) program management, (2) K Ic curve shift in high-copper welds, (3) K Ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K Ic and K Ia curve shifts in low upper-shelf welds, (6) irradiation effects in a commercial low upper-sheer weld, (7) microstructural analysis of irradiation effects, (8) in-service aged material evaluations, (9) correlation monitor materials, and (10) special technical assistance. This report provides an overview of the activities within each of these tasks from April to September 1991

  18. Micro- and macroapproaches in fracture mechanics for interpreting brittle fracture and fatigue crack growth

    International Nuclear Information System (INIS)

    Ekobori, T.; Konosu, S.; Ekobori, A.

    1980-01-01

    Classified are models of the crack growth mechanism, and in the framework of the fracture mechanics suggested are combined micro- and macroapproaches to interpreting the criterion of the brittle fracture and fatigue crack growth as fracture typical examples, when temporal processes are important or unimportant. Under the brittle fracture conditions the crack propagation criterion is shown to be brought with the high accuracy to a form analogous to one of the crack propagation in a linear fracture mechanics although it is expressed with micro- and macrostructures. Obtained is a good agreement between theoretical and experimental data

  19. Combined heat and gamma-irradiation treatments for the control of strawberry diseases under market conditions

    International Nuclear Information System (INIS)

    Brodrick, H.T.; Thomas, A.C.; Van Tonder, A.J.; Terblanche, J.C.

    1977-02-01

    The spoilage of strawberries under local market conditions was investigated. It was confirmed that the major losses are due to 'leak' disease caused by Rhizopus stolonifer (Ehr. ex Fr.) Lind. It was also established that further fruit losses in summer are due to anthracnose caused by the fungus Colletotrichum acutatum Simmonds. This is the first time that the latter pathogen has been isolated and identified and recognised as a problem on strawberries in South Africa. Studies with R. stolonifer in culture showed that 46 degrees Celsius for 20 min (the previous international standard heat treatment for fruit) was disappointing, while a treatment at 50 degrees Celsius for 10 min effectively inhibited spore germination. Irradiation studies with cultures of R. stolonifer and C. acutatum showed that a dose of 200 and 100 krad, respectively, resulted in excellent inhibition of spore germination. However, irradiating in nitrogen gas resulted in a tenfold reduction in the effectiveness of the irradiation treatments. The use of nitrogen during irradiation, therefore, cannot be considered, especially where an effective control of the fungal pathogens is desired. Investigations with different cultivars clearly demonstrated the synergistic effect on disease control obtained when combining heat and irradiation treatments. The combination treatment (moist heat at 50-52 degrees Celsius for 10 min plus 200 krad), besides effectively controlling both diseases in strawberries, did not adversely affect berry quality. In simulated transport tests it was shown that a minimal amount of berry softening did occur with this treatment, but this adverse effect was negligible compared with the beneficial effect obtained from disease control. In semi-commercial experiments it was shown that the combination heat and irradiation treatment effectively controlled spoilage diseases for a period of several days from picking, thus allowing sufficient time to market the fruit under local market

  20. Transformation of avobenzone in conditions of aquatic chlorination and UV-irradiation.

    Science.gov (United States)

    Trebše, Polonca; Polyakova, Olga V; Baranova, Maria; Kralj, Mojca Bavcon; Dolenc, Darko; Sarakha, Mohamed; Kutin, Alexander; Lebedev, Albert T

    2016-09-15

    Emerging contaminants represent a wide group of the most different compounds. They appear in the environment at trace levels due to human activity. Most of these compounds are not yet regulated. Sunscreen UV-filters play an important role among these emerging contaminants. In the present research the reactions of 4-tert-butyl-4'-methoxydibenzoylmethane (avobenzone), the most common UV filter in the formulation of sunscreens, were studied under the combined influence of active chlorine and UV-irradiation. Twenty five compounds were identified by GC/MS as transformation products of avobenzone in reactions of aquatic UV-irradiation and chlorination with sodium hypochlorite. A complete scheme of transformation of avobenzone covering all the semivolatile products is proposed. The identification of the two primary chlorination products (2-chloro-1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione and 2,2-dichloro-1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione) was confirmed by their synthesis and GC/MS and NMR analysis. Although the toxicities of the majority of these products remain unknown substituted chlorinated phenols and acetophenones are known to be rather toxic. Combined action of active chlorine and UV-irradiation results in the formation of some products (chloroanhydrides, chlorophenols) not forming in conditions of separate application of these disinfection methods. Therefore caring for people «well-being» it is of great importance to apply the most appropriate disinfection method. Since the primary transformation products partially resist powerful UV-C irradiation they may be treated as stable and persistent pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dry Storage at long term of nuclear fuels: Influence of the fuel design and commercial irradiation conditions

    International Nuclear Information System (INIS)

    Marino, Armando C

    2009-01-01

    The BaCo code was applied to simulate the behaviour for a PHWR fuel under storage conditions showing a strong dependence on the original design of the fuel and the irradiation history. In particular, the results of the statistical analysis of BaCo indicate that the integrity of the fuel is influenced by the manufacture tolerances and the solicitations during the NPP irradiation. The main conclusion of the present study is that the fuel temperature of the device should be carefully controlled in order to ensure safe storage conditions. [es

  2. Classification of Porcine Cranial Fracture Patterns Using a Fracture Printing Interface,.

    Science.gov (United States)

    Wei, Feng; Bucak, Serhat Selçuk; Vollner, Jennifer M; Fenton, Todd W; Jain, Anil K; Haut, Roger C

    2017-01-01

    Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies to investigate the effects of impact energy level, surface type, and constraint condition on cranial fracture patterns. In the current study, an automated pattern recognition method, or a fracture printing interface (FPI), was developed to classify cranial fracture patterns that were associated with different impact scenarios documented in previous experiments. The FPI accurately predicted the energy level when the impact surface type was rigid. Additionally, the FPI was exceedingly successful in determining fractures caused by skulls being dropped with a high-level energy (97% accuracy). The FPI, currently developed on the porcine data, may in the future be transformed to the task of cranial fracture pattern classification for human infant skulls. © 2016 American Academy of Forensic Sciences.

  3. Pelvic insufficiency fractures associated with radiation atrophy: clinical recognition and diagnostic evaluation

    International Nuclear Information System (INIS)

    Mumber, M.P.; Greven, K.M.; Haygood, T.M.

    1997-01-01

    Pelvic bone injuries are infrequent complications of radiotherapy. However, insufficiency fractures in irradiated pelvic bones may be underdetected, particularly in postmenopausal women. We describe the clinical presentation, radiologic evaluation, and course of disease in three patients with postradiation pelvic insufficiency fractures. Differential diagnosis included metastatic disease, tumor recurrence, and second malignancy. Recognition of radiographic features may prevent unnecessary, possibly morbid treatments. (orig.). With 6 figs

  4. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  5. Pathological fractures in children

    Science.gov (United States)

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  6. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi

    1987-01-01

    In order to know the sterilization efficacy of ultraviolet irradiation on microbial aerosols, the size and the weight of the aerosol particles were evaluated, and these were irradiated under dynamic air flow created by an experimental air conditioning system. The experimental apparatus consisted of a high efficiency particulate air (HEPA) filter, an aerosol generator, spiral UV lamps placed around a quart glass tube, an Andersen air sampler and a vacuum pump. They were connected serially by stainless steel ducts (85 mm in diameter, 8 m in length). Six types of microbial aerosols generated from an ultrasonic nebulizer were irradiated by UV rays (wavelength 254 nm, mean density 9400 μW/cm 2 ). Their irradiation time ranged from 1.0 to 0.0625 seconds. The microbial aerosols were collected onto the trypticase soy agar (TSA) medium in the Andersen air sampler. After incubation, the number of colony forming units (CFU) were counted, and converted to particle counts. The diameter of microbial aerosol particles calculated by their log normal distribution were found to match the diameter of a single bacteria cell measured by a microscope. The sterilization efficacy of UV in standard airflow conditions (0.5 sec. irradiation) were found to be over 99.5 % in Staphylococcus aureus, Staphylococcus epidermidis, Serratia marcescens, Bacillus subtilis (vegetative cell) and Bacillus subtilis (spore) and 67 % in Aspergillus niger (conidium). In A. niger, which was the most resistant microbe to UV irradiation, the efficacy rose up to 79 % when irradiated for 1.0 sec., and it was observed that the growth speed of the colonies was slower than that of the controls. It was thought that UV rays caused some damage to the proliferation of A. niger cells. (author)

  7. Heavy-section steel irradiation program. Volume 4, No. 2. Semiannual progress report, April 1993--September 1993

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-03-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents which have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage, it is virtually impossible to postulate a realistic scenario that would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established to provide a quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K lc ) curve shift in high-copper welds, (3) crack-arrest toughness (K la ) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K lc and K la curve shifts in low upper-shelf (LUS) welds, (6) annealing effects in LUS welds, (7) irradiation effects in a commercial LUS weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) Japan Power Development Reactor steel examination, (13) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, and (14) additional requirements for materials

  8. Radiation cancer in man, especially on the cases developed after irradiation for malignant conditions

    International Nuclear Information System (INIS)

    Kikuchi, Akira

    1975-01-01

    Twelve cases in which radiation cancer was observed at the Tohoku University are reported. Half of them had been treated for tuberculous cervical lymphadenitis, one for lupus vulgaris and five for various malignant conditions. The average latent period was 27 years in 7 cases which were treated for benign conditions and 13 years in 5 cases treated for malignant conditions. In Japan, 12 cases of radiation cancer after irradiation for malignant conditions, excluding leukemia, have been reported. The clinical features of these 17 cases in addition to 5 cases are reviewed. (auth.)

  9. Radiation cancer in man, especially on the cases developed after irradiation for malignant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, A [Tohoku Univ., Sendai (Japan). School of Medicine

    1975-06-01

    Twelve cases in which radiation cancer was observed at the Tohoku University are reported. Half of them had been treated for tuberculous cervical lymphadenitis, one for lupus vulgaris and five for various malignant conditions. The average latent period was 27 years in 7 cases which were treated for benign conditions and 13 years in 5 cases treated for malignant conditions. In Japan, 12 cases of radiation cancer after irradiation for malignant conditions, excluding leukemia, have been reported. The clinical features of these 17 cases in addition to 5 cases are reviewed.

  10. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  11. Mechanical properties of MeV ion-irradiated SiC/SiC composites characterized by indentation technique

    International Nuclear Information System (INIS)

    Park, J.Y.; Park, K.H.; Kim, W.; Kishimoto, H.; Kohyama, A.

    2007-01-01

    Full text of publication follows: SiC/SiC composites have been considered as a structural material for advanced fusion concepts. In the core of fusion reactor, those SiC/SiC composites are experienced the complex attacks such as strong neutron, high temperature and transmuted gases. One of the vital data for designing the SiC/SiC composites to the fusion reactor is mechanical properties under the severe neutron irradiation. In this work, various SiC/SiC composites were prepared by the different fabrication processes like CVI (chemical vapor infiltration), WA-CVI (SiC whisker assisted CVI) and hot-pressed method. The expected neutron irradiation was simulated by a silicon self-ion irradiation at a DuET facility; Dual-beam for Energy Technologies, Kyoto University. The irradiation temperature were 600 deg. C and 1200 deg. C, and the irradiation does were 5 dpa and 20 dpa, respectively. The 5.1 MeV Si ions were irradiated to the intrinsic CVI-SiC, SiC whisker reinforced SiC and SiC composites produced by hot-press method. The mechanical properties like hardness, elastic modulus and fracture toughness were characterized by an indentation technique. The ion irradiation caused the increase of the hardness and fracture toughness, which was dependent on the irradiation temperature. SiC whisker reinforcement in the SiC matrix accelerated the increase of the fracture toughness by the ion irradiation. For SiC/SiC composites after the ion irradiation, this work will provide the additional data for the mechanical properties as well as the effect of SiC whisker reinforcement. (authors)

  12. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Gerstenberg, H.

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and 6O Co γ-rays up to 1.8 x 1 0 8 Gy as well as with different reactor spectra up to a fast neutron fluence of 5 x lO 22 m -2 (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed

  13. An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions

    International Nuclear Information System (INIS)

    Voss, C.F.; Shotwell, L.R.

    1990-04-01

    The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs

  14. Health condition of children irradiated in utero

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, E [Research Center for Radiation Medicine, Kiev (Ukraine)

    1997-09-01

    Among the children exposed to ionizing radiation, the ones irradiated in utero constitute a group under special surveillance. The greatest sensitivity of the organism to the effects of radiative factors occurs in the neonatal period of development and the forthcoming life span with irradiation effects is the longest for these children. Children with acute exposure, with chronic exposure and control group were encompassed by this study - 1144 children altogether. 9 figs, 2 tabs.

  15. Health condition of children irradiated in utero

    International Nuclear Information System (INIS)

    Stepanova, E.

    1997-01-01

    Among the children exposed to ionizing radiation, the ones irradiated in utero constitute a group under special surveillance. The greatest sensitivity of the organism to the effects of radiative factors occurs in the neonatal period of development and the forthcoming life span with irradiation effects is the longest for these children. Children with acute exposure, with chronic exposure and control group were encompassed by this study - 1144 children altogether. 9 figs, 2 tabs

  16. The study of creep in stainless steel irradiated with fast neutron and alpha particles

    International Nuclear Information System (INIS)

    Correa, D.A.C.

    1985-01-01

    The objective of the present work is to study the creep behavior of the 316 type stainless steel 50% cold worked in different conditions of temperature and applied stress, after neutron radiation and Alfa particles implantation. For this experiment, non-irradiated samples, samples irradiated in the research reactor IEA-R1 with fast neutron (E≥ MeV) up to a fluence of 8.6.10 17 n/cm 2 , and samples implanted with Alfa particles in the cyclotron CV-28 with Helium concentrations of 5 and 26 appm, were creep tested with applied stresses of the 200-300 MPa at temperatures between 650 0 C and 700 0 C. The deformation versus time curves were plotted and it was observed tha the second stage is not well defined, with the creep rate increasing continuously until the occurrence of failure of the material. The study of the effect of increase from 200 MPa to 300 MPa at the same temperature was performed. It can be concluded that this increase produces an approximately 70% reductions in the fracture time of the material, with practically no influence in the total deformation. Samples were tested at different temperatures (650, 675 and 700 0 C) at a same applied stress (200 MPa). It has been observed that a temperature of 50 0 C produces 98,9% of reduction in the fracture time and almost doubles the total deformation. On neutron irradiated samples, creep tests were performed at the same temperature and stress of the non irradiated samples. Comparing the results obtained a tendency of embrittlement due to the neutron irradiation can be observed; no remarkable structure changes were detected due to small fast neutron. Microstructural and metalographic observations were performed before and after each creep test. (author) [pt

  17. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K.

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material

  18. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  19. Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeyeong, E-mail: d486916@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Choi, Sungyeol [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Sungjune [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hwang, Il Soon [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-08-15

    Highlights: • Computational simulation on electrorefining of irradiated Zircaloy-4 cladding. • Composition of irradiated Zircaloy-4 cladding of pressurized water reactor. • Redox behavior of elements in irradiated Zircaloy cladding during electrorefining. • Effect of electrorefining operating conditions on decontamination factor. - Abstract: To reduce the final waste volume from used nuclear fuel assembly, it is significant to decontaminate irradiated cladding. Electrorefining in high temperature molten salt could be one of volume decontamination processes for the cladding. This study examines the effect of operating conditions on decontamination factor in electrorefining of irradiated Zircaloy-4 cladding of pressurized water reactor. One-dimensional time-dependent electrochemical reaction code, REFIN, was utilized for simulating irradiated cladding electrorefining. Composition of irradiated Zircaloy was estimated based on ORIGEN-2 and other literatures. Co and U were considered in electrorefining simulation with major elements of Zircaloy-4 to represent activation products and actinides penetrating into the cladding respectively. Total 240 cases of electrorefining are simulated including 8 diffusion boundary layer thicknesses, 10 concentrations of contaminated molten salt and 3 termination conditions. Decontamination factors for each case were evaluated and it is revealed that the radioactivity of Co-60 in recovered zirconium on cathode could decrease below the clearance level when initial concentration of chlorides except ZrCl{sub 4} is lower than 1 × 10{sup −11} weight fraction if electrorefining is finished before anode potential reaches −1.8 V (vs. Cl{sub 2}/Cl{sup −})

  20. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. Copyright © 2014. Published by Elsevier B.V.

  1. Ultraviolet irradiation of bacteria under anaerobic conditions: implications for Prephanerozoic evolution

    International Nuclear Information System (INIS)

    Rambler, M.B.

    1980-01-01

    The history of the rise of atmospheric oxygen and subsequent time of development of an ultraviolet light screening ozone layer has far reaching consequences in interpreting Prephanerozoic (4.5 to 0.6 billion years ago) evolution and ecology. A special anaerobic glove box was constructed to study the relative sensitivities of different groups of bacteria to uv light under varying conditions. Although there is no concensus concerning the oxygen concentration in the early atmosphere, total anoxic conditions were assumed in these studies. The flux of the uv radiation at 253.7 nm within the chamber is slightly higher than calculated from estimates of the present solar luminosity constant at this wavelength. Strict anaerobes, possibly direct decendants from early reducing conditions on Earth (e.g. Clostridium), facultative anaerobes (e.g. Escherichia, Enterobacter), and aerobes (e.g. Pseudomonas) were irradiated and examined for survival as a function of uv dosage. In these studies, photoreactivation, the amelioration of uv damage by visible light, was demonstrated for the first time to exist in an obligate anaerobe. The number of cells in unprotected cultures, exposed to 20 minutes of uv radiation is generally reduced by 99.9%. However, several mechanisms of protection were found: (1) photoreactivation, (2) absorption of uv by nitrates in aqueous irradiation media, (3) intertwiningof growing filaments into cohesive structures called mats, e.g. the matting habit, (4) dark enzymatic repair of photodamage; and (5) inherent radiation resistance. These experimental results coupled with a literature review of uv effects strongly suggests that the Berkner-Marshall hypothesis is no longer tenable

  2. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model

    International Nuclear Information System (INIS)

    Mahler, Michael

    2016-01-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  3. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  4. Behavior of defective LWR-type fuel rods irradiated under postulated accident conditions

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Croucher, D.W.; Seiffert, S.L.; Cook, B.A.; Kerwin, D.K.; Mehner, A.S.; Ploger, S.A.

    1979-05-01

    The irradiation experiments reported here have been conducted by the Thermal Fuels Behavior Program of EG and G Idaho, Inc., for the United States Nuclear Regulatory Commission in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. Five of the rods were irradiated in PCM tests and one in a LOC test. During these tests, the six rods lost cladding integrity prior to or during the transient phase of the test due to either manufacturing defects or intentional rod design and operation. Of the five defective rods tested under PCM conditions, one (Rod IE-008, Test IE-1) had a hydride rupture below the region of the rod, which was in film boiling during the transient; two (Rod A-0021, Test PCM-3 and Rod IE-019, Test IE-5) contained defects (a pin hole and a small axial crack, respectively) within the film boiling zone; and two (Rod 201-1, Test PCM-1 and Rod 205-8, Test PCM-5) failed by cladding embrittlement within the film boiling zone. Rod 312-3 was waterlogged before being subjected to LOC conditions in Test LLR-3

  5. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  6. THE CONDITION OF PERIODONTAL TISSUES IN PATIENTS WITH MANDIBULAR FRACTURES IN COMBINATION WITH INFLAMMATORY DISEASES OF PERIODONTIUM IN DYNAMICS OF TREATMENT

    Directory of Open Access Journals (Sweden)

    H.U. Bisultanov

    2008-03-01

    Full Text Available The immobilization of broken fragments by two-jaw anchor splints in patients with the mandibular fractures in a combination with inflammatory diseases ofperiodontium usually causes the exacerbation and progression of the diseases and growing progressively worsening ofperiodontium status. The intensity of these conditions depends on an initial status ofperiodontal tissue. The posttraumatic suppurative inflammatory complications of the mandibular fractures frequency depending on the initial stage of periodontal disease are marked.

  7. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  8. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  9. The survey of blood irradiation equipment. About the present condition and a problem

    International Nuclear Information System (INIS)

    Irikawa, Tomio; Kuramitsu, Hideaki; Tanaka, Keiko; Hamamoto, Takaaki

    2001-01-01

    Once it shows the symptoms of post transfusion graft versus host disease, mostly all examples follow fatal progress. For this reason, generally 15-50 Gy irradiation is performed into the blood for transfusion by the ''guideline of radiation'' of the Japan society of blood transfusion as measure only in development-of-symptoms prevention. This time, the questionnaire was performed for the hospital of 100 institutions of the Chugoku and the Shikoku district, and the actual condition of management employment of blood irradiation equipment was investigated. Consequently, there was little institution in which the medical-examination radiological technologist is participating directly, and it was made clear dependent on the maker of an equipment management. (author)

  10. Phase field modelling of dynamic thermal fracture in the context of irradiation damage

    CERN Document Server

    Schlüter, Alexander; Müller, Ralf; Tomut, Marilena; Trautmann , Christina; Weick, Helmut; Plate, Carolin

    2015-01-01

    This work presents a continuum mechanics approach to model fracturing processes in brittle materials that are subjected to rapidly applied high-temperature gradients. Such a type of loading typically occurs when a solid is exposed to an intense high-energy particle beam that deposits a large amount of energy into a small sample volume. Given the rapid energy deposition leading to a fast temperature increase, dynamic effects have to be considered. Our existing phase field model for dynamic fracture is thus extended in a way that allows modelling of thermally induced fracture. A finite element scheme is employed to solve the governing partial differential equations numerically. Finally, the functionality of our model is illustrated by two examples.

  11. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  12. Fractographic examination of HT-9 and 9Cr-1Mo Charpy specimens irradiated in the AD-2 test

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hu, W.L.

    1983-01-01

    Fracture surface topologies have been examined using scanning electron microscopy for 20 selected half sized Charpy impact specimens of HT-9 and Modified 9Cr-1Mo in order to provide improved understanding of fracture toughness degradation as a result of irradiation for Path E alloys. The specimen matrix included unirradiated specimens and specimens irradiated in EBR-II in the AD-2 experiment. Also, hardness measurements have been made on selected irradiated Charpy specimens. The results of examinations indicate that irradiation hardening due to G-phase formation at 390 0 C is responsible for the large shift in ductile-to-brittle transition temperature (DBTT) found in HT-9. Toughness degradation in HT-9 observed following higher temperature irradiations is attributed to precipitation at delta ferrite stringers. Reductions in toughness as a consequence of irradiation in Modified 9Cr-1Mo are attributed to in-reactor precipitation of (V,Nb)C and M 23 C 6 . It is shown that crack propagation rates for ductile and brittle failure modes can be measured, that they differ by over an order of magnitude and that unexpected multiple shifts in fracture mode from ductile to brittle failure can be attributed to the effect of delta ferrite stringers on crack propagation rates

  13. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  14. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Humer, K.; Weber, H.W. [Atominstitut der Oesterreichischen Hochschulen, Vienna (Austria); Tschegg, E.K. [Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik; Egusa, Shigenori [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Birtcher, R.C. [Argonne National Lab., IL (United States); Gerstenberg, H. [Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Physik

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and {sup 6O}Co {gamma}-rays up to 1.8 {times} 1 0{sup 8} Gy as well as with different reactor spectra up to a fast neutron fluence of 5 {times} lO{sup 22} m{sup {minus}2} (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed.

  15. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.; Alexander, D.J.; Gibson, L.T.

    1998-01-01

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below ∼330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to ∼1.5--15 dpa and tested at 200 C

  16. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  17. Fracture toughness of Al-Cr alloys with minor additions

    International Nuclear Information System (INIS)

    Datta, S.; Banerjee, M.K.

    2000-01-01

    Fracture toughness behavior of aluminium chromium alloys with minor additions is studied to determine its relation with microstructure and ageing conditions. The effect of the minor additions on the fracture toughness property of the alloys is also studied. Fracture toughness of Al-Cr alloys has been improved by selected minor additions. Also, the fracture toughness of the investigated alloys is found to be sensitive to ageing conditions. (author)

  18. In-Pile Tests for IASCC Growth Behavior of Irradiated 316L Stainless Steel under Simulated BWR Condition in JMTR

    Science.gov (United States)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.

  19. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  20. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  1. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  2. Photoinduced optical anisotropy in azobenzene methacrylate block copolymers: Influence of molecular weight and irradiation conditions

    DEFF Research Database (Denmark)

    Gimeno, Sofia; Forcen, Patricia; Oriol, Luis

    2009-01-01

    The photoinduced anisotropy in a series of azomethacrylate block copolymers with different Molecular weights and azo contents has been investigated under several irradiation conditions. Depending on molecular weight and composition, different microstructures (disordered, lamellar, spherical) appe...

  3. Observations from borehole dilution logging experiments in fractured crystalline rock under variable hydraulic conditions

    Science.gov (United States)

    Harte, Philip T.; Anderson, Alton; Williams, John H.

    2014-01-01

    Identifying hydraulically active fractures in low permeability, crystalline-bedrock aquifers requires a variety of geophysical and hydrogeophysical borehole tools and approaches. One such approach is Single Borehole Dilution Tests (SBDT), which in some low flow cases have been shown to provide greater resolution of borehole flow than other logging procedures, such as vertical differential Heat Pulse Flowmeter (HPFM) logging. Because the tools used in SBDT collect continuous profiles of water quality or dye changes, they can identify horizontal flow zones and vertical flow. We used SBDT with a food grade blue dye as a tracer and dual photometer-nephelometer measurements to identify low flow zones.SBDT were conducted at seven wells with open boreholes (exceeding 300 ft). At most of the wells HPFM logs were also collected. The seven wells are set in low-permeability, fractured granite and gneiss rocks underlying a former tetrachloroeythylene (PCE) source area at the Savage Municipal Well Superfund site in Milford, NH. Time series SBDT logs were collected at each of the seven wells under three distinct hydraulic conditions: (1) ambient conditions prior to a pump test at an adjacent well, (2) mid test, after 2-3 days of the start of the pump test, and (3) at the end of the test, after 8-9 days of the pump test. None of the SBDT were conducted under pumping conditions in the logged well. For each condition, wells were initially passively spiked with blue dye once and subsequent time series measurements were made.Measurement accuracy and precision of the photometer tool is important in SBDT when attempting to detect low rates of borehole flow. Tests indicate that under ambient conditions, none of the wells had detectable flow as measured with HPFM logging. With SBDT, 4 of the 7 showed the presence of some very low flow. None of 5 (2 of the 7 wells initially logged with HPFM under ambient conditions were not re-logged) wells logged with the HPFM during the pump test had

  4. Total body irradiation in conditioning patients for bone marrow transplantation. Irradiation technique and preliminary results at the West German Tumour Centre, Universitaetsklinikum Essen

    International Nuclear Information System (INIS)

    Schmitt, G.; Schaefer, U.W.; Nowrousian, M.R.; Oehl, S.

    1979-01-01

    Preliminary results of bone marrow transplantation of 8 patients are presented with particular reference to the irradiation technique. 5 patients died 0.5 to 8 months after transplantation. 3 patients are alive and in good condition 2 to 15 months after transplantation

  5. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  6. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  7. Heavy-Section Steel Irradiation Program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. It is imperative to understand and predict the capabilities and limitations of its integrity. It is particularly vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. The Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Results from HSSI studies provide information needed to aid in resolving major regulatory issues facing the USNRC which involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf (LUS) welds. Taken together the results of these studies also provide guidance and bases for evaluating both the aging behavior and the potential for plant life extension of light-water RPVs. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. Embrittlement modeling studies have shown that the time or dose required for the point defect concentrations, which ultimately contribute to irradiation embrittlement, to reach their steady state values can be comparable to the component lifetime or to the duration of an irradiation experiment

  8. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock

    Directory of Open Access Journals (Sweden)

    Charalampos Saroglou

    2017-10-01

    Full Text Available The present paper investigates the effect of fracturing degree on P- and S-wave velocities in rock. The deformation of intact brittle rocks under loading conditions is characterized by a microcracking procedure, which occurs due to flaws in their microscopic structure and propagates through the intact rock, leading to shear fracture. This fracturing process is of fundamental significance as it affects the mechanical properties of the rock and hence the wave velocities. In order to determine the fracture mechanism and the effect of fracturing degree, samples were loaded at certain percentages of peak strength and ultrasonic wave velocity was recorded after every test. The fracturing degree was recorded on the outer surface of the sample and quantified by the use of the indices P10 (traces of joints/m, P20 (traces of joints/m2 and P21 (length of fractures/m2. It was concluded that the wave velocity decreases exponentially with increasing fracturing degree. Additionally, the fracturing degree is described adequately with the proposed indices. Finally, other parameters concerning the fracture characteristics, rock type and scale influence were found to contribute to the velocity decay and need to be investigated further.

  9. Correlation of irradiation-induced transition temperature increases from C sub v and K sub Jc /K sub Ic data

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. (Materials Engineering Associates, Inc., Lanham, MD (USA))

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C{sub v}) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region ({Delta}T) is based upon the {Delta}T determined from notch ductility (C{sub v}) tests. Since the ASME K{sub Ic} and K{sub IR} reference fracture toughness curves are shifted by the {Delta}T from C{sub v}, assurance that this {Delta}T does not underestimate {Delta}T associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of {Delta}T's defined by elastic-plastic fracture toughness and C{sub v} tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using as-measure'' fracture toughness values (K{sub Jc}), average comparisons between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}) are: (a) All data: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +10{degree}C; (b) Plates only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +15{degree}C; and (c) Welds only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) {minus}1{degree}C. Fluence rate is found to have no significant effect on the relationship between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}). 12 refs., 12 figs., 5 tabs.

  10. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  11. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  12. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  13. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods are necessary to facilitate the fracture toughness testing of small disk compact specimens of irradiated candidate materials for first-wall fusion applications. New methods have been developed for both the unloading compliance and potential drop techniques of monitoring crack growth. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hot cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimen 12.7 mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  14. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  15. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  16. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  17. Impact fracture behavior of HT9 duct

    International Nuclear Information System (INIS)

    Huang, F.H.; Gelles, D.S.

    1994-07-01

    Ferritic alloys are known to undergo a ductile-brittle transition as the test temperature is decreased. This inherent problem has limited their applications to reactor component materials subjected to low neutron exposures. However, the excellent resistance to void swelling exhibited by these alloys has led to choosing the materials as candidate materials for fast and fusion reactor applications. Despite the ductile-brittle transition problem, results show that the materials exhibit superior resistance to fracture under very high neutron fluences at irradiation temperatures above 380 degrees C. Impact testing on FFTF duct sections of HT9 indicates that HT9 ducts have adequate fracture toughness at much higher temperatures for handling operations at room temperature and refueling operations

  18. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  19. Behavior to the fracture of an AISI 304 stainless steel sensitized in BWR reactor conditions (288 degrees Centigrade and 80 Kg/cm2)

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Garcia R, R.; Aguilar T, A.; Gachuz M, M.; Arganis J, C.; Merino C, J.

    1999-01-01

    It is a knew fact that ductility of a lot of structural alloys can be deteriorated by the environment effect which are exposed, and that their consequent embrittlement can put in doubt the safety of their functioning; such is the case of austenitic stainless steels used in internal components of the BWR type reactors which not only is subjected to the effect combined of the aggressive environment which surround it (pressure, temperature, corrosion potential, conductivity medium, local state of efforts, etc.), but also to the action of present neutron radiation, manifesting microstructural changes which are reflected in the augmentation of its susceptibility to the intergranular cracking, phenomena generally known as IASCC ''Irradiation Assisted Stress Corrosion Cracking''. Once appeared the cracking in the material, the useful life of a component is limited by the rapidity to growth of these cracking, making necessary evaluations which can to predict its behavior, therefore the present work shows the preliminary results for determining the behavior to the fracture of an AISI 304 stainless steel sensitized, in a dynamic recirculation circuit which allows to simulate the operation conditions of a BWR reactor (288 Centigrade and 80 kg/cm 2 ). (Author)

  20. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  1. A study on the boundary condition for analysis of bio-heat equation according to light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dong Guk; Bae, Sung Woo; Im, Ik Tae [Chunbuk Natinal University, Junju (Korea, Republic of)

    2015-11-15

    In this study, the temperature change in an imitational biological tissue, when its surface is irradiated with bio-light, was measured by experiments. Using the experimental data, an equation for temperature as a function of time was developed in order to use it as a boundary condition in numerical studies for the model. The temperature profile was measured along the depth for several wavelengths and distances of the light source from the tissue. It was found that the temperature of the tissue increased with increasing wavelength and irradiation time; however, the difference in the temperatures with red light and near infrared light was not large. The numerical analysis results obtained by using the developed equation as boundary condition show good agreement with the measured temperatures.

  2. HRB-22 capsule irradiation test for HTGR fuel. JAERI/USDOE collaborative irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Kazuo; Sawa, Kazuhiro; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    As a JAERI/USDOE collaborative irradiation test for high-temperature gas-cooled reactor fuel, JAERI fuel compacts were irradiated in the HRB-22 irradiation capsule in the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). Postirradiation examinations also were performed at ORNL. This report describes 1) the preirradiation characterization of the irradiation samples of annular-shaped fuel compacts containing the Triso-coated fuel particles, 2) the irradiation conditions and fission gas releases during the irradiation to measure the performance of the coated particle fuel, 3) the postirradiation examinations of the disassembled capsule involving visual inspection, metrology, ceramography and gamma-ray spectrometry of the samples, and 4) the accident condition tests on the irradiated fuels at 1600 to 1800degC to obtain information about fuel performance and fission product release behavior under accident conditions. (author)

  3. Implications of recent developments in the plastic fracture mechanics field to the PCI stress corrosion problem

    International Nuclear Information System (INIS)

    Smith, E.

    1980-01-01

    Fractographic observations on irradiated Zircaloy cladding stress corrosion fracture surfaces are considered against the background of recent developments in the plastic fracture mechanics field. Dimples have been observed on the fracture surfaces of failed cladding, even though the cracks in metallographic sections are tight, i.e., crack propagation is associated with a low crack tip opening angle. This result is interpreted as providing evidence for an environmentally assisted ductile mode of fracture. The presence of this fracture mode forms the basis of an argument, which adds further support for the view that power ramp stress corrosion cladding failures are caused by stress concentrations that produce stress gradients in the cladding. (orig.)

  4. Basic principles of fracture treatment in children.

    Science.gov (United States)

    Ömeroğlu, Hakan

    2018-04-01

    This review aims to summarize the basic treatment principles of fractures according to their types and general management principles of special conditions including physeal fractures, multiple fractures, open fractures, and pathologic fractures in children. Definition of the fracture is needed for better understanding the injury mechanism, planning a proper treatment strategy, and estimating the prognosis. As the healing process is less complicated, remodeling capacity is higher and non-union is rare, the fractures in children are commonly treated by non-surgical methods. Surgical treatment is preferred in children with multiple injuries, in open fractures, in some pathologic fractures, in fractures with coexisting vascular injuries, in fractures which have a history of failed initial conservative treatment and in fractures in which the conservative treatment has no/little value such as femur neck fractures, some physeal fractures, displaced extension and flexion type humerus supracondylar fractures, displaced humerus lateral condyle fractures, femur, tibia and forearm shaft fractures in older children and adolescents and unstable pelvis and acetabulum fractures. Most of the fractures in children can successfully be treated by non-surgical methods.

  5. Effect of neutron irradiation on the properties of the repair welds of the 15Kh2MFA steel

    International Nuclear Information System (INIS)

    Morozov, A.M.; Khachaturyants, L.V.

    1986-01-01

    The authors studied the effect of neutron irradiation on the tendency of the metal belonging to the heat affected zone of the weld toward brittle fracture (an increase in the critical temperature of brittleness). For comparison, the authors studied the radiation embrittlement of the original base metal (steel 15Kh2MFA) subjected to the conventional heat treatment of the reactor frames consisting of hardening and high-temperature tempering. Along with these materials, the radiational embrittlement of the base metal in the rehardened condition without tempering was studied. It was concluded that the presence of the regions repaired according to this technology and located in the frame at the level of the reactor core does not pose the problem of decreased resistance to brittle fracture

  6. Fuel pellet fracture and relocation

    International Nuclear Information System (INIS)

    Walton, L.A.; Husser, D.L.

    1983-01-01

    The model used to describe fuel pellet fracture and relocation is an important feature of a fuel performance computer code. This model becomes especially important if the computer code is principally to be used for the evaluation of pellet clad interaction. The fracture and relocation model being developed for the B and W fuel performance code FUMAC was derived from an extensive data base. Cross sections of irradiated fuel rods were photographically magnified and measured to determine the configuration of the fragments of the fractured fuel pellets. Data, representing a wide range of LWR fuel designs and as-manufactured mechanical configurations, were catalogued and systematically reduced and then correlated as a function of the likely independent variables. These correlations define the key phenomenological behavior patterns which the relocation model must duplicate and indicate which mechanistic approaches are viable explanations of this behavior. The data base covers the burnup range from approximately one to 35 GWd/mtU and linear heat rates from less than 100 to nearly 700 W/Cm. This paper presents the correlated data base and the methods used to derive and interpret it. It was determined from this data base that pellet cracking is initially both power level and burnup dependent but tends to saturate eventually with continued steady irradiation. Fuel pellet relocation was found to be much more extensive than would be deduced from thermal considerations alone. Even at very low burnups fuel fragments were found to move outward until restrained by the cladding. The results also suggest that changes in internal resistance to heat flow within the pellets due to the opening of cracks may be as important as peripheral gap changes to the thermal modeler. The transient response and thermal implications of this model are recommended as primary areas for future investigation

  7. Practical models to estimate horizontal irradiance in clear sky conditions: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, German A.; Hernandez, Alejandro L.; Saravia, Luis R. [Department of Physics, School of Exact Sciences, National University of Salta, Bolivia Avenue 5150, 4400 Salta Capital (Argentina); INENCO (Institute of Non Conventional Energy Research), Bolivia Avenue 5150, 4400 Salta Capital (Argentina)

    2010-11-15

    The Argentinean Northwest (ANW) is a high altitude region located alongside Los Andes Mountains. The ANW is also one of the most insolated regions in the world due to its altitude and particular climate. However, the characterization of the solar resource in the region is incomplete as there are no stations to measure solar radiation continuously and methodically. With irradiance data recently having been measured at three sites in the Salta Province, a study was carried out that resulted in a practical model to quickly and efficiently estimate the horizontal irradiance in high altitude sites in clear sky conditions. This model uses the altitude above sea level (A) as a variable and generates a representative clearness index as a result (k{sub t-R}) that is calculated for each site studied. This index k{sub t-R} is then used with the relative optical air mass and the extraterrestrial irradiance to estimate the instantaneous clearness index (k{sub t}). Subsequently, the index k{sub t-R} is corrected by introducing the atmospheric pressure in the definition of relative optical air mass proposed by Kasten. The results are satisfactory as errors in the irradiance estimations with respect to measured values do not exceed 5% for pressure corrected air masses AM{sub c} < 2. This model will be used in a feasibility study to locate sites for the installation of solar thermal power plants in the ANW. A prototype of a CLFR solar power plant is being built in the INENCO Campus, at the National University of Salta. (author)

  8. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  9. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  10. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  11. Laboratory testing on infiltration in single synthetic fractures

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  12. Irradiation effects on tensile ductility and dynamic toughness of ferritic-martensitic 7-12 Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2006-01-01

    The superimposed effect of irradiation-induced hardening by small defects (clusters, dislocation loops) and chromium-rich - precipitate formations on tensile ductility and Charpy-impact behaviour of various ferritic-martensitic (7-13)CrWVTa(Ti)-RAFM steels have been examined by micro-mechanical deformation and ductile/dynamic fracture models. Analytical relations have been deduced describing irradiation-induced changes of uniform ductility and fracture strain as well as ductile-to-brittle transition temperature DBTT and ductile upper shelf energy USE observed from impact tests. The models apply work-hardening with competitive action of relevant dislocation multiplication and annihilation reactions. The impact model takes into account stress intensity with local plasticity and fracture within the damage zone of main crack. Especially, the influences of radiation-induced changes in ductile and dynamic fracture stresses have been considered together with effects from strain rate sensitivity of strength, precipitate morphology as mean size dp and volume fraction fv as well as deformation temperature and strain rate. For these, particularly the correlation between tensile ductility and impact properties have been examined. Strengthening by clusters and loops generally reduces uniform ductility, and more stronger fracture strain as well as ductile upper shelf energy USE and additionally increases DBTT for constant fracture stresses. A superimposed precipitation hardening by formation of 3-6 nm, f v 6 nm, which clear above the sharable limit of coherent precipitates increases with increasing fraction fv and but strongly reduces with increasing matrix strength due to full martensitic structure, higher C, N alloying contents and pronounced hardening by irradiation-induced cluster and loop formations. A combined increase of fracture stresses due to irradiation-induced changes of the grain boundary structure diminishes the strength-induced increase in DBTT and more stronger

  13. Thermal shock testing of ceramics with pulsed laser irradiation

    International Nuclear Information System (INIS)

    Benz, R.; Naoumidis, A.; Nickel, H.

    1986-04-01

    Arguments are presented showing that the resistance to thermal stressing (''thermal shock'') under pulsed thermal energy deposition by various kinds of beam irradiations is approximately proportional to Φ a √tp, where Φ a is the absorbed power density and tp is the pulse length, under conditions of diffusivity controlled spreading of heat. In practical beam irradiation testing, incident power density, Φ, is reported. To evaluate the usefulness of Φ√tp as an approximation to Φ a √tp, damage threshold values are reviewed for different kinds of beams (electron, proton, and laser) for a range of tp values 5x10 -6 to 2 s. Ruby laser beam irradiation tests were made on the following ceramics: AlN, BN, graphite, αSiC, β-SiC coated graphites, (α+β)Si 3 N 4 , CVD (chemical vapor deposition) TiC coated graphite, CVD TiC coated Mo, and CVD TiN coated IN 625. The identified failure mechanisms are: 1. plastic flow followed by tensile and bend fracturing, 2. chemical decomposition, 3. melting, and 4. loss by thermal spallation. In view of the theoretical approximations and the neglect of reflection losses there is reasonable accord between the damage threshold Φ√tp values from the laser, electron, and proton beam tests. (orig./IHOE)

  14. Simulate speleogenesis processes with an approach based on fracturing and hydrogeological processes: effect of various hydraulic boundary conditions

    Science.gov (United States)

    Lafare, A.; Jourde, H.; Leonardi, V.; Pistre, S.; Dörfliger, N.

    2012-04-01

    the bases of groundwater flow and transport simulations. The polynomial parameters of the equation are calibrated with former speleogenesis studies (Dreybrodt 1996, Dreybrodt et al. 2005, Palmer 1991). The presented study involves two orthogonal families of fractures embedded in a carbonate matrix, in a mono-stratum setting. For each simulation, several settings of boundary conditions are tested, in terms of recharge (diffuse or concentrated, hydraulic head or flux limited) and discharge (spatial position, punctual or diffuse). The results are interpreted in terms of head fields, mean groundwater age distributions and total flow rates as a function of time. The aim is to assess the influence of the hydraulic boundary conditions on the finally obtained morphologies of the karstic networks, and on the velocity of the evolution of the drainage system. Results are discussed and perspectives are given on the application of such model to real case studies.

  15. Radial and humeral fractures as predictors of subsequent hip, radial or humeral fractures in women, and their seasonal variation

    DEFF Research Database (Denmark)

    Lauritzen, J B; Schwarz, Peter; McNair, P

    1993-01-01

    Hip fractures are common in elderly women, and early risk assessment of future hip fractures is relevant in relation to prevention. We studied the predictive value of radial and humeral fractures in women. The influence of weather conditions on the risk was also studied. Women aged 20-99 years...

  16. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  17. Probabilistic fracture mechanics analysis for the life extension estimate of the high flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A new method of fracture probability calculation is presented in this paper. The fracture probability as a result of the hydrostatic pressure test (hydrotest) is used to determine the life of the vessel. The hydrotest is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the safe reactor operation time from the time of the satisfactory hydrostatic test. The life extension calculation provides the following information on the remaining life of the reactor as a function of the NDT increase: (1) the life of the vessel is determined by the probability of vessel fracture as a result of hydrotest at several hydrotest pressures and vessel embrittlement conditions, (2) the hydrotest time interval vs the NDT increase rate, and (3) the hydrotest pressure vs the NDT increase rate. It is understood that the use of a complete range of uncertainties of the NDT increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degrees F

  18. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    Science.gov (United States)

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed

  19. Control of the neutronic and thermohydraulic conditions of power ramps in an irradiation loop for PWR fuel rod; Controle des conditions neutroniques et thermohydrauliques des rampes de puissance dans une boucle d`irradiation de combustibles de reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D J.F.

    1993-09-10

    In order to study the power transients effects on PWR fuel rod clad, ramp tests in a pressurized water loop, are carried out at OSIRIS reactor. The present thesis deals with the on-line control of the device, during power ramp and conditioning irradiation. Based on a convolution-type resolution of the kinetics equations, a dynamic compensation of the Silver self-powered neutron detector was developed. With this method, the uncertainty of the ramp end-point is lower than 1%, thus it is very suited for monitoring both transient, as well as steady state conditions. Furthermore, a thermohydraulic model of the irradiation device is described: heat transfer equations, including gamma heating in materials, are solved to obtain temperatures and thermal fluxes of steady states. Results from the model and temperature measurements of the coolant are used together for fuel power determination, in real time. The clad external temperature profile is also calculated and displayed, to improve the irradiation monitoring. (author), 51 refs., 12 annexes, 66 figs.

  20. Factors contributing to the surgical retreatment of mandibular fractures

    Directory of Open Access Journals (Sweden)

    João Gualberto de Cerqueira Luz

    2013-06-01

    Full Text Available The purpose of this retrospective study was to evaluate contributing factors in patients requiring surgical retreatment of mandibular fractures. Of all the patients with mandibular fractures who were treated using internal fixation at a trauma hospital over a seven-year period, 20 patients (4.7% required a second surgery and thus composed the “reoperated” group. The control group comprised 42 consecutive patients with mandibular fractures who were treated at the same clinic and who healed without complications. Medical charts were reviewed for gender, age, substance abuse history, dental condition, etiology, location of fracture, degree of fragmentation, fracture exposure, teeth in the fracture line, associated facial fractures, polytrauma, time elapsed between trauma and initial treatment, surgical approach and fixation system. Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS version 20.0; descriptive statistics and the chi-squared test were used to determine differences between groups. Significant differences in substance abuse (p = 0.006, dental condition (p < 0.001, location of fracture (p = 0.010, degree of fragmentation (p = 0.003 and fracture exposure (p < 0.001 were found. With regard to age and time elapsed between trauma and initial treatment, older patients (31.4 years, SD = 11.1 and a delay in fracture repair (19.1 days, SD = 18.7 were more likely to be associated with reoperation. It was concluded that substance abuse, age, dental condition, location of fracture, degree of fragmentation, fracture exposure and the time between trauma and initial treatment should be considered contributing factors to the occurrence of complications that require surgical retreatment of mandibular fractures.

  1. Fabrication of irradiation capsule for IASCC irradiation tests (2). Irradiation capsule for crack propagation test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported. (author)

  2. Fabrication of irradiation capsule for IASCC irradiation tests (1). Irradiation capsule for crack growth test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack growth test is reported. (author)

  3. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  4. Use of miniaturized compact tension specimens for fracture toughness measurements in the upper shelf regime. Electrabel/Tractebel-SCK-CEN Convention 2004 Task 1.1.4/2

    International Nuclear Information System (INIS)

    Lucon, E.; Scibetta, M.; Chaouadi, R.; Walle, E. van

    2005-04-01

    In the nuclear field, the importance of direct fracture toughness measurements on RPV materials has been nowadays widely recognized, as opposed to Charpy-based estimations. However, sample dimensions have to be kept small in order to optimize the use of available material (often in the form of previously broken Charpy specimens) or, in the case of new irradiations, make effective use of the limited space available inside irradiation facilities. One of the most appealing geometries for fracture toughness measurements is the miniature Compact Tension specimen, MC(T), which has the following dimensions: B = 4.15 mm, W = 8.3 mm, cross section 10 x 10 mm 2 . Four MC(T) specimens can be machined out of a broken half Charpy, and in the case of irradiation ten MC(T) samples occupy approximately the same volume as a full-size Charpy specimen. The MC(T) geometry was already successfully applied and qualified for fracture toughness assessments in the ductile-to-brittle transition regime, using the Master Curve method (ASTM E1921-03). A further, comprehensive investigation is presented in this report, aimed at assessing the applicability of MC(T) specimens to measure fracture toughness in fully ductile (upper shelf) conditions. In this study, 18 1TC(T) and 20 MC(T) specimens have been tested at different temperatures from three RPV steels and one low-alloy C-Mn steel. The results obtained clearly show that MC(T) samples exhibit lower fracture toughness properties, both in terms of initiation of ductile tearing (according to various test standards) and resistance to ductile crack propagation (J-R curve). The reduction of tearing resistance might be attributed to work hardening prevailing over loss of constraint in the uncracked ligament in a side-grooved specimen, or to the inadequacy of J-integral to represent ductile crack extension in very small specimens. Both arguments will have to be verified with further investigations. (author)

  5. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    International Nuclear Information System (INIS)

    Groot, P.; Franconi, E.

    1994-01-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens. ((orig.))

  6. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1992-01-01

    Experimental results exploring gravity-driven wetting front instability in a pre-wetted, rough-walled analog fracture are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  7. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1993-01-01

    Experimental results exploring gravity-driven wetting from instability in a pre-wetted, rough-walled analog fractures such as those at Yucca Mountain are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  8. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  9. Uses of AES and RGA to study neutron-irradiation-enhanced segregation to internal surfaces

    International Nuclear Information System (INIS)

    Gessel, G.R.; White, C.L.

    1980-01-01

    The high flux of point defects to sinks during neutron irradiation can result in segregation of impurity or alloy additions to metals. Such segregants can be preexisting or produced by neutron-induced transmutations. This segregation is known to strongly influence swelling and mechanical properties. Over a period of years, facilities have been developed at ORNL incorporating AES and RGA to examine irradiated materials. Capabilities of this system include in situ tensile fracture at elevated temperatures under ultrahigh vacuum 10 -10 torr and helium release monitoring. AES and normal incidence inert ion sputtering are exploited to examine segregation at the fracture surface and chemical gradients near the surface

  10. The behaviour of transport from the fission products caesium and strontium in coated particles for high temperature reactors under irradiation conditions

    International Nuclear Information System (INIS)

    Zoller, P.

    1976-07-01

    At first survey is given about existing knowledge of the behaviour of caesium and strontium fission product transport in coated particles. In order to describe the complicated fission product transport mechanisms under irradiation conditions a suitable calculating model (SLIPPER) is taken over and modified to the special problems of an irradiation experiment. Fundamentally, the fission product transport is represented by the two contributions of diffusion and recoil, at which the diffusion is described by effective diffusion coefficients. In difference of that the possibility of a two-phase-diffusion is examined for the Cs diffusion in the fuel kernel. The model application on measuring results from irradiation experiments of KFA-Juelich and Mol-Belgien allowed the explanation from the characteristic of fission product transport in coated particles under irradiation conditions and produced effective diffusion coefficients for the fission products Cs and Sr. (orig.) [de

  11. REQUIREMENTS TO THE LIMITATION OF POPULATION EXPO-SURE FROM THE NATIRAL IONIZING IRRADIATION SOURCES IN INDUSTRIAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2010-01-01

    Full Text Available The paper presents conceptually new requirements to the limitation of population exposure from the natural ionizing irradiation sources in industrial conditions, introduced into Basic Sanitary Rules of Radiation Safety (OSPORB-99/2010. It is shown that, first of all, introduction of these requirements is aimed at the resolution of variety of previously existing serious contradictions in organization of radiation safety control and supervision for the impact of natural ionizing irradiation sources in industry.

  12. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  13. Revision of the fracture models in steels for nuclear pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F A.I. [Pontificia Univ. Catolica do Rio de Janeiro (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1981-01-01

    The variation of toughness with the temperature of steels used in the fabrication of nuclear pressure vessels is presented and discuted by mathematical models aiming to reach a critical value of stress or deformation at the moment of the fracture. The mathematical model considered are compatible with the fracture micromechanisms in action and they are capable of foreseeing the variations in the toughness from the mechanical properties evaluated in the tension test. The neutron irradiation effects in the toughness as well as in the variation of this toughness with the operating temperature are still described.

  14. Anisotropy of fracture toughness of austenitic high nitrogen chromium-manganese steel

    International Nuclear Information System (INIS)

    Balitskii, A.I.; Pokhmurskii, V.I.; Diener, M.; Magdowski, R.; Speidel, M.O.

    1999-01-01

    The anisotropy of mechanical properties, in particular of the fracture toughness measured by the J-integral method, is demonstrated for industrially manufactured high strength retaining rings made from the nitrogen alloyed steel 18Mn18Cr. The RT-orientation turns out to be the weakest with regard to the resistance of the material to stable crack growth. The fracture toughness results are compared with results from calorimetric measurements. Here, also an orientation dependence of the heat irradiation energy is observed, clearly showing the same ranking of specimen orientation as the toughness data suggest. (orig.)

  15. Spalling fracture of metals and alloys under intense x-radiation

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2001-01-01

    Creation of different power and irradiating installations assisted in studying mechanical properties of structural materials under the effect of high-power radiation fluxes: laser, electron, X-ray, ion beam etc. There are being widely investigated such phenomena as surface and deep hardening of metals and alloys under irradiation, generation of elastic and shock waves, materials failure under thermal shock etc.In the paper there are discussed the results of long researches of spalling fracture of materials and alloys under intense X-radiation. Model assemblies with consequently arranged samples (foils) of metals and alloys under investigation underwent pulse X-radiation. The energy flux of X-radiation was weakened to the needed value by dose filters intensively absorbing soft spectrum of X-radiation. At carrying out the researches the foils of copper, nickel, titanium, brass, bronze, molybdenum, tungsten, tantalum, cadmium, lead, zinc, silver and steels 0.005-1 mm thick were used as objects under investigation. The samples diameter (10-16 mm) was chosen to be quite large as compared to their thickness so that the side load does not affect the central part of the samples and the front (looking the source of X-radiation) and back (shadow) surfaces of the samples are free what makes it possible to consider the processes of spalling fracture in one-dimensional approximation. Within the frames of kinetic approach to the problem of solid states spalling fracture under pulse loading that considers fracture as progressing in time process there were found spalling fracture time dependencies of lead, cadmium, zinc, silver, copper, brass, bronze, nickel, titanium, molybdenum, tungsten, tantalum and steels under thermal shock initiated by X-radiation. It was demonstrated that longevity of metals and alloys under thermal shock exponentially decreases with the growth of rupture stresses amplitude and can be described in terms of kinetic concept of strength.Within the frames of

  16. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  17. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  18. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

    1998-01-01

    The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

  19. Impact of fission gas on irradiated PWR fuel behaviour at extended burnup under RIA conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Schmitz, F.

    1996-01-01

    With the world-wide trend to increase the fuel burnup at discharge of the LWRs, the reliability of high burnup fuel must be proven, including its behaviour under energetic transient conditions, and in particular during RIAs. Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup. The potential for swelling and transient expansion work under rapid heating conditions characterizes the high burnup fuel behaviour by comparison to fresh fuel. This effect is resulting from the steadily increasing amount of gaseous and volatile fission products retained inside the fuel structure. An attempt is presented to quantify the gas behaviour which is motivated by the results from the global tests both in CABRI and in NSRR. A coherent understanding of specific results, either transient release or post transient residual retention has been reached. The early failure of REP Na1 with consideration given to the satisfactory behaviour of the father rod of the test pin at the end of the irradiation (under load follow conditions) is to be explained both by the transient loading from gas driven fuel swelling and from the reduced clad resistance due to hydriding. (R.P.)

  20. Performance assessment of the (Th,U)O2 HTI-Biso coated particle under PNP/HHT irradiation conditions

    International Nuclear Information System (INIS)

    Kania, M.J.; Nickel, H.

    1980-11-01

    The HTI Biso Particle, Variant-I: consisting of a dense 400 μm-diameter (Th,U)O 2 -kernel with a Biso coating using a methane derived pyrocarbon layer (HTI), is a candidate fuel for the advanced PNP/HHT High Temperature Reactor systems. This report presents the results of a comprehensive performance assessment of Variant-I represented by six relevant particle batches irradiated in 12 accelerated irradiation experiments. Fuel performance was judged based upon PNP/HHT qualification requirements with regard to in-reactor operating conditions and end-of-life (EOL) coated particle failure fraction. Fuel operating conditions in each irradiation experiment were obtained from two sources: 1) a thorough review of all available irradiation data on each experiment; and 2) a two-dimensional (R,theta) thermal modeling computer code, R2KTMP, was developed to calculate fuel operating temperature distributions within spherical elements. End-of-life particle failure fractions were determined from: gaseous fission product release, based on in-reactor R/B measurements and postirradiation annealing and room temperature investigations; solid fission product release, from single particle 137 Cs release into fuel element matrix and hot-gaseous chlorine leaching; and visual and ceramographic examinations. Failure fractions determined by solid fission product release yielded values 2-35 times higher than those determined by gaseous fission product release. (orig.) [de

  1. Microstructure of irradiated Inconel 706 fuel pin cladding

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Makenas, B.J.

    1983-08-01

    A fuel pin from the HEDL-P-60 experiment with a cladding of solution-annealed Inconel 706 breached in an apparently brittle manner at a position 12.7 cm above the bottom of the fuel column with a crack of 5.72 cm in length after 5.0 atomic percent burnup in EBR-II. Temperatures (time-averaged midwall) and fast fluences for the fractured area range from 447 0 C and 5.5 x 10 22 n/cm 2 to 526 0 C and 6.1 x 10 22 n/cm 2 (E > 0.1 MeV). Specimens of the fractured fuel pin section were successfully prepared and examined in both a scanning electron microscope and a transmission electron microscope. The fracture surfaces of the breached section showed brittle intergranular fracture characteristics for both the axial and circumferential cracks. Formation of γ' in the matrix near the breach confirmed that the irradiation temperature at the breached area was below 500 0 C, in agreement with other estimates of the temperature for the area, 447 to 526 0 C. A hexagonal eta-phase, Ni 3 (Ti,Nb), precipitated at boundaries near the breach. A more extensive eta-phase coating at grain boundaries was found in a section irradiated at 650 0 C. The eta-phase plates at grain boundaries are expected to have a detrimental effect on alloy ductility. A plane of weakness in this region along the (111) slip planes will develop in Inconel 706 because the eta-plates have a (111) habit relationship with the matrix

  2. Effects of the loading conditions on fracturing near the shot hole

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Tanishi, Hiroyuki; Maruta, Yuji; Nakashima, Yukitoshi; Inoue, Masayasu.

    1984-01-01

    As the blasting method controlling the energy emission of explosives, there is cushion blasting method, and recently, attention has been paid to it as the dismantling technique in the decommissioning of nuclear reactors. The objective of this method is to obtain smooth finished surfaces by reducing the damage of natural ground behind fracture surfaces, but it is expected that the state of breaking near a shot hole changes largely by the condition of loading explosives. In the cushion blasting method, it is intended to utilize the dynamic effect of stress waves in media and the static effect of explosion gas by the action of the gap provided around a charge, called decoupling effect. In this study, in order to visually grasp the behavior of stress waves near an explosion source and the progress of breaking, experiment was carried out with acrylic blocks, and the explosion phenomena were observed using a high speed camera, at the same time, the pressure history of the stress waves generated during the explosion was measured with piezo-electric gauges. Moreover, pressure measurement was carried out in the blasting of mortar blocks. The form of specimens and the loading condition, the measurement of the pressure history, the measuring system and the experimenal results are reported. (Kako, I.)

  3. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  4. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900±50degC to a neutron fluence of 1x10 25 n/m 2 (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  5. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900{+-}50degC to a neutron fluence of 1x10{sup 25} n/m{sup 2} (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  6. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Appajosula S., E-mail: Appajosula.Rao@nrc.gov

    2014-04-01

    Austenitic stainless steels (SSs) are extensively being used in the fabrication of light water reactor (LWR) core internal components. It is because these steels have relatively high ductility, fracture toughness and moderate strength. However, the LWR internal components exposure to neutron irradiation over an extended period of plant operation degrades the materials mechanical properties such as the fracture toughness. This paper summarizes some of the results of the existing open literature data on irradiation assisted stress corrosion cracking (IASCC) of 316 CW steels that have been published by the United States Nuclear Regulatory Commission (USNRC), industry, academia, and other research agencies.

  7. PECVD low-permittivity organosilicate glass coatings: Adhesion, fracture and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Lin Youbo; Xiang Yong [School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States); Tsui, Ting Y. [Department of Chemical Engineering, Nanotechnology Institute, University of Waterloo, 200 University Avenue West, Waterloo, Ont., N2L 3G1 (Canada); Vlassak, Joost J. [School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States)], E-mail: vlassak@esag.harvard.edu

    2008-10-15

    The structure and mechanical behavior of organosilicate glass (OSG) coatings have been analyzed as a function of composition and UV irradiation time. A decrease in the OSG carbon content results in more networking bonds and increased connectivity; UV irradiation increases the connectivity by severing weak terminal bonds and stabilizes the network through local bond rearrangements. These structure modifications lead to a significant improvement in the stiffness, hardness, and fracture energy of these coatings. The networking bond density and mean connectivity number correlate well with the mechanical behavior of the OSG films, although network bond density weighted by bond energy is a more appropriate measure. The adhesion energy of silicon nitride to OSG is significantly higher than the cohesive energy of the OSG as a result of interface densification and crack-tip shielding. Subcritical fracture measurements in aqueous environments show that the detrimental effect of water on adhesion surpasses the effect of network connectivity.

  8. Modeling of Microstructure Evolution in Austenitic Stainless Steels Irradiated Under Light Water Reactor Conditions

    International Nuclear Information System (INIS)

    Gan, J.; Stoller, R.E.; Was, G.S.

    1998-01-01

    A model for the development of microstructure during irradiation in fast reactors has been adapted for light water reactor (LWR) irradiation conditions (275 approximately 325 C, up to approximately10 dpa). The original model was based on the rate-theory, and included descriptions of the evolution of both dislocation loops and cavities. The model was modified by introducing in-cascade interstitial clustering, a term to account for the dose dependence of this clustering, and mobility of interstitial clusters. The purpose of this work was to understand microstructural development under LWR irradiation with a focus on loop nucleation and saturation of loop density. It was demonstrated that in-cascade interstitial clustering dominates loop nucleation in neutron irradiation in LWRS. Furthermore it was shown that the dose dependence of in-cascade interstitial clustering is needed to account for saturation behavior as commonly observed. Both quasi-steady-state (QSS) and non-steady-state (NSS) solutions to the rate equations were obtained. The difference between QSS and NSS treatments in the calculation of defect concentration is reduced at LWR temperature when in-cascade interstitial clustering dominates loop nucleation. The mobility of interstitial clusters was also investigated and its impact on loop density is to reduce the nucleation term. The ultimate goal of this study is to combine the evolution of microstructure and microchemistry together to account for the radiation damage in austenitic stainless steels

  9. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    . Ductile crack growth in a thin strip under mode I, overall plane strain, small scale yielding conditions is analyzed. Although overall plane strain loading conditions are prescribed, full 3D analyses are carried out to permit modeling of the three dimensional material microstructure and of the resulting......Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low...

  10. Fracture-toughness variations in Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; Blackburn, L.D.

    1983-04-01

    The effect of product-form variations within a single heat on the J Ic fracture toughness behavior of Alloy 718 was examined at 24, 427 and 538 degree C using the multiple-specimen J R -curve method. Three product forms (plate, round bar and upset forging) were tested in both the conventional and modified heat-treatment (CHT and MHT) conditions. In CHT material, the fracture toughness response was different for the three product forms -- plate having the highest toughness, bar the lowest. The MHT was found to improve the overall fracture resistance for each product form. In this condition, plate and forging had very similar toughness values, but J Ic levels for the bar were considerably lower. These results and WHC data previously reported for four other Alloy 718 heats were unalloyed statistically to establish minimum-expected J Ic values based on tolerance limits bracketing 90% of a total population at a 95% confidence level. Metallographic and fractographic examinations of the seven material lots were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties. Generally, coarse δ precipitates controlled fracture properties in CHT material by initiating secondary dimples that pre-empted growth of the primary dimples nucleated by broken carbide inclusions. The MHT dissolved the coarse δ particles and thereby suppressed secondary microvoid coalescence. This generally enhanced the fracture resistance of Alloy 718, except when alternate secondary fracture mechanism, such as channel fracture and dimple rupture at δ-phase remnants, prematurely interrupted primary microvoid growth. 25 refs., 12 figs., 12 tabs

  11. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  12. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo [Hokkaido Univ., Hakodate (Japan). Faculty of Fisheries; Hayashi, Toru; Yasumoto, Kyoden

    1990-10-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author).

  13. Influence of phototherapies on the outcome of complete tibial fractures grafted or not with MTA: Raman spectroscopic study on rabbits

    Science.gov (United States)

    Pinheiro, Antônio L. B.; Soares, Luiz G. P.; da Silva, Aline C. P.; Santos, Nicole R. S.; da Silva, Anna Paula L. T.; Neves, Bruno Luiz R. C.; Soares, Amanda P.; Silveira, Landulfo

    2018-02-01

    The aim of the present study was to assess, by means of Raman spectroscopy, the repair of complete surgical tibial fractures fixed with wire osteosynthesis or miniplates treated or not with infrared laser (λ780 nm) or infrared LED (λ850 +/- 10 nm) lights, 142.8 J/cm2 per treatment, associated or not to the use of mineral trioxide aggregate (MTA) cement. Surgical fractures were created on 36 rabbits and fixed with WO or miniplates and some groups were grafted with MTA. Irradiated groups received lights at every other day for 15 days and sacrifice occurred after 30 days. The results showed that only irradiation with either laser or LED influenced the peaks of phosphate ( 960 cm-1) and carbonated ( 1,070 cm-1) hydroxyapatite. Collagen peak (1,450 cm-1) was influenced by both the use of MTA and irradiation with either laser or LED. It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis or miniplates.

  14. Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study.

    Science.gov (United States)

    Tseng, Wo-Jan; Hung, Li-Wei; Shieh, Jiann-Shing; Abbod, Maysam F; Lin, Jinn

    2013-07-15

    Osteoporotic hip fractures with a significant morbidity and excess mortality among the elderly have imposed huge health and economic burdens on societies worldwide. In this age- and sex-matched case control study, we examined the risk factors of hip fractures and assessed the fracture risk by conditional logistic regression (CLR) and ensemble artificial neural network (ANN). The performances of these two classifiers were compared. The study population consisted of 217 pairs (149 women and 68 men) of fractures and controls with an age older than 60 years. All the participants were interviewed with the same standardized questionnaire including questions on 66 risk factors in 12 categories. Univariate CLR analysis was initially conducted to examine the unadjusted odds ratio of all potential risk factors. The significant risk factors were then tested by multivariate analyses. For fracture risk assessment, the participants were randomly divided into modeling and testing datasets for 10-fold cross validation analyses. The predicting models built by CLR and ANN in modeling datasets were applied to testing datasets for generalization study. The performances, including discrimination and calibration, were compared with non-parametric Wilcoxon tests. In univariate CLR analyses, 16 variables achieved significant level, and six of them remained significant in multivariate analyses, including low T score, low BMI, low MMSE score, milk intake, walking difficulty, and significant fall at home. For discrimination, ANN outperformed CLR in both 16- and 6-variable analyses in modeling and testing datasets (p?hip fracture are more personal than environmental. With adequate model construction, ANN may outperform CLR in both discrimination and calibration. ANN seems to have not been developed to its full potential and efforts should be made to improve its performance.

  15. Effect of low doses gamma irradiation on the yield of cucumber grown under field and protected conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Ayyoubi, Z.; Razzouk, A.K.

    1994-08-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain field crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on cucumber in Syria. Our experiments were carried out in field and greenhouse conditions. Two experiments were under field conditions, the first at Der-El-Hajar (Unfertile soil with high mean temperature), and the second at Khan-El-Sheeh (fertile soil with lower mean temperature), in these two experiments local variety was used. The third experiment was under greenhouse condition using two varieties, F1 Hybrid Taha and Sahara. Samples of air dried seeds of previous season were irradiated by gamma rays from a 60 Co source using doses of 2, 3, 4, 5, 7.5, 10 and 15 Gy at dose rate of 0.8 Gy/min. Seeds were planted after two days from irradiation and replicated 4 times. The data revealed that gamma irradiation at interval doses of 3-7.5 Gy led to increase the number of leaves and plant height. The radiation treatment had stimulating effects on earliness especially for doses of 4-7.5 Gy in Khan-El-Sheeh (14-31%) and 7.5 Gy in Der-El-Hajar (28%). In greenhouse dose of 2-4 Gy and 2-7.5 Gy stimulate the earliness by 12-36% and 11-18% for Sahara and Taha varieties respectively. The results of total yield (as well as fruits number) were significantly increased when doses of 7.5 Gy in Der-El-Hajar (25%) and 4 and 5 Gy in Khan-El-Sheeh (28-30%). The optimum doses in greenhouse condition ranged between 32-4 Gy for Taha var. and 4-5 Gy for Sahara var., and the percentage of increment was 19 and 16% respectively. In view of all above mentioned results, the use of radiation might be recommended as easy tool for seed treatment to stimulate earliness and increase productivity of cucumber. (author). 17 refs., 23 tabs

  16. Pressure vessel steels: influence of chemical composition on irradiation sensitivity

    International Nuclear Information System (INIS)

    Ghoniem, M.M.; Hammad, F.H.

    1998-01-01

    Neutron irradiation of the steels used in the construction of the nuclear reactor pressure vessels can lead to the embrittlement of these materials, increasing the ductile-to-brittle transition temperature and decreasing the fracture energy, which can limit the plant life. The knowledge of irradiation embrittlement and the means for minimizing such degradation is therefore important in the field of assuring the safety of the nuclear power plants. Irradiation embrittlement is quite a complex process. It involves many variables. The most important of these are irradiation temperature, neutron fluence (neutron dose), neutron flux (neutron dose rate), and chemical composition of the irradiated material. This paper is concerned with the effect of chemical composition, the role of residual and alloying elements in the irradiation embrittlement of nuclear reactor pressure vessel steels in light water reactors. It presents a critical review for the published work in this field through the last 25 years

  17. Behavior of pre-irradiated fuel under a simulated RIA condition. Results of NSRR Test JM-5

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide; Tanzawa, Sadamitsu; Ishijima, Kiyomi; Kobayashi, Shinsho; Kamata, Hiroshi; Homma, Kozo; Sakai, Haruyuki.

    1995-11-01

    This report presents results from the power burst experiment with pre-irradiated fuel rod, Test JM-5, conducted in the Nuclear Safety Research Reactor (NSRR). The data concerning test method, pre-irradiation, pre-pulse fuel examination, pulse irradiation, transient records and post-pulse fuel examination are described, and interpretations and discussions of the results are presented. Preceding to the pulse irradiation in the NSRR, test fuel rod was irradiated in the Japan Materials Testing Reactor (JMTR) up to a fuel burnup of 25.7 MWd/kgU with average linear heat rate of 33.4 kW/m. The fuel rod was subjected to the pulse irradiation resulting in a desposited energy of 223 ± 7 cal/g·fuel (0.93 ± 0.03 kJ/g·fuel) and a peak fuel enthalpy of 167 ± 5 cal/g·fuel (0.70 ± 0.02 kJ/g·fuel) under stagnant water cooling condition at atmospheric pressure and ambient temperature. Test fuel rod behavior was assessed from pre- and post-pulse fuel examinations and transient records during the pulse. The Test JM-5 resulted in cladding failure. More than twenty small cracks were found in the post-test cladding, and most of the defects located in pre-existing locally hydrided region. The result indicates an occurrence of fuel failure by PCMI (pellet/cladding mechanical interaction) in combination with decreased integrity of hydrided cladding. (author)

  18. Dose dependence of microstructural evolution and mechanical properties of neutron irradiated copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B N; Edwards, D J; Horsewell, A; Toft, P

    1995-09-01

    The present investigation of the effects of neutron irradiation on microstructures and mechanical properties of copper alloys is a part of the ITER (International Thermonuclear Experimental Reactor) programme. Tensile specimens of the candidate alloys Cu-Al{sub 2}O{sub 3}, CuCrZr and CuNiBe were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of 2.5 x 10{sup 17} n/m{sup 2}s (E > 1 MeV, i.e. a dose rate of {approx}5 x 10{sup -8} dpa/s) to fluences of 5 x 10{sup 22}, 5 x 10{sup 23} and 1 x 10{sup 24} n/m{sup 2} (E > 1 MeV, i.e. displacement doses of 0.01, 0.1 and 0.2 dpa) at 47 deg. C. The Cu-Al{sub 2}O{sub 3} (CuA125) specimens, were irradiated in the as-cold worked state. Tensile properties and Vickers hardness of both irradiated and unirradiated specimens were determined at 22 deg. C. Pre- and post-deformation microstructures of irradiated as well as unirradiated specimens were examined using a transmission electron microscope. The fractured surfaces of tensile tested specimens were investigated in a scanning electron microscope. The results show the following general trend: (a) that the CuNiBe alloy is stronger than CuCrZr as well as Cu Al{sub 2}O{sub 3}, (b) that even relatively low dose irradiations cause significant increase in the yield strength, but rather drastic decreases in the uniform elongation of CuCrZr and CuNiBe alloys and that the low dose irradiation of the cold-worked Cu-Al{sub 2}O{sub 3} alloy causes a decrease in the yield strength and an increase in the uniform elongation, at higher doses irradiation hardening occurs. The SEM examinations of the fractured surfaces demonstrate that both unirradiated and irradiated specimens fracture in a ductile manner. The lack of uniform elongation in the irradiated copper alloys may be understood in terms of difficulty in dislocation generation due to pinning of grown-in dislocation by defect clusters (loops) at or around them. (EG) 5 tabs., 18 ills., 13 refs.

  19. Dose dependence of microstructural evolution and mechanical properties of neutron irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Horsewell, A.; Toft, P.

    1995-09-01

    The present investigation of the effects of neutron irradiation on microstructures and mechanical properties of copper alloys is a part of the ITER (International Thermonuclear Experimental Reactor) programme. Tensile specimens of the candidate alloys Cu-Al 2 O 3 , CuCrZr and CuNiBe were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of 2.5 x 10 17 n/m 2 s (E > 1 MeV, i.e. a dose rate of ∼5 x 10 -8 dpa/s) to fluences of 5 x 10 22 , 5 x 10 23 and 1 x 10 24 n/m 2 (E > 1 MeV, i.e. displacement doses of 0.01, 0.1 and 0.2 dpa) at 47 deg. C. The Cu-Al 2 O 3 (CuA125) specimens, were irradiated in the as-cold worked state. Tensile properties and Vickers hardness of both irradiated and unirradiated specimens were determined at 22 deg. C. Pre- and post-deformation microstructures of irradiated as well as unirradiated specimens were examined using a transmission electron microscope. The fractured surfaces of tensile tested specimens were investigated in a scanning electron microscope. The results show the following general trend: (a) that the CuNiBe alloy is stronger than CuCrZr as well as Cu Al 2 O 3 , (b) that even relatively low dose irradiations cause significant increase in the yield strength, but rather drastic decreases in the uniform elongation of CuCrZr and CuNiBe alloys and that the low dose irradiation of the cold-worked Cu-Al 2 O 3 alloy causes a decrease in the yield strength and an increase in the uniform elongation, at higher doses irradiation hardening occurs. The SEM examinations of the fractured surfaces demonstrate that both unirradiated and irradiated specimens fracture in a ductile manner. The lack of uniform elongation in the irradiated copper alloys may be understood in terms of difficulty in dislocation generation due to pinning of grown-in dislocation by defect clusters (loops) at or around them. (EG) 5 tabs., 18 ills., 13 refs

  20. Influence of conditioned psychological stress on immunological recovery in mice exposed to low-dose x irradiation

    International Nuclear Information System (INIS)

    Sato, K.; Flood, J.F.; Makinodan, T.

    1984-01-01

    A study was initiated to determine the effects of psychological stress on the immune response in BALB/c mice recovering from exposure to a low dose of ionizing radiation. Mice were first subjected to conditioning training for 12 days, then exposed to 200 R, subjected to psychological stress for 14 days, and assessed for peak anti-sheep RBC response. The seven treatment groups included two unirradiated groups and five irradiated groups. Mice exposed to 200 R and then subjected to conditioned psychological stress responded less vigorously to antigenic stimulation than those of the other irradiated groups. The psychological stress imposed upon these mice did not influence the antibody-forming capacity of unirradiated mice. These results indicate that a psychological stress which did not affect the immunological activity of unirradiated mice can curtail the immunological recovery of mice exposed to low doses of ionizing radiation

  1. First Rib Fracture Resulting in Horner's Syndrome.

    Science.gov (United States)

    Lin, You-Cheng; Chuang, Ming-Tsung; Hsu, Chin-Hao; Tailor, Al-Rahim Abbasali; Lee, Jung-Shun

    2015-12-01

    First rib fractures and traumatic Horner's syndrome are both quite rare, which can make it difficult to properly diagnose the combination of these 2 conditions in the emergency department. These conditions may be associated with severe medical emergencies, such as ongoing carotid dissection. We present the case of a 33-year-old man who sustained fractures to his right second, third, and fourth ribs and a delay in the diagnosis of left Horner's syndrome after he was involved in a traffic accident. Left Horner's syndrome was caused by a left transverse fracture of the first rib. This fracture was not detected on chest radiographs and required a 3-dimensional reconstructed neck computed tomography scan for detection. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: In the diagnosis of carotid artery dissection, conventional angiography is the criterion standard but is considered invasive. CTA is less invasive, time-saving, and can show more anatomic structures in the neck in addition to the carotid arteries. It is a good screening diagnostic modality in the traumatology department. Although the treatments for Horner's syndrome and first rib fracture are conservative, the early diagnosis of both conditions can resolve the anxiety and uncertainty experienced by both doctors and patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Irradiation creep under 60 MeV alpha irradiation

    International Nuclear Information System (INIS)

    Reiley, T.C.; Shannon, R.H.; Auble, R.L.

    1980-01-01

    Accelerator-produced charged-particle beams have advantages over neutron irradiation for studying radiation effects in materials, the primary advantage being the ability to control precisely the experimental conditions and improve the accuracy in measuring effects of the irradiation. An apparatus has recently been built at ORNL to exploit this advantage in studying irradiation creep. These experiments employ a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). The experimental approach and capabilities of the apparatus are described. The damage cross section, including events associated with inelastic scattering and nuclear reactions, is estimated. The amount of helium that is introduced during the experiments through inelastic processes and through backscattering is reported. Based on the damage rate, the damage processes and the helium-to-dpa ratio, the degree to which fast reactor and fusion reactor conditions may be simulated is discussed. Recent experimental results on the irradiation creep of type 316 stainless steel are presented, and are compared to light ion results obtained elsewhere. These results include the stress and temperature dependence of the formation rate under irradiation. The results are discussed in relation to various irradiation creep mechanisms and to damage microstructure as it evolves during these experiments. (orig.)

  3. Alloys under irradiation

    International Nuclear Information System (INIS)

    Martin, G.; Bellon, P.; Soisson, F.

    1997-01-01

    During the last two decades, some effort has been devoted to establishing a phenomenology for alloys under irradiation. Theoretically, the effects of the defect supersaturation, sustained defect fluxes and ballistic mixing on solid solubility under irradiation can now be formulated in a unified manner, at least for the most simple cases: coherent phase transformations and nearest-neighbor ballistic jumps. Even under such restrictive conditions, several intriguing features documented experimentally can be rationalized, sometimes in a quantitative manner and simple qualitative rules for alloy stability as a function of irradiation conditions can be formulated. A quasi-thermodynamic formalism can be proposed for alloys under irradiation. However, this point of view has limits illustrated by recent computer simulations. (orig.)

  4. On the material durability under irradiation conditions

    International Nuclear Information System (INIS)

    Kiselevskij, V.N.; Kosov, B.D.

    1977-01-01

    The initial principle adopted for the construction of a phenomenological model of the failure of irradiated steel, as proposed in the paper of V.A. Tsykanov and coworkers, is analized and some critical remarks made

  5. The feasibility of small size specimens for testing of environmentally assisted cracking of irradiated materials and of materials under irradiation in reactor core

    International Nuclear Information System (INIS)

    Toivonen, A.; Moilanen, P.; Pyykkoenen, M.; Taehtinen, S.; Rintamaa, R.; Saario, T.

    1998-01-01

    Environmentally assisted cracking (EAC) of core materials has become an increasingly important issue of downtime and maintenance costs in nuclear power plants. Small size specimens are necessary in stress corrosion testing of irradiated materials because of difficulties in handling high dose rate materials and because of restricted availability of the materials. The drawback of using small size specimens is that in some cases they do not fulfil the requirements of the relevant testing standards. Recently VTT has developed J-R testing with irradiated and non-irradiated sub size 3 PB specimens, both in inert and in LWR environments. Also, a new materials testing system which will enable simultaneous multiple specimen testing both in laboratory conditions and in operating reactor core is under development. The new testing system will utilize Charpy and sub size 3 PB specimens. The feasibility study of the system has been carried out using different materials. Fracture resistance curves of a Cu-Zr-Cr alloy are shown to be independent of the specimen geometry and size, to some extent. Results gained from tests in simulated boiling water reactor (BWR) water are presented for sensitized SIS 2333 stainless steel. The experimental results indicate that the size of the plastic zone or stress triaxiality must be further studied although no significant effect on the environmentally assisted crack growth rate was observed. (orig.)

  6. The feasibility of small size specimens for testing of environmentally assisted cracking of irradiated materials and of materials under irradiation in reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, A.; Moilanen, P.; Pyykkoenen, M.; Taehtinen, S.; Rintamaa, R.; Saario, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland)

    1998-11-01

    Environmentally assisted cracking (EAC) of core materials has become an increasingly important issue of downtime and maintenance costs in nuclear power plants. Small size specimens are necessary in stress corrosion testing of irradiated materials because of difficulties in handling high dose rate materials and because of restricted availability of the materials. The drawback of using small size specimens is that in some cases they do not fulfil the requirements of the relevant testing standards. Recently VTT has developed J-R testing with irradiated and non-irradiated sub size 3 PB specimens, both in inert and in LWR environments. Also, a new materials testing system which will enable simultaneous multiple specimen testing both in laboratory conditions and in operating reactor core is under development. The new testing system will utilize Charpy and sub size 3 PB specimens. The feasibility study of the system has been carried out using different materials. Fracture resistance curves of a Cu-Zr-Cr alloy are shown to be independent of the specimen geometry and size, to some extent. Results gained from tests in simulated boiling water reactor (BWR) water are presented for sensitized SIS 2333 stainless steel. The experimental results indicate that the size of the plastic zone or stress triaxiality must be further studied although no significant effect on the environmentally assisted crack growth rate was observed. (orig.)

  7. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  8. Fractured Petroleum Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  9. Properties of vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment*1

    Science.gov (United States)

    Chung, H. M.; Loomis, B. A.; Smith, D. L.

    1996-10-01

    One property of vanadium-base alloys that is not well understood in terms of their potential use a fusion reactor structural materials, is the effect of simultaneous generation of helium and neutron damage. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of ≈ 0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600°C in Li-filled capsules in a sodium-cooled fast reactor. This paper presents results of postirradiation examination and tests of microstructure and mechanical properties of V5Ti, V3Ti1Si, V8Cr6Ti, and V4Cr4Ti (the latter alloy has been identified as the most promising candidate vanadium alloy). Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at > 420°C. However, postirradiation ductilities at irradiation. Ductile—brittle transition behavior of the DHCE specimens was also determined from bend tests and fracture appearance of transmission electron microscopy (TEM) disks and broken tensile specimens. No brittle behavior was observed at temperatures > - 150°C in DHCE specimens. Predominantly brittle-cleavage fracture morphologies were observed only at - 196°C in some specimens that were irradiated to 31 dpa at 425°C during the DHCE. For the helium generation rates in this experiment (≈ 0.4-4.2 appm He/dpa), grain-boundary coalescence of helium microcavities was negligible and intergranular fracture was not observed.

  10. Effects of condition in vitro on the irradiation sensitivity of scales

    International Nuclear Information System (INIS)

    Zhang Dongxue; Wang Dan; Zhang Zhiwei

    2007-01-01

    The effects of irradiation and the interactions between irradiation and the ingredients of culture medium and the type of explants on radiation sensitivity of scales of lily were studied. The results showed that when lily scales were exposed to after cultured in vitro for about six days. The survival rate of scales in vitro decreased with the increase of irradiation dose. Irradiation significantly inhibited the sprouting rate and the number of sprouts of scales in vitro. During the bud induction, the effects of ingredients of culture medium on radiation sensitivity of scales were obvious at certain degree, and also the culture time. Both exterior scales and middle scales appeared an identical irradiation sensitivity. (authors)

  11. Storage pool water condition of multipurpose compact 60Co irradiator of IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Kodama, Yasko; Rela, Paulo R.

    2008-01-01

    A new type compact gamma irradiator was developed and installed at IPEN-CNEN/SP, it is classified as category IV irradiator according to International Atomic Energy Agency-IAEA. The originality of its design remains on the rotating concrete door, which integrates the shielding system with the product handling system, permitting the input and output of the products in a continuous way, without the necessity to lower the sources and open the irradiator chamber to change the batch. The licensed capacity of this irradiator is 37 P Bq (1 MCi) and the water pool liner, manufactured in stainless steel, has 7.0 m deep and 2.7 m diameter. A sealed radiation source may be defined as a quantity of radioactive material sealed within non-radioactive material, which the confining barrier is intended to prevent leakage or escape of the radioactive material under normal handling conditions and also under foreseeable mishaps. The use of cobalt-60 radiation sources in a wet storage environment requires care in the control of that environment to avoid the potential for deterioration of the stainless steel. In the literature, the tests performed demonstrated that stainless steel had excellent performance under controlled environment conditions. The inspection includes assessing the condition of storage pool water and measuring the pool water conductivity. The demineralized water normally used in storage pools is usually an effective and secure medium in which to store stainless steel. However, there are certain constituents and contaminants in the water which can affect this behaviour. For instance, the pH has a small but definite effect on the tendency for pitting corrosion. Nevertheless, there is also evidence that both strongly alkaline and strongly acid environments can encourage pitting corrosion. In general, an around neutral pH is recommended. The conductivity is used as a measure of the extent to which ionic species are present in the pool water. International recommendations

  12. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions

    Science.gov (United States)

    Kano, Sho; Yang, Huilong; Shen, Jingjie; Zhao, Zishou; McGrady, John; Hamaguchi, Dai; Ando, Mamami; Tanigawa, Hiroyasu; Abe, Hiroaki

    2018-04-01

    In order to clarify the instability of M23C6 in F82H steel under irradiation, both electron irradiation using a high voltage electron microscope (HVEM) and ion irradiation using an ion accelerator were performed. For the electron irradiation, in-situ observation under 2 MV electron irradiation and ex-situ high resolution electron microscopic (HREM) analysis were utilized to evaluate the response of M23C6 against irradiation. The temperature dependence of the irradiation induced instability of the carbide was first confirmed: 293 K indicating severe loss of crystallinity due to dissolution of the constituent atoms though irradiation-enhanced diffusion under the vacancy diffusion by the focused electron beam irradiation. For the ion irradiation, 10.5 MeV-Fe3+ ion was applied to bombard the F82H steel at 673 K to achieve the displacement damage of ≈20 dpa at the depth of 1.0 μm from surface. Cross-section TEM specimens were prepared by a focused ion beam technique. The shrinkage of carbide particles was observed especially near the irradiation surface. Besides, the lattice fringes at the periphery of carbide were observed in the irradiated M23C6 by the HREM analysis, which is different from that observed in the electron irradiation. It was clarified that the instability of M23C6 is dependent on the irradiation conditions, indicating that the flow rate of vacancy type defects might be the key factor to cause the dissolution of constituent atoms of carbide particles into matrix under irradiation.

  13. Irradiation Test Plan and Safety Analysis of the Fatigue Capsule(05S-05K)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Kim, B. G.; Kang, Y. H.; Choo, K. N.; Sohn, J. M.; Park, S. J.; Shin, Y. T.; Seo, C. K

    2007-01-15

    In this report, the design, fabrication, the out-pile test and the irradiation test plan of the fatigue capsule 05S-05K were described and the safety aspect during the design, fabrication and irradiation test was reviewed. A cyclic load device necessary for the fatigue test was newly designed and manufactured. By using the cyclic load device the performance test and the preliminary fatigue test were performed with STS316L specimen of {phi}1.8 mm x 12.5 mm gage length under the same condition(550 .deg. C) as the temperature of the specimen during the irradiation test. As a result of the test, the fracture of the specimen occurs at a total of 70,120 cycles, at which the displacement was 2.02 mm. The reactivity effect was reviewed and an analysis for the structural and thermal integrity was performed to review the safety of the capsule, which will be irradiated at a temperature higher than 550 .deg. C And the thermal analysis shows that the temperatures of the parts are less than the melting temperatures of the corresponding materials. The structural analysis considering this temperature shows that the combined stress on the outer tube is less than the allowable stress limits and so the structural integrity is maintained.

  14. Enhanced solar global irradiance during cloudy sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schade, N.H.; Sandmann, H.; Stick, C. [Kiel Univ. (Germany). Inst. fuer Medizinische Klimatologie; Macke, A. [Kiel Univ. (DE). Leibniz Inst. fuer Meereswissenschaften (IFM-GEOMAR)

    2007-06-15

    The impact of cloudiness on the shortwave downwelling radiation (SDR) at the surface is investigated by means of collocated pyranometer radiation measurements and all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2004 and 2005. A main improvement to previous studies on this subject resulted from the very high temporal resolution of cloud images and radiation measurements and, therefore, a more robust statistical analysis of the occurrence of this effect. It was possible to observe an excess of solar irradiation compared to clear sky irradiation by more than 500 W/m{sup 2}, the largest observed excess irradiation to our knowledge so far. Camera images reveal that largest excess radiation is reached close to overcast situations with altocumulus clouds partly obscuring the solar disk, and preferably with cumulus clouds in lower levels. The maximum duration of the enhancements depends on its strength and ranges from 20 seconds (enhancements > 400 W/m{sup 2}) up to 140 seconds (enhancements > 200 W/m{sup 2}). (orig.)

  15. Study of the Conditions of Irradiating Laser for Removal of Toner from Used Paper

    Science.gov (United States)

    Ihori, Haruo; Inagawa, Yuki; Ito, Naohiro; Fujii, Masaharu; Ninomiya, Hideki

    Though it is said to the paper-less age with the spread of personal computer, amount of office papers to be used doesn't have tendency to decrease. In general, used papers are recovered and recycled in order to preserve the environment. The labor and costs are required for the recovery of used papers and a recycled paper is lower in quality. If we could reuse used papers repeatedly without withdrawing those, for example, by copying machine that could print again with removing toner on used paper, it is very convenient and ecological. So, we studied about removing toner from used papers by application of the laser ablation technique. As an optical source, SHG-YAG laser was chosen. For removal of toner from used papers, the energy density to irradiate them with SHG-YAG laser was examined. When approximately 12mJ/mm2 of the energy density, which was average value, toner was removed so much as to be able to reuse again. Moreover, conditions of the laser irradiation, concretely, the velocity scanning the laser and the number of the irradiation, were studied.

  16. Numerical research of two-phase flow in fractured-porous media based on discrete fracture fetwork model

    Science.gov (United States)

    Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.

    2018-03-01

    In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.

  17. Ulnar nerve paralysis after forearm bone fracture

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Schwartsmann

    2016-08-01

    Full Text Available ABSTRACT Paralysis or nerve injury associated with fractures of forearm bones fracture is rare and is more common in exposed fractures with large soft-tissue injuries. Ulnar nerve paralysis is a rare condition associated with closed fractures of the forearm. In most cases, the cause of paralysis is nerve contusion, which evolves with neuropraxia. However, nerve lacerations and entrapment at the fracture site always need to be borne in mind. This becomes more important when neuropraxia appears or worsens after reduction of a closed fracture of the forearm has been completed. The importance of diagnosing this injury and differentiating its features lies in the fact that, depending on the type of lesion, different types of management will be chosen.

  18. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  19. Effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 350 deg. C

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J.

    1997-02-01

    Screening experiments were carried out to investigate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) cooper alloys. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing, and bonding thermal treatment followed by re-ageing and the reactor bakeout treatment at 350 deg. C for 100 h. Tensile specimens of CuAl-25 were given the heat treatment corresponding to the bonding thermal cycle. A number of heat treated specimens were neutron irradiated at 350 deg. C to a dose level of ∼ 0.3 dpa in the DR-3 reactor at Risoe. Both unirradiated and irradiated specimens with various heat treatments were tensile tested at 350 deg. C. The microstructure and electrical resistivity of these specimens were determined in the unirradiated as well as irradiated conditions. The post-deformation microstructure of the irradiated specimens was also investigated. The fracture surfaces of both unirradiated and irradiated specimens were examined. Results of these investigations are reported in the present report. The results are briefly discussed in terms of thermal and irradiation stability of precipitates and particles and irradiation-induced segregation, precipitation and recovery of dislocation microstructure. (au) 6 tabs., 24 ills., 9 refs

  20. Comparison of tibial shaft ski fractures in children and adults.

    Science.gov (United States)

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.

  1. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    Science.gov (United States)

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  2. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  3. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  4. Identification of irradiated foods prospects for post-irradiation estimate of irradiation dose in irradiated dry egg products

    International Nuclear Information System (INIS)

    Katusin-Raxem, B.; Mihaljievic, B.; Razem, D.

    2002-01-01

    Radiation-induced chemical changes in foods are generally very small at the usual processing doses. Some exception is radiation degradation of lipids, which are the components most susceptible to oxidation. A possible use of lipid hydroperoxides (LOOH) as indicators of irradiation is described for whole egg and egg yolk powders. A sensitive and reproducible spectrophotometric method for LOOH measurement based on feric thiocyanate, as modified in our laboratory, was applied. This method enabled the determination of LOOH, including oleic acid hydroperoxides, which is usually not possible with some other frequently used methods. The lowest limit of 0.05 mmol LOOH/kg lipid could be measured. The measurements were performed in various batches of whole egg and egg yolk powders by the same producer, as well as in samples supplied by various producers. Baseline level in unirradiated egg powder 0.110 ± 0.067 mmol LOOH /kgL was established. The formation of LOOH with dose, as well as the influence of age, irradiation conditions, storage time and storage conditions on LOOH were investigated. The irradiation of whole egg and egg yolk powders in the presence of air revealed an initially slow increase of LOOH, caused by an inherent antioxidative capacity, followed by a fast linear increase after the inhibition dose (D o ). In all investigated samples D o of 2 kGy was determined. Hydroperoxides produced in irradiated materials decay with time. In whole egg and egg yolk powders, after an initially fast decay, the level of LOOH continued to decrease by the first-order decay. Nevertheless, after a six months storage it was still possible to unambiguously identify samples which had been irradiated with 2 kGy in the presence of air. Reirradiation of these samples revealed a significant reduction of D o to 1 kGy. In samples irradiated with 4 kGy and kept under the same conditions, the shortening of D o to 0.5 kGy was determined by reirradiation. This offers a possibility for the

  5. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  6. Evaluation of toughness degradation by small punch (SP) tests for neutron irradiated structural steels

    International Nuclear Information System (INIS)

    Misawa, Toshihei; Hamaguchi, Yoshikazu; Kimura, Akihiko; Eto, Motokuni; Suzuki, Masahide; Nakajima, Nobuya.

    1992-01-01

    The small punch (SP) test as one of the useful small specimen testing technique (SSTT) has been developed to evaluate the fracture toughness, ductile-brittle transition temperature (DBTT) and tensile properties for neutron irradiated structural materials. The SP tests using the miniaturized specimens of φ3 mm TEM disk and 10 mm 2 coupon were performed for six kinds of ferritic steels of F-82, F-82H, HT-9, JFMS, 2.25-1Mo and SQV2A. It was shown that the temperature dependence of SP fracture energies with scatter in miniaturized testing can give reliable information on the DBTT by use of the statistical analysis based on the Weibull distribution. A good correlation between the DBTT of the SP tests and that of the standard CVN test has been obtained for the various nuclear ferritic steels. The SP test was performed for cryogenic austenitic steels as a way of evaluating elastic-plastic fracture toughness, J IC , on the basis of a universal empirical relationship between J IC and SP equivalent fracture strain, ε-bar qf . The SP testing using the neutron irradiated specimens of 2.25Cr-1Mo, F-82, F-82H and HT-9 steels was successfully applied and presented the neutron radiation induced changes on the DBTT, fracture toughness and tensile properties. (author)

  7. Genomic instability after targeted irradiation of human lymphocytes: Evidence for inter-individual differences under bystander conditions

    International Nuclear Information System (INIS)

    Kadhim, Munira A.; Lee, Ryonfa; Moore, Stephen R.; Macdonald, Denise A.; Chapman, Kim L.; Patel, Gaurang; Prise, Kevin M.

    2010-01-01

    Environmental 222 radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET α-particle irradiation initiate deleterious genetic consequences in both irradiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations. We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single 3 He 2+ particle traversal to a single cell, are sufficient to induce RIGI. Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors. Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (RIGI, measured as delayed chromosome aberrations). Although this was not highly significant, it was possibly masked by high levels of intra-individual variation. While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes. In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed. We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population. The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype.

  8. Genomic instability after targeted irradiation of human lymphocytes: Evidence for inter-individual differences under bystander conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadhim, Munira A., E-mail: mkadhim@brookes.ac.uk [School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP (United Kingdom); Lee, Ryonfa [Biophysics, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Moore, Stephen R.; Macdonald, Denise A. [Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD (United Kingdom); Chapman, Kim L. [School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP (United Kingdom); Patel, Gaurang; Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2010-06-01

    Environmental {sup 222}radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET {alpha}-particle irradiation initiate deleterious genetic consequences in both irradiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations. We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single {sup 3}He{sup 2+} particle traversal to a single cell, are sufficient to induce RIGI. Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors. Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (RIGI, measured as delayed chromosome aberrations). Although this was not highly significant, it was possibly masked by high levels of intra-individual variation. While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes. In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed. We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population. The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype.

  9. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Science.gov (United States)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  10. A master curve-mechanism based approach to modeling the effects of constraint, loading rate and irradiation on the toughness-temperature behavior of a V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Odette, G.R.; Donahue, E.; Lucas, G.E.; Sheckherd, J.W.

    1996-01-01

    The influence of loading rate and constraint on the effective fracture toughness as a function of temperature [K e (T)] of the fusion program heat of V-4Cr-4Ti was measured using subsized, three point bend specimens. The constitutive behavior was characterized as a function of temperature and strain rate using small tensile specimens. Data in the literature on this alloy was also analysed to determine the effect of irradiation on K e (T) and the energy temperature (E-T) curves measured in subsized Charpy V-notch tests. It was found that V-4Cr-4Ti undergoes open-quotes normalclose quotes stress-controlled cleavage fracture below a temperature marking a sharp ductile-to-brittle transition. The transition temperature is increased by higher loading rates, irradiation hardening and triaxial constraint. Shifts in a reference transition temperature due to higher loading rates and irradiation can be reasonably predicted by a simple equivalent yield stress model. These results also suggest that size and geometry effects, which mediate constraint, can be modeled by combining local critical stressed area σ*/A* fracture criteria with finite element method simulations of crack tip stress fields. The fundamental understanding reflected in these models will be needed to develop K e (T) curves for a range of loading rates, irradiation conditions, structural size scales and geometries relying (in large part) on small specimen tests. Indeed, it may be possible to develop a master K e (T) curve-shift method to account for these variables. Such reliable and flexible failure assessment methods are critical to the design and safe operation of defect tolerant vanadium structures

  11. In-service irradiated and aged material evaluations

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Alexander, D.J.

    1995-01-01

    The objective of this task is to provide a direct assessment of actual material properties in irradiated components of nuclear reactors, including the effects of irradiation and aging. Four activities are currently in progress: (1) establishing a machining capability for contaminated or activated materials by completing procurement and installation of a computer-based milling machine in a hot cell; (2) machining and testing specimens from cladding materials removed from the Gundremmingen reactor to establish their fracture properties; (3) preparing an interpretive report on the effects of neutron irradiation on cladding; and (4) continuing the evaluation of long-term aging of austenitic structural stainless steel weld metal by metallurgically examining and testing specimens aged at 288 and 343 degrees C and reporting the results, as well as by continuing the aging of the stainless steel cladding toward a total time of 50,000 h

  12. Evaluation of the french test reactors irradiation embrittlement experiments

    International Nuclear Information System (INIS)

    Miannay, D.; Dussarte, D.; Soulat, P.

    1988-07-01

    The shifts of CV 41J energy index temperatures due to irradiation measured in France have been stored in a data bank and are analysed. According to a simple physically based model which is here-after verified, correlations are proposed for Base Metal (BM) and Weld Metal (WM). The achemical and phosphorus components of the chemical factor are equivalent. However, nickel and copper play a leading part in BM and WM respectively. The copper nickel interaction is not evident. These correlations are for cleavage fracture and not for intergranular fracture. This work is subject to revision and extension

  13. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  14. Irradiation Effect on Oxidative Condition and Tocopherol Content of Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Konstantinos Sflomos

    2007-06-01

    Full Text Available The effect on induction period and tocopherol content after γ-irradiation onsamples of olive oil and seed oils (sunflower and soybean was determined. In seed oilsamples 0, 100, 200 and 300 ppm of δ-tocopherol were added before irradiation with 1, 2and 3kGy. The results of induction period showed that, after irradiation, all samplespresented a significant decreased in resistance to oxidation. However, this decrease wasminimized when δ-tocopherol was added. Irradiation significantly decreased the level oftocopherols. δ-Tocopherol appeared more sensitive in irradiation process than α- andγ-tocopherol. The addition of δ-tocopherol significantly reduced, in most cases, thedepletion of the other tocopherols.

  15. Irradiation embrittlement of some 15Kh2MFA pressure vessel steels under varying neutron fluence rates

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Bars, B [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, A [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    Irradiation sensitivity of two forging materials was measured with Charpy-V and fracture mechanic tests, and with different fluence, fluence rate and irradiation time values. Irradiation sensitivity of the materials was found to be less or equal to the current Russian standard, and appears to be well described by the fluence parameter only. A slight additional effect on embrittlement from a long term low fluence irradiation is noticed, but it stays within the total scatter band of data. 7 refs., 17 figs., 4 tabs.

  16. An evaluation of the active fracture concept with modeling unsaturated flow and transport in a fractured meter-sized block of rock

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Kneafsey, Timothy J.; Ito, Kazumasa

    2003-01-01

    Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network

  17. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    , 31-A2) and intertrochanteric (31-A3) fractures is considered an important approach because of their different behaviour at reduction. Pertrochanteric fractures occurred more frequently (81.5%); the patients' age was higher (80 years on the average) and women outnumbered men at a ratio of 3:1. Intertrochanteric fractures were found in significantly younger patients (average, 72 years), with a women-to-men ratio of 1.3:1. Stable pertrochanteric fractures (31-A1) were preferably indicated for DHS surgery. Unstable pertrochanteric (31-A2) and intertrochanteric (31- A3) fractures were treated with a nail. The patients underwent surgery on the day of injury or the next day. In the case of contraindications to an urgent intervention, surgery was performed after the patient's medical condition had stabilised. The number of complications was largely related to technical errors, such as insufficient reduction or an incorrectly inserted implant. Intertrochanteric fractures were associated with a higher occurrence of complications. No implant can compensate for errors due to surgery. Serious complications can be reduced by the correct assessment of fracture type, the use of an appropriate operative technique and early treatment of potential complications. The necessity of restoring continuity in the medial cortex of the femoral neck (Adams' arch) is the requirement that should be observed. Pseudoarthrosis or varus malalignment in a healed hip should be managed by valgus osteotomy. When the femoral head or the acetabulum is damaged, total hip arthroplasty is indicated. A prerequisite for successful surgical outcome is urgently and correctly performed osteosynthesis allowing for early rehabilitation and mobilisation of the patient.

  18. Influence of side-groove root radius on the ductile fracture toughness of miniature C(T) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.

    2009-05-15

    The use of miniature C(T) specimens, MC(T), for fracture toughness measurements in the upper shelf regime has been investigated at SCK-CEN since 2004, in the framework of the Electrabel/Tractebel SCK-CEN Convention (now General Framework Agreement SUEZ-SCK-CEN). This geometry has been used and validated on both unirradiated (2004-05) and irradiated (2006) materials, mainly reactor pressure vessel (RPV) steels. While side-grooved MC(T) specimens have shown in all conditions a systematically lower tearing resistance and ductile crack initiation toughness as compared to standard-size 1TC(T) samples, the only plain-sided MC(T) specimen tested in 2005 exhibited very high ductile fracture toughness, thus pointing at a strong influence of side-grooving on the upper shelf properties of MC(T) specimens. This study investigates the influence of side-grooving on the initiation toughness and tearing resistance of MC(T) specimens, as a function of the root radius of the side-groove (ranging from 0.1 to 1 mm) and in comparison with plain-sided MC(T) and reference 1TC(T) samples. The material used is the well characterized DIN 22NiMoCr37 RPV steel, which had been used in the European project which generated the famous EURO fracture toughness data set.

  19. The effect of neutron irradiation on the mechanical properties of welded zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D G

    1962-07-15

    Zircaloy-2 tensile specimens, subsize impact bars and representative spigot welds were subjected to three NRX cycles in the X-5 loop. Average loop temperature was 260{sup o}C over the three cycles. One group of tensile specimens was heat-treated in vacuum at 900{sup o}C for 40 minutes, another group contained welded areas in the centre of the gauge length and a third group was hydrided after welding. Notches of the impact specimens were located in the fusion zone of the weld, Spigot welds were made on autoclaved and unautoclaved simulated production assemblies. The transition temperature of Zircaloy-2 increased appreciably upon welding. This was accompanied by a decrease in absorbed energy values for all temperatures between 0{sup o} and 300{sup o}C. Neutron irradiation had no effect on the impact properties of welded. Zircaloy-2. Welding decreased the uniform and total elongation at room temperature and at 260{sup o}C, and increased the 260{sup o}C PL, YS and UTS. Hydriding to a nominal 100 ppm hydrogen had no effect on the unirradiated tensile properties at either test temperature. The heat treatment decreased the strength properties but did not affect the ductility. Neutron irradiation increased the YS of the welded and hydrided material by 20% and the heat treated YS by 40%. Irradiation also increased the 260{sup o}C strength properties of the as-welded material. It was found that the unautoclaved spigot welds had a generally higher tensile strength than the autoclaved and welded specimens. For specimens welded in either condition, the outer welds of the 19-element bundle had a lower average breaking load than the inner welds. Neutron irradiation had no effect on the tensile strength of these welds. It was also demonstrated that a cup-and-cone type of fracture could be produced in a bend test. These fractures were similar to those observed in irradiated fuel bundles which had been damaged during transfer operations. A large amount of scatter rendered some

  20. Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Fallahzadeh

    2017-03-01

    Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.